[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019244955A1 - 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法 - Google Patents

非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法 Download PDF

Info

Publication number
WO2019244955A1
WO2019244955A1 PCT/JP2019/024375 JP2019024375W WO2019244955A1 WO 2019244955 A1 WO2019244955 A1 WO 2019244955A1 JP 2019024375 W JP2019024375 W JP 2019024375W WO 2019244955 A1 WO2019244955 A1 WO 2019244955A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrolyte secondary
secondary battery
aqueous electrolyte
active material
Prior art date
Application number
PCT/JP2019/024375
Other languages
English (en)
French (fr)
Inventor
弘将 村松
眞也 大谷
諒 原田
顕 岸本
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018117727A external-priority patent/JP7031108B2/ja
Priority claimed from JP2018117726A external-priority patent/JP7043989B2/ja
Priority claimed from JP2018205573A external-priority patent/JP7147478B2/ja
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to US17/252,765 priority Critical patent/US20210257665A1/en
Priority to EP19821775.4A priority patent/EP3813163B1/en
Priority to CN201980041784.3A priority patent/CN112771695B/zh
Publication of WO2019244955A1 publication Critical patent/WO2019244955A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention provides a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the positive electrode active material, a positive electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, a method for producing a non-aqueous electrolyte secondary battery, and Regarding how to use it.
  • Non-aqueous electrolyte secondary batteries represented by lithium secondary batteries have been increasingly used in recent years, and there has been a demand for the development of cathode materials having higher capacities.
  • a positive electrode active material for a nonaqueous electrolyte secondary battery a lithium transition metal composite oxide having an ⁇ -NaFeO 2 type crystal structure has been studied, and a nonaqueous electrolyte secondary battery using LiCoO 2 has been widely put into practical use. I have.
  • the discharge capacity of LiCoO 2 is about 120 to 130 mAh / g.
  • the transition metal (Me) constituting the lithium transition metal composite oxide Mn, which is abundant as an earth resource, is used, and the molar ratio Li / Me of Li to the transition metal constituting the lithium transition metal composite oxide is approximately 1.
  • a non-aqueous electrolyte secondary battery using a so-called “LiMeO 2 type” active material in which the molar ratio Mn / Me of Mn in the transition metal is 0.5 or less has also been put to practical use.
  • the discharge capacity of LiNi 1/2 Mn 1/2 O 2 or LiNi 1/3 Co 1/3 Mn 1/3 O 2 is 150 to 180 mAh / g.
  • lithium transition metal composite oxides having an ⁇ -NaFeO 2 type crystal structure the molar ratio Mn / Me of Mn in the transition metal (Me) has been increased, and the molar ratio Li of the transition metal (Me) to Li has been increased. So-called “lithium-rich” active materials having a / Me exceeding 1 are known.
  • the active material when Li / Me is constant over the size, in the charging process is performed first assembled battery, 4.5V (vs.Li/Li +) or 5.0V (vs.Li/Li + In the following potential range, there is a characteristic that a region where the change in potential relative to the amount of charged electricity is relatively flat is observed, and charging is performed until the charging process in which the flat region is observed is completed. However, even if the subsequent charging potential is not so noble, it is noted that it has a higher discharge capacity than the “LiMeO 2 type” active material (see Patent Document 1).
  • Patent Document 1 discloses an active material for a lithium secondary battery including a solid solution of a lithium transition metal composite oxide having an ⁇ -NaFeO 2 type crystal structure, wherein Li, Co, Ni, and Mn contained in the solid solution are contained.
  • the intensity ratio of the diffraction peaks of the (003) plane and the (104) plane in the X-ray diffraction measurement is I (003) / I (104 ) ) > 1, and the potential change appearing with respect to the amount of charge in the positive electrode potential range of more than 4.3 V (vs.
  • Li / Li + to 4.8 V or less (vs. Li / Li + ) is relatively flat.
  • 4.3 V (vs. L (i / Li + )
  • a diffraction peak observed in the monoclinic Li [Li 1/3 Mn 2/3 ] O 2 type was observed around 20 ° to 30 °, which indicates that Li + and Mn 4+ are in an ordered arrangement. It is presumed to be a superlattice line observed in the case of performing.
  • paragraph [0062] describes that“ using the active material for a lithium secondary battery according to the present invention.
  • the active material for a lithium secondary battery according to the present invention In order to manufacture a lithium secondary battery capable of taking out a sufficient discharge capacity even if a charging method in which the maximum ultimate potential of the positive electrode is 4.3 V (vs. Li / Li + ) or less is adopted, The following describes an active material for a lithium secondary battery according to the present invention. It is important to provide a charging step in consideration of the characteristic behavior in the manufacturing process of the lithium secondary battery, that is, to continue the constant current charging using the active material for a lithium secondary battery according to the present invention as a positive electrode.
  • the charging condition adopted here is that the current is 0.1 ItA.
  • the voltage (positive electrode potential) is 4.5 V (vs. Li / Li + ) constant-current constant-voltage charging. Even if the charging voltage is set higher, the potential flat region over this relatively long period is x Is hardly observed when a material having a value of 1/3 or less is used, while a region where the potential change is relatively flat is observed with a material having a value of x exceeding 2/3.
  • lithium metal is used for a negative electrode combined with the positive electrode
  • LiPF 6 is used as an electrolyte in a mixed solvent in which EC / EMC / DMC has a volume ratio of 6: 7: 7.
  • All voltage control was performed with respect to the positive electrode potential.
  • the charging was performed at a constant current and a constant voltage of 1 ItA and a voltage of 4.5 V.
  • the condition for terminating the charging was a point in time when the current value attenuated to 1/6, and the discharging was a constant current discharging at a current of 0.1 ItA and a termination voltage of 2.0 V.
  • a pause time of 30 minutes was set after charging and discharging in all cycles.
  • Patent Literature 2 discloses a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte including a non-aqueous solvent.
  • M is at least one metal element and includes at least Ni or Co
  • the non-aqueous solvent has two or more fluorine atoms directly bonded to a carbonate ring.
  • a nonaqueous electrolyte secondary battery comprising a fluorinated cyclic carbonate. "(Claim 1).
  • the positive electrode active material is “Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 ”
  • the negative electrode contains silicon and carbon
  • the nonaqueous electrolyte Is that “LiPF 6 was dissolved in a non-aqueous solvent in which 4,5-difluoroethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 2: 8 so as to be 1 mol / L”, and the initial charge was performed.
  • the battery was charged with a constant current of 0.5 It until the battery voltage became 4.45 V, and further charged at a constant voltage of 4.45 V until the current value became 0.05 It.
  • the potential of the positive electrode was 4.60 V based on metallic lithium. Thereafter, the battery was discharged at a constant current of 0.5 It until the battery voltage reached 1.50 V "(paragraph [0041]). [0049 ).
  • Patent Literature 3 discloses a lithium ion secondary battery having a positive electrode containing a positive electrode active material that operates at a potential of 4.4 V (vs Li / Li + ) or more, a negative electrode, and an electrolytic solution containing a nonaqueous solvent.
  • the electrolytic solution contains a first lithium salt having a boron atom represented by the following formula (1) and / or formula (2) in an amount of 0.01% by mass or more and 10% by mass or less, And a lithium ion secondary battery containing the second lithium salt having no boron atom in an amount of 1% by mass to 40% by mass ....
  • the first lithium salt is The lithium ion secondary according to any one of claims 1 to 3, wherein the lithium ion secondary is at least one selected from the group consisting of LiBF 4 , LiBF 4 , LiB (C 2 O 4 ) 2 , and LiBF 2 (C 2 O 4 ).
  • Battery (Claim 4).
  • the positive electrode active material was “0.5Li 2 MnO 3 -0.5LiNi 0.37 Mn 0.37 Co 0.26 O 2 ”, and the negative electrode active material was graphite.
  • the electrolyte "volume of ethylene carbonate and ethyl methyl carbonate ratio of 1: mixed in a mixed solvent of LiPF 6 salt was contained 1 mol / L solution rigid in 9.8g 2, ...
  • LiBOB lithium bisoxaborate
  • Patent Literature 4 discloses a lithium ion battery including a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, in which a positive electrode active material contained in the positive electrode is initially charged and discharged when metal Li is used as a counter electrode.
  • the discharge efficiency is 80% to 90%.
  • the negative electrode active material contained in the negative electrode is composed of a mixed material of a silicon compound and a carbon material, and the negative electrode is doped with lithium for an irreversible capacity in initial charge and discharge.
  • a lithium ion battery, wherein the capacity ratio of the negative electrode to the positive electrode is 0.95 or more and 1 or less in an initial charging electric capacity of the positive electrode and the negative electrode.
  • [Chemical formula 1] aLi [Li 1/3 Mn 2/3 ] O 2 ⁇ (1-a) Li [Ni x Co y Mn z ] O 2 (0 ⁇ a ⁇ 0.3, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, x + y + z 1)
  • the non-aqueous electrolytic solution includes a solvent and a supporting salt, and the solvent is at least ⁇ -butyrolactone.
  • the positive electrode active material was “(0.2Li 2 MnO 3 -0.8LiNi 0.33 Co 0.33 Mn 0.33 O 2 ”.
  • the cut-off voltage of the first charge / discharge is 2.2-4.6 V
  • the cut-off voltage of the charge / discharge after the second cycle is 2.2-4.3 V
  • 60 A charge / discharge test was carried out at °C.
  • Patent Literature 5 discloses “In a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte having lithium ion conductivity, the positive electrode active material has a layered shape.
  • Non-aqueous electrolyte secondary battery characterized by containing a salt.
  • the positive electrode active materials were Li 1.06 Ni 0.47 Mn 0.47 O 2 and Li 1.07 Ni 0. 0.56 Mn 0.37 O 2 or Li 1.07 Ni 0.42 Co 0.09 Mn 0.42 O 2
  • the negative electrode active material is graphite whose surface is coated with amorphous carbon
  • the solution was prepared by dissolving LiPF 6 as a solute to a concentration of 1 M in a solvent in which EC, MEC, and DMC were mixed, adding 1% by weight of VC to the solution, and further adding lithium-bisoxalate borate ( A non-aqueous electrolyte secondary battery, which is an electrolytic solution in which LiBOB) was dissolved to 0.1 M, was prepared.
  • the positive electrode active material is composed of “80% by mass of lithium manganate (Li 1.1 Mn 1.9 Al 0.1 O 4 , LMO) and Li 1.15 Ni 0.45 Mn 0.45 Co 0.10 O 2 (Co-less LNMC) 20% by mass ”(paragraph [0401]), the negative electrode active material was“ artificial graphite powder ”(paragraph [0343]), and the nonaqueous electrolyte Described that “Ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) were mixed (30:30:40 by volume), then 0.1 mol / L of fully dried LiFSO 3 and lithium were added.
  • EC lithium manganate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • LiB bisoxalato borate
  • LiBOB bisoxalato borate
  • 0.1 mol / L dissolving LiPF 6 as a percentage of 1 mol / L "(paragraph [ 408]) and those were describes a lithium secondary battery.
  • the evaluation of the initial discharge capacity of the lithium secondary battery according to Example 22 was as follows: "In a state in which the lithium secondary battery was sandwiched between glass plates in order to increase the adhesion between the electrodes, at 25 ° C., 0.1 C And then discharged to 3.0 V at a constant current of 0.1 C. In the second and third cycles, the battery was charged to 4.2 V at 0.33 C and then charged to 4.2 V. The battery was charged until the current value became 0.05 C at a constant voltage of 0.35 C, discharged to 3.0 V at a constant current of 0.33 C, and the initial discharge capacity was obtained from the discharge process in the third cycle.
  • Patent Documents 7 to 10 when a battery using a “lithium-excess type” active material as described in Patent Documents 1 to 4 is used through an initial charging process of 4.5 V (vs. Li / Li + ) or more, “ It is known that the initial coulomb efficiency is low and the high rate discharge performance is inferior to a battery using the “LiMeO 2 type” active material. Therefore, acid treatment of a positive electrode active material is known as a technique for improving the initial coulomb efficiency and high-rate discharge performance of a battery using a “lithium-excess type” active material. (Patent Documents 7 to 10)
  • A is a metal having any valence from divalent to hexavalent
  • a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium-excess metal composite oxide composed of secondary particles in which primary particles are aggregated.
  • a mixing step of obtaining a lithium mixture by mixing a lithium compound with secondary particles in which primary particles made of at least one of hydroxides, oxyhydroxides, oxides, and carbonates containing cobalt and manganese are aggregated,
  • the lithium mixture is placed in an oxidizing atmosphere at 800
  • a baking step of baking at a temperature of about 1050 ° C. to obtain a baking product; and a lithium removal rate of 10 to which a difference in lithium content of the baking product before and after pickling is divided by a lithium content of the baking product before pickling.
  • An acid pickling step in which the pickled slurry is subjected to pickling by controlling the pH of the pickled slurry at 30 ° C. at the end of the pickling at 25 ° C.
  • a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a heat treatment step of heat-treating the fired product after the step at a temperature of 200 to 600 ° C. in an oxidizing atmosphere. ” ) Is described. Then, "The acid used for this pickling is preferably an acid showing a strong acidity with a high dissociation constant, more preferably one of inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, and one of hydrochloric acid and sulfuric acid.
  • the load efficiency is described as the ratio (%) when the discharge capacity at the time of charge / discharge at 0.1 C of charge and 2 C of discharge is taken as the numerator (paragraph [ 0096] to [0101], [0103]).
  • Patent Document 8 discloses “a positive electrode active material for a lithium secondary battery including a lithium transition metal composite oxide having an ⁇ -NaFeO 2 structure, wherein the lithium transition metal composite oxide contains the transition metal (Me).
  • a diffraction peak of 2 ⁇ 44 ⁇ 1 ° in an X-ray diffraction pattern using a CuK ⁇ radiation source, containing Co, Ni and Mn, wherein the molar ratio Mn / Me of Mn in the transition metal is Mn / Me ⁇ 0.5.
  • a positive electrode active material for a lithium secondary battery characterized by having a half width of at least 0.265 ° and containing a P element.
  • Patent Document 9 discloses “a positive electrode active material for a lithium secondary battery containing a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide has an ⁇ -NaFeO 2 structure, and a transition metal (Me ) Contains Co, Ni and Mn, the molar ratio Li / Me of lithium (Li) to the transition metal is larger than 1.2 and smaller than 1.6, and the BJH method Has a pore volume of 0.055 cc / g or more and 0.08 cc / g or less in a pore region in which the pore diameter showing the maximum value of the differential pore volume obtained in the above is up to 60 nm, and has a space at 1000 ° C.
  • (Claim 1) "Precursor preparation for preparing precursor containing Co, Ni and Mn as transition metal elements, showing a single phase belonging to group R3-m” Process, the precursor and L
  • the lithium transition metal composite oxide is produced through a firing step of mixing a salt and heat-treating the mixture at a temperature of 800 ° C. or higher to produce an oxide, and an acid treatment step of treating the oxide with an acid.
  • Method for producing positive electrode active material for lithium secondary battery "(Claim 13).
  • a lithium secondary battery using a lithium transition metal composite oxide, sulfuric acid treatment, and drying was used as a positive electrode, and a lithium secondary battery using metal lithium as a negative electrode.
  • constant-current constant-voltage charging at a current of 0.1 C and a voltage of 4.6 V, and constant-current discharging at a current of 0.1 C and a final voltage of 2.0 V are performed in two cycles. It is described that constant-current constant-voltage charging of 3 V and constant-current discharging at a current of 1 C and a final voltage of 2.0 V were performed, and the amount of discharged electricity was recorded as a 1 C capacity (paragraphs [0076] to [0087]; [0108] to [0115]).
  • Patent Document 10 discloses “a positive electrode active material including a lithium transition metal composite oxide having an ⁇ -NaFeO 2 structure, wherein the lithium transition metal composite oxide has a transition metal (Me) containing Co, Ni, and Mn.
  • the molar ratio of Li and transition metal (Me) (Li / Me) is 1 ⁇ Li / Me
  • the molar ratio of Mn and transition metal (Me) (Mn / Me) is 0.5 ⁇ Mn / Me.
  • Examples 1 to 5 describe“ a lithium transition metal composite oxide Li 1.
  • Table 1 shows the results of evaluating the battery with the ratio (%) of the discharge capacity at the 30th cycle to the capacity as the discharge capacity retention ratio (paragraphs [0090] to [0097]).
  • Patent Document 11 discloses that “including a step of acid-treating a perlithiated metal oxide and a step of doping the acid-treated perlithiated metal oxide with a metal cation.
  • the perlithiated metal oxide is a method for producing a composite positive electrode active material containing a compound represented by the following chemical formula 4: [Formula 4] xLi 2 MO 3- (1-x) LiM′O 2 , M is at least one metal selected from 4-period and 5-period transition metals having an average oxidation number +4, and M ′ is selected from 4-period and 5-period transition metals having an average oxidation number +3. At least one metal, and 0 ⁇ x ⁇ 1 ”(claim 13).
  • LiNi 0.5 Co 0.2 Mn 0.3 O 2 active material there is no change in the charge / discharge curve under the acid treatment conditions, and no Li ion is desorbed by the reaction with the acid solution.
  • Li 2 MnO 3 is the discharge curve by substitution of H + and Li + ions in acid solution to the acid treatment has changed significantly (paragraph [0159]), a negative electrode as lithium metal, 0.1 the initial charge and discharge The initial efficiency was evaluated by charging and discharging at a constant current of 4.7-2.5 V, and the charging and discharging currents at 0.5 C, 4.6 V constant voltage and constant current were 0.2, 0.33, 1, 2, And that the rate characteristics were evaluated by performing constant current discharge at 3 C and 2.5 V (paragraphs [0165] to [0166]).
  • Patent Document 12 a "general formula Li (Li a Mn b Ni c Co d Fe e) O 2-x F x positive electrode active material for non-aqueous electrolyte secondary batteries represented by, in the general formula A, b, c, d, e and x are 0 ⁇ a ⁇ 0.33, 0 ⁇ b ⁇ 0.67, 0 ⁇ c ⁇ 1, 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, 0.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery that satisfies the following formula (1), wherein 1 ⁇ x ⁇ 1-b. (Claim 1).
  • Examples of the active material containing Mn and Ni include “Li 1.2 Ni 0.2 Mn 0.6 O 1.9 F 0.1 ” and “Li 1.2 Ni 0.2 Mn 0.6”.
  • Patent Document 13 discloses “a lithium-rich lithium metal composite compound containing a layered structure of Li 2 MnO 3 , which is doped with a fluoro compound and has a FWHM (half width at half maximum) value in the range of 0.164 ° to 0.185 °. (Claim 1).
  • a transition metal hydroxide precursor having a molar ratio of Ni: Co: Mn of 2: 2: 6, and 1.18 moles of Li 2 CO 3 and LiF in total (LiF is (0.02 to 0.06 mol) of the mixture was fired to obtain a positive electrode active material.
  • the battery characteristics were evaluated by charging and discharging from 2.5 V to 4.6 V to improve the high rate characteristics and the life characteristics. It is described that the evaluation was made (paragraphs [0054] to [0064] and [0073]).
  • Patent Document 14 discloses that “Li element and at least one transition metal element selected from Ni, Co, and Mn are included (provided that the molar amount of Li element is 1 to the total molar amount of the transition metal element). .2 times more.)
  • a method for producing a positive electrode active material for a lithium ion secondary battery which comprises contacting a lithium-containing composite oxide with a fluorine gas. " Then, as an example, a positive electrode active material was obtained by subjecting a lithium-containing composite oxide having a composition “Li (Li 0.2 Ni 0.137 Co 0.125 Mn 0.538 ) O 2 ” to fluorination treatment (paragraph).
  • the battery evaluation was that the initial capacity was evaluated by charging and discharging from 4.8 V to 2.5 V, and the cycle characteristics were evaluated by charging and discharging cycles from 4.5 to 2.5 V. (Paragraphs [0101] and [0102]).
  • Patent Document 15 discloses an electroactive composition containing a crystalline material approximately represented by a composition formula Li 1 + x Ni ⁇ Mn ⁇ Co ⁇ A ⁇ O 2-z F z , wherein x is about 0.02 to about 0.19, ⁇ is about 0.1 to about 0.4, ⁇ is about 0.35 to about 0.869, and ⁇ is about 0.01 to about 0.2. ⁇ is 0.0 to about 0.1, z is about 0.01 to about 0.2, and A is Mg, Zn, Al, Ga, B, Zr, Ti, Ca, Ce. , Y, Nb, or a combination thereof. "(Claim 1).
  • Patent Document 16 discloses that “an anode including an anode current collector and an anode active material disposed on the anode current collector, and a cathode current collector and xLi 2 MO 3. (1-x) a cathode including a cathode active material having a composition represented by LiCo y M ′ (1-y) O 2 .
  • the cathode active material was “a composition represented by 0.02Li 2 MnO 3 .0.98LiNi 0.021 Co 0.979 O 2 ”, and the Raman spectrum is shown in FIG. (Paragraphs [0026] to [0029]).
  • Patent Literature 17 discloses that “a lithium-based positive electrode active material represented by the following Chemical Formula 1 has a ratio of a peak intensity of A 1g vibration mode having a spinel structure to a peak intensity of A 1g vibration mode having a hexagonal system structure of 1 in Raman spectrum analysis.
  • A is an element selected from the group consisting of O, F, S and P.
  • (Claim 1) since the lithium-based positive electrode active material has only a hexagonal structure before the battery is manufactured, the Raman spectroscopic analysis shows that the peak due to two vibration modes (A 1g at 593 cm ⁇ 1) is obtained. E g mode) spectra showing only mode and 484cm -1 is obtained, after producing the battery, lithium-based positive active materials are described that will have in addition to the spinel structure of a hexagonal system (Paragraphs [0017] and [0018], FIGS. 1 and 2).
  • Non-Patent Document 1 discloses NCMs (LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 1.1 Ni 1/3 Co 1/3 Mn 1/3 O 2 and high energy xLi 2 MnO 3.
  • O—Me—O vibration mode a peak E g peak near 500 cm ⁇ 1
  • Li 2 MnO 3 has a peak such as 612 cm ⁇ 1 (A g1 ), 493 cm ⁇ 1 , and xLi 2 MnO 3.
  • NCMs are before and after charge and discharge, in that it has a peak corresponding to a typical E g and A g1, even after charging and discharging, it is described that maintains a laminar LiMO 2 similar structure before charge and discharge (Page 206, right column, 2 lines, 5 pages, 208 page, left column, 209 pages, right column, “3.2. Ex situ Raman investigation” in full text).
  • the nonaqueous electrolyte secondary battery is required to ensure safety even if the battery is erroneously charged further beyond the full charge state (SOC 100%) (hereinafter, referred to as “overcharge”). For example, it is defined by "GB / T (China Recommended National Standard)" for automobile batteries.
  • SOC 100% full charge state
  • the SOC is an abbreviation of State of Charge, and represents the state of charge of the battery as a ratio of the remaining capacity at that time to the capacity at the time of full charge, and the full charge state is described as "SOC 100%”.
  • Patent Literatures 1 to 4 disclose an initial charge / discharge step (hereinafter, also referred to as “overcharge formation”) until a positive electrode potential reaches 4.5 V (vs. Li / Li + ) or more using a lithium-rich type active material for a positive electrode.
  • Non-aqueous electrolyte secondary battery which is assumed to be manufactured through the above-described method is described. When the non-aqueous electrolyte secondary battery is overcharged, the battery voltage rapidly increases until the SOC reaches a higher level. No delay is shown.
  • Patent Literatures 5 and 6 disclose that a lithium-rich type active material having Li / Me of 1 or more is used for a positive electrode, and an initial charge / discharge step is performed at a voltage of 4.2 V (a positive electrode potential is about 4.3 V (vs. Li / Li). + ), which is considered to be non-aqueous electrolyte secondary battery.
  • the lithium-excess type active materials according to the examples described in Patent Documents 5 and 6 have a small Li / Me of 1.15 or less.
  • the lithium-rich excess active material described in Patent Literatures 5 and 6 even when the maximum potential of the positive electrode in the initial charge / discharge step is less than 4.5 V (vs.
  • Patent Documents 5 and 6 do not disclose delaying a sudden rise in battery voltage to a higher SOC when the nonaqueous electrolyte secondary battery is overcharged.
  • a lithium-rich type active material is used for a positive electrode, and the initial charge / discharge at a positive electrode potential of 4.5 V (Li / Li + ) or higher (the above-described “overcharge formation”). )),
  • a non-aqueous electrolyte secondary battery is presumed to be used through an acid treatment of a "lithium-rich" active material with hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, or the like.
  • a non-aqueous electrolyte secondary battery containing a lithium-rich type active material in the positive electrode described in Patent Documents 12 to 15 also performs overcharge formation, and when the non-aqueous electrolyte secondary battery is overcharged, There is no indication of delaying the battery voltage spike up to a higher SOC.
  • the active material described in Patent Literature 16 is not an original lithium-rich active material because of a small Mn content, and the active material described in Patent Literature 17 is not a lithium-rich active material. It is irrelevant to the problem of the non-aqueous electrolyte secondary battery that contains in the positive electrode.
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed up to a higher SOC.
  • One aspect of the present invention is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode has an ⁇ -NaFeO 2 type crystal structure as an active material, and has a general formula Li 1 + ⁇ Me 1- ⁇ O 2 (0 ⁇ , Me is Ni and Mn, or a transition metal element containing Ni, Mn and Co), and contains a lithium transition metal composite oxide, and the active material uses CuK ⁇ radiation.
  • This is a non-aqueous electrolyte secondary battery in which a diffraction peak is observed in a range of 20 ° or more and 22 ° or less in an X-ray diffraction diagram.
  • Non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode has an ⁇ -NaFeO 2 type crystal structure as an active material, and has a general formula Li 1 + ⁇ Me 1 ⁇ O 2 (0 ⁇ , Me is a transition metal element containing Ni and Mn, or Ni, Mn and Co), and includes a lithium transition metal composite oxide.
  • 5.0 V vs. Li / Li +
  • a positive electrode potential range of 4.5 V (vs. Li / Li + ) or more and 5.0 V (vs. Li / Li + ) or less is obtained.
  • This is a non-aqueous electrolyte secondary battery in which a region where the change in potential relative to the amount of charged electricity is relatively flat is observed.
  • a method for manufacturing a non-aqueous electrolyte secondary battery wherein the maximum potential of the positive electrode in the initial charge / discharge step is 4.5 V. (Vs. Li / Li + ) is a method for producing a non-aqueous electrolyte secondary battery.
  • the “non-aqueous electrolyte secondary battery” performs the initial charge / discharge step described above, and includes a battery completed to a state that can be shipped in a factory. Say. In the factory, charging and discharging may be performed a plurality of times as necessary.
  • Yet another aspect of the present invention is a method for using the nonaqueous electrolyte secondary battery according to one aspect or the other aspect of the present invention, wherein a maximum ultimate potential of the positive electrode in a fully charged state (SOC 100%).
  • SOC 100% a maximum ultimate potential of the positive electrode in a fully charged state
  • This is a method for using a non-aqueous electrolyte secondary battery used at a battery voltage of less than 4.5 V (vs. Li / Li + ).
  • a nonaqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed up to a higher SOC, a method for manufacturing the same, and a method for using the same.
  • X-ray diffraction diagrams of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention and a positive electrode active material provided in a nonaqueous electrolyte secondary battery according to a conventional example The figure which shows the positive electrode potential change with respect to the amount of charge electricity observed when the positive electrode containing LiMeO type 2 and a lithium excess type active material is initially charged at the positive charge upper limit potential of 4.6 V (vs. Li / Li + ).
  • the figure which shows the electric potential change with respect to the charge electric quantity of a lithium excess type positive electrode active material shows the A 1 g and E g oscillation mode of the lithium-transition metal composite oxide having an alpha-NaFeO 2 type crystal structure LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 1.1 Ni 1/3 Co 1/3 Mn 1/3 O 2.1, xLi 2 MnO 3.
  • Raman spectrum before and after charge and discharge of the positive electrode active material according to the example of the present invention 1 is an external perspective view showing a nonaqueous electrolyte secondary battery according to one embodiment of the present invention.
  • Schematic diagram of the apparatus used for measuring the press density for calculating the discharge capacity per volume and the amount of charge electricity 1 is a schematic diagram illustrating a power storage device including a plurality of nonaqueous electrolyte secondary batteries according to an embodiment of the present invention.
  • Raman spectra according to examples and reference examples of the present invention 4 is a graph showing the relationship between the Raman peak intensity ratio I 490 / I 600 and the discharge capacity per volume of the lithium-excess type active materials according to Examples, Reference Examples and Comparative Examples of the present invention.
  • a first embodiment of the present invention is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode has an ⁇ -NaFeO 2 type crystal structure as an active material.
  • Another first embodiment of the present invention is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode has an ⁇ -NaFeO 2 type crystal structure as an active material.
  • a lithium transition metal composite oxide represented by the general formula Li 1 + ⁇ Me 1 ⁇ O 2 (0 ⁇ , Me is a transition metal element containing Ni and Mn, or Ni, Mn and Co) When the positive electrode potential is charged to reach 5.0 V (vs. Li / Li + ), the positive electrode potential is 4.5 V (vs. Li / Li + ) or more and 5.0 V (vs. Li / Li + ) or less.
  • a non-aqueous solution including a positive electrode in which a region in which a change in potential relative to the amount of charged electricity is relatively flat is observed. It is an electrolyte secondary battery.
  • the nonaqueous electrolyte secondary battery may use, as an active material of the positive electrode, a lithium transition metal composite oxide in which a molar ratio of Mn to transition metal (Me) is 0.4 ⁇ Mn / Me. According to this embodiment, the layered structure of the active material can be stabilized.
  • a lithium transition metal composite oxide in which a molar ratio of Li to a transition metal (Me) is 1.15 ⁇ Li / Me may be used as an active material of the positive electrode. According to this aspect, it is possible to provide a nonaqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed until a higher SOC is reached.
  • a lithium transition metal composite oxide having a molar ratio of Li to transition metal (Me) of Li / Me ⁇ 1.35 may be used as an active material of the positive electrode. According to this aspect, the discharge capacity can be improved.
  • the content of the lithium transition metal composite oxide contained in the positive electrode as an active material is preferably more than 80% by mass of the total active material of the positive electrode. According to this aspect, it is possible to provide a non-aqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed until a higher SOC is reached.
  • the content of the lithium transition metal composite oxide is more preferably 90% by mass or more of the total active material of the positive electrode, and may be substantially 100% by mass. However, the presence of other small amounts of active material is not excluded unless the effects of the present invention are impaired.
  • the non-aqueous electrolyte secondary battery is preferably used at a battery voltage at which the maximum potential of the positive electrode in a fully charged state (SOC 100%) is less than 4.5 V (vs. Li / Li + ).
  • the non-aqueous electrolyte secondary battery may use, as the non-aqueous electrolyte, a non-aqueous electrolyte containing a fluorinated cyclic carbonate in a non-aqueous solvent.
  • a non-aqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed up to a higher SOC, an increase in AC resistance after storage is suppressed. This has the effect of being able to do so.
  • the non-aqueous electrolyte may include a compound having an oxalate group bonded to boron. According to this aspect, in addition to the effect of providing a non-aqueous electrolyte secondary battery in which a sharp increase in battery voltage is not observed up to a higher SOC, the effect of reducing initial AC resistance can be obtained. Is played.
  • a second embodiment of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide has an ⁇ -NaFeO 2 type crystal structure And a general formula Li 1 + ⁇ Me 1 ⁇ O 2 (0 ⁇ , Me is Ni and Mn, or a transition metal element containing Ni, Mn and Co, and a molar ratio Mn / Me of Mn to Me is Mn / Me. ⁇ 0.45), the positive electrode active material has a discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and a discharge capacity (a) of 3.0 V (vs.
  • Li / Li + positive electrode for a non-aqueous electrolyte secondary battery, wherein the ratio a / b of the discharge capacity (b) from 2.0 vs. Li / Li + ) to 2.0 V (vs. Li / Li + ) is 17 ⁇ a / b ⁇ 25. Active material.
  • a second embodiment of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the second embodiment, which has an ⁇ -NaFeO 2 type crystal structure, General formula Li 1 + ⁇ Me 1 ⁇ O 2 (0 ⁇ , Me is Ni and Mn, or a transition metal element containing Ni, Mn and Co, the molar ratio of Mn to Me Mn / Me is Mn / Me ⁇ 0.45 a lithium transition metal composite oxide represented by), with pKa 1 is treated with 3.1 or more acids, 4.35V (vs.Li/Li +) from 3.0V (vs.Li/Li +) discharge capacity (a) and 3.0V (vs.Li/Li +) from 2.0V (vs.Li/Li +) ratio a / b of the discharge capacity (b) until the 17 ⁇ a / b ⁇ up 25 is a method for producing a positive electrode active material for a non-aque
  • a third embodiment of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide has an ⁇ -NaFeO 2 type crystal structure Having the general formula Li 1 + ⁇ Me 1 ⁇ O 2 (0 ⁇ , Me is Ni and Mn, or a transition metal element containing Ni, Mn and Co, and the molar ratio Mn / Me of Mn to Me is 0.3.
  • the maximum value I 490 at the maximum value for I 600, 450 cm -1 or more 520 cm -1 or less in the range of at 650 cm -1 or less in the range of 550 cm -1 or more in the Raman spectrum Is a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the ratio (I 490 / I 600 ) is 0.45 or more.
  • a positive electrode active material having a large amount of charged electricity per volume in the overcharge region and a large discharge capacity per volume.
  • a third embodiment of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the third embodiment, wherein Ni and Mn, or Ni, Co and Mn are used.
  • a transition metal compound having a molar ratio of Mn to Me of 0.3 ⁇ Mn / Me ⁇ 0.55 is mixed with a Li compound, and the mixture is baked, whereby the molar ratio of Li / Me is 1 ⁇ Li.
  • / Me is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, in which a sintering aid is added when producing a lithium transition metal composite oxide.
  • a method for producing a positive electrode active material having a large discharge capacity per volume is provided.
  • Second and third embodiments of the present invention are directed to a positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material for a non-aqueous electrolyte secondary battery according to the second and third embodiments. It is.
  • a second and third still another embodiment of the present invention includes the positive electrode for a non-aqueous electrolyte secondary battery according to the second and third still another embodiment, and includes a positive electrode active material contained in the positive electrode.
  • the substance is a nonaqueous electrolyte secondary battery in which a diffraction peak is observed in a range of 20 ° or more and 22 ° or less in an X-ray diffraction diagram using CuK ⁇ rays.
  • a second and third still another embodiment of the present invention includes the positive electrode for a non-aqueous electrolyte secondary battery according to the second and third still another embodiment, wherein the positive electrode has a positive electrode potential of 5 when performing charging leading to .0V (vs.Li/Li +), to 4.5V (vs.Li/Li +) or 5.0V (vs.Li/Li +) within the following positive electrode potential range, the charge
  • This is a nonaqueous electrolyte secondary battery in which a region in which a change in potential relative to the amount of electricity is relatively flat is observed.
  • the non-aqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed up to a higher SOC because the amount of charge per volume in the overcharge region is large.
  • the above non-aqueous electrolyte secondary battery is preferably used at a potential of less than 4.5 V (vs. Li / Li + ).
  • vs. Li / Li + when used at a potential of less than 4.5 V (vs. Li / Li + ), a large discharge capacity per volume and a higher SOC are reached. It can be compatible with not observing a sharp rise in battery voltage.
  • Another embodiment of the first, second and third aspects of the present invention is the method for manufacturing a non-aqueous electrolyte secondary battery described above, wherein the maximum ultimate potential of the positive electrode in the initial charge / discharge step is 4.5 V ( vs. Li / Li + ).
  • "initial" charge / discharge refers to one or more times of charging and discharging performed after injecting the nonaqueous electrolyte, and in particular, “initial” charging / discharging refers to Refers to the first charge and discharge performed after injection. According to this embodiment, when charging is performed so that the positive electrode potential reaches 5.0 V (vs. Li / Li + ), it is 4.5 V (vs.
  • Li / Li + Li / Li + or more and 5.0 V (vs. Li / Li + ).
  • a non-aqueous electrolyte secondary in which a rapid increase in battery voltage is not observed up to a higher SOC by observing a region where the potential change is relatively flat with respect to the charged amount of electricity.
  • a battery is manufactured.
  • the first, second and third still other embodiments of the present invention relate to a method of using the non-aqueous electrolyte secondary battery, wherein the maximum potential of the positive electrode in a fully charged state (SOC 100%) is 4. This is a method for using a non-aqueous electrolyte secondary battery used at a battery voltage of less than 5 V (vs. Li / Li + ).
  • first embodiment The first embodiment, the first other embodiment, the first still another embodiment (hereinafter, referred to as “first embodiment”) of the present invention, and the second embodiment of the present invention described above.
  • second embodiment One embodiment, a second other embodiment, and a second still another embodiment (hereinafter, referred to as a “second embodiment”), a third embodiment of the present invention, and a third embodiment.
  • third embodiment Another embodiment and a third further embodiment (hereinafter, referred to as “third embodiment”) will be described in detail below. Further, the first embodiment, the second embodiment, and the third embodiment are collectively referred to as the present embodiment.
  • the first embodiment it is possible to provide a non-aqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed up to a higher SOC, a method for manufacturing the same, and a method for using the same.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery when used at a potential of less than 4.5 V (vs. Li / Li + ), the positive electrode active material for a non-aqueous electrolyte secondary battery exhibits excellent initial coulomb efficiency and high rate discharge performance.
  • a method for producing the same a positive electrode containing the positive electrode active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the battery.
  • the battery voltage can be increased up to a higher SOC.
  • Non-aqueous electrolyte secondary battery in which no rapid increase in the temperature is observed a method for manufacturing the battery, and a method for using the battery can be provided.
  • the amount of charge per volume in the overcharge region is large, and the positive electrode active material for a non-aqueous electrolyte secondary battery having a large discharge capacity per volume, a method for producing the same, and the positive electrode active material
  • a battery, a method for manufacturing the battery, and a method for using the battery can be provided.
  • the molar ratio of Li to the transition metal element Me is Li / Me, that is, (1 + ⁇ ) / (1- ⁇ ) is preferably larger than 1.15, more preferably 1.2 or more, and further preferably 1.23 or more.
  • Li / Me is preferably 1.35 or less, more preferably 1.3 or less.
  • Li / Me is preferably 1.05 or more in order to prevent a sudden increase in battery voltage from being observed until the SOC exceeds 100% and further to a higher SOC when further charged.
  • Li / Me is preferably 1.4 or less, more preferably 1.35 or less.
  • Li / Me is preferably equal to or greater than 1.05, and more preferably equal to or greater than 1.1 in that the amount of charge per unit volume in the overcharge region can be increased. Further, it is preferably less than 1.4, more preferably 1.3 or less. Within this range, the discharge capacity per unit volume of the positive electrode active material when manufactured and used in a potential range lower than the overcharge region is improved.
  • the molar ratio Mn / Me of Mn to the transition metal element Me is preferably 0.4 or more, more preferably 0.45 or more, from the viewpoint of stabilization of the layered structure. . Further, from the viewpoint of charge / discharge capacity, Mn / Me is preferably 0.65 or less, more preferably 0.60 or less. In the second embodiment, the molar ratio Mn / Me is 0.45 or more from the viewpoint of stabilizing the layered structure. Further, from the viewpoint of charge / discharge capacity, Mn / Me is preferably 0.65 or less, more preferably 0.6 or less. In the third embodiment, the molar ratio Mn / Me is 0.3 or more and less than 0.55.
  • the amount of charged electricity per volume in the overcharge region can be increased. Further, when it is less than 0.55, the discharge capacity per volume in the case of manufacturing and using in a potential range lower than the overcharge region is improved.
  • the molar ratio Mn / Me of Mn is more preferably 0.5 or less, and further preferably 0.45 or less.
  • the molar ratio Ni / Me of Ni to the transition metal element Me is set to 0.2 or more in order to improve the charge / discharge cycle performance of the nonaqueous electrolyte secondary battery. Is preferred. Further, it is preferably 0.5 or less, more preferably 0.4 or less.
  • the molar ratio Ni / Me is preferably 0.2 or more, and more preferably 0.3 or more. Also, it is preferably 0.6 or less, more preferably 0.55 or less. Within this range, the polarization in charge / discharge becomes small, so that the discharge capacity when used at a potential lower than 4.5 V (vs. Li / Li + ) becomes large.
  • the molar ratio Co / Me of Co to the transition metal element Me that is, ⁇ , is preferably 0.03 or more, more preferably 0.2 or more, from the viewpoint of increasing the conductivity of the active material particles. Is more preferred.
  • the lithium transition metal composite oxide according to the present embodiment is converted into an alkali metal such as Na and K, an alkaline earth metal such as Mg and Ca, and a 3d transition metal such as Fe within a range that does not impair the effects of the present invention. It does not preclude the inclusion of small amounts of other metals, such as the typical transition metals.
  • the lithium transition metal composite oxide according to the present embodiment has an ⁇ -NaFeO 2 type crystal structure.
  • This superlattice peak (hereinafter, referred to as “diffraction peak in the range of 20 ° to 22 °”) is obtained even when charge / discharge is performed in a potential region where the positive electrode potential is less than 4.5 V (vs. Li / Li + ). Does not disappear (see FIG. 1). However, once charging is performed to a potential at which the overcharge region of 4.5 V (vs. Li / Li + ) or more ends, the symmetry of the crystal changes with the elimination of Li in the crystal. The diffraction peak in the range of 20 ° to 22 ° disappears, and the lithium transition metal composite oxide is assigned to the space group R3-m (see FIG. 2).
  • P3 1 12 is a crystal structure model obtained by subdividing the atom positions of the 3a, 3b, and 6c sites in R3-m.
  • the P3 1 12 model Is adopted. Note that “R3-m” is originally described by adding a bar “ ⁇ ” to “3” of “R3m”.
  • the positive electrode active material of the nonaqueous electrolyte secondary battery according to the present embodiment contains the lithium transition metal composite oxide, and when X-ray diffraction is performed using CuK ⁇ radiation, in the X-ray diffraction diagram, 20 ° or more and 22 ° or more. It has a feature that a diffraction peak is observed in the following range.
