WO2019130600A1 - Vehicle control device and vehicle - Google Patents
Vehicle control device and vehicle Download PDFInfo
- Publication number
- WO2019130600A1 WO2019130600A1 PCT/JP2018/000906 JP2018000906W WO2019130600A1 WO 2019130600 A1 WO2019130600 A1 WO 2019130600A1 JP 2018000906 W JP2018000906 W JP 2018000906W WO 2019130600 A1 WO2019130600 A1 WO 2019130600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control unit
- steering
- unit
- vehicle
- torque
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/016—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/20—Conjoint control of vehicle sub-units of different type or different function including control of steering systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/22—Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/112—Roll movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
Definitions
- the present invention relates to a vehicle control device that controls a vehicle, and a vehicle.
- Patent Documents 3 and 4 disclose suspension devices that control damping force in accordance with steering torque.
- An object of the present invention is to provide a driver with a higher ride quality in steering and suspension control.
- the present invention is a vehicle control apparatus for controlling a vehicle, which applies to a steering apparatus for steering the vehicle by at least referring to a steering torque applied to a steering member.
- a first control unit for controlling the magnitude of the assist torque or the reaction torque a second control unit for controlling the damping force of the suspension of the vehicle, the first control unit, and the second control unit;
- an integrated control unit for acquiring information to be acquired or calculated wherein the integrated control unit is configured to acquire information acquired from the first control unit and the second control unit as the first control unit and the second control unit.
- the first control unit controls the magnitude of the assist torque or the reaction torque by further referring to the information output from the integrated control unit and obtained or calculated by the second control unit.
- the control unit controls the damping force of the suspension of the vehicle with reference to the steering torque or the information output from the integrated control unit and obtained or calculated by the first control unit, and the second control unit
- the roll rate of the vehicle is estimated, the damping force of the suspension of the vehicle is controlled with at least reference to the estimated roll rate, and the information acquired or calculated by the second control unit is the estimated It is a roll rate.
- the present invention is a vehicle provided with a vehicle control device for controlling a vehicle, a torque applying unit for applying an assist torque or a reaction torque to a steering member, and a suspension.
- the first control unit controls the magnitude of an assist torque or a reaction torque applied to the steering member at least with reference to a steering torque applied to the steering member,
- the integrated control unit includes a second control unit that controls a damping force of a vehicle suspension, and an integrated control unit that acquires information acquired or calculated by the first control unit and the second control unit.
- the first control unit Outputting information acquired from the first control unit and the second control unit to the first control unit and the second control unit, the first control unit outputting the information from the integrated control unit And the second
- the magnitude of the assist torque or the reaction torque is controlled with further reference to the information acquired or calculated by the control unit
- the second control unit is configured to output the steering torque or the integrated control unit and
- the damping force of the suspension of the vehicle is controlled with reference to the information acquired or calculated by the control unit 1, and the second control unit estimates the roll rate of the vehicle and refers at least to the estimated roll rate.
- the information acquired or calculated by the second control unit is the estimated roll rate
- the torque applying unit is supplied from the first control unit. Applying an assist torque or a reaction torque to the steering member in accordance with the control signal to be controlled, and the suspension decreases the reduction in response to the control signal supplied from the second control unit. Changing the force.
- a higher ride quality can be provided to the driver in steering and suspension control.
- Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described in detail.
- FIG. 1 is a view showing a schematic configuration of a vehicle 900 according to the present embodiment.
- a vehicle 900 includes a suspension system (suspension) 100, a vehicle body 200, wheels 300, tires 310, a steering member 410, a steering shaft 420, a torque sensor 430, a steering angle sensor 440, a torque applying unit 460, and a rack.
- a pinion mechanism 470, a rack shaft 480, an engine 500, an electronic control unit (ECU) (vehicle control device) 600, a power generation device 700, and a battery 800 are provided.
- the suspension device 100 and the ECU 600 constitute a suspension device according to the present embodiment.
- Vehicle 900 does not have to include all of the above-described configurations, and may include a portion of the above-described configurations. Also, each configuration described herein can be replaced with a known one.
- the wheel 300 on which the tire 310 is mounted is suspended on the vehicle body 200 by a suspension system 100. Since the vehicle 900 is a four-wheeled vehicle, four suspension devices 100, four wheels 300 and four tires 310 are provided.
- the tires and wheels of the left front wheel, the right front wheel, the left rear wheel and the right rear wheel are respectively the tire 310A and the wheel 300A, the tire 310B and the wheel 300B, the tire 310C and the wheel 300C, the tire 310D and the wheel It is also called 300D.
- the configurations attached to the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel will be represented by reference symbols “A”, “B”, “C” and “D”. There is.
- the suspension system 100 includes a hydraulic shock absorber, an upper arm and a lower arm.
- the hydraulic shock absorber also includes a solenoid valve that is a solenoid valve that adjusts the damping force generated by the hydraulic shock absorber.
- the hydraulic shock absorber may use a solenoid valve other than the solenoid valve as the solenoid valve for adjusting the damping force.
- a solenoid valve using an electromagnetic fluid may be provided as the solenoid valve.
- a power generation device 700 is attached to the engine 500, and the power generated by the power generation device 700 is accumulated in the battery 800.
- a steering member 410 operated by the driver is connected to one end of a steering shaft 420 so as to transmit torque, and the other end of the steering shaft 420 is connected to a rack and pinion mechanism 470.
- the rack and pinion mechanism 470 is a mechanism for converting the rotation around the axis of the steering shaft 420 into displacement along the axial direction of the rack axis 480.
- the wheels 300A and 300B are steered via the tie rods and knuckle arms.
- the torque sensor 430 detects the steering torque applied to the steering shaft 420, in other words, the steering torque applied to the steering member 410, and provides the ECU 600 with a torque sensor signal indicating the detection result. More specifically, torque sensor 430 detects the torsion of a torsion bar provided in steering shaft 420, and outputs the detection result as a torque sensor signal.
- a known sensor such as a Hall IC, an MR element, or a magnetostrictive torque sensor may be used.
- the steering angle sensor 440 detects the steering angle of the steering member 410, and provides the detection result to the ECU 600.
- the torque application unit 460 applies an assist torque or a reaction torque according to the steering control amount supplied from the ECU 600 to the steering shaft 420.
- the torque application unit 460 includes a motor that generates an assist torque or a reaction torque according to a steering control amount, and a torque transmission mechanism that transmits the torque generated by the motor to the steering shaft 420.
- control amount a current value, a duty ratio, an attenuation factor, an attenuation ratio etc. are mentioned as a specific example of the "control amount" in this specification.
- the steering member 410, the steering shaft 420, the torque sensor 430, the steering angle sensor 440, the torque applying unit 460, the rack and pinion mechanism 470, the rack shaft 480, and the ECU 600 constitute a steering device according to the present embodiment.
- to connect in a torque transmittable manner refers to being connected so that the rotation of one member causes the rotation of the other member, and, for example, one member and the other member Is integrally formed, the other member is fixed directly or indirectly to one member, and one member and the other member are interlocked via a joint member or the like At least including the case where it is connected.
- the steering device in which the steering member 410 to the rack shaft 480 are always mechanically connected has been described as an example, but this does not limit the present embodiment, and the steering according to the present embodiment
- the device may be, for example, a steer-by-wire steering device.
- the matters described below in the present specification can also be applied to a steer-by-wire steering apparatus.
- the ECU 600 centrally controls various electronic devices provided in the vehicle 900. More specifically, the ECU 600 controls the magnitude of the assist torque or the reaction torque to be applied to the steering shaft 420 by adjusting the steering control amount supplied to the torque application unit 460.
- the ECU 600 controls the opening and closing of the solenoid valve by supplying a suspension control amount to the solenoid valve included in the hydraulic shock absorber included in the suspension device 100.
- a power line for supplying drive power from the ECU 600 to the solenoid valve is provided.
- the vehicle 900 is provided with a wheel speed sensor 320 provided for each wheel 300 to detect the wheel speed of each wheel 300, a lateral G sensor 330 for detecting a lateral acceleration of the vehicle 900, and a longitudinal acceleration of the vehicle 900 Front-rear G sensor 340, a yaw rate sensor 350 for detecting the yaw rate of the vehicle 900, an engine torque sensor 510 for detecting the torque generated by the engine 500, an engine speed sensor 520 for detecting the number of rotations of the engine 500, and a brake device A brake pressure sensor 530 is provided to detect the pressure applied to the brake fluid. The detection results of these various sensors are supplied to the ECU 600.
- the vehicle 900 is an ABS (Antilock Brake System) that is a system for preventing wheel lock at the time of braking, TCS (Traction Control System) that suppresses idling of the wheel at the time of acceleration, etc.
- ABS Antilock Brake System
- TCS Traction Control System
- a vehicle behavior stabilization control system having an automatic brake function for yaw moment control at the time of turning, a brake assist function and the like is provided with a brake device capable of controlling ESC (Electronic Stability Control).
- ABS, TCS, and ESC compare the wheel speed determined according to the estimated vehicle speed with the wheel speed detected by the wheel speed sensor 320, and the value of these two wheel speeds is a predetermined value. If there is a difference, it is determined that the vehicle is in the slip state.
- the ABS, TCS, and ESC achieve stabilization of the behavior of the vehicle 900 by performing optimal brake control and traction control according to the traveling state of the vehicle 900 through such processing.
- the supply of the detection results by the various sensors described above to the ECU 600 and the transmission of the control signal from the ECU 600 to each unit are performed via a CAN (Controller Area Network) 370.
- CAN Controller Area Network
- FIG. 2 is a schematic cross-sectional view showing an example of a schematic configuration of a hydraulic shock absorber in the suspension apparatus 100 according to the present embodiment.
- the suspension system 100 includes a cylinder 101, a piston 102 slidably provided in the cylinder 101, and a piston rod 103 fixed to the piston 102.
- the cylinder 101 is divided into an upper chamber 101a and a lower chamber 101b by a piston 102, and the upper chamber 101a and the lower chamber 101b are filled with hydraulic oil.
- the suspension device 100 includes a communication passage 104 that causes the upper chamber 101 a and the lower chamber 101 b to communicate, and on the communication passage 104, the damping force of the suspension device 100 is adjusted.
- a solenoid valve 105 is provided.
- the solenoid valve 105 includes a solenoid 105 a and a valve 105 b which is driven by the solenoid 105 a and changes the flow passage cross-sectional area of the communication passage 104.
- the solenoid 105a takes in and out the valve 105b in accordance with the amount of suspension control supplied from the ECU 600, whereby the flow passage cross-sectional area of the communication passage 104 is changed, and the damping force of the suspension device 100 is changed.
- FIG. 3 is a diagram showing a schematic configuration of the ECU 600. As shown in FIG.
- the ECU 600 includes a steering control unit (first control unit) 610, a suspension control unit (second control unit) 650, and an integrated control unit 625.
- first control unit first control unit
- second control unit suspension control unit
- integrated control unit 625 integrated control unit
- the steering control unit 610 refers to various sensor detection results included in the CAN 370 to determine the magnitude of the steering control amount supplied to the torque applying unit 460.
- the suspension control unit 650 estimates the roll rate of the vehicle 900 and controls the damping force of the suspension of the vehicle 900. For example, the suspension control unit 650 estimates the roll rate of the vehicle 900 with reference to various sensor detection results included in the CAN 370. Further, the suspension control unit 650 determines the magnitude of the amount of suspension control supplied to the solenoid valve provided in the hydraulic shock absorber included in the suspension apparatus 100 at least with reference to the estimated roll rate. Thus, the damping force of the suspension of the vehicle 900 is controlled.
- the integrated control unit 625 outputs an instruction signal to each control unit of the in-vehicle component. For example, the integrated control unit 625 acquires information acquired or calculated by the steering control unit 610, and acquires information acquired or calculated by the suspension control unit 650. Then, the integrated control unit 625 outputs the information acquired from the steering control unit 610 and the suspension control unit 650 to the steering control unit 610 and the suspension control unit 650.
- the information output from the integrated control unit 625 to the steering control unit 610 is also referred to as “assist correction information”
- the information output from the integrated control unit 625 to the suspension control unit 650 is also referred to as “damping force correction information” below. .
- the control by the integrated control unit 625 and the above information output therefrom will be described later.
- vehicle state information (for example, a roll rate value) acquired or calculated by the suspension control unit 650 is supplied to the steering control unit 610 via the integrated control unit 625 as assist correction information. Reference is made to determine the magnitude of the steering control amount. Further, steering information (for example, a steering torque signal) acquired or calculated by the steering control unit 610 is supplied to the suspension control unit 650 via the integrated control unit 625 as damping force correction information, and the damping force of the suspension is determined. Referenced to. Thus, the steering control unit 610 controls the magnitude of the assist torque or the reaction torque by further referring to the information output from the integrated control unit 625 and obtained or calculated by the suspension control unit 650. The suspension control unit 650 also controls the damping force of the suspension of the vehicle 900 with reference to the steering torque or the information output from the integrated control unit 625 and acquired or calculated by the steering control unit 610. These controls will also be described later.
- the steering information includes steering torque, steering angle, rack displacement, rack thrust and the like
- the vehicle state information includes various information such as roll, pitch and yaw, and the vehicle state estimated from these information, etc. Can be mentioned.
- a steering torque signal is used as steering information
- a roll rate value is used as vehicle state information. That is, in the present embodiment, the information acquired or calculated by the suspension control unit 650 is the estimated roll rate described above.
- the roll rate value is configured to take “0” as a reference value when the inclination of the vehicle 900 does not change for a predetermined minute time, and represents the roll rate as a deviation from the reference value. It may be
- the process of “determining the magnitude of the control amount” also includes the case where the magnitude of the control amount is set to zero, that is, the control amount is not supplied.
- the ECU 600 may be configured to integrally include the steering control unit 610, the suspension control unit 650, and the integrated control unit 625, or may be configured to include some or all of them as separate ECUs. More specifically, in the latter case, the ECU 600 may be configured to integrally include the steering control unit 610 and the suspension control unit 650. In addition, the steering control unit 610 and the integrated control unit 625 may be integrated. Furthermore, the suspension control unit 650 and the integrated control unit 625 may be integrated. In the latter case, the control described in the present specification is realized as the separate ECUs of the steering control unit 610, the suspension control unit 650, and the integrated control unit 625 communicate with each other using communication means.
- FIG. 4 is a block diagram showing a configuration example of the steering control unit 610. As shown in FIG. 4
- the steering control unit 610 includes a signal processing unit 609, a control amount calculation unit 611, a control amount correction unit 612, a ⁇ feedback unit 620, a gain calculation unit 630, and a multiplication unit 640.
- the signal processing unit 609 performs signal processing on a steering torque signal indicating the steering torque.
- the signal processing may include phase compensation processing for the steering torque signal. This can be expected to realize a more comfortable ride.
- the control amount calculation unit 611 refers to the steering torque supplied from the signal processing unit 609 to calculate a control amount for controlling the magnitude of the assist torque or the reaction torque.
- the control amount calculated by the control amount calculation unit 611 is corrected by the control amount correction unit 612 and then supplied to the torque application unit 460 as a steering control amount.
- the ⁇ feedback unit 620 refers to the steering angle supplied from the steering angle sensor 440, the vehicle speed determined according to the wheel speed detected by the wheel speed sensor 320, and the steering torque supplied from the torque sensor 430, and performs correction control. Determine the value of the quantity.
- the ⁇ feedback unit 620 includes, as an example, a target steering angle speed calculation unit 621, an actual steering angle speed calculation unit 622, a subtraction unit 623, and a correction control amount determination unit 624, as shown in FIG.
- the target steering angle speed calculation unit 621 refers to the steering angle supplied from the steering angle sensor 440, the vehicle speed determined according to the wheel speed detected by the wheel speed sensor 320, and the steering torque supplied from the signal processing unit 609. And calculate the target steering angle speed.
- the target steering angle speed calculation unit 621 is a target steering angle speed map, And the torque ratio map may be referred to.
- the actual steering angle speed calculation unit 622 specifies the actual steering angle speed by calculating the time change of the steering angle supplied from the steering angle sensor 440.
- Subtraction unit 623 subtracts the actual steering angular velocity calculated by actual steering angular velocity calculation unit 622 from the target steering angular velocity calculated by target steering angular velocity calculation unit 621, and subtracts the steering angle velocity deviation that is the result of subtraction. Are supplied to the correction control amount determination unit 624.
- the correction control amount determination unit 624 determines the value of the correction control amount according to the steering angle speed deviation. Although a specific determination method of the value of the correction control amount does not limit the present embodiment, in determining the value of the correction control amount, the correction control amount determination unit 624 sets the steering angle speed deviation correction control amount map. It can be a configuration to be referred to.
- the gain calculation unit 630 supplies the gain coefficient to be multiplied by the correction control amount calculated by the ⁇ feedback unit 620 from the steering angle supplied from the steering angle sensor 440 and the suspension control unit 650 via the integrated control unit 625. Calculate with reference to the roll rate value.
- the gain calculation unit 630 is a return determination unit 631, a steering speed determination unit 632, a roll rate determination unit 633, a logical product calculation unit 634, a moving average unit 635, and a gain determination unit. It has 636.
- the switchback determination unit 631 refers to the steering angle supplied from the steering angle sensor 440 and the steering angle speed calculated with reference to the steering angle to determine whether the steering member 410 is in the switchback state. Make a decision on When the steering member 410 is in the switchback state, the switchback determination unit 631 outputs “1” as the determination result, and otherwise outputs “0” as the determination result.
- the vehicle 900 is provided with a steering angle speed sensor, and the turning back determination unit 631 refers to the steering angle supplied from the steering angle sensor 440 and the steering angle speed supplied from the steering angle speed sensor, and the steering member It may be configured to determine whether 410 is in the switchback state.
- the determination processing of the switchback state by the switchback judging unit 631 is not limited to the above example.
- the cutback determination unit 631 determines whether or not to be in the cutback state by referring to the torque sensor signal indicating the detection result of the torque sensor 430 and the rotation direction of the motor included in the torque application unit 460. Good. In this configuration, for example, when the sign of the torque sensor signal is different from the sign of the rotation direction of the motor, it may be determined that the switchback state is established.
