[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016167490A1 - 갭 스위치를 이용한 고압 직류 차단 장치 및 방법 - Google Patents

갭 스위치를 이용한 고압 직류 차단 장치 및 방법 Download PDF

Info

Publication number
WO2016167490A1
WO2016167490A1 PCT/KR2016/003002 KR2016003002W WO2016167490A1 WO 2016167490 A1 WO2016167490 A1 WO 2016167490A1 KR 2016003002 W KR2016003002 W KR 2016003002W WO 2016167490 A1 WO2016167490 A1 WO 2016167490A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
current
conducting path
capacitor
gap
Prior art date
Application number
PCT/KR2016/003002
Other languages
English (en)
French (fr)
Inventor
이우영
박상훈
장현재
정진교
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2016167490A1 publication Critical patent/WO2016167490A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle

Definitions

  • the present invention relates to a current interruption device and a method, and more particularly, to protect a system with a fast interruption action within a few ms in the event of an accident on a specific line in a multi-terminal DC network using a voltage converter. It relates to a high-voltage direct current cut off device and method.
  • HVDC power transmission is a power transmission method that has many advantages over HVAC power transmission, and has received much attention with the recent development of power semiconductor technology. Recently, thanks to the technology development of DC circuit breaker for HVDC, the line protection problem, which has been regarded as a major obstacle to DC transmission, has been solved. As a result, DC power transmission along with AC power transmission is accompanied by an increase in power energy transmission by renewable energy. It is expected to be an important area to increase efficiency in the system.
  • WO2013 / 093066 A1 proposes a method of disconnecting a fault current by connecting a single bypass current path consisting of a capacitor to a main current path configured in series of a mechanical high speed switch and a power semiconductor switch.
  • this method has a problem that as the rated voltage of the DC circuit breaker increases, the burden on the mechanical high-speed switch and the capacitor increases, and when the DC voltage exceeds a certain voltage, the implementation of the DC circuit breaker becomes practically difficult.
  • WO2013 / 092873 A1 proposes a method of applying a multi-stage bypass energization path.
  • high voltage is adopted by adopting a bypass circuit with low rated voltage and high capacitance and then bypassing the bypass circuit with high rated voltage and low capacitance
  • bypass circuit with high rated voltage and low capacitance
  • the present invention has been made to solve the above-mentioned conventional problems, and it is difficult to implement mechanical high speed switches and capacitors occurring in a hybrid fast DC blocking scheme proposed in the related art, and a blocking system in the proposed alternative to solve the above problems. It is an object of the present invention to provide a high-voltage direct current cut-off device and method that can solve the problems of configuration complexity and cost increase.
  • the high-voltage DC blocking device includes a main conducting path including a plurality of mechanical switches connected in series, a first auxiliary conducting path connected in parallel with a part of the mechanical switch, and a first conducting path connected in parallel with the main conducting path.
  • the first auxiliary conducting path includes a semiconductor switch connected in parallel and a first capacitor
  • the second auxiliary conducting path includes a first gap switch and a second capacitor connected in series
  • the first gap switch includes a change in distance between electrodes. It is a gap switch.
  • the gap distance of the gap switch may be set to decrease with time and increase again.
  • the apparatus may further include a third auxiliary conducting path connected in parallel with the main conducting path and including a second gap switch and a third capacitor connected in series.
  • the second gap switch has a variable inter-pole distance, and may be set such that the start point of the minimum inter-pole distance is different from the first gap switch.
  • the rated voltage of the second capacitor may be larger than the first capacitor and smaller than the third capacitor, and the capacitance may be smaller than the first capacitor and larger than the third capacitor.
  • the apparatus may further include an arrester connected in parallel with the first capacitor.
  • the semiconductor switch may comprise a pair of reversely connected switches.
  • the high-pressure direct current blocking method is a method for operating the high-voltage direct current blocking device, the semiconductor switch at the same time opening each mechanical switch of the main current supply path in the normal operation state in which the normal current flows through the main current path; Making the conductive state possible; if the current energized by the mechanical switch is diverted to the semiconductor switch, turning the semiconductor switch into an open state, bypassing the current to the first capacitor, and changing the distance between the poles of the first gap switch. Thereby allowing a current to flow through the first gap switch at a preset time point after the semiconductor switch is opened.
  • the DC current blocking device includes a third auxiliary conducting path that is connected in parallel with the main conducting path and includes a second gap switch and a third capacitor connected in series, and the second gap switch is previously connected with the first gap switch.
  • the method may further include allowing current to be conducted with a set time difference.
  • the method may further include absorbing line energy through the arrester when the charging voltage of the third capacitor is greater than or equal to a predetermined voltage.
  • the main conducting path is composed of only mechanical switches, power loss can be reduced, and the burden on the cooling system can be reduced. Since the multi-stage bypass conducting path is applied, the current flows more than the single bypass conducting path. In addition to reducing the capacitance of the capacitors used in the circuit, it can alleviate the blocking duty of the mechanical high-speed switch of the main conducting circuit, and by using a mechanical gap switch instead of applying a conventional power semiconductor switch to the current bypassing method. Compared to this, the system is simplified and the cost is reduced.
  • FIG. 1 is a circuit diagram of a high-voltage DC blocking device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of the gap switch of FIG. 1.
  • FIG. 2 is a schematic view of the gap switch of FIG. 1.
  • Figure 3 shows the operating characteristics of the high-voltage direct current cut-off device for the stroke of the gap switch.
  • FIG. 4 is a circuit diagram of a high-voltage DC blocking device according to another embodiment of the present invention.
  • FIG. 1 is a circuit diagram of a high-voltage DC blocking device according to an embodiment of the present invention.
  • the basic configuration circuit of the high-voltage DC circuit breaker is composed of only a mechanical high-speed switch in the main conduction path 100 as shown in FIG. 1 to minimize the power loss in the normal conduction state and to assist in the case of the interruption operation by the breaker trip signal.
  • Performs a blocking function by bypassing the blocking current to the primary, secondary and tertiary auxiliary circuits 210, 220, 230, which are configured as the conduction path 200, and finally energizing the blocking current through the transient voltage limiting passage 300. do.
  • mechanical gap switches 221 and 231 are installed and used in the secondary and tertiary auxiliary circuits 220 and 230 to perform bypass energization to each circuit.
  • FIG. 2 is a schematic diagram of the gap switch of FIG. 1.
  • the gap switch includes a fixed part 400 and a movable part 500, and the fixed part 400 is formed of a plurality of areas separated from each other, and the movable part 500 is electrically connected by an insulator 510.
  • An example is shown that is formed of two parts separated from each other.
  • FIG. 3 is a view showing the operating characteristics of the high-voltage direct current cut-off device for the stroke of the gap switch of FIG.
  • each gap switch when a constant voltage is applied between the poles of the gap switch, each gap switch is brought into a conductive state together with mechanical contact to t2 and t3. after, At t2 'and t3', mechanical separation occurs as the stroke progresses, but there is an arc between the poles, so it is not electrically separated.When the current between the poles is zero, the arc generated between the poles is extinguished and electrically separated. You lose.
  • the contact point formed by the fixed part 400 and the movable part 500 is composed of three points. Each of the contacts is in contact at the same time, and the entire gap switch is in a closed state at one time point, and the time point at which the close state is closed after the start of the stroke is adjusted according to the relative position between the initial gaps.
  • the initial positions of the movable parts 500 are different from each other in order to obtain different inter-pole contact points, so that 1 st gap is preceded by 2 nd gap for the same stroke. .
  • contact contact occurs at different time points, that is, at t2 and t3.
  • the current is cut off.
  • the primary auxiliary circuit 210 is input.