  • observation means that the diffraction angle is in the range of 20 ° to 22 ° with respect to the difference (I 18 ) between the maximum value and the minimum value of the intensity in the range of 17 ° to 19 °.
  • the ratio of the difference (I 21 ) between the maximum value and the minimum value of the intensity, that is, the value of “I 21 / I 18 ” is in the range of 0.001 or more and 0.1 or less. If the sample to be subjected to the X-ray diffraction measurement is an active material powder (powder before charge / discharge) before producing the positive electrode, the sample is subjected to the measurement as it is.
  • the battery does not use a metal lithium electrode as the negative electrode, as an additional operation, disassemble the battery, take out the positive electrode, and assemble a test battery with the metal lithium electrode as the counter electrode, in order to accurately control the positive electrode potential.
  • a current value of 10 mA per 1 g of the mixture constant-current discharge is performed until the voltage becomes 2.0 V (the positive electrode potential becomes 2.0 V (vs. Li / Li + )), adjusted to a completely discharged state, and then re-disassembled. Then, take out the positive electrode.
  • the taken-out positive electrode is sufficiently washed with non-aqueous electrolyte attached to the positive electrode using dimethyl carbonate, dried at room temperature for 24 hours, and then a positive electrode mixture is collected from the current collector.
  • the collected positive electrode mixture is lightly crushed in an agate mortar, placed in a sample holder for X-ray diffraction measurement, and used for measurement.
  • the operations from the disassembly to re-disassembly of the battery, and the washing and drying operations of the positive electrode are performed in an argon atmosphere having a dew point of ⁇ 60 ° C. or less.
  • X-ray diffraction measurement is performed under the following conditions.
  • the source is CuK ⁇
  • the acceleration voltage is 30 kV
  • the acceleration current is 15 mA.
  • the sampling width is 0.01 deg
  • the scan speed is 1.0 deg / min
  • the divergence slit width is 0.625 deg
  • the light receiving slit is open
  • the scattering slit width is 8.0 mm.
  • the charging upper limit potential is set to 4.25 V (vs. Li / Li). + ), With a discharge lower limit potential of 2.0 V (vs. Li / Li + ), a non-aqueous electrolyte secondary battery in a completely discharged state completed by performing charging and discharging twice at a current value equivalent to 0.1 C.
  • a diffraction peak is observed in the range of 20 ° or more and 22 ° or less as in FIG.
  • Li / Li + obtained by disassembling a completely discharged non-aqueous electrolyte secondary battery completed by performing a second charge / discharge (current value corresponding to 0.1 C) for the second time.
  • a second charge / discharge current value corresponding to 0.1 C
  • the nonaqueous electrolyte secondary battery according to the first embodiment even after charging and discharging, a diffraction peak in the range of 20 ° or more and 22 ° or less is observed in the X-ray diffraction diagram of the positive electrode active material measured by the above procedure. Therefore, in the nonaqueous electrolyte secondary battery according to the first embodiment, the maximum ultimate potential of the positive electrode in the fully charged state (SOC 100%) including the initial charge and discharge is 4.5 V (vs. Li / Li + ). It can be seen that the battery is used at a battery voltage of less than. Also, in the second and third embodiments, when the upper limit charging potential is changed from 4.25 V (vs. Li / Li + ) to 4.35 V (vs.
  • the non-aqueous electrolyte secondary batteries according to the second and third embodiments include the initial charge and discharge, It can be seen that the battery is used at a battery voltage at which the maximum ultimate potential of the positive electrode in a fully charged state (SOC 100%) is less than 4.5 V (vs. Li / Li + ).
  • the first charge / discharge condition 2 in which the upper limit charge potential is 4.6 V (vs. Li / Li + ) and the lower discharge limit potential is 2.0 V (vs. Li / Li + ) in Examples described later is the third charge / discharge condition.
  • the upper limit charge potential was set to 4.6 V (vs. Li / Li + ).
  • the nonaqueous electrolyte secondary battery after applying the initial charge / discharge condition 2 in which a diffraction peak in the range of 20 ° to 22 ° is not observed in the X-ray diffraction diagram is the nonaqueous electrolyte secondary battery according to the third embodiment. Absent.
  • the nonaqueous electrolyte secondary battery according to this embodiment in which the diffraction peak in the range of 20 ° to 22 ° is observed in the X-ray diffraction diagram of the positive electrode active material, has a positive electrode potential of 5.0 V (vs. Li). / Li +) when charging was performed leading to 4.5V (vs.Li/Li +) or 5.0V (vs.Li/Li +) within the following positive electrode potential range, the potential relative to the amount of charge A region where the change is relatively flat (hereinafter also referred to as a “region where the potential change is flat”) is observed.
  • the charging is performed at least once until the charging process in which the region where the potential change is flat is observed, the charging is performed until the positive electrode potential reaches 5.0 V (vs. Li / Li + ). However, the region where the potential change is flat is not observed again.
  • the solid line in FIG. 4 indicates a nonaqueous electrolyte according to the present embodiment including a positive electrode using a lithium transition metal composite oxide (denoted as “lithium excess type”) as a positive electrode active material and a negative electrode using metallic lithium.
  • the figure shows the change in the positive electrode potential when the secondary battery is assembled and the initial charging is performed with the upper limit charging potential of the positive electrode set to 4.6 V (vs. Li / Li + ).
  • the broken line has the same configuration except that a positive electrode using a commercially available LiNi 1/3 Co 1/3 Mn 1/3 O 2 (denoted as “LiMeO 2 type”) as a positive electrode active material is provided.
  • the non-aqueous electrolyte secondary battery according to the present embodiment has a lithium-rich type active material in which a region where the potential change is flat is observed when charging is performed so that the positive electrode potential reaches 5.0 V (vs. Li / Li + ). Is included in the positive electrode, but in the initial charge / discharge process, the battery is completed without charging until the charging process in which the flat region is observed is completed. It is preferable that the maximum attained potential of the positive electrode in the initial charge / discharge step is less than 4.5 V (vs. Li / Li + ). Furthermore, the non-aqueous electrolyte secondary battery according to the present embodiment is used under charging conditions in which charging is not performed until the charging process in which the flat region is observed is completed.
  • the non-aqueous electrolyte secondary battery according to the present embodiment has not been charged until the charging process in which the flat region is observed is completed from the manufacturing stage to the time of use, and thus the overcharge is not performed.
  • a region where the potential change is flat with respect to the amount of charged electricity is observed in a positive electrode potential range of 4.5 V (vs. Li / Li + ) or more and 5.0 V (vs. Li / Li + ) or less.
  • the non-aqueous electrolyte secondary battery according to the present embodiment uses the behavior described above to achieve a higher SOC even when overcharged beyond the SOC of 100%, which is the fully charged state in normal use. A sharp rise in battery voltage (positive electrode potential) can be suppressed.
  • a test battery is prepared in which the positive electrode taken out of the nonaqueous electrolyte secondary battery after disassembly is used as a working electrode and metallic lithium as a counter electrode. Since the battery voltage of the test battery and the working electrode potential (positive electrode potential) are almost the same value, the positive electrode potential in the following procedure can be read as the battery voltage of the test battery. After discharging the test battery at a current value of 10 mA per 1 g of the positive electrode mixture to a final potential of the positive electrode of 2.0 V (vs. Li / Li + ), a rest is performed for 30 minutes.
  • a non-aqueous electrolyte secondary battery including a positive electrode using a lithium-rich type active material as a positive electrode active material and a negative electrode using metallic lithium was assembled, and 4.6 V (vs. Li / Li) was initially used.
  • 12 is an example of a dZ / dV curve when charging up to + ) is performed.
  • the dZ / dV curve has a large dZ / dV value when the potential change is small with respect to the capacitance ratio change, and a dZ / dV value when the potential change is large with respect to the capacitance ratio change. The value decreases.
  • the value of dZ / dV increases in a region where the potential change in a potential region exceeding 4.5 V (vs. Li / Li + ) is flat. Thereafter, when the region where the potential change is flat ends and the potential starts to rise again, the value of dZ / dV decreases. That is, a peak is observed in the dZ / dV curve.
  • the maximum value of dZ / dV in the range of 4.5 V (vs. Li / Li + ) to 5.0 V (vs. Li / Li + ) is 150 or more, the charge amount is It is determined that a region where the potential change is flat is observed.
  • the broken line is a dZ / dV curve of a battery having the same configuration and performing the same test except that a positive electrode using a commercially available LiMeO 2 type active material as a positive electrode active material is provided.
  • the normal use is a case where the nonaqueous electrolyte secondary battery is used by adopting recommended or specified charge / discharge conditions for the nonaqueous electrolyte secondary battery.
  • a charger for a non-aqueous electrolyte secondary battery it refers to a case where the non-aqueous electrolyte secondary battery is used by applying the charger.
  • the positive electrode active material according to the second embodiment further has a discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and 3.0 V (vs. Li / Li + ). .Li / Li +) ratio a / b from 2.0V (vs.Li/Li +) to the discharge capacity (b) is 17 ⁇ a / b ⁇ 25.
  • the discharge capacity ratio a / b is determined as follows.
  • N-methylpyrrolidone is used as a dispersion medium
  • an active material acetylene black (AB) and polyvinylidene fluoride (PVdF) are prepared in a 90: 5: 5 application paste.
  • the coating paste is applied to one surface of an aluminum foil current collector having a thickness of 20 ⁇ m to prepare a positive electrode plate, and a nonaqueous electrolyte secondary battery for evaluation is assembled using lithium metal as a counter electrode.
  • constant-current constant-voltage charging is performed with a charging upper limit potential of 4.35 V (vs.
  • the battery is disassembled in an argon atmosphere having a dew point of ⁇ 60 ° C. or lower, and a positive electrode plate is obtained. Then, a nonaqueous electrolyte secondary battery using lithium metal as a counter electrode is assembled. The produced battery is discharged at a constant current of 2.0 V (vs. Li / Li + ) at a current value of 15 mA per 1 g of the positive electrode mixture. Thereafter, constant-current constant-voltage charging is performed with the same current value, a charging upper-limit potential of 4.35 V (vs. Li / Li + ), and a condition for terminating the charging at a time when the current value attenuates to 1/5.
  • the non-aqueous electrolyte secondary battery according to the second embodiment includes a positive electrode containing the above-described positive electrode active material, and the positive electrode active material has an X-ray diffraction diagram using CuK ⁇ rays of 20 ° or more and 22 ° or less. Since a peak in the range is observed, the non-aqueous electrolyte secondary battery according to the second embodiment sets the maximum ultimate potential of the positive electrode in the initial charge / discharge step to less than 4.5 V (vs. Li / Li + ).
  • the non-aqueous electrolyte secondary battery according to the second embodiment does not go through a charging process of 4.5 V (vs. Li / Li + ) or more during normal use. Therefore, when the charge exceeds 4.5 V (vs. Li / Li + ) and reaches 5.0 V (vs. Li / Li + ), the positive electrode is charged to 4.5 V (vs. Li / Li +). ) Or more and 5.0 V (vs. Li / Li + ) or less, a region where the change in potential relative to the amount of charged electricity is relatively flat is observed (see the solid line in FIG. 6). Due to the presence of the flat region, in the nonaqueous electrolyte secondary battery according to the present embodiment, a rapid increase in battery voltage is not observed until a higher SOC is reached.
  • the solid line in FIG. 6 shows the charge when the charge up to 4.6 V (vs. Li / Li + ) is initially performed on the nonaqueous electrolyte secondary battery including the positive electrode containing the lithium-rich type active material.
  • An example of a curve is shown.
  • the capacity was converted to SOC based on the capacity from the start of charging until reaching 4.35 V (vs. Li / Li + ) (SOC 100%). It has a relatively flat charging curve until the positive electrode potential rises sharply when the SOC is around 200%.
  • the dashed line in FIG. 6 indicates that after discharging the non-aqueous electrolyte secondary battery charged to 4.6 V (vs. Li / Li + ) to 2.0 V (vs.
  • the lithium transition metal composite oxide according to the embodiment with respect to the maximum value I 600 at 550 cm -1 or more 650 cm -1 or less in the range in the Raman spectrum, the maximum value at 450 cm -1 or more 520 cm -1 or less in the range the ratio of the I 490 (I 490 / I 600 ) is 0.45 or more.
  • I 490 / I 600 By setting I 490 / I 600 to 0.45 or more, the amount of charged electricity per volume in the overcharge region is increased, and the discharge capacity per volume is increased.
  • the significance of specifying I 490 / I 600 as 0.45 or more is presumed as follows.
  • LiMeO 2 and Li 2 MnO 3 in the Raman spectrum has a peak E g around 490 cm -1 corresponding to the peak A 1 g and O-MeO vibration mode near 600 cm -1 corresponding to MeO 6 vibrational mode , the Li 2 MnO 3, peak E g is known to appear particularly remarkably (refer to non-Patent Document 1).
  • FIG. 7 is a reprint of FIG. 2 of Patent Document 17 illustrating the vibration mode, and FIG. 4 is reprinted.
  • a large value of I 490 / I 600 means that the lithium transition metal composite oxide according to the present embodiment has a relatively large amount of Li 2 MnO 3 component because the O—Me—O vibration is relatively large. . Since Li 2 MnO 3 is a component that contributes to increasing the amount of charged electricity in the overcharge region, the fact that I 490 / I 600 is 0.45 or more indicates that the battery voltage sharply increases up to a higher SOC. Is not observed. On the other hand, a small I 490 / I 600 means that the MeO 6 oscillation is relatively large, and thus the lithium transition metal composite oxide according to the present embodiment has a relatively large LiMeO 2 component. LiMeO 2 has higher density and higher capacity than Li 2 MnO 3 .
  • the ratio of LiMeO 2 units is considered to be relatively small. It was found that an active material having a 490 / I 600 of 0.45 or more unexpectedly had a larger discharge capacity per volume than an active material having a 490 / I 600 of less than 0.45.
  • I 490 / I 600 is reduced by the sintering aid is that the valence of the transition metal decreases due to oxygen deficiency in the active material, or the disproportionation during synthesis of the active material (3LiMeO 2 ⁇ LiMn 2 It is considered that the ratio of LiMeO 2 units to Li 2 MnO 3 units in the active material is increased by eliminating O 4 + Li 2 MnO 3 ).
  • I 490 / I 600 is preferably not too large, and is preferably 0.85 or less.
  • ⁇ Raman spectrum measurement> The preparation of the sample to be subjected to the Raman spectrum measurement is the same as the preparation of the sample to be subjected to the X-ray diffraction measurement described above. , And the same procedure and conditions except that the lithium transition metal composite oxide particles are taken out and subjected to Raman spectrum measurement as an active material powder (a powder after charge / discharge).
  • the measurement of the Raman spectrum is performed under the following conditions. Raman spectroscopy is performed using "LabRAM HR Revolution" manufactured by Horiba, Ltd. The measurement is performed using a 100-fold lens as the objective lens and focusing the laser on the active material powder prepared as described above.
  • FIG. 9 is a Raman spectrum of a lithium transition metal composite oxide according to Example 3-2 to be described later, in which a powder before charge / discharge and a powder after charge / discharge were measured by the above procedure.
  • the value of I 490 / I 600 was 0.57 in the powder before charge / discharge, and the value of I 490 / I 600 was 0.55 in the powder after charge / discharge.
  • the lithium transition metal composite oxide according to the present embodiment maintains the Raman spectrum shape before and after charging and discharging in a powder state. Note that FIG. 4 (before charging and discharging), FIG. 5 (after charge and discharge) shows that the Raman spectrum hardly changes.
  • the lithium transition metal composite oxide according to the present embodiment is basically a raw material containing the metal elements (Li, Ni, Co, and Mn) constituting the active material according to the composition of the target active material (oxide). Can be prepared and calcined.
  • a so-called “solid phase method” in which the respective compounds of Li, Ni, Co and Mn are mixed and calcined, or Ni, Co and Mn are present in one particle in advance.
  • a “coprecipitation method” is known in which a coprecipitated precursor is prepared, and a lithium salt is mixed and fired with the precursor.
  • Mn is hard to be uniformly dissolved in Ni and Co, so that it is difficult to obtain a sample in which each element is uniformly distributed in one particle.
  • the “coprecipitation method” was selected. It is easier to obtain a homogeneous phase at the atomic level. Therefore, the “coprecipitation method” was employed in the method for producing the precursor of the lithium transition metal composite oxide according to the present embodiment.
  • a raw material aqueous solution containing Ni, Co and Mn is dropped, and a compound containing Ni, Co and Mn is coprecipitated in the solution. It is preferred that the precursor be prepared by heating.
  • Mn among Ni, Co and Mn is easily oxidized, and it is not easy to prepare a coprecipitated precursor in which Ni, Co and Mn are uniformly distributed in a divalent state. , Ni, Co and Mn at the atomic level tend to be insufficient. Therefore, in the present invention, it is preferable to remove dissolved oxygen in order to suppress the oxidation of Mn distributed in the coprecipitated precursor.
  • a method of bubbling a gas containing no oxygen can be used.
  • the gas containing no oxygen (O 2 ) is not limited, but a nitrogen gas, an argon gas, a carbon dioxide (CO 2 ) gas, or the like can be used.
  • the pH in the step of preparing a precursor by coprecipitating a compound containing Ni, Co and Mn in a solution is not limited.
  • the pH can be adjusted to 9 or more and 12 or less.
  • the pH is 11.5 or less, the tap density of the composite oxide can be 1.00 g / cm 3 or more, and high-rate discharge performance can be improved.
  • the pH is 11.0 or less, the particle growth can be promoted, so that the stirring continuation time after the completion of the dropwise addition of the raw material aqueous solution can be shortened.
  • the transition metal compound is a transition metal hydroxide precursor produced by a coprecipitation method in which a raw material compound containing Ni and Mn or a raw material compound containing Ni, Co and Mn is reacted in an aqueous solution having a pH of 10.2 or less. Is more preferred.
  • the pH By setting the pH to 10.2 or less, the particle growth can be promoted, so that the stirring continuation time after the end of the dropwise addition of the raw material aqueous solution can be shortened, and the crystal structure containing ⁇ Me (OH) 2 and ⁇ Me (OH) 2 can be reduced. Can be produced.
  • the precursor having a crystal structure containing ⁇ Me (OH) 2 and ⁇ Me (OH) 2 has a higher tap density than a precursor having a crystal structure of ⁇ Me (OH) 2 single phase or ⁇ Me (OH) 2 single phase. Can be larger.
  • An electrode manufactured using a precursor having a high tap density can increase the press density, and thus can reduce the resistance of the electrode. If the pH is too low, it becomes a precursor of ⁇ Me (OH) 2 single phase, so that the reaction pH preferably exceeds 9.
  • an alkali solution containing an alkali metal hydroxide, a complexing agent, and a reducing agent is added to a reaction vessel kept alkaline in addition to a solution containing a transition metal (Me).
  • a transition metal Me
  • the complexing agent ammonia, ammonium sulfate, ammonium nitrate and the like can be used, and ammonia is preferable.
  • a precursor having a higher tap density can be produced by a crystallization reaction using a complexing agent. It is preferred to use a reducing agent together with the complexing agent.
  • reducing agent hydrazine, sodium borohydride and the like can be used, and hydrazine is preferable.
  • alkali metal hydroxide neutralizing agent
  • sodium hydroxide, lithium hydroxide or potassium hydroxide can be used.
  • the pH can be adjusted to 7.5 or more and 11 or less.
  • the tap density of the composite oxide can be 1.25 g / cm 3 or more, and high-rate discharge performance can be improved.
  • the pH can be adjusted to 8.0 or less, the particle growth can be promoted, so that the stirring continuation time after completion of the dropwise addition of the raw material aqueous solution can be reduced.
  • the raw materials of the coprecipitation precursor include nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, nickel acetate and the like as a Ni source, cobalt sulfate, cobalt nitrate, cobalt acetate and the like as a Co source, and a Mn source.
  • Examples thereof include manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, manganese acetate and the like.
  • a mixed alkali solution containing an alkali metal hydroxide (neutralizing agent) such as sodium hydroxide, a complexing agent such as ammonia, and a reducing agent such as hydrazine is used.
  • the concentration of the alkali metal hydroxide to be dropped is preferably 1.0 M or more and 8.0 M or less.
  • the concentration of the complexing agent is preferably at least 0.4M, more preferably at least 0.6M. Further, it is preferably 2.0 M or less, more preferably 1.6 M or less, and even more preferably 1.5 M or less.
  • the concentration of the reducing agent is preferably 0.05 M or more and 1.0 M or less, and more preferably 0.1 or more and 0.5 M or less.
  • the tap density of the hydroxide precursor can be increased by lowering the pH of the reaction vessel and adjusting the concentration of ammonia (complexing agent) to 0.6 M or more.
  • the dripping speed of the raw material aqueous solution greatly affects the uniformity of element distribution within one particle of the generated coprecipitated precursor.
  • the preferred dropping rate is affected by the size of the reaction tank, stirring conditions, pH, reaction temperature and the like, but is preferably 30 mL / min or less. In order to improve the discharge capacity, the dropping speed is more preferably 10 mL / min or less, most preferably 5 mL / min or less.
  • the stirring is further continued, so that the rotation of the particles and the rotation in the stirring tank are performed.
  • the revolution is promoted, and in this process, the particles gradually grow concentrically spherically while colliding with each other. That is, the coprecipitation precursor undergoes a two-stage reaction of a metal complex formation reaction when the raw material aqueous solution is dropped into the reaction tank, and a precipitation formation reaction in which the metal complex is generated while the metal complex stays in the reaction tank. It is formed. Therefore, a coprecipitation precursor having a target particle diameter can be obtained by appropriately selecting the time during which stirring is continued after the completion of the dropwise addition of the raw material aqueous solution.
  • the preferable duration of stirring after completion of the dropwise addition of the raw material aqueous solution is affected by the size of the reaction tank, the stirring conditions, the pH, the reaction temperature, etc., but is preferably 0.5 h or more in order to grow the particles as uniform spherical particles. Preferably, 1 h or more is more preferable. Further, in order to reduce the possibility that the output performance in the low SOC region of the battery becomes insufficient due to the particle diameter being too large, the length is preferably 15 h or less, more preferably 10 h or less, and most preferably 5 h or less.
  • the cumulative volume in the particle size distribution of the hydroxide precursor and the lithium transition metal composite oxide in the particle size distribution is D50, which is 50%, of 13 ⁇ m or less.
  • the stirring duration is preferably 1 h to 3 h.
  • the hydroxide precursor particles are prepared using a sodium compound such as sodium hydroxide as a neutralizing agent, it is preferable to wash and remove sodium ions attached to the particles in a subsequent washing step.
  • a condition that the number of times of washing with 500 mL of ion-exchanged water is set to 6 or more can be adopted.
  • the method for producing the positive electrode active material of the nonaqueous electrolyte secondary battery according to this embodiment is a method in which the coprecipitated precursor (transition metal compound) produced as described above and a lithium compound are mixed and fired. Is preferred.
  • the lithium transition metal composite oxide contains Ni and Mn, or Ni, Co, and Mn, and the molar ratio of Mn to Me, Mn / Me, is Mn / Me ⁇ M. It can be produced by mixing a transition metal compound of 0.45 with a Li compound and firing the mixture.
  • the lithium transition metal composite oxide contains Ni and Mn, or Ni, Co and Mn, and the molar ratio of Mn to Me, Mn / Me, is 0.3 ⁇ M. It can be produced by mixing a transition metal compound satisfying Mn / Me ⁇ 0.55 with a Li compound, followed by firing.
  • a Li compound to be mixed with the transition metal compound lithium hydroxide, lithium nitrate, lithium carbonate, lithium acetate and the like can be used.
  • a sintering aid may be used.
  • a sintering aid lithium fluoride (LiF), lithium carbonate (Li 2 CO 3 ), sodium fluoride (NaF), sodium chloride (NaCl), lithium sulfate (Li 2 SO 4 ), lithium phosphate (Li) It is preferable to use 3 PO 4 ), lithium chloride (LiCl), magnesium chloride (MgCl 2 ) or calcium chloride (CaCl 2 ).
  • lithium carbonate is used as a Li compound for producing a lithium transition metal composite oxide, but as in the examples described later, when lithium hydroxide is used as the lithium compound, Lithium carbonate functions as a sintering aid. It is preferable that the addition ratio of these sintering aids is 1 mol% or more and 10 mol% or less based on the total amount of the Li compound. Note that the total amount of the Li compound is preferably charged in excess of about 1 mol% to about 5 mol% in view of the fact that part of the Li compound disappears during firing.
  • the firing temperature affects the charge / discharge cycle performance of the positive electrode active material. If the firing temperature is too low, crystallization does not proceed sufficiently, and the charge / discharge cycle performance tends to decrease.
  • the firing temperature is preferably set to 800 ° C. or higher. By setting the temperature to 800 ° C. or higher, active material particles having high crystallinity can be obtained, and charge / discharge cycle performance can be improved.
  • the firing temperature is preferably set to 1000 ° C. or lower.
  • the firing temperature is preferably set to 800 ° C. or higher and 1000 ° C. or lower to improve the charge / discharge cycle performance.
  • the temperature is more preferably from 850 ° C to 1000 ° C, and even more preferably from 850 ° C to 950 ° C.
  • the surface of the primary particles and / or secondary particles of the lithium transition metal composite oxide obtained by firing is coated with a different element in order to obtain a positive electrode active material having a high energy density retention rate and improved Coulomb efficiency. And / or may form a solid solution.
  • a different element is an aluminum compound.
  • a method in which the synthesized lithium transition metal composite oxide particles are charged into an aqueous solution of a compound containing aluminum (sulfate, nitrate, acetate, etc.) can be adopted.
  • This aqueous solution is preferably acidic.
  • the order of input is not limited to this.
  • a method may be employed in which an aqueous solution of a compound containing aluminum is charged into lithium transition metal composite oxide particles dispersed in water. Further, after or when the lithium transition metal composite oxide is charged into the aqueous solution containing aluminum, a pH adjuster may be charged.
  • the pH adjuster is not limited as long as it is an alkaline solution. Examples of the alkaline solution include a NaOH aqueous solution and a KOH aqueous solution.
  • the pH value adjusted by adding the pH adjuster can be appropriately selected.
  • the particles to which the aluminum compound has been added are separated by filtration or the like, and the obtained particles are preferably dried at 80 ° C or more and 120 ° C or less.
  • lithium transition metal composite oxide particles having an oxide containing aluminum on the particle surface By performing the heat treatment in the inside, lithium transition metal composite oxide particles having an oxide containing aluminum on the particle surface can be obtained.
  • the aluminum compound When the aluminum compound is coated on the surface of the lithium transition metal composite oxide particles, the aluminum compound is preferably contained in an amount of 0.1% by mass or more and 0.7% by mass or less with respect to the lithium transition metal composite oxide. When the content is more preferably 0.2% by mass or more and 0.6% by mass or less, the effect of further improving the energy density maintenance ratio and the effect of improving the Coulomb efficiency are more sufficiently exhibited.
  • the positive electrode active material having the discharge capacity ratio a / b of 17 ⁇ a / b ⁇ 25 is a lithium transition metal composite synthesized by the above method.
  • pKa 1 is surface treated with lithium-excess active material used at the right concentrations 3.1 or more acid, under conditions that do not overcharge chemical, the active material and discharge capacity was improved than an equivalent or untreated In addition, the initial coulomb efficiency and the high rate discharge performance can be improved.
  • the active material subjected to the acid treatment according to the present embodiment has a voltage of 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / li +) ratio a / b of the discharge capacity up to (a) and 3.0 V (discharge capacity from vs.Li/Li +) to 2.0V (vs.Li/Li +) (b) is reduced (The discharge capacity b was relatively increased), and the specific surface area was moderately increased.
  • the BET specific surface area is preferably 6 m 2 / g or less.
  • the specific procedure of the acid treatment is as follows. 5.0 g of the lithium transition metal composite oxide is added to 200 mL of a predetermined acid aqueous solution having a predetermined hydrogen ion concentration, and the temperature of the aqueous solution is maintained at 50 ° C. and stirred at 400 rpm for 2 hours using a stirrer. After stirring, the lithium transition metal composite oxide is filtered using a suction device, washed with ion-exchanged water, and dried at 80 ° C. overnight under normal pressure.
  • the negative electrode material of the battery according to the present embodiment is not limited, and a material capable of inserting and extracting lithium ions can be appropriately selected.
  • lithium composite oxides such as lithium titanate having a spinel crystal structure represented by Li [Li 1/3 Ti 5/3 ] O 4 , metallic lithium, and lithium alloys (lithium-silicon, lithium-aluminum, lithium -Metallic lithium-containing alloys such as lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys); metals capable of occluding and releasing lithium; metals such as antimony and tin; alloys of these; silicon oxide And metal oxides such as tin oxide, and carbon materials (eg, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, and the like).
  • the positive electrode active material and the negative electrode material are preferably powders having an average particle size of 100 ⁇ m or less.
  • the powder of the positive electrode active material is preferably 15 ⁇ m or less to improve the high output characteristics of the nonaqueous electrolyte secondary battery, and is preferably 10 ⁇ m or more to maintain the charge / discharge cycle performance.
  • a pulverizer or a classifier is used.
  • pulverization for example, a mortar, a ball mill, a sand mill, a vibration ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air jet mill, a sieve, and the like are used.
  • wet pulverization in which an organic solvent such as water or hexane coexists can be used.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like is used as needed in both dry and wet methods.
  • the positive electrode active material and the negative electrode material which are the main components of the positive electrode and the negative electrode, have been described in detail.
  • the positive electrode and the negative electrode have a conductive agent, a binder, a thickener, and a filler. Etc. may be contained as other constituent components.
  • the conductive agent is not limited as long as it is an electron conductive material that does not adversely affect battery performance.
  • natural graphite scale graphite, flake graphite, earth graphite, etc.
  • artificial graphite carbon black, acetylene black
  • Conductive materials such as Ketjen black, carbon whiskers, carbon fibers, metal (copper, nickel, aluminum, silver, gold, etc.) powders, metal fibers, and conductive ceramic materials can be included as one type or a mixture thereof. .
  • acetylene black is preferred as the conductive agent from the viewpoints of electron conductivity and coatability.
  • the addition amount of the conductive agent is preferably 0.1% by mass or more and 50% by mass or less, particularly preferably 0.5% by mass or more and 30% by mass or less based on the total mass of the positive electrode or the negative electrode.
  • These mixing methods are physical mixing, and ideally, homogeneous mixing. Therefore, it is possible to perform dry or wet mixing using a powder mixer such as a V-type mixer, an S-type mixer, a grinder, a ball mill, and a planetary ball mill.
  • the binder examples include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, and polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene-butadiene.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene terpolymer
  • SBR rubber
  • the addition amount of the binder is preferably from 1% by mass to 50% by mass, more preferably from 2% by mass to 30% by mass, based on the total mass of the positive electrode or the negative electrode.
  • the filler is not limited as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 30% by mass or less based on the total mass of the positive electrode or the negative electrode.
  • the positive electrode and the negative electrode are obtained by mixing the above main components (a positive electrode active material in the positive electrode, a negative electrode material in the negative electrode), and other materials with an organic solvent such as N-methylpyrrolidone, toluene, or water.
  • the mixed solution is applied onto a current collector described in detail below, or pressed and pressed, and heated at a temperature of about 50 ° C. to about 250 ° C. for about 2 hours to form a mixture layer. Is done.
  • roller coating such as an applicator roll, screen coating, doctor blade system, spin coating, it is preferable to apply to any thickness and any shape using a bar coater or the like, It is not limited.
  • a current collector foil such as an aluminum foil or a copper foil can be used as the current collector.
  • the current collector of the positive electrode is preferably an aluminum foil
  • the current collector of the negative electrode is preferably a copper foil.
  • the thickness of the current collector is preferably 10 ⁇ m or more and 30 ⁇ m or less. Further, the thickness of the mixture layer is preferably 40 ⁇ m or more and 150 ⁇ m or less (excluding the thickness of the current collector).
  • Non-aqueous electrolyte used for the non-aqueous electrolyte secondary battery according to the present embodiment is not limited, and those generally proposed for use in a lithium battery or the like can be used.
  • non-aqueous solvent used for the non-aqueous electrolyte examples include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, and chloroethylene carbonate or fluorides thereof; cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; dimethyl carbonate , Diethyl carbonate, ethyl methyl carbonate, etc., linear carbonates; methyl formate, methyl acetate, methyl butyrate, etc., linear esters; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2- Ethers such as dimethoxyethane, 1,4-dibutoxyethane, methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide or derivatives thereof alone or two or more of them And the like.
  • the non-aqueous electrolyte according to the first embodiment preferably contains a fluorinated cyclic carbonate as the non-aqueous solvent.
  • a nonaqueous electrolyte containing a fluorinated cyclic carbonate is used as the nonaqueous solvent, an increase in AC resistance after storage can be suppressed.
  • the fluorinated cyclic carbonate include 4-fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4,4,5-trifluoroethylene carbonate and the like. Above all, it is preferable to use 4-fluoroethylene carbonate (FEC) from the viewpoint that battery swelling due to generation of gas in the battery can be suppressed.
  • the content of the fluorinated cyclic carbonate is preferably from 3% to 30% by volume in the non-aqueous solvent, more preferably from 5% to 25%.
  • a compound having an oxalate group bonded to boron is added to the nonaqueous electrolyte according to the first embodiment.
  • a compound having an oxalate group bonded to boron has an effect of reducing initial AC resistance, and can improve output characteristics of a nonaqueous electrolyte secondary battery using a lithium-rich type active material for a positive electrode.
  • Compounds having an oxalate group bonded to boron include lithium bisoxalate borate (LiBOB), lithium difluoro (oxalato) borate (LiDFOB), and (3-methyl-2,4-pentanedionato) oxalatoborate (MOAB) ) And the like.
  • LiBOB lithium bisoxalate borate
  • LiDFOB lithium difluoro (oxalato) borate
  • MOAB (3-methyl-2,4-pentanedionato) oxalatoborate
  • LiBOB Lithium bis oxalate borate
  • LiDFOB Lithium difluoro (oxalato) borate
  • the lower limit of the addition amount of the compound having an oxalate group bonded to boron is preferably 0.1% by mass or more based on the total mass of the components other than the electrolyte salt constituting the nonaqueous electrolyte for improving the charge / discharge cycle performance. , More preferably 0.2% by mass or more, and the upper limit is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, in order to reduce the possibility of an increase in resistance.
  • the measurement of the initial AC resistance is performed under the following conditions.
  • the measurement is performed on a non-aqueous electrolyte secondary battery that has been subjected to liquid injection and initial charge / discharge and is in a factory shipping state.
  • the battery Prior to the measurement, the battery is charged and discharged at 25 ° C. with a current of 0.1 C in a predetermined voltage range, and then an open circuit is established and left for 2 hours or more.
  • the non-aqueous electrolyte secondary battery is completely discharged.
  • the resistance between the positive and negative terminals is measured using an impedance meter of a type that applies an alternating current (AC) of 1 kHz, and this is defined as “initial AC resistance (m ⁇ )”.
  • AC alternating current
  • Non-aqueous electrolyte secondary batteries that have been overcharged or overdischarged shall not be measured.
  • the non-aqueous electrolyte secondary battery is charged at 25 ° C. to a predetermined voltage at 0.1 C to make the battery fully charged. Then, it is left at 45 ° C for 15 days. Next, after performing a constant current discharge to a predetermined voltage with a current of 0.2 C, the circuit is opened and left for 2 hours or more. By the above operation, the non-aqueous electrolyte secondary battery is completely discharged. The resistance value between the positive and negative terminals is measured at 25 ° C. using an impedance meter of a type that applies an alternating current (AC) of 1 kHz. Non-aqueous electrolyte secondary batteries that have been overcharged or overdischarged shall not be measured.
  • AC alternating current
  • Additives generally used for non-aqueous electrolytes may be added to the non-aqueous electrolyte as long as the effects of the present invention are not impaired.
  • aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenylether, dibenzofuran; 2-fluorobiphenyl, o-cyclohexylfluorobenzene
  • Fluorinated anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole and 3,5-difluoroanisole
  • Overcharge inhibitors such as vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride
  • the amount of these additives in the non-aqueous electrolyte is not particularly limited, but is preferably 0.01% by mass or more, and more preferably 0% by mass or more, based on the entire components other than the electrolyte salt constituting the non-aqueous electrolyte. 0.1% by mass or more, more preferably 0.2% by mass or more, and the upper limit is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 2% by mass or less.
  • the purpose of adding these is to improve charge / discharge efficiency, suppress increase in resistance, suppress battery swelling, improve charge / discharge cycle performance, and the like.
  • electrolyte salt used for the non-aqueous electrolyte examples include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, and NaBr.
  • LiPF 6 or LiBF 4 with a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further reduced. It is more preferable that the low-temperature characteristics can be further improved and self-discharge can be suppressed.
  • a room temperature molten salt or an ionic liquid may be used as the non-aqueous electrolyte.
  • the concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / L or more and 5 mol / L or less, more preferably 0.5 mol / L in order to reliably obtain a non-aqueous electrolyte secondary battery having high battery characteristics. L and 2.5 mol / L or less.
  • the separator used in the nonaqueous electrolyte secondary battery according to the present embodiment it is preferable to use a porous film or a nonwoven fabric exhibiting excellent high-rate discharge performance alone or in combination.
  • the material constituting the separator for a non-aqueous electrolyte secondary battery include, for example, polyolefin resins represented by polyethylene, polypropylene, etc., polyester resins represented by polyethylene terephthalate, polybutylene terephthalate, etc., polyvinylidene fluoride, vinylidene fluoride -Hexafluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer , Vinylidene fluoride-hex
  • the porosity of the separator is preferably 98% by volume or less from the viewpoint of strength.
  • the porosity is preferably 20% by volume or more from the viewpoint of charge and discharge characteristics.
  • the separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride and the like, and a non-aqueous electrolyte. It is preferable to use the non-aqueous electrolyte in a gel state as described above, since it has an effect of preventing liquid leakage.
  • the separator be used in combination with the above-described porous membrane, nonwoven fabric, or the like and a polymer gel because the liquid retention of the nonaqueous electrolyte is improved. That is, by forming a film coated with a solvent-philic polymer having a thickness of several ⁇ m or less on the surface of the polyethylene microporous membrane and the wall surface of the micropore, and holding a non-aqueous electrolyte in the micropores of the film, The conductive polymer gels.
  • solvent-philic polymer examples include polymers crosslinked with polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a monomer having an isocyanate group, and the like.
  • the monomer can be subjected to a crosslinking reaction by using heating or ultraviolet rays (UV) in combination with a radical initiator, or by using an actinic ray such as an electron beam (EB).
  • UV ultraviolet rays
  • EB electron beam
  • Other components of the battery include a terminal, an insulating plate, a battery case, and the like. These components may be the same as those conventionally used.
  • FIG. 10 shows a nonaqueous electrolyte secondary battery according to this embodiment.
  • FIG. 10 is a perspective view of the inside of the container of the rectangular non-aqueous electrolyte secondary battery as seen through.
  • the non-aqueous electrolyte secondary battery 1 is assembled by injecting a non-aqueous electrolyte (electrolyte solution) into the battery container 3 in which the electrode group 2 is stored.
  • the electrode group 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material via a separator.
  • the positive electrode is electrically connected to the positive terminal 4 via a positive electrode lead 4 '
  • the negative electrode is electrically connected to the negative terminal 5 via a negative electrode lead 5'.
  • the shape of the nonaqueous electrolyte secondary battery according to the embodiment is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), and a flat battery.
  • Non-aqueous electrolyte secondary batteries are generally completed by injecting and sealing an electrolyte, and then being charged and discharged a plurality of times in a factory, before being shipped.
  • the non-aqueous electrolyte secondary battery according to this embodiment has an initial charge / discharge (production process) of 4.5 (vs. Li / Li + ) or more and 5.0 V (vs. Li / Li + ) or less in the initial charge / discharge process before shipment from the factory.
  • the battery is shipped without any charging until the charging process in which the region where the potential change is flat is observed within the positive electrode potential range.
  • the nonaqueous electrolyte secondary battery according to the present embodiment does not have a history of charging until the charging process in which the flat region is observed is completed means that the positive electrode active material of the battery is the CuK ⁇ .
  • a diffraction peak is observed in a range of 20 ° or more and 22 ° or less, or the battery is charged at a positive electrode potential of 5.0 V (vs. Li / Li + ).
  • a region where the potential change was flat with respect to the amount of charged electricity was observed in the positive electrode potential range of 4.5 V (vs. Li / Li + ) or more and 5.0 V (vs. Li / Li + ) or less.
  • FIG. 11 shows a conceptual diagram of an apparatus used for measuring the press density.
  • a pair of measurement probes 1A and 1B are prepared.
  • the measuring probes 1A and 1B have measuring surfaces 2A and 2B obtained by flattening one end of a stainless steel (SUS304) cylinder having a diameter of 8.0 mm ( ⁇ 0.05 mm), and the other end thereof is a stainless steel pedestal 3A. , 3B in which the column is fixed vertically.
  • SUS304 stainless steel
  • a side body 6 having a through-hole 7 polished and provided with an inner diameter adjusted at the center of an acrylic cylinder so that the stainless steel cylinder can naturally descend slowly in the air by gravity is prepared.
  • the upper and lower surfaces of the side body 6 are polished smoothly.
  • One of the measurement probes 1A is placed on a horizontal desk such that the measurement surface 2A faces upward, and the column of the measurement probe 1A is inserted into the through hole 7 of the side body 6 so as to cover the side body 6 from above. insert.
  • the other measurement probe 1B is inserted from above the through hole 7 with the measurement surface 2B facing down, and the distance between the measurement surfaces 2A and 2B is set to zero. At this time, the distance between the pedestal 3B of the measurement probe 1B and the pedestal 3A of the measurement probe 1A is measured using calipers.
  • the measurement probe 1B is pulled out, 0.3 g of the powder of the sample to be measured (positive electrode active material powder) is injected from above the through hole 7 with a spoon, and the measurement probe 1B is again placed with the measurement surface 2B down. It is inserted from above the through hole 7.
  • a manual hydraulic press equipped with a pressure gauge pressure is applied from above the measurement probe 1B until the pressure applied to the active material reaches a value calculated as 40 MPa. After the scale reaches the numerical value, no additional pressurization is performed even if the value indicated by the scale decreases. Thereafter, in this state, the distance between the pedestal 3B of the measurement probe 1B and the pedestal 3A of the measurement probe 1A is measured again by using a caliper.
  • the density of the sample to be measured in a pressurized state Is calculated, and this is defined as the press density (g / cm 3 ).
  • the pressure applied to the active material is calculated from the relationship between the area of the contact portion with the jig and the area of the measurement surface (the contact area with the powder).
  • the discharge capacity per unit volume and the charge amount per unit volume are calculated by multiplying the press density of the positive electrode active material powder measured as described above by the discharge capacity per unit mass and the charge amount per unit amount.
  • the nonaqueous electrolyte secondary battery of the present embodiment can also be realized as a power storage device in which a plurality of batteries are assembled.
  • FIG. 12 illustrates an example of a power storage device. 12
  • power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of nonaqueous electrolyte secondary batteries 1.
  • the power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • the non-aqueous electrolyte secondary battery according to the present embodiment is manufactured without passing through the charging process until the overcharge region ends, and is used without performing charging until the overcharge region ends. It is assumed that it will be. It is preferable that the charging voltage used during the manufacturing process and during the use during the manufacturing be set such that the maximum attainable potential reached by the positive electrode by the charging, that is, the upper charging limit potential is equal to or lower than the potential at which the overcharge region starts. It is preferable that the upper limit charging potential in the initial charge / discharge step and the upper limit charging potential in use are less than 4.5 V (vs. Li / Li + ). The upper limit charging potential can be, for example, 4.40 V (vs. Li / Li + ).
  • the charging upper limit voltage may be 4.38V (vs.Li/Li +), may be 4.36V (vs.Li/Li +), 4.34V ( vs.Li/Li + ) Or 4.32 V (vs. Li / Li + ).
  • Example 1 (Examental example 1) (Example 1-1) ⁇ Preparation of lithium transition metal composite oxide> 284 g of nickel sulfate hexahydrate, 303 g of cobalt sulfate heptahydrate, and 443 g of manganese sulfate pentahydrate were weighed and dissolved in 4 L of ion-exchanged water, and the molar ratio of Ni: Co: Mn was 27: A 1.0 M aqueous sulfate solution at 27:46 was prepared. Next, 2 L of ion-exchanged water was poured into a 5 L reaction vessel, and oxygen contained in the ion-exchanged water was removed by bubbling argon gas for 30 minutes.
  • the temperature of the reaction tank was set to 50 ° C. ( ⁇ 2 ° C.), and the convection was sufficiently generated in the reaction tank while stirring the inside of the reaction tank at a rotation speed of 1500 rpm using a paddle blade equipped with a stirring motor. did.
  • the sulfate aqueous solution was dropped into the reaction tank at a rate of 3 mL / min.
  • the pH in the reaction vessel is adjusted by appropriately dropping a mixed alkali aqueous solution composed of 4.0 M sodium hydroxide, 0.5 M ammonia, and 0.2 M hydrazine.
  • the inner dimensions of the box-type electric furnace are 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction.
  • the electric furnace was turned off, and the alumina boat was allowed to cool naturally while remaining in the furnace.
  • the temperature of the furnace decreases to about 200 ° C. after 5 hours, but the cooling rate thereafter is somewhat slow.
  • the temperature of the furnace was 100 ° C. or lower, and then the pellets were taken out and lightly crushed in an agate mortar to make the particle diameter uniform.
  • a lithium transition metal composite oxide Li 1.13 Ni 0.235 Co 0.235 Mn 0.40 O 2 was produced.
  • the lithium transition metal composite oxide was subjected to powder X-ray diffraction measurement using an X-ray diffractometer (manufactured by Rigaku Corporation, model name: MiniFlex II), and it was confirmed that it had an ⁇ -NaFeO 2 type crystal structure.
  • N-methylpyrrolidone is used as a dispersion medium
  • the lithium transition metal composite oxide hereinafter referred to as “LR”
  • the active material acetylene black (AB) and polyvinylidene fluoride (PVdF) have a mass ratio of 90:
  • a coating positive electrode paste kneaded and dispersed in a ratio of 5: 5 was prepared.
  • the positive electrode paste for application was applied to one surface of an aluminum foil current collector having a thickness of 20 ⁇ m, dried, and then pressed to produce a positive electrode according to Example 1-1.
  • a negative electrode was prepared by disposing a metallic lithium foil on a nickel current collector. The amount of metallic lithium was adjusted so that the capacity of the battery when combined with the positive electrode was not limited by the negative electrode.
  • a nonaqueous electrolyte secondary battery was assembled in the following procedure. LiPF 6 was dissolved in a mixed solvent of 4-fluoroethylene carbonate (FEC) / propylene carbonate (PC) / ethyl methyl carbonate (EMC) at a volume ratio of 1: 1: 8 to a concentration of 1 mol / L.
  • FEC 4-fluoroethylene carbonate
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • LiDFP lithium difluorophosphate
  • compound A 4,4′-bis (2,2-dioxo-1,3,2-dioxathiolane) based on 100% by mass of the solution %
  • a polypropylene microporous membrane surface-modified with polyacrylate was used as a separator.
  • a metal resin composite film composed of polyethylene terephthalate (15 ⁇ m) / aluminum foil (50 ⁇ m) / metal adhesive polypropylene film (50 ⁇ m) was used for the outer package.
  • the positive electrode according to Example 1-1 and the negative electrode were housed in the package via the separator so that the open ends of the positive terminal and the negative terminal were exposed to the outside, and the metal bonding of the metal-resin composite film was performed.
  • the non-aqueous electrolyte secondary battery is sealed by sealing hermetically sealed portions of the non-aqueous electrolyte except for the portion that becomes the injection hole, and after injecting the non-aqueous electrolyte, sealing the injection hole. Assembled.
  • ⁇ Initial charge / discharge step> The assembled nonaqueous electrolyte secondary battery was subjected to an initial charge / discharge step at 25 ° C.
  • the charging was performed at a constant current and constant voltage (CCCV) with a current of 0.1 C and a final voltage of 4.25 V.
  • the condition for terminating the charging was a time when the current value attenuated to 1/6.
  • the discharge was a constant current discharge at a current of 0.1 C and a cutoff voltage of 2.0 V. This charge / discharge was performed twice. Here, a resting step of 30 minutes was provided after charging and after discharging, respectively.
  • the negative electrode material is metallic lithium
  • the positive electrode potential and the battery voltage have almost the same value, and thus the positive electrode potential in the following procedure can be read as the battery voltage of the test battery.
  • the counter electrode is graphite
  • the potential of the positive electrode is obtained by adding about 0.1 V to the battery voltage in consideration of the potential of the graphite.
  • Example 1-1 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1-1, except that a commercially available LiNi 0.5 Co 0.2 Mn 0.3 O 2 (hereinafter, referred to as “NCM523”) was used as a positive electrode active material. The battery was assembled and subjected to initial charge and discharge to complete a nonaqueous electrolyte secondary battery according to Comparative Example 1-1.
  • NCM523 LiNi 0.5 Co 0.2 Mn 0.3 O 2
  • Example 1-2 A non-aqueous electrolyte secondary battery was assembled in the same manner as in Example 1-1, and a constant current constant voltage (CCCV) charge having a final voltage of 4.6 V was performed only in the first charge in the initial charge / discharge step. The same initial charge / discharge process as in Example 1-1 was performed to complete a non-aqueous electrolyte secondary battery according to Comparative Example 1-2.
  • CCCV constant current constant voltage
  • Example 1-2 358 g of the lithium transition metal composite oxide Li 1.13 Ni 0.235 Co 0.235 Mn 0.40 O 2 produced in Example 1-1 was charged into 200 mL of a 0.1 M aluminum sulfate aqueous solution, and a magnetic stirrer was used. And stirred for 30 seconds at 25 ° C. and 400 rpm. Thereafter, the mixture was separated into a powder and a filtrate by suction filtration. The obtained powder was dried in the air at 80 ° C. for 20 hours. Further, heat treatment was performed in the atmosphere of 400 ° C. for 4 hours using the above-mentioned box-type electric furnace.
  • a lithium transition metal composite oxide (hereinafter, referred to as “LR-Al”) coated with an aluminum compound was produced. Except that this lithium transition metal composite oxide was used as the positive electrode active material, the assembly and initial charge and discharge of the nonaqueous electrolyte secondary battery were performed in the same manner as in Example 1-1. The water electrolyte secondary battery was completed.
  • X-ray diffraction measurement was performed under the above-described conditions using the positive electrode mixture collected from the non-aqueous electrolyte secondary battery after the initial charge and discharge according to Example 1-1 and Comparative Example 1-2 under the above-described procedures and conditions.
  • a diffraction peak was observed in a range of 20 ° or more and 22 ° or less in an X-ray diffraction diagram using CuK ⁇ rays (see the lower part of FIG. 3).
  • the positive electrode active material of No. 2 it was confirmed that no diffraction peak was observed in the range of 20 ° or more and 22 ° or less (see the upper part of FIG. 3).
  • Table 1 shows the delay effect (%) in the overcharge test of the nonaqueous electrolyte secondary batteries according to Examples 1-1 and 1-2 and Comparative Examples 1-1 and 1-2, and the maximum value of dZ / dV. .
  • the nonaqueous electrolyte secondary battery according to Comparative Example 1-2 was provided with a positive electrode using a lithium-rich type active material, but in the overcharge test, a sharp increase in the positive electrode potential was observed when Z was 130%. Also, the delay effect is not enough. This is because, in the initial charging / discharging step, the charging was performed so that the positive electrode potential reached 4.6 V (vs. Li / Li + ). The amount of charge of the positive electrode of the nonaqueous electrolyte secondary battery according to Example 1-2 falls within the positive electrode potential range of 4.5 V (vs.
  • Examples 1-1 and 1-2 according to Examples 1-1 and 1-2 in which a positive electrode using a lithium-rich type active material was provided and the initial charge / discharge step was performed at a potential of less than 4.5 V (vs. Li / Li + ).
  • a superior retarding effect is observed as compared with Comparative Examples 1-1 and 1-2. This is because the positive electrode of the nonaqueous electrolyte secondary battery according to Examples 1-1 and 1-2 has a positive electrode of 4.5 V (vs.
  • Li / Li + Li / Li + or more and 5.0 V (vs. Li / Li + ) or less. This is related to the observation of a region where the potential change is flat with respect to the amount of charge in the potential range (the maximum value of dZ / dV is 150 or more).
  • Example 1-3 Same as Example 1-1 except that the solvent of the non-aqueous electrolyte was changed to a mixed solvent of ethylene carbonate (EC) / propylene carbonate (PC) / ethyl methyl carbonate (EMC) in a volume ratio of 25: 5: 70. Then, the non-aqueous electrolyte secondary battery was assembled and initially charged and discharged to complete the non-aqueous electrolyte secondary battery according to Example 1-3.
  • EC ethylene carbonate
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • Example 1-1 The solvent of the nonaqueous electrolyte was changed in the same manner as in Example 1-3, and vinylene carbonate (VC) was further added as an additive in an amount of 0.2% by mass relative to the mass of the nonaqueous electrolyte.
  • VC vinylene carbonate
  • Example 1-5 The assembly of the non-aqueous electrolyte secondary battery and the initial charge and discharge were performed in the same manner as in Example 1-1, except that the solvent of the non-aqueous electrolyte was changed to a mixed solvent having a volume ratio of FEC / EMC of 20:80. Thus, a non-aqueous electrolyte secondary battery according to Example 1-5 was completed.
  • Example 1-6 The assembly of the non-aqueous electrolyte secondary battery and the initial charge and discharge were performed in the same manner as in Example 1-1, except that the solvent of the non-aqueous electrolyte was changed to a mixed solvent having a volume ratio of FEC / EMC of 5:95. Thus, a non-aqueous electrolyte secondary battery according to Example 1-6 was completed.
  • Examples 1-7, 1-8) Except that the positive electrode active material was changed to the lithium transition metal composite oxide (LR-Al) coated with the aluminum compound prepared in Example 1-2, the procedure was the same as in Examples 1-3 and 1-4, respectively.
  • the nonaqueous electrolyte secondary battery was assembled and initially charged and discharged to complete the nonaqueous electrolyte secondary batteries according to Examples 1-7 and 1-8.
  • Examples 1-1, 1-3 to 1-6 using LR as the positive electrode active material the non-aqueous electrolytes according to Examples 1-3, 1-4 using the non-aqueous electrolyte containing no FEC were used.
  • the non-aqueous electrolyte secondary batteries according to Examples 1-1, 1-5, and 1-6 using the non-aqueous electrolyte containing FEC showed an increase in the AC resistance after storage. It turns out that it is suppressed.
  • examples 1-2, 1-7, and 1-8 using LR-Al as the positive electrode active material examples 1-2-7 and 1-8 using the non-aqueous electrolyte containing no FEC were also used.
  • the non-aqueous electrolyte secondary battery according to Example 1-2 using the non-aqueous electrolyte containing FEC suppresses an increase in the AC resistance after storage. .
  • Example 1 100 mass of a solution obtained by dissolving LiPF 6 in a mixed solvent of ethylene carbonate (EC) / propylene carbonate (PC) / ethyl methyl carbonate (EMC) in a volume ratio of 25: 5: 70 so as to have a concentration of 1 mol / L. %, And 1.0% by mass of only compound A was used as an additive.
  • EC ethylene carbonate
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • SBR styrene-butadiene rubber
  • CMC carboxymethylcellulose
  • a negative electrode paste was prepared, applied to one surface of a 10 ⁇ m-thick strip-shaped copper foil current collector, and dried. This was pressurized by a roller press, and then dried under reduced pressure at 100 ° C. for 12 hours to remove water from the electrode plate. Thus, a negative electrode was manufactured.
  • a non-aqueous electrolyte secondary battery according to Example 1-9 was assembled in the same manner as in Example 1-3 except that the non-aqueous electrolyte and the negative electrode were used.
  • Example 1-10 to 1-12 As an additive, the procedure was performed except that LiDFOB was added in 0.2%, 0.5% and 1.0% by mass together with 1.0% by mass of compound A instead of 1.0% by mass of compound A, respectively. In the same manner as in Example 1-9, the nonaqueous electrolyte secondary batteries according to Examples 1-10 to 1-12 were completed.
  • Nonaqueous electrolyte secondary batteries according to Examples 1-13 and 1-14 were fabricated in the same manner as in Example 1-11, except that LiDFOB was changed to LiBOB and MOAB, respectively, as additives.
  • the initial AC resistance of the nonaqueous electrolyte secondary batteries according to Examples 1-9 to 1-14 and Comparative Examples 1-3 to 1-6 was measured, and a compound having an oxalate group bonded to boron was included as an additive.
  • the rate of increase / decrease of the initial AC resistance of the non-aqueous electrolyte secondary battery containing the additive with respect to the initial AC resistance is referred to as “resistance increase / decrease”. % /% ".
  • the results are shown in Table 3 below.
  • the “addition amount / mass%” in Table 3 is “mass percent of the addition amount of the compound having an oxalate group bonded to boron”.
  • Examples 1-9 to 1-14 were manufactured using LR as the positive electrode active material and making the maximum potential of the positive electrode less than 4.5 V (vs. Li / Li + ) in the initial charge / discharge step.
  • the non-aqueous electrolyte secondary batteries according to Comparative Examples 1-3 to 1-6 which were initially charged and discharged so that the maximum ultimate potential of the positive electrode was 4.5 V (vs. Li / Li + ) or more. It can be seen that the initial AC resistance is lower than that of the secondary battery.
  • the maximum ultimate potential of the positive electrodes of the nonaqueous electrolyte secondary batteries of Comparative Examples 1-3 to 1-6 is about 4.6 V (vs. Li / Li + ) as described above.
  • Examples 1-10 to 1-14 in which the non-aqueous electrolyte contains a compound having an oxalate group bonded to boron as an additive compared to Examples 1-9 not containing the compound. It can be seen that the effect of further reducing the initial AC resistance is exhibited.
  • the non-aqueous electrolyte secondary batteries according to Comparative Examples 1-3 to 1-6 using the same LR as the positive electrode active material in Examples 1-9 to 1-14 as the positive electrode have the maximum ultimate potential of the positive electrode in the initial charge / discharge step. Is obtained through a process of 4.5 V (vs.
  • the non-aqueous electrolyte secondary batteries according to the comparative examples each have a higher initial AC resistance than the non-aqueous electrolyte secondary batteries according to Examples 1-9 to 1-14, and the non-aqueous electrolyte Contains a compound having an oxalate group bonded to boron as an additive, thereby further increasing the initial AC resistance. Therefore, it can be seen that the inclusion of the compound has an adverse effect on the reduction of the initial AC resistance.
  • Example 2 shows an example of the positive electrode active material according to the second embodiment together with a comparative example.
  • Example 2-1 The production of the lithium transition metal composite oxide was performed in the same manner as in Example 1-1, and a lithium transition metal composite oxide Li 1.13 Ni 0.235 Co 0.235 Mn 0.40 O 2 was produced. .
  • Examples 2-2, 2-3 The same procedure as in Example 2-1 was carried out except that the acid treatment of the lithium transition metal composite oxide was performed using a boric acid aqueous solution having a hydrogen ion concentration of 0.05 M or a tartaric acid aqueous solution having a hydrogen ion concentration of 0.05 M instead of citric acid. Active materials according to Examples 2-2 and 2-3 were produced. BET specific surface area were respectively 4.6m 2 /g,5.5m 2 / g.
  • Reference Example 2-1 An active material according to Reference Example 2-1 was produced in the same manner as in Example 2-1 except that the lithium transition metal composite oxide was not subjected to an acid treatment.
  • the BET specific surface area was 2.3 m 2 / g.
  • Reference Example 2 was performed in the same manner as in Example 2-1 except that the acid treatment of the lithium transition metal composite oxide was performed using a sulfuric acid aqueous solution having a hydrogen ion concentration of 0.05 M, 0.03 M, and 0.01 M, respectively.
  • the active materials according to Reference Example 2-5 were prepared in the same manner as in Reference Example 2-4, except that the active materials according to -2 to 2-4 were prepared and the acid treatment time was changed to 10 minutes.
  • the BET specific surface area of Comparative Example 2-2 was 7.4 m 2 / g.
  • Reference Example 2-6 (Reference Examples 2-6 to 2-8) Reference Example 2-6, except that the acid treatment of the lithium transition metal composite oxide was performed using a phosphoric acid aqueous solution having a hydrogen ion concentration of 0.1 M and 0.01 M, respectively.
  • An active material according to Reference Example 2-8 was prepared in the same manner as in Reference Example 2-7, except that the active material according to 2-7 was prepared and the acid treatment time was changed to 10 minutes.
  • the BET specific surface area of Reference Example 2-6 was 5.7 m 2 / g.
  • Reference Examples 2-9 and 2-10) Reference Examples 2-9 and 2-2 were prepared in the same manner as in Example 2-1 except that the acid treatment of the lithium transition metal composite oxide was performed using tartaric acid aqueous solutions having hydrogen ion concentrations of 0.1 M and 0.05 M, respectively.
  • An active material according to -10 was produced. BET specific surface area were respectively 7.1m 2 /g,6.5m 2 / g.
  • Example 2-4 and 2-5 and Reference Example 2-11 A hydroxide precursor having a molar ratio of Ni: Co: Mn of 40: 5: 55 is prepared, and a mixed powder is prepared such that a molar ratio of Li: (Ni, Co, Mn) is 120: 100. Except that, the active materials according to Examples 2-4, 2-5 and Reference Example 2-11 were produced in the same manner as Examples 2-1 and 2-2 and Reference Example 2-1.
  • Example 2-6 Example 2-6 was repeated in the same manner as in Example 2-4 and Reference Example 2-11, except that the mixed powder was prepared such that the molar ratio of Li: (Ni, Co, Mn) became 130: 100. In addition, an active material according to Reference Example 2-12 was produced.
  • Reference Examples 2-13 to 2-15 A hydroxide precursor having a molar ratio of Ni: Co: Mn of 35:25:40 is prepared, and a mixed powder is prepared such that a molar ratio of Li: (Ni, Co, Mn) is 120: 100. Except that, the active materials according to Reference Examples 2-13 to 2-15 were produced in the same manner as in Examples 2-1 and 2-2 and Reference Example 2-1.
  • Comparative Examples 2-1 and 2-2 A mixed powder was prepared from the hydroxide precursor according to Example 2-4 and lithium hydroxide monohydrate so that the molar ratio of Li: (Ni, Co, Mn) was 100: 100. Except for the above, active materials of Comparative Examples 2-1 and 2-2 were produced in the same manner as in Example 2-4 and Reference Example 2-11, respectively.
  • a positive electrode was produced in the same manner as in Example 1-1, using the active materials according to the above Examples, Reference Examples, and Comparative Examples. Further, a negative electrode was manufactured in the same manner as in Example 1-1.
  • a non-aqueous electrolyte secondary battery was assembled in the following procedure.
  • LiPF 6 was dissolved in a mixed solvent having a volume ratio of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) of 6: 7: 7 so that the concentration became 1 mol / L.
  • the solution was used.
  • a polypropylene microporous membrane surface-modified with polyacrylate was used as a separator.
  • a metal resin composite film composed of polyethylene terephthalate (15 ⁇ m) / aluminum foil (50 ⁇ m) / metal adhesive polypropylene film (50 ⁇ m) was used for the outer package.
  • the positive electrode according to each of the above examples, the reference example and the comparative example, and the negative electrode were housed in the exterior body through the separator such that the open ends of the positive electrode terminal and the negative electrode terminal were exposed to the outside, and the metal A non-aqueous electrolyte secondary battery is formed by hermetically sealing the fusion allowance where the inner surfaces of the resin composite film face each other except for a portion serving as a liquid injection hole, and after injecting the electrolytic solution, sealing the liquid injection hole.
  • the positive electrode according to each of the above examples, the reference example and the comparative example, and the negative electrode were housed in the exterior body through the separator such that the open ends of the positive electrode terminal and the negative electrode terminal were exposed to the outside, and the metal A non-aqueous electrolyte secondary battery is formed by hermetically
  • the assembled non-aqueous electrolyte secondary battery was subjected to an initial charge / discharge step at 25 ° C. to confirm initial coulomb efficiency.
  • the charging was performed at a current value of 15 mA (corresponding to 0.1 C) per 1 g of the positive electrode mixture, with constant current and constant voltage charging at an upper limit voltage of 4.35 V, and the condition for terminating the charging was a time when the current value attenuated to 1/5. .
  • the discharge was a constant current discharge with the same current value and a lower limit voltage of 2.85V.
  • a pause process of 10 minutes was provided after charging and after discharging, respectively, the charge capacity and the discharge capacity (0.1 C discharge capacity) were confirmed, and the ratio of the discharge capacity to the charge capacity was defined as the initial coulomb efficiency.
  • the discharge capacity ratio a / b was measured.
  • the charging was performed at a current value of 15 mA (corresponding to 0.1 C) per 1 g of the positive electrode mixture, with constant current and constant voltage charging at an upper limit voltage of 4.35 V. .
  • a pause process of 10 minutes was provided, and the discharge was a constant current discharge with the same current value and a lower limit voltage of 2.0 V.
  • the ratio a / b of the discharge capacity (a) from 4.35 V to 3.0 V and the discharge capacity (b) from 3.0 V to 2.0 V was determined.
  • the reference example and the comparative example in evaluating the above-mentioned discharge capacity ratio a / b, even if the charging and discharging were performed at 0.1 C, the same a was obtained as when the charging and discharging were performed at 0.02 C. After confirming that / b was obtained, the above measurement conditions were set.
  • the ratio a / b of the discharge capacity (a) from 4.35 V to 3.0 V and the discharge capacity (b) from 3.0 V to 2.0 V was 17
  • the battery according to Reference Example 2-1 had an a / b larger than 25, while the battery was within the range of 25 or less.
  • the active materials of Examples 2-1 and 2-2 had a larger specific surface area than the active material of Reference Example 2-1.
  • the 0.1 C capacity was lower than that of Reference Example 2-1 where no acid treatment was performed, and neither the initial coulomb efficiency nor the high-rate discharge performance was higher than that of Reference Example 2-1.
  • the discharge capacity ratio a / b was smaller than 17 or larger than 25.
  • the 0.1 C capacity was substantially the same as that of Reference Example 2-1 without acid treatment, and the initial coulomb efficiency and the high rate discharge performance were improved.
  • the initial coulomb efficiency was improved compared to Example 3-3, but the 0.1 C capacity shown in Reference Example 2-1 could not be maintained, and the high-rate discharge performance was also high in Reference Example 2--3. No improvement from 1 was seen.
  • the discharge capacity ratio a / b was in the range of 17 to 25 in the battery of Example 3-3 having the positive electrode active material treated with tartaric acid having a low hydrogen ion concentration
  • the value was smaller than 17.
  • the active material of Example 3-3 had a smaller specific surface area than the active materials of Reference Examples 2-9 and 2-10. From the above, it can be seen that even when an acid treatment with a pKa 1 of 3.1 or more is performed, it is necessary to appropriately select the hydrogen ion concentration of the acid solution and satisfy a predetermined discharge capacity ratio a / b.
  • the characteristics of the batteries according to Examples 2-4 and 2-5 were such that the active material had the same composition and the 0.1 C discharge capacity, the initial coulomb efficiency, and the high It can be seen that the discharge capacity ratio a / b is in the range of 17 or more and 25 or less.
  • the characteristics of the battery according to Example 2-6 are also higher than those of Reference Example 2-12 in which the active material has the same composition and the acid treatment is not performed, and the discharge capacity ratio a / b Is in the range of 17 or more and 25 or less. Therefore, it can be seen that even in an active material having a composition range where Mn / Me is larger, the specification of a / b is related to an improvement in battery characteristics.
  • the characteristics of the batteries according to Reference Examples 2-13 and 2-14 which were subjected to the acid treatment showed only an improvement in the initial coulomb efficiency as compared with Reference Example 2-15 which was not subjected to the acid treatment. Has not been improved.
  • the positive electrode active material according to the second embodiment may be used. It can be seen that the effect on the substance is not exhibited. Note that the reference example in Experimental Example 2 is not the positive electrode active material according to the second embodiment, but as described above, the non-aqueous electrolyte secondary electrode using the active materials according to all Examples and Reference Examples as the positive electrode.
  • the positive electrode active material has a diffraction peak in the range of 20 ° or more and 22 ° or less, even when the active material according to the above reference example is used for the positive electrode, the active material according to the above example is used as the positive electrode.
  • the non-aqueous electrolyte secondary battery it is possible to obtain a non-aqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed up to a higher SOC.
  • Experimental Example 3 shows an example of the positive electrode active material according to the third embodiment together with a comparative example.
  • Examples 3-1 to 3-10 and Reference Example 1 in which the transition metal compound having the same composition is used and the production conditions of the lithium transition metal composite oxide are changed will be described.
  • Example 3-1 ⁇ Preparation of lithium transition metal composite oxide>
  • a hydroxide precursor was prepared using a reaction crystallization method. First, 578.3 g of nickel sulfate hexahydrate, 56.2 g of cobalt sulfate heptahydrate, and 385.7 g of manganese sulfate pentahydrate were weighed, and all of them were dissolved in 4 L of ion-exchanged water. A 1.0 M aqueous sulfate solution having a molar ratio of: Mn of 55: 5: 40 was prepared.
  • the pH in the reaction tank is adjusted by appropriately dropping a mixed alkali solution composed of 4.0 M sodium hydroxide, 1.25 M ammonia, and 0.1 M hydrazine. Control was performed so as to always maintain 10.20 ( ⁇ 0.1), and a part of the reaction solution was discharged by overflow so that the total amount of the reaction solution was always controlled so as not to exceed 2 L. After the completion of the dropwise addition, stirring in the reaction tank was continued for another 1 hour. After stopping the stirring, the mixture was allowed to stand at room temperature for 12 hours or more.
  • the hydroxide precursor particles generated in the reaction tank are separated, and further, sodium ions adhering to the particles are washed and removed using ion-exchanged water, and an electric furnace is used. Then, it was dried at 80 ° C. for 20 hours in an air atmosphere under normal pressure. Then, in order to make the particle size uniform, the mixture was ground for several minutes in an automatic mortar made of agate. Thus, a hydroxide precursor having a molar ratio of Ni: Co: Mn of 55: 5: 40 was produced.
  • One of the pellets was placed on an alumina boat having a total length of about 100 mm, placed in a box-type electric furnace (model number: AMF20), and heated from normal temperature to 900 ° C. in an air atmosphere under normal pressure for 10 hours, 900 It was baked at 4 ° C. for 4 hours.
  • the internal dimensions of the box-type electric furnace are 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction. After firing, the heater was turned off and the alumina boat was allowed to cool naturally while remaining in the furnace. As a result, the temperature of the furnace decreases to about 200 ° C. after 5 hours, but the cooling rate thereafter is slightly slow.
  • the temperature of the furnace was 100 ° C. or less, and then the pellets were taken out and crushed for several minutes in an automatic mortar made of agate to make the particle diameter uniform.
  • the lithium transition metal composite oxide according to Example 3-1 was produced.
  • Example 3-2 to 3-5 Reference Example 1
  • the addition ratio of lithium fluoride in the mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was 5, 8, 10, and 20 mol% with respect to the total amount of the Li compound, respectively.
  • the lithium transition metal composite oxides according to Examples 3-2 to 3-4 and Reference Example 1 were produced in the same manner as in Example 3-1 except for the above. Further, a lithium transition metal composite oxide according to Example 3-5 was produced in the same manner as in Example 3-1 except that lithium fluoride was not added.
  • Example 3-6 The lithium of Example 3-6 was prepared in the same manner as in Example 3-2, except that a mixed powder of a hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was fired at 950 ° C. A transition metal composite oxide was produced.
  • Example 3--7 Example 3-2 except that the molar ratio of Li: (Ni, Co, Mn) in the mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was changed to 130: 100. In the same manner as in the above, a lithium transition metal composite oxide according to Example 3-7 was produced.
  • Examples 3-8 to 3-10) The procedure of Example 3-2 was repeated, except that lithium carbonate, sodium fluoride, and sodium chloride were added instead of lithium fluoride to prepare a mixed powder in which 5 mol% was added to the total amount of the lithium compound. Lithium transition metal composite oxides according to Examples 3-8 to 3-10 were produced.
  • Example 3-11 A hydroxide precursor was prepared by changing the molar ratio of Ni: Co: Mn to 40:15:45, and a mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was prepared.
  • the lithium transition metal composite oxide of Example 3-11 was produced in the same manner as in Example 3-2, except that the molar ratio of Li: (Ni, Co, Mn) was changed to 110: 100.
  • Examples 3-12 to 3-14 In the same manner as in Example 3-11, except that lithium carbonate, sodium fluoride, and sodium chloride were added in place of lithium fluoride, and a mixed powder in which 5 mol% was added to the total amount of the lithium compound was prepared. Then, lithium transition metal composite oxides according to Examples 3-12 to 3-14 were produced.
  • Reference Example 3 was performed in the same manner as in Example 3-11, except that the addition ratio of lithium fluoride in the mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was changed to 20 mol%. -2 A lithium transition metal composite oxide was produced.
  • Example 3-15 A lithium transition metal composite oxide according to Example 3-15 was prepared in the same manner as in Example 3-2, except that a hydroxide precursor was prepared by changing the molar ratio of Ni: Mn to 60:40. .
  • Example 3-16 A hydroxide precursor was prepared by changing the molar ratio of Ni: Co: Mn to 35:15:50, and a mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was prepared.
  • the lithium transition metal composite oxide of Example 3-16 was produced in the same manner as in Example 3-2, except that the molar ratio of Li: (Ni, Co, Mn) was changed to 110: 100.
  • Example 3-17 A hydroxide precursor was prepared by changing the molar ratio of Ni: Co: Mn to 33:33:33, and a mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride
  • the lithium transition metal composite oxide according to Example 3-17 was produced in the same manner as in Example 3-2, except that the molar ratio of Li: (Ni, Co, Mn) was changed to 110: 100.
  • Reference Example 3-3 The lithium transition metal composite oxidation according to Reference Example 3-3 was performed in the same manner as in Example 3-2, except that a hydroxide precursor was prepared by changing the molar ratio of Ni: Co: Mn to 30:15:55. Object was produced.
  • a hydroxide precursor was prepared by changing the molar ratio of Ni: Co: Mn to 30:10:60, and a mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was prepared.
  • a lithium transition metal composite oxide according to Reference Example 3-4 was produced in the same manner as in Example 3-2, except that the molar ratio of Li: (Ni, Co, Mn) was changed to 130: 100.
  • Comparative Example 3-1 A hydroxide precursor was prepared by changing the molar ratio of Ni: Co: Mn to 33:33:33, and Li :( in the mixed powder of the hydroxide precursor and lithium hydroxide monohydrate was used.
  • a lithium transition metal composite oxide according to Comparative Example 3-1 was produced in the same manner as in Example 3-5, except that the molar ratio of (Ni, Co, Mn) was changed to 100: 100.
  • Comparative Example 3-2 A hydroxide precursor was prepared by changing the molar ratio of Ni: Co: Mn to 33:33:33, and a mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride
  • the lithium transition metal composite oxide according to Comparative Example 3-2 was produced in the same manner as in Example 3-2, except that the molar ratio of Li: (Ni, Co, Mn) was changed to 100: 100.
  • the Raman spectra of the lithium-transition metal composite oxide according to the reference examples and comparative examples were measured relative to the maximum value I 600 in the range of 550 cm -1 or more 650 cm -1 or less, 450 cm -1 or more 520cm The ratio (I 490 / I 600 ) of the maximum value I 490 in the range of ⁇ 1 or less was evaluated.
  • FIG. 13 shows Raman spectra of the lithium transition metal composite oxides according to Examples 3-1 to 3-5.
  • a positive electrode was produced in the same manner as in Example 1-1 above, using the lithium transition metal composite oxide according to the above Examples, Reference Examples and Comparative Examples as a positive electrode active material. Note that the test conditions for determining the amount of charge and the discharge capacity of the nonaqueous electrolyte secondary batteries according to all Examples, Reference Examples, and Comparative Examples were the same, so that the active material applied per unit area was not changed. The coating thickness was adjusted. Further, a negative electrode was manufactured in the same manner as in Example 1-1.
  • the non-aqueous electrolyte secondary battery assembled by the above procedure is completed through an initial charge / discharge step.
  • the first charge / discharge condition 1 is divided into a first group and the first charge / discharge condition 2 is divided into a second group.
  • the discharge capacity per mass at this time was defined as “4.35 V discharge capacity at charge” (mAh / g).
  • the press density of the positive electrode active material powder was measured under the above-mentioned conditions, and the measured press density (g / cm 3 ) was multiplied by “4.35 V discharge capacity at charge” (mAh / g) to obtain a value per volume. Of the battery was calculated (mAh / cm 3 ).
  • “4.35 V discharge capacity at the time of charging” (mAh / cm 3 ) is defined as the charge before the overcharge area is completed and the charge process until the overcharge area is completed. Is an index representing the discharge capacity when used in a lower potential range without performing the above.
  • the difference between the charged amount of electricity (mAh / g) at this time and the above-mentioned “charged amount of electricity at 4.35 V charging” (mAh / g) is defined as "the charged amount of electricity between 4.35 V and 4.6 V” (mAh / g). g).
  • the amount of charge electricity per volume “from 4.35 V to 4.6 V” The amount of charge between the batteries "(mAh / cm 3 ) was calculated.
  • “the amount of charge between 4.35 V and 4.6 V” (mAh / cm 3 ) is an index representing the amount of charge in the overcharge region.
  • the lithium transition metal composite oxides (positive electrode active materials) according to Examples 3-1 to 3-5 all have the same composition of the transition metal compound (hydroxide precursor) containing Ni, Co, and Mn. Although the / Me ratio is the same, the presence or absence or amount of lithium fluoride as a sintering aid is different. I 490 / I 600 tended to decrease as the amount of addition increased, but all exceeded 0.45, the discharge capacity per volume at 4.35 V charging exceeded 450 mAh / cm 3, and It can be seen that the amount of charged electricity per volume exceeds 110 mAh / cm 3 .
  • Examples 3-6 and 3-7 correspond to examples in which the firing temperature of the mixed powder in Example 3-2 was changed or the Li / Me ratio was changed. Both, I 490 / I 600 is greater than 0.45, discharge capacity per volume at 4.35V charging exceeds 450 mAh / cm 3, charged electricity quantity per volume in the overcharge region of 110 mAh / cm 3 You can see that it exceeds.
  • Examples 3-8 to 3-10 correspond to examples in which the type of the sintering aid was changed in Example 3-2, and in all cases, I 490 / I 600 exceeded 0.45 and charged at 4.35 V. It can be seen that the discharge capacity per volume at the time and the amount of charged electricity per volume in the overcharge region are high. Further, comparing Examples 3-1 to 3-4 and 3-6 to 3-10 with Example 3-5, Examples 3-1 to 3-4 and 3-6 in which a sintering aid was added were added.
  • the positive electrode active materials of Nos. 3 to 10 have a smaller I 490 / I 600 than that of the positive electrode active material of Example 3-5 to which no sintering aid is added, that is, 0.85 or less. It can be seen that the discharge capacity is high. Therefore, in order to increase the discharge capacity per volume at the time of charging at 4.35 V, it is preferable that I 490 / I 600 be 0.45 or more and 0.85 or less.
  • Examples 3-11 to 3-14 and Reference Example 3-2 correspond to examples in which the composition of the lithium transition metal composite oxide was changed from Example 3-2, and Examples 3-12 to 3-14 corresponded to Examples 3-12 to 3-14.
  • I 490 / I 600 is 0.45 or more, and the discharge capacity per volume at the time of charging at 4.35 V and the amount of electricity charged per volume in the overcharge region. Is high.
  • Reference Example 3-2 corresponds to an example in which the addition amount of the sintering aid in Example 3-11 was increased.
  • I 490 / I 600 was lower than 0.45, and the discharge capacity per volume at the time of charging at 4.35 V was 389 mAh / cm 3 , which was not sufficient.
  • Example 3-15 to 3-17 Reference Examples 3-3 and 3-4, and Comparative Examples 3-1 to 3-3, the composition of the lithium transition metal composite oxide was further changed from Example 3-2. It corresponds to an example. From Examples 3-15 to 3-17, if the Mn / Me ratio is 0.33 or more and 0.50 or less, the ratio exceeds 450 mAh / cm 3 under the condition that I 490 / I 600 becomes 0.45 or more. It can be seen that an active material having a discharge capacity per volume at the time of charging at 4.35 V and a charge amount per volume in an overcharge region exceeding 110 mAh / cm 3 was obtained.
  • nonaqueous electrolyte secondary battery even when overcharged, a sudden increase in battery voltage is not observed until a higher SOC is reached. Further, by including the fluorinated cyclic carbonate in the non-aqueous solvent of the non-aqueous electrolyte, it is possible to suppress an increase in AC resistance after storage. Further, when the non-aqueous electrolyte contains a compound having an oxalate group bonded to boron, the initial AC resistance can be reduced.
  • the active material for a non-aqueous electrolyte secondary battery according to the second embodiment exhibits excellent initial Coulomb efficiency and high-rate discharge performance when used in a potential range of less than 4.5 V (vs. Li / Li + ).
  • the non-aqueous electrolyte secondary battery according to the present invention is used for a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), and an electric vehicle (HEV), which require high safety, storage performance, efficiency, and high output. It is highly useful as a battery for EV).
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • HEV electric vehicle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

正極、負極及び非水電解質を備える非水電解質二次電池であって、前記正極は、活物質として、α-NaFeO型結晶構造を有し、一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるリチウム遷移金属複合酸化物を含み、CuKα線を用いたエックス線回折図において、20°以上22°以下の範囲に回折ピークが観察される、非水電解質二次電池。

Description

非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法
 本発明は、非水電解質二次電池用正極活物質、その正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及びその使用方法に関する。
 リチウム二次電池に代表される非水電解質二次電池は、近年ますます用途が拡大され、より高容量の正極材料の開発が求められている。
 従来、非水電解質二次電池用正極活物質として、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物が検討され、LiCoOを用いた非水電解質二次電池が広く実用化されている。LiCoOの放電容量は120から130mAh/g程度である。前記リチウム遷移金属複合酸化物を構成する遷移金属(Me)として、地球資源として豊富なMnを用い、前記リチウム遷移金属複合酸化物を構成する遷移金属に対するLiのモル比Li/Meがほぼ1であり、遷移金属中のMnのモル比Mn/Meが0.5以下であるいわゆる「LiMeO型」活物質を用いた非水電解質二次電池も実用化されている。例えば、LiNi1/2Mn1/2やLiNi1/3Co1/3Mn1/3の放電容量は150から180mAh/gである。
 一方、近年、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の中でも、遷移金属(Me)中のMnのモル比Mn/Meを高め、遷移金属(Me)に対するLiのモル比Li/Meが1を超えるいわゆる「リチウム過剰型」活物質が知られている。この活物質は、Li/Meが一定以上の大きさの場合、電池を組み立てて最初に行う充電過程において、4.5V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察されるという特徴があり、前記平坦な領域が観察される充電過程が終了するまで充電を行うことにより、以降の充電電位をそれほど貴としなくても、「LiMeO型」活物質に比べて高い放電容量を有することから、注目されている(特許文献1参照)。
 特許文献1には、「α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の固溶体を含むリチウム二次電池用活物質であって、前記固溶体が含有するLi,Co,Ni及びMnの組成比が、Li1+(1/3)xCo1-x-yNi(1/2)yMn(2/3)x+(1/2)y(x+y≦1、0≦y、1-x-y=z)を満たし、・・・で表され、かつ、X線回折測定による(003)面と(104)面の回折ピークの強度比が、放電末においてI(003)/I(104)>1であり、4.3V(vs.Li/Li)を超え4.8V以下(vs.Li/Li)の正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域に少なくとも至る初期充電を行う工程を経た場合に、4.3V(vs.Li/Li)以下の電位領域において放電可能な電気量が177mAh/g以上となることを特徴とするリチウム二次電池用活物質。」(請求項3)を正極に含む非水電解質二次電池が記載されている。
 そして、段落[0058]には、「本発明に係るリチウム二次電池用活物質は、x>1/3の領域にて存在する活物質であり、CuKα線を用いたエックス線回折図の2θ=20~30°付近に、Li[Li1/3Mn2/3]O型の単斜晶にみられる回折ピークが観察されるものであった。これは、LiとMn4+が規則配列する場合に観察される超格子線と推定される。」と記載され、また、段落[0062]には、「本発明に係るリチウム二次電池用活物質を用い、使用時において、充電時の正極の最大到達電位が4.3V(vs.Li/Li)以下となるような充電方法を採用しても、充分な放電容量を取り出すことのできるリチウム二次電池を製造するためには、次に述べる、本発明に係るリチウム二次電池用活物質に特徴的な挙動を考慮した充電工程を該リチウム二次電池の製造工程中に設けることが重要である。即ち、本発明に係るリチウム二次電池用活物質を正極に用いて定電流充電を続けると、正極電位4.3V~4.8Vの範囲に、電位変化が比較的平坦な領域が比較的長い期間に亘って観察される。・・・ここで採用した充電条件は、電流0.1ItA、電圧(正極電位)4.5V(vs.Li/Li)の定電流定電圧充電であるが、充電電圧をさらに高く設定しても、この比較的長い期間に亘る電位平坦領域は、xの値が1/3以下の材料を用いた場合にはほとんど観察されない。逆に、xの値が2/3を超える材料では、電位変化が比較的平坦な領域が観察される場合であっても短いものとなる。また、従来のLi[Co1-2xNiMn]O(0≦x≦1/2)系材料でもこの挙動は観察されない。この挙動は、本発明に係るリチウム二次電池用活物質に特徴的なものである。」と記載されている。
 そして、前記リチウム二次電池の実施例として、前記正極と組み合わせる負極に「リチウム金属」を用い、電解質に「LiPFをEC/EMC/DMCが体積比6:7:7である混合溶媒に濃度が1mol/lとなるよう溶解させたもの」を用い、「20℃の下、5サイクルの初期充放電工程に供した。電圧制御は全て正極電位に対して行った。充電は、電流0.1ItA、電圧4.5Vの定電流定電圧充電とし、充電終止条件は電流値が1/6に減衰した時点とした。放電は、電流0.1ItA、終止電圧2.0Vの定電流放電とした。全てのサイクルにおいて充電後及び放電後に30分の休止時間を設定した。」(段落[0112]から[0114])と記載されている。
 また、特許文献2には、「正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒を含む非水電解液とを備える非水電解液二次電池において、前記正極活物質が、一般式(1)Li1+xMn(ここで、x、y及びzは、0<x<0.4、0<y<1、0<z<1及びx+y+z=1を満たし、Mは1種類以上の金属元素で少なくともNi又はCoを含む)で表されるリチウム含有遷移金属酸化物を含み、前記非水溶媒が、2個以上のフッ素原子がカーボネート環に直接結合したフッ素化環状カーボネートを含むことを特徴とする非水電解液二次電池。」(請求項1)が記載されている。
 そして、前記二次電池の実施例1として、正極活物質が「Li1.2Mn0.54Ni0.13Co0.13」であり、負極がシリコンと炭素を含み、非水電解質が「4,5-ジフルオロエチレンカーボネートとエチルメチルカーボネートとを2:8の体積比で混合した非水溶媒に、LiPFを1モル/リットルとなるように溶解させ」たものであり、初期充放電を「0.5Itの定電流で電池電圧が4.45Vとなるまで充電し、さらに4.45Vの定電圧で電流値が0.05Itとなるまで定電圧充電させた。尚、このときの正極の電位は金属リチウム基準で4.60Vであった。その後、0.5Itの定電流で電池電圧1.50Vになるまで放電させ」て行ったことが記載されている(段落[0041]から[0049])。
 また、正極にリチウム過剰型活物質を用い、非水電解質にホウ素に結合したオキサレート基を有する化合物を添加した非水電解質二次電池も知られている。
 特許文献3には、「4.4V(vsLi/Li+)以上の電位で作動する正極活物質を含有する正極と、負極と、非水溶媒を含有する電解液と、を有するリチウムイオン二次電池であって、前記電解液は、下記式(1)及び/又は式(2)で表されるホウ素原子を有する第一のリチウム塩を0.01質量%以上10質量%以下で含有し、且つ、ホウ素原子を有さない第二のリチウム塩を1質量%以上40質量%以下で含有する、リチウムイオン二次電池。・・・」(請求項1)、「前記第一のリチウム塩は、LiBF4、LiB(C242、及びLiBF2(C24)からなる群から選ばれる1種以上である、請求項1~3のいずれか1項記載のリチウムイオン二次電池。」(請求項4)が記載されている。
 そして、段落[0076]から[0083]には、実施例1として、正極活物質が「0.5Li2MnO3-0.5LiNi0.37Mn0.37Co0.262」であり、負極活物質がグラファイトであり、電解液が「エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF6塩を1mol/L含有させた溶液(・・・)を9.8gに、・・・リチウムビスオキサボレート(・・・以下、「LiBOB」と表記する。)を0.2g混合し」た「電解液A」であるリチウムイオン二次電池が記載され、段落[0085]から[0087]には、実施例3として、実施例1の電解液AのLiBOBをLiBF(C)に変更した電解液Cを用いた以外は実施例1と同様のリチウムイオン二次電池を作製したことが記載され、各電池に対して、4.7Vに到達する充電及び2.0Vまでの放電を行った後、4.5Vに到達する充電及び2.0Vまでの放電を1サイクルの充放電として50サイクル充放電試験を行って電池評価をしたことが記載されている。
 特許文献4には、「正極、負極、非水電解液、セパレータを備えるリチウムイオン電池であって、前記正極に含有される正極活物質は、金属Liを対極として充放電させた場合の初回充放電効率が80%~90%であり、前記負極に含有される負極活物質は、シリコン化合物と炭素材料との混合材料からなり、該負極は初期充放電における不可逆容量分のリチウムがドープされていない状態であり、前記正極と前記負極の初期充電電気容量において、前記正極に対する前記負極の容量比が0.95以上1以下であることを特徴とするリチウムイオン電池。」(請求項1)、「前記正極活物質が、下記化学式1で表されることを特徴とする請求項1に記載のリチウムイオン電池。
[化学式1] aLi[Li1/3Mn2/3]O2・(1-a)Li[NixCoyMnz]O2 (0≦a≦0.3、0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)」(請求項6)、「前記非水電解液は、溶媒と支持塩とを備えており、前記溶媒は、少なくともγ-ブチロラクトン(GBL)を含有しており、前記支持塩は、少なくともリチウムビス(オキサレート)ボレート(LiBOB)を含有していることを特徴とする請求項1に記載のリチウムイオン電池。」(請求項8)が記載されている。
 そして、段落[0047]から[0054]には、実施例1として、正極活物質が「(0.2LiMnO-0.8LiNi0.33Co0.33Mn0.33」であり、負極活物質が「SiとSiOとHC」の複合化したものであり、非水電解質が「1M LiPF+0.05MLiBOB EC(エチレンカーボネート):GBL(γ-ブチロラクトン)=1:1(vol%)」である充放電試験電池を作製し、「初回充放電のカットオフ電圧は2.2-4.6V、2サイクル目以降の充放電のカットオフ電圧は2.2-4.3V、60℃で充放電試験を行ったこと」が記載されている。
 特許文献5には、「正極活物質を含む正極と、負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解質とを備える非水電解質二次電池において、前記正極活物質が、層状構造を有し、一般式Li1+x(NiMnCo)O2+α(x+a+b+c=1,0.7≦a+b,0<x≦0.1,0≦c/(a+b)<0.35,0.7≦a/b≦2.0,-0.1≦α≦0.1)で表わされるリチウム含有遷移金属複合酸化物であり、かつ前記非水電解質に、オキサレート錯体をアニオンとするリチウム塩が含まれていることを特徴とする非水電解質二次電池。」(請求項1)が記載されている。
 そして、段落[0039]から[0058]、及び表1には、実施例1~8として、正極活物質が、Li1.06Ni0.47Mn0.47、Li1.07Ni0.56Mn0.37、又はLi1.07Ni0.42Co0.09Mn0.42であり、負極活物質が、非晶質炭素で表面を被覆した黒鉛であり、電解液が、ECとMECとDMCを混合した溶媒に、溶質としてのLiPFを1Mになるように溶解し、これに重量比で1%の量のVCを加え、さらにリチウム-ビスオキサレートボレート(LiBOB)を0.1Mになるよう溶解した電解液である、非水電解質二次電池を作製し、「作製した非水電解質二次電池を、1000mAで4.2Vまで定電流充電した後、4.2Vで50mAまで定電圧充電を行い、330mAで2.4Vまで放電し、このときの容量を電池放電容量とした」(段落[0045])こと、その後、SOC50%の充電状態でIV特性を測定したことが記載されている。
 特許文献6には、実施例22として、正極活物質が「マンガン酸リチウム(Li1.1Mn1.9Al0.1,LMO)80質量%と、Li1.15Ni0.45Mn0.45Co0.10(Co-less LNMC)20質量%」(段落[0401])であり、負極活物質が「人造黒鉛粉末」(段落[0343])であり、非水電解質が「エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを混合(体積比30:30:40)し、次いで十分に乾燥したLiFSOを0.1mol/Lと、リチウムビスオキサラートボレート(LiB(C、LiBOB)を0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解」(段落[0408])したものである、リチウム二次電池が記載されている。
 そして、実施例22に係るリチウム二次電池の初期放電容量の評価について、「リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において、0.1Cに相当する定電流で4.2Vまで充電した後、0.1Cの定電流で3.0Vまで放電した。2サイクル目と3サイクル目は0.33Cで4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.33Cの定電流で3.0Vまで放電し、3サイクル目の放電過程から初期放電容量を求めた。」(段落[0404])と記載され、また、同電池の高温保存特性の評価について、75℃保存後残存容量、75℃保存後回復容量、及び保存容量維持率を、4.2Vまでの定電流充電及び4.2Vの定電圧充電で評価したことが記載されている。
 一方、特許文献1から4に記載されているような「リチウム過剰型」活物質を用いた電池を、4.5V(vs.Li/Li+)以上の初期充電過程を経て使用する場合、「LiMeO型」活物質を用いた電池と比較して、初回クーロン効率が低く、高率放電性能が劣ることが知られている。
 そこで、「リチウム過剰型」活物質を用いた電池の初回クーロン効率、高率放電性能を向上させる技術として、正極活物質の酸処理が知られている。(特許文献7から10)
 特許文献7には、「一般式:Li1+uNiCoMn2+α(0.1≦u<0.3、0.03≦x≦0.25、0.03≦y≦0.25、0.4≦z<0.6、x+y+z+u+t=1、0≦α<0.3、0≦t<0.1、Aは2価から6価までの価数のいずれかをとる金属元素のうち少なくとも1種)で表され、一次粒子が凝集した二次粒子で構成されたリチウム過剰金属複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法であって、少なくともニッケル、コバルト、マンガンを含む水酸化物、オキシ水酸化物、酸化物、及び炭酸塩の少なくとも1種からなる一次粒子が凝集した二次粒子とリチウム化合物を混合してリチウム混合物を得る混合工程と、前記リチウム混合物を、酸化性雰囲気中にて800~1050℃の温度で焼成して焼成物を得る焼成工程と、酸洗前後での焼成物のリチウム含有量の差を酸洗前の焼成物のリチウム含有量で除したリチウム除去率が10~30%、且つ酸洗終了時の酸洗スラリーの25℃基準におけるpHが1~4となるように制御して酸洗を前記焼成物に施した後、水洗する酸洗工程と、前記酸洗工程を経た焼成物を、酸化性雰囲気中にて200~600℃の温度で熱処理する熱処理工程を含むことを特徴とする非水系電解質二次電池用正極活物質の製造方法。」(請求項5)が記載されている。
 そして、「この酸洗に用いる酸は、解離定数の高い強酸性を示す酸が好ましく、塩酸、硝酸、硫酸などの無機酸のいずれかとすることがより好ましく、塩酸、硫酸のいずれかとすることがさらに好ましい。」(段落[0073])、「そこで、強酸を用いない場合、結晶構造からリチウムを引き抜くことが難しく、また一次粒子の表面に微細な凹凸を形成するだけの溶解を引き起こせないため、界面抵抗を下げることが出来ないことがある。」(段落[0074])と記載され、上記正極活物質の評価は、負極にLi金属を用いたコイン型電池を作製し、初期充放電を0.05C、4.8V充電及び2.5V放電で行い、充電容量に対する放電容量の比を初期充放電効率としたこと、電圧範囲2.0から4.55Vにおいて、0.1Cで充放電した際の放電容量を分母に、充電0.1C、放電2Cで充放電を行ったときの放電容量を分子としたときの割合(%)を負荷効率としたことが記載されている(段落[0096]から[0101]、[0103])。
 特許文献8には、「α-NaFeO構造を有するリチウム遷移金属複合酸化物を含むリチウム二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、前記遷移金属(Me)がCo、Ni及びMnを含み、前記遷移金属中のMnのモル比Mn/MeがMn/Me≧0.5であり、CuKα線源を用いたエックス線回折パターンにおける2θ=44±1°の回折ピークの半値幅が0.265°以上で、且つ、P元素を含有することを特徴とするリチウム二次電池用正極活物質。」(請求項1)、「前記リチウム遷移金属複合酸化物は、リン酸処理後の熱処理によりPを含有させたものであることを特徴とする請求項1又は2に記載のリチウム二次電池用正極活物質。」(請求項3)が記載されている。
 そして、上記のリン酸処理後に熱処理をされた各実施例に係る活物質を用いたリチウム二次電池を作製し、電流0.1C、電圧4.6Vの定電流定電圧充電、電流0.05C、終止電圧2.0Vの定電流放電を2サイクル行った後、電流0.2C、電圧4.3Vの定電流定電圧充電と、電流0.5C、終止電圧2.0Vの定電流放電の充放電試験を30サイクル行い、30サイクル目の放電容量を30サイクル目0.5C放電容量として記録したことが記載されている(段落[0075]から[0085]、[0123]から[0130])。
 特許文献9には、「リチウム遷移金属複合酸化物を含有するリチウム二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α-NaFeO構造を有し、遷移金属(Me)がCo、Ni及びMnを含み、前記遷移金属に対するリチウム(Li)のモル比Li/Meが1.2より大きく且つ1.6より小さく、窒素ガス吸着法を用いた吸着等温線からBJH法で求めた微分細孔容積の最大値を示す細孔径が60nmまでの範囲内の細孔領域にて0.055cc/g以上0.08cc/g以下の細孔容積を有し、1000℃において空間群R3-mに帰属される単一相を示す、リチウム二次電池用正極活物質。」(請求項1)、「遷移金属元素としてCo,Ni及びMnを含む前駆体を作製する前駆体作製工程、前記前駆体とLi塩を混合して800℃以上の温度で熱処理して酸化物を作製する焼成工程、及び、前記酸化物を酸処理する酸処理工程を経て、前記リチウム遷移金属複合酸化物を作製する、請求項1~6のいずれかに記載のリチウム二次電池用正極活物質の製造方法。」(請求項9)、「前記酸処理工程は、硫酸を用いる、請求項9~12のいずれかに記載のリチウム二次電池用正極活物質の製造方法。」(請求項13)が記載されている。
 また、上記の実施例として、リチウム遷移金属複合酸化物を硫酸処理した後、乾燥して得た活物質を正極に用い、負極に金属リチウムを用いたリチウム二次電池を作製し、初期充放電工程として、電流0.1C、電圧4.6Vの定電流定電圧充電、及び電流0.1C、終止電圧2.0Vの定電流放電を2サイクル行い、次に、電流0.1C、電圧4.3Vの定電流定電圧充電、及び電流1C、終止電圧2.0Vの定電流放電を行い、この放電電気量を1C容量として記録したことが記載されている(段落[0076]から[0087]、[0108]から[0115])。
 特許文献10には、「α-NaFeO構造を有するリチウム遷移金属複合酸化物を含む正極活物質であって、前記リチウム遷移金属複合酸化物は、遷移金属(Me)がCo、Ni及びMnを含み、Liと遷移金属(Me)のモル比(Li/Me)が1<Li/Meであり、Mnと遷移金属(Me)のモル比(Mn/Me)が0.5<Mn/Meであり、Ceを含有することを特徴とするリチウム二次電池用正極活物質。」(請求項1)が記載され、実施例1から5として、「出発物質のリチウム遷移金属複合酸化物Li1.18Co0.10Ni0.17Mn0.55」を、pH1.6の硫酸セリウム溶液に投入し、400℃で熱処理することにより、Ceを含むリチウム遷移金属複合酸化物を作製したことが記載されている(段落[0079]から[0082])。そして、これらのリチウム遷移金属複合酸化物を正極活物質とし、負極を金属リチウムとした電池を作製し、0.1C、4.6V-2.0Vの初期充放電工程に供し、放電容量を充電電気量で割った値(%)を初期効率とし、0.2C、4.45Vの定電流定電圧充電、及び0.5C、2.0Vの定電流放電を30サイクル行い、1サイクル目の放電容量に対する30サイクル目の放電容量の比(%)を放電容量維持率として電池の評価を行った結果が表1に示されている(段落[0090]から[0097])。
 特許文献11には、「過リチウム化された金属酸化物を酸処理する段階と、酸処理された前記過リチウム化された金属酸化物を金属陽イオンでドーピング処理する段階と、を含み、前記過リチウム化された金属酸化物は、下記の化学式4で表示される化合物を含む複合正極活物質の製造方法:[化4] xLiMO-(1-x)LiM’O 前記式で、Mは、平均酸化数+4を持つ、4周期及び5周期遷移金属から選択される少なくとも一つの金属であり、M’は、平均酸化数+3を持つ、4周期及び5周期遷移金属から選択される少なくとも一つの金属であり、0<x<1である。」(請求項13)が記載されている。
 そして、その実施例として、0.55LiMnO-0.45LiNi0.5Co0.2Mn0.3組成の物質をHNO水溶液に添加した後、80℃で乾燥する酸処理を行い、酸処理された前記物質をAl等の硝酸塩水溶液500mLに投入し、300℃で5時間熱処理を行い、金属陽イオンでドーピングされた活物質を得たこと(段落[0137]から[0147])、LiNi0.5Co0.2Mn0.3活物質の場合、該酸処理条件で充放電曲線の変化がなく、酸溶液との反応によってLiイオンが脱離されていないが、LiMnOは、酸処理時に酸溶液のHとLiイオンの置換によって放電曲線が大きく変化したこと(段落[0159])、負極をリチウムメタルとして、初期充放電を0.1C、4.7-2.5Vの定電流充放電で行い初期効率を評価し、0.5C、4.6V定電圧定電流充電、放電電流をそれぞれ0.2、0.33、1、2、及び3C、2.5Vの定電流放電を行ってレート特性を評価したこと(段落[0165]から[0166])が記載されている。
 また、「リチウム過剰型」活物質の酸素サイトをFで置換することにより、4.5V(vs.Li/Li+)を超える初期充電過程を行う場合の初回クーロン効率、レート特性、サイクル寿命特性等の向上を図ることが行われている(特許文献12から15参照)。
 特許文献12には、「 一般式 Li(LiMnNiCoFe)O2-xで表される非水電解質二次電池用正極活物質であって、前記一般式中のa、b、c、d、e及びxは、0<a≦0.33、0<b≦0.67、0≦c<1、0≦d<1、0≦e<1、0.1<x≦1-bの値であり、下式(1)を満たす非水電解質二次電池用正極活物質。
Figure JPOXMLDOC01-appb-M000001
                                                        」(請求項1)が記載されている。
 そして、Mn及びNiを含む活物質の実施例として、「Li1.2Ni0.2Mn0.61.90.1」、「Li1.2Ni0.2Mn0.61.80.2」、「Li1.2Ni0.2Mn0.61.70.3」、「Li1.2Ni0.2Mn0.61.60.4」、「Li1.2Ni0.4Mn0.41.80.2」、比較例として、「Li1.2Ni0.2Mn0.6」、「Li1.2Ni0.2Mn0.61.950.05」、「Li1.2Ni0.25Mn0.551.90.1」が記載され、4.6Vまでの充電による初回充電容量と、充電状態から2.0Vまでの放電による初回放電容量から、初回クーロン効率を求めたことが記載されている(段落[0072]から[0078])。
 特許文献13には、「層状構造のLiMnOを含むリチウム過量のリチウム金属複合化合物からなり、フルオロ化合物がドーピングされ、FWHM(半値幅)値が0.164°~0.185°の範囲内にある正極活物質。」(請求項1)が記載されている。
 そして、実施例として、Ni:Co:Mnのモル比が2:2:6の遷移金属水酸化物前駆体0.82モルと、LiCOとLiFを合わせて1.18モル(LiFは0.02から0.06モル)の混合物を焼成して、正極活物質を得たこと、電池特性の評価は、2.5Vから4.6Vの充放電を行って、ハイレート特性、寿命特性を評価したことが記載されている(段落[0054]から[0064]、[0073])。
 特許文献14には、「Li元素と、Ni、Co、およびMnから選ばれる少なくとも一種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物とフッ素ガスとを接触させることを特徴とするリチウムイオン二次電池用正極活物質の製造方法。」(請求項1)が記載されている。
 そして、実施例として、組成「Li(Li0.2Ni0.137Co0.125Mn0.538)O」のリチウム含有複合酸化物をフッ素処理して正極活物質を得たこと(段落[0082]から[0092])、電池評価は、4.8Vから2.5Vの充放電により初期容量を評価し、及び4.5から2.5Vの充放電サイクルによりサイクル特性を評価したことが記載されている(段落[0101]、[0102])。
 特許文献15には、「組成式Li1+xNiαMnβCoγδ2-zによって近似的に表される結晶材料を含む電気活性組成物であって、ここで、xが約0.02~約0.19であり、αが約0.1~約0.4であり、βが約0.35~約0.869であり、γが約0.01~約0.2であり、δが0.0~約0.1であり、zが約0.01~約0.2であり、Aが、Mg、Zn、Al、Ga、B、Zr、Ti、Ca、Ce、Y、Nb、またはそれらの組合せである、電気活性組成物。」(請求項1)が記載されている。
 そして、実施例1として、Ni、Co、およびMnを含む金属炭酸塩粉末と、適量のLiCOおよびLiF粉末とを混合し、2ステップで焼成して、組成Li1.2Ni0.175Co0.10Mn0.5252-F(F=0.05、0.01、0.02、0.05、0.1、または0.2)のリチウム複合酸化物を得たこと(段落[0064]から[0069])、実施例2として、LiFを用いずに酸化物を生成し、この酸化物をNHHFと混合し、加熱して、Li1.2Ni0.175Co0.10Mn0.5252-F、Li1.167Ni0.219Co0.125Mn0.4902-F、Li1.130Ni0.266Co0.152Mn0.4512-F、またはLi1.090Ni0.318Co0.182Mn0.4092-Fのリチウム複合酸化物を得たこと(段落[0070]、[0071])、これらのリチウム複合酸化物を正極活物質としてコインセルを製造し、2.0~4.6Vの間で充放電サイクルを行って、比放電容量のデータを得たことが記載されている(段落[0072]から[0078])。
 また、正極活物質の結晶構造の特定を、ラマンスペクトルを測定することにより行う先行技術も存在する。
 特許文献16には、「アノード集電体及び前記アノード集電体上に配置されるアノード活物質を含むアノードと、カソード集電体及び前記カソード集電体上に配置され、xLi2MO3・(1-x)LiCoyM’(1-y)2で表される組成物を有するカソード活物質を含むカソードと、を備えることを特徴とする、バッテリセル。」(請求項1)の実施例1として、カソード活物質が「0.02LiMnO・0.98LiNi0.021Co0.979で表される組成物」であり、そのラマンスペクトルが図5に記載されている(段落[0026]から[0029])。その他の実施例として、「0.04LiMnO・0.96LiCoO」、「0.01LiMnO・0.99LiNi0.01Mn0.01Co0.98」で表される組成物が記載されている(段落[0030]、[0036])。
 特許文献17には、「下記化学式1のリチウム系正極活物質であり、ラマンスペクトル分析においてスピネル構造のA1g振動モードのピーク強度対六方晶系構造のA1g振動モードのピーク強度の比が1:0.1~1:0.4であり、六方晶系構造のA1g振動モードのピーク強度対E振動モードのピーク強度の比が1:0.9~1:3.5であり、スピネル構造のA1g振動モードのピーク強度対F2g振動モードのピーク強度の比が1:0.2~1:0.4である正極活物質:
[化学式1]
 LiCo1-y
 前記式で、0.95≦x≦1.0、0≦y
≦1であり、MはNi、Fe、Pb、Mg、Al、K、Na、Ca、Si、Ti、Sn、V、Ge、Ga、B、As、Zr、Mn及びCrからなる群から選択される少なくとも1種以上の元素であり、AはO、F、S及びPからなる群から選択される元素である。」(請求項1)が記載され、リチウム系正極活物質は、電池製造前には六方晶系構造のみ有するため、ラマン分光分析をおこなうと2種の振動モードによるピーク(593cm-1のA1gモードと484cm-1のEモード)のみを示すスペクトルが得られ、電池を作製した後には、リチウム系正極活物質は六方晶系の他にスピネル構造を有するようになることが記載されている(段落[0017]、[0018]、図1、2)。
 非特許文献1には、Li比率を高めたNCMs(LiNi1/3Co1/3Mn1/3、Li1.1Ni1/3Co1/3Mn1/3及び高エネルギーxLiMnO・(1-x)LiMO(M=Ni、Co、Mn;x=0.5))は、ラマンスペクトルにおいて、MeO振動モードに対応する600cm-1付近のピークA1gと、O-Me-O振動モードに対応する500cm-1付近のピークEピークを有すること、LiMnOは、612cm-1(Ag1)、493cm-1等のピークを有すること、及びxLiMnO・(1-x)LiMO(x=0.5)は、LiNi1/3Co1/3Mn1/3が有さずにLiMnOが有するピークを有し、特に496cm-1のピークと569cm-1のショルダーが顕著であることが記載されている。また、NCMsは、充放電前後において、典型的なEとAg1に対応するピークを有する点で、充放電後にも、充放電前の層状LiMO類似構造を維持することが記載されている(206頁右欄2から5行、208頁左欄から209頁右欄「3.2. Ex situ Raman investigation」全文)。
特許第4877660号公報 特開2012-104335号公報 特開2013-191390号公報 特開2016-100054号公報 特開2010-050079号公報 特開2011-187440号公報 特開2015-122235号公報 特開2016-15298号公報 国際公開2015/083330 特開2016-126935号公報 特開2014-170739号公報 特開2012-89470号公報 特開2014-107269号公報 特開2014-75177号公報 特表2012-504316号公報 特表2016-517615号公報 特表2005-44785号公報
P.Lanz,et al.Electrochimica Acta,130,206-212(2014)
 非水電解質二次電池には、誤って満充電状態(SOC100%)を超えてさらに充電(以下、「過充電」という。)がされた場合においても、安全性が確保されることが規格(例えば、自動車用電池に関する「GB/T(中国勧奨国家標準)」)によって定められている。安全性が向上したことを評価する方法としては、充電制御回路が壊れた場合を想定し、満充電状態を超えてさらに電流を強制的に印加したときに、電池電圧の急上昇が観察されたSOCを記録する方法がある。より高いSOCに至るまで、電池電圧の急上昇が観察されない場合、安全性が向上したと評価される。
 ここで、SOCとはState Of Chargeの略で、電池の充電状態をそのときの残存容量と満充電時の容量との比率で表したものであり、満充電状態を「SOC100%」と表記する。
 特許文献1から4には、リチウム過剰型活物質を正極に用い、正極電位が4.5V(vs.Li/Li)以上に至るまでの初期充放電工程(以下、「過充電化成」ともいう。)を経て製造されることを前提とする非水電解質二次電池が記載されており、非水電解質二次電池が過充電された場合に、電池電圧の急上昇をより高いSOCに至るまで遅延させることについては示されていない。
 一方、特許文献5、6には、正極にLi/Meが1以上のリチウム過剰型活物質を用い、初期充放電工程を電圧4.2V(正極電位は約4.3V(vs.Li/Li)であると考えられる)で行う非水電解質二次電池について記載されている。しかし、特許文献5、6に記載の実施例に係るリチウム過剰型活物質は、Li/Meが1.15以下と小さい。なお、特許文献1には、x>1/3(Li/Me>1.25)の領域にて存在するリチウム過剰型活物質の場合に、「CuKα線を用いたエックス線回折図の2θ=20~30°付近にLi[Li1/3Mn2/3]O型の単斜晶にみられる回折ピークが観察される」と記載されていることから、Li/Meがこれよりもはるかに小さい特許文献5、6に記載されたリチウム過剰型活物質において、初期充放電工程における正極の最大到達電位が4.5V(vs.Li/Li)未満であったとしても、2θ=20°以上22°以下の範囲に回折ピークは観察されない蓋然性が高い。そして、特許文献5、6にも、非水電解質二次電池が過充電された場合に、電池電圧の急上昇をより高いSOCに至るまで遅延させることについては示されていない。
 また、特許文献7から11に記載されるように、「リチウム過剰型」活物質を正極に用い、正極電位が4.5V(Li/Li+)以上の初期充放電(上記の「過充電化成」)を経て使用されることを前提とする非水電解質二次電池において、「リチウム過剰型」活物質を塩酸、リン酸、硫酸、又は硝酸等で酸処理すると、初回クーロン効率や高率放電性能が向上することが知られているが、強酸で処理した場合の効果が示されているだけであり、そして、過充電化成をしない場合の効果については不明である。
 さらに、特許文献12から15に記載されたリチウム過剰型活物質を正極に含む非水電解質二次電池も、過充電化成を行うものであり、非水電解質二次電池が過充電された場合に、電池電圧の急上昇をより高いSOCに至るまで遅延させることについては示されていない。
 特許文献16に記載された活物質はMn含有量が少ないから本来のリチウム過剰型活物質ではなく、特許文献17に記載された活物質はリチウム過剰型活物質ではないから、リチウム過剰型活物質を正極に含む非水電解質二次電池の課題については無関係である。
 本発明の課題は、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池を提供することである。
 本発明の一側面は、正極、負極及び非水電解質を備える非水電解質二次電池であって、前記正極は、活物質として、α-NaFeO型結晶構造を有し、一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるリチウム遷移金属複合酸化物を含み、前記活物質は、CuKα線を用いたエックス線回折図において、20°以上22°以下の範囲に回折ピークが観察される、非水電解質二次電池である。
 本発明の他の一側面は、正極、負極及び非水電解質を備える非水電解質二次電池であって、前記正極は、活物質として、α-NaFeO型結晶構造を有し、一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるリチウム遷移金属複合酸化物を含み、前記正極は、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池である。
 本発明のさらに他の一側面は、前記本発明の一側面又は他の一側面に係る非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、非水電解質二次電池の製造方法である。
 換言すれば、前記本発明の一側面又は他の一側面において、「非水電解質二次電池」は、上記の初期充放電工程を行い、工場内で出荷可能な状態にまで完成された電池をいう。工場内では、必要に応じ、複数回の充放電が行われてもよい。
 本発明のさらに他の一側面は、前記本発明の一側面又は他の一側面に係る非水電解質二次電池の使用方法であって、満充電状態(SOC100%)における正極の最大到達電位が4.5V(vs.Li/Li)未満となる電池電圧で使用される、非水電解質二次電池の使用方法である。
 本発明の一側面によれば、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池、その製造方法、及びその使用方法を提供することができる。
非水電解質二次電池に用いたリチウム過剰型正極活物質のエックス線回折測定において「20°以上22°以下の範囲に回折ピークが観察される」ことを説明する図 非水電解質二次電池に用いたリチウム過剰型正極活物質のエックス線回折測定において「20°以上22°以下の範囲に回折ピークが観察され」ないことを説明する図 本発明の実施形態に係る非水電解質二次電池及び従来例に係る非水電解質二次電池が備える正極活物質のエックス線回折図 LiMeO型及びリチウム過剰型活物質を含む正極について、正極の充電上限電位を4.6V(vs.Li/Li)として初回充電した場合に観察される充電電気量に対する正極電位変化を示す図 本発明の実施形態に係る非水電解質二次電池における「充電電気量に対して電位変化が比較的平坦な領域」を説明する図 リチウム過剰型正極活物質の充電電気量に対する電位変化を示す図 α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物のA1g及びE振動モードを示す図 LiNi1/3Co1/3Mn1/3、Li1.1Ni1/3Co1/3Mn1/32.1、xLiMnO・(1-x)LiMO(M=Ni、Co、Mn;x=0.5)、及びLiMnOの充放電前のラマンスペクトル 本発明の実施例に係る正極活物質の充放電前後におけるラマンスペクトル 本発明の一実施形態に係る非水電解質二次電池を示す外観斜視図 体積当たりの放電容量及び充電電気量を算出するためのプレス密度の測定に用いた装置の概念図 本発明の一実施形態に係る非水電解質二次電池を複数個備えた蓄電装置を示す概略図 本発明の実施例及び参考例に係るラマンスペクトル 本発明の実施例、参考例及び比較例に係るリチウム過剰型活物質のラマンピーク強度比I490/I600と体積当たりの放電容量の関係を示すグラフ
 本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施形態又は実施例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。
 本発明の第一の一実施形態は、正極、負極及び非水電解質を備える非水電解質二次電池であって、前記正極は、活物質として、α-NaFeO型結晶構造を有し、一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるリチウム遷移金属複合酸化物を含み、前記活物質は、CuKα線を用いたエックス線回折図において、20°以上22°以下の範囲に回折ピークが観察される、非水電解質二次電池である。
 本発明の第一の他の一実施形態は、正極、負極及び非水電解質を備える非水電解質二次電池であって、前記正極は、活物質として、α-NaFeO型結晶構造を有し、一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるリチウム遷移金属複合酸化物を含み、前記正極は、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域(後述する第三の実施形態においては、「過充電領域」と表記する。)が観察される正極を備えた、非水電解質二次電池である。
 前記非水電解質二次電池は、前記正極の活物質として、遷移金属(Me)に対するMnのモル比が、0.4≦Mn/Meであるリチウム遷移金属複合酸化物を用いてもよい。この一態様によれば、活物質の層状構造を安定化させることができる。
 前記非水電解質二次電池は、前記正極の活物質として、遷移金属(Me)に対するLiのモル比が、1.15<Li/Meであるリチウム遷移金属複合酸化物を用いてもよい。
 この一態様によれば、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池を提供することができる。
 前記非水電解質二次電池は、前記正極の活物質として、遷移金属(Me)に対するLiのモル比が、Li/Me≦1.35であるリチウム遷移金属複合酸化物を用いてもよい。この一態様によれば、放電容量を優れたものとすることができる。
 前記非水電解質二次電池において、前記正極が活物質として含む前記リチウム遷移金属複合酸化物の含有量は、前記正極の全活物質の80質量%より多いことが好ましい。この一態様によれば、さらに高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池を提供することができる。前記リチウム遷移金属複合酸化物の含有量は、前記正極の全活物質の90質量%以上であることがより好ましく、実質的には100質量%であってもよい。但し、本発明の効果を損なわない限り、他の少量の活物質の存在を排除するものではない。
 前記非水電解質二次電池は、満充電状態(SOC100%)における正極の最大到達電位が4.5V(vs.Li/Li)未満となる電池電圧で使用することが好ましい。
 以上の実施形態によれば、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池を提供することができる。
 前記非水電解質二次電池は、前記非水電解質として、非水溶媒にフッ素化環状カーボネートを含む非水電解質を用いてもよい。このような構成によれば、上記した、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池を提供することができるという効果に加え、保存後のAC抵抗の増加を抑制できるという効果が奏される。
 前記非水電解質は、ホウ素に結合したオキサレート基を有する化合物を含んでいてもよい。
 この一態様によれば、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池を提供することができるという効果に加え、初期のAC抵抗を低減することができるという効果が奏される。
 本発明の第二の一実施形態は、リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有し、一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素、Meに対するMnのモル比Mn/MeがMn/Me≧0.45)で表され、前記正極活物質は、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である、非水電解質二次電池用正極活物質である。
 本発明の第二の他の一実施形態は、前記第二の一実施形態に係る非水電解質二次電池用正極活物質の製造方法であって、α-NaFeO型結晶構造を有し、一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素、Meに対するMnのモル比Mn/MeがMn/Me≧0.45)で表されるリチウム遷移金属複合酸化物を、pKaが3.1以上の酸で処理して、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である正極活物質を製造する、非水電解質二次電池用正極活物質の製造方法である。
 本発明の第三の一実施形態は、リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有し、一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素、Meに対するMnのモル比Mn/Meが0.3≦Mn/Me<0.55)で表され、ラマンスペクトルにおける550cm-1以上650cm-1以下の範囲での最大値I600に対する、450cm-1以上520cm-1以下の範囲での最大値I490の比(I490/I600)が0.45以上である、非水電解質二次電池用正極活物質である。
 上記本発明の第三の一実施形態によれば、過充電領域における体積当たりの充電電気量が大きく、かつ、体積当たりの放電容量が大きい正極活物質が提供される。
 本発明の第三の他の一実施形態は、前記第三の一実施形態に係る非水電解質二次電池用正極活物質の製造方法であって、Ni及びMn、又はNi、Co及びMnを含み、Meに対するMnのモル比Mn/Meが0.3≦Mn/Me<0.55である遷移金属化合物に、Li化合物を混合し、焼成することにより、モル比Li/Meが1<Li/Meであるリチウム遷移金属複合酸化物を製造する際に、焼結助剤を添加する、非水電解質二次電池用正極活物質の製造方法である。
 上記本発明の第三の他の一実施形態によれば、特に、体積当たりの放電容量が大きい正極活物質の製造方法が提供される。
 本発明の第二及び第三のさらに他の一実施形態は、前記第二及び第三の一実施形態に係る非水電解質二次電池用正極活物質を含有する非水電解質二次電池用正極である。
 本発明の第二及び第三のさらに他の一実施形態は、前記第二及び第三のさらに他の一実施形態に係る非水電解質二次電池用正極を備え、前記正極が含有する正極活物質は、CuKα線を用いたエックス線回折図において、20°以上22°以下の範囲に回折ピークが観察される、非水電解質二次電池である。
 本発明の第二及び第三のさらに他の一実施形態は、前記第二及び第三のさらに他の一実施形態に係る非水電解質二次電池用正極を備え、前記正極は正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池である。
 この第二及び第三のさらに他の一実施形態によれば、過充電領域における体積当たりの充電電気量が大きいため、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池が提供される。
 上記の非水電解質二次電池は、4.5V(vs.Li/Li)未満の電位で使用することが好ましい。
 この第二及び第三のさらに他の一実施形態において、4.5V(vs.Li/Li)未満の電位で使用した場合、体積当たりの放電容量が大きいことと、より高いSOCに至るまで電池電圧の急上昇が観察されないこととを両立することができる。
 本発明の第一、第二及び第三のさらに他の一実施形態は、前記の非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、前記の非水電解質二次電池の製造方法である。
 なお、本明細書中の「初期」充放電とは、非水電解質を注液後に行われる1回又は複数回の充電及び放電をさし、特に「初回」充放電とは、非水電解質を注液後に行われる、1回目の充電及び放電をさす。
 この一実施形態によれば、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察されることにより、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池が製造される。
 本発明の第一、第二及び第三のさらに他の一実施形態は、前記非水電解質二次電池の使用方法であって、満充電状態(SOC100%)における正極の最大到達電位が4.5V(vs.Li/Li)未満となる電池電圧で使用される、非水電解質二次電池の使用方法である。
 上記した本発明の第一の一実施形態、第一の他の一実施形態、及び第一のさらに他の一実施形態(以下、「第一の実施形態」という。)、本発明の第二の一実施形態、第二の他の一実施形態、及び第二のさらに他の一実施形態(以下、「第二の実施形態」という。)、本発明の第三の一実施形態、第三の他の一実施形態、及び第三のさらに他の一実施形態(以下、「第三の実施形態」という。)について、以下、詳細に説明する。また、第一の実施形態、第二の実施形態、第三の実施形態をまとめて、本実施形態という。
 第一の実施形態によれば、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池、その製造方法、及びその使用方法を提供することができる。
 第二の実施形態によれば、4.5V(vs.Li/Li)未満の電位で使用したとき、優れた初回クーロン効率、及び高率放電性能を示す非水電解質二次電池用正極活物質、その製造方法、前記正極活物質を含有する正極、前記正極を備えた非水電解質二次電池、及びその電池の製造方法を提供することができ、また、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池、その電池の製造方法、及びその電池の使用方法を提供することができる。
 第三の実施形態によれば、過充電領域における体積当たりの充電電気量が大きく、かつ、体積当たりの放電容量が大きい非水電解質二次電池用正極活物質、その製造方法、前記正極活物質を含有する正極、前記正極を備えた非水電解質二次電池、及びその電池の製造方法を提供することができ、また、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池、その電池の製造方法、及びその電池の使用方法を提供することができる。
 <リチウム遷移金属複合酸化物の組成>
 本実施形態に係る非水電解質二次電池が備える正極が、活物質として含むリチウム遷移金属複合酸化物は、一般式Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるいわゆる「リチウム過剰型」活物質である。典型的には、Li1+α(NiβCoγMnδ1-α(β+γ+δ=1)と表すことができる。
 第一の実施形態において、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池とすることができる正極活物質を提供するために、遷移金属元素Meに対するLiのモル比Li/Me、すなわち(1+α)/(1-α)は1.15より大きいことが好ましく、1.2以上であることがより好ましく、1.23以上であることがさらに好ましい。放電容量を優れたものとするためには、Li/Meは1.35以下であることが好ましく、1.3以下であることがより好ましい。
 第二の実施形態において、SOC100%を超えて、さらに充電された時により高いSOCに至るまで電池電圧の急上昇が観察されないものとするために、Li/Meは1.05以上であることが好ましく、1.10以上であることがより好ましい。放電容量の低下を抑制するためには、Li/Meは1.4以下であることが好ましく、1.35以下であることがより好ましい。
 第三の実施形態において、過充電領域における体積当たりの充電電気量をより大きくできる点で、Li/Meは1.05以上が好ましく、1.1以上がより好ましい。また、1.4未満が好ましく、1.3以下がより好ましい。この範囲であると、過充電領域より低い電位範囲で製造、及び使用する場合の正極活物質の体積当たりの放電容量が向上する。
 第一の実施形態において、遷移金属元素Meに対するMnのモル比Mn/Me、すなわちδは、層状構造の安定化の観点から、0.4以上が好ましく、0.45以上であることがより好ましい。また、充放電容量の観点から、Mn/Meは0.65以下であることが好ましく、0.60以下であることがより好ましい。
 第二の実施形態において、モル比Mn/Meは、層状構造の安定化の観点から、0.45以上である。また、充放電容量の観点から、Mn/Meは0.65以下であることが好ましく、0.6以下であることがより好ましい。
 第三の実施形態において、モル比Mn/Meは、0.3以上0.55未満である。0.3以上であることにより、過充電領域における体積当たりの充電電気量を大きくすることができる。また、0.55未満であることにより、過充電領域より低い電位範囲で製造、及び使用する場合の体積当たりの放電容量が向上する。上記Mnのモル比Mn/Meは、0.5以下がより好ましく、0.45以下がさらに好ましい。
 第一及び第二の実施形態において、遷移金属元素Meに対するNiのモル比Ni/Me、すなわちβは、非水電解質二次電池の充放電サイクル性能を向上させるために、0.2以上とすることが好ましい。また、0.5以下とすることが好ましく、0.4以下とすることがより好ましい。
 第三の実施形態において、モル比Ni/Meは0.2以上が好ましく、0.3以上がより好ましい。また、0.6以下が好ましく、0.55以下がより好ましい。この範囲であると、充放電における分極が小さくなることによって、4.5V(vs.Li/Li)未満の電位で使用する場合の放電容量が大きくなる。
 本実施形態において、遷移金属元素Meに対するCoのモル比Co/Me、すなわちγは、活物質粒子の導電性を高める観点から、0.03以上とすることが好ましく、0.2以上とすることがより好ましい。また、材料コストを削減するために、0.4以下とすることが好ましく、0.35以下とすることがより好ましく、0.3以下とすることがさらに好ましく、0でもよい。
 なお、本実施形態に係るリチウム遷移金属複合酸化物は、本発明の効果を損なわない範囲で、Na、K等のアルカリ金属、Mg、Ca等のアルカリ土類金属、Fe等の3d遷移金属に代表される遷移金属など、少量の他の金属を含有することを排除するものではない。
<リチウム遷移金属複合酸化物の結晶構造>
 本実施形態に係るリチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有している。合成後(活物質としての充放電前)の前記リチウム遷移金属複合酸化物は、空間群P312に帰属されるとともに、CuKα線を用いたエックス線回折図において、2θ=20°以上22°以下の範囲に超格子ピーク(Li[Li1/3Mn2/3]O型の単斜晶に見られるピーク)が観察される。この超格子ピーク(以下、「20°以上22°以下の範囲の回折ピーク」という。)は、正極電位が4.5V(vs.Li/Li)未満の電位領域で充放電を行っても、消失することがない(図1参照)。ところが、一度でも4.5V(vs.Li/Li)以上の過充電領域が終了する電位まで充電を行うと、結晶中のLiの脱離に伴って結晶の対称性が変化することにより、20°以上22°以下の範囲の回折ピークが消失して、前記リチウム遷移金属複合酸化物は空間群R3-mに帰属されるようになる(図2参照)。ここで、P312は、R3-mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3-mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。なお、「R3-m」は本来「R3m」の「3」の上にバー「-」を施して表記する。
 <正極活物質のエックス線回折図における回折ピーク>
 本実施形態に係る非水電解質二次電池の正極活物質は、前記のリチウム遷移金属複合酸化物を含み、CuKα線を用いてエックス線回折を行った場合、エックス線回折図において、20°以上22°以下の範囲に回折ピークが観察されるという特徴を備える。
 <回折ピークの確認方法>
 第二及び第三の実施形態に係る非水電解質二次電池に用いる正極活物質や、第一の実施形態に係る非水電解質二次電池が備える正極に含まれる正極活物質に対するエックス線回折測定、及び、CuKα線を用いたエックス線回折図において、20°以上22°以下の範囲に回折ピークが観察されることの確認は、以下のとおりの手順及び条件により、行う。ここで、「観察される」とは、回折角17°以上19°以下の範囲内の強度の最大値と最小値との差分(I18)に対する回折角20°以上22°以下の範囲内の強度の最大値と最小値との差分(I21)の比、すなわち「I21/I18」の値が0.001以上0.1以下の範囲であることをさす。
 エックス線回折測定に供する試料は、正極作製前の活物質粉末(充放電前粉末)であれば、そのまま測定に供する。非水電解質二次電池(以下、「電池」ともいう。)を解体して取り出した正極から試料を採取する場合には、電池を解体する前に、当該電池の公称容量(Ah)の10分の1となる電流値(A)で、通常使用時として指定される電圧の下限となる電池電圧に至るまで定電流放電を行い、完全放電状態とする。解体した結果、金属リチウム電極を負極に用いた電池であれば、以下に述べる追加作業は行わず、正極を取り出す。金属リチウム電極を負極に用いた電池でない場合は、正極電位を正確に制御するため、追加作業として、電池を解体して正極を取り出した後に、金属リチウム電極を対極とした試験電池を組み立て、正極合剤1gあたり10mAの電流値で、電圧が2.0V(正極電位が2.0V(vs.Li/Li))となるまで定電流放電を行い、完全放電状態に調整した後、再解体し、正極を取り出す。
 取り出した正極は、ジメチルカーボネートを用いて正極に付着した非水電解質を十分に洗浄し、室温にて一昼夜乾燥させた後、集電体上から正極合剤を採取する。採取した正極合剤を瑪瑙製乳鉢で軽く解砕し、エックス線回折測定用試料ホルダーに配置して測定に供する。
 上記の電池の解体から再解体までの作業、及び正極の洗浄、乾燥作業は、露点-60℃以下のアルゴン雰囲気中で行う。
<エックス線回折測定>
 本明細書において、エックス線回折測定は、次の条件にて行う。線源はCuKα、加速電圧は30kV、加速電流は15mAとする。サンプリング幅は0.01deg、スキャンスピードは1.0deg/min、発散スリット幅は0.625deg、受光スリットは開放、散乱スリット幅は8.0mmとする。
 後述する実施例1-1に示すように、リチウム過剰型活物質を正極、金属リチウムを負極として、非水電解質二次電池を組み立てた後、充電上限電位を4.25V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として、0.1C相当の電流値で、2回の充放電を行って完成した完全放電状態の非水電解質二次電池を解体して得られる正極について、上記の手順でエックス線回折測定を行うと、図1(部分拡大図:図3の下段)と同様に、20°以上22°以下の範囲に回折ピークが観察されるエックス線回折図が得られる。
 また、後述する比較例1-2に示すように、リチウム過剰型活物質を正極、金属リチウムを負極として、非水電解質二次電池を組み立てた後、充電上限電位を4.6V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として、初回充放電を行ったのち、充電上限電位を4.25V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として、2回目の充放電(いずれも0.1C相当の電流値)を行って完成した完全放電状態の非水電解質二次電池を解体して得られる正極について、上記の手順でエックス線回折測定を行うと、図2(部分拡大図:図3の上段)と同様に20°以上22°以下の範囲のピークは観察されないエックス線回折図が得られる。すなわち、上記のとおり、一度でも4.5V(vs.Li/Li)以上に至る電位まで充電を行うと、20°以上22°以下の範囲のピークは観察されない。
 第一の実施形態に係る非水電解質二次電池は、充放電後においても、上記の手順で測定した正極活物質のエックス線回折図に20°以上22°以下の範囲の回折ピークが観察されることから、第一の実施形態に係る非水電解質二次電池は、初期充放電を含めて、満充電状態(SOC100%)における正極の最大到達電位が4.5V(vs.Li/Li)未満となる電池電圧で使用されていることがわかる。
 また、第二及び第三の実施形態において、充電上限電位を上記の4.25V(vs.Li/Li)から4.35V(vs.Li/Li)に変更した場合も、同様に正極活物質のエックス線回折図に20°以上22°以下の範囲の回折ピークが観察されることから、第二及び第三の実施形態に係る非水電解質二次電池は、初期充放電を含めて、満充電状態(SOC100%)における正極の最大到達電位が4.5V(vs.Li/Li)未満となる電池電圧で使用されていることがわかる。
 なお、後述する実施例の充電上限電位を4.6V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)とした初回充放電条件2は、第三の実施形態に係る正極活物質の過充電領域における体積当たりの充電電気量を調査するために、充電上限電位を4.6V(vs.Li/Li)としたものであるから、正極活物質のエックス線回折図に20°以上22°以下の範囲の回折ピークが観察されない初回充放電条件2を適用した後の非水電解質二次電池は、第三の実施形態に係る非水電解質二次電池ではない。
 <正極電位の電位変化>
 また、正極活物質のエックス線回折図に上記の20°以上22°以下の範囲の回折ピークが観察される本実施形態に係る非水電解質二次電池は、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域(以下、「電位変化が平坦な領域」ともいう。)が観察される。なお、前記電位変化が平坦な領域が観察される充電過程が終了するまでの充電を一度でも行った場合は、その後、正極電位が5.0V(vs.Li/Li)に至る充電を行っても、上前記電位変化が平坦な領域は、再び観察されることはない。
 図4を用いて、本発明の作用機構の原理を説明する。図4における実線は、リチウム遷移金属複合酸化物(「リチウム過剰型」と表記)を正極活物質として用いた正極と、金属リチウムを用いた負極とを備えた本実施形態に係る非水電解質二次電池を組み立て、正極の充電上限電位を4.6V(vs.Li/Li)として初回充電を行ったときの正極電位の変化を示している。一方、破線は、市販のLiNi1/3Co1/3Mn1/3(「LiMeO型」と表記)を正極活物質として用いた正極を備えることを除いては同様の構成とした非水電解質二次電池に、同様の初回充電を行った場合の正極電位の変化を示している。リチウム過剰型活物質を用いた正極では、4.45V(vs.Li/Li)以上4.6V(vs.Li/Li)以下の正極電位範囲内に、電位変化が平坦な領域が観察される。一方で、LiMeO型活物質を用いた正極では、4.45V(vs.Li/Li)以上4.6V(vs.Li/Li)以下の正極電位範囲内に、電位変化が平坦な領域が観察されない。
 なお、平坦な領域が観察される電位範囲や充放電時の容量は、リチウム過剰型活物質を用いた正極でも、組成等の物性によって若干異なるため、この図は一例に過ぎない。
 本実施形態に係る非水電解質二次電池は、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、電位変化が平坦な領域が観察されるリチウム過剰型活物質を正極に含むが、初期充放電工程において、前記平坦な領域が観察される充電過程が終了するまでの充電が行われることなく電池が完成される。初期充放電工程における正極の最大到達電位は4.5V(vs.Li/Li)未満とすることが好ましい。さらに、本実施形態に係る非水電解質二次電池は、前記平坦な領域が観察される充電過程が終了するまでの充電が行われることがない充電条件下で使用される。したがって、本実施形態に係る非水電解質二次電池は、製造段階から使用時に至るまで、前記平坦な領域が観察される充電過程が終了するまでの充電が一度も行われていないから、過充電された場合、4.5V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、充電電気量に対して電位変化が平坦な領域が観察される。
 本実施形態に係る非水電解質二次電池は、上記で説明した挙動を利用することによって、通常使用時の満充電状態であるSOC100%を超えて過充電されても、より高いSOCに至るまで電池電圧(正極電位)の急上昇を抑制することができる。
 <電位変化が平坦な領域の確認方法>
 ここで、「電位変化が平坦な領域」が観察されることの確認は、以下の手順による。非水電解質二次電池を解体して取り出した正極を作用極、金属リチウムを対極とした試験電池を作製する。なお、前記試験電池の電池電圧と作用極電位(正極電位)は、ほぼ同じ値であるため、以下の手順における正極電位は、試験電池の電池電圧と読み替えることができる。前記試験電池を正極合剤1gあたり10mAの電流値で正極の終止電位2.0V(vs.Li/Li)まで放電したのち、30minの休止を行う。その後正極合剤1gあたり10mAの電流値で正極の終止電位5.0V(vs.Li/Li)まで定電流充電を行う。ここで、充電開始から4.45V(vs.Li/Li)到達時の容量がX(mAh)、各電位における容量がY(mAh)であるときの、Y/X*100を容量比Z(%)とする。横軸に正極電位、縦軸に分母を電位変化の差分、分子を容量比変化の差分としたdZ/dVをとり、dZ/dV曲線を得る。
 図5における実線は、リチウム過剰型活物質を正極活物質として用いた正極と金属リチウムを用いた負極とを備えた非水電解質二次電池を組み立て、初回に4.6V(vs.Li/Li)に至る充電を行ったときのdZ/dV曲線の一例である。dZ/dVカーブは計算式からも分かるように、容量比変化に対し、電位変化が小さいときはdZ/dVの値が大きくなり、容量比変化に対し、電位変化が大きいときはdZ/dVの値が小さくなる。リチウム過剰型活物質の充電過程では、4.5V(vs.Li/Li)を超えた電位領域における電位変化が平坦な領域において、dZ/dVの値は大きくなる。その後、電位変化が平坦な領域が終了し、電位が再び上昇し始めた場合は、dZ/dVの値は小さくなる。すなわち、dZ/dV曲線において、ピークが観察される。ここで、4.5V(vs.Li/Li)から5.0V(vs.Li/Li)の範囲におけるdZ/dVの値の最大値が150以上を示す場合、充電電気量に対して電位変化が平坦な領域が観察されると判断する。一方、破線は、市販のLiMeO型活物質を正極活物質として用いた正極を備えることを除いては同様の構成とし、同様の試験を行った電池のdZ/dV曲線である。電位変化が平坦な領域が観察されないことに対応して、リチウム過剰型に見られたようなピークは観察されない。なお、本明細書において、通常使用時とは、当該非水電解質二次電池について推奨され、又は指定される充放電条件を採用して当該非水電解質二次電池を使用する場合であり、当該非水電解質二次電池のための充電器が用意されている場合は、その充電器を適用して当該非水電解質二次電池を使用する場合をいう。
 <正極活物質の放電容量比>
 第二の実施形態に係る正極活物質は、さらに、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である。
 放電容量比a/bは、以下のようにして求める。
 評価対象が活物質である場合は、N-メチルピロリドンを分散媒とし、活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)を90:5:5の割合の塗布用ペーストを作製し、該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布して、正極板を作製し、金属リチウムを対極として、評価用の非水電解質二次電池を組み立てる。正極合剤1gあたり15mAの電流値で、充電上限電位を4.35V(vs.Li/Li)、充電終止条件は電流値が1/5に減衰した時点とする定電流定電圧充電を行う。10分間の休止を設けた後、同じ電流値で放電下限電位を2.0V(vs.Li/Li)とする、定電流放電を行い、放電開始から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bを求める。
 評価対象が二次電池である場合は、当該電池の公称容量(Ah)の10分の1となる電流値(A)で、指定される電圧の下限となる電池電圧に至るまで定電流放電を行い、完全放電状態とする。露点-60℃以下のアルゴン雰囲気中で電池を解体し、正極板を取得したのち、金属リチウムを対極とした評価用の非水電解質二次電池を組み立てる。作製した電池は、正極合剤1gあたり15mAの電流値で、2.0V(vs.Li/Li)まで定電流放電する。その後、同じ電流値で充電上限電位を4.35V(vs.Li/Li)、充電終止条件は電流値が1/5に減衰した時点とする定電流定電圧充電を行う。10分間の休止を設けた後、同じ電流で2.0V(vs.Li/Li)まで定電流放電し、同様にa/bを評価する。
 後述の実験例2によると、この放電容量比a/bが17≦a/b≦25である場合、初回クーロン効率及び高率放電性能に優れた正極活物質、この正極活物質を含有する第二の実施形態に係る非水電解質二次電池用正極、及びこの正極を備えた第二の実施形態に係る非水電解質二次電池が得られることがわかった。
 <非水電解質二次電池が4.5V(vs.Li/Li+)を超え充電されたときの挙動>
 第二の実施形態に係る非水電解質二次電池は、上記の正極活物質を含有する正極を備え、この正極活物質は、CuKα線を用いたエックス線回折図において、20°以上22°以下の範囲のピークが観察されるから、第二の実施形態に係る非水電解質二次電池は、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li+)未満とする、第二の実施形態に係る非水電解質二次電池の製造方法により製造されている。また、第二の実施形態に係る非水電解質二次電池は、通常使用時において、4.5V(vs.Li/Li+)以上の充電過程を経ていない。したがって、4.5V(vs.Li/Li+)を超え、5.0V(vs.Li/Li+)に至る充電がされると、前記正極には、4.5V(vs.Li/Li+)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される(図6の実線参照)。この平坦な領域の存在により、本実施形態に係る非水電解質二次電池には、より高いSOCに至るまで電池電圧の急上昇が観察されない。
 図6の実線は、リチウム過剰型活物質を含有する正極を備えた非水電解質二次電池に対して、初回に4.6V(vs.Li/Li+)に至る充電を行った場合の充電カーブの一例を示している。ここでは、充電開始から4.35V(vs.Li/Li+)到達までの容量を基準(SOC100%)として容量をSOCに換算した。SOCが200%付近で正極電位が急激に上昇するまで、比較的平坦な充電カーブを有する。一方、図6の破線は、上述の4.6V(vs.Li/Li+)に至る充電を行った非水電解質二次電池を2.0V(vs.Li/Li+)まで放電した後、再度上限電位を4.6V(vs.Li/Li+)とし、充電を行った場合の充電カーブである。図からわかるように、一度でも4.5V(vs.Li/Li+)以上の充電履歴を経た正極では、電位変化が平坦な領域は現れない。
 電位変化が平坦な領域の確認は、上記のように図5に基づいて行う。
<リチウム遷移金属複合酸化物のラマンスペクトル>
 第三の実施形態に係るリチウム遷移金属複合酸化物は、ラマンスペクトルにおける550cm-1以上650cm-1以下の範囲での最大値I600に対する、450cm-1以上520cm-1以下の範囲での最大値I490の比(I490/I600)が0.45以上である。
 I490/I600を0.45以上とすることにより、過充電領域における体積当たりの充電電気量が大きくなり、かつ、体積当たりの放電容量が大きくなる。
 本発明において、I490/I600を0.45以上と特定する意義は以下のように推察される。
 本実施形態に係るリチウム遷移金属複合酸化物は、LiMeO(M=Ni及びMn、又はNi、Co及びMnを含む。)とLiMnOの固溶体として表すことができる。LiMeOとLiMnOは、ラマンスペクトルにおいて、MeO振動モードに対応する600cm-1付近のピークA1gとO-Me-O振動モードに対応する490cm-1付近のピークEを有するが、LiMnOには、ピークEが特に顕著に現れることが知られている(非特許文献1参照)。図7に、振動モードを説明する上記特許文献17の図2を転載し、図8に、上記非特許文献1のFig.4を転載する。
 I490/I600が大きいことは、O-Me-O振動が相対的に大きいから、本実施形態に係るリチウム遷移金属複合酸化物において、相対的にLiMnO成分が多いことを意味する。LiMnOは過充電領域での充電電気量を大きくすることに寄与する成分であるから、I490/I600が0.45以上であることは、より高いSOCに至るまで電池電圧の急上昇が観察されることがない。
 一方、I490/I600が小さいことは、MeO振動が相対的に大きいから、本実施形態に係るリチウム遷移金属複合酸化物において、相対的にLiMeO成分が多いことを意味する。LiMeOはLiMnOと比較して、高密度かつ高容量である。しかし、第三の実施形態に係るリチウム遷移金属複合酸化物を含有する正極活物質においては、焼結助剤により高密度化した場合、LiMeOのユニットの割合が相対的に小さいと考えられるI490/I600が0.45以上の活物質の方が、0.45未満の活物質と比較して、予想外に、体積当たりの放電容量が大きくなることがわかった。焼結助剤によりI490/I600が小さくなる理由としては、活物質中の酸素欠損によって遷移金属の価数が小さくなるか、又は、活物質合成時の不均化(3LiMeO→LiMn+LiMnO)が解消されることによって、活物質中のLiMnOのユニットに対するLiMeOのユニットの割合が大きくなるためと考えられる。ただし、上記の理由により、体積当たりの放電容量を大きくするためには、I490/I600が大きすぎないことが好ましく、0.85以下であることが好ましい。
<ラマンスペクトル測定>
 ラマンスペクトル測定に供する試料の調製は、上記のエックス線回折測定に供する試料の調製において、採取した合剤を小型電気炉を用いて600℃で4h焼成することで導電剤であるカーボンおよび結着剤であるPVdFバインダーを除去し、リチウム遷移金属複合酸化物粒子を取り出し、活物質粉末(充放電後粉末)としてラマンスペクトル測定に供する以外は、同様の手順及び条件により行う。
 ラマンスペクトルの測定は以下の条件にて行う。
 堀場製作所社の「LabRAM HR Revolution」を用いてラマン分光測定を行う。対物レンズに100倍のレンズを用い、上記のようにして調製した活物質粉末にレーザの焦点を合わせた状態で測定を行う。その際、波長532nm(YAGレーザ)、グレーティング600g/mmの条件、露光時間30秒、積算回数2回、測定波長100cm-1以上4000cm-1以下の条件で測定を行う。上記測定により得られたスペクトルにおいて、550cm-1以上650cm-1以下の範囲での最大値I600に対する、450cm-1以上520cm-1以下の範囲での最大値I490の比(I490/I600)を求める。
 図9は、後述する実施例3-2に係るリチウム遷移金属複合酸化物について、充放電前粉末、及び充放電後粉末を上記の手順により測定したラマンスペクトルである。充放電前粉末においてI490/I600の値は0.57であり、充放電後粉末においてI490/I600の値は0.55であった。本実施形態に係るリチウム遷移金属複合酸化物は、粉末状態での充放電前後において、ラマンスペクトル形状が維持される。
 なお、非特許文献1のFig.4(充放電前)、Fig.5(充放電後)においても、ラマンスペクトルがほとんど変化していないことが示されている。
 <リチウム遷移金属複合酸化物の前駆体の製造方法>
 次に、本実施形態に係る非水電解質二次電池の正極活物質の製造に用いるリチウム遷移金属複合酸化物の前駆体の製造方法について説明する。
 本実施形態に係るリチウム遷移金属複合酸化物は、基本的に、活物質を構成する金属元素(Li、Ni、Co及びMn)を目的とする活物質(酸化物)の組成どおりに含有する原料を調製し、これを焼成することによって得ることができる。
 目的とする組成の複合酸化物を作製するにあたり、Li、Ni、Co及びMnのそれぞれの化合物を混合・焼成するいわゆる「固相法」や、あらかじめNi、Co及びMnを一粒子中に存在させた共沈前駆体を作製しておき、これにリチウム塩を混合・焼成する「共沈法」が知られている。「固相法」による合成過程では、特にMnはNi及びCoに対して均一に固溶しにくいため、各元素が一粒子中に均一に分布した試料を得ることは困難である。これまで文献などにおいては、固相法によってNiやCoの一部にMnを固溶(LiNi1-xMnなど)しようという試みが多数なされているが、「共沈法」を選択する方が原子レベルで均一相を得ることが容易である。そこで、本実施形態に係るリチウム遷移金属複合酸化物の前駆体の製造方法においては、「共沈法」を採用した。
 本実施形態に係るリチウム遷移金属複合酸化物の前駆体の製造方法においては、Ni、Co及びMnを含有する原料水溶液を滴下し、溶液中でNi、Co及びMnを含有する化合物を共沈させて前駆体を作製することが好ましい。
 共沈前駆体を作製するにあたって、Ni、Co及びMnのうちMnは酸化されやすく、Ni、Co及びMnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Ni、Co及びMnの原子レベルでの均一な混合は不十分なものとなりやすい。したがって、本発明においては、共沈前駆体に分布して存在するMnの酸化を抑制するために、溶存酸素を除去することが好ましい。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素(O)を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)ガス等を用いることができる。
 溶液中でNi、Co及びMnを含有する化合物を共沈させて前駆体を作製する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈水酸化物前駆体として作製しようとする場合には、pHを9以上12以下とすることができる。前駆体及び複合酸化物のタップ密度を大きくするためには、pHを制御することが好ましい。pHを11.5以下とすることにより、複合酸化物のタップ密度を1.00g/cm以上とすることができ、高率放電性能を向上させることができる。さらに、pHを11.0以下とすることにより、粒子成長を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
 前記遷移金属化合物は、Ni及びMn、又はNi、Co及びMnをそれぞれ含む原料化合物を、pH10.2以下の水溶液中で反応させる共沈法によって製造される遷移金属水酸化物前駆体であることがより好ましい。pHを10.2以下とすることにより、粒子成長を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮でき、かつ、αMe(OH)及びβMe(OH)を含有する結晶構造を有する前駆体を製造することができる。αMe(OH)及びβMe(OH)を含有する結晶構造を有する前駆体は、αMe(OH)単相又はβMe(OH)単相の結晶構造を有する前駆体と比べてタップ密度を大きくすることができる。タップ密度の高い前駆体を用いて作製された電極は、プレス密度を高めることができるので、電極の抵抗を小さくすることができる。なお、pHが低すぎると、αMe(OH)単相の前駆体となるので、反応pHは9を超えることが好ましい。
 水酸化物前駆体を製造する場合、アルカリ性を保った反応槽に、遷移金属(Me)を含有する溶液と共に、アルカリ金属水酸化物、錯化剤、及び、還元剤を含有するアルカリ溶液を加えて、遷移金属水酸化物を共沈させることが好ましい。
 錯化剤としては、アンモニア、硫酸アンモニウム、硝酸アンモニウム等を用いることができ、アンモニアが好ましい。錯化剤を用いた晶析反応によって、よりタップ密度の大きな前駆体を作製することができる。
 錯化剤と共に還元剤を用いることが好ましい。還元剤としては、ヒドラジン、水素化ホウ素ナトリウム等を用いることができ、ヒドラジンが好ましい。
 アルカリ金属水酸化物(中和剤)には、水酸化ナトリウム、水酸化リチウム又は水酸化カリウムを使用することができる。
 また、前記共沈前駆体を共沈炭酸塩前駆体として作製しようとする場合には、pHを7.5以上11以下とすることができる。pHを9.4以下とすることにより、複合酸化物のタップ密度を1.25g/cm以上とすることができ、高率放電性能を向上させることができる。さらに、pHを8.0以下とすることにより、粒子成長を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
 前記共沈前駆体の原料は、Ni源としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co源としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を、Mn源としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を一例として挙げることができる。
 前記遷移金属化合物の原料水溶液を滴下供給する間、水酸化ナトリウム等のアルカリ金属水酸化物(中和剤)、アンモニア等の錯化剤、及び、ヒドラジン等の還元剤を含有する混合アルカリ溶液を適宜滴下する方法が好ましい。滴下するアルカリ金属水酸化物の濃度は、1.0M以上8.0M以下であることが好ましい。錯化剤の濃度は、0.4M以上であることが好ましく、0.6M以上であることがより好ましい。また、2.0M以下であることが好ましく、1.6M以下であることがより好ましく、1.5M以下とすることがさらに好ましい。還元剤の濃度は、0.05M以上1.0M以下であることが好ましく、0.1以上0.5M以下とすることがより好ましい。反応槽のpHを低くすると共に、アンモニア(錯化剤)の濃度を0.6M以上とすることにより、水酸化物前駆体のタップ密度を高くすることができる。
 前記原料水溶液の滴下速度は、生成する共沈前駆体の1粒子内における元素分布の均一性に大きく影響を与える。好ましい滴下速度については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、30mL/min以下が好ましい。放電容量を向上させるためには、滴下速度は10mL/min以下がより好ましく、5mL/min以下が最も好ましい。
 また、反応槽内にNH等の錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転及び攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、共沈前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。したがって、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた共沈前駆体を得ることができる。
 原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5h以上が好ましく、1h以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が十分でないものとなる虞を低減させるため、15h以下が好ましく、10h以下がより好ましく、5h以下が最も好ましい。
 また、水酸化物前駆体及びリチウム遷移金属複合酸化物の2次粒子の粒度分布における累積体積は、50%となる粒子径であるD50を13μm以下とすることが好ましい。そのためには、例えば、pHを9.1以上10.2以下に制御した場合には、攪拌継続時間は1h以上3h以下が好ましい。
 水酸化物前駆体の粒子を、中和剤として水酸化ナトリウム等のナトリウム化合物を使用して作製した場合、その後の洗浄工程において粒子に付着しているナトリウムイオンを洗浄除去することが好ましい。例えば、作製した水酸化物前駆体を吸引ろ過して取り出す際に、イオン交換水500mLによる洗浄回数を6回以上とするような条件を採用することができる。
 <リチウム遷移金属複合酸化物の製造方法>
 本実施形態に係る非水電解質二次電池の正極活物質の製造方法は、上記のようにして作製した共沈前駆体(遷移金属化合物)とリチウム化合物とを混合し、焼成する方法であることが好ましい。
 第二の実施形態に係る正極活物質の製造方法において、リチウム遷移金属複合酸化物は、Ni及びMn、又はNi、Co及びMnを含み、Meに対するMnのモル比Mn/MeがMn/Me≧0.45である遷移金属化合物に、Li化合物を混合し、焼成することにより、製造することができる。
 第三の実施形態に係る正極活物質の製造方法において、リチウム遷移金属複合酸化物は、Ni及びMn、又はNi、Co及びMnを含み、Meに対するMnのモル比Mn/Meが0.3≦Mn/Me<0.55である遷移金属化合物に、Li化合物を混合し、焼成することにより、製造することができる。
 遷移金属化合物と混合するLi化合物としては、水酸化リチウム、硝酸リチウム、炭酸リチウム、酢酸リチウム等を用いることができる。
 遷移金属化合物とLi化合物を混合して焼成する際には、焼結助剤を使用してもよい。第三の実施形態においては、焼結助剤を添加することが好ましい。焼結助剤としては、フッ化リチウム(LiF)、炭酸リチウム(LiCO)、フッ化ナトリウム(NaF)、塩化ナトリウム(NaCl)、硫酸リチウム(LiSO)、リン酸リチウム(LiPO)、塩化リチウム(LiCl)、塩化マグネシウム(MgCl)又は塩化カルシウム(CaCl)を使用することが好ましい。上記のように、炭酸リチウムは、リチウム遷移金属複合酸化物を製造するためのLi化合物として用いられるが、後述する実施例のように、上記のリチウム化合物として水酸化リチウムを用いた場合には、炭酸リチウムは焼結助剤として機能する。これらの焼結助剤の添加比率は、Li化合物の総量に対して1mol%以上10mol%以下とすることが好ましい。なお、Li化合物の総量は、焼成中にLi化合物の一部が消失することを見込んで、1mol%から5mol%程度過剰に仕込むことが好ましい。
 焼成温度は、正極活物質の充放電サイクル性能に影響を与える。
 焼成温度が低すぎると、結晶化が十分に進まず、充放電サイクル性能が低下する傾向がある。本発明の一態様においては、焼成温度は800℃以上とすることが好ましい。800℃以上とすることにより、結晶化度が高い活物質粒子を得ることができ、充放電サイクル性能を向上させることができる。
 一方、焼成温度が高すぎると層状α-NaFeO構造から岩塩型立方晶構造へと構造変化がおこり、充放電反応中における活物質中のリチウムイオン移動に不利な状態となり、充放電サイクル性能が低下する。本発明においては、焼成温度は1000℃以下とすることが好ましい。1000℃以下とすることにより、岩塩型立方晶構造への構造変化が抑制された活物質粒子を得ることができ、充放電サイクル性能を向上させることができる。
 したがって、本実施形態に係るリチウム遷移金属複合酸化物を含有する正極活物質を作製する場合、充放電サイクル性能を向上させるために、焼成温度は800℃以上1000℃以下とすることが好ましく、850℃以上1000℃以下とすることがより好ましく、850℃以上950℃以下とすることがさらに好ましい。
 焼成して得たリチウム遷移金属複合酸化物の一次粒子及び/又は二次粒子の表面には、エネルギー密度維持率が高く、クーロン効率を向上させた正極活物質を得るために、異種元素を被覆及び/又は固溶させてもよい。異種元素として、例えばアルミニウム化合物があげられる。
 アルミニウム化合物を被覆させるには、合成したリチウム遷移金属複合酸化物の粒子を、アルミニウムを含む化合物(硫酸塩、硝酸塩、酢酸塩等)の水溶液に投入する方法を採用することができる。この水溶液は酸性とすることが好ましい。但し、投入する順序は、これに限定されない。例えば、水に分散させたリチウム遷移金属複合酸化物粒子にアルミニウムを含む化合物の水溶液を投入する方法を採用してもよい。また、アルミニウムを含む水溶液にリチウム遷移金属複合酸化物を投入した後、又は投入する際に、pH調整剤を投入してもよい。前記pH調整剤としては、アルカリ溶液であれば、限定されない。前記アルカリ溶液としては、例えば、NaOH水溶液、KOH水溶液が挙げられる。pH調整剤を投入することによって調整されるpHの値は、適宜選択することができる。
 ろ過等により、アルミニウムの化合物の添加された粒子を分別し、得られた粒子を、好ましくは、80℃以上120℃以下で乾燥し、さらに、300℃以上500℃以下にて1hから10h、大気中で熱処理を行うことにより、粒子表面にアルミニウムを含む酸化物の存在するリチウム遷移金属複合酸化物粒子が得られる。
 リチウム遷移金属複合酸化物粒子の表面にアルミニウム化合物を被覆させる際には、リチウム遷移金属複合酸化物に対してアルミニウム化合物が、好ましくは0.1質量%以上0.7質量%以下となるように、より好ましくは0.2質量%以上0.6質量%以下となるようにすると、前記エネルギー密度維持率のさらなる向上効果及びクーロン効率の向上効果がより十分に発揮される。
 <正極活物質の酸処理>
 第二の実施形態に係る正極活物質の製造方法において、上記の放電容量比a/bを17≦a/b≦25とする正極活物質は、上記の製造方法によって合成されたリチウム遷移金属複合酸化物を、pKaが3.1以上の酸で処理することにより製造することができる。pKaが3.1以上の酸としては、ホウ酸(pKa=9.14)、クエン酸(pKa=3.1)、酒石酸(pKa=3.2)、リンゴ酸(pKa=3.4)、酢酸(pKa=4.74)等が挙げられる。pKaが3.1以上の酸を適切な濃度で用いてリチウム過剰型活物質を表面処理することにより、過充電化成しない条件下で、未処理の活物質と同等又はより向上した放電容量を有しつつ、初回クーロン効率及び高率放電性能が向上させることができる。
 第二の実施形態に係る活物質の製造方法における酸処理の詳細な作用機構は不明であるが、上記の酸は、pKaが3.1以上であるから、活物質中のリチウムイオンが水素イオンと置換する可能性は低く、活物質のリチウムと遷移金属のモル比Li/Meが、大きく変動するとは考えにくい。したがって、pKaが小さい塩酸、リン酸、又は硫酸等の強酸で酸処理し、リチウムイオンが水素イオンに置き換わった(Liが除去された)ことで、処理前後での活物質の上記モル比Li/Meが減少した特許文献7の表1、特許文献8の表1に記載された実施例や、特許文献11の段落[0159]の記載事項とは異なるメカニズムが働いていると推察される。
 後述の実験例によると、本実施形態による酸処理を施した活物質は、未処理の活物質と比較して、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが減少しており(放電容量bが相対的に増加)、また、比表面積が適度に増加していた。放電容量bは、スピネル構造に特徴的に現れることが知られているから、この酸処理は、リチウム過剰型活物質表面に適度なスピネルライクの結晶構造をもたらすことにより、初回充放電時の不可逆容量を低減させて初回クーロン効率を向上させると推察される。
 また、BET比表面積の増加は、粒子表面に適度な凹凸をもたらし、電解質の浸透とリチウムイオンの拡散を促進し、初回クーロン効率の向上とともに、高率放電性能を向上させたものと推察される。BET比表面積は、6m/g以下であることが好ましい。
 具体的な酸処理の手順は以下のとおりである。
 リチウム遷移金属複合酸化物5.0gを所定の水素イオン濃度である、所定の酸水溶液200mLに加え、水溶液の温度を50℃に保ち、撹拌子を用いて400rpmで2時間撹拌する。撹拌後、吸引装置を用い、リチウム遷移金属複合酸化物を濾過し、さらにイオン交換水で洗浄をおこなった後、80℃で一晩常圧乾燥する。
 <負極材料>
 本実施形態に係る電池の負極材料としては、限定されるものではなく、リチウムイオンを吸蔵及び放出することのできる形態のものを適宜選択できる。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のリチウム複合酸化物、金属リチウム、リチウム合金(リチウム-シリコン、リチウム-アルミニウム、リチウム-鉛、リチウム-スズ、リチウム-アルミニウム-スズ、リチウム-ガリウム、及びウッド合金等の金属リチウム含有合金)、リチウムを吸蔵・放出可能なシリコン、アンチモン、スズ等の金属、これらの合金、酸化ケイ素、酸化スズ等の金属酸化物、炭素材料(例えば黒鉛、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。
 <正極・負極>
 正極活物質、及び負極材料は、平均粒子サイズが100μm以下の粉体であることが好ましい。特に、正極活物質の粉体は、非水電解質二次電池の高出力特性を向上させるために15μm以下であることが好ましく、充放電サイクル性能を維持するためには10μm以上であることが好ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。粉砕には、例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
 以上、正極及び負極の主要構成成分である正極活物質及び負極材料について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。
 導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種又はそれらの混合物として含ませることができる。
 これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが好ましい。導電剤の添加量は、正極又は負極の総質量に対して0.1質量%以上50質量%以下が好ましく、特に0.5質量%以上30質量%以下が好ましい。特にアセチレンブラックを0.1μm以上0.5μm以下の超微粒子に粉砕して用いると、必要炭素量を削減できるため好ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を用いて乾式、あるいは湿式で混合することが可能である。
 前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン等の熱可塑性樹脂、エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種又は2種以上の混合物として用いることができる。結着剤の添加量は、正極又は負極の総質量に対して1質量%以上50質量%以下が好ましく、特に2質量%以上30質量%以下が好ましい。
 フィラーとしては、電池性能に悪影響を及ぼさない材料であれば限定されない。通常、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極又は負極の総質量に対して30質量%以下が好ましい。
 正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、及びその他の材料を、N-メチルピロリドン、トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、又は圧着して50℃から250℃程度の温度で、2h程度加熱処理することにより合剤層を形成することで好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが好ましいが、これらに限定されるものではない。
 集電体としては、アルミニウム箔、銅箔等の集電箔を用いることができる。正極の集電体としてはアルミニウム箔が好ましく、負極の集電体としては銅箔が好ましい。集電体の厚さは10μm以上30μm以下が好ましい。また、合剤層の厚さは、40μm以上150μm以下(集電体厚さを除く)が好ましい。
 <非水電解質>
 本実施形態に係る非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。
 非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート等の環状カーボネート類又はそれらのフッ化物;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフラン又はその誘導体;1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソラン又はその誘導体;エチレンスルフィド又はその誘導体等の単独又はそれら2種以上の混合物等を挙げることができる。
 第一の実施形態に係る非水電解質は、特に非水溶媒としてフッ素化環状カーボネートを含むことが好ましい。非水溶媒にフッ素化環状カーボネートを含む非水電解質を用いると、保存後のAC抵抗の増加を抑制できる。フッ素化環状カーボネートとしては、4-フルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4,4,5-トリフルオロエチレンカーボネート等を挙げることができる。中でも、電池内でガスが発生することによる電池膨れが抑制できる点で、4-フルオロエチレンカーボネート(FEC)を用いることが好ましい。
 フッ素化環状カーボネートの含有量は、非水溶媒中の体積比で3%以上30%以下であることが好ましく、5%以上25%以下であることがより好ましい。
 また、第一の実施形態に係る非水電解質には、ホウ素に結合したオキサレート基を有する化合物が添加されることが好ましい。ホウ素に結合したオキサレート基を有する化合物は、初期AC抵抗を低減する効果があり、正極にリチウム過剰型活物質を用いた非水電解質二次電池の出力特性を向上させることができる。
 ホウ素に結合したオキサレート基を有する化合物としては、リチウムビスオキサレートボレート(LiBOB)、ジフルオロ(オキサラト)ホウ酸リチウム(LiDFOB)、(3-メチル-2,4-ペンタンジオナト)オキサラトボレート(MOAB)等が挙げられる。各オキサレート基を有する化合物の化学構造式を以下に示す。
Figure JPOXMLDOC01-appb-C000002
リチウムビスオキサレートボレート(LiBOB)
Figure JPOXMLDOC01-appb-C000003
 
ジフルオロ(オキサラト)ホウ酸リチウム(LiDFOB)
Figure JPOXMLDOC01-appb-C000004
 
(3-メチル-2,4-ペンタンジオナト)オキサラトボレート(MOAB)
 ホウ素に結合したオキサレート基を有する化合物の添加量の下限は、非水電解質を構成する電解質塩以外の構成成分全体の質量に対し、充放電サイクル性能の向上のため0.1質量%以上が好ましく、より好ましくは0.2質量%以上であり、上限は、抵抗の増大の虞を低減するため、2.0質量%以下が好ましく、より好ましくは1.0質量%以下である。
 <初期AC抵抗の測定方法>
 本明細書において、初期AC抵抗の測定は次の条件で行う。測定は、注液、及び初期充放電を経た、工場出荷状態の非水電解質二次電池を対象とする。測定に先立ち、25℃にて、0.1Cの電流で所定の電圧範囲で充電及び放電した後、開回路とし、2h以上放置する。以上の操作によって、非水電解質二次電池を完全放電状態とする。1kHzの交流(AC)を印加する方式のインピーダンスメータを用いて正負極端子間の抵抗値を測定し、これを「初期AC抵抗(mΩ)」とする。過充電あるいは過放電された非水電解質二次電池を測定対象としてはならない。
 <保存後のAC抵抗の測定方法>
 本明細書において、保存試験及び、保存後のAC抵抗の測定は次の条件で行う。非水電解質二次電池を25℃にて、0.1Cで所定の電圧まで充電し、満充電状態とする。その後、45℃にて15日間放置する。次に、0.2Cの電流で所定の電圧まで定電流放電を行った後、開回路とし、2h以上放置する。以上の操作によって、非水電解質二次電池を完全放電状態とする。1kHzの交流(AC)を印加する方式のインピーダンスメータを用いて、25℃にて正負極端子間の抵抗値を測定する。過充電あるいは過放電された非水電解質二次電池を測定対象としてはならない。
 非水電解質には、本発明の効果を損なわない範囲で、一般に非水電解質に使用される添加剤が添加されていてもよい。例えば、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等の含フッ素アニソール化合物等の過充電防止剤;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物等の負極被膜形成剤;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、プロペンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム等を単独で又は二種以上混合して非水電解質に加えることができる。
 非水電解質中のこれらの添加剤の添加量は特に限定はないが、非水電解質を構成する電解質塩以外の構成成分全体に対し、それぞれ、0.01質量%以上が好ましく、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、上限は、5質量%以下が好ましく、より好ましくは3質量%以下、更に好ましくは2質量%以下である。これらを添加する目的としては、充放電効率の向上、抵抗上昇の抑制、電池膨れの抑制、充放電サイクル性能の向上等が挙げられる。
 非水電解質に用いる電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF、LiSCN、LiBr、LiI、LiSO、Li10Cl10、NaClO、NaI、NaSCN、NaBr、KClO、KSCN等のリチウム(Li)、ナトリウム(Na)又はカリウム(K)の1種を含む無機イオン塩、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、(CHNBF、(CHNBr、(CNClO、(CNI、(CNBr、(n-CNClO、(n-CNI、(CN-maleate、(CN-benzoate、(CN-phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。
 さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より好ましい。
 また、非水電解質として常温溶融塩やイオン液体を用いてもよい。
 非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質二次電池を確実に得るために、0.1mol/L以上5mol/L以下が好ましく、さらに好ましくは、0.5mol/L以上2.5mol/L以下である。
 <セパレータ>
 本実施形態に係る非水電解質二次電池に用いるセパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質二次電池用セパレータを構成する材料としては、例えばポリエチレン、ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-パーフルオロビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-フルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロアセトン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-プロピレン共重合体、フッ化ビニリデン-トリフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン-テトラフルオロエチレン共重合体等を挙げることができる。
 セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。
 また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。
 さらに、セパレータは、上記したような多孔膜や不織布等とポリマーゲルを併用して用いると、非水電解質の保液性が向上するため好ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に非水電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。
 前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。
 その他の電池の構成要素としては、端子、絶縁板、電池ケース等があるが、これらの部品は従来用いられてきたものをそのまま用いて差し支えない。
 <非水電解質二次電池>
 本実施形態に係る非水電解質二次電池を図10に示す。図10は、矩形状の非水電解質二次電池の容器内部を透視した斜視図である。電極群2が収納された電池容器3内に非水電解質(電解液)を注入することにより非水電解質二次電池1が組み立てられる。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
 本実施形態に係る非水電解質二次電池の形状については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。
 非水電解質二次電池は、一般的に、電解質を注液、封口後、工場内で複数回の充放電を経ることで完成し、出荷される。
 本実施形態に係る非水電解質二次電池は、工場出荷前の初期充放電(製造工程)において、4.5(vs.Li/Li)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、前記電位変化が平坦な領域が観察される充電過程が終了するまでの充電が一度も行われることなく出荷される。
 本実施形態に係る非水電解質二次電池が、前記平坦な領域が観察される充電過程が終了するまでの充電が行われた履歴を有しないことは、当該電池の正極活物質が、前記CuKα線を用いたエックス線回折図において、20°以上22°以下の範囲に回折ピークが観察されること、又は、当該電池が、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、充電電気量に対して電位変化が平坦な領域が観察されることにより確認することができる。これらの確認方法の詳細は、上記したとおりである。
 そして、第三の実施形態においては、上記の電位変化が平坦な領域を有することにより、過充電領域における体積当たりの充電電気量が大きくなるので、より高いSOCに至るまで電池電圧の急上昇が観察されない。
 <体積当たりの放電容量及び充電電気量の算出方法>
 本明細書において、プレス密度の測定条件は次のとおりである。測定は室温20℃以上25℃以下の大気中にて行う。プレス密度の測定に用いた装置の概念図を図11に示す。一対の測定プローブ1A、1Bを準備する。測定プローブ1A、1Bは、直径8.0mm(±0.05mm)のステンレス鋼(SUS304)製の円柱の一端を平面加工した測定面2A、2Bを有し、他端をステンレス鋼製の台座3A、3Bに前記円柱を垂直に固定したものである。アクリル製の円柱の中心部に、前記ステンレス鋼製円柱が重力によって空気中で自然にゆっくりと下降しうるように内径を調整し研磨加工された貫通孔7を設けた側体6を準備する。側体6の上面及び下面は平滑に研磨加工されている。
 一方の前記測定プローブ1Aを測定面2Aが上方を向くように水平な机上に設置し、上方から前記側体6を被せるようにして側体6の貫通孔7に前記測定プローブ1Aの円柱部を挿入する。もう一方の測定プローブ1Bを測定面2Bを下にして前記貫通孔7の上方から挿入し、前記測定面2A、2B間の距離をゼロの状態とする。このとき、ノギスを用いて測定プローブ1Bの台座3Bと測定プローブ1Aの台座3Aとの距離を測定しておく。
 次に、測定プローブ1Bを引き抜き、貫通孔7の上部から薬さじで0.3gの被測定試料の粉末(正極活物質粉末)を投入し、再度、測定プローブ1Bを測定面2Bを下にして前記貫通孔7の上方から挿入する。圧力計の付いた手動式の油圧プレス機を用いて前記測定プローブ1Bの上方から、プレス機の圧力目盛りが、活物質へ印加される圧力が40MPaと計算される数値に達するまで加圧する。なお、前記目盛りが前記数値に達した後、前記目盛りが示す値が減じても追加の加圧は行わない。その後、この状態で、再び、ノギスを用いて測定プローブ1Bの台座3Bと測定プローブ1Aの台座3Aとの距離を測定する。被測定試料投入前の距離との差(cm)と、測定面の面積(0.5024cm)と被測定試料の投入量(0.3g)から、加圧された状態の被測定試料の密度を算出し、これをプレス密度(g/cm)とする。なお、活物質へかかる圧力は、冶具への接触部の面積と、測定面の面積(粉体への接触面積)の関係から計算される。
 上記のようにして測定された正極活物質粉末のプレス密度と質量当たりの放電容量及び充電電気量をかけ合わせることによって、体積当たりの放電容量及び充電電気量を算出する。
 本実施形態の非水電解質二次電池は、電池を複数個集合した蓄電装置としても実現することができる。蓄電装置の一例を図12に示す。図12において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
 本実施形態に係る非水電解質二次電池は、上記過充電領域が終了するまでの充電過程を一度も経ないで製造され、かつ、上記過充電領域が終了するまでの充電を行わずに使用されることを前提としている。製造時の上記充電過程及び使用時に採用する充電電圧は、当該充電によって正極が到達する最大到達電位、即ち充電上限電位が、過充電領域が開始する電位以下となるように設定することが好ましい。初期充放電工程における充電上限電位、及び使用時の充電上限電位は4.5V(vs.Li/Li)未満とすることが好ましい。上記充電上限電位は、例えば、4.40V(vs.Li/Li)とすることができる。上記充電上限電位は、4.38V(vs.Li/Li)であってもよく、4.36V(vs.Li/Li)であってもよく、4.34V(vs.Li/Li)であってもよく、4.32V(vs.Li/Li)であってもよい。
 (実験例1)
 (実施例1-1)
 <リチウム遷移金属複合酸化物の作製>
 硫酸ニッケル6水和物284g、硫酸コバルト7水和物303g、硫酸マンガン5水和物443gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が27:27:46となる1.0Mの硫酸塩水溶液を作製した。
 次に、5Lの反応槽にイオン交換水2Lを注ぎ、アルゴンガスを30minバブリングさせることにより、イオン交換水中に含まれる酸素を除去した。反応槽の温度は50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を1500rpmの回転速度で攪拌しながら、反応槽内に対流が十分おこるように設定した。前記硫酸塩水溶液を3mL/minの速度で反応槽に滴下した。ここで、滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、0.5Mのアンモニア、及び0.2Mのヒドラジンからなる混合アルカリ水溶液を適宜滴下することにより、反応槽中のpHが常に9.8(±0.1)を保つように制御すると共に、反応液の一部をオーバーフローにより排出することにより、反応液の総量が常に2Lを超えないように制御した。滴下終了後、反応槽内の攪拌をさらに3h継続した。攪拌の停止後、室温で12h以上静置した。
 次に、吸引ろ過装置を用いて、反応槽内に生成した水酸化物前駆体粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20h乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、水酸化物前駆体を作製した。
 前記水酸化物前駆体1.852gに、水酸化リチウム1水和物0.971gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni、Co、Mn)のモル比が130:100となるように混合粉体を調製した。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から900℃まで10hかけて昇温し、900℃で5h焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、電気炉のスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5h後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製乳鉢で軽く解砕した。
 このようにして、リチウム遷移金属複合酸化物Li1.13Ni0.235Co0.235Mn0.40を作製した。
 <結晶構造の確認>
 前記リチウム遷移金属複合酸化物について、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて粉末エックス線回折測定を行い、α-NaFeO型結晶構造を有することを確認した。
 <正極の作製>
 N-メチルピロリドンを分散媒とし、前記リチウム遷移金属複合酸化物(以下、「LR」という。)を活物質とし、活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比90:5:5の割合で混練分散されている塗布用正極ペーストを作製した。該塗布用正極ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布、乾燥したのちプレスし、実施例1-1に係る正極を作製した。
 <負極の作製>
 金属リチウム箔をニッケル集電体に配置して、負極を作製した。該金属リチウムの量は、前記正極と組み合わせたときに電池の容量が負極によって制限されないように調整した。
 <非水電解質二次電池の組み立て>
 実施例1-1に係る正極を用いて、以下の手順で非水電解質二次電池を組み立てた。
 4-フルオロエチレンカーボネート(FEC)/プロピレンカーボネート(PC)/エチルメチルカーボネート(EMC)が体積比1:1:8である混合溶媒に、濃度が1mol/LとなるようにLiPFを溶解させた溶液100質量%に対し、添加剤としてリチウムジフルオロホスフェート(LiDFP)0.5質量%、及び4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)(化合物A)1質量%を添加したものを非水電解質として用いた。
 セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用いた。実施例1-1に係る正極、及び前記負極を、前記セパレータを介して、正極端子及び負極端子の開放端部が外部露出するように前記外装体に収納し、前記金属樹脂複合フィルムの金属接着性ポリプロピレン面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記非水電解質を注液後、注液孔を封止して、非水電解質二次電池を組み立てた。
 <初期充放電工程>
 組み立てた非水電解質二次電池は、25℃の下、初期充放電工程に供した。充電は、電流0.1C、終止電圧4.25Vの定電流定電圧(CCCV)充電とし、充電終止条件は電流値が1/6に減衰した時点とした。放電は、電流0.1C、終止電圧2.0Vの定電流放電とした。この充放電を2回行った。ここで、充電後及び放電後にそれぞれ30minの休止工程を設けた。なお、負極材料が金属リチウムの場合、正極電位と電池電圧はほぼ同じ値であるため、以下の手順における正極電位は、試験電池の電池電圧と読み替えることができる。対極が黒鉛の場合、電池電圧に黒鉛の電位を加味し、約0.1V足したものが正極の電位となることがわかっている。
 以上の製造工程を経て、実施例1-1に係る非水電解質二次電池を完成した。
 (比較例1-1)
 市販のLiNi0.5Co0.2Mn0.3(以下、「NCM523」という。)を正極活物質として用いた以外は、実施例1-1と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、比較例1-1に係る非水電解質二次電池を完成した。
 (比較例1-2)
 実施例1-1と同様にして非水電解質二次電池の組み立てを行い、初期充放電工程における1回目の充電のみ終止電圧4.6Vの定電流定電圧(CCCV)充電とした以外は、実施例1-1と同様の初期充放電工程を行い、比較例1-2に係る非水電解質二次電池を完成した。
 (実施例1-2)
 実施例1-1において作製したリチウム遷移金属複合酸化物Li1.13Ni0.235Co0.235Mn0.40 358gを0.1Mの硫酸アルミニウム水溶液200mLに投入し、マグネチックスターラーを用いて25℃、400rpmにて30秒撹拌した。その後、吸引ろ過により粉末とろ液に分別した。得られた粉末は80℃の大気中で20h乾燥した。さらに、先述の箱型電気炉をもちいて400℃の大気中で4h熱処理を行った。このようにして、アルミニウム化合物を被覆させたリチウム遷移金属複合酸化物(以下、「LR-Al」という。)を作製した。このリチウム遷移金属複合酸化物を正極活物質として用いた以外は、実施例1-1と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例1-2に係る非水電解質二次電池を完成した。
 <正極活物質のエックス線回折ピークの確認>
 実施例1-1及び比較例1-2に係る初期充放電後の非水電解質二次電池から前述した手順及び条件で採取した正極合剤を用いて、前述した条件で、エックス線回折測定を行った。実施例1-1の正極活物質には、CuKα線を用いたエックス線回折図において、20°以上22°以下の範囲に回折ピークが観察される(図3の下段参照)が、比較例1-2の正極活物質には、20°以上22°以下の範囲に回折ピークが観察されないことを確認した(図3の上段参照)。
 <過充電試験>
 実施例及び比較例に係る非水電解質二次電池を用いて、電池電圧の上限を設けずに正極合剤1gあたり10mAの電流値で定電流(CC)充電を行った。この充電は、初期充放電を含めると、3回目の充電に相当する。ここで、充電開始から4.45V到達時の容量がX(mAh)、各電圧における容量がY(mAh)であるときの、Y/X*100を容量比Z(%)とし、正極電位が急上昇し、電圧が5.1Vに到達したときの容量比Z(%)を「遅延効果」として記録した。また、dZ/dVの最大値を求めた。
 実施例1-1、1-2及び比較例1-1、1-2に係る非水電解質二次電池の過充電試験における遅延効果(%)、及びdZ/dVの最大値を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1によると、NCM523を用いた正極を備える比較例1-1に係る非水電解質二次電池は、過充電試験において、Zが135%で正極電位が急上昇して、電圧が5.1Vに到達しており、遅延効果が十分ではない。これは、過充電試験において、電圧の上限を設けずに充電を行ったとき、比較例1-1に係る非水電解質二次電池の正極が、4.5V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、充電電気量に対して電位変化が平坦な領域が観察されないこと(dZ/dVの最大値が150未満であること)と関連している。
 また、比較例1-2に係る非水電解質二次電池は、リチウム過剰型活物質を用いた正極を備えているが、過充電試験において、Zが130%で正極電位の急上昇が観察されており、やはり遅延効果が十分ではない。これは、初期充放電工程において、正極電位が4.6V(vs.Li/Li)に至る充電が行われたため、過充電試験において、電圧の上限を設けずに充電を行ったとき、比較例1-2に係る非水電解質二次電池の正極が、4.5V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、充電電気量に対して電位変化が平坦な領域が観察されないこと(dZ/dVの最大値が150未満であること)と関連している。
 これに対して、リチウム過剰型活物質を用いた正極を備え、初期充放電工程を4.5V(vs.Li/Li)未満の電位で行った実施例1-1、1-2に係る非水電解質二次電池では、比較例1-1、1-2に比べて優れた遅延効果がみとめられる。これは、実施例1-1、1-2に係る非水電解質二次電池の正極が、4.5V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、充電電気量に対して電位変化が平坦な領域が観察されること(dZ/dVの最大値が150以上であること)と関連している。
 次に、実施例1-1又は1-2に対して、非水電解質の組成を変更した非水電解質電池を作製した。
 (実施例1-3)
 非水電解質の溶媒を、エチレンカーボネート(EC)/プロピレンカーボネート(PC)/エチルメチルカーボネート(EMC)が体積比25:5:70である混合溶媒に変更した以外は、実施例1-1と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例1-3に係る非水電解質二次電池を完成した。
 (実施例1-4)
 非水電解質の溶媒を、実施例1-3と同様に変更し、添加剤としてさらにビニレンカーボネート(VC)を非水電解質の質量に対して0.2質量%加えた以外は実施例1-1と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例1-4に係る非水電解質二次電池を完成した。
 (実施例1-5)
 非水電解質の溶媒を、FEC/EMCが体積比20:80である混合溶媒に変更した以外は、実施例1-1と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例1-5に係る非水電解質二次電池を完成した。
 (実施例1-6)
 非水電解質の溶媒を、FEC/EMCが体積比5:95である混合溶媒に変更した以外は、実施例1-1と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例1-6に係る非水電解質二次電池を完成した。
 (実施例1-7、1-8)
 正極活物質を実施例1-2において作製したアルミニウム化合物を被覆させたリチウム遷移金属複合酸化物(LR-Al)に変更した以外は、それぞれ実施例1-3及び1-4と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例1-7及び実施例1-8に係る非水電解質二次電池を完成した。
 <保存試験>
 実施例1-1から1-8に係る非水電解質二次電池に対して、上記した条件で初期AC抵抗の測定を行った。その後、上記した条件で保存試験を行い、保存後のAC抵抗を測定した。初期AC抵抗に対する保存後のAC抵抗の増加率(%)を、「初期に対する15日目の抵抗増加率」とした。実施例1-1から1-8に係る非水電解質二次電池の初期に対する15日目の抵抗増加率(%)を表2に示す。
Figure JPOXMLDOC01-appb-T000006
 表2によると、正極活物質としてLRを用いた実施例1-1、1-3から1-6において、FECを含まない非水電解質を用いた実施例1-3、1-4に係る非水電解質二次電池と比べて、FECを含む非水電解質を用いた実施例1-1、1-5、1-6に係る非水電解質二次電池では、保存後のAC抵抗の増加がより抑制されていることがわかる。また、正極活物質としてLR―Alを用いた実施例1-2、1-7、1-8において、やはり、FECを含まない非水電解質を用いた実施例1-7、1-8に係る非水電解質二次電池に比べて、FECを含む非水電解質を用いた実施例1-2に係る非水電解質二次電池では、保存後のAC抵抗の増加がより抑制されていることがわかる。
 次に、非水電解質の添加剤を変更した例を示す。
 (実施例1-9)
 エチレンカーボネート(EC)/プロピレンカーボネート(PC)/エチルメチルカーボネート(EMC)が体積比25:5:70である混合溶媒に、濃度が1mol/LとなるようにLiPFを溶解させた溶液100質量%に対し、添加剤として、化合物Aのみを1.0質量%加えたものを非水電解質として用いた。
 黒鉛を負極活物質として用い、質量比で、黒鉛:スチレン-ブタジエン・ゴム(SBR):カルボキシメチルセルロース(CMC)=97:2:1の割合(固形分換算)で含み、水を溶剤とする塗布用負極ペーストを作製し、厚さ10μmの帯状の銅箔集電体の片面に塗布し、乾燥した。これをローラープレス機により加圧した後、100℃で12h減圧乾燥して、極板中の水分を除去した。このようにして負極を作製した。
 前記非水電解質、及び負極を用いた以外は実施例1-3と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例1-9に係る非水電解質二次電池を完成した。なお、初期充放電工程における初回及び2回目の充電を終止電圧4.25Vの定電流定電圧(CCCV)充電としたとき、満充電状態における黒鉛負極の電位は0.1V(vs.Li/Li)程度であり、正極電位は4.35V(vs.Li/Li)程度まで到達している。
 (実施例1-10から1-12)
 添加剤として、1.0質量%の化合物Aに代えて、1.0質量%の化合物Aとともに、LiDFOBを、それぞれ、0.2、0.5、及び1.0質量%加えた以外は実施例1-9と同様にして、実施例1-10から1-12に係る非水電解質二次電池を完成した。
 (実施例1-13、1-14)
 添加剤として、LiDFOBを、それぞれLiBOB、及びMOABに変更した以外は、実施例1-11と同様にして、実施例1-13、1-14に係る非水電解質二次電池を作製した。
 (比較例1-3から1-6)
 初期充放電工程において、初回及び2回目の充電を終止電圧4.5Vの定電流定電圧(CCCV)充電とした以外は、それぞれ、実施例1-9、1-11、1-13及び1-14と同様にして比較例1-3から1-6に係る非水電解質二次電池を作製した。なお、初期充放電工程の満充電状態における黒鉛負極の電位は0.1V(vs.Li/Li)程度であり、正極電位は4.6V(vs.Li/Li)程度まで到達している。
 実施例1-9から1-14、及び比較例1-3から1-6に係る非水電解質二次電池の初期AC抵抗を測定し、ホウ素に結合したオキサレート基を有する化合物を添加剤として含まない場合(実施例1-9及び比較例1-3に係る非水電解質二次電池)の初期AC抵抗に対する前記添加剤を含む非水電解質二次電池の初期AC抵抗の増減率を「抵抗増減率/%」として求めた。その結果を以下の表3に示す。なお、表3における「添加量/mass%」は、「ホウ素に結合したオキサレート基を有する化合物の添加量の質量パーセント」である。
Figure JPOXMLDOC01-appb-T000007
 表3によると、正極活物質としてLRを用い、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満として製造された実施例1-9から1-14に係る非水電解質二次電池は、正極の最大到達電位が4.5V(vs.Li/Li)以上となる初期充放電をされた比較例1-3から1-6に係る非水電解質二次電池よりも、初期AC抵抗が低減されていることがわかる。なお、比較例1-3から1-6の非水電解質二次電池の正極の最大到達電位は、上記したとおり、4.6V(vs.Li/Li)程度である。そして、実施例の中でも、非水電解質がホウ素に結合したオキサレート基を有する化合物を添加剤として含む実施例1-10から1-14は、前記化合物を含まない実施例1-9と比較して、さらに初期AC抵抗を低減する効果を奏することがわかる。
 正極活物質として実施例1-9から1-14と同じLRを正極に用いた比較例1-3から1-6に係る非水電解質二次電池は、初期充放電工程における正極の最大到達電位が4.5V(vs.Li/Li)以上となる工程を経て製造されているから、前述した手順による回折ピークの確認方法により、正極活物質の20°以上22°以下の範囲の回折ピークが消失していることが確認される。そして、該各比較例に係る非水電解質二次電池は、実施例1-9から1-14に係る非水電解質二次電池と比べて、いずれも初期AC抵抗が高く、しかも、非水電解質がホウ素に結合したオキサレート基を有する化合物を添加剤として含むことにより、初期AC抵抗がさらに増加しているから、前記化合物の含有は、初期AC抵抗の低減に逆効果であることがわかる。
(実験例2)
 実験例2は、第二の実施形態に係る正極活物質についての実施例を、比較例と共に示すものである。
(実施例2-1)
 リチウム遷移金属複合酸化物の作製については、上記の実施例1-1と同様に行い、リチウム遷移金属複合酸化物Li1.13Ni0.235Co0.235Mn0.40を作製した。
 <活物質の酸処理>
 上記のリチウム遷移金属複合酸化物5.0gを水素イオン濃度0.05Mのクエン酸水溶液200mLに添加し、水溶液の温度を50℃に保ち、撹拌子を用いて400rpmで2h撹拌した。撹拌後、吸引装置をもちい、正極活物質を濾過し、さらにイオン交換水で洗浄をおこなった後、80℃で晩常圧乾燥して、リチウム遷移金属複合酸化物が酸処理された実施例2-1に係る活物質を作製した。BET比表面積は5.8m/gであった。
 (実施例2-2、2-3)
 リチウム遷移金属複合酸化物の酸処理を、クエン酸に代えて水素イオン濃度0.05Mのホウ酸水溶液、又は0.025Mの酒石酸水溶液を用いて行った以外は実施例2-1と同様にして実施例2-2、2-3に係る活物質を作製した。BET比表面積はそれぞれ4.6m/g、5.5m/gであった。
 (参考例2-1)
 リチウム遷移金属複合酸化物に酸処理を施さない以外は、実施例2-1と同様にして参考例2-1に係る活物質を作製した。BET比表面積は2.3m/gであった。
 (参考例2-2から2-5)
 リチウム遷移金属複合酸化物の酸処理を、それぞれ水素イオン濃度0.05M、0.03M、及び0.01Mの硫酸水溶液を用いて行った以外は、実施例2-1と同様にして参考例2-2から2-4に係る活物質を作製し、酸処理時間を10minとした以外は参考例2-4と同様にして、参考例2-5に係る活物質を作製した。比較例2-2のBET比表面積は7.4m/gであった。
 (参考例2-6から2-8)
 リチウム遷移金属複合酸化物の酸処理を、それぞれ水素イオン濃度0.1M、及び0.01Mのリン酸水溶液を用いて行った以外は、実施例2-1と同様にして参考例2-6、2-7に係る活物質を作製し、酸処理時間を10minとした以外は参考例2-7と同様にして、参考例2-8に係る活物質を作製した。参考例2-6のBET比表面積は5.7m/gであった。
 (参考例2-9、2-10)
 リチウム遷移金属複合酸化物の酸処理を、それぞれ水素イオン濃度0.1M、及び0.05Mの酒石酸水溶液を用いて行った以外は、実施例2-1と同様にして参考例2-9、2-10に係る活物質を作製した。BET比表面積はそれぞれ7.1m/g、6.5m/gであった。
 (実施例2-4、2-5及び参考例2-11)
 Ni:Co:Mnのモル比が40:5:55となる水酸化物前駆体を作製し、Li:(Ni、Co、Mn)のモル比が120:100となるように混合粉体を調製した以外は、それぞれ実施例2-1、2-2及び参考例2-1と同様にして実施例2-4、2-5及び参考例2-11に係る活物質を作製した。
 (実施例2-6及び参考例2-12)
 Li:(Ni、Co、Mn)のモル比が130:100となるように混合粉体を調製した以外は、それぞれ実施例2-4及び参考例2-11と同様にして実施例2-6及び参考例2-12に係る活物質を作製した。
 (参考例2-13から2-15)
 Ni:Co:Mnのモル比が35:25:40となる水酸化物前駆体を作製し、Li:(Ni、Co、Mn)のモル比が120:100となるように混合粉体を調製した以外は、それぞれ実施例2-1、2-2及び参考例2-1と同様にして参考例2-13から2-15に係る活物質を作製した。
 (比較例2-1、2-2)
 実施例2-4に係る水酸化物前駆体と、水酸化リチウム1水和物とを、Li:(Ni、Co、Mn)のモル比が100:100となるように混合粉体を調製した以外は、それぞれ実施例2-4及び参考例2-11と同様にして比較例2-1、2-2に係る活物質を作製した。
 (比較例2-3から2-5)
 Ni:Co:Mnのモル比が33:33:33となる水酸化物前駆体を作製し、前記水酸化物前駆体と、水酸化リチウム1水和物とを、Li:(Ni、Co、Mn)のモル比が100:100となるように混合粉体を調製した以外は、それぞれ実施例2-1、2-2及び参考例2-1と同様にして比較例2-3から2-5に係る活物質を作製した。
 <結晶構造の確認>
 上記の実験例2の実施例、参考例及び比較例に係る活物質について、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて粉末エックス線回折測定を行った。すべての実施例、参考例及び比較例に係る活物質は、α-NaFeO型結晶構造を有していた。また、比較例2-1から2-5を除いた実施例及び参考例に係る活物質(「リチウム過剰型」活物質)は、20°以上22°以下の範囲に回折ピークが観察されることを確認した。
 <正極及び負極の作製>
 上記の実施例、参考例及び比較例に係る活物質を用いて、上記の実施例1-1と同様にして、正極を作製した。また、上記の実施例1-1と同様にして、負極を作製した。
 <非水電解質二次電池の組み立て>
 上記の各実施例、参考例及び比較例に係る正極を用いて、以下の手順で非水電解質二次電池を組み立てた。
 電解液として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)が体積比6:7:7である混合溶媒に濃度が1mol/LとなるようにLiPFを溶解させた溶液を用いた。セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用いた。上記の各実施例、参考例及び比較例に係る正極、並びに前記負極を、前記セパレータを介して、正極端子及び負極端子の開放端部が外部露出するように前記外装体に収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記電解液を注液後、注液孔を封止して、非水電解質二次電池を組み立てた。
 <初回クーロン効率の確認>
 組み立てた非水電解質二次電池を、25℃の下、初回充放電工程に供し、初回クーロン効率の確認を行った。充電は、正極合剤1gあたり15mA(0.1Cに相当)の電流値で、上限電圧4.35Vの定電流定電圧充電とし、充電終止条件は電流値が1/5に減衰した時点とした。放電は、同じ電流値で、下限電圧2.85Vの定電流放電とした。ここで、充電後及び放電後にそれぞれ10分間の休止過程を設け、充電容量及び放電容量(0.1C放電容量)を確認し、充電容量に対する放電容量の割合を初回クーロン効率とした。
 <放電容量比a/bの測定>
 次に、放電容量比a/bの測定を行った。充電は、正極合剤1gあたり15mA(0.1Cに相当)の電流値で、上限電圧4.35Vの定電流定電圧充電とし、充電終止条件は電流値が1/5に減衰した時点とした。10分間の休止過程を設け、放電は、同じ電流値で下限電圧2.0Vの定電流放電とした。ここで、4.35Vから3.0Vまでの放電容量(a)と3.0Vから2.0Vまでの放電容量(b)の比a/bを求めた。
 なお、本実施例、参考例及び比較例においては、上記の放電容量比a/bを評価するにあたり、充放電を0.1Cで行っても、0.02Cで充放電した場合と同様のa/bが得られることを確認した上で、上記測定条件を設定した。
 <高率放電性能の確認>
 さらに、高率放電性能の確認を行った。充電は、正極合剤1gあたり15mAの電流値で、上限電圧4.35Vの定電流定電圧充電とし、充電終止条件は電流値が1/5に減衰した時点とした。10分間の休止過程を設け、放電は、正極合剤1gあたり300mA(2Cに相当)の電流にて、終止電圧2.85Vの定電流放電を行った。上記の0.1C放電容量に対するこのときの放電容量(2C放電容量)の割合を高率放電性能(2C/0.1C)とした。
 <正極活物質の回折ピークの確認>
 前述の回折ピークの確認方法に基づき、完全放電状態の実施例及び参考例に係る非水電解質二次電池を解体して、正極合剤を取り出し、CuKα線を用いたエックス線回折測定を行った。全ての実施例及び参考例において、正極活物質は20°以上22°以下の範囲に回折ピークが確認された。
 以上の測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000008
 表4からは、実施例2-1、2-2と参考例2-1との対比において、リチウム過剰型活物質をクエン酸(pKa=3.1)、又はホウ酸(pKa=9.14)で酸処理した正極活物質を用い、4.5V未満の充放電に供した実施例2-1、2-2に係る非水電解質二次電池は、酸処理を施さない参考例2-1に係る電池に比べて、0.1C容量を維持しつつ、初回クーロン効率及び高率放電性能が向上していることがわかる。実施例2-1、2-2に係る電池は、4.35Vから3.0Vまでの放電容量(a)と3.0Vから2.0Vまでの放電容量(b)の比a/bが17以上25以下の範囲内であったのに対し、参考例2-1に係る電池は、a/bが25より大きかった。なお、実施例2-1、2-2の活物質は、参考例2-1の活物質より、比表面積が大きかった。
 参考例2-2から2-5では、酸種を硫酸(pKa=-3)に変更し、種々の水素イオン濃度及び/又は処理時間で酸処理した場合の電池の特性を示しており、0.1C容量はいずれも酸処理を施さない参考例2-1を下回り、初回クーロン効率と高率放電性能の両方が参考例2-1を上回ることはなかった。放電容量比a/bは17より小さいか、25より大きかった。
参考例2-6から2-8では、酸種をリン酸(pKa=2.12)に変更し、リチウム過剰型活物質を水素イオン濃度及び/又は処理時間を変えて酸処理した正極活物質を用いた場合の電池の特性を示している。やはり、0.1C容量はいずれも酸処理を施さない参考例2-1を下回り、初回クーロン効率と高率放電性能の両方が参考例2-1を上回ることはなかった。放電容量比a/bは17より小さいか、25より大きかった。
 実施例2-3、及び参考例2-9、2-10は、異なる水素イオン濃度の酒石酸(pKa=3.2)で酸処理した正極活物質を有する電池に係る例である。
 実施例2-3では、酸未処理の参考例2-1とほぼ同等の0.1C容量を示し、初回クーロン効率及び高率放電性能が向上したのに対して、参考例2-9、2-10に係る電池は、初回クーロン効率は実施例3-3より改善されたが、参考例2-1が示す0.1C容量を維持することができず、高率放電性能も参考例2-1からの改善が見られなかった。また、放電容量比a/bは、水素イオン濃度の低い酒石酸で酸処理した正極活物質を有する実施例3-3の電池では17以上25以下の範囲内であったのに対して、水素イオン濃度の高い酒石酸で酸処理した正極を有する参考例2-9、2-10の電池では17より小さかった。なお、実施例3-3の活物質は、参考例2-9、2-10の活物質より、比表面積が小さかった。
 以上から、pKaが3.1以上の酸処理を行う場合でも、酸溶液の水素イオン濃度を適宜選択し、所定の放電容量比a/bを満たす必要があることがわかる。
 実施例2-4、2-5及び参考例2-11は、実施例2-1、2-2及び参考例2-1に係るリチウム過剰型活物質の組成(Li/Me=1.3、Mn/Me=0.48)を、Mnの組成比がより大きい他の組成(Li/Me=1.2、Mn/Me=0.55)に変更した例に相当し、実施例2-6、参考例2-12は、実施例2-4及び参考例2-11に係る上記の組成のMn/Meを変更せず、Li比を変更した(Li/Me=1.3、Mn/Me=0.55)例に相当する。
 実施例2-4、2-5に係る電池の特性は、活物質が同一組成であって、酸処理を施さない参考例2-11よりも、0.1C放電容量、初回クーロン効率、及び高率放電性能のいずれも上回っており、放電容量比a/bが17以上25以下の範囲内であることがわかる。実施例2-6に係る電池の特性も、活物質が同一組成であって、酸処理を施さない参考例2-12よりも、前記の各電池特性が上回っており、放電容量比a/bが17以上25以下の範囲内であることがわかる。したがって、Mn/Meがより大きい組成範囲の活物質においても、a/bの特定が、電池特性の向上に関係していることがわかる。
 参考例2-13から2-15は、実施例2-1、2-2及び参考例2-1に係るリチウム過剰型活物質の組成(Li/Me=1.3、Mn/Me=0.48)を、Mnの組成比がより小さい他の組成(Li/Me=1.2、Mn/Me=0.40)に変更した例に相当する。
 酸処理を施した参考例2-13、2-14に係る電池の特性は、酸処理を施さない参考例2-15と比べて、初回クーロン効率に改善が見られるだけで、高率放電性能は改善されていない。
 したがって、参考例2-13に係る活物質のように、放電容量比a/bが17以上25以下を満たしている場合でも、Mn/Meが小さすぎる場合、第二の実施形態に係る正極活物質についての効果は奏さないことがわかる。
 なお、この実験例2における参考例は、第二の実施形態に係る正極活物質ではないが、上記のとおり、全ての実施例及び参考例に係る活物質を正極に用いた非水電解質二次電池において、正極活物質は20°以上22°以下の範囲に回折ピークが確認されるから、上記の参考例に係る活物質を正極に用いた場合も、上記の実施例に係る活物質を正極に用いた場合と同様に、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池が得られるという効果を奏する。
 比較例2-1、2-2は、リチウムが遷移金属に対して過剰となるようなリチウム過剰型の組成の活物質ではないが、Mnの組成比を大きくした(Li/Me=1、Mn/Me=0.55)例であり、ともに0.1C容量、高率放電性能が低く、放電容量比a/bも本発明の範囲を外れている。
 比較例2-3から2-5は、既に実用化されているLi/Me=1、Ni:Co:Me=33:33:33のリチウム遷移金属複合酸化物を正極活物質に用いた例である。ホウ酸処理を施した比較例2-4は、酸未処理の比較例2-5より各電池特性が向上しているが、クエン酸処理を施した比較例2-3は、0.1C放電容量及び高率放電性能が低下しており、各電池特性と放電容量比a/bとの相関は見られない。
 (実験例3)
 実験例3は、第三の実施形態に係る正極活物質についての実施例を、比較例と共に示すものである。まず、同一組成の遷移金属化合物を使用し、リチウム遷移金属複合酸化物の製造条件を変化させた実施例3-1から3-10及び参考例1を示す。
 (実施例3-1)
 <リチウム遷移金属複合酸化物の作製>
 リチウム遷移金属複合酸化物の作製にあたって、反応晶析法を用いて水酸化物前駆体を作製した。まず、硫酸ニッケル6水和物578.3g、硫酸コバルト7水和物56.2g、硫酸マンガン5水和物385.7gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が55:5:40となる1.0Mの硫酸塩水溶液を作製した。次に、5Lの反応槽に2Lのイオン交換水を注ぎ、Nガスを30minバブリングさせることにより、イオン交換水中に含まれる酸素を除去した。反応槽の温度は50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を1500rpmの回転速度で攪拌しながら、反応層内に対流が十分おこるように設定した。前記硫酸塩原液を1.3mL/minの速度で反応槽に50h滴下した。ここで、滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、1.25Mのアンモニア、及び0.1Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHが常に10.20(±0.1)を保つように制御すると共に、反応液の一部をオーバーフローにより排出することにより、反応液の総量が常に2Lを超えないように制御した。滴下終了後、反応槽内の攪拌をさらに1h継続した。攪拌の停止後、室温で12h以上静置した。  次に、吸引ろ過装置を用いて、反応槽内に生成した水酸化物前駆体粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20h乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、Ni:Co:Mnのモル比が55:5:40である水酸化物前駆体を作製した。
 前記水酸化物前駆体2.264gに、水酸化リチウム1水和物1.264g、フッ化リチウム0.015gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni、Co、Mn)のモル比が120:100である混合粉体を調製した。フッ化リチウムの添加比率は、Li化合物の総量に対して2mol%である。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2.5gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から900℃まで10hかけて昇温し、900℃で4h焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5h後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、実施例3-1に係るリチウム遷移金属複合酸化物を作製した。
 (実施例3-2から3-5、参考例1)
 水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるフッ化リチウムの添加比率を、それぞれ、Li化合物の総量に対して5、8、10、及び20mol%とした以外は実施例3-1と同様にして、実施例3-2から3-4、及び参考例1に係るリチウム遷移金属複合酸化物を作製した。
 また、フッ化リチウムを添加しない以外は実施例3-1と同様にして、実施例3-5に係るリチウム遷移金属複合酸化物を作製した。
 (実施例3-6)
 水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体を、950℃で焼成したこと以外は実施例3-2と同様にして、実施例3-6に係るリチウム遷移金属複合酸化物を作製した。
 (実施例3-7)
 水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるLi:(Ni、Co、Mn)のモル比を、130:100に変更した以外は実施例3-2と同様にして、実施例3-7に係るリチウム遷移金属複合酸化物を作製した。
 (実施例3-8から3-10)
 フッ化リチウムに代えて、それぞれ炭酸リチウム、フッ化ナトリウム、及び塩化ナトリウムを、リチウム化合物の総量に対して5mol%添加した混合粉体を調整した以外は実施例3-2と同様にして、実施例3-8から3-10に係るリチウム遷移金属複合酸化物を作製した。
 次に、別の組成の遷移金属化合物を使用し、リチウム遷移金属複合酸化物の製造条件を変化させた実施例3-11から3-14及び参考例3-2を示す。
 (実施例3-11)
 Ni:Co:Mnのモル比を40:15:45に変更して水酸化物前駆体を作製し、前記水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるLi:(Ni、Co、Mn)のモル比を、110:100に変更した以外は実施例3-2と同様にして、実施例3-11に係るリチウム遷移金属複合酸化物を作製した。
 (実施例3-12から3-14)
 フッ化リチウムに代えて、それぞれ炭酸リチウム、フッ化ナトリウム、及び塩化ナトリウムを、リチウム化合物の総量に対して5mol%添加した添加した混合粉体を調整した以外は実施例3-11と同様にして、実施例3-12から3-14に係るリチウム遷移金属複合酸化物を作製した。
 (参考例3-2)
 水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるフッ化リチウムの添加比率を20モル%とした以外は実施例3-11と同様にして、参考例3-2に係るリチウム遷移金属複合酸化物を作製した。
 さらに、別の組成の遷移金属化合物を使用し、リチウム遷移金属複合酸化物の製造条件を変化させた実施例3-15から3-17、参考例3-3、3-4及び比較例3-1から3-3を示す。
 (実施例3-15)
 Ni:Mnのモル比を60:40に変更して水酸化物前駆体を作製した以外は実施例3-2と同様にして、実施例3-15に係るリチウム遷移金属複合酸化物を作製した。
 (実施例3-16)
 Ni:Co:Mnのモル比を35:15:50に変更して水酸化物前駆体を作製し、前記水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるLi:(Ni、Co、Mn)のモル比を、110:100に変更した以外は実施例3-2と同様にして、実施例3-16に係るリチウム遷移金属複合酸化物を作製した。
 (実施例3-17)
 Ni:Co:Mnのモル比を33:33:33に変更して水酸化物前駆体を作製し、前記水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるLi:(Ni、Co、Mn)のモル比を、110:100に変更した以外は実施例3-2と同様にして、実施例3-17に係るリチウム遷移金属複合酸化物を作製した。
 (参考例3-3)
 Ni:Co:Mnのモル比を30:15:55に変更して水酸化物前駆体を作製した以外は実施例3-2と同様にして、参考例3-3に係るリチウム遷移金属複合酸化物を作製した。
 (参考例3-4)
 Ni:Co:Mnのモル比を30:10:60に変更して水酸化物前駆体を作製し、前記水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるLi:(Ni、Co、Mn)のモル比を、130:100に変更した以外は実施例3-2と同様にして、参考例3-4に係るリチウム遷移金属複合酸化物を作製した。
 (比較例3-1)
 Ni:Co:Mnのモル比を33:33:33に変更して水酸化物前駆体を作製し、前記水酸化物前駆体、及び水酸化リチウム1水和物の混合粉体におけるLi:(Ni、Co、Mn)のモル比を、100:100に変更した以外は実施例3-5と同様にして、比較例3-1に係るリチウム遷移金属複合酸化物を作製した。
 (比較例3-2)
 Ni:Co:Mnのモル比を33:33:33に変更して水酸化物前駆体を作製し、前記水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるLi:(Ni、Co、Mn)のモル比を、100:100に変更した以外は実施例3-2と同様にして、比較例3-2に係るリチウム遷移金属複合酸化物を作製した。
 (比較例3-3)
 水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるLi:(Ni、Co、Mn)のモル比を、100:100に変更した以外は実施例3-2と同様にして、比較例3-3に係るリチウム遷移金属複合酸化物を作製した。
 <リチウム遷移金属複合酸化物の結晶構造の確認>
 上記の実施例及び比較例に係るリチウム遷移金属複合酸化物が、α-NaFeO型結晶構造を有することを、エックス線回折測定における構造モデルと回折パターンが一致したことにより確認した。また、比較例3-1から3-3を除いた実施例及び参考例に係る活物質(「リチウム過剰型」活物質)は、20°以上22°以下の範囲に回折ピークが観察されることを確認した。
 <I490/I600の評価>
 また、上記の実施例、参考例及び比較例に係るリチウム遷移金属複合酸化物のラマンスペクトルを測定し、550cm-1以上650cm-1以下の範囲での最大値I600に対する、450cm-1以上520cm-1以下の範囲での最大値I490の比(I490/I600)を評価した。実施例3-1から3-5に係るリチウム遷移金属複合酸化物のラマンスペクトルを図13に示す。
 <正極及び負極の作製>
 上記の実施例、参考例及び比較例に係るリチウム遷移金属複合酸化物を正極活物質に用いて、上記の実施例1-1と同様にして、正極を作製した。なお、全ての実施例、参考例及び比較例に係る非水電解質二次電池同士で充電電気量および放電容量を求める試験条件が同一になるように、一定面積当たりに塗布されている活物質の塗布厚みを調整した。
 また、上記の実施例1-1と同様にして、負極を作製した。
 <非水電解質二次電池の組み立て>
 上記の各実施例、参考例及び比較例に係る正極は、一部を切り出して用い、実験例2と同様の手順で、非水電解質二次電池を組み立てた。
 <初回充放電工程>
 上記手順で組み立てた非水電解質二次電池は、初回充放電工程を経て完成される。ここで、初回充放電工程において、初回充放電条件1を適用する第1の群と、初回充放電条件2を適用する第2の群に分割した。
 (体積当たりの放電容量の算出)
 第1の群の電池を用いて、次の初回充放電条件1を適用して、初回充放電工程に供した。25℃の下、充電は、電流0.1C、電圧4.35Vの定電流定電圧充電とし、充電終止条件は電流値が0.02Cに減衰した時点とした。このときの充電電気量を「4.35V充電時充電電気量」(mAh/g)とした。放電は、電流0.1C、終止電圧2.5Vの定電流放電とした。この充放電を1サイクル行った。なお、充電後に10分間の休止過程を設けた。
 このときの質量当たりの放電容量を「4.35V充電時放電容量」(mAh/g)とした。一方、前述した条件で正極活物質粉末のプレス密度を測定し、測定したプレス密度(g/cm)と「4.35V充電時放電容量」(mAh/g)をかけ合わせることによって、体積当たりの放電容量「4.35V充電時放電容量」(mAh/cm)を算出した。ここで、「4.35V充電時放電容量」(mAh/cm)は、過充電領域が終了するまでの充電過程を一度も経ないで製造し、かつ、過充電領域が終了するまでの充電を行わずにより低い電位範囲で使用した場合の放電容量を表す指標である。
 <正極活物質の回折ピークの確認>
 前述の回折ピークの確認方法に基づき、上記の初回充放電工程後における完全放電状態の実施例及び参考例に係る非水電解質二次電池を解体して、正極合剤を取り出し、CuKα線を用いたエックス線回折測定を行った。全ての実施例及び参考例において、正極活物質は20°以上22°以下の範囲に回折ピークが確認された。
 (体積当たりの充電電気量の算出)
 第2の群の電池を用いて、次の初回充放電条件2を適用して、初回充放電工程に供した。25℃の下、充電は、電流0.1C、電圧4.6Vの定電流定電圧充電とし、充電終止条件は電流値が0.02Cに減衰した時点とした。放電は、電流0.1C、終止電圧2.0Vの定電流放電とした。この充放電を1サイクル行った。なお、充電後に10分間の休止過程を設けた。
 このときの充電電気量(mAh/g)と、上記「4.35V充電時充電電気量」(mAh/g)との差を「4.35Vから4.6V間の充電電気量」(mAh/g)として算出した。上記のプレス密度(g/cm)と「4.35Vから4.6V間の充電電気量」(mAh/g)をかけ合わせることによって、体積当たりの充電電気量「4.35Vから4.6V間の充電電気量」(mAh/cm)を算出した。ここで、「4.35Vから4.6V間の充電電気量」(mAh/cm)は、過充電領域における充電電気量を表す指標である。
 以上の結果を表5に示す。また、図14は、I490/I600と体積当たりの放電容量との関係を示しており、1<Li/MeかつMn/Me<0.55のものを●(実施例1-1から1-17及び参考例3-1、3-2)で示し、0.55≦Mn/Meのものを◇(参考例3-3、3-4)で示し、Li/Me=1.0のものを△(比較例3-1から3-3)で示す。図14から、1<Li/MeかつMn/Me<0.55の組成において、ラマンピーク強度比と体積当たりの放電容量に関して、相関がみられることがわかる。一方で、Li/Me=1.0や0.55≦Mn/Meの組成においては相関が見られていない。
Figure JPOXMLDOC01-appb-T000009
 実施例3-1から3-5に係るリチウム遷移金属複合酸化物(正極活物質)は、全てNi、Co、及びMnを含む遷移金属化合物(水酸化前駆体)の組成が同一であり、Li/Me比も同一であるが、焼結助剤であるフッ化リチウムの添加の有無又は添加量が相違する。添加量が多いほどI490/I600は減少する傾向を示すが、すべて0.45を上回っており、4.35V充電時の体積当たりの放電容量が450mAh/cmを超え、過充電領域における体積当たりの充電電気量が110mAh/cmを超えていることがわかる。これに対して、フッ化リチウムの添加量がリチウム化合物の総量に対して20mol%である参考例3-1では、I490/I600が、0.45を下回り、4.35V充電時の体積当たりの放電容量、及び過充電領域における体積当たりの充電電気量が十分得られないことがわかる。
 実施例3-6、3-7は、実施例3-2における混合粉体の焼成温度を変更した、又はLi/Me比を変更した例に相当する。いずれも、I490/I600は0.45を上回り、4.35V充電時の体積当たりの放電容量が450mAh/cmを超え、過充電領域における体積当たりの充電電気量が110mAh/cmを超えていることがわかる。
 実施例3-8から3-10は、実施例3-2における焼結助剤の種類を変更した例に相当し、いずれも、I490/I600が0.45を上回り、4.35V充電時の体積当たりの放電容量、及び過充電領域における体積当たりの充電電気量が高いことがわかる。
 また、実施例3-1から3-4、3-6から3-10と実施例3-5とを比較すると、焼結助剤を添加した実施例3-1から3-4、3-6から3-10の正極活物質は、焼結助剤を添加しない実施例3-5の正極活物質よりもI490/I600が小さく0.85以下であり、4.35V充電時の体積当たりの放電容量が高いことがわかる。したがって、4.35V充電時の体積当たりの放電容量を高くするためには、I490/I600を0.45以上0.85以下とすることが好ましい。
 実施例3-11から3-14、及び参考例3-2は、リチウム遷移金属複合酸化物の組成を実施例3-2から変更した例に相当し、実施例3-12から3-14は、さらに実施例3-11における焼結助剤の種類を変更した例に相当する。実施例3-11から3-14は、いずれも、I490/I600が0.45以上であり、4.35V充電時の体積当たりの放電容量、及び過充電領域における体積当たりの充電電気量が高いことがわかる。
 参考例3-2は、実施例3-11における焼結助剤の添加量を増大した例に相当する。I490/I600は0.45を下回り、4.35V充電時の体積当たりの放電容量は389mAh/cmと、十分ではなかった。
 実施例3-15から3-17、参考例3-3、3-4及び比較例3-1から3-3は、リチウム遷移金属複合酸化物の組成を、実施例3-2からさらに変更した例に相当する。実施例3-15から3-17より、Mn/Me比が0.33以上0.50以下であれば、I490/I600が0.45以上となる条件下で、450mAh/cmを超える4.35V充電時の体積当たりの放電容量と、110mAh/cmを超える過充電領域における体積当たりの充電電気量を有する活物質が得られたことがわかる。
 これに対して、参考例3-3、3-4からは、Mn/Me比が0.55以上の場合、I490/I600が0.45以上であっても、十分な4.35V充電時の体積当たりの放電容量が得られないことがわかる。
 なお、この実験例3における参考例は、第三の実施形態に係る正極活物質ではないが、上記のとおり、全ての実施例及び参考例に係る活物質を正極に用いた非水電解質二次電池において、正極活物質は20°以上22°以下の範囲に回折ピークが確認されるから、上記の参考例に係る活物質を正極に用いた場合も、上記の実施例に係る活物質を正極に用いた場合と同様に、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池が得られるという効果を奏する。
 そして、本実施例に係る活物質を正極に用いると、過充電領域における体積当たりの充電電気量が大きくなるから、さらに高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池が得られる。
 比較例3-1から3-3は、本発明が対象としないLi/Me=1の場合の活物質である。I490/I600はいずれも0.45を下回り、4.35V充電時の体積当たりの放電容量、及び過充電領域における体積当たりの充電電気量がともに十分である活物質は得られなかった。
 本発明に係る非水電解質二次電池は、過充電された場合においてもより高いSOCに至るまで、電池電圧の急上昇が観察されない。
 また、非水電解質の非水溶媒にフッ素化環状カーボネートを含むことにより、保存後のAC抵抗の増加を抑制することができる。
 さらに、非水電解質がホウ素に結合したオキサレート基を有する化合物を含むことにより、初期AC抵抗を低減することができる。
 第二の実施形態に係る非水電解質二次電池用活物質は、4.5V(vs.Li/Li)未満の電位範囲での使用において優れた初回クーロン効率及び高率放電性能を示す。
 第三の実施形態に係るリチウム遷移金属複合酸化物を含む正極活物質を用いると、過充電領域における体積当たりの充電容量が大きく、より高いSOCに至るまで電池電圧の急上昇が観察されず、かつ、体積当たりの放電容量が大きい非水電解質二次電池を提供することができる。
 したがって、本発明に係る非水電解質二次電池は、高い安全性、保存性能、効率性、及び高出力が要求されるハイブリッド自動車(HEV)用、プラグインハイブリッド自動車(PHEV)用、電気自動車(EV)用の電池として、有用性が高い。
1  非水電解質二次電池
2  電極群
3  電池容器
4  正極端子
4’ 正極リード
5  負極端子
5’ 負極リード
1A、1B 測定プローブ
2A、2B 測定面
3A、3B 台座
6  側体
7  貫通孔
20 蓄電ユニット
30 蓄電装置

Claims (19)

  1.  正極、負極及び非水電解質を備える非水電解質二次電池であって、
     前記正極は、活物質として、
     α-NaFeO型結晶構造を有し、
     一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるリチウム遷移金属複合酸化物を含み、
     前記活物質は、CuKα線を用いたエックス線回折図において、20°以上22°以下の範囲に回折ピークが観察される、非水電解質二次電池。
  2.  正極、負極及び非水電解質を備える非水電解質二次電池であって、
     前記正極は、活物質として、
     α-NaFeO型結晶構造を有し、
     一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるリチウム遷移金属複合酸化物を含み、
     前記正極は、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池。
  3.  前記正極が活物質として含む前記リチウム遷移金属複合酸化物は、遷移金属(Me)に対するMnのモル比が、0.4≦Mn/Meである請求項1又は2に記載の非水電解質二次電池。
  4.  前記正極が活物質として含む前記リチウム遷移金属複合酸化物は、遷移金属(Me)に対するLiのモル比が、1.15<Li/Meである請求項1から3のいずれか1項に記載の非水電解質二次電池。
  5.  前記正極が活物質として含む前記リチウム遷移金属複合酸化物は、遷移金属(Me)に対するLiのモル比が、Li/Me≦1.35である請求項1から4のいずれか1項に記載の非水電解質二次電池。
  6.  前記正極が活物質として含む前記リチウム遷移金属複合酸化物の含有量は、前記正極の全活物質の80質量%より多い請求項1から5のいずれか1項に記載の非水電解質二次電池。
  7.  満充電状態(SOC100%)における正極の最大到達電位が4.5V(vs.Li/Li)未満となる電池電圧で使用される、請求項1から6のいずれか1項に記載の非水電解質二次電池。
  8.  前記非水電解質は、非水溶媒にフッ素化環状カーボネートを含む、請求項1から7のいずれか1項に記載の非水電解質二次電池。
  9.  前記非水電解質は、ホウ素に結合したオキサレート基を有する化合物を含む、請求項1から8のいずれか1項に記載の非水電解質二次電池。
  10.  リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、
     前記リチウム遷移金属複合酸化物は、
     α-NaFeO型結晶構造を有し、
     一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素、Meに対するMnのモル比Mn/MeがMn/Me≧0.45)で表され、
     前記正極活物質は、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である、
    非水電解質二次電池用正極活物質。
  11.  リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質の製造方法であって、
     α-NaFeO型結晶構造を有し、
     一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素、Meに対するMnのモル比Mn/MeがMn/Me≧0.45)で表されるリチウム遷移金属複合酸化物を、pKaが3.1以上の酸で処理して、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である正極活物質を製造する、非水電解質二次電池用正極活物質の製造方法。
  12.  リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、
     前記リチウム遷移金属複合酸化物は、
     α-NaFeO型結晶構造を有し、
     一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素、Meに対するMnのモル比Mn/Meが0.3≦Mn/Me<0.55)で表され、
     ラマンスペクトルにおける550cm-1以上650cm-1以下の範囲での最大値I600に対する、450cm-1以上520cm-1以下の範囲での最大値I490の比(I490/I600)が0.45以上である、
    非水電解質二次電池用正極活物質。
  13.  請求項12に記載の非水電解質二次電池用正極活物質の製造方法であって、Ni及びMn、又はNi、Co及びMnを含み、Meに対するMnのモル比Mn/Meが0.3≦Mn/Me<0.55である遷移金属化合物に、Li化合物を混合し、焼成することにより、モル比Li/Meが1<Li/Meであるリチウム遷移金属複合酸化物を製造する際に、焼結助剤を添加する、非水電解質二次電池用正極活物質の製造方法。
  14.  請求項10又は12に記載の非水電解質二次電池用正極活物質を含有する非水電解質二次電池用正極。
  15.  請求項14に記載の非水電解質二次電池用正極を備え、前記正極が含有する正極活物質は、CuKα線を用いたエックス線回折図において、20°以上22°以下の範囲に回折ピークが観察される、非水電解質二次電池。
  16.  請求項14に記載の非水電解質二次電池用正極を備え、前記正極は正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池。
  17.  満充電状態(SOC100%)における正極の最大到達電位が4.5V(vs.Li/Li)未満となる電池電圧で使用される、請求項15又は16に記載の非水電解質二次電池。
  18.  請求項1から9、15から17のいずれか1項に記載の非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、非水電解質二次電池の製造方法。
  19.  請求項1から9、15から17のいずれか1項に記載の非水電解質二次電池の使用方法であって、満充電状態(SOC100%)における正極の最大到達電位が4.5V(vs.Li/Li)未満となる電池電圧で使用される、非水電解質二次電池の使用方法。
PCT/JP2019/024375 2018-06-21 2019-06-19 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法 WO2019244955A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/252,765 US20210257665A1 (en) 2018-06-21 2019-06-19 Positive active material for nonaqueous electrolyte secondary battery, method for producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery
EP19821775.4A EP3813163B1 (en) 2018-06-21 2019-06-19 Positive active material for nonaqueous electrolyte secondary battery, method for producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery
CN201980041784.3A CN112771695B (zh) 2018-06-21 2019-06-19 正极活性物质、正极、非水电解质二次电池及其使用方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018117727A JP7031108B2 (ja) 2018-06-21 2018-06-21 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池の製造方法
JP2018117726A JP7043989B2 (ja) 2018-06-21 2018-06-21 非水電解質二次電池用正極活物質、その製造方法、前記活物質を含有する正極、前記正極を備えた非水電解質二次電池、及び前記非水電解質二次電池の製造方法
JP2018-117727 2018-06-21
JP2018117725 2018-06-21
JP2018-117726 2018-06-21
JP2018-117725 2018-06-21
JP2018-205573 2018-10-31
JP2018205573A JP7147478B2 (ja) 2018-06-21 2018-10-31 非水電解質二次電池、及び非水電解質二次電池の製造方法

Publications (1)

Publication Number Publication Date
WO2019244955A1 true WO2019244955A1 (ja) 2019-12-26

Family

ID=68983224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024375 WO2019244955A1 (ja) 2018-06-21 2019-06-19 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法

Country Status (1)

Country Link
WO (1) WO2019244955A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526357A (zh) * 2020-11-25 2021-03-19 上海空间电源研究所 一种锂离子电池功率匹配性评价方法
WO2021131964A1 (ja) * 2019-12-25 2021-07-01 株式会社Gsユアサ 非水電解質蓄電素子、並びに蓄電装置、それらの使用方法及びそれらの製造方法
JP2021150120A (ja) * 2020-03-18 2021-09-27 トヨタ自動車株式会社 正極活物質および該正極活物質を備える二次電池
WO2021205863A1 (ja) * 2020-04-07 2021-10-14 株式会社Gsユアサ 非水電解質蓄電素子用正極活物質、非水電解質蓄電素子用正極、非水電解質蓄電素子、蓄電装置、非水電解質蓄電素子の使用方法及び非水電解質蓄電素子の製造方法
WO2022145032A1 (ja) * 2020-12-29 2022-07-07 カワサキモータース株式会社 プロトン伝導型二次電池用電解液およびこれを備えるプロトン伝導型二次電池
JP2022163915A (ja) * 2021-04-15 2022-10-27 プライムプラネットエナジー&ソリューションズ株式会社 非水電解液二次電池用負極および非水電解液二次電池

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (fr) * 2001-11-22 2003-05-30 Yuasa Corporation Materiau actif d'electrode positive pour cellule secondaire au lithium et cellule secondaire associee
JP2005044785A (ja) 2003-07-24 2005-02-17 Samsung Sdi Co Ltd 正極活物質及びこれを利用したリチウム二次電池
JP2010050079A (ja) 2008-03-17 2010-03-04 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011187440A (ja) 2010-02-12 2011-09-22 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液二次電池
JP4877660B2 (ja) 2008-09-30 2012-02-15 株式会社Gsユアサ リチウム二次電池用活物質、その製造方法及びリチウム二次電池
JP2012504316A (ja) 2008-09-30 2012-02-16 エンビア・システムズ・インコーポレイテッド 高い比容量を有するフッ素をドープされたリチウムリッチ金属酸化物からなる正極電池材料およびそれに対応する電池
JP2012089470A (ja) 2010-09-24 2012-05-10 Toshiba Corp 非水電解質二次電池用正極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用正極活物質の製造方法
JP2012104335A (ja) 2010-11-09 2012-05-31 Sanyo Electric Co Ltd 非水電解液二次電池
JP2013191390A (ja) 2012-03-13 2013-09-26 Asahi Kasei Corp リチウムイオン二次電池
JP2014075177A (ja) 2011-01-27 2014-04-24 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質およびその製造方法
JP2014107269A (ja) 2012-11-22 2014-06-09 Samsung Fine Chemicals Co Ltd 正極活物質、その製造方法およびそれを含むリチウム二次電池
JP2014170739A (ja) 2013-02-28 2014-09-18 Samsung Sdi Co Ltd 複合正極活物質及びその製造方法、該複合正極活物質を採用した正極とリチウム電池
WO2015083330A1 (ja) 2013-12-02 2015-06-11 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池
JP2015122235A (ja) 2013-12-24 2015-07-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法
JP2016015298A (ja) 2014-07-03 2016-01-28 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極、リチウム二次電池及び蓄電装置
JP2016100054A (ja) 2014-11-18 2016-05-30 国立研究開発法人産業技術総合研究所 リチウムイオン電池
JP2016517615A (ja) 2013-03-12 2016-06-16 アップル インコーポレイテッド 先進のカソード材料を用いた高電圧、高体積エネルギー密度のリチウムイオンバッテリ
JP2016126935A (ja) 2015-01-06 2016-07-11 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
WO2016190419A1 (ja) * 2015-05-28 2016-12-01 株式会社Gsユアサ 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用電極及び非水電解質二次電池

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (fr) * 2001-11-22 2003-05-30 Yuasa Corporation Materiau actif d'electrode positive pour cellule secondaire au lithium et cellule secondaire associee
JP2005044785A (ja) 2003-07-24 2005-02-17 Samsung Sdi Co Ltd 正極活物質及びこれを利用したリチウム二次電池
JP2010050079A (ja) 2008-03-17 2010-03-04 Sanyo Electric Co Ltd 非水電解質二次電池
JP4877660B2 (ja) 2008-09-30 2012-02-15 株式会社Gsユアサ リチウム二次電池用活物質、その製造方法及びリチウム二次電池
JP2012504316A (ja) 2008-09-30 2012-02-16 エンビア・システムズ・インコーポレイテッド 高い比容量を有するフッ素をドープされたリチウムリッチ金属酸化物からなる正極電池材料およびそれに対応する電池
JP2011187440A (ja) 2010-02-12 2011-09-22 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液二次電池
JP2012089470A (ja) 2010-09-24 2012-05-10 Toshiba Corp 非水電解質二次電池用正極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用正極活物質の製造方法
JP2012104335A (ja) 2010-11-09 2012-05-31 Sanyo Electric Co Ltd 非水電解液二次電池
JP2014075177A (ja) 2011-01-27 2014-04-24 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質およびその製造方法
JP2013191390A (ja) 2012-03-13 2013-09-26 Asahi Kasei Corp リチウムイオン二次電池
JP2014107269A (ja) 2012-11-22 2014-06-09 Samsung Fine Chemicals Co Ltd 正極活物質、その製造方法およびそれを含むリチウム二次電池
JP2014170739A (ja) 2013-02-28 2014-09-18 Samsung Sdi Co Ltd 複合正極活物質及びその製造方法、該複合正極活物質を採用した正極とリチウム電池
JP2016517615A (ja) 2013-03-12 2016-06-16 アップル インコーポレイテッド 先進のカソード材料を用いた高電圧、高体積エネルギー密度のリチウムイオンバッテリ
WO2015083330A1 (ja) 2013-12-02 2015-06-11 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池
JP2015122235A (ja) 2013-12-24 2015-07-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法
JP2016015298A (ja) 2014-07-03 2016-01-28 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極、リチウム二次電池及び蓄電装置
JP2016100054A (ja) 2014-11-18 2016-05-30 国立研究開発法人産業技術総合研究所 リチウムイオン電池
JP2016126935A (ja) 2015-01-06 2016-07-11 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
WO2016190419A1 (ja) * 2015-05-28 2016-12-01 株式会社Gsユアサ 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用電極及び非水電解質二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P. LANZ ET AL., ELECTROCHIMICA ACTA, vol. 130, 2014, pages 206 - 212
See also references of EP3813163A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131964A1 (ja) * 2019-12-25 2021-07-01 株式会社Gsユアサ 非水電解質蓄電素子、並びに蓄電装置、それらの使用方法及びそれらの製造方法
JP2021150120A (ja) * 2020-03-18 2021-09-27 トヨタ自動車株式会社 正極活物質および該正極活物質を備える二次電池
JP7365565B2 (ja) 2020-03-18 2023-10-20 トヨタ自動車株式会社 正極活物質および該正極活物質を備える二次電池
WO2021205863A1 (ja) * 2020-04-07 2021-10-14 株式会社Gsユアサ 非水電解質蓄電素子用正極活物質、非水電解質蓄電素子用正極、非水電解質蓄電素子、蓄電装置、非水電解質蓄電素子の使用方法及び非水電解質蓄電素子の製造方法
CN112526357A (zh) * 2020-11-25 2021-03-19 上海空间电源研究所 一种锂离子电池功率匹配性评价方法
CN112526357B (zh) * 2020-11-25 2023-04-18 上海空间电源研究所 一种锂离子电池功率匹配性评价方法
WO2022145032A1 (ja) * 2020-12-29 2022-07-07 カワサキモータース株式会社 プロトン伝導型二次電池用電解液およびこれを備えるプロトン伝導型二次電池
JP2022163915A (ja) * 2021-04-15 2022-10-27 プライムプラネットエナジー&ソリューションズ株式会社 非水電解液二次電池用負極および非水電解液二次電池
JP7271598B2 (ja) 2021-04-15 2023-05-11 プライムプラネットエナジー&ソリューションズ株式会社 非水電解液二次電池用負極および非水電解液二次電池

Similar Documents

Publication Publication Date Title
JP6369471B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
WO2019244955A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法
JP7574885B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法
US9219275B2 (en) Active material for nonaqueous electrolyte secondary battery, method for manufacturing active material, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6542421B1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
JP6471693B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池
KR102165664B1 (ko) 리튬 2차전지용 양극 활물질, 그 제조 방법 및 리튬 2차전지
WO2017104688A1 (ja) リチウム二次電池用正極活物質、正極活物質の前駆体の製造方法、正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
EP2790254A1 (en) Active material for non-aqueous electrolyte secondary cell, method for manufacturing active material for non-aqueous electrolyte secondary cell, electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
KR20130132847A (ko) 비수 전해질 2차 전지용 양극 활물질, 그 양극 활물질의 제조 방법, 비수 전해질 2차 전지용 전극, 비수 전해질 2차 전지및 그 2차 전지의 제조 방법
JP2013065472A (ja) 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
EP3813163B1 (en) Positive active material for nonaqueous electrolyte secondary battery, method for producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery
JP7322892B2 (ja) 非水電解質二次電池、非水電解質二次電池の製造方法及び非水電解質二次電池の使用方法
JP6036168B2 (ja) 非水電解質二次電池
JP7031108B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池の製造方法
JP6354964B2 (ja) 非水電解質二次電池
JP7043989B2 (ja) 非水電解質二次電池用正極活物質、その製造方法、前記活物質を含有する正極、前記正極を備えた非水電解質二次電池、及び前記非水電解質二次電池の製造方法
US20220006080A1 (en) Nonaqueous electrolyte secondary battery, method of manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery
JP2018077965A (ja) 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19821775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019821775

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019821775

Country of ref document: EP

Effective date: 20210121