WO2019139276A1 - Dc 차단기 - Google Patents
Dc 차단기 Download PDFInfo
- Publication number
- WO2019139276A1 WO2019139276A1 PCT/KR2018/016411 KR2018016411W WO2019139276A1 WO 2019139276 A1 WO2019139276 A1 WO 2019139276A1 KR 2018016411 W KR2018016411 W KR 2018016411W WO 2019139276 A1 WO2019139276 A1 WO 2019139276A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switch
- circuit
- capacitor
- current
- turned
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
- H02H3/087—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/59—Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/59—Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
- H01H33/596—Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
Definitions
- the present invention relates to a direct current (DC) circuit breaker, and more particularly, to a DC circuit breaker that blocks a fault current flowing in a direct current (DC) line when a fault occurs.
- DC direct current
- the high-voltage DC breaker is a switching device that can cut off the current flowing through a high voltage transmission line of about 50 kV or more like a high voltage direct current (HVDC) system.
- HVDC high voltage direct current
- Such a high voltage DC circuit breaker usually serves to cut off a fault current when a fault occurs on one side or the other side of a high voltage DC line.
- a DC circuit breaker can be applied to a DC voltage distribution system of about 1 to 50 kV.
- a relatively inexpensive mechanical switch is provided in a DC circuit breaker to open a mechanical switch when a DC circuit breaks down, thereby isolating the DC line to cut off the fault current.
- an arc may be generated between the switching terminals due to a high voltage when the switch is opened. If an arc is generated, the fault current may continuously flow through the arc, failing to completely cut off the fault current.
- Japanese Laid-Open Patent Nos. 1984-068128 and 1183508 disclose a method in which when a mechanical switch is opened due to a failure in a DC line, the opposite direction of a fault current And a zero current is generated in the mechanical switch by superimposing the resonance current on the arc.
- the resonance current injected for the arc extinguishing must be opposite in direction to the fault current, and the same size or larger.
- the resonance current since the resonance current must be generated several times in order to generate the resonance current in excess of the fault current, there is a problem that the cutoff speed is slowed. In particular, when the fault current is large, There is a problem that it is difficult to cope with.
- a DC circuit breaker includes: a main switch having one end connected to a first DC line and the other end connected to a second DC line; A first circuit part connected in parallel to the main switch; And n second circuit portions connected to the first circuit portion in parallel;
- the first circuit unit includes a series connection of an inductor, a first capacitor, and a first switch, the inductor or the first capacitor is connected to the first DC line, and the first switch is connected to the second DC line
- the first switch and the n second switches are turned on according to the magnitude of the fault current flowing in the main switch.
- the switch that is relatively farther from the first circuit part is turned on.
- the first switch and the second switch include a thyristor.
- the n second capacitors of the n second circuit portions each have the same or at least a part of the same charging capacity
- the n second capacitors of the n second circuit portions each have a different charging capacity.
- the main switch when a failure occurs on the first DC line side, the main switch is opened and the current through the first closed circuit of the main switch and the first circuit part is supplied to the main switch by a voltage charged in the first capacitor, And is supplied in the opposite direction.
- the first switch is turned off and the first one of the n second switches And the remaining switches are all turned off so that a current due to the charging voltage of the capacitor included in the second closed circuit formed through the first switch turned on is supplied to the main switch in a direction opposite to the fault current.
- the first switch is turned off until the zero current flows between the two switching contacts
- the second switch is turned on sequentially from the first one of the n second switches and all the other switches are turned off so that the capacitor included in the third closed circuit formed through the second switch that is turned on whenever any one of the second switches is turned on, Is supplied to the main switch in a direction opposite to the fault current.
- the main switch when a failure occurs on the first DC line side, the main switch is opened and the second switch of the selected one of the n second circuit portions is turned on and the remaining second switch and the first switch S0 is turned off so that the second switch is turned on so that the current due to the charging voltage of the capacitor included in the fourth closed circuit formed through the second switched on is greater than the fault current in the main switch do.
- a charging resistor connected between a ground and a common point between the n-th capacitor and the n-th switch of the n-th second circuit portion, wherein when the current is supplied to the first DC line, Flows through the inductor, the first capacitor of the first circuit portion, the n capacitors of the n second circuit portions, and the charging resistor to charge the first capacitor and the n capacitors.
- the resonance circuit for generating the resonance current can be set and selected in various ways, so that the resonance current corresponding to the fault current generated in the mechanical switch can be generated quickly, thereby quickly breaking the fault current.
- the resonant circuit corresponding to the fault current can be immediately generated, so that immediate response is possible.
- FIG. 1 is a configuration diagram of a DC circuit breaker according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram showing the flow of current when the DC circuit breaker according to the embodiment of the present invention is in a normal state.
- FIG. 3 is a schematic diagram illustrating a process of breaking a fault current when a fault occurs on one side of a DC circuit breaker according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram illustrating a process of breaking a fault current when a fault occurs on one side of a DC breaker according to another embodiment of the present invention.
- FIG. 5 is a schematic diagram illustrating a process of breaking a fault current when a fault occurs on one side of a DC circuit breaker according to another embodiment of the present invention.
- first, second, A, B, (a), and (b) may be used. These terms are intended to distinguish the constituent elements from other constituent elements, and the terms do not limit the nature, order or order of the constituent elements.
- a DC circuit breaker 100 according to an embodiment of the present invention includes a main switch 110.
- the main switch 110 may be a mechanical switch.
- One end of the main switch 110 is connected to the first DC line 10 and the other end is connected to the second DC line 20.
- the first and second DC lines 10 and 20 conduct current of high voltage in both directions.
- the main switch 110 maintains the closed state to transmit the current supplied through the first DC line 10 to the second DC line 20.
- the DC circuit breaker 100 includes a first circuit unit 120 connected in parallel to the main switch 110.
- the first circuit unit 120 includes a series connection of an inductor L, a first capacitor C0 and a first switch S0, and the inductor L or the first capacitor C0 is connected to the first DC line 10 And the first switch S0 is connected to the second DC line 20.
- the inductor L is connected to the first DC line 10 and the first capacitor C0 may be connected to the first DC line 10.
- the main switch 110 When the main switch 110 is closed and the first switch S0 is turned on, the main switch 110, the inductor L, the first capacitor C0, and the first switch S0 are turned on And the inductor L and the first capacitor C0 constitute an LC resonance circuit. In this case, a current due to the voltage charged in the first capacitor C0 may flow through the first closed circuit.
- the DC circuit breaker 100 includes n (n? 2, integer) second circuit units 130 connected in parallel to the first circuit unit 120, respectively.