  • Current supplied to the mechanical fast switch 101 connected in parallel with the first circuit is first bypassed to the semiconductor switch 211 of the primary auxiliary circuit 210, and then the capacitor 212 is charged by turning off the semiconductor switch 211 at t1. Will be.
  • a gap switch (1st gap) 221 of the secondary auxiliary circuit 220 which started the stroke with the trig signal input of the DC interrupter, is charged with the increase in the charging voltage to the capacitor 212 in the primary auxiliary circuit 210.
  • the secondary auxiliary circuit 220 is put into the energized state, and the current of the main conducting path 100 and the discharge current of the capacitor 212 start to conduct.
  • the slope of the current (di / dt) when the fast switch 102 is cut off is connected to the main conduction path 100 and the secondary auxiliary circuit through the capacitor 212 of the primary auxiliary circuit regardless of the turn-off current characteristics of the power semiconductor device. Since the current slope is given by the resonant circuit characteristics of the 220, the current slope can be alleviated at the time of blocking, and the fast switch 102 also serves to implement a current zero that can be blocked.
  • the slope (dv / dt) of the transient voltage applied at the time point t2 at which the fast switch 102 is cut off can be more smoothly adjusted. This provides an advantageous condition for the construction.
  • the current bypassed by the secondary auxiliary circuit raises the voltage of the capacitor 222 and is diverted back to the tertiary auxiliary circuit 230 by the on operation of the gap switch 2nd gap 231 of the tertiary auxiliary circuit at t3.
  • the discharge circuit of the capacitor 222 consisting of the secondary and tertiary auxiliary circuits is formed by the voltage charged in the capacitor 222 of the secondary auxiliary circuit 220, and this discharge current generates a current zero in the 1 st gap, and thus, Is subtracted, and the secondary auxiliary circuit is electrically isolated.
  • the current in the main conducting path which is energized only by the tertiary auxiliary circuit 230, charges the capacitor 232, and this voltage rises to be larger than the protection voltage of the surge arrester 301 installed in the transient voltage limiting conducting path.
  • the line energy contained in the line is absorbed through it to make a current zero at t4, and the auxiliary zero circuit breaker (Aux. 11) the current in the main conducting path is cut off.
  • FIG. 3 also shows voltages charged in the capacitors of the respective auxiliary circuits, wherein the voltage waveforms between t1 and t2 are the charging voltages of the capacitors installed in the primary auxiliary circuit, and the voltage waveforms between t2 and t3 are the secondary auxiliary circuits.
  • the charging voltage of the capacitor and the voltage between t3 and t4 represent the voltage charged to the capacitor installed in the tertiary auxiliary circuit.
  • the current waveform shown in the lower portion of Figure 3 shows the phenomenon that the current to each auxiliary circuit.
  • 4 is a circuit diagram of a high-voltage DC blocking device according to another embodiment of the present invention. 4 illustrates a circuit breaker having a bidirectional blocking function. Since only the power semiconductor switch of the primary auxiliary circuit needs to be connected in reverse, the secondary and tertiary auxiliary circuits are configured in a circuit not related to polarity, and thus the unidirectional blocking of FIG. It will have the same structure as the device.
  • WO 2013/092873 adopts a multi-phase current circuit for this purpose and uses a circuit breaker in which the power semiconductor is in series. A method of bypassing the blocking current with a step-by-step current circuit is presented.
  • the use of the power semiconductor circuit breaker causes another difficulty in terms of system complexity and cost since the number of series connections of the power semiconductor elements increases as the rated voltage increases.
  • the present invention solves the existing problems through the use of a mechanical gap switch in place of the power semiconductor breaker.
  • a mechanical gap switch is used instead of the conventional method of using a power semiconductor switch as a switch for current in a multi-step current circuit configuration method to provide a simpler and more economical breaker.
  • the high-voltage DC blocking device is a blocking device for cutting off current flowing through a current carrying line, and at least two mechanical switches 101 and 102 are connected in series to provide a current in a normal state.
  • Connected in parallel with the auxiliary conducting path 200 and the auxiliary conducting path 200 which are electrically connected in parallel with the main conducting path 100 and the main conducting path 100 configured to be energized or the mechanical switch 101 included therein.
  • the transient voltage limit conduction path 300 is included.
  • the auxiliary conducting path 200 bypasses the current flowing through the mechanical switch 101 on the main conducting path 100 so that the current flowing through the mechanical switch 101 is completely blocked.
  • the primary auxiliary circuit 210 and the capacitor 212 of the primary auxiliary circuit 210 and the charging voltage become a predetermined magnitude or more
  • the current flowing to the primary auxiliary circuit 210 via the switch 102 on the main conduction path 100 is obtained.
  • the switch 102 included in the main conduction path 100 bypasses the secondary auxiliary circuit 220 and the secondary auxiliary circuit 220 when the voltage of the secondary auxiliary circuit 220 reaches a predetermined size.
  • a third auxiliary circuit 230 to bypass the current flowing through the circuit by conducting the gap switch 231.
  • the power semiconductor switch 211 and the capacitor 212 connected in parallel with the mechanical switch 101 included in the main conduction path 100 to bypass the current flowing to the mechanical switch 101 during the blocking operation.
  • the arrester 213 has a circuit.
  • the gap switches 221 and 231 which are maintained at a predetermined distance in the initial state of the operating stroke, are narrowed as the stroke progresses along with the circuit breaker trip signal.
  • the capacitors 222 and 232 connected in series with the movable gap-gap switches 221 and 231 which move in the direction, and then both electrodes are mechanically brought into contact with each other, and then perform an operation in which the distance between the electrodes is further apart. It has a circuit consisting of.
  • the contact point between the gap switch of the secondary and tertiary auxiliary circuits has a predetermined time delay, and the gap switch of the secondary auxiliary circuits comes into contact first.
  • capacitors 212, 222, and 232 connected to the respective auxiliary circuits include capacitors in the order of the primary, secondary, and tertiary auxiliary circuits, from low voltage to high voltage, and capacitance from high value to small value.
  • the high-pressure direct current blocking method is a method for operating the above-described breaking device, when each of the mechanical switch of the main conducting path 100 is maintained in the input state when the current in the steady state is energized to the current conducting line
  • the power semiconductor switch 211 of the primary auxiliary conducting path 210 and the gap switches 221 and 231 of the tertiary auxiliary conducting paths 220 and 230 are in an open state so that the normal current of the current conducting line is main.
  • step b) At the same time as the step a), the gap switch 221 included in the secondary auxiliary circuit 220 starts to move between the poles, and the power switch 211 is opened. The current of the main conducting path 100 is bypassed to the secondary auxiliary circuit 220, and the voltage charged in the capacitor 212 is discharged to the secondary auxiliary circuit 220. Step of a state in which a current zero point is generated in the mechanical switch 102 and the subtract is made therefrom to cut off the current of the main conduction path 100.
  • step b) After step b), the current flowing into the secondary auxiliary circuit 220 is charged by the capacitor 222 included therein, thereby increasing the voltage, and the gap switch 231 of the tertiary auxiliary circuit 230 is connected to the secondary auxiliary circuit ( The main passage current flowing to the secondary auxiliary circuit 220 is diverted to the tertiary auxiliary circuit 230 at the point of contact with the gap switch 221 of the 220, and together with the capacitor of the secondary auxiliary circuit 220.
  • step c) after step c), when the charging voltage of the capacitor 232 included in the tertiary auxiliary circuit 230 becomes a predetermined voltage or more, the line energy is absorbed through the arrester 301 installed in the transient voltage limit passage 300, The current flowing through the main conduction path 100 is zero current, and the arc between the poles of the mechanical switch 11 included in the line 10 is extinguished to cut off the current.
  • the present invention by adopting a configuration that replaces the switches applied to the bypass conducting path with a mechanical gap switch, it solves the difficulty of the power semiconductor switch application method that a large number should be configured in series connection, and unidirectional for bidirectional cutoff characteristics
  • the problem that the semiconductor switches must be connected in parallel and in parallel can also be easily solved by a mechanical gap switch having bi-directionality, which is relatively simple and can reduce costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

고압 직류 차단 장치, 및 방법이 개시된다. 고압 직류 차단 장치는, 직렬 연결된 복수의 기계식 스위치를 포함하는 주 통전로, 기계식 스위치 일부와 병렬 연결되는 제 1 보조 통전로, 주 통전로와 병렬 연결되는 제 2 보조 통전로 및 주 통전로와 병렬 연결되며 어레스터를 포함하는 과도전압 제한통전로를 포함한다. 제 1 보조 통전로는 병렬 연결된 반도체 스위치, 및 제 1 커패시터를 포함하고, 제 2 보조 통전로는 직렬 연결된 제 1 갭 스위치 및 제 2 커패시터를 포함하며, 제 1 갭 스위치는 전극 사이의 거리가 변화하는 갭 스위치이다.

Description

갭 스위치를 이용한 고압 직류 차단 장치 및 방법
본 발명은 전류 차단 장치 및 방법에 관한 것으로, 더욱 상세하게는 전압형 컨버터를 사용하는 multi-terminal DC network에서 특정 선로에 사고가 발생한 경우 수 ms이내의 빠른 차단동작으로 계통을 보호할 수 있게 하는 고압 직류 차단 장치 및 방법에 관한 것이다.
HVDC 송전은 HVAC 송전에 비해 많은 장점을 가지는 송전 방식으로 최근 전력반도체 기술발전과 함께 많은 관심을 받고 있다. 최근에 HVDC용 직류 차단기의 기술개발에 힘입어 이제껏 DC 송전에 큰 장애로 여겨져 온 선로보호문제가 해결되었고, 이로 인해 신재생 에너지에 의한 전력 에너지 전송의 증가와 함께 DC송전은 AC송전과 더불어 송전 시스템에서의 효율성을 높여 갈 중요한 분야로 예상된다.
이러한 관점에서 기존 AC 차단기술과는 개념적 차이가 있어 지금까지 난제로 여겨져 오던 DC 차단기술은 최근 다양한 형태로 제시되고 있다. 특히 차단기능이 필수적인 전압형 컨버터 스테이션으로 구성되는 DC 계통에서는 빠른 사고전류 차단기능을 요구하게 되는 데 이에 대한 대안으로 다음과 같은 방식들이 제안되었다.
WO2013/093066 A1(Siemens)에서는 기계식 고속 스위치와 전력 반도체 스위치의 직렬로 구성된 주 통전로에 커패시터로 구성되는 단일 우회 통전로를 연결하여 사고전류를 차단하는 방식을 제시한다. 그런데 이 방식은 DC 차단기의 정격전압이 높아질수록 기계식 고속 스위치와 커패시터에 대한 부담이 많아지게 되고 일정 전압 이상이 되면 DC 차단기의 구현이 실제적으로 어렵게 되는 문제점이 있었다.
이러한 상기 문제의 해결을 위해 WO2013/092873 A1(Alstom)에서는 다단계의 우회 통전로를 적용하는 방식을 제시한다. 우회 통전로의 단계별로 정격전압은 낮고 정전용량이 큰 커패시터가 설치된 우회 통전로로부터 시작하여 정격전압은 높고 정전용량이 작은 커패시터가 설치된 우회 통전로를 최종 차단 단계로 이어지게 되는 방식을 채용하여 고전압화에 따른 기계식 고속 스위치와 커패시터의 문제를 해결하고자 하였다.
하지만, 이러한 다단계 우회 통전로 방식의 구현에 있어서는 우회 통전로마다 스위치가 필요하게 되는데, 상기 방식에서는 이들 스위치로 싸이리스터 전력반도체 스위치를 적용하는 것을 제안하였다. 그러나 이러한 방식에 의하면, DC 차단기가 고전압화로 됨에 따라 많은 전력반도체 소자가 직렬로 연결되어야 함에 따른 고비용과 구성의 복잡함으로 인해 어려움이 동반되게 된다.
본 발명은 상술한 종래의 문제점을 해결하기 위해 안출된 것으로서, 종래 제안된 하이브리드(hybrid) 고속 DC 차단방식에서 발생하는 기계식 고속 스위치와 커패시터 구현의 어려움, 및 이를 해결하기 위해 제시된 대안에서의 차단 시스템 구성의 복잡함과 비용 증대의 문제를 해결할 수 있도록 해주는 고압 직류 차단 장치 및 방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해 본 발명에 따른 고압 직류 차단 장치는, 직렬 연결된 복수의 기계식 스위치를 포함하는 주 통전로, 기계식 스위치 일부와 병렬 연결되는 제 1 보조 통전로, 주 통전로와 병렬 연결되는 제 2 보조 통전로 및 주 통전로와 병렬 연결되며 어레스터를 포함하는 과도전압 제한통전로를 포함한다. 제 1 보조 통전로는 병렬 연결된 반도체 스위치, 및 제 1 커패시터를 포함하고, 제 2 보조 통전로는 직렬 연결된 제 1 갭 스위치 및 제 2 커패시터를 포함하며, 제 1 갭 스위치는 전극 사이의 거리가 변화하는 갭 스위치이다.
이와 같은 구성에 의하면, 우회 통전로에 적용되는 스위치들을 기계식 갭 스위치로 대신하여 많은 수가 직렬연결로 구성되어야 하는 전력반도체 스위치 적용방법의 어려움을 해소하고, 양방향 차단특성을 위해서 단방향 반도체 스위치가 역병렬로 연결되어야 하는 문제점도 양 방향성을 가지는 기계식 갭 스위치로 용이하게 해결될 수 있어 상대적으로 간편하고 비용을 저감할 수 있게 된다.
이때, 갭 스위치의 극간 거리는 시간에 따라 감소하다가 다시 증가하도록 설정될 수 있다.
또한, 주 통전로와 병렬 연결되고, 직렬 연결된 제 2 갭 스위치 및 제 3 커패시터를 포함하는 제 3 보조 통전로를 더 포함할 수 있다.
또한, 제 2 갭 스위치는 가변 극간 거리를 가지며, 최소 극간 거리의 시점이 제 1 갭 스위치와 서로 다르도록 설정될 수 있다.
또한, 제 2 커패시터의 정격 전압은 제 1 커패시터보다 크고 제 3 커패시터보다 작으며, 정전 용량은 제 1 커패시터보다 작고 제 3 커패시터보다 큰 것일 수 있다.
또한, 제 1 커패시터와 병렬 연결된 어레스터를 더 포함할 수 있다.
또한, 반도체 스위치는 역방향 직렬 연결된 스위치 쌍을 포함할 수 있다.