- the sign of the torque sensor signal for example, the sign of the torque sensor signal in the state where the torsion bar is twisted in the right rotation direction is plus, and the torque in the state where the torsion bar is twisted in the left rotation direction
- the sign of the sensor signal may be negative.
- the sign of the rotation direction of the motor is that when the torsion bar is twisted in the right rotation direction, the direction in which the torsion bar is untwisted is positive and the torsion bar is twisted in the left rotation direction.
- the direction to eliminate the twist of the may be negative.
- the steering speed determination unit 632 determines whether the steering angle speed or the absolute value thereof calculated with reference to the steering angle supplied from the steering angle sensor 440 is equal to or higher than a predetermined value.
- the steering speed determination unit 632 outputs “1” as a determination result when the steering angle speed or the absolute value thereof is equal to or more than a predetermined value, and otherwise outputs “0” as a determination result.
- the roll rate determination unit 633 determines whether the roll rate value supplied from the suspension control unit 650 via the integrated control unit 625 or the absolute value thereof is less than a predetermined value.
- the roll rate determination unit 633 outputs “1” as the determination result if the roll rate value or the absolute value thereof is less than a predetermined value, and outputs “0” as the determination result otherwise.
- the logical product calculation unit 634 takes a logical product of the determination results from the return control unit 631, the steering speed determination unit 632, and the roll rate determination unit 633, and outputs the result. In other words, the logical product calculating unit 634 outputs “1” when all the determination results output by the switchback determination unit 631, the steering speed determination unit 632, and the roll rate determination unit 633 are “1”. Output, otherwise "0" is output.
- the moving average unit 635 calculates a moving average of the output of the logical product calculating unit 634, and outputs the result. Note that a low pass filter may be used as the moving average unit 635.
- the gain determination unit 636 determines a gain coefficient according to the output result of the moving average unit 635, and supplies the determined gain coefficient to the multiplication unit 640. More specifically, when the value after moving average by the moving average unit 635 is larger than 0, a gain coefficient larger than 1 is determined. Furthermore, the gain determination unit 636 sets the gain coefficient larger as the value after moving average by the moving average unit 635 is larger. In other words, the gain determination unit sets the gain coefficient such that the reaction force applied to the steering member 410 increases as the moving average unit 635 increases the value after moving average.
- the multiplication unit 640 supplies the correction control amount after the gain to the control amount correction unit 612 by multiplying the correction control amount determined by the correction control amount determination unit 624 by the gain coefficient determined by the gain determination unit 636.
- the control amount correction unit 612 generates a steering control amount by adding the post-gain correction control amount supplied from the multiplication unit 640 to the control amount calculated by the control amount calculation unit 611.
- the control amount correction unit 612 refers to the control amount calculated by the control amount calculation unit 611 as the roll rate of the vehicle body 200, the steering angle of the steering member 410, and the steering angle speed of the steering member 410. to correct.
- control amount correction unit 612 corrects the control amount calculated by the control amount calculation unit 611 with reference to the roll rate of the vehicle body 200, thereby reducing assist torque or reaction force torque with little discomfort for the driver. It can be applied to the steering member 410. Further, since the above-mentioned correction is performed with further reference to the steering angle of the steering member 410 and the steering angle speed of the steering member 410, an assist torque or reaction torque with less discomfort for the driver can be applied to the steering member 410. Can be applied.
- the steering member 410 in the control amount correction unit 612, the steering member 410 is in the turning back state, the steering angle speed of the steering member 410 or the absolute value thereof is equal to or more than a predetermined value.
- the control amount is corrected when the supplied roll rate value or the absolute value thereof is less than a predetermined value.
- the steering angle speed of the steering member or its absolute value is equal to or more than a predetermined value, and the roll rate value or its absolute value is less than a predetermined value, It has been recognized by the inventor that the phenomenon "is likely to occur.”
- the phenomenon of “torque loss” can be suitably suppressed, so that the assist torque or the reaction torque can be applied with less discomfort for the driver.
- the steering angle speed of the steering member 410 or the absolute value thereof is equal to or more than a predetermined value.
- the control amount is controlled so that the reaction force applied to the steering member 410 is larger than when it is not.
- FIG. 5 is a block diagram showing a configuration example of the suspension control unit 650. As shown in FIG.
- the suspension control unit 650 includes a CAN input unit 660, a vehicle state estimation unit 670, a steering stability and riding comfort control unit 680, and a control amount selection unit 690.
- the CAN input unit 660 acquires various signals via the CAN 370. As shown in FIG. 5, the CAN input unit 660 obtains the following signals (brackets indicate the obtaining source).
- the vehicle state estimation unit 670 estimates the state of the vehicle 900 with reference to various signals acquired by the CAN input unit 660.
- the vehicle state estimation unit 670 outputs sprung speeds of four wheels, stroke speeds of four wheels, pitch rate, roll rate, roll rate at turning, and pitch rate at acceleration / deceleration as estimation results.
- the vehicle state estimation unit 670 is an acceleration / deceleration / turning correction amount calculation unit 671, an acceleration / deceleration / turning pitch / roll rate calculation unit 673, and a state estimation single wheel model application unit 674. Is equipped.
- the acceleration / deceleration / turning correction amount calculation unit 671 refers to the yaw rate, front / rear G, wheel speeds of four wheels, brake pressure, engine torque, and engine speed, and adjusts the vehicle longitudinal speed, inner / outer ring differential ratio, and adjustment.
- the gain is calculated, and the calculation result is supplied to the state estimation single wheel model application unit 674.
- the acceleration / deceleration / turning pitch / roll rate calculator 673 calculates the turning roll rate and the acceleration / deceleration pitch rate with reference to the front and rear G and the lateral G.
- the calculation result is supplied to the state estimation single wheel model application unit 674.
- the suspension control unit 650 estimates the roll rate by calculating the roll rate with reference to at least the lateral acceleration (lateral G) of the vehicle 900.
- the acceleration / deceleration / turning pitch / roll rate calculation unit 673 supplies the calculated turning roll rate to the integrated control unit 625 as a roll rate value.
- the acceleration / deceleration / turning pitch / roll rate calculating unit 673 may be configured to further refer to the suspension control amount output from the control amount selecting unit 690. The details of the acceleration / deceleration / turning pitch / roll rate calculation unit 673 will be described later, with reference to the drawings referred to.
- the acceleration / deceleration / turning pitch / roll rate calculation unit 673 supplies the steering roll rate calculated with reference to the front and rear G and the lateral G to the integrated control unit 625 as a roll rate value, and the steering is performed.
- the control unit 610 corrects the control amount for controlling the magnitude of the assist torque or the reaction torque with reference to the roll rate value provided from the integrated control unit 625. Therefore, the steering control unit 610 can more preferably correct the magnitude of the assist torque or the reaction torque.
- the steering control unit 610 is more preferably The magnitude of the assist torque or the reaction torque can be corrected.
- the single-wheel model application unit for state estimation 674 applies the single-wheel model for state estimation to each wheel with reference to the calculation result by the acceleration / deceleration / turning correction amount calculation unit 671, and the sprung speed of four wheels, Calculate the stroke speed, pitch rate and roll rate of 4 wheels.
- the calculation result is supplied to the steering stability / ride control unit 680.
- the steering stability / ride control unit 680 includes a skyhook control unit 681, a roll attitude control unit 682, a pitch attitude control unit 683, and an unsprung control unit 684.
- the skyhook control unit 681 suppresses the fluctuation of the vehicle when it gets over the unevenness of the road surface, and performs ride comfort control (vibration control) that enhances the ride comfort.
- the skyhook control unit 681 determines the skyhook target control amount with reference to the sprung speed of four wheels, the stroke speed of four wheels, the pitch rate, and the roll rate as an example, and the result is used as a control amount selector Supply to 690.
- the skyhook control unit 681 sets the damping force base value by referring to the sprung-damping force map based on the sprung velocity. Further, the skyhook control unit 681 calculates a skyhook target damping force by multiplying the set damping force base value by the skyhook gain. Then, the skyhook target control amount is determined based on the skyhook target damping force and the stroke speed.
- the roll attitude control unit 682 calculates each target control amount with reference to the roll rate at turning, the steering angle signal indicating the steering angle, the steering torque signal indicating the steering torque, and the wheel speed signal indicating the wheel speeds of the four wheels. Perform roll attitude control by doing this.
- the steering torque signal may include a steering torque signal output from the integrated control unit 625 as damping force correction information, in addition to the steering torque signal acquired by the CAN input unit 660 from the torque sensor 430.
- the roll posture control unit 682 may refer to only the steering torque signal from the CAN input unit 660 or may refer to only the steering torque signal as damping force correction information, or both of them. It is also good.
- the calculated target control amounts are supplied to the control amount selector 690. The specific configuration of the roll posture control unit 682 will be described later.
- FIG. 5 shows an example in which the roll attitude control unit 682 can obtain the steering torque signal from both of the CAN 370 and the integrated control unit 625, but as described later, the roll attitude control unit 682 performs steering control
- the steering torque signal may be acquired from the unit 610 via the integrated control unit 625.
- the roll attitude control unit 682 may also acquire the steering angle signal from the steering control unit 610 via the integrated control unit 625. Thereby, the transmission load of CAN 370 can be further reduced.
- the roll attitude control unit 682 performs roll attitude control with reference to the turning roll rate calculated by the acceleration / deceleration / turning pitch / roll rate calculating unit 673, it is preferable to perform suitable attitude control.
- the turning roll rate calculated by the acceleration / deceleration / turning pitch / roll rate calculating unit 673 is not only the roll attitude control by the roll attitude control unit 682 but also the integrated control unit 625 as described above. It is provided to the steering control unit 610 and is also used to correct the magnitude of the assist torque or the reaction torque by the steering control unit 610. Therefore, it is possible to provide a suitable attitude control and a steering feeling without a sense of incongruity while suppressing an increase in components.
- the pitch attitude control unit 683 performs pitch control with reference to the pitch rate during acceleration / deceleration, determines a pitch target control amount, and supplies the result to the control amount selection unit 690.
- the unsprung control unit 684 performs damping control of the unsprung of the vehicle 900 with reference to the wheel speeds of the four wheels, and determines the unsprung damping control target control amount. The determination result is supplied to the control amount selection unit 690.
- the control amount selection unit 690 includes a skyhook target control amount, a steering angle proportional target control amount, a steering angle proportional target control amount, a roll rate proportional target control amount, a pitch target control amount, and an unsprung mass damping control target control amount. Among them, the target control amount having the largest value is selected and output as a suspension control amount.
- FIG. 6 is a block diagram showing a configuration example of the acceleration / deceleration / turning pitch / roll rate calculation unit 673.
- the acceleration / deceleration / turning pitch / roll rate calculation unit 673 includes subtraction units 731, 732, a damping force calculation unit 733, a model application unit 740, and amplification units 751 to 754.
- the model application unit 740 further includes amplification units 741, 744, and 745, an addition unit 742, and a delay unit 743.
- the subtraction unit 731 subtracts the output signal of the amplification unit 753 from the signal indicating the front and rear G, and outputs the result of the subtraction to the amplification unit 741.
- the subtracting unit 732 subtracts the output signal of the amplification unit 754 from the signal indicating horizontal G, and outputs the result of the subtraction to the amplification unit 741.
- the damping force calculation unit 733 calculates the damping force of each wheel with reference to the suspension control amount and the output of the amplification unit 751.
- the output of the amplification unit 751 corresponds to an estimated value for the stroke speed (damper speed) of the hydraulic shock absorber provided in the suspension apparatus 100. Further, the calculation of the damping force of each wheel by the damping force calculating unit 733 is performed with reference to the damping force map.
- the model application unit 740 applies the pitch behavior model to the back and forth G after subtraction output by the subtraction unit 731 and the damping force of each wheel output by the damping force calculation unit 733 so that the pitch rate at acceleration and deceleration is obtained.
- the model application unit 740 applies the roll behavior model to the lateral G after subtraction output by the subtraction unit 732 and the damping force of each wheel output by the damping force calculation unit 733, thereby achieving a steering roll rate.
- the calculation of the pitch rate during acceleration / deceleration and the roll rate during steering by the model application unit 740 is performed by adjusting the amplification factors of the amplification units 741, 744, and 745 and the delay amount by the delay unit 743.
- the amplification unit 741 amplifies the outputs of the subtraction unit 731, the subtraction unit 732, and the damping force calculation unit 733, and supplies the amplified output to the addition unit 742.
- the addition unit 742 adds the output of the delay unit 743 amplified by the amplification unit 745 to the output of the amplification unit 741, and supplies the result to the delay unit 743.
- the amplification unit 744 outputs the output of the delay unit 743 as a pitch rate at acceleration or a roll rate at steering.
- the amplification unit 751 amplifies the output of the delay unit 743 and supplies the amplified output to the damping force calculation unit 733.
- the amplification unit 752 amplifies the output of the delay unit 743.
- the output of the amplification unit 752 is amplified by the amplification unit 753 or the amplification unit 754 and then input to the subtraction unit 731 or the subtraction unit 732, respectively.
- the acceleration / deceleration / turning pitch / roll rate calculating unit 673 may output “0” as a reference value of the turning roll rate when the inclination of the vehicle 900 does not change for a predetermined minute time. .
- the acceleration / deceleration / turning pitch / roll rate calculating unit 673 may provide a dead zone of about ⁇ 0.5 in the turning roll rate.
- the left side of the vehicle 900 is “+” and the right side is “ ⁇ ”.
- Roll attitude control unit 682 The roll attitude control unit 682 calculates a suspension control amount for controlling the damping force of the suspension according to the determination result by the road surface determination unit.
- FIG. 7 is a block diagram showing an example of the configuration of the roll attitude control unit 682.
- the roll posture control unit 682 calculates a steering-derived target control amount that is a candidate for a suspension control amount, with reference to the turning roll rate, the steering torque signal, the steering angle signal, and the wheel speed signal.
- the steering-derived target control amount calculated by the roll posture control unit 682 becomes a suspension control amount when it is selected by the control amount selection unit 690. Therefore, the roll attitude control unit 682 can also be expressed as calculating the suspension control amount.
- the roll attitude control unit 682 includes a roll rate proportional target control amount calculation unit 80, a first target control amount calculation unit 81, a second target control amount calculation unit 82, a selection unit 83, and a road surface determination.
- a section (road surface determination device) 84 and a multiplication section 85 are provided.
- the roll rate proportional target control amount calculation unit 80 calculates the roll rate proportional target control amount with reference to the turning time roll rate supplied from the acceleration / deceleration / turning time pitch / roll rate calculation portion 673.
- the first target control amount calculator 81 calculates a first target control amount with reference to the steering torque signal. Specifically, the first target control amount calculation unit 81 refers to the steering torque signal, suppresses the roll of the vehicle 900, and calculates a first target control amount such that the posture of the vehicle 900 approaches flatter. Do. For example, when the steering member 410 is steered in a turning direction and the vehicle 900 travels along a curve heading in the turning direction, damping of the suspension outside the curve (that is, the side opposite to the steering direction) The first target control amount is calculated to increase the force. In other words, the first target control amount is calculated such that the suspension on the opposite side to the turning direction becomes hard. Furthermore, it is also possible to calculate a first target control amount that increases the damping force of the suspension inside the curve after increasing the damping force of the suspension outside the curve.
- the first target control amount calculation unit 81 includes a torque reference target control amount calculation unit 811, a torque speed reference target control amount calculation unit 812, and a first target control amount selection unit 813. ing.
- the torque reference target control amount calculation unit 811 calculates a torque reference target control amount with reference to the torque indicated by the steering torque signal.
- the torque speed reference target control amount calculation unit 812 calculates a torque speed by referring to a time change of torque indicated by the steering torque signal, and calculates a torque speed reference control amount by referring to the calculated torque speed.
- the first target control amount selection unit 813 sets a target control amount having a higher value among the torque reference target control amount and the torque speed reference target control amount to a target control amount derived from torque (a first target control amount Choose as).
- the second target control amount calculation unit 82 calculates a second target control amount with reference to the steering angle signal. Specifically, the second target control amount calculation unit 82 refers to the steering angle signal, suppresses the roll of the vehicle 900, and calculates a second target control amount such that the posture of the vehicle 900 approaches flatter. Do. For example, when the steering member 410 is steered in a turning direction and the vehicle 900 travels along a curve heading in the turning direction, damping of the suspension outside the curve (that is, the side opposite to the steering direction) The second target control amount is calculated to increase the force. In other words, the second target control amount is calculated such that the suspension on the opposite side to the turning direction becomes hard. Furthermore, after increasing the damping force of the suspension outside the curve, a second target control amount may be calculated to increase the damping force of the suspension inside the curve.
- the second target control amount calculation unit 82 is a steering angle reference target control amount calculation unit 821, a steering angle speed reference target control amount calculation unit 822, and a second target control amount selection unit 823. Is equipped.
- the steering angle reference target control amount calculation unit 821 calculates a steering angle reference target control amount with reference to the steering angle indicated by the steering angle signal.
- the steering angle speed reference target control amount calculating unit 822 calculates the steering angle speed by referring to the time change of the steering angle indicated by the steering angle signal, and the steering angle speed reference target control amount with reference to the calculated steering angle speed. Calculate
- the second target control amount selection unit 823 sets a target control amount having a higher value out of the steering angle reference target control amount and the steering angle speed reference target control amount to the target control amount derived from the steering angle (second Select as target control amount).
- the road surface determination unit 84 determines the road surface condition with reference to the wheel speed signal, and supplies a coefficient indicating the determination result to the multiplication unit 85.
- a specific configuration example of the road surface determination unit 84 will be described later.
- the multiplication unit 85 multiplies the first target control amount calculated by the first target control amount calculation unit 81 by the coefficient supplied from the road surface determination unit 84, and multiplies the coefficient by the first target control.
- the amount is supplied to the selection unit 83.
- Selection unit 83 selects a target control amount having a higher value among the first target control amount after coefficient multiplication, the second target control amount, and the roll rate proportional target control amount as a steering-derived target control amount. ,Output.
- the roll posture control unit 682 calculates the steering-derived target control amount that is a candidate for the suspension control amount according to the determination result by the road surface determination unit, control of the suspension damping force is performed according to the road surface condition. Can be done properly.