- Each of the n second circuit units 120 is constituted by a series connection of a second capacitor and a second switch and the second capacitor is connected to the first capacitor C0 of the first circuit unit 120 and the first switch S0 (N0) and the second switch is connected to the second DC line (20).
- the second circuit unit 130 will be described in detail with reference to the drawings.
- the n second circuit units 130 are connected in parallel to the first circuit unit 120.
- the serial connection 131 of the first capacitor C1 and the first switch S1 of the second circuit unit 130 is connected to the n- 1 circuit part 120 in parallel.
- the first switch S0 of the first circuit unit 120 and the n second switches S1 to Sn of the second circuit unit 130 are connected at one end to the second DC line 20 and at the other end, 1 capacitor C0 and the n second capacitors C1 to Cn, respectively.
- the other end of the first switch S0 of the first circuit unit 120 is connected to the common point N1 of the first capacitor C0 and the first capacitor C1 of the second circuit unit 130
- the other end of the first switch S1 of the second circuit part 130 is connected to the common point N2 of the first capacitor C1 and the second capacitor C2 of the second circuit part 130.
- connection relationship of the switches S1 to Sn is applied from the first to the nth as described above so that the other end of the kth switch Sk of the second circuit unit 130 is connected to the kth capacitor Th capacitor Ck and the (k + 1) -th capacitor Ck + 1. At this time, in the case of the last nth switch Sn, it is connected to the common point Sn of the nth capacitor Cn and the ground GND.
- the DC circuit breaker 100 of the present invention further includes a charging resistor R connected between the common node Nn of the n-th switch and the n-th switch of the n-th second circuit part 130 and the ground GND do.
- This charging resistance is for charging the first capacitor C0 and the n second capacitors C1 to Cn by the current flowing to the first DC line 10.
- the current flows through the inductor L, the first capacitor C0 of the first circuit unit 120, the capacitors C1 to Cn of the n second circuit units 130, And flows through the resistor R to charge the first capacitor C0 and the n capacitors C1 to Cn with a voltage.
- the charging capacities of the first capacitor C0 of the first circuit part 130 and the second capacitors C1 to Cn of the n second circuit parts 130 in the DC circuit breaker 100 according to the present invention may be equal to each other Some may be the same or different.
- the n second circuit units 130 are sequentially connected in parallel to the first circuit unit 110 from the first to the nth, when the charging capacities are different from each other, the charging capacity is increased from the first to the nth .
- the first switch S0 of the first circuit unit 120 When the main switch 110 is opened due to a failure in the first DC line 10 or the second DC line 20 according to the present invention, the first switch S0 of the first circuit unit 120, And only one of the second switches S1 to Sn of the n second circuit units 130 is turned on and the other is turned off.
- the ON state of the switch is a closed state and the current is conducted, and the OFF state of the switch is an open state to interrupt the current.
- one switch of the first switch S0 and the second switch S1 to Sn is determined according to the magnitude of the fault current flowing in the main switch 110.
- FIG. 2 is a schematic diagram showing the flow of current when the DC circuit breaker according to the embodiment of the present invention is in a normal state.
- the DC circuit breaker 100 according to the present invention maintains a closed state in a steady state. At this time, all the switches, that is, the first switch S0 and the n second switches S1 to Sn are all off.
- the normal current is supplied through the first DC line 10 and flows normally to the second DC line 20 through the main switch 110. At the same time, the current flows through the inductor L, the first capacitor C0, And flows through the second capacitors C1 to Cn and the resistor R to charge the + Vc voltages to the capacitors C0 to Cn, respectively. At this time, specific voltages are respectively charged according to the charging capacities of the capacitors C0 to Cn.
- the switch operates according to each of the embodiments shown in FIGS. 3 to 5 to cut off the fault current. This will be described in detail below.
- FIG. 3 is a schematic diagram illustrating a process of breaking a fault current when a fault occurs on one side of a DC breaker according to an embodiment of the present invention.
- FIG. 4 is a flowchart illustrating a process of breaking a fault current when a fault occurs on one side of a DC breaker according to another embodiment of the present invention
- FIG. 5 is a schematic diagram illustrating a process of breaking a fault current when a fault occurs on one side of a DC circuit breaker according to another embodiment of the present invention.
- a control unit (not shown) detects the occurrence of a fault when a fault occurs on the first DC line 10 side in the normal state of FIG.
- the main switch 110 is opened.
- the main switch 110 is preferably a mechanical switch, but the present invention is not limited thereto. An arc is generated between the switching contacts when the main switch 110 is opened so that a fault current continues to flow from the second DC line 20 side to the first DC line 10 side.
- the control unit turns on the first switch S0 of the first circuit unit 120 and turns off all the n second switches S1 to Sn. Thereby forming the first closed circuit L1 through the main switch 110 and the first circuit part 120. [ Then, the current i0 due to the + Vc voltage charged in the first capacitor C0 flows to the main switch 110 through the first closed circuit L1.
- the direction of the current i0 supplied to the main switch 110 through the first closed loop L1 is opposite to the fault current flowing from the second DC line 20 to the first DC line 10,
- the fault current in the main switch 110 is cut off when the fault current is at least the fault current.
- the second circuit unit 130 is used as shown in FIG.
- This second closed loop L2 is formed through the main switch 110, the inductor L, the first capacitor L0, the first capacitor C1 of the second circuit part 130 and the first switch S1
- the current i1 due to the voltage charged in the first capacitor C0 and the first capacitor C1 is supplied to the main switch 110 in the direction opposite to the breakdown current through the second closed circuit L1.
- the first switch S0 is kept off until the fault current is completely cut off as shown in (b)
- the first switches among the n second switches S1 to Sn are sequentially turned on from the first switch to the nth switch and all the other switches are turned off so that one of the second switches S1 to Sn is turned on
- the current i2 due to the charging voltage of all the capacitors included in the third closed circuit formed through the second switch turned on each time the main switch 110 is turned on is supplied to the main switch 110 in the direction opposite to the fault current.
- FIG. 5 is a view for detecting the magnitude of the fault current in advance and selecting one of the second switches S1 to Sn corresponding thereto to turn on.
- the controller (not shown) detects the occurrence of a fault and opens the main switch 110 of the DC breaker 100 in order to cut off the fault current. Further, the controller determines the switch of the n second switches S1 to Sn after checking the magnitude of the fault current. That is, it is determined whether a current i3 due to the voltage of all the capacitors included in the closed circuit formed through the turned-on second switch is larger than the fault current by turning on the second switch, 2 switch. Of course, in this case, all other switches are off.
- the DC circuit breaker 100 when the main switch 110 is opened due to a failure on the first DC line 10 side and the second switch of the selected one of the n second circuit units 130 is turned on
- the current i3 due to the charging voltage of all the capacitors included in the fourth closed circuit formed through the remaining switches and the second switch that is turned on and off by the first switch S0 is supplied to the main switch 110, It is preferable to determine the second switch to be larger than the failure current of the second switch.
- FIG. 5 shows an example in which the second switch S2 of the n second circuit units 130 is turned on for convenience of explanation. All the remaining switches S0, S1, S3, ... Sn are turned off. Therefore, the main switch 110, the first capacitor C0 of the first circuit unit 120, the first capacitor C1, the second capacitor C2, the second switch S2 of the n second circuit units 130, A fourth closed circuit L4 is formed.
- the current due to the voltages charged in the first capacitor C0 and the first and second capacitors C1 and C2 flows to the main switch 110 through the fourth closed circuit L4 so that the fault current is cut off.
- the DC circuit breaker according to the present invention needs to supply the main switch with the current in the opposite direction to the fault current.
- the magnitude of the supplied current depends on the magnitude of the fault current So that it can be adjusted.
- a number of switch and capacitor circuits are added to adjust the magnitude of the current according to the on / off state of the switch.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
Abstract
본 발명은 직류(DC) 선로에 고장발생시 그 직류선로에 흐르는 고장전류를 차단하도록 하는 DC 차단기에 관한 것이다. 본 발명의 실시 예에 따른 DC 차단기는, 일단이 제1DC선로에 연결되고 타단이 제2DC선로에 연결된 메인스위치; 상기 메인스위치에 병렬연결된 제1회로부; 및 상기 제1회로부에 각각이 병렬연결된 n개의 제2회로부; 를 포함하고, 상기 제1회로부는, 인덕터, 제1커패시터 및 제1스위치의 직렬연결로 구성되며 상기 인덕터 또는 제1커패시터가 상기 제1DC선로에 연결되고 상기 제1스위치가 상기 제2DC선로에 연결되고, 상기 n(n≥1,정수)개의 제2회로부 각각은, 제2커패시터 및 제2스위치의 직렬연결로 구성되며 상기 제2커패시터는 상기 제1회로부의 제1커패시터와 제1스위치 사이의 공통점에 연결되고 상기 제2스위치는 상기 제2DC선로에 연결된다.
Description
본 발명은 직류(DC:Direct Current) 차단기에 관한 것으로서, 특히 직류(DC) 선로에 고장발생시 그 직류선로에 흐르는 고장전류를 차단하도록 하는 DC 차단기에 관한 것이다.
고전압 DC 차단기는 고전압 직류전송(HVDC:High Voltage Direct Current) 시스템과 같이 약 50㎸ 이상의 고전압 송전선로를 통해 흐르는 전류를 차단할 수 있는 스위칭 장치이다. 이러한 고전압 DC 차단기는 통상적으로 고전압 DC 선로의 일측 또는 타측에 고장발생시 고장전류를 차단하는 역할을 한다. 물론 이러한 DC 차단기는 약 1~50㎸의 중간전압의 DC 배전시스템에도 적용이 가능하다.
일반적으로 DC 차단기에 비교적 저렴한 기계적 스위치(mechanical switch)가 구비되어 DC 선로에 고장발생시 기계적 스위치가 개방되어 DC 선로를 분리하여 고장전류를 차단하도록 한다.
하지만, 이러한 기계적 스위치는 개방시 고전압으로 인해 스위칭 단자 간에 아크(arc)가 발생될 수 있으며, 아크가 발생되면 아크를 통해 고장전류가 지속적으로 흐르게 되어 고장전류를 완전히 차단하지 못하는 문제점이 있다.
이러한 문제점을 해결하기 위해 일본공개특허 제1984-068128호와 한국등록특허 제1183508호는 DC 선로에 고장발생으로 기계적 스위치가 개방될 때 기계적 스위치의 스위칭단자에 발생한 아크를 통해 흐르는 고장전류의 반대방향으로 공진전류를 중첩시킴으로써 기계적 스위치에서 0(zero)전류를 만들어 아크를 소호시키는 기술을 제공한다.
이때, 아크소호를 위해 주입되는 공진전류는 고장전류와 방향이 반대이면서 크기는 동일하거나 더 커야 한다. 하지만, 상기한 종래의 DC 차단기들은 고장전류 이상으로 공진전류를 발생시키기 위해서는 여러 번의 공진이 이루어져야 하므로 차단속도가 느려지는 문제점이 있고, 특히 고장전류가 큰 경우나 고장전류에 변화가 있는 경우 이에 즉각 대처하기는 어렵다는 문제점이 있다.
본 발명은 종래기술의 문제점을 해결하기 위해 제안된 것으로서 DC 차단기에서 기계적 스위치가 개방될 때 기계적 스위치로 고장전류 이상의 공진전류를 반대방향으로 빠르게 주입할 수 있도록 하는 DC 차단기를 제공하는데 목적이 있다.
또한, 본 발명은 기계적 스위치를 통해 흐르는 고장전류가 큰 경우나 고장전류의 변화가 있어도 즉각적인 대처가 가능하도록 하는 DC 차단기를 제공하는데 추가적인 목적이 있다.
본 발명의 실시 예에 따른 DC 차단기는, 일단이 제1DC선로에 연결되고 타단이 제2DC선로에 연결된 메인스위치; 상기 메인스위치에 병렬연결된 제1회로부; 및 상기 제1회로부에 각각이 병렬연결된 n개의 제2회로부; 를 포함하고, 상기 제1회로부는, 인덕터, 제1커패시터 및 제1스위치의 직렬연결로 구성되며 상기 인덕터 또는 제1커패시터가 상기 제1DC선로에 연결되고 상기 제1스위치가 상기 제2DC선로에 연결되고, 상기 n(n≥1,정수)개의 제2회로부 각각은, 제2커패시터 및 제2스위치의 직렬연결로 구성되며 상기 제2커패시터는 상기 제1회로부의 제1커패시터와 제1스위치 사이의 공통점에 연결되고 상기 제2스위치는 상기 제2DC선로에 연결된다.
본 발명에서, 상기 제1DC선로 또는 제2DC선로에 고장발생으로 상기 메인스위치가 개방되면 상기 제1회로부의 제1스위치 및 상기 n개의 제2회로부의 n개의 제2스위치 중 하나만 온(on)되고 나머지는 오프(off)된다.
본 발명에서, 상기 메인스위치에 흐르는 고장전류의 크기에 따라 상기 제1스위치 및 상기 n개의 제2스위치 중 온(on)된다.
본 발명에서, 상기 제1회로부에 각각이 병렬로 순차적으로 연결된 상기 n개의 제2스위치 중 상기 고장전류의 크기가 클수록 상기 제1회로부로부터 상대적으로 더 멀리 있는 스위치가 온(on)된다.
본 발명에서, 상기 제1스위치 및 제2스위치는 싸이리스터(thyristor)를 포함한다.
본 발명에서, 상기 n개의 제2회로부의 n개의 제2커패시터는 각각 동일하거나 또는 적어도 일부가 동일한 충전용량을 갖는다
본 발명에서, 상기 n개의 제2회로부의 n개의 제2커패시터는 각각 서로 다른 충전용량을 갖는다.
본 발명에서, 상기 제1DC선로측에 고장발생시 상기 메인스위치를 개방하고 상기 제1커패시터에 충전된 전압에 의해 상기 메인스위치 및 제1회로부의 제1폐회로를 통한 전류가 상기 메인스위치에 고장전류와 반대방향으로 공급된다.
본 발명에서, 상기 제1폐회로를 통해 반대방향으로 전류 공급 후 상기 메인스위치의 두 스위칭접점 간에 0(zero) 전류가 되지 않으면 상기 제1스위치를 오프하고 상기 n개의 제2스위치 중 첫 번째 스위치를 온하고 나머지 스위치는 모두 오프하여 상기 온된 첫 번째 스위치를 통해 형성된 제2폐회로에 포함된 커패시터의 충전전압에 의한 전류가 상기 메인스위치에 상기 고장전류와 반대방향으로 공급된다.
본 발명에서, 상기 제2폐회로를 통해 반대방향으로 전류 공급 후 상기 메인스위치의 두 스위칭접점 간에 0(zero) 전류가 되지 않으면 상기 두 스위칭접점 간에 0 전류가 될 때까지 상기 제1스위치가 오프된 상태에서 상기 n개의 제2스위치 중 첫 번째 스위치부터 순차적으로 온하고 다른 스위치는 모두 오프하여 상기 제2스위치 중 어느 하나가 온될 때마다 상기 온되는 제2스위치를 통해 형성된 제3폐회로에 포함된 커패시터의 충전전압에 의한 전류가 상기 메인스위치에 상기 고장전류와 반대방향으로 공급된다.
본 발명에서, 상기 제1DC선로측에 고장발생시 상기 메인스위치가 개방되고 상기 n개의 제2회로부 중 선택된 하나의 제2회로부의 제2스위치를 온(on)하고 나머지 제2스위치 및 제1스위치(S0)는 오프(off)하여 상기 온(on)된 제2스위치를 통해 형성된 제4폐회로에 포함된 커패시터의 충전전압에 의한 전류가 상기 메인스위치에서의 고장전류보다 크도록 상기 제2스위치가 결정된다.
본 발명에서, 상기 n개의 제2회로부의 중 마지막 제2회로부의 제n커패시터와 제n스위치 사이의 공통점과 접지 간에 연결된 충전저항을 더 포함하고, 상기 제1DC선로로 전류가 공급되는 경우 상기 전류가 상기 인덕터, 상기 제1회로부의 제1커패시터, 상기 n개의 제2회로부의 n개의 커패시터 및 상기 충전저항을 통해 흐르게 되어 상기 제1커패시터 및 n개의 커패시터에 전압이 충전된다.
본 발명에 의하면 공진전류를 발생시키는 공진회로를 다양하게 설정하여 선택할 수 있으므로 기계적 스위치에 발생하는 고장전류에 대응하는 공진전류를 빠르게 발생시킬 수 있고, 이로써 고장전류를 빠르게 차단할 수 있게 된다.
또한, 본 발명에 의한 고장전류가 큰 경우나 고장전류의 변화에도 고장전류의 크기를 감지하여 그 고장전류에 대응하는 공진회로를 즉시 발생할 수 있으므로 즉각적인 대응이 가능하다.
도 1은 본 발명의 실시 예에 따른 DC 차단기의 구성도이다.
도 2는 본 발명의 실시 예에 따른 DC 차단기가 정상상태일 때 전류의 흐름을 도시한 개요도이다.
도 3은 본 발명의 실시 예에 따른 DC 차단기의 일측에 고장발생시 고장전류의 차단과정을 보이는 개요도이다.
도 4는 본 발명의 다른 실시 예에 따른 DC 차단기의 일측에 고장발생시 고장전류의 차단과정을 보이는 개요도이다.
도 5는 본 발명의 또 다른 실시 예에 따른 DC 차단기의 일측에 고장발생시 고장전류의 차단과정을 보이는 개요도이다.
이하, 본 발명의 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명의 실시 예에 따른 DC 차단기의 구성도이다. 도 1을 참조하면 본 발명의 실시 예에 따른 DC 차단기(100)는 메인스위치(110)를 포함한다. 이러한 메인스위치(110)는 바람직하게는 메인스위치(mechanical switch)가 될 수 있다.
메인스위치(110)의 일단은 제1DC선로(10)에 연결되고 타단이 제2DC선로(20)에 연결된다. 제1,2DC선로(10,20)는 고전압의 전류를 양방향으로 도통한다. 이러한 메인스위치(110)는 정상상태일 때는 닫힘상태를 유지하여 제1DC선로(10)를 통해 공급되는 전류를 제2DC선로(20)로 전달하도록 한다.
이때, 제2DC선로(20)측에 고장발생시 고장전류가 제1DC선로(10)측에서 제2DC선로(20)를 통해 부하로 흘러가므로 이를 차단하기 위해 메인스위치(110)는 개방상태로 전환되어 제1,2DC선로(10,20)를 분리하도록 한다. 이러한 메인스위치(110)의 동작은 제어부(미도시)에 의해 제어된다.
또한, DC 차단기(100)는 메인스위치(110)에 병렬연결된 제1회로부(120)를 포함한다. 이러한 제1회로부(120)는 인덕터(L), 제1커패시터(C0) 및 제1스위치(S0)의 직렬연결로 구성되며, 인덕터(L) 또는 제1커패시터(C0)가 제1DC선로(10)에 연결되고 제1스위치(S0)가 제2DC선로(20)에 연결된다. 즉, 도면에는 일례로 인덕터(L)가 제1DC선로(10)에 연결된 것으로 도시하며 제1커패시터(C0)가 제1DC선로(10)에 연결될 수도 있다.
이때, 메인스위치(110)가 닫힌상태에서 제1스위치(S0)가 온(turn-on)되면 메인스위치(110), 인덕터(L), 제1커패시터(C0) 및 제1스위치(S0)는 제1폐회로를 구성하게 되고, 인덕터(L)와 제1커패시터(C0)는 LC 공진회로를 구성하게 된다. 이에 경우에 따라 제1커패시터(C0)에 충전된 전압에 의한 전류가 제1폐회로를 통해 흐르도록 할 수 있다.
또한, DC 차단기(100)는 제1회로부(120)에 각각이 병렬연결된 n(n≥2,정수)개의 제2회로부(130)를 포함한다. n개의 제2회로부(120) 각각은 제2커패시터 및 제2스위치의 직렬연결로 구성되며, 제2커패시터는 제1회로부(120)의 제1커패시터(C0)와 제1스위치(S0)의 공통점(N0)에 연결되고 제2스위치는 제2DC선로(20)에 연결된다.
도면을 참조하여 제2회로부(130)를 구체적으로 설명한다. 제1회로부(120)에 n개의 제2회로부(130)가 각각 병렬로 연결되는데, 제2회로부(130)의 첫 번째 커패시터(C1)와 첫 번째 스위치(S1)의 직렬연결(131)이 제1회로부(120)에 병렬로 연결된다. 이와 동일하게 두 번째 커패시터(C2)와 두 번째 스위치(S2)의 직렬연결(132)부터 n번째 커패시터(Cn)와 n번째 스위치(Sn)의 직렬연결(133)까지 각각의 직렬연결이 제1회로부(120)에 각각 병렬로 연결되는 것이다.
도면과 같이 제1회로부(120)의 제1스위치(S0)와 제2회로부(130)의 n개의 제2스위치(S1~Sn)는 모두 일단이 제2DC선로(20)에 연결되고 타단은 제1커패시터(C0)와 n개의 제2커패시터(C1~Cn)의 각 공통점(N1~Nn)에 연결된다.
구체적으로 제1회로부(120)의 제1스위치(S0)의 타단은 제1커패시터(C0)와 제2회로부(130)의 첫 번째 커패시터(C1)의 공통점(N1)에 연결되고, 제2회로부(130)의 첫 번째 스위치(S1)의 타단은 제2회로부(130)의 첫 번째 커패시터(C1)와 두 번째 커패시터(C2)의 공통점(N2)에 연결된다.
이러한 스위치(S1~Sn)의 연결관계는 상기와 같이 첫 번째부터 n번째까지 동일하게 적용되어 제2회로부(130)의 k(1≤k≤n)번째 스위치(Sk)의 타단은 k번째 커패시터(Ck)와 k+1번째 커패시터(Ck+1)의 공통점(Nk)에 연결되는 것이다. 이때, 마지막 n번째 스위치(Sn)의 경우 n번째 커패시터(Cn)과 접지(GND)의 공통점(Sn)에 연결된다.
또한, 본 발명의 DC 차단기(100)는 n개의 제2회로부(130)의 중 마지막 제n커패시터와 제n스위치의 공통점(Nn)과 접지(GND) 사이에 연결된 충전저항(R)을 더 포함한다. 이러한 충전저항은 제1DC선로(10)로 흐르는 전류에 의해 제1커패시터(C0) 및 n개의 제2커패시터(C1~Cn)를 충전시키기 위한 것이다.
이에, 제1DC선로(10)로 전류가 공급되면 전류는 인덕터(L), 제1회로부(120)의 제1커패시터C0), n개의 제2회로부(130)의 커패시터(C1~Cn) 및 충전저항(R)을 통해 흐르게 되어 제1커패시터(C0) 및 n개의 커패시터(C1~Cn)에 전압이 충전되도록 한다.
본 발명에 따른 DC 차단기(100)에서 제1회로부(130)의 제1커패시터(C0) 및 n개의 제2회로부(130)의 제2커패시터(C1~Cn)의 충전용량은 서로 같을 수도 있고 적어도 일부만 같을 수도 있으며 서로 다를 수도 있다. 이들의 충전용량이 서로 다른 경우에는 n개의 제2회로부(130)가 첫 번째부터 n번째까지 제1회로부(110)에 순차적으로 병렬로 연결될 때 충전용량이 첫 번째부터 n번째로 갈수록 커지도록 함이 바람직하다.
또한, 본 발명에 따른 DC 차단기(100)는 제1DC선로(10) 또는 제2DC선로(20)에 고장발생으로 메인스위치(110)가 개방되면 제1회로부(120)의 제1스위치(S0) 및 n개의 제2회로부(130)의 제2스위치(S1~Sn) 중 하나만 온(on)되고 다른 나머지는 모드 오프(off)된다. 여기서 스위치의 온(on)은 닫힘상태가 되어 전류를 도통시키는 것이고 스위치의 오프(off)는 개방상태가 되어 전류를 차단하는 것이다.
이때, 메인스위치(110)에 흐르는 고장전류의 크기에 따라 제1스위치(S0) 및 제2스위치(S1~Sn) 중 온(on)되는 스위치 하나가 결정된다. 특히 고장전류의 크기가 클수록 제1회로부(120)에 각각 병렬로 순차적으로 연결된 n개의 제2회로부(130)의 첫 번째부터 n번째까지 제2스위치(S1~Sn) 중에서 상대적으로 더 멀리 있는 스위치가 온(on)된다.
이는 고장전류가 더 클수록 제1회로부(120)로부터 더 멀리 있는 제2스위치가 온(on)되고 나머지 제2스위치는 오프(off)됨으로써 제1커패시터(C0)부터 온(on)된 제2스위치의 제2커패시터까지 더 큰 충전전압을 이용하여 그 고장전류를 차단하도록 하기 위한 것이다.
도 2는 본 발명의 실시 예에 따른 DC 차단기가 정상상태일 때 전류의 흐름을 도시한 개요도이다. 도 2를 참조하면 본 발명에 따른 DC 차단기(100)는 정상상태에서는 닫힘상태를 유지한다. 이때, 모든 스위치, 즉 제1스위치(S0) 및 n개의 제2스위치(S1~Sn)가 모두 오프(off)되어 있다.
이에 따라 제1DC선로(10)를 통해 정상전류가 공급되어 메인스위치(110)를 통해 제2DC선로(20)로 정상적으로 흐르게 되며, 이와 동시에 전류는 인덕터(L), 제1커패시터(C0), n개의 제2커패시터(C1~Cn) 및 저항(R)을 통해 흐르게 되어 이들 커패시터(C0~Cn)에 각각 +Vc 전압이 충전된다. 이때, 각 커패시터(C0~Cn)의 충전용량에 따라 각각 특정 전압이 충전된다.
이러한 상태에서 만약 제1DC선로(10)측에 고장이 발생하면 도 3 내지 도 5의 각 실시 예에 따라 스위치가 동작하여 고장전류를 차단하도록 한다. 이하에서 이를 상세하게 설명한다.
도 3은 본 발명의 실시 예에 따른 DC 차단기의 일측에 고장발생시 고장전류의 차단과정을 보이는 개요도이고, 도 4는 본 발명의 다른 실시 예에 따른 DC 차단기의 일측에 고장발생시 고장전류의 차단과정을 보이는 개요도이며, 도 5는 본 발명의 또 다른 실시 예에 따른 DC 차단기의 일측에 고장발생시 고장전류의 차단과정을 보이는 개요도이다.
먼저, 도 2의 정상상태에서 제1DC선로(10)측에 고장발생시 제어부(미도시)는 고장발생을 감지하여 제1DC선로(10)상의 고장전류를 차단하기 위해 도 3에서와 같이 DC 차단기(100)의 메인스위치(110)를 개방시킨다. 메인스위치(110)는 바람직하게는 기계식 스위치이지만 본 발명은 이에 한정되지 않는다. 메인스위치(110)의 개방시 스위칭접점 간에 아크(arc)가 발생하여 제2DC선로(20)측에서 제1DC선로(10)측으로 고장전류가 지속적으로 흐르게 된다.
이러한 고장전류를 차단하기 위해 제어부는 제1회로부(120)의 제1스위치(S0)를 온시키고 n개의 제2스위치(S1~Sn)는 모두 오프시킨다. 이로써 메인스위치(110)와 제1회로부(120)를 통한 제1폐회로(L1)가 형성된다. 그러면 제1커패시터(C0)에 충전된 +Vc 전압에 의한 전류(i0)가 제1폐회로(L1)를 통하여 메인스위치(110)로 흐르게 된다.
상기와 같이 제1폐회로(L1)를 통해 메인스위치(110)에 공급되는 전류(i0)의 방향은 제2DC선로(20)에서 제1DC선로(10)로 흐르는 고장전류와 반대방향이 되어 그 크기는 최소한 고장전류 이상이면 메인스위치(110)에서의 고장전류는 차단되는 것이다.
만약, 도 3에서와 같이 제1폐회로(L1)를 통해 공급되는 전류(i0)의 크기보다 고장전류가 더 큰 경우에는 고장전류가 완전히 차단되지 않는다. 이 경우에는 도 4와 같이 제2회로부(130)를 이용하도록 한다.
도 4의 일례에서는 위 도 3에서와 같이 제1폐회로(L1)를 통해 고장전류와 반대방향으로 전류(i0)의 공급 후에도 메인스위치(110)에서 0(zero)전류가 되지 않아 고장전류가 차단되지 않으면, (a)와 같이 온(on)상태인 제1스위치(S0)는 오프(off)로 전환하고 n개의 제2스위치(S1~Sn) 중 첫 번째 스위치(S1)를 온(on)하고 나머지 스위치(S2~Sn)는 모두 오프(off)하여 온(on)된 첫 번째 스위치(S1)를 통해 형성된 제2폐회로(L2)에 포함된 모든 커패시터의 충전전압에 의한 전류(i1)가 메인스위치(110)에 고장전류와 반대방향으로 공급되도록 한다.
이러한 제2폐회로(L2)는 메인스위치(110), 인덕터(L), 제1커패시터(L0), 제2회로부(130)의 첫 번째 커패시터(C1) 및 첫 번째 스위치(S1)를 통해 형성되며, 상기 제1커패시터(C0)와 첫 번째 커패시터(C1)에 충전된 전압에 의한 전류(i1)가 제2폐회로(L1)를 통해 메인스위치(110)로 고장전류와 반대방향으로 공급되는 것이다.
만약, 제2폐회로(L2)를 통한 전류(i1)의 공급에도 고장전류가 차단되지 않으면 (b)와 같이 고장전류가 완전히 차단될 때까지 제1스위치(S0)를 오프(off)상태를 계속 유지하면서 n개의 제2스위치(S1~Sn) 중 첫 번째 스위치부터 n번째 스위치까지 순차적으로 온(on)하고 다른 스위치는 모두 오프(off)하여 제2스위치(S1~Sn) 중 하나씩 온(on)될 때마다 온(on)되는 제2스위치를 통해 형성된 제3폐회로에 포함된 모든 커패시터의 충전전압에 의한 전류(i2)가 메인스위치(110)에 고장전류와 반대방향으로 공급되도록 한다.
이는 고장전류가 차단될 때까지 제2회로부의 n개의 스위치(S1~S2)를 순차적으로 하나씩 온(on)시키고 그때마다 나머지 스위치는 오프(off)하여 순차적으로 폐회로를 변경하도록 한다. 이러한 폐회로의 변경은 순차적으로 그 폐회로에 포함되는 커패시터의 개수를 하나씩 증가시키기 위한 것이다. 왜냐하면 커패시터의 개수가 증가함에 따라 메인스위치(110)로 공급되는 전류(i2,i3,i4,..in)의 크기도 증가하므로 고장전류를 제거할 수 있게 된다.
도 5는 고장전류의 크기를 미리 감지하여 그에 대응하여 제2스위치(S1~Sn) 중 하나를 선택하여 온(on)시키도록 하는 것이다. 도 2의 정상상태에서 제어부(미도시)는 고장발생을 감지하여 고장전류를 차단하기 위해 우선 DC 차단기(100)의 메인스위치(110)를 개방시킨다. 또한, 제어부는 고장전류의 크기를 확인한 후 n개의 제2스위치(S1~Sn) 중 어느 스위치를 온(on)시킬지를 결정한다. 즉, 어느 제2스위치를 온(on)시켜야 그 온(on)된 제2스위치를 통해 형성된 폐회로에 포함된 모든 커패시터의 전압에 의한 전류(i3)가 고장전류보다 큰지를 판단하여 온하고자 하는 제2스위치를 선택하는 것이다. 물론 이 경우에도 다른 스위치는 모두 오프(off)한다.
이와 같이 DC 차단기(100)에서는 제1DC선로(10)측에 고장발생으로 메인스위치(110)가 개방되고 n개의 제2회로부(130) 중 선택된 하나의 제2회로부의 제2스위치는 온(on)하고 나머지와 제1스위치(S0)는 오프(off)하여 온(on)된 제2스위치를 통해 형성된 제4폐회로에 포함된 모든 커패시터의 충전전압에 의한 전류(i3)가 메인스위치(110)의 고장전류보다 크도록 제2스위치를 결정하는 것이 바람직하다.
이에, 도 5에는 설명의 편의상 일례로 n개의 제2회로부(130) 중에서 두 번째 스위치(S2)를 온(on)시킨 예를 도시한다. 나머지 스위치 S0,S1,S3,...Sn은 모두 오프(off)시킨다. 따라서 메인스위치(110), 제1회로부(120)의 제1커패시터(C0), n개의 제2회로부(130) 중 첫 번째 커패시터(C1), 두 번째 커패시터(C2), 두 번째 스위치(S2)의 제4폐회로(L4)가 형성된다.
그러면 제1커패시터(C0), 첫 번째 및 두 번째 커패시터(C1,C2)에 각각 충전된 전압에 의한 전류가 제4폐회로(L4)를 통하여 메인스위치(110)로 흐르게 되어 고장전류가 차단된다.
만약, 이러한 고장전류를 차단하기 위해서는 더 큰 전류가 필요하다면 그에 맞게 세 번째, 네 번째, 또는 그 이후의 스위치를 선택해서 온(on)하면 된다. 그러면 두 번째 스위치가 온(on)될 때보다 세 번째, 네 번째 또는 그 이후의 스위치가 온(on)될 때가 커패시터의 전압이 더 커지므로 더 큰 전류를 얻을 수 있다.
이상에서 설명한 바와 같이 본 발명에 따른 DC 차단기는 메인스위치에 발생한 고장전류를 차단하기 위해 고장전류와 반대방향의 전류를 메인스위치로 공급해야 하는데, 그 고장전류의 크기에 따라 공급되는 전류의 크기를 조정할 수 있도록 한다. 이를 위해 다수의 스위치 및 커패시터 회로를 추가하여 스위치의 온/오프에 따라 전류의 크기를 조정하도록 한다.
이러한 동작을 통해 메인스위치에 발생하는 고장전류가 크거나 또는 고장전류가 변동하는 경우에도 적절히 대응하여 차단할 수 있게 된다.
이상에서, 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (12)
- 일단이 제1DC선로에 연결되고 타단이 제2DC선로에 연결된 메인스위치;상기 메인스위치에 병렬연결된 제1회로부; 및상기 제1회로부에 각각이 병렬연결된 n개의 제2회로부; 를 포함하고,상기 제1회로부는,인덕터, 제1커패시터 및 제1스위치의 직렬연결로 구성되며 상기 인덕터 또는 제1커패시터가 상기 제1DC선로에 연결되고 상기 제1스위치가 상기 제2DC선로에 연결되고,상기 n(n≥1,정수)개의 제2회로부 각각은,제2커패시터 및 제2스위치의 직렬연결로 구성되며 상기 제2커패시터는 상기 제1회로부의 제1커패시터와 제1스위치 사이의 공통점에 연결되고 상기 제2스위치는 상기 제2DC선로에 연결되는 DC 차단기.
- 제1항에 있어서, 상기 제1DC선로 또는 제2DC선로에 고장발생으로 상기 메인스위치가 개방되면 상기 제1회로부의 제1스위치 및 상기 n개의 제2회로부의 n개의 제2스위치 중 하나만 온(on)되고 나머지는 오프(off)되는 DC 차단기.
- 제2항에 있어서, 상기 메인스위치에 흐르는 고장전류의 크기에 따라 상기 제1스위치 및 상기 n개의 제2스위치 중 온(on)되는 스위치가 결정되는 DC 차단기.
- 제3항에 있어서, 상기 제1회로부에 각각이 병렬로 순차적으로 연결된 상기 n개의 제2스위치 중 상기 고장전류의 크기가 클수록 상기 제1회로부로부터 상대적으로 더 멀리 있는 스위치가 온(on)되는 DC 차단기.
- 제1항에 있어서, 상기 제1스위치 및 제2스위치는 싸이리스터(thyristor)를 포함하는 DC 차단기.
- 제1항에 있어서, 상기 n개의 제2회로부의 n개의 제2커패시터는 각각 동일하거나 또는 적어도 일부가 동일한 충전용량을 갖는 DC 차단기.
- 제1항에 있어서, 상기 n개의 제2회로부의 n개의 제2커패시터는 각각 서로 다른 충전용량을 갖는 DC 차단기.
- 제1항에 있어서, 상기 제1DC선로측에 고장발생시 상기 메인스위치를 개방하고 상기 제1커패시터에 충전된 전압에 의해 상기 메인스위치 및 제1회로부의 제1폐회로를 통한 전류가 상기 메인스위치에 고장전류와 반대방향으로 공급되는 DC 차단기.
- 제8항에 있어서, 상기 제1폐회로를 통해 반대방향으로 전류 공급 후 상기 메인스위치에서 고장전류가 차단되지 않으면 상기 제1스위치를 오프(off)하고 상기 n개의 제2스위치 중 첫 번째 스위치를 온(on)하고 나머지 스위치는 모두 오프(off)하여 상기 온(on)된 첫 번째 스위치를 통해 형성된 제2폐회로에 포함된 커패시터의 충전전압에 의한 전류가 상기 메인스위치에 상기 고장전류와 반대방향으로 공급되는 DC 차단기.
- 제8항에 있어서, 상기 제2폐회로를 통해 반대방향으로 전류 공급 후 상기 메인스위치에서 고장전류가 차단되지 않으면 상기 두 스위칭접점 간에 0 전류가 될 때까지 상기 제1스위치가 오프(off)된 상태에서 상기 n개의 제2스위치 중 첫 번째 스위치부터 순차적으로 온(on)하고 다른 스위치는 모두 오프(off)하여 상기 제2스위치 중 하나가 온(on)될 때마다 상기 온(on)되는 제2스위치를 통해 형성된 제3폐회로에 포함된 커패시터의 충전전압에 의한 전류가 상기 메인스위치에 상기 고장전류와 반대방향으로 공급되는 DC 차단기.
- 제1항에 있어서, 상기 제1DC선로측에 고장발생시 상기 메인스위치가 개방되고 상기 n개의 제2회로부 중 선택된 하나의 제2회로부의 제2스위치를 온(on)하고 나머지 제2스위치 및 제1스위치(S0)는 오프(off)하여 상기 온(on)된 제2스위치를 통해 형성된 제4폐회로에 포함된 커패시터의 충전전압에 의한 전류가 상기 메인스위치에서의 고장전류보다 크도록 상기 제2스위치가 결정되는 DC 차단기.
- 제1항에 있어서, 상기 n개의 제2회로부의 중 마지막 제2회로부의 제n커패시터와 제n스위치 사이의 공통점과 접지 간에 연결된 충전저항을 더 포함하고, 상기 제1DC선로로 전류가 공급되는 경우 상기 전류가 상기 인덕터, 상기 제1회로부의 제1커패시터, 상기 n개의 제2회로부의 n개의 커패시터 및 상기 충전저항을 통해 흐르게 되어 상기 제1커패시터 및 n개의 커패시터에 전압이 충전되는 DC 차단기.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/961,060 US11251599B2 (en) | 2018-01-11 | 2018-12-21 | DC circuit breaker |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0003882 | 2018-01-11 | ||
KR1020180003882A KR102027779B1 (ko) | 2018-01-11 | 2018-01-11 | Dc 차단기 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019139276A1 true WO2019139276A1 (ko) | 2019-07-18 |
Family
ID=67219093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/016411 WO2019139276A1 (ko) | 2018-01-11 | 2018-12-21 | Dc 차단기 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11251599B2 (ko) |
KR (1) | KR102027779B1 (ko) |
WO (1) | WO2019139276A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102001941B1 (ko) * | 2018-02-05 | 2019-07-19 | 효성중공업 주식회사 | 스위칭모듈 연결구조 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014079121A (ja) * | 2012-10-11 | 2014-05-01 | Toyota Motor Corp | 蓄電システム |
KR20150078990A (ko) * | 2013-12-31 | 2015-07-08 | 주식회사 효성 | Dc 차단기 |
KR101630093B1 (ko) * | 2014-12-29 | 2016-06-13 | 주식회사 효성 | 고전압 dc 차단기 |
KR20160080017A (ko) * | 2014-12-29 | 2016-07-07 | 주식회사 효성 | Dc 차단기 |
KR20170142020A (ko) * | 2016-06-16 | 2017-12-27 | 명지대학교 산학협력단 | 하이브리드 dc 차단기 및 이의 동작 방법 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5968128A (ja) | 1982-10-13 | 1984-04-18 | 株式会社日立製作所 | 直流しや断器 |
US20110175460A1 (en) | 2008-06-10 | 2011-07-21 | Abb Technology Ag | Dc current breaker |
DE102011083514A1 (de) * | 2011-09-27 | 2013-03-28 | Siemens Aktiengesellschaft | Gleichspannungs-Leistungsschalter |
KR20150078491A (ko) * | 2013-12-30 | 2015-07-08 | 주식회사 효성 | 고전압 dc 차단기 |
KR101872869B1 (ko) * | 2016-11-07 | 2018-08-02 | 연세대학교 산학협력단 | 충전된 커패시터와 병렬 lc 회로를 사용한 초고속 dc 차단기 |
-
2018
- 2018-01-11 KR KR1020180003882A patent/KR102027779B1/ko active IP Right Grant
- 2018-12-21 WO PCT/KR2018/016411 patent/WO2019139276A1/ko active Application Filing
- 2018-12-21 US US16/961,060 patent/US11251599B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014079121A (ja) * | 2012-10-11 | 2014-05-01 | Toyota Motor Corp | 蓄電システム |
KR20150078990A (ko) * | 2013-12-31 | 2015-07-08 | 주식회사 효성 | Dc 차단기 |
KR101630093B1 (ko) * | 2014-12-29 | 2016-06-13 | 주식회사 효성 | 고전압 dc 차단기 |
KR20160080017A (ko) * | 2014-12-29 | 2016-07-07 | 주식회사 효성 | Dc 차단기 |
KR20170142020A (ko) * | 2016-06-16 | 2017-12-27 | 명지대학교 산학협력단 | 하이브리드 dc 차단기 및 이의 동작 방법 |
Also Published As
Publication number | Publication date |
---|---|
US20200358280A1 (en) | 2020-11-12 |
US11251599B2 (en) | 2022-02-15 |
KR20190085698A (ko) | 2019-07-19 |
KR102027779B1 (ko) | 2019-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015102383A1 (ko) | 고전압 dc 차단기 | |
WO2015102311A1 (ko) | 고전압 dc 차단기 | |
WO2015053484A1 (ko) | 고압 직류 전류 차단 장치 및 방법 | |
WO2015023157A1 (ko) | 고전압 dc 차단기 | |
WO2015099468A1 (ko) | 양방향 직류 차단장치 | |
WO2016108530A1 (ko) | Dc 차단기 | |
WO2017078238A1 (ko) | Mmc 컨버터의 서브모듈 내 커패시터 방전장치 | |
WO2017115955A1 (ko) | 모듈러 멀티레벨 컨버터 및 이의 dc 고장 차단 방법 | |
WO2016043508A1 (ko) | 직류전류 차단을 위한 장치 및 방법 | |
WO2016167490A1 (ko) | 갭 스위치를 이용한 고압 직류 차단 장치 및 방법 | |
WO2016208968A1 (ko) | Dc 차단기 | |
KR101026072B1 (ko) | 충전/방전 보호 회로 | |
WO2016108524A1 (ko) | 고전압 dc 차단기 | |
WO2011108793A1 (ko) | 전력계통의 모선전압 강하를 억제하는 초전도 전류제한기 | |
KR20030013349A (ko) | 충전/방전 보호 회로 | |
WO2016108528A1 (ko) | Dc 차단기 | |
WO2015099467A1 (ko) | 단일회로로 양방향 고장전류를 차단하는 dc차단기 | |
WO2019212125A1 (ko) | 차단기 제어 모듈 | |
US4305107A (en) | DC Interrupting apparatus | |
WO2015102307A1 (ko) | 고전압 dc 차단기 | |
WO2019151631A1 (ko) | 배터리 보호 회로 및 이를 포함하는 배터리 팩 | |
WO2012165890A2 (ko) | 전력저장용 단위 랙의 연결을 위한 전압 평준화 장치 및 이를 포함하는 전력저장 시스템 | |
WO2019139276A1 (ko) | Dc 차단기 | |
US4724502A (en) | Power transmission system with current limiting devices | |
WO2020045842A1 (ko) | 불량 모드 감지를 통한 퓨즈 제어 시스템 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18899544 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18899544 Country of ref document: EP Kind code of ref document: A1 |