또한, 본 발명에 따른 고압 직류 차단 방법은, 상기 고압 직류 차단 장치를 동작시키는 방법으로서, 주 통전로를 통해 정상 전류가 흐르는 정상 동작 상태에서 주 통전로의 각 기계식 스위치를 개방시킴과 동시에 반도체 스위치를 도통 가능한 상태로 만들어 주는 단계, 기계식 스위치로 통전되던 전류가 반도체 스위치로 우회하게 되는 경우 반도체 스위치를 개방상태로 하여 전류를 제 1 커패시터로 우회시키는 단계, 및 제 1 갭 스위치의 극간 거리를 변화하여 반도체 스위치가 개방된 후 미리 설정된 시점에서 제 1 갭 스위치를 통해 전류가 흐르도록 하는 단계를 포함한다.
이때, 상기 직류 전류 차단 장치는, 주 통전로와 병렬 연결되고, 직렬 연결된 제 2 갭 스위치 및 제 3 커패시터를 포함하는 제 3 보조 통전로를 포함하며, 제 2 갭 스위치를 제 1 갭 스위치와 미리 설정된 시차를 두고 전류가 도통되도록 하는 단계를 더 포함할 수 있다.
또한, 제 3 커패시터의 충전 전압이 미리 설정된 전압 이상이 되면 어레스터를 통해 선로 에너지가 흡수시키는 단계를 더 포함할 수 있다.
본 발명에 의하면, 주 통전로가 기계식 스위치로만 구성되어 전력손실이 저감되고 냉각 시스템에 대한 부담을 경감시킬 수 있으며, 다단계 우회 통전로를 적용하므로 단일 우회 통전로를 적용한 방식보다 전류(轉流)회로에 사용되는 커패시터 용량를 줄일 수 있을 뿐만 아니라 주 통전회로 기계식 고속 스위치의 차단책무를 완화시킬 수 있게 되며, 전류를 우회시키는 방식에 기존 전력반도체 스위치를 적용하는 것 대신에 기계식 갭 스위치을 사용함으로 종래 방식에 비하여 시스템의 간소화 및 비용 절감에 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 고압 직류 차단 장치의 회로도.
도 2는 도 1의 갭 스위치의 개략적인 도면.
도 3에는 갭 스위치의 스트로크에 대한 고압 직류 차단 장치의 동작 특성을 표시한 도면.
도 4는 본 발명의 다른 실시예에 따른 고압 직류 차단 장치의 회로도.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예에 대해 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 고압 직류 차단 장치의 회로도이다. 고압 직류 차단 장치의 기본 구성회로는 도 1에서와 같이 주 통전로(100)에는 기계식 고속 스위치로만 구성되어 정상 통전상태에서 전력손실을 최소화할 수 있고 차단기 트립신호에 의한 차단동작이 수행되는 경우 보조 통전로(200)로 되어있는 일차, 이차 및 삼차 보조회로(210, 220, 230)로 차단전류를 차례대로 우회시키고 마지막으로 과도 전압 제한통로(300)를 통해 차단전류를 통전시킴으로 차단기능을 수행한다. 그리고 이차와 삼차 보조회로(220, 230)에는 각 회로로의 우회통전 수행을 위해 기계식 갭 스위치(221, 231)를 설치하여 사용한다.
본 발명을 통해 제안되어 사용되는 기계식 갭 스위치의 구성은 도 2와 같다. 도 2는 도 1의 갭 스위치의 개략적인 도면이다. 도 2에서 갭 스위치는 고정부(400)과 가동부(500)을 포함하고 있으며, 고정부(400)는 서로 분리된 다수의 영역으로 형성되고, 가동부(500)는 절연체(510)에 의해 전기적으로 서로 분리된 두 부분으로 형성되어 있는 예가 도시되어 있다.
도 2에는, 통상의 갭 스위치와 같이 일정 거리가 유지되는 형태가 아니라 갭 스위치의 중앙에 위치된 가동부(500)가 아랫방향으로 움직이면서 갭 간격이 좁아짐으로 인해 동작 전 초기상태에는 전기적으로 분리되어 있던 갭 스위치가 일정 스트로크가 진행되면 고정접점과 가동접점 간의 간격이 점점 가까워지다가 마침내 기계적 접촉이 발생되고, 이후 스트로크가 진행되어짐에 따라 다시 갭 간격이 멀어지면서 기계적 분리가 이루어지는 형태가 도시되어 있다.
이러한 동작흐름에 의해 나타나는 기계적, 전기적 접촉형태는 도 3에 표시된 바와 같이 t2에서 1st gap의 기계적 접촉이 생겨나고 t2'에서 기계적 접촉이 종료되며, t3에서 2nd gap의 기계적 접촉이 생겨나서 t3'에서 기계적 접촉이 종료된다. 도 3은 도 2의 갭 스위치의 스트로크에 대한 고압 직류 차단 장치의 동작 특성을 표시한 도면이다.
이러한 형태의 갭 스위치에서는 갭 스위치의 극간에 일정 전압이 인가되는 경우 각 갭 스위치에서 t2, t3에 기계적 접촉과 함께 도통 상태로 되어진다. 이후, t2', t3'에서 스트로크 진행에 따라 기계적 분리가 되지만 극간에 아크가 존재하게 되어 전기적으로는 분리되지 않는 상태가 되고, 극간 통전 전류가 영점이 되면 극간에 발생되던 아크는 소호되면서 전기적 분리가 이루어지게 된다.
도 2의 갭 스위치는 고정부(400)와 가동부(500)가 이루는 접점이 세 지점으로 이루어져 있다. 각 접점들은 동일 시점에 접촉을 이루게 되어 어느 한 시점에서 전체 갭 스위치가 닫힘(close)상태가 되며, 초기 갭 간의 상대적 위치에 따라 스트로크 시작 후 닫힘(close)상태로 되는 시점이 조정되게 된다.
도 2의 두 개 갭 스위치는 서로 다른 극간 접촉시점을 얻기 위해 가동부(500)의 초기위치가 서로 다른 상태로 되어있어 동일 스트로크에 대해 1st gap이 2nd gap보다 선행적으로 기계적 접촉이 발생된다. 도 3에서 각각 다른 시점에서 즉 t2, t3에서 접점 접촉이 발생되는 것을 확인할 수 있다.
이러한 기계식 갭 스위치를 도 1의 DC 차단장치에 적용하여 전류가 차단되는 과정을 살펴보면, 주 통전로(100)로 흐르던 전류가, t0에서 DC 차단장치에 동작 신호가 입력되면 일차 보조회로(210)와 병렬로 연결된 기계식 고속 스위치(101)로 통전되던 전류가 먼저 일차 보조회로(210)의 반도체 스위치(211)로 우회되고, 이어 t1에서 반도체 스위치(211)의 off에 의해 커패시터(212)가 충전되게 된다.
그리고 DC 차단장치의 trig 신호 입력과 함께 스트로크를 시작했던 이차 보조회로(220)의 갭 스위치(1st gap; 221)가 일차 보조회로(210)에 있는 커패시터(212)에 충전전압의 상승과 함께 t2에서 투입상태로 되게 되어 이차 보조회로(220)는 통전상태로 되고, 주 통전로(100)의 전류와 커패시터(212)의 방전 전류가 통전하기 시작하게 된다.
이때 주 통전로(100)의 fast switch(102)에는 커패시터(212)의 충전전압으로 역전류가 발생되어 전류 영점이 생성되고, 이로 인해 fast switch(102) 극간의 아크는 소호되어 절연회복을 이루게 된다.
이는 fast switch(102)의 차단 시 전류의 기울기(di/dt)가 전력 반도체 소자의 turn-off 전류 특성과 무관하게 일차 보조회로의 커패시터(212)를 통한 주 통전로(100)와 이차 보조회로(220)가 이루는 공진회로 특성으로 주어지는 전류 기울기가 되기 때문에, 차단 시 전류 기울기를 완화할 수 있게 되며 fast switch(102)가 차단할 수 있는 전류 영점을 구현해 주는 역할도 수행한다.
그리고 이차 보조회로의 커패시터(222)의 적절한 선정으로 fast switch(102)가 차단하는 시점 t2에서 인가되는 과도전압의 기울기(dv/dt)도 보다 완만하게 조정해 줄 수 있어 fast switch(102)의 구성에 유리한 여건을 제공하게 된다.
이렇게 이차 보조회로로 우회된 전류는 커패시터(222)의 전압을 상승시키게 되고 t3에서 삼차 보조회로의 갭 스위치(2nd gap; 231)의 on동작으로 삼차 보조회로(230)로 다시 우회되게 된다. 이때 역시 이차 보조회로(220)의 커패시터(222)에 충전된 전압으로 이차와 삼차 보조회로로 구성되는 커패시터(222)의 방전회로가 형성되고 이 방전전류가 1st gap에 전류 영점을 발생시켜 극간이 소호되고, 이차 보조회로는 전기적으로 분리된다.
이제, 삼차 보조회로(230)만으로 통전되는 주 통전로의 전류는 커패시터(232)를 충전시키고, 이 전압이 상승하여 과도전압 제한 통전로에 설치된 서지 어레스터(301)의 보호전압 크기보다 커지게 되면 전류는 서지 어레스터(301)로 우회되고, 선로에 함유된 선로 에너지는 이를 통해 흡수되면서 t4에서 전류 영점을 만들게 되고, 이때 만들어진 전류 영점으로 인해 주 통전로에 설치된 보조 차단기(Aux. switch; 11)에 의해 주 통전로의 전류가 차단되게 된다.
그리고, 도 3에는 각 보조회로의 커패시터에 충전되는 전압도 함께 표시되어 있는데, t1과 t2사이의 전압 파형은 일차 보조회로에 설치된 커패시터의 충전전압을, t2와 t3사이의 전압 파형은 이차보조회로의 커패시터에 충전전압을, 그리고 t3와 t4사이의 전압은 삼차보조회로에 설치된 커패시터에 충전되는 전압을 각각 나타낸 것이다. 또한, 도 3의 아랫부분에 나타난 전류 파형은 각 보조회로로 전류되는 현상을 나타낸 것이다.
도 4는 본 발명의 다른 실시예에 따른 고압 직류 차단 장치의 회로도이다. 도 4는 양방향 차단기능을 가진 차단기 구성을 나타낸 것으로, 일차 보조회로의 전력 반도체 스위치만 역방향 직렬 연결하면 되고, 이차와 삼차 보조회로는 극성과 관련 없는 회로로 구성되어 있기 때문에, 도 1의 단방향 차단장치와 동일한 구조를 가지게 된다.
이하, 도 1을 참조하여 본 발명을 보다 구체적으로 설명한다.
DC 차단기가 정격전압이 높아질수록 실제 구현에 있어서 어려움이 수반되게 되는데, WO 2013/092873에서는 이를 위해 다단계의 전류(轉流)회로를 채택한 방식을 채택하고 전력반도체가 직렬로 구성된 차단장치를 사용하여 단계별 전류(轉流)회로로 차단전류를 우회시키는 방식을 제시하였다.
이렇게 전력 반도체형 차단장치를 사용하는 것은 정격전압이 높아질수록 전력반도체 소자의 직렬연결 개수가 많아져야 하기 때문에, 시스템의 복잡성과 비용 측면에서 또 다른 어려움을 발생시키게 된다.
본 발명에서는 전력 반도체 차단장치 대신에 기계식 갭 스위치을 사용하는 방법을 통해 기존의 문제점들을 해결한다. 다시 말해, 다단계의 전류(轉流)회로 구성방식에서 전류에 필요한 스위치로 전력 반도체 스위치를 사용하던 기존 방식 대신에 기계식 갭 스위치를 사용하여 보다 간편하고 경제성 있는 차단장치를 제공한다.
보다 상세하게 설명하자면, 본 발명에 따른 고압 직류 차단 장치는, 전류 통전선로를 흐르는 전류를 차단하기 위한 차단장치로서, 적어도 두 개의 기계식 스위치(101, 102)가 직렬로 연결되어 정상상태에서 전류를 통전하도록 구성되는 주 통전로(100)와 주 통전로(100) 또는 이에 포함된 기계식 스위치(101)와 전기적 병렬로 연결되는 보조 통전로(200) 및 보조 통전로(200)와 전기적 병렬로 연결되는 과도전압 제한통전로(300)를 포함한다.
이때, 보조 통전로(200)는, 주 통전로(100) 상의 기계식 스위치(101)로 흐르는 전류를 이 기계식 스위치(101)의 개방동작 시, 흐르던 전류가 완전히 차단되도록 우회(by-pass)시키는 일차 보조회로(210)와 일차 보조회로(210)의 커패시터(212), 충전전압이 일정 크기 이상으로 되면 주 통전로(100) 상의 스위치(102)를 거쳐 일차 보조회로(210)로 흐르던 전류를 우회시키고 주 통전로(100)에 포함된 스위치(102)는 절연회복할 수 있게 하는 이차 보조회로(220), 그리고 이차 보조회로(220)의 전압이 일정 크기에 도달하게 되면 이차 보조회로(220)로 흐르던 전류를 갭 스위치(231)를 도통시킴으로 우회시키는 삼차 보조회로(230)를 포함한다.
또한, 주 통전로(100)에 포함된 기계식 스위치(101)와 병렬로 연결되어 차단 동작 시 기계식 스위치(101)로 흐르던 전류를 우회시키는 전력반도체 스위치(211)와 이와 병렬로 연결된 커패시터(212)와 어레스터(213)로 구성된 회로를 가진다.
또한, 이차 및 삼차 보조회로(220, 230)에는 동작 스트로크의 초기상태에서는 일정 거리를 두고 절연상태를 유지하던 갭 스위치(221, 231)가 차단기 트립 신호와 함께 스트로크가 진행되면서 극간거리를 좁혀가는 방향으로 이동하다가 양 전극이 기계적으로 접촉상태로 이어지게 되고 이어서 다시 극간 거리가 멀어지는 형태의 동작을 수행하는, 가동성 극간 거리를 가지는 갭 스위치(221, 231)와 이와 직렬로 연결된 커패시터(222, 232)로 구성된 회로를 가진다. 이때, 이차 및 삼차 보조회로의 갭 스위치 간의 접촉시점은 일정 시간 지연을 가지고 이차 보조회로의 갭 스위치가 먼저 접촉하게 된다.
또한, 각 보조회로에 연결된 커패시터(212, 222, 232)는 일차, 이차, 삼차 보조회로의 순으로 저압에서 고압으로 그리고 정전 용량은 큰 값에서부터 작은 값의 순으로 되는 커패시터들로 구성된다.
또한, 본 발명에 따른 고압 직류 차단 방법은, 상기한 차단장치를 동작시키는 방법으로서, 전류 통전 선로에 정상상태의 전류가 통전되는 경우는 주 통전로(100)의 각 기계식 스위치가 투입상태로 유지되고, 일차 보조 통전로(210)의 전력 반도체 스위치(211)와 이, 삼차 보조 통전로(220, 230)의 갭 스위치들(221, 231)은 개방상태로 되어 전류 통전선로의 정상전류는 주 통전로(100) 상으로 흐르다가 차단명령이 수신되면,
a) 주 통전로(100)의 각 기계식 스위치(101, 102)를 개방시킴과 동시에 일차 보조회로(210)의 전력반도체 스위치(211)를 도통 가능한 상태로 만들어 주게 되면 기계식 스위치(101)의 극간 아크전압 발생으로 인해 기계식 스위치(101)로 통전되던 전류는 전력반도체 스위치(211)로 우회하게 되고, 곧이어 전력반도체 스위치(211)를 개방상태로 하게 되면 전류는 다시 이와 병렬 연결된 커패시터(212)로 우회하여 전압상승을 일으키고, 일정 전압 이상에 도달하게 되면 또 이와 병렬로 연결된 어레스터(213)의 항복전압을 지나는 시점에서 전류는 어레스터(213)로 우회하는 단계,
b) 단계 a)와 동시에 이차 보조회로(220)에 포함된 갭 스위치(221)의 극간 거리 이동이 시작되어 전력반도체 스위치(211)가 개방된 후 일정 시점에서 갭 스위치(221)가 접촉상태로 되어 주 통전로(100)의 전류가 이차 보조회로(220)로 우회하게 되고, 이와 함께 커패시터(212)에 충전된 전압이 이차 보조회로(220)로 방전되는 과정에서 주 통전로(100)의 기계식 스위치(102)에 전류 영점이 생성되고 이로부터 소호가 이루어져 주 통전로(100)의 전류 차단이 이루어지게 되는 상태의 단계,
c) 단계 b) 이후 이차 보조회로(220)로 흐르는 전류는, 이에 포함된 커패시터(222)를 충전시켜 전압의 상승이 이루어지다가 삼차 보조회로(230)의 갭 스위치(231)가 이차 보조회로(220)의 갭 스위치(221)에 이어 접촉상태로 되는 시점에서 이차 보조회로(220)로 흐르던 주 통로 전류를 삼차 보조회로(230)로 우회시키게 되고, 이와 함께 이차 보조회로(220)의 커패시터(222)에 충전된 전압을 삼차 보조회로(230)를 통해 방전시키는 과정에서 이차 보조회로의 갭 스위치(221)에 전류 영점을 생성시키게 됨으로써 갭 스위치(221)가 절연을 회복하면서 삼차 보조회로의 커패시터(232)를 충전하는 단계, 및
d) 단계 c) 이후 삼차 보조회로(230)에 포함된 커패시터(232)의 충전 전압이 일정 전압 이상이 되면 과도전압 제한통로(300)에 설치된 어레스터(301)를 통해 선로 에너지가 흡수되고, 주 통전로(100)에 흐르는 전류가 전류 영점을 맞게 되어 선로(10)에 포함된 기계식 스위치(11)의 극간 아크가 소호되어 전류가 차단되는 단계를 포함한다.
본 발명에서는 이와 같이, 우회 통전로에 적용되는 스위치들을 기계식 갭 스위치로 대신하는 구성을 채용함으로써, 많은 수가 직렬연결로 구성되어야 하는 전력반도체 스위치 적용방법의 어려움을 해소하고, 양방향 차단특성을 위해서 단방향 반도체 스위치가 역병렬로 연결되어야 하는 문제점도 양방향성을 가지는 기계식 갭 스위치로 용이하게 해결될 수 있어, 상대적으로 간편하고 비용을 저감할 수 있게 된다.
본 발명이 비록 일부 바람직한 실시예에 의해 설명되었지만, 본 발명의 범위는 이에 의해 제한되어서는 아니 되고, 특허청구범위에 의해 뒷받침되는 상기 실시예의 변형이나 개량에도 미쳐야 할 것이다.

Claims (13)

  1. 직렬 연결된 복수의 기계식 스위치를 포함하는 주 통전로;
    상기 복수의 기계식 스위치 중 일부와 병렬 연결되는 제 1 보조 통전로;
    상기 주 통전로와 병렬 연결되는 제 2 보조 통전로; 및
    상기 주 통전로와 병렬 연결되며 어레스터를 포함하는 과도전압 제한통전로를 포함하는 고압 직류 차단 장치로서,
    상기 제 1 보조 통전로는 병렬 연결된 반도체 스위치, 및 제 1 커패시터를 포함하고,
    상기 제 2 보조 통전로는 직렬 연결된 제 1 갭 스위치 및 제 2 커패시터를 포함하며,
    상기 제 1 갭 스위치는 전극 사이의 전기적 거리를 변화시켜 전류의 흐름을 제어하는 기계식 스위치인 것을 특징으로 하는 고압 직류 차단 장치.
  2. 청구항 1에 있어서,
    상기 제 1 갭 스위치의 극간 전기적 거리는 시간에 따라 감소하다가 미리 설정된 최소 극간 거리 상태를 거친 후 다시 증가하도록 설정되는 것을 특징으로 하는 고압 직류 차단 장치.
  3. 청구항 2에 있어서,
    상기 주 통전로와 병렬 연결되고, 서로 직렬 연결된 제 2 갭 스위치 및 제 3 커패시터를 포함하는 제 3 보조 통전로를 더 포함하며,
    상기 제 2 갭 스위치는 전극 사이의 전기적 거리를 변화시켜 전류의 흐름을 제어하는 기계식 스위치인 것을 특징으로 하는 것고압 직류 차단 장치.
  4. 청구항 3에 있어서,
    상기 제 2 갭 스위치의 극간 전기적 거리는 시간에 따라 감소하다가 미리 설정된 최소 극간 거리 상태를 거친 후 다시 증가하도록 설정되는 것을 특징으로 하는 고압 직류 차단 장치.
  5. 청구항 4에 있어서,
    상기 제 1 갭 스위치와 상기 제 2 갭 스위치는 상기 미리 설정된 최소 극간 거리 상태의 시점이 서로 다르도록 설정되는 것을 특징으로 하는 고압 직류 차단 장치.
  6. 청구항 5에 있어서,
    상기 제 2 갭 스위치의 최소 극간 거리 상태는 상기 제 1 갭 스위치의 최소 극간 거리 상태 시점 이후에 수행되도록 설정되는 것을 특징으로 하는 고압 직류 차단 장치.
  7. 청구항 6에 있어서,
    상기 제 2 커패시터의 정격 전압은 상기 제 1 커패시터보다 크고 상기 제 3 커패시터보다 작으며, 정전 용량은 상기 제 1 커패시터보다 작고 상기 제 3 커패시터보다 큰 것을 특징으로 하는 고압 직류 차단 장치.
  8. 청구항 6에 있어서,
    상기 제 1 커패시터와 병렬 연결된 어레스터를 더 포함하는 것을 특징으로 하는 고압 직류 차단 장치.
  9. 청구항 6에 있어서,
    상기 반도체 스위치는 양방향의 전류 차단을 위해 역방향 직렬 연결된 반도체 스위치 쌍을 포함하는 것을 특징으로 하는 고압 직류 차단 장치.
  10. 청구항 1 내지 9 중 어느 한 항에 있어서,
    상기 제 1 갭 스위치는,
    선형 이동이 가능하도록 설치된 이동 단자; 및
    상기 이동단자가 선형이동하면서 상기 이동단자와의 거리가 감소하다가 증가하도록 설치되는 고정단자를 포함하는 것을 특징으로 하는 고압 직류 차단 장치.
  11. 직렬 연결된 복수의 기계식 스위치를 포함하는 주 통전로;
    상기 복수의 기계식 스위치 중 일부와 병렬 연결되는 제 1 보조 통전로;
    상기 주 통전로와 병렬 연결되는 제 2 보조 통전로를 포함하는 고압 직류 차단 장치로서,
    상기 제 1 보조 통전로는 병렬 연결된 반도체 스위치, 및 제 1 커패시터를 포함하고,
    상기 제 2 보조 통전로는 직렬 연결된 제 1 갭 스위치 및 제 2 커패시터를 포함하며,
    상기 제 1 갭 스위치는 전극 사이의 전기적 거리를 변화시켜 전류의 흐름을 제어하는 기계식 스위치인 고압 직류 차단 장치를 동작시키는 방법으로서,
    상기 주 통전로를 통해 정상 전류가 흐르는 정상 동작 상태에서, 상기 주 통전로의 상기 복수의 기계식 스위치를 개방시키고 상기 반도체 스위치를 도통시키는 단계;
    상기 반도체 스위치와 병렬 연결된 기계식 스위치로 통전되던 전류가 상기 반도체 스위치로 우회하게 되는 경우 상기 반도체 스위치를 개방상태로 하여 전류를 상기 제 1 커패시터로 우회시키는 단계; 및
    상기 제 1 갭 스위치의 전기적 극간 거리를 변화시켜 상기 반도체 스위치가 개방된 후 미리 설정된 시점에서 상기 제 1 갭 스위치를 통해 전류가 흐르도록 하는 단계를 포함하는 것을 특징으로 하는 고압 직류 차단 방법.
  12. 청구항 11에 있어서, 상기 고압 직류 차단 장치는,
    상기 주 통전로와 병렬 연결되고, 서로 직렬 연결된 전극 사이의 전기적 거리를 변화시켜 전류의 흐름을 제어하는 기계식 스위치인 제 2 갭 스위치 및 제 3 커패시터를 포함하는 제 3 보조 통전로를 더 포함하며,
    상기 제 2 갭 스위치를 상기 제 1 갭 스위치와 미리 설정된 시차를 두고 전류가 도통되도록 제어하는 단계를 더 포함하는 것을 특징으로 하는 고압 직류 차단 방법.
  13. 청구항 12에 있어서,
    상기 고압 직류 차단 장치는 상기 주 통전로와 병렬 연결되며 어레스터를 포함하는 과도전압 제한통전로를 더 포함하며,
    상기 제 3 커패시터의 충전 전압이 미리 설정된 전압 이상이 되면 상기 과도전압 제한통전로의 어레스터를 통해 선로 에너지를 흡수시키는 단계를 더 포함하는 것을 특징으로 하는 고압 직류 차단 방법.
PCT/KR2016/003002 2015-04-13 2016-03-24 갭 스위치를 이용한 고압 직류 차단 장치 및 방법 WO2016167490A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150051870A KR101766229B1 (ko) 2015-04-13 2015-04-13 갭 스위치를 이용한 고압 직류 차단 장치 및 방법
KR10-2015-0051870 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016167490A1 true WO2016167490A1 (ko) 2016-10-20

Family

ID=57126626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003002 WO2016167490A1 (ko) 2015-04-13 2016-03-24 갭 스위치를 이용한 고압 직류 차단 장치 및 방법

Country Status (2)

Country Link
KR (1) KR101766229B1 (ko)
WO (1) WO2016167490A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176749A (zh) * 2019-03-21 2019-08-27 许继集团有限公司 新型直流断路器
CN110190589A (zh) * 2019-04-25 2019-08-30 国家电网有限公司 一种谐振型混合式直流开关
JP2020502767A (ja) * 2016-12-21 2020-01-23 コリア エレクトロテクノロジー リサーチ インスティテュートKorea Electrotechnology Research Institute 真空ギャップスイッチを用いた逆電流注入型直流遮断装置及び方法
US10872740B2 (en) * 2017-05-31 2020-12-22 Abb Schweiz Ag Electrical DC switching system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200011186A (ko) * 2018-07-24 2020-02-03 한국전기연구원 전류 제한 장치 및 이를 포함하는 직류 차단 시스템
CN110739167B (zh) * 2019-05-10 2023-03-10 许继集团有限公司 一种直流开关设备
KR102274612B1 (ko) * 2019-09-18 2021-07-07 엘지전자 주식회사 아크 소호 기능을 갖는 차단기 및 이를 이용한 보호 계전 시스템
KR102187348B1 (ko) * 2020-03-09 2020-12-07 (주)에너담 직류 고전압용 하이브리드 개폐기
KR102656808B1 (ko) * 2021-03-29 2024-04-12 엘에스일렉트릭(주) 반도체를 이용한 회로 차단기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120062954A (ko) * 2010-12-07 2012-06-15 한국전기연구원 수처리용 수중 방전 장치
KR20140095184A (ko) * 2013-01-24 2014-08-01 한국전기연구원 직류 전류 차단 장치 및 방법
US20150002977A1 (en) * 2011-12-23 2015-01-01 Alstom Technology Ltd Mechatronic Circuit Breaker Device And Associated Tripping Method And Use Thereof In Interrupting A High Direct Current
US20150022928A1 (en) * 2011-12-22 2015-01-22 Siemens Aktiengesellschaft Hybrid dc circuit breaking device
KR20150019416A (ko) * 2013-08-14 2015-02-25 주식회사 효성 고전압 dc 차단기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120062954A (ko) * 2010-12-07 2012-06-15 한국전기연구원 수처리용 수중 방전 장치
US20150022928A1 (en) * 2011-12-22 2015-01-22 Siemens Aktiengesellschaft Hybrid dc circuit breaking device
US20150002977A1 (en) * 2011-12-23 2015-01-01 Alstom Technology Ltd Mechatronic Circuit Breaker Device And Associated Tripping Method And Use Thereof In Interrupting A High Direct Current
KR20140095184A (ko) * 2013-01-24 2014-08-01 한국전기연구원 직류 전류 차단 장치 및 방법
KR20150019416A (ko) * 2013-08-14 2015-02-25 주식회사 효성 고전압 dc 차단기

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020502767A (ja) * 2016-12-21 2020-01-23 コリア エレクトロテクノロジー リサーチ インスティテュートKorea Electrotechnology Research Institute 真空ギャップスイッチを用いた逆電流注入型直流遮断装置及び方法
US10872740B2 (en) * 2017-05-31 2020-12-22 Abb Schweiz Ag Electrical DC switching system
CN110176749A (zh) * 2019-03-21 2019-08-27 许继集团有限公司 新型直流断路器
CN110190589A (zh) * 2019-04-25 2019-08-30 国家电网有限公司 一种谐振型混合式直流开关

Also Published As

Publication number Publication date
KR20160122325A (ko) 2016-10-24
KR101766229B1 (ko) 2017-08-09

Similar Documents

Publication Publication Date Title
WO2016167490A1 (ko) 갭 스위치를 이용한 고압 직류 차단 장치 및 방법
WO2015053484A1 (ko) 고압 직류 전류 차단 장치 및 방법
EP2777059B1 (en) Hybrid dc circuit breaking device
EP3107172B1 (en) Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method
US9692226B2 (en) Circuit interruption device
KR101872869B1 (ko) 충전된 커패시터와 병렬 lc 회로를 사용한 초고속 dc 차단기
EP2289085B1 (en) A dc current breaker
US9478974B2 (en) DC voltage circuit breaker
WO2016108530A1 (ko) Dc 차단기
WO2016043508A1 (ko) 직류전류 차단을 위한 장치 및 방법
WO2015023157A1 (ko) 고전압 dc 차단기
KR102021863B1 (ko) 직류 차단기
EP2820663A1 (en) Composite high voltage dc circuit breaker
US20150108090A1 (en) Circuit breaker apparatus
CN105745730A (zh) 用于切换直流电的装置和方法
WO2016108524A1 (ko) 고전압 dc 차단기
CN110739167A (zh) 一种直流开关设备
WO2016108528A1 (ko) Dc 차단기
US9240680B2 (en) Switch for a transmission path for high-voltage direct current
CN112838576A (zh) 一种直流断路器及其应用方法
KR101802509B1 (ko) 캐스케이드 하프 브리지 sscb
CN212849855U (zh) 能量释放装置及过电压钳位装置
WO2013091699A1 (en) An arrangement for controlling the electric power transmission in a hvdc power transmission system
KR102615108B1 (ko) 진공 갭 스위치를 이용한 역전류 주입형 직류 전류 차단 장치 및 방법
Lin et al. Hardware-in-the-loop implementation of a hybrid circuit breaker controller for MMC-based HVDC systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780213

Country of ref document: EP

Kind code of ref document: A1