- the roll attitude control unit 682 calculates a first target control amount calculation unit 81 that calculates a first target control amount, and a coefficient according to the determination result by the road surface determination unit 84 as a value of the first target control amount.
- the road surface determination is performed because it includes a multiplication unit 85 for multiplying by and a selection unit 83 for selecting a steering-derived target control amount that is a candidate for a suspension control amount from a plurality of candidates including the first target control amount after coefficient multiplication.
- the target control amount can be suitably set according to the determination result by the unit.
- the first target control amount is calculated with reference to a steering torque signal representing the steering torque applied to the steering member 410, and the coefficient indicating the result of the road surface determination is the first target control amount. Multiplied by Therefore, according to the road surface condition, the first target control amount, which is a target control amount derived from torque, is multiplied by a coefficient smaller than 1 to make it difficult to select a target control amount derived from torque as a suspension control amount. It will be possible.
- the road surface determination unit 84 is configured to determine a road surface condition with reference to a reference signal for performing the road surface determination, and to output a coefficient representing the determination result.
- a configuration will be described in which a wheel speed signal indicating the wheel speeds of four wheels is referred to as the reference signal.
- the radius of the tire 310 may be reduced by the convex portion of the road surface, or the radius of the tire 310 may be increased by the concave portion of the road surface.
- the wheel speed signal is a suitable signal for determining the road surface condition.
- FIG. 8 is a block diagram showing a configuration example of the road surface determination unit 84.
- the road surface determination unit 84 includes a high pass filter (HPF) 840, a band stop filter (BSF) 841, an absolute value calculation unit 842, a low pass filter (LPF) 844 and a coefficient determination unit 846.
- HPF high pass filter
- BSF band stop filter
- LPF low pass filter
- the wheel speed signal is input to the high pass filter 840
- the low pass filter 844 is disposed downstream of the high pass filter 840.
- the order of the high pass filter 840 and the band stop filter 841 may be reversed from that shown in FIG. Even in that case, the low pass filter 844 is disposed downstream of the high pass filter 840 and the band stop filter 841.
- the high pass filter 840 acts on the wheel speed signal and extracts the wheel speed fluctuation derived from the road surface condition by removing or reducing frequency components below the first cutoff frequency from the wheel speed signal.
- the frequency components removed or reduced by the high pass filter 840 include the wheel speed fluctuation and the like derived from the steering.
- the first cutoff frequency and the first order in the high pass filter 840 can be freely set, and more suitable values can be set by experimental values.
- band stop filter 841 When the band stop filter 841 is disposed downstream of the high pass filter 840, the band stop filter 841 acts on the wheel speed signal after the high pass filter 840 acts. When the band stop filter 841 is disposed upstream of the high pass filter 840, the band stop filter 841 acts on the wheel speed signal before the high pass filter 840 acts.
- the band stop filter 841 reduces or cuts off the signal at the frequency included in the cut-off frequency band among the processing target signals input to itself, and does not change the signal in the other frequency bands .
- the cutoff frequency band is designated by the center frequency and the bandwidth.
- the vehicle speed signal is also input to the band stop filter 841 according to the present embodiment as a signal for determining the cutoff frequency band, and the band stop filter 841 changes the cutoff frequency band according to the wheel speed signal. It is configured to be possible. Specifically, the band stop filter 841 is configured to be able to change the center frequency of the cutoff frequency band in accordance with the vehicle speed indicated by the wheel speed signal.
- the band stop filter 841 may be configured to further change the bandwidth of the cutoff frequency band according to the wheel speed signal.
- the road surface determination unit 84 removes the contribution of the wheel speed fluctuation due to the eccentricity of the tire 310 from the wheel speed signal.
- the road surface condition can be determined. Therefore, the road surface determination can be appropriately performed.
- the absolute value calculator 842 calculates the absolute value of the output signal of the high pass filter 840 and provides the low pass filter 844 with the absolute value.
- the low pass filter 844 generates or outputs a signal indicating fluctuation of the wheel speed by removing or reducing frequency components higher than the second cutoff frequency from the output of the absolute value calculation unit 842. In other words, the low pass filter 844 calculates the fluctuation of the wheel speed as a kind of energy which is an index of the road surface condition.
- the second cutoff frequency and the second order in the low pass filter 844 can be freely set, and more preferable values can be set by experimental values.
- the coefficient determination unit 846 outputs a coefficient according to the output value of the low pass filter 844. For example, the coefficient determining unit 846 sets the coefficient to be output when the output value of the low pass filter 844 is equal to or greater than a predetermined threshold, smaller than the coefficient to be output when the output value of the low pass filter 844 is less than the predetermined threshold. .
- the coefficient determination unit 846 outputs 0 as a coefficient if the output value of the low pass filter 844 is equal to or greater than a predetermined threshold, and if the output value of the low pass filter 844 is less than the predetermined threshold, Output 1 as a coefficient.
- the situation where the output value of the low pass filter 844 is equal to or more than the predetermined threshold corresponds to the case where the road surface is a bad road, and the situation where the output value of the low pass filter 844 is less than the predetermined threshold is the case where the road surface is not a bad road It corresponds to Thus, the coefficient determination unit 846 outputs a coefficient having a value according to the road surface condition.
- the road surface determination unit 84 configured as described above extracts the wheel speed fluctuation derived from the road surface condition by the high pass filter 840, and removes the contribution of the wheel speed fluctuation caused by the eccentricity of the tire 310 by the band stop filter 841.
- the low-pass filter 844 outputs a signal indicating wheel speed fluctuation, and the coefficient determination unit 846 determines the value of the coefficient to be multiplied by the first target control amount according to the signal output from the low-pass filter 844.
- the value of the coefficient can be suitably determined in accordance with the road surface condition determination result with reference to the wheel speed signal.
- the band stop filter 841 eliminates the contribution of the wheel speed fluctuation caused by the eccentricity of the tire 310, it is possible to perform the determination with higher accuracy.
- the coefficient determination unit 846 outputs a coefficient that is output when the output value of the low pass filter 844 is equal to or greater than a predetermined threshold when the output value of the low pass filter 844 is less than the predetermined threshold. Set smaller than the coefficient.
- a more comfortable ride may be realized by outputting the target control amount derived from the steering angle without outputting the target control amount derived from torque. Since the coefficient determination unit 846 can output the target control amount derived from the steering angle prior to the target control amount derived from torque according to the road surface condition by adopting the configuration as described above, it is more comfortable. A ride can be realized.
- FIG. 9 is a process flow diagram showing a flow of various processes included in integrated or coordinated control (also referred to as “integrated / coordinated control”) performed by the steering control unit 610, the suspension control unit 650, and the integrated control unit 625. is there.
- integrated or coordinated control also referred to as “integrated / coordinated control”
- Processing group S610 shown in FIG. 9 is steering control processing performed by the steering control unit 610, and processing group S650 is suspension control processing performed by the suspension control unit 650.
- the integration / collaboration control processing S625 is performed by the integration control unit 625.
- the processes described below also indicate various processes performed by the steering control unit 610, the suspension control unit 650, and the integrated control unit 625.
- steering torque is generated by the driver's steering.
- step S609 signal processing is performed on a steering torque signal indicating a steering torque as an example of steering information.
- the signal processing may include phase compensation processing for the steering torque signal. This step is performed, for example, by the signal processing unit 609 described above.
- step S611 base control amount determination processing with reference to the steering torque signal after signal processing is performed. This step is performed, for example, by the control amount calculation unit 611 described above calculating the control amount (base control amount).
- step S630 roll rate response control processing is performed with reference to the roll rate value as an example of the vehicle state information. This step is performed by, for example, the ⁇ feedback unit 620, the gain calculation unit 630, and the multiplication unit 640, and the correction control amount after the gain described above is calculated.
- the roll rate value referred to in this step is calculated in a roll rate calculation process (step S673) to be described later (step S673), and provided as assist correction information through the integration / collaboration control process (step S625).
- step S612 motor output determination processing is performed.
- a steering control amount defining the motor output is determined with reference to the base control amount calculated by the base control amount determination process and the corrected control amount after gain calculated by the roll rate response control process.
- This step is performed by, for example, the control amount correction unit 612 described above.
- Step S671 control processing is performed on the road surface input with reference to the wheel speed, and a target control amount related to the wheel speed is calculated.
- This step is performed by, for example, the above-described acceleration / deceleration / turning correction amount calculation unit 671, the one-wheel model application unit for state estimation 674, and the skyhook control unit 681.
- Step S673 roll rate calculation processing with reference to the lateral G is performed, and a roll rate value and a target control amount related to the lateral G are calculated.
- the roll rate value calculated in this step is referred to in the roll rate response control process (S630) described above as assist correction information through integration / collaborative control process (S625).
- This step is performed by, for example, the above-described acceleration / deceleration / turning pitch / roll rate calculation unit 673.
- Step 682 steering torque responsive control processing is performed with reference to the steering torque (damping force correction information) subjected to signal processing in step S609 and subjected to integration / collaborative control processing (S625), and a target control amount related to steering torque Is calculated.
- This step is performed by, for example, the above-described roll posture control unit 682.
- the steering torque before signal processing in S609 may be referred to on the condition that the integration / collaboration control processing (S625) is performed.
- Step S690 the target control amount having the highest value among the target control amounts calculated in steps S682, S671, and S673 is output as a suspension control amount defining the damping force of the suspension. This step is performed by, for example, the control amount selection unit 690.
- step S625 the steering torque signal processed in step S609 and the roll rate value calculated in step S673 are referred to. Then, damping force correction information acquired with reference to the steering torque signal is output to step S682, and assist correction information acquired with reference to the roll rate value is output to step S630.
- step S625 the steering torque signal processed in step S609 and the roll rate value calculated in step S673 are referred to. Then, damping force correction information acquired with reference to the steering torque signal is output to step S682, and assist correction information acquired with reference to the roll rate value is output to step S630.
- This step is performed by the integrated control unit 625.
- the integrated control unit 625 may obtain the steering torque signal as the information obtained or calculated by the steering control unit 610 as described above.
- the assist correction information may further include information other than the roll rate value.
- Examples of the information that may further be included as the assist correction information include information obtained by part of the roll rate response control process in S630 (for example, part or all of the process by the roll rate determination unit 633).
- the damping force correction information may further include control processing of a part of suspension control processing.
- Examples of information that the damping force correction information may further include include information on a steering angle (steering angle signal) to be input to the suspension control unit 650, and part of the processing of steering torque response control processing in S682 (for example, Information included in part of the processing by the roll posture control unit 682 is included.
- the steering torque referred to in the steering control processing S610 is in the suspension control processing S650, and the roll rate value as the vehicle state calculated in the suspension control processing S650 is in the steering control processing S610. Referenced at the appropriate time.
- the road surface determination unit 84 has described the configuration in which the wheel speed signal indicating the wheel speeds of the four wheels is referred to as a reference signal for performing the road surface determination. It is not limited. Hereinafter, the case where the road surface determination unit 84 refers to a reference signal other than the wheel speed signal will be described.
- parameters such as the cutoff frequency in the high pass filter 840 and the low pass filter 844 may be set as suitable values according to the reference signal.
- the road surface determination unit 84 is configured to include a plurality of signal processing paths including the high pass filter 840 and the low pass filter 844, and the road surface is referred to with reference to a plurality of signals among the wheel speed signals described above and various reference signals shown below. It may be configured to perform the determination. With such a configuration, the accuracy of road surface determination can be improved.
- the road surface determination unit 84 may determine the road surface state with reference to a steering angle signal indicating the steering angle of the steering member 410.
- the steering angle signal is a signal suitable for determining the road surface condition.
- the road surface determination unit 84 may determine the road surface state by referring to a steering torque signal indicating the steering torque applied to the steering member 410.
- a steering torque signal indicating the steering torque applied to the steering member 410.
- the steering torque signal can be said to be a suitable signal for determining the road surface condition.
- the road surface determination unit 84 may determine the road surface state by referring to the motor rotation of the motor (steering assist motor) provided in the torque application unit 460.
- the motor rotation speed of the steering assist motor also fluctuates due to the unevenness. Therefore, it can be said that the motor rotation number of the steering assist motor is a suitable signal for determining the road surface condition.
- the yaw rate signal The road surface determination unit 84 may determine the road surface condition with reference to a yaw rate signal indicating the yaw rate of the vehicle 900.
- a yaw rate signal indicating the yaw rate of the vehicle 900.
- the yaw rate signal is a signal suitable for determining the road surface condition.
- the road surface determination unit 84 refers to at least one of a lateral G signal indicating lateral acceleration of the vehicle 900 and longitudinal G signal indicating longitudinal acceleration of the vehicle 900.
- the road surface condition may be determined.
- the lateral acceleration and the longitudinal acceleration of the vehicle 900 fluctuate due to the unevenness directly or indirectly through the steering torque or the like. Therefore, the lateral G signal and the longitudinal G signal can be said to be suitable signals for determining the road surface condition.
- a vehicle 900 includes an up and down G sensor for detecting the acceleration in the up and down direction of the vehicle 900, and the road surface determination unit 84 refers to the up and down G signal indicating the up and down acceleration. It may be configured to determine the state.
- the upper and lower G signals can be said to be suitable signals for determining the road surface condition.
- the road surface determination unit 84 performs at least one of the pitch rate calculated by the vehicle state estimation unit 670 and the acceleration / deceleration pitch rate which is the pitch rate calculated by the acceleration / deceleration / turning correction amount calculation unit 671.
- the road surface condition may be determined with reference to. When the unevenness is present on the road surface, the pitch rate changes due to the unevenness directly or indirectly through the steering torque or the like. Therefore, it can be said that the pitch rate is a suitable signal for determining the road surface condition.
- the control block (the steering control unit 610, the suspension control unit 650, and the integrated control unit 625) of the ECU 600 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. It may be realized by software using Processing Unit).
- the ECU 600 is a CPU that executes instructions of a program that is software that implements each function, a ROM (Read Only Memory) or a storage device in which the above program and various data are readably recorded by a computer (or CPU). (These are referred to as “recording media”), a RAM (Random Access Memory) for developing the above-mentioned program, and the like. Then, the object of the present invention is achieved by the computer (or CPU) reading and executing the program from the recording medium.
- the recording medium a “non-transitory tangible medium”, for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used.
- the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
- the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Vehicle Body Suspensions (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Power Steering Mechanism (AREA)
Abstract
The present invention provides greater ride comfort for a driver in terms of steering and suspension control. An ECU (600) comprises a steering control unit (610), a suspension control unit (650), and an integration control unit (625). The integration control unit (625), to each of the two control units, outputs information on one of the control units at an appropriate timing referenced by means of control by the other control unit.
Description
本発明は、車両を制御する車両制御装置、および、車両に関する。
The present invention relates to a vehicle control device that controls a vehicle, and a vehicle.
操舵部材に対してアシストトルク又は反力トルクを印加するステアリング装置が知られている。また、ステアリング装置において、目標操舵速度と実操舵速度との差に基づいてアシスト目標電流を補正する技術(特許文献1)、及び、操舵トルクの方向とアシストモータの回転方向とに基づいてステアリングホイールの操舵状況を判定する技術(特許文献2)等が知られている。
There is known a steering device which applies an assist torque or a reaction torque to a steering member. Further, in the steering apparatus, a technology for correcting the assist target current based on the difference between the target steering speed and the actual steering speed (Patent Document 1), and a steering wheel based on the direction of steering torque and the rotation direction of the assist motor. There is known a technique (Japanese Patent Application Laid-Open No. 2000-112118) and the like for determining the steering condition of the vehicle.
また、減衰力を制御可能なサスペンション装置が知られている。例えば、特許文献3及び4には、操舵トルクに応じて減衰力を制御するサスペンション装置が開示されている。
In addition, a suspension device capable of controlling a damping force is known. For example, Patent Documents 3 and 4 disclose suspension devices that control damping force in accordance with steering torque.
ステアリング及びサスペンションの制御においては、より高い乗り心地を提供することが好ましい。
In steering and suspension control, it is preferable to provide a higher ride quality.
本発明は、ステアリング及びサスペンションの制御において、運転者により高い乗り心地を提供することを目的とする。
An object of the present invention is to provide a driver with a higher ride quality in steering and suspension control.
かかる目的のもと、本発明は、車両を制御する車両制御装置であって、操舵部材に対して印加される操舵トルクを少なくとも参照して、前記車両の操舵を行うステアリング装置に対して印加するアシストトルク又は反力トルクの大きさを制御する第1の制御部と、前記車両のサスペンションの減衰力を制御する第2の制御部と、前記第1の制御部および前記第2の制御部が取得又は算出する情報を取得する統合制御部とを備え、前記統合制御部は、前記第1の制御部および前記第2の制御部から取得した情報を前記第1の制御部および前記第2の制御部へ出力し、前記第1の制御部は、前記統合制御部から出力され前記第2の制御部が取得又は算出した情報を更に参照して前記アシストトルク又は反力トルクの大きさを制御し、前記第2の制御部は、前記操舵トルク、又は、前記統合制御部から出力され前記第1の制御部が取得又は算出した情報を参照して前記車両のサスペンションの減衰力を制御し、前記第2の制御部は、前記車両のロールレートを推定し、推定したロールレートを少なくとも参照して、前記車両のサスペンションの減衰力を制御し、前記第2の制御部が取得又は算出した情報とは、前記推定したロールレートである。
To this end, the present invention is a vehicle control apparatus for controlling a vehicle, which applies to a steering apparatus for steering the vehicle by at least referring to a steering torque applied to a steering member. A first control unit for controlling the magnitude of the assist torque or the reaction torque, a second control unit for controlling the damping force of the suspension of the vehicle, the first control unit, and the second control unit; And an integrated control unit for acquiring information to be acquired or calculated, wherein the integrated control unit is configured to acquire information acquired from the first control unit and the second control unit as the first control unit and the second control unit. The first control unit controls the magnitude of the assist torque or the reaction torque by further referring to the information output from the integrated control unit and obtained or calculated by the second control unit. And the second The control unit controls the damping force of the suspension of the vehicle with reference to the steering torque or the information output from the integrated control unit and obtained or calculated by the first control unit, and the second control unit The roll rate of the vehicle is estimated, the damping force of the suspension of the vehicle is controlled with at least reference to the estimated roll rate, and the information acquired or calculated by the second control unit is the estimated It is a roll rate.
また、かかる目的のもと、本発明は、車両を制御する車両制御装置と、操舵部材に対してアシストトルク又は反力トルクを印加するトルク印加部と、サスペンションとを備えた車両であって、前記車両制御装置は、操舵部材に対して印加される操舵トルクを少なくとも参照して、前記操舵部材に対して印加するアシストトルク又は反力トルクの大きさを制御する第1の制御部と、前記車両のサスペンションの減衰力を制御する第2の制御部と、前記第1の制御部および前記第2の制御部が取得又は算出する情報を取得する統合制御部とを備え、前記統合制御部は、前記第1の制御部および前記第2の制御部から取得した情報を前記第1の制御部および前記第2の制御部へ出力し、前記第1の制御部は、前記統合制御部から出力され前記第2の制御部が取得又は算出した情報を更に参照して前記アシストトルク又は反力トルクの大きさを制御し、前記第2の制御部は、前記操舵トルク、又は、前記統合制御部から出力され前記第1の制御部が取得又は算出した情報を参照して前記車両のサスペンションの減衰力を制御し、前記第2の制御部は、前記車両のロールレートを推定し、推定したロールレートを少なくとも参照して、前記車両のサスペンションの減衰力を制御し、前記第2の制御部が取得又は算出した情報とは、前記推定したロールレートであり、前記トルク印加部は、前記第1の制御部から供給される制御信号に応じて、前記操舵部材に対してアシストトルク又は反力トルクを印加し、前記サスペンションは、前記第2の制御部から供給される制御信号に応じて、前記減衰力を変化させる。
Further, for the above purpose, the present invention is a vehicle provided with a vehicle control device for controlling a vehicle, a torque applying unit for applying an assist torque or a reaction torque to a steering member, and a suspension. The first control unit controls the magnitude of an assist torque or a reaction torque applied to the steering member at least with reference to a steering torque applied to the steering member, The integrated control unit includes a second control unit that controls a damping force of a vehicle suspension, and an integrated control unit that acquires information acquired or calculated by the first control unit and the second control unit. Outputting information acquired from the first control unit and the second control unit to the first control unit and the second control unit, the first control unit outputting the information from the integrated control unit And the second The magnitude of the assist torque or the reaction torque is controlled with further reference to the information acquired or calculated by the control unit, and the second control unit is configured to output the steering torque or the integrated control unit and The damping force of the suspension of the vehicle is controlled with reference to the information acquired or calculated by the control unit 1, and the second control unit estimates the roll rate of the vehicle and refers at least to the estimated roll rate. And the information acquired or calculated by the second control unit is the estimated roll rate, and the torque applying unit is supplied from the first control unit. Applying an assist torque or a reaction torque to the steering member in accordance with the control signal to be controlled, and the suspension decreases the reduction in response to the control signal supplied from the second control unit. Changing the force.
本発明によれば、ステアリング及びサスペンションの制御において、運転者により高い乗り心地を提供することができる。
According to the present invention, a higher ride quality can be provided to the driver in steering and suspension control.
〔実施形態1〕
以下、本発明の実施形態1について、詳細に説明する。Embodiment 1
Hereinafter,Embodiment 1 of the present invention will be described in detail.
以下、本発明の実施形態1について、詳細に説明する。
Hereinafter,
(車両900の構成)
図1は、本実施形態に係る車両900の概略構成を示す図である。図1に示すように、車両900は、懸架装置(サスペンション)100、車体200、車輪300、タイヤ310、操舵部材410、ステアリングシャフト420、トルクセンサ430、舵角センサ440、トルク印加部460、ラックピニオン機構470、ラック軸480、エンジン500、ECU(Electronic Control Unit)(車両制御装置)600、発電装置700およびバッテリ800を備えている。ここで、懸架装置100、及びECU600は、本実施形態に係るサスペンション装置を構成する。なお、車両900は、上述の構成の全てを含む必要はなく、上述の構成の一部を含む構成としてもよい。また、ここで説明した各構成を公知のものと置き換えることができる。 (Configuration of vehicle 900)
FIG. 1 is a view showing a schematic configuration of avehicle 900 according to the present embodiment. As shown in FIG. 1, a vehicle 900 includes a suspension system (suspension) 100, a vehicle body 200, wheels 300, tires 310, a steering member 410, a steering shaft 420, a torque sensor 430, a steering angle sensor 440, a torque applying unit 460, and a rack. A pinion mechanism 470, a rack shaft 480, an engine 500, an electronic control unit (ECU) (vehicle control device) 600, a power generation device 700, and a battery 800 are provided. Here, the suspension device 100 and the ECU 600 constitute a suspension device according to the present embodiment. Vehicle 900 does not have to include all of the above-described configurations, and may include a portion of the above-described configurations. Also, each configuration described herein can be replaced with a known one.
図1は、本実施形態に係る車両900の概略構成を示す図である。図1に示すように、車両900は、懸架装置(サスペンション)100、車体200、車輪300、タイヤ310、操舵部材410、ステアリングシャフト420、トルクセンサ430、舵角センサ440、トルク印加部460、ラックピニオン機構470、ラック軸480、エンジン500、ECU(Electronic Control Unit)(車両制御装置)600、発電装置700およびバッテリ800を備えている。ここで、懸架装置100、及びECU600は、本実施形態に係るサスペンション装置を構成する。なお、車両900は、上述の構成の全てを含む必要はなく、上述の構成の一部を含む構成としてもよい。また、ここで説明した各構成を公知のものと置き換えることができる。 (Configuration of vehicle 900)
FIG. 1 is a view showing a schematic configuration of a
タイヤ310が装着された車輪300は、懸架装置100によって車体200に懸架されている。車両900は、四輪車であるため、懸架装置100、車輪300およびタイヤ310については、それぞれ4つ設けられている。
The wheel 300 on which the tire 310 is mounted is suspended on the vehicle body 200 by a suspension system 100. Since the vehicle 900 is a four-wheeled vehicle, four suspension devices 100, four wheels 300 and four tires 310 are provided.
なお、左側の前輪、右側の前輪、左側の後輪および右側の後輪のタイヤ及び車輪をそれぞれ、タイヤ310A及び車輪300A、タイヤ310B及び車輪300B、タイヤ310C及び車輪300C、並びに、タイヤ310D及び車輪300Dとも称する。以下、同様に、左側の前輪、右側の前輪、左側の後輪および右側の後輪にそれぞれ付随した構成を、符号「A」「B」「C」及び「D」を付して表現することがある。
The tires and wheels of the left front wheel, the right front wheel, the left rear wheel and the right rear wheel are respectively the tire 310A and the wheel 300A, the tire 310B and the wheel 300B, the tire 310C and the wheel 300C, the tire 310D and the wheel It is also called 300D. Hereinafter, in the same manner, the configurations attached to the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel will be represented by reference symbols “A”, “B”, “C” and “D”. There is.
懸架装置100は、油圧緩衝装置、アッパーアーム及びロアーアームを備えている。また、油圧緩衝装置は、当該油圧緩衝装置が発生させる減衰力を調整する電磁弁であるソレノイドバルブを備えている。ただし、これは本実施形態を限定するものではなく、油圧緩衝装置は、減衰力を調整する電磁弁として、ソレノイドバルブ以外の電磁弁を用いてもよい。例えば、上記電磁弁として、電磁流体(磁性流体)を利用した電磁弁を備える構成としてもよい。
The suspension system 100 includes a hydraulic shock absorber, an upper arm and a lower arm. The hydraulic shock absorber also includes a solenoid valve that is a solenoid valve that adjusts the damping force generated by the hydraulic shock absorber. However, this does not limit the present embodiment, and the hydraulic shock absorber may use a solenoid valve other than the solenoid valve as the solenoid valve for adjusting the damping force. For example, as the solenoid valve, a solenoid valve using an electromagnetic fluid (magnetic fluid) may be provided.
エンジン500には、発電装置700が付設されており、発電装置700によって生成された電力がバッテリ800に蓄積される。
A power generation device 700 is attached to the engine 500, and the power generated by the power generation device 700 is accumulated in the battery 800.
運転者の操作する操舵部材410は、ステアリングシャフト420の一端に対してトルク伝達可能に接続されており、ステアリングシャフト420の他端は、ラックピニオン機構470に接続されている。
A steering member 410 operated by the driver is connected to one end of a steering shaft 420 so as to transmit torque, and the other end of the steering shaft 420 is connected to a rack and pinion mechanism 470.
ラックピニオン機構470は、ステアリングシャフト420の軸周りの回転を、ラック軸480の軸方向に沿った変位に変換するための機構である。ラック軸480が軸方向に変位すると、タイロッド及びナックルアームを介して車輪300A及び車輪300Bが転舵される。
The rack and pinion mechanism 470 is a mechanism for converting the rotation around the axis of the steering shaft 420 into displacement along the axial direction of the rack axis 480. When the rack shaft 480 is axially displaced, the wheels 300A and 300B are steered via the tie rods and knuckle arms.
トルクセンサ430は、ステアリングシャフト420に印加される操舵トルク、換言すれば、操舵部材410に印加される操舵トルクを検出し、検出結果を示すトルクセンサ信号をECU600に提供する。より具体的には、トルクセンサ430は、ステアリングシャフト420に内設されたトーションバーの捩れを検出し、検出結果をトルクセンサ信号として出力する。なお、トルクセンサ430として、ホールIC、MR素子、磁歪式トルクセンサなどの周知のセンサを用いてもよい。
The torque sensor 430 detects the steering torque applied to the steering shaft 420, in other words, the steering torque applied to the steering member 410, and provides the ECU 600 with a torque sensor signal indicating the detection result. More specifically, torque sensor 430 detects the torsion of a torsion bar provided in steering shaft 420, and outputs the detection result as a torque sensor signal. As the torque sensor 430, a known sensor such as a Hall IC, an MR element, or a magnetostrictive torque sensor may be used.
舵角センサ440は、操舵部材410の舵角を検出し、検出結果をECU600に提供する。
The steering angle sensor 440 detects the steering angle of the steering member 410, and provides the detection result to the ECU 600.
トルク印加部460は、ECU600から供給されるステアリング制御量に応じたアシストトルク又は反力トルクを、ステアリングシャフト420に印加する。トルク印加部460は、ステアリング制御量に応じたアシストトルク又は反力トルクを発生させるモータと、当該モータが発生させたトルクをステアリングシャフト420に伝達するトルク伝達機構とを備えている。
The torque application unit 460 applies an assist torque or a reaction torque according to the steering control amount supplied from the ECU 600 to the steering shaft 420. The torque application unit 460 includes a motor that generates an assist torque or a reaction torque according to a steering control amount, and a torque transmission mechanism that transmits the torque generated by the motor to the steering shaft 420.
なお、本明細書における「制御量」の具体例として、電流値、デューティー比、減衰率、減衰比等が挙げられる。
In addition, a current value, a duty ratio, an attenuation factor, an attenuation ratio etc. are mentioned as a specific example of the "control amount" in this specification.
操舵部材410、ステアリングシャフト420、トルクセンサ430、舵角センサ440、トルク印加部460、ラックピニオン機構470、ラック軸480、及びECU600は、本実施形態に係るステアリング装置を構成する。
The steering member 410, the steering shaft 420, the torque sensor 430, the steering angle sensor 440, the torque applying unit 460, the rack and pinion mechanism 470, the rack shaft 480, and the ECU 600 constitute a steering device according to the present embodiment.
なお、上述の説明において「トルク伝達可能に接続」とは、一方の部材の回転に伴い他方の部材の回転が生じるように接続されていることを指し、例えば、一方の部材と他方の部材とが一体的に成形されている場合、一方の部材に対して他方の部材が直接的又は間接的に固定されている場合、及び、一方の部材と他方の部材とが継手部材等を介して連動するよう接続されている場合を少なくとも含む。
In the above description, “to connect in a torque transmittable manner” refers to being connected so that the rotation of one member causes the rotation of the other member, and, for example, one member and the other member Is integrally formed, the other member is fixed directly or indirectly to one member, and one member and the other member are interlocked via a joint member or the like At least including the case where it is connected.
また、上記の例では、操舵部材410からラック軸480までが常時機械的に接続されたステアリング装置を例に挙げたが、これは本実施形態を限定するものではなく、本実施形態に係るステアリング装置は、例えばステア・バイ・ワイヤ方式のステアリング装置であってもよい。ステア・バイ・ワイヤ方式のステアリング装置に対しても本明細書において以下に説明する事項を適用することができる。
Further, in the above example, the steering device in which the steering member 410 to the rack shaft 480 are always mechanically connected has been described as an example, but this does not limit the present embodiment, and the steering according to the present embodiment The device may be, for example, a steer-by-wire steering device. The matters described below in the present specification can also be applied to a steer-by-wire steering apparatus.
ECU600は、車両900が備える各種の電子機器を統括制御する。より具体的には、ECU600は、トルク印加部460に供給するステアリング制御量を調整することにより、ステアリングシャフト420に印加するアシストトルク又は反力トルクの大きさを制御する。
The ECU 600 centrally controls various electronic devices provided in the vehicle 900. More specifically, the ECU 600 controls the magnitude of the assist torque or the reaction torque to be applied to the steering shaft 420 by adjusting the steering control amount supplied to the torque application unit 460.
また、ECU600は、懸架装置100に含まれる油圧緩衝装置が備えるソレノイドバルブに対して、サスペンション制御量を供給することによって当該ソレノイドバルブの開閉を制御する。この制御を可能とするために、ECU600からソレノイドバルブへ駆動電力を供給する電力線が配されている。
Further, the ECU 600 controls the opening and closing of the solenoid valve by supplying a suspension control amount to the solenoid valve included in the hydraulic shock absorber included in the suspension device 100. In order to enable this control, a power line for supplying drive power from the ECU 600 to the solenoid valve is provided.
また、車両900は、車輪300毎に設けられ各車輪300の車輪速を検出する車輪速センサ320、車両900の横方向の加速度を検出する横Gセンサ330、車両900の前後方向の加速度を検出する前後Gセンサ340、車両900のヨーレートを検出するヨーレートセンサ350、エンジン500が発生させるトルクを検出するエンジントルクセンサ510、エンジン500の回転数を検出するエンジン回転数センサ520、及びブレーキ装置が有するブレーキ液に印加される圧力を検出するブレーキ圧センサ530を備えている。これらの各種センサによる検出結果は、ECU600に供給される。
Further, the vehicle 900 is provided with a wheel speed sensor 320 provided for each wheel 300 to detect the wheel speed of each wheel 300, a lateral G sensor 330 for detecting a lateral acceleration of the vehicle 900, and a longitudinal acceleration of the vehicle 900 Front-rear G sensor 340, a yaw rate sensor 350 for detecting the yaw rate of the vehicle 900, an engine torque sensor 510 for detecting the torque generated by the engine 500, an engine speed sensor 520 for detecting the number of rotations of the engine 500, and a brake device A brake pressure sensor 530 is provided to detect the pressure applied to the brake fluid. The detection results of these various sensors are supplied to the ECU 600.
なお、図示は省略するが、車両900は、ブレーキ時の車輪ロックを防ぐためのシステムであるABS(Antilock Brake System)、加速時等における車輪の空転を抑制するTCS(Traction Control System)、及び、旋回時のヨーモーメント制御やブレーキアシスト機能等のための自動ブレーキ機能を備えた車両挙動安定化制御システムであるESC(Electronic Stability Control)制御可能なブレーキ装置を備えている。
Although not shown, the vehicle 900 is an ABS (Antilock Brake System) that is a system for preventing wheel lock at the time of braking, TCS (Traction Control System) that suppresses idling of the wheel at the time of acceleration, etc. A vehicle behavior stabilization control system having an automatic brake function for yaw moment control at the time of turning, a brake assist function and the like is provided with a brake device capable of controlling ESC (Electronic Stability Control).
ここで、ABS、TCS、及びESCは、推定した車体速に応じて定まる車輪速と、車輪速センサ320によって検出された車輪速とを比較し、これら2つの車輪速の値が、所定の値以上相違している場合にスリップ状態であると判定する。ABS、TCS、及びESCは、このような処理を通じて、車両900の走行状態に応じて最適なブレーキ制御やトラクション制御を行うことにより、車両900の挙動の安定化を図るものである。
Here, ABS, TCS, and ESC compare the wheel speed determined according to the estimated vehicle speed with the wheel speed detected by the wheel speed sensor 320, and the value of these two wheel speeds is a predetermined value. If there is a difference, it is determined that the vehicle is in the slip state. The ABS, TCS, and ESC achieve stabilization of the behavior of the vehicle 900 by performing optimal brake control and traction control according to the traveling state of the vehicle 900 through such processing.
また、上述した各種のセンサによる検出結果のECU600への供給、及び、ECU600から各部への制御信号の伝達は、CAN(Controller Area Network)370を介して行われる。
Further, the supply of the detection results by the various sensors described above to the ECU 600 and the transmission of the control signal from the ECU 600 to each unit are performed via a CAN (Controller Area Network) 370.
(懸架装置100)
図2は、本実施形態に係る懸架装置100における油圧緩衝装置の概略構成例を示す概略断面図である。図2に示すように、懸架装置100は、シリンダ101と、シリンダ101内に摺動可能に設けられたピストン102と、ピストン102に固定されたピストンロッド103とを備えている。シリンダ101は、ピストン102によって上室101aと下室101bとに仕切られており、上室101a及び下室101bは作動油によって満たされている。 (Suspension device 100)
FIG. 2 is a schematic cross-sectional view showing an example of a schematic configuration of a hydraulic shock absorber in thesuspension apparatus 100 according to the present embodiment. As shown in FIG. 2, the suspension system 100 includes a cylinder 101, a piston 102 slidably provided in the cylinder 101, and a piston rod 103 fixed to the piston 102. The cylinder 101 is divided into an upper chamber 101a and a lower chamber 101b by a piston 102, and the upper chamber 101a and the lower chamber 101b are filled with hydraulic oil.
図2は、本実施形態に係る懸架装置100における油圧緩衝装置の概略構成例を示す概略断面図である。図2に示すように、懸架装置100は、シリンダ101と、シリンダ101内に摺動可能に設けられたピストン102と、ピストン102に固定されたピストンロッド103とを備えている。シリンダ101は、ピストン102によって上室101aと下室101bとに仕切られており、上室101a及び下室101bは作動油によって満たされている。 (Suspension device 100)
FIG. 2 is a schematic cross-sectional view showing an example of a schematic configuration of a hydraulic shock absorber in the
また、図2に示すように、懸架装置100は、上室101aと下室101bとを連通させる連通路104を備えており、当該連通路104上には、懸架装置100の減衰力を調整するソレノイドバルブ105が設けられている。
Further, as shown in FIG. 2, the suspension device 100 includes a communication passage 104 that causes the upper chamber 101 a and the lower chamber 101 b to communicate, and on the communication passage 104, the damping force of the suspension device 100 is adjusted. A solenoid valve 105 is provided.
ソレノイドバルブ105は、ソレノイド105aと、ソレノイド105aによって駆動され、連通路104の流路断面積を変更するバルブ105bとを備えている。
The solenoid valve 105 includes a solenoid 105 a and a valve 105 b which is driven by the solenoid 105 a and changes the flow passage cross-sectional area of the communication passage 104.
ソレノイド105aはECU600から供給されるサスペンション制御量に応じてバルブ105bを出し入れし、それにより連通路104の流路断面積が変更され、懸架装置100の減衰力が変更される。
The solenoid 105a takes in and out the valve 105b in accordance with the amount of suspension control supplied from the ECU 600, whereby the flow passage cross-sectional area of the communication passage 104 is changed, and the damping force of the suspension device 100 is changed.
(ECU600)
以下では、参照する図面を替えて、ECU600について具体的に説明する。図3は、ECU600の概略構成を示す図である。 (ECU 600)
Hereinafter, theECU 600 will be specifically described with reference to the drawings. FIG. 3 is a diagram showing a schematic configuration of the ECU 600. As shown in FIG.
以下では、参照する図面を替えて、ECU600について具体的に説明する。図3は、ECU600の概略構成を示す図である。 (ECU 600)
Hereinafter, the
図3に示すように、ECU600は、ステアリング制御部(第1の制御部)610とサスペンション制御部(第2の制御部)650と統合制御部625とを備えている。
As shown in FIG. 3, the ECU 600 includes a steering control unit (first control unit) 610, a suspension control unit (second control unit) 650, and an integrated control unit 625.
ステアリング制御部610は、CAN370に含まれる各種のセンサ検出結果を参照し、トルク印加部460に供給するステアリング制御量の大きさを決定する。
The steering control unit 610 refers to various sensor detection results included in the CAN 370 to determine the magnitude of the steering control amount supplied to the torque applying unit 460.
なお、本明細書において「~を参照して」との表現には、「~を用いて」「~を考慮して」「~に依存して」などの意味が含まれ得る。
In the present specification, the expression “with reference to” may include meanings such as “with using”, “in consideration of”, “depending on” and the like.
サスペンション制御部650は、車両900のロールレートを推定し、車両900のサスペンションの減衰力を制御する。たとえば、サスペンション制御部650は、CAN370に含まれる各種のセンサ検出結果を参照して車両900のロールレートを推定する。また、サスペンション制御部650は、推定したロールレートを少なくとも参照して、懸架装置100に含まれる油圧緩衝装置が備えるソレノイドバルブに対して供給するサスペンション制御量の大きさを決定する。こうして、車両900のサスペンションの減衰力を制御する。
The suspension control unit 650 estimates the roll rate of the vehicle 900 and controls the damping force of the suspension of the vehicle 900. For example, the suspension control unit 650 estimates the roll rate of the vehicle 900 with reference to various sensor detection results included in the CAN 370. Further, the suspension control unit 650 determines the magnitude of the amount of suspension control supplied to the solenoid valve provided in the hydraulic shock absorber included in the suspension apparatus 100 at least with reference to the estimated roll rate. Thus, the damping force of the suspension of the vehicle 900 is controlled.
統合制御部625は、車載部品の各制御部へ指示信号を出力する。たとえば、統合制御部625は、ステアリング制御部610が取得又は算出する情報を取得し、サスペンション制御部650が取得又は算出する情報を取得する。そして、統合制御部625は、ステアリング制御部610およびサスペンション制御部650から取得した情報をステアリング制御部610およびサスペンション制御部650へ出力する。以下、統合制御部625からステアリング制御部610に出力される情報を「アシスト補正情報」とも言い、以下、統合制御部625からサスペンション制御部650に出力される情報を「減衰力補正情報」とも言う。統合制御部625による制御およびそれにより出力される上記の情報については後に説明する。
The integrated control unit 625 outputs an instruction signal to each control unit of the in-vehicle component. For example, the integrated control unit 625 acquires information acquired or calculated by the steering control unit 610, and acquires information acquired or calculated by the suspension control unit 650. Then, the integrated control unit 625 outputs the information acquired from the steering control unit 610 and the suspension control unit 650 to the steering control unit 610 and the suspension control unit 650. Hereinafter, the information output from the integrated control unit 625 to the steering control unit 610 is also referred to as “assist correction information”, and the information output from the integrated control unit 625 to the suspension control unit 650 is also referred to as “damping force correction information” below. . The control by the integrated control unit 625 and the above information output therefrom will be described later.
図3に示すように、ECU600では、サスペンション制御部650によって取得又は算出された車両状態情報(例えばロールレート値)が、アシスト補正情報として統合制御部625を介してステアリング制御部610に供給され、ステアリング制御量の大きさを決定するために参照される。また、ステアリング制御部610にて取得又は算出される操舵情報(例えば操舵トルク信号)が、減衰力補正情報として統合制御部625を介してサスペンション制御部650に供給され、サスペンションの減衰力を決定するために参照される。このように、ステアリング制御部610は、統合制御部625から出力されサスペンション制御部650が取得又は算出した情報を更に参照してアシストトルク又は反力トルクの大きさを制御する。また、サスペンション制御部650は、操舵トルク、又は、統合制御部625から出力されステアリング制御部610が取得又は算出した情報を参照して車両900のサスペンションの減衰力を制御する。これらの制御についても、後に説明する。
As shown in FIG. 3, in the ECU 600, vehicle state information (for example, a roll rate value) acquired or calculated by the suspension control unit 650 is supplied to the steering control unit 610 via the integrated control unit 625 as assist correction information. Reference is made to determine the magnitude of the steering control amount. Further, steering information (for example, a steering torque signal) acquired or calculated by the steering control unit 610 is supplied to the suspension control unit 650 via the integrated control unit 625 as damping force correction information, and the damping force of the suspension is determined. Referenced to. Thus, the steering control unit 610 controls the magnitude of the assist torque or the reaction torque by further referring to the information output from the integrated control unit 625 and obtained or calculated by the suspension control unit 650. The suspension control unit 650 also controls the damping force of the suspension of the vehicle 900 with reference to the steering torque or the information output from the integrated control unit 625 and acquired or calculated by the steering control unit 610. These controls will also be described later.
なお、操舵情報としては、操舵トルク、舵角、ラック変位、ラック推力などが挙げられ、車両状態情報としては、ロール、ピッチ、ヨーなどの各種情報や、これらの情報から推定された車両状態などが挙げられる。
The steering information includes steering torque, steering angle, rack displacement, rack thrust and the like, and the vehicle state information includes various information such as roll, pitch and yaw, and the vehicle state estimated from these information, etc. Can be mentioned.
本実施形態では、操舵情報として、操舵トルク信号を用い、車両状態情報としてロールレート値を用いる。すなわち、本実施形態において、サスペンション制御部650が取得又は算出した情報とは、前述した推定したロールレートである。
In the present embodiment, a steering torque signal is used as steering information, and a roll rate value is used as vehicle state information. That is, in the present embodiment, the information acquired or calculated by the suspension control unit 650 is the estimated roll rate described above.
なお、後述するように、ロールレート値は、車両900の傾きが所定の微小時間変化しなかった場合の基準値として「0」をとる構成とし、当該基準値からのずれとしてロールレートを表すものであってもよい。
As will be described later, the roll rate value is configured to take “0” as a reference value when the inclination of the vehicle 900 does not change for a predetermined minute time, and represents the roll rate as a deviation from the reference value. It may be
また、「制御量の大きさを決定する」との処理には、制御量の大きさをゼロに設定する、すなわち、制御量を供給しない場合も含まれる。
Further, the process of “determining the magnitude of the control amount” also includes the case where the magnitude of the control amount is set to zero, that is, the control amount is not supplied.
なお、ECU600は、ステアリング制御部610、サスペンション制御部650および統合制御部625を一体として備える構成としてもよいし、これらの一部又は全部を別々のECUとして備える構成であってもよい。後者の場合とは、より具体的には、ECU600は、ステアリング制御部610とサスペンション制御部650とを一体として備える構成であってもよい。また、ステアリング制御部610と統合制御部625とを一体として備える構成であってもよい。さらに、サスペンション制御部650と統合制御部625とを一体として備える構成であってもよい。後者の場合、ステアリング制御部610、サスペンション制御部650および統合制御部625のうちの別々のECUが通信手段を用いて相互に通信を行うことにより、本明細書に記載の制御が実現される。
Note that the ECU 600 may be configured to integrally include the steering control unit 610, the suspension control unit 650, and the integrated control unit 625, or may be configured to include some or all of them as separate ECUs. More specifically, in the latter case, the ECU 600 may be configured to integrally include the steering control unit 610 and the suspension control unit 650. In addition, the steering control unit 610 and the integrated control unit 625 may be integrated. Furthermore, the suspension control unit 650 and the integrated control unit 625 may be integrated. In the latter case, the control described in the present specification is realized as the separate ECUs of the steering control unit 610, the suspension control unit 650, and the integrated control unit 625 communicate with each other using communication means.
(ステアリング制御部)
続いて、図4を参照して、ステアリング制御部610についてより具体的に説明する。図4は、ステアリング制御部610の構成例を示すブロック図である。 (Steering control unit)
Subsequently, thesteering control unit 610 will be more specifically described with reference to FIG. FIG. 4 is a block diagram showing a configuration example of the steering control unit 610. As shown in FIG.
続いて、図4を参照して、ステアリング制御部610についてより具体的に説明する。図4は、ステアリング制御部610の構成例を示すブロック図である。 (Steering control unit)
Subsequently, the
図4に示すように、ステアリング制御部610は、信号処理部609、制御量算出部611、制御量補正部612、ωフィードバック部620、ゲイン算出部630、及び乗算部640を備えている。
As shown in FIG. 4, the steering control unit 610 includes a signal processing unit 609, a control amount calculation unit 611, a control amount correction unit 612, a ω feedback unit 620, a gain calculation unit 630, and a multiplication unit 640.
信号処理部609は、操舵トルクを示す操舵トルク信号に対して信号処理を行う。当該信号処理は、操舵トルク信号に対する位相補償処理を含んでいてもよい。これにより、更に快適な乗り心地を実現することが期待できる。
The signal processing unit 609 performs signal processing on a steering torque signal indicating the steering torque. The signal processing may include phase compensation processing for the steering torque signal. This can be expected to realize a more comfortable ride.
制御量算出部611は、信号処理部609から供給される操舵トルクを参照し、アシストトルク又は反力トルクの大きさを制御するための制御量を算出する。制御量算出部611によって算出された制御量は、制御量補正部612によって補正されたうえで、ステアリング制御量としてトルク印加部460に供給される。
The control amount calculation unit 611 refers to the steering torque supplied from the signal processing unit 609 to calculate a control amount for controlling the magnitude of the assist torque or the reaction torque. The control amount calculated by the control amount calculation unit 611 is corrected by the control amount correction unit 612 and then supplied to the torque application unit 460 as a steering control amount.
(ωフィードバック部)
ωフィードバック部620は、舵角センサ440から供給される舵角、車輪速センサ320によって検出された車輪速に応じて定まる車速、及び、トルクセンサ430から供給される操舵トルクを参照し、補正制御量の値を決定する。 (Ω feedback unit)
Theω feedback unit 620 refers to the steering angle supplied from the steering angle sensor 440, the vehicle speed determined according to the wheel speed detected by the wheel speed sensor 320, and the steering torque supplied from the torque sensor 430, and performs correction control. Determine the value of the quantity.
ωフィードバック部620は、舵角センサ440から供給される舵角、車輪速センサ320によって検出された車輪速に応じて定まる車速、及び、トルクセンサ430から供給される操舵トルクを参照し、補正制御量の値を決定する。 (Ω feedback unit)
The
ωフィードバック部620は、一例として、図4に示すように、目標舵角速算出部621、実舵角速算出部622、減算部623、及び、補正制御量決定部624を備えている。
The ω feedback unit 620 includes, as an example, a target steering angle speed calculation unit 621, an actual steering angle speed calculation unit 622, a subtraction unit 623, and a correction control amount determination unit 624, as shown in FIG.
目標舵角速算出部621は、舵角センサ440から供給される舵角、車輪速センサ320によって検出された車輪速に応じて定まる車速、及び、信号処理部609から供給される操舵トルクを参照し、目標舵角速を算出する。ここで、目標舵角速の具体的な算出方法は、本実施形態を限定するものではないが、目標舵角速を算出するにおいて、目標舵角速算出部621は、目標舵角速マップ、及びトルクレイシオマップを参照する構成とすることができる。
The target steering angle speed calculation unit 621 refers to the steering angle supplied from the steering angle sensor 440, the vehicle speed determined according to the wheel speed detected by the wheel speed sensor 320, and the steering torque supplied from the signal processing unit 609. And calculate the target steering angle speed. Here, although the specific calculation method of the target steering angle speed does not limit the present embodiment, in calculating the target steering angle speed, the target steering angle speed calculation unit 621 is a target steering angle speed map, And the torque ratio map may be referred to.
実舵角速算出部622は、舵角センサ440から供給される舵角の時間変化を算出することによって、実舵角速を特定する。
The actual steering angle speed calculation unit 622 specifies the actual steering angle speed by calculating the time change of the steering angle supplied from the steering angle sensor 440.
減算部623は、目標舵角速算出部621によって算出された目標舵角速から、実舵角速算出部622によって算出された実舵角速を減算し、減算した結果である舵角速偏差を、補正制御量決定部624に供給する。
Subtraction unit 623 subtracts the actual steering angular velocity calculated by actual steering angular velocity calculation unit 622 from the target steering angular velocity calculated by target steering angular velocity calculation unit 621, and subtracts the steering angle velocity deviation that is the result of subtraction. Are supplied to the correction control amount determination unit 624.
補正制御量決定部624は、舵角速偏差に応じて、補正制御量の値を決定する。補正制御量の値の具体的な決定方法は本実施形態を限定するものではないが、補正制御量の値を決定するにおいて、補正制御量決定部624は、舵角速偏差補正制御量マップを参照する構成とすることができる。
The correction control amount determination unit 624 determines the value of the correction control amount according to the steering angle speed deviation. Although a specific determination method of the value of the correction control amount does not limit the present embodiment, in determining the value of the correction control amount, the correction control amount determination unit 624 sets the steering angle speed deviation correction control amount map. It can be a configuration to be referred to.
(ゲイン算出部)
ゲイン算出部630は、ωフィードバック部620が算出した補正制御量に乗じるゲイン係数を、舵角センサ440から供給される舵角、及び、サスペンション制御部650から統合制御部625を介して供給されるロールレート値を参照して、算出する。 (Gain calculation unit)
Thegain calculation unit 630 supplies the gain coefficient to be multiplied by the correction control amount calculated by the ω feedback unit 620 from the steering angle supplied from the steering angle sensor 440 and the suspension control unit 650 via the integrated control unit 625. Calculate with reference to the roll rate value.
ゲイン算出部630は、ωフィードバック部620が算出した補正制御量に乗じるゲイン係数を、舵角センサ440から供給される舵角、及び、サスペンション制御部650から統合制御部625を介して供給されるロールレート値を参照して、算出する。 (Gain calculation unit)
The
ゲイン算出部630は、一例として、図4に示すように、切り戻し判定部631、転舵速判定部632、ロールレート判定部633、論理積算出部634、移動平均部635、及びゲイン決定部636を備えている。
For example, as shown in FIG. 4, the gain calculation unit 630 is a return determination unit 631, a steering speed determination unit 632, a roll rate determination unit 633, a logical product calculation unit 634, a moving average unit 635, and a gain determination unit. It has 636.
切り戻し判定部631は、舵角センサ440から供給される舵角と、当該舵角を参照して算出される舵角速とを参照して、操舵部材410が切り戻し状態にあるのか否かの判定を行う。操舵部材410が切り戻し状態にある場合、切り戻し判定部631は、判定結果として「1」を出力し、そうでない場合、判定結果として「0」を出力する。なお、車両900が舵角速センサを備え、切り戻し判定部631が、舵角センサ440から供給される舵角と、舵角速センサから供給される舵角速とを参照して、操舵部材410が切り戻し状態にあるのか否かの判定を行う構成としてもよい。
The switchback determination unit 631 refers to the steering angle supplied from the steering angle sensor 440 and the steering angle speed calculated with reference to the steering angle to determine whether the steering member 410 is in the switchback state. Make a decision on When the steering member 410 is in the switchback state, the switchback determination unit 631 outputs “1” as the determination result, and otherwise outputs “0” as the determination result. The vehicle 900 is provided with a steering angle speed sensor, and the turning back determination unit 631 refers to the steering angle supplied from the steering angle sensor 440 and the steering angle speed supplied from the steering angle speed sensor, and the steering member It may be configured to determine whether 410 is in the switchback state.
なお、切り戻し判定部631による切り戻し状態の判定処理は上記の例に限定されるものではない。切り戻し判定部631は、トルクセンサ430による検出結果を示すトルクセンサ信号と、トルク印加部460が備えるモータの回転方向とを参照して、切り戻し状態であるか否かを判定する構成としてもよい。この構成の場合、例えば、トルクセンサ信号の符号とモータの回転方向の符号とが異なる場合に、切り戻し状態にあると判定する構成とすればよい。
The determination processing of the switchback state by the switchback judging unit 631 is not limited to the above example. The cutback determination unit 631 determines whether or not to be in the cutback state by referring to the torque sensor signal indicating the detection result of the torque sensor 430 and the rotation direction of the motor included in the torque application unit 460. Good. In this configuration, for example, when the sign of the torque sensor signal is different from the sign of the rotation direction of the motor, it may be determined that the switchback state is established.
ここで、トルクセンサ信号の符号は、例えば、トーションバーが右回転方向に捩れている状態の場合のトルクセンサ信号の符号をプラスとし、トーションバーが左回転方向に捩れている状態の場合のトルクセンサ信号の符号をマイナスとすればよい。また、モータの回転方向の符号は、トーションバーが右回転方向に捩れている状態において、トーションバーの捩れを解消させる方向をプラスとし、トーションバーが左回転方向に捩れている状態において、トーションバーの捩れを解消させる方向をマイナスとすればよい。
Here, for the sign of the torque sensor signal, for example, the sign of the torque sensor signal in the state where the torsion bar is twisted in the right rotation direction is plus, and the torque in the state where the torsion bar is twisted in the left rotation direction The sign of the sensor signal may be negative. Further, the sign of the rotation direction of the motor is that when the torsion bar is twisted in the right rotation direction, the direction in which the torsion bar is untwisted is positive and the torsion bar is twisted in the left rotation direction. The direction to eliminate the twist of the may be negative.
転舵速判定部632は、舵角センサ440から供給される舵角を参照して算出される舵角速又はその絶対値が、所定の値以上であるのか否かを判定する。転舵速判定部632は、舵角速又はその絶対値が所定の値以上である場合に、判定結果として「1」を出力し、そうでない場合に、判定結果として「0」を出力する。
The steering speed determination unit 632 determines whether the steering angle speed or the absolute value thereof calculated with reference to the steering angle supplied from the steering angle sensor 440 is equal to or higher than a predetermined value. The steering speed determination unit 632 outputs “1” as a determination result when the steering angle speed or the absolute value thereof is equal to or more than a predetermined value, and otherwise outputs “0” as a determination result.
ロールレート判定部633は、サスペンション制御部650から統合制御部625を介して供給されるロールレート値又はその絶対値が、所定の値未満であるのか否かを判定する。ロールレート判定部633は、ロールレート値又はその絶対値が、所定の値未満である場合に、判定結果として「1」を出力し、そうでない場合に、判定結果として「0」を出力する。
The roll rate determination unit 633 determines whether the roll rate value supplied from the suspension control unit 650 via the integrated control unit 625 or the absolute value thereof is less than a predetermined value. The roll rate determination unit 633 outputs “1” as the determination result if the roll rate value or the absolute value thereof is less than a predetermined value, and outputs “0” as the determination result otherwise.
論理積算出部634は、切り戻し判定部631、転舵速判定部632、及び、ロールレート判定部633からの判定結果の論理積をとり、その結果を出力する。換言すれば、論理積算出部634は、切り戻し判定部631、転舵速判定部632、及び、ロールレート判定部633が出力する判定結果がすべて「1」である場合に、「1」を出力し、それ以外の場合に「0」を出力する。
The logical product calculation unit 634 takes a logical product of the determination results from the return control unit 631, the steering speed determination unit 632, and the roll rate determination unit 633, and outputs the result. In other words, the logical product calculating unit 634 outputs “1” when all the determination results output by the switchback determination unit 631, the steering speed determination unit 632, and the roll rate determination unit 633 are “1”. Output, otherwise "0" is output.
移動平均部635は、論理積算出部634の出力の移動平均を算出し、その結果を出力する。なお、移動平均部635として、ローパスフィルタを用いてもよい。
The moving average unit 635 calculates a moving average of the output of the logical product calculating unit 634, and outputs the result. Note that a low pass filter may be used as the moving average unit 635.
ゲイン決定部636は、移動平均部635の出力結果に応じて、ゲイン係数を決定し、決定したゲイン係数を乗算部640に供給する。より具体的には、移動平均部635による移動平均後の値が0より大きい場合、1よりも大きいゲイン係数を決定する。更に言えば、ゲイン決定部636は、移動平均部635による移動平均後の値が大きければ大きいほど、ゲイン係数を大きく設定する。換言すれば、ゲイン決定部は、移動平均部635による移動平均後の値が大きければ大きいほど、操舵部材410に印加される反力が大きくなるように、ゲイン係数を設定する。
The gain determination unit 636 determines a gain coefficient according to the output result of the moving average unit 635, and supplies the determined gain coefficient to the multiplication unit 640. More specifically, when the value after moving average by the moving average unit 635 is larger than 0, a gain coefficient larger than 1 is determined. Furthermore, the gain determination unit 636 sets the gain coefficient larger as the value after moving average by the moving average unit 635 is larger. In other words, the gain determination unit sets the gain coefficient such that the reaction force applied to the steering member 410 increases as the moving average unit 635 increases the value after moving average.
乗算部640は、補正制御量決定部624が決定した補正制御量に、ゲイン決定部636が決定したゲイン係数を乗算することによってゲイン後の補正制御量を制御量補正部612に供給する。
The multiplication unit 640 supplies the correction control amount after the gain to the control amount correction unit 612 by multiplying the correction control amount determined by the correction control amount determination unit 624 by the gain coefficient determined by the gain determination unit 636.
制御量補正部612は、制御量算出部611が算出した制御量に対して、乗算部640から供給されるゲイン後の補正制御量を加えることによって、ステアリング制御量を生成する。換言すれば、制御量補正部612は、制御量算出部611が算出した制御量を、車体200のロールレートと、操舵部材410の舵角と、操舵部材410の舵角速とを参照して補正する。
The control amount correction unit 612 generates a steering control amount by adding the post-gain correction control amount supplied from the multiplication unit 640 to the control amount calculated by the control amount calculation unit 611. In other words, the control amount correction unit 612 refers to the control amount calculated by the control amount calculation unit 611 as the roll rate of the vehicle body 200, the steering angle of the steering member 410, and the steering angle speed of the steering member 410. to correct.
このように、制御量補正部612が、制御量算出部611が算出した制御量を、車体200のロールレートを参照して補正することにより、運転者にとって違和感の少ないアシストトルク又は反力トルクを操舵部材410に印加することができる。また、上記の補正は、操舵部材410の舵角と、操舵部材410の舵角速とを更に参照して行われるので、運転者にとってより違和感の少ないアシストトルク又は反力トルクを操舵部材410に印加することができる。
As described above, the control amount correction unit 612 corrects the control amount calculated by the control amount calculation unit 611 with reference to the roll rate of the vehicle body 200, thereby reducing assist torque or reaction force torque with little discomfort for the driver. It can be applied to the steering member 410. Further, since the above-mentioned correction is performed with further reference to the steering angle of the steering member 410 and the steering angle speed of the steering member 410, an assist torque or reaction torque with less discomfort for the driver can be applied to the steering member 410. Can be applied.
また、上記の構成では、制御量補正部612は、操舵部材410が切り戻し状態にあり、操舵部材410の舵角速又はその絶対値が所定の値以上であり、かつ、サスペンション制御部650から供給されるロールレート値又はその絶対値が所定の値未満である場合に制御量を補正する。
Further, in the above configuration, in the control amount correction unit 612, the steering member 410 is in the turning back state, the steering angle speed of the steering member 410 or the absolute value thereof is equal to or more than a predetermined value. The control amount is corrected when the supplied roll rate value or the absolute value thereof is less than a predetermined value.
操舵部材が切り戻し状態にあり、操舵部材の舵角速又はその絶対値が所定の値以上であり、かつ、ロールレート値又はその絶対値が所定の値未満である場合に、所謂「トルク抜け」という現象が生じやすいことが発明者によって認識されている。
When the steering member is in the return state, the steering angle speed of the steering member or its absolute value is equal to or more than a predetermined value, and the roll rate value or its absolute value is less than a predetermined value, It has been recognized by the inventor that the phenomenon "is likely to occur."
ここで、「トルク抜け」が発生する具体的なプロセスを説明すれば以下の通りである。まず、運転者が転舵を行うと、車両900にロールが発生する。ロールが発生すると懸架装置100の備える油圧緩衝装置が収縮する。すると、タイロッドとロアーアームとの位置関係が変化し、その結果としてトー角が変化する。これにより、ラック軸480が、収縮した油圧緩衝装置側に引っ張られる。ゲイン算出部630を有しない構成において、この状態で運転者が操舵部材410の切り戻しを行うと、運転者が想定していたよりも小さい反力トルクしか発生せず、「トルク抜け」の現象が生じ得る。
Here, the specific process of causing the “torque loss” will be described as follows. First, when the driver steers, a roll is generated on the vehicle 900. When a roll occurs, the hydraulic shock absorber provided in the suspension system 100 contracts. Then, the positional relationship between the tie rod and the lower arm changes, and as a result, the toe angle changes. Thereby, the rack shaft 480 is pulled toward the contracted hydraulic shock absorber side. In the configuration without the gain calculation unit 630, if the driver switches back the steering member 410 in this state, only a reaction torque smaller than expected by the driver is generated, and the phenomenon of "torque omission" It can occur.
ゲイン算出部630を有する上記の構成によれば、「トルク抜け」の現象を好適に抑制することができるので、運転者にとってより違和感の少ないアシストトルク又は反力トルクを印加することができる。
According to the above configuration including the gain calculation unit 630, the phenomenon of “torque loss” can be suitably suppressed, so that the assist torque or the reaction torque can be applied with less discomfort for the driver.
また、上記の構成では、制御量補正部612は、操舵部材410が切り戻し状態にあり、操舵部材410の舵角速又はその絶対値が所定の値以上であり、かつ、サスペンション制御部650から統合制御部625を介して供給されるロールレート値又はその絶対値が所定の値未満である場合に、そうでない場合に比べて、操舵部材410に印加される反力が大きくなるように制御量を補正する。
Further, in the above configuration, in the control amount correction unit 612, the steering member 410 is in the turning back state, the steering angle speed of the steering member 410 or the absolute value thereof is equal to or more than a predetermined value. When the roll rate value supplied via the integrated control unit 625 or the absolute value thereof is less than a predetermined value, the control amount is controlled so that the reaction force applied to the steering member 410 is larger than when it is not. Correct the
したがって、上記の構成によれば、「トルク抜け」の現象をより好適に抑制することができるので、運転者にとって更に違和感の少ないアシストトルク又は反力トルクを印加することができる。
Therefore, according to the above configuration, the phenomenon of “torque dropout” can be suppressed more appropriately, so that the assist torque or reaction torque with less discomfort can be applied to the driver.
(サスペンション制御部)
続いて、図5を参照してサスペンション制御部について説明する。図5はサスペンション制御部650の構成例を示すブロック図である。 (Suspension control unit)
Subsequently, the suspension control unit will be described with reference to FIG. FIG. 5 is a block diagram showing a configuration example of thesuspension control unit 650. As shown in FIG.
続いて、図5を参照してサスペンション制御部について説明する。図5はサスペンション制御部650の構成例を示すブロック図である。 (Suspension control unit)
Subsequently, the suspension control unit will be described with reference to FIG. FIG. 5 is a block diagram showing a configuration example of the
サスペンション制御部650は、図5に示すように、CAN入力部660、車両状態推定部670、操縦安定性・乗心地制御部680、及び制御量セレクト部690を備えている。
As shown in FIG. 5, the suspension control unit 650 includes a CAN input unit 660, a vehicle state estimation unit 670, a steering stability and riding comfort control unit 680, and a control amount selection unit 690.
CAN入力部660は、CAN370を介して各種の信号を取得する。図5に示すように、CAN入力部660は、以下の信号を取得する(括弧書きは取得元を示す)。
The CAN input unit 660 acquires various signals via the CAN 370. As shown in FIG. 5, the CAN input unit 660 obtains the following signals (brackets indicate the obtaining source).
・4輪の車輪速(車輪速センサ320A~D)
・ヨーレート(ヨーレートセンサ350)
・前後G(前後Gセンサ340)
・横G(横Gセンサ330)
・ブレーキ圧(ブレーキ圧センサ530)
・エンジントルク(エンジントルクセンサ510)
・エンジン回転数(エンジン回転数センサ520)
・舵角(舵角センサ440)
・操舵トルク(トルクセンサ430)
車両状態推定部670は、CAN入力部660が取得した各種の信号を参照して車両900の状態を推定する。車両状態推定部670は、推定結果として、4輪のバネ上速度、4輪のストローク速度、ピッチレート、ロールレート、転舵時ロールレート、及び、加減速時ピッチレートを出力する。 ・ Wheel speed of four wheels (wheel speed sensors 320A to D)
・ Yaw rate (yaw rate sensor 350)
・ Front-back G (front-back G sensor 340)
-Horizontal G (horizontal G sensor 330)
· Brake pressure (brake pressure sensor 530)
・ Engine torque (engine torque sensor 510)
· Engine speed (engine speed sensor 520)
· Steering angle (steering angle sensor 440)
· Steering torque (torque sensor 430)
The vehiclestate estimation unit 670 estimates the state of the vehicle 900 with reference to various signals acquired by the CAN input unit 660. The vehicle state estimation unit 670 outputs sprung speeds of four wheels, stroke speeds of four wheels, pitch rate, roll rate, roll rate at turning, and pitch rate at acceleration / deceleration as estimation results.
・ヨーレート(ヨーレートセンサ350)
・前後G(前後Gセンサ340)
・横G(横Gセンサ330)
・ブレーキ圧(ブレーキ圧センサ530)
・エンジントルク(エンジントルクセンサ510)
・エンジン回転数(エンジン回転数センサ520)
・舵角(舵角センサ440)
・操舵トルク(トルクセンサ430)
車両状態推定部670は、CAN入力部660が取得した各種の信号を参照して車両900の状態を推定する。車両状態推定部670は、推定結果として、4輪のバネ上速度、4輪のストローク速度、ピッチレート、ロールレート、転舵時ロールレート、及び、加減速時ピッチレートを出力する。 ・ Wheel speed of four wheels (
・ Yaw rate (yaw rate sensor 350)
・ Front-back G (front-back G sensor 340)
-Horizontal G (horizontal G sensor 330)
· Brake pressure (brake pressure sensor 530)
・ Engine torque (engine torque sensor 510)
· Engine speed (engine speed sensor 520)
· Steering angle (steering angle sensor 440)
· Steering torque (torque sensor 430)
The vehicle
車両状態推定部670は、図5に示すように、加減速・転舵時補正量算出部671、加減速・転舵時ピッチ・ロールレート算出部673、及び、状態推定用一輪モデル適用部674を備えている。
As shown in FIG. 5, the vehicle state estimation unit 670 is an acceleration / deceleration / turning correction amount calculation unit 671, an acceleration / deceleration / turning pitch / roll rate calculation unit 673, and a state estimation single wheel model application unit 674. Is equipped.
加減速・転舵時補正量算出部671は、ヨーレート、前後G、4輪の車輪速、ブレーキ圧、エンジントルク、及びエンジン回転数を参照して、車体前後速度、内外輪差比、及び調整ゲインの算出を行い、算出結果を状態推定用一輪モデル適用部674に供給する。
The acceleration / deceleration / turning correction amount calculation unit 671 refers to the yaw rate, front / rear G, wheel speeds of four wheels, brake pressure, engine torque, and engine speed, and adjusts the vehicle longitudinal speed, inner / outer ring differential ratio, and adjustment. The gain is calculated, and the calculation result is supplied to the state estimation single wheel model application unit 674.
加減速・転舵時ピッチ・ロールレート算出部673は、前後G、及び横Gを参照して、転舵時ロールレート、及び加減速時ピッチレートを算出する。算出結果は、状態推定用一輪モデル適用部674に供給される。このように本実施形態では、サスペンション制御部650は、少なくとも車両900の横方向の加速度(横G)を参照して上記ロールレートを算出することによって上記ロールレートを推定する。
The acceleration / deceleration / turning pitch / roll rate calculator 673 calculates the turning roll rate and the acceleration / deceleration pitch rate with reference to the front and rear G and the lateral G. The calculation result is supplied to the state estimation single wheel model application unit 674. As described above, in the present embodiment, the suspension control unit 650 estimates the roll rate by calculating the roll rate with reference to at least the lateral acceleration (lateral G) of the vehicle 900.
また、加減速・転舵時ピッチ・ロールレート算出部673は、算出した転舵時ロールレートを、ロールレート値として、統合制御部625に供給する。加減速・転舵時ピッチ・ロールレート算出部673は、制御量セレクト部690の出力するサスペンション制御量を更に参照する構成としてもよい。加減速・転舵時ピッチ・ロールレート算出部673の詳細については参照する図面を替えて後述する。
The acceleration / deceleration / turning pitch / roll rate calculation unit 673 supplies the calculated turning roll rate to the integrated control unit 625 as a roll rate value. The acceleration / deceleration / turning pitch / roll rate calculating unit 673 may be configured to further refer to the suspension control amount output from the control amount selecting unit 690. The details of the acceleration / deceleration / turning pitch / roll rate calculation unit 673 will be described later, with reference to the drawings referred to.
このように、加減速・転舵時ピッチ・ロールレート算出部673は、前後G、及び横Gを参照して算出した転舵時ロールレートをロールレート値として統合制御部625に供給し、ステアリング制御部610は、統合制御部625から提供される当該ロールレート値を参照して、アシストトルク又は反力トルクの大きさを制御するための制御量を補正する。よって、ステアリング制御部610は、より好適にアシストトルク又は反力トルクの大きさを補正することができる。
As described above, the acceleration / deceleration / turning pitch / roll rate calculation unit 673 supplies the steering roll rate calculated with reference to the front and rear G and the lateral G to the integrated control unit 625 as a roll rate value, and the steering is performed. The control unit 610 corrects the control amount for controlling the magnitude of the assist torque or the reaction torque with reference to the roll rate value provided from the integrated control unit 625. Therefore, the steering control unit 610 can more preferably correct the magnitude of the assist torque or the reaction torque.
また、上述のように、加減速・転舵時ピッチ・ロールレート算出部673が、制御量セレクト部690の出力するサスペンション制御量を更に参照する構成とすれば、ステアリング制御部610は更に好適にアシストトルク又は反力トルクの大きさを補正することができる。
Further, as described above, if the acceleration / deceleration / turning pitch / roll rate calculating unit 673 further refers to the suspension control amount output from the control amount selecting unit 690, the steering control unit 610 is more preferably The magnitude of the assist torque or the reaction torque can be corrected.
状態推定用一輪モデル適用部674は、加減速・転舵時補正量算出部671による算出結果を参照して、各輪に対して状態推定用一輪モデルを適用し、4輪のバネ上速度、4輪のストローク速度、ピッチレート、及びロールレートを算出する。算出結果は、操縦安定性・乗心地制御部680に供給される。
The single-wheel model application unit for state estimation 674 applies the single-wheel model for state estimation to each wheel with reference to the calculation result by the acceleration / deceleration / turning correction amount calculation unit 671, and the sprung speed of four wheels, Calculate the stroke speed, pitch rate and roll rate of 4 wheels. The calculation result is supplied to the steering stability / ride control unit 680.
操縦安定性・乗心地制御部680は、スカイフック制御部681、ロール姿勢制御部682、ピッチ姿勢制御部683、及び、バネ下制御部684を備えている。
The steering stability / ride control unit 680 includes a skyhook control unit 681, a roll attitude control unit 682, a pitch attitude control unit 683, and an unsprung control unit 684.
スカイフック制御部681は、路面の凹凸を乗り越える際の車両の動揺を抑制し、乗り心地を高める乗り心地制御(制振制御)を行う。スカイフック制御部681は、一例として、4輪のバネ上速度、4輪のストローク速度、ピッチレート、及びロールレートを参照して、スカイフック目標制御量を決定し、その結果を制御量セレクト部690に供給する。
The skyhook control unit 681 suppresses the fluctuation of the vehicle when it gets over the unevenness of the road surface, and performs ride comfort control (vibration control) that enhances the ride comfort. The skyhook control unit 681 determines the skyhook target control amount with reference to the sprung speed of four wheels, the stroke speed of four wheels, the pitch rate, and the roll rate as an example, and the result is used as a control amount selector Supply to 690.
より具体的な例として、スカイフック制御部681は、バネ上速度に基づいてバネ上-減衰力マップを参照することにより減衰力ベース値を設定する。また、スカイフック制御部681は、設定した減衰力ベース値に対してスカイフックゲインを乗じることによりスカイフック目標減衰力を算出する。そして、スカイフック目標減衰力とストローク速度とに基づいてスカイフック目標制御量を決定する。
As a more specific example, the skyhook control unit 681 sets the damping force base value by referring to the sprung-damping force map based on the sprung velocity. Further, the skyhook control unit 681 calculates a skyhook target damping force by multiplying the set damping force base value by the skyhook gain. Then, the skyhook target control amount is determined based on the skyhook target damping force and the stroke speed.
ロール姿勢制御部682は、転舵時ロールレート、舵角を示す舵角信号、操舵トルクを示す操舵トルク信号、及び4輪の車輪速を示す車輪速信号を参照して各目標制御量を算出することによってロール姿勢制御を行う。上記操舵トルク信号には、CAN入力部660がトルクセンサ430から取得した操舵トルク信号のほかに、統合制御部625から減衰力補正情報として出力される操舵トルク信号が含まれ得る。ロール姿勢制御部682は、CAN入力部660からの操舵トルク信号のみを参照してもよいし、減衰力補正情報としての操舵トルク信号のみを参照してもよいし、これらの両方を参照してもよい。算出された各目標制御量は、制御量セレクト部690に供給される。ロール姿勢制御部682の具体的構成については後述する。
The roll attitude control unit 682 calculates each target control amount with reference to the roll rate at turning, the steering angle signal indicating the steering angle, the steering torque signal indicating the steering torque, and the wheel speed signal indicating the wheel speeds of the four wheels. Perform roll attitude control by doing this. The steering torque signal may include a steering torque signal output from the integrated control unit 625 as damping force correction information, in addition to the steering torque signal acquired by the CAN input unit 660 from the torque sensor 430. The roll posture control unit 682 may refer to only the steering torque signal from the CAN input unit 660 or may refer to only the steering torque signal as damping force correction information, or both of them. It is also good. The calculated target control amounts are supplied to the control amount selector 690. The specific configuration of the roll posture control unit 682 will be described later.
また、図5は、ロール姿勢制御部682が、CAN370および統合制御部625の両方から操舵トルク信号を取得し得る例を示しているが、後述するように、ロール姿勢制御部682は、ステアリング制御部610から統合制御部625を介して操舵トルク信号を取得する構成としてもよい。この構成の場合、ロール姿勢制御部682が、操舵トルク信号を、CAN370を経由して取得する必要がない。そのため、本実施形態の構成によれば、CAN370の伝送負荷を低減することができる。
Further, FIG. 5 shows an example in which the roll attitude control unit 682 can obtain the steering torque signal from both of the CAN 370 and the integrated control unit 625, but as described later, the roll attitude control unit 682 performs steering control The steering torque signal may be acquired from the unit 610 via the integrated control unit 625. In the case of this configuration, it is not necessary for the roll attitude control unit 682 to obtain a steering torque signal via the CAN 370. Therefore, according to the configuration of the present embodiment, the transmission load of the CAN 370 can be reduced.
なお、ロール姿勢制御部682は、舵角信号も、ステアリング制御部610から統合制御部625を介して取得する構成としてもよい。これにより、CAN370の伝送負荷の更なる低減を図ることができる。
The roll attitude control unit 682 may also acquire the steering angle signal from the steering control unit 610 via the integrated control unit 625. Thereby, the transmission load of CAN 370 can be further reduced.
このように、ロール姿勢制御部682は、加減速・転舵時ピッチ・ロールレート算出部673が算出した転舵時ロールレートを参照してロール姿勢制御を行うので、好適な姿勢制御を行うことができる。また、加減速・転舵時ピッチ・ロールレート算出部673が算出した転舵時ロールレートは、ロール姿勢制御部682によるロール姿勢制御のみならず、上述のように、統合制御部625を介してステアリング制御部610に提供されてステアリング制御部610によるアシストトルク又は反力トルクの大きさの補正にも用いられる。よって、構成要素の増加を抑制しつつ、好適な姿勢制御と違和感のない操舵感を提供することができる。
As described above, since the roll attitude control unit 682 performs roll attitude control with reference to the turning roll rate calculated by the acceleration / deceleration / turning pitch / roll rate calculating unit 673, it is preferable to perform suitable attitude control. Can. In addition, the turning roll rate calculated by the acceleration / deceleration / turning pitch / roll rate calculating unit 673 is not only the roll attitude control by the roll attitude control unit 682 but also the integrated control unit 625 as described above. It is provided to the steering control unit 610 and is also used to correct the magnitude of the assist torque or the reaction torque by the steering control unit 610. Therefore, it is possible to provide a suitable attitude control and a steering feeling without a sense of incongruity while suppressing an increase in components.
ピッチ姿勢制御部683は、加減速時ピッチレートを参照してピッチ制御を行い、ピッチ目標制御量を決定し、その結果を制御量セレクト部690に供給する。
The pitch attitude control unit 683 performs pitch control with reference to the pitch rate during acceleration / deceleration, determines a pitch target control amount, and supplies the result to the control amount selection unit 690.
バネ下制御部684は、4輪の車輪速を参照して、車両900のバネ下の制振制御を行い、バネ下制振制御目標制御量を決定する。決定結果は、制御量セレクト部690に供給される。
The unsprung control unit 684 performs damping control of the unsprung of the vehicle 900 with reference to the wheel speeds of the four wheels, and determines the unsprung damping control target control amount. The determination result is supplied to the control amount selection unit 690.
制御量セレクト部690は、スカイフック目標制御量、舵角比例目標制御量、舵角速度比例目標制御量、ロールレート比例目標制御量、ピッチ目標制御量、及び、バネ下制振制御目標制御量のうち、最も大きい値を有する目標制御量を選択し、サスペンション制御量として出力する。
The control amount selection unit 690 includes a skyhook target control amount, a steering angle proportional target control amount, a steering angle proportional target control amount, a roll rate proportional target control amount, a pitch target control amount, and an unsprung mass damping control target control amount. Among them, the target control amount having the largest value is selected and output as a suspension control amount.
(加減速・転舵時ピッチ・ロールレート算出部)
続いて、参照する図面を替えて、加減速・転舵時ピッチ・ロールレート算出部673についてより具体的に説明する。 (Acceleration / deceleration, turning pitch and roll rate calculation unit)
Subsequently, the acceleration / deceleration / turning pitch / rollrate calculation unit 673 will be more specifically described, changing the drawings to be referred to.
続いて、参照する図面を替えて、加減速・転舵時ピッチ・ロールレート算出部673についてより具体的に説明する。 (Acceleration / deceleration, turning pitch and roll rate calculation unit)
Subsequently, the acceleration / deceleration / turning pitch / roll
図6は、加減速・転舵時ピッチ・ロールレート算出部673の構成例を示すブロック図である。加減速・転舵時ピッチ・ロールレート算出部673は、図6に示すように、減算部731、732、減衰力算出部733、モデル適用部740、増幅部751~754を備えている。
FIG. 6 is a block diagram showing a configuration example of the acceleration / deceleration / turning pitch / roll rate calculation unit 673. As shown in FIG. 6, the acceleration / deceleration / turning pitch / roll rate calculation unit 673 includes subtraction units 731, 732, a damping force calculation unit 733, a model application unit 740, and amplification units 751 to 754.
またモデル適用部740は、増幅部741、744、745、加算部742、及び遅延部743を備えている。
The model application unit 740 further includes amplification units 741, 744, and 745, an addition unit 742, and a delay unit 743.
減算部731は、前後Gを示す信号から増幅部753の出力信号を減算し、減算した結果を増幅部741に出力する。
The subtraction unit 731 subtracts the output signal of the amplification unit 753 from the signal indicating the front and rear G, and outputs the result of the subtraction to the amplification unit 741.
減算部732は、横Gを示す信号から増幅部754の出力信号を減算し、減算した結果を増幅部741に出力する。
The subtracting unit 732 subtracts the output signal of the amplification unit 754 from the signal indicating horizontal G, and outputs the result of the subtraction to the amplification unit 741.
減衰力算出部733は、サスペンション制御量、及び、増幅部751の出力を参照し、各輪の減衰力を算出する。ここで、増幅部751の出力は、懸架装置100の備える油圧緩衝装置のストローク速度(ダンパ速度)に対する推定値に対応している。また、減衰力算出部733による各輪の減衰力の算出は減衰力マップを参照して行われる。
The damping force calculation unit 733 calculates the damping force of each wheel with reference to the suspension control amount and the output of the amplification unit 751. Here, the output of the amplification unit 751 corresponds to an estimated value for the stroke speed (damper speed) of the hydraulic shock absorber provided in the suspension apparatus 100. Further, the calculation of the damping force of each wheel by the damping force calculating unit 733 is performed with reference to the damping force map.
モデル適用部740は、減算部731が出力する減算後の前後G、及び減衰力算出部733が出力する各輪の減衰力に対して、ピッチ挙動モデルを適用することによって、加減速時ピッチレートを算出する。
The model application unit 740 applies the pitch behavior model to the back and forth G after subtraction output by the subtraction unit 731 and the damping force of each wheel output by the damping force calculation unit 733 so that the pitch rate at acceleration and deceleration is obtained. Calculate
モデル適用部740は、減算部732が出力する減算後の横G、及び減衰力算出部733が出力する各輪の減衰力に対して、ロール挙動モデルを適用することによって、転舵時ロールレートを算出する。
The model application unit 740 applies the roll behavior model to the lateral G after subtraction output by the subtraction unit 732 and the damping force of each wheel output by the damping force calculation unit 733, thereby achieving a steering roll rate. Calculate
モデル適用部740による加減速時ピッチレート及び転舵時ロールレートの算出は、増幅部741、744、745における増幅率、及び、遅延部743による遅延量を調整することによって行われる。
The calculation of the pitch rate during acceleration / deceleration and the roll rate during steering by the model application unit 740 is performed by adjusting the amplification factors of the amplification units 741, 744, and 745 and the delay amount by the delay unit 743.
増幅部741は、減算部731、減算部732、及び減衰力算出部733の出力を増幅し、加算部742に供給する。加算部742は、増幅部741の出力に、遅延部743の出力を増幅部745によって増幅したものを加算し、遅延部743に供給する。増幅部744は、遅延部743の出力を、加速時ピッチレート、又は、転舵時ロールレートとして出力する。
The amplification unit 741 amplifies the outputs of the subtraction unit 731, the subtraction unit 732, and the damping force calculation unit 733, and supplies the amplified output to the addition unit 742. The addition unit 742 adds the output of the delay unit 743 amplified by the amplification unit 745 to the output of the amplification unit 741, and supplies the result to the delay unit 743. The amplification unit 744 outputs the output of the delay unit 743 as a pitch rate at acceleration or a roll rate at steering.
増幅部751は、遅延部743の出力を増幅し、減衰力算出部733に供給する。増幅部752は、遅延部743の出力を増幅する。増幅部752の出力は、増幅部753又は増幅部754によって増幅されたうえで、それぞれ、減算部731又は減算部732に入力される。
The amplification unit 751 amplifies the output of the delay unit 743 and supplies the amplified output to the damping force calculation unit 733. The amplification unit 752 amplifies the output of the delay unit 743. The output of the amplification unit 752 is amplified by the amplification unit 753 or the amplification unit 754 and then input to the subtraction unit 731 or the subtraction unit 732, respectively.
なお、加減速・転舵時ピッチ・ロールレート算出部673は、車両900の傾きが所定の微小時間変化しなかった場合の転舵時ロールレートの基準値として「0」を出力してもよい。また、加減速・転舵時ピッチ・ロールレート算出部673は、転舵時ロールレートに±0.5程度の不感帯を設けてもよい。ここで、符号は、例えば、車両900の左側を「+」、右側を「-」とする。
The acceleration / deceleration / turning pitch / roll rate calculating unit 673 may output “0” as a reference value of the turning roll rate when the inclination of the vehicle 900 does not change for a predetermined minute time. . In addition, the acceleration / deceleration / turning pitch / roll rate calculating unit 673 may provide a dead zone of about ± 0.5 in the turning roll rate. Here, for example, the left side of the vehicle 900 is “+” and the right side is “−”.
(ロール姿勢制御部682)
ロール姿勢制御部682は、サスペンションの減衰力を制御するためのサスペンション制御量を、路面判定部による判定結果に応じて算出する。 (Roll attitude control unit 682)
The rollattitude control unit 682 calculates a suspension control amount for controlling the damping force of the suspension according to the determination result by the road surface determination unit.
ロール姿勢制御部682は、サスペンションの減衰力を制御するためのサスペンション制御量を、路面判定部による判定結果に応じて算出する。 (Roll attitude control unit 682)
The roll
以下では、図7を参照して、ロール姿勢制御部682の具体的構成について説明する。図7は、ロール姿勢制御部682の構成例を示すブロック図である。ロール姿勢制御部682は、転舵時ロールレートと、操舵トルク信号と、舵角信号と、車輪速信号とを参照して、サスペンション制御量の候補となる操舵由来目標制御量を算出する。ここで、ロール姿勢制御部682が算出する操舵由来目標制御量は、制御量セレクト部690によって選択された場合、サスペンション制御量となる。したがって、ロール姿勢制御部682は、サスペンション制御量を算出すると表現することもできる。
Hereinafter, with reference to FIG. 7, a specific configuration of the roll posture control unit 682 will be described. FIG. 7 is a block diagram showing an example of the configuration of the roll attitude control unit 682. The roll posture control unit 682 calculates a steering-derived target control amount that is a candidate for a suspension control amount, with reference to the turning roll rate, the steering torque signal, the steering angle signal, and the wheel speed signal. Here, the steering-derived target control amount calculated by the roll posture control unit 682 becomes a suspension control amount when it is selected by the control amount selection unit 690. Therefore, the roll attitude control unit 682 can also be expressed as calculating the suspension control amount.
図7に示すように、ロール姿勢制御部682は、ロールレート比例目標制御量算出部80、第1の目標制御量算出部81、第2の目標制御量算出部82、選択部83、路面判定部(路面判定装置)84、及び乗算部85を備えている。
As shown in FIG. 7, the roll attitude control unit 682 includes a roll rate proportional target control amount calculation unit 80, a first target control amount calculation unit 81, a second target control amount calculation unit 82, a selection unit 83, and a road surface determination. A section (road surface determination device) 84 and a multiplication section 85 are provided.
ロールレート比例目標制御量算出部80は、加減速・転舵時ピッチ・ロールレート算出部673から供給される転舵時ロールレートを参照してロールレート比例目標制御量を算出する。
The roll rate proportional target control amount calculation unit 80 calculates the roll rate proportional target control amount with reference to the turning time roll rate supplied from the acceleration / deceleration / turning time pitch / roll rate calculation portion 673.
第1の目標制御量算出部81は、操舵トルク信号を参照して第1の目標制御量を算出する。具体的には、第1の目標制御量算出部81は、操舵トルク信号を参照して、車両900のロールを抑え、車両900の姿勢がよりフラットに近づくような第1の目標制御量を算出する。例えば、操舵部材410がある転舵方向に転舵され、車両900が当該転舵方向に向かうカーブに沿って進行する場合、当該カーブの外側(すなわち転舵方向とは反対側)のサスペンションの減衰力が大きくなるように第1の目標制御量を算出する。換言すれば、転舵方向とは反対側のサスペンションが硬くなるような第1の目標制御量を算出する。更に言えば、カーブの外側のサスペンションの減衰力を大きくしたうえで、カーブの内側のサスペンションの減衰力も大きくするような第1の目標制御量を算出してもよい。
The first target control amount calculator 81 calculates a first target control amount with reference to the steering torque signal. Specifically, the first target control amount calculation unit 81 refers to the steering torque signal, suppresses the roll of the vehicle 900, and calculates a first target control amount such that the posture of the vehicle 900 approaches flatter. Do. For example, when the steering member 410 is steered in a turning direction and the vehicle 900 travels along a curve heading in the turning direction, damping of the suspension outside the curve (that is, the side opposite to the steering direction) The first target control amount is calculated to increase the force. In other words, the first target control amount is calculated such that the suspension on the opposite side to the turning direction becomes hard. Furthermore, it is also possible to calculate a first target control amount that increases the damping force of the suspension inside the curve after increasing the damping force of the suspension outside the curve.
第1の目標制御量算出部81は、図7に示すように、トルク参照目標制御量算出部811、トルク速参照目標制御量算出部812、及び、第1の目標制御量選択部813を備えている。
As shown in FIG. 7, the first target control amount calculation unit 81 includes a torque reference target control amount calculation unit 811, a torque speed reference target control amount calculation unit 812, and a first target control amount selection unit 813. ing.
トルク参照目標制御量算出部811は、操舵トルク信号の示すトルクを参照してトルク参照目標制御量を算出する。トルク速参照目標制御量算出部812は、操舵トルク信号の示すトルクの時間変化を参照することによってトルク速を算出し、算出したトルク速を参照してトルク速参照目標制御量を算出する。
The torque reference target control amount calculation unit 811 calculates a torque reference target control amount with reference to the torque indicated by the steering torque signal. The torque speed reference target control amount calculation unit 812 calculates a torque speed by referring to a time change of torque indicated by the steering torque signal, and calculates a torque speed reference control amount by referring to the calculated torque speed.
第1の目標制御量選択部813は、トルク参照目標制御量とトルク速参照目標制御量とのうち、より高い値を有する目標制御量を、トルク由来の目標制御量(第1の目標制御量)として選択する。
The first target control amount selection unit 813 sets a target control amount having a higher value among the torque reference target control amount and the torque speed reference target control amount to a target control amount derived from torque (a first target control amount Choose as).
第2の目標制御量算出部82は、舵角信号を参照して第2の目標制御量を算出する。具体的には、第2の目標制御量算出部82は、舵角信号を参照して、車両900のロールを抑え、車両900の姿勢がよりフラットに近づくような第2の目標制御量を算出する。例えば、操舵部材410がある転舵方向に転舵され、車両900が当該転舵方向に向かうカーブに沿って進行する場合、当該カーブの外側(すなわち転舵方向とは反対側)のサスペンションの減衰力が大きくなるように第2の目標制御量を算出する。換言すれば、転舵方向とは反対側のサスペンションが硬くなるような第2の目標制御量を算出する。更に言えば、カーブの外側のサスペンションの減衰力を大きくしたうえで、カーブの内側のサスペンションの減衰力も大きくするような第2の目標制御量を算出してもよい。
The second target control amount calculation unit 82 calculates a second target control amount with reference to the steering angle signal. Specifically, the second target control amount calculation unit 82 refers to the steering angle signal, suppresses the roll of the vehicle 900, and calculates a second target control amount such that the posture of the vehicle 900 approaches flatter. Do. For example, when the steering member 410 is steered in a turning direction and the vehicle 900 travels along a curve heading in the turning direction, damping of the suspension outside the curve (that is, the side opposite to the steering direction) The second target control amount is calculated to increase the force. In other words, the second target control amount is calculated such that the suspension on the opposite side to the turning direction becomes hard. Furthermore, after increasing the damping force of the suspension outside the curve, a second target control amount may be calculated to increase the damping force of the suspension inside the curve.
第2の目標制御量算出部82は、図7に示すように、舵角参照目標制御量算出部821、舵角速参照目標制御量算出部822、及び、第2の目標制御量選択部823を備えている。
As shown in FIG. 7, the second target control amount calculation unit 82 is a steering angle reference target control amount calculation unit 821, a steering angle speed reference target control amount calculation unit 822, and a second target control amount selection unit 823. Is equipped.
舵角参照目標制御量算出部821は、舵角信号の示す舵角を参照して舵角参照目標制御量を算出する。舵角速参照目標制御量算出部822は、舵角信号の示す舵角の時間変化を参照することによって舵角速を算出し、算出した舵角速を参照して舵角速参照目標制御量を算出する。
The steering angle reference target control amount calculation unit 821 calculates a steering angle reference target control amount with reference to the steering angle indicated by the steering angle signal. The steering angle speed reference target control amount calculating unit 822 calculates the steering angle speed by referring to the time change of the steering angle indicated by the steering angle signal, and the steering angle speed reference target control amount with reference to the calculated steering angle speed. Calculate
第2の目標制御量選択部823は、舵角参照目標制御量と舵角速参照目標制御量とのうち、より高い値を有する目標制御量を、舵角由来の目標制御量(第2の目標制御量)として選択する。
The second target control amount selection unit 823 sets a target control amount having a higher value out of the steering angle reference target control amount and the steering angle speed reference target control amount to the target control amount derived from the steering angle (second Select as target control amount).
路面判定部84は、車輪速信号を参照して、路面状況の判定を行い、判定結果を示す係数を乗算部85に供給する。路面判定部84の具体的な構成例については後述する。
The road surface determination unit 84 determines the road surface condition with reference to the wheel speed signal, and supplies a coefficient indicating the determination result to the multiplication unit 85. A specific configuration example of the road surface determination unit 84 will be described later.
乗算部85は、第1の目標制御量算出部81によって算出された第1の目標制御量に対して、路面判定部84から供給された係数を乗算し、係数乗算後の第1の目標制御量を選択部83に供給する。
The multiplication unit 85 multiplies the first target control amount calculated by the first target control amount calculation unit 81 by the coefficient supplied from the road surface determination unit 84, and multiplies the coefficient by the first target control. The amount is supplied to the selection unit 83.
選択部83は、係数乗算後の第1の目標制御量、第2の目標制御量、及びロールレート比例目標制御量のうち、より高い値を有する目標制御量を操舵由来目標制御量として選択し、出力する。
Selection unit 83 selects a target control amount having a higher value among the first target control amount after coefficient multiplication, the second target control amount, and the roll rate proportional target control amount as a steering-derived target control amount. ,Output.
以上のように、ロール姿勢制御部682は、サスペンション制御量の候補となる操舵由来目標制御量を、路面判定部による判定結果に応じて算出するので、サスペンションの減衰力の制御を路面状況に応じて適切に行うことができる。
As described above, since the roll posture control unit 682 calculates the steering-derived target control amount that is a candidate for the suspension control amount according to the determination result by the road surface determination unit, control of the suspension damping force is performed according to the road surface condition. Can be done properly.
また、ロール姿勢制御部682は、第1の目標制御量を算出する第1の目標制御量算出部81と、路面判定部84による判定結果に応じた係数を、第1の目標制御量の値に乗算する乗算部85と、係数乗算後の第1の目標制御量を含む複数の候補からサスペンション制御量の候補である操舵由来目標制御量を選択する選択部83を備えているので、路面判定部による判定結果に応じて、目標制御量を好適に設定することができる。
Further, the roll attitude control unit 682 calculates a first target control amount calculation unit 81 that calculates a first target control amount, and a coefficient according to the determination result by the road surface determination unit 84 as a value of the first target control amount. The road surface determination is performed because it includes a multiplication unit 85 for multiplying by and a selection unit 83 for selecting a steering-derived target control amount that is a candidate for a suspension control amount from a plurality of candidates including the first target control amount after coefficient multiplication. The target control amount can be suitably set according to the determination result by the unit.
また、第1の目標制御量は、操舵部材410に対して印加される操舵トルクを表す操舵トルク信号を参照して算出され、前記路面判定の結果を示す係数は、当該第1の目標制御量に乗算される。したがって、路面状況に応じて、トルク由来の目標制御量である第1の目標制御量に1よりも小さな係数を乗算し、トルク由来の目標制御量がサスペンション制御量として選ばれにくくするといった制御が可能になる。
Further, the first target control amount is calculated with reference to a steering torque signal representing the steering torque applied to the steering member 410, and the coefficient indicating the result of the road surface determination is the first target control amount. Multiplied by Therefore, according to the road surface condition, the first target control amount, which is a target control amount derived from torque, is multiplied by a coefficient smaller than 1 to make it difficult to select a target control amount derived from torque as a suspension control amount. It will be possible.
(路面判定部)
続いて、図8を参照して、路面判定部84についてより具体的に説明する。路面判定部84は、路面判定を行うための参照信号を参照して、路面状況を判定し、その判定結果を表す係数を出力する構成である。 (Road surface judgment unit)
Subsequently, the roadsurface determination unit 84 will be described more specifically with reference to FIG. The road surface determination unit 84 is configured to determine a road surface condition with reference to a reference signal for performing the road surface determination, and to output a coefficient representing the determination result.
続いて、図8を参照して、路面判定部84についてより具体的に説明する。路面判定部84は、路面判定を行うための参照信号を参照して、路面状況を判定し、その判定結果を表す係数を出力する構成である。 (Road surface judgment unit)
Subsequently, the road
本実施形態では、上記参照信号として4輪の車輪速を示す車輪速信号を参照する構成について説明する。一般に、路面に凹凸が存在する場合、路面の凸部によってタイヤ310の半径が小さくなったり、路面の凹部によってタイヤ310の半径が大きくなったりする。このようにタイヤ310の半径が変動すると、それに応じて車輪速が変動する。したがって、車輪速信号は、路面状況を判定するために好適な信号であると言える。
In the present embodiment, a configuration will be described in which a wheel speed signal indicating the wheel speeds of four wheels is referred to as the reference signal. Generally, when the road surface has unevenness, the radius of the tire 310 may be reduced by the convex portion of the road surface, or the radius of the tire 310 may be increased by the concave portion of the road surface. Thus, when the radius of the tire 310 changes, the wheel speed changes accordingly. Therefore, it can be said that the wheel speed signal is a suitable signal for determining the road surface condition.
なお、車輪速信号以外の参照信号を参照する構成については実施形態2にて説明する。
The configuration for referring to the reference signal other than the wheel speed signal will be described in the second embodiment.
図8は、路面判定部84の構成例を示すブロック図である。図8に示すように、路面判定部84は、ハイパスフィルタ(HPF)840、バンドストップフィルタ(BSF)841、絶対値算出部842、ローパスフィルタ(LPF)844、及び係数決定部846を備えている。図8に示すようにハイパスフィルタ840には車輪速信号が入力され、ローパスフィルタ844はハイパスフィルタ840の後段に配置されている。
FIG. 8 is a block diagram showing a configuration example of the road surface determination unit 84. As shown in FIG. As shown in FIG. 8, the road surface determination unit 84 includes a high pass filter (HPF) 840, a band stop filter (BSF) 841, an absolute value calculation unit 842, a low pass filter (LPF) 844 and a coefficient determination unit 846. . As shown in FIG. 8, the wheel speed signal is input to the high pass filter 840, and the low pass filter 844 is disposed downstream of the high pass filter 840.
なお、ハイパスフィルタ840及びバンドストップフィルタ841の順序は図8に示すものとは逆であってもよい。その場合であっても、ローパスフィルタ844はハイパスフィルタ840及びバンドストップフィルタ841の後段に配置される。
The order of the high pass filter 840 and the band stop filter 841 may be reversed from that shown in FIG. Even in that case, the low pass filter 844 is disposed downstream of the high pass filter 840 and the band stop filter 841.
ハイパスフィルタ840は、車輪速信号に作用し、当該車輪速信号から第1のカッオフ周波数以下の周波数成分を除去又は逓減することによって路面状況由来の車輪速変動を抽出する。ここで、ハイパスフィルタ840が除去又は逓減する周波数成分には、操舵由来の車輪速変動等が含まれる。なお、ハイパスフィルタ840における第1のカットオフ周波数、及び第1の次数は、自由に設定することができ、実験値により好適な値を設定することができる。
The high pass filter 840 acts on the wheel speed signal and extracts the wheel speed fluctuation derived from the road surface condition by removing or reducing frequency components below the first cutoff frequency from the wheel speed signal. Here, the frequency components removed or reduced by the high pass filter 840 include the wheel speed fluctuation and the like derived from the steering. Note that the first cutoff frequency and the first order in the high pass filter 840 can be freely set, and more suitable values can be set by experimental values.
(バンドストップフィルタ841)
バンドストップフィルタ841がハイパスフィルタ840の下流に配置される場合、バンドストップフィルタ841は、ハイパスフィルタ840が作用した後の車輪速信号に作用する。バンドストップフィルタ841がハイパスフィルタ840の上流に配置される場合、バンドストップフィルタ841は、ハイパスフィルタ840が作用する前の車輪速信号に作用する。 (Band stop filter 841)
When theband stop filter 841 is disposed downstream of the high pass filter 840, the band stop filter 841 acts on the wheel speed signal after the high pass filter 840 acts. When the band stop filter 841 is disposed upstream of the high pass filter 840, the band stop filter 841 acts on the wheel speed signal before the high pass filter 840 acts.
バンドストップフィルタ841がハイパスフィルタ840の下流に配置される場合、バンドストップフィルタ841は、ハイパスフィルタ840が作用した後の車輪速信号に作用する。バンドストップフィルタ841がハイパスフィルタ840の上流に配置される場合、バンドストップフィルタ841は、ハイパスフィルタ840が作用する前の車輪速信号に作用する。 (Band stop filter 841)
When the
何れの場合であっても、バンドストップフィルタ841は、自身に入力される処理対象信号のうち、遮断周波数帯に含まれる周波数における信号を低減又は遮断し、それ以外の周波数帯における信号は変化させない。ここで、遮断周波数帯は、中心周波数及び帯域幅によって指定される。
In any case, the band stop filter 841 reduces or cuts off the signal at the frequency included in the cut-off frequency band among the processing target signals input to itself, and does not change the signal in the other frequency bands . Here, the cutoff frequency band is designated by the center frequency and the bandwidth.
また、本実施形態に係るバンドストップフィルタ841には、遮断周波数帯を決定するための信号としても車両速信号が入力され、バンドストップフィルタ841は、当該車輪速信号に応じて遮断周波数帯を変更可能に構成されている。具体的には、バンドストップフィルタ841は、車輪速信号の示す車速に応じて遮断周波数帯の中心周波数を変更可能に構成されている。一例として、車輪速信号の示す車速をv(メートル/秒)、タイヤの直径をd(メートル)と表した場合、バンドストップフィルタ841は、遮断周波数帯の中心周波数Fc(Hz)を
Fc=v/(π×d)
に設定する。なお、バンドストップフィルタ841は、車輪速信号に応じて、遮断周波数帯の帯域幅を更に変更する構成としてもよい。 In addition, the vehicle speed signal is also input to theband stop filter 841 according to the present embodiment as a signal for determining the cutoff frequency band, and the band stop filter 841 changes the cutoff frequency band according to the wheel speed signal. It is configured to be possible. Specifically, the band stop filter 841 is configured to be able to change the center frequency of the cutoff frequency band in accordance with the vehicle speed indicated by the wheel speed signal. As an example, when the vehicle speed indicated by the wheel speed signal is represented by v (meters / second) and the diameter of the tire is represented by d (meters), the bandstop filter 841 has a center frequency Fc (Hz) of the cutoff frequency band Fc = v / (Π × d)
Set to Theband stop filter 841 may be configured to further change the bandwidth of the cutoff frequency band according to the wheel speed signal.
Fc=v/(π×d)
に設定する。なお、バンドストップフィルタ841は、車輪速信号に応じて、遮断周波数帯の帯域幅を更に変更する構成としてもよい。 In addition, the vehicle speed signal is also input to the
Set to The
このようにバンドストップフィルタ841が車輪速信号に応じた遮断周波数帯を有することによって、路面判定部84は、車輪速信号からタイヤ310の偏心に起因した車輪速変動の寄与を除去したうえで、路面状況の判定を行うことができる。したがって、路面判定を適切に行うことができる。
As described above, by the band stop filter 841 having the cutoff frequency band corresponding to the wheel speed signal, the road surface determination unit 84 removes the contribution of the wheel speed fluctuation due to the eccentricity of the tire 310 from the wheel speed signal. The road surface condition can be determined. Therefore, the road surface determination can be appropriately performed.
絶対値算出部842は、ハイパスフィルタ840の出力信号の絶対値を算出し、ローパスフィルタ844に提供する。
The absolute value calculator 842 calculates the absolute value of the output signal of the high pass filter 840 and provides the low pass filter 844 with the absolute value.
ローパスフィルタ844は、絶対値算出部842の出力から第2のカットオフ周波数以上の周波数成分を除去又は逓減することによって、車輪速の変動を示す信号を生成し出力する。換言すれば、ローパスフィルタ844は、車輪速の変動を、路面状況の指標となるある種のエネルギーとして算出する。ローパスフィルタ844における第2のカットオフ周波数、及び第2の次数は、自由に設定することができ、実験値により好適な値を設定することができる。
The low pass filter 844 generates or outputs a signal indicating fluctuation of the wheel speed by removing or reducing frequency components higher than the second cutoff frequency from the output of the absolute value calculation unit 842. In other words, the low pass filter 844 calculates the fluctuation of the wheel speed as a kind of energy which is an index of the road surface condition. The second cutoff frequency and the second order in the low pass filter 844 can be freely set, and more preferable values can be set by experimental values.
係数決定部846は、ローパスフィルタ844の出力値に応じた係数を出力する。例えば、係数決定部846は、ローパスフィルタ844の出力値が所定の閾値以上である場合に出力する係数を、ローパスフィルタ844の出力値が所定の閾値未満である場合に出力する係数より小さく設定する。
The coefficient determination unit 846 outputs a coefficient according to the output value of the low pass filter 844. For example, the coefficient determining unit 846 sets the coefficient to be output when the output value of the low pass filter 844 is equal to or greater than a predetermined threshold, smaller than the coefficient to be output when the output value of the low pass filter 844 is less than the predetermined threshold. .
より具体的な例として、係数決定部846は、ローパスフィルタ844の出力値が所定の閾値以上であれば、係数として0を出力し、ローパスフィルタ844の出力値が所定の閾値未満であれば、係数として1を出力する。ローパスフィルタ844の出力値が所定の閾値以上である状況は、路面が悪路である場合に相当し、ローパスフィルタ844の出力値が所定の閾値未満である状況は、路面が悪路ではない場合に相当する。このように、係数決定部846は、路面状況に応じた値を有する係数を出力する。
As a more specific example, the coefficient determination unit 846 outputs 0 as a coefficient if the output value of the low pass filter 844 is equal to or greater than a predetermined threshold, and if the output value of the low pass filter 844 is less than the predetermined threshold, Output 1 as a coefficient. The situation where the output value of the low pass filter 844 is equal to or more than the predetermined threshold corresponds to the case where the road surface is a bad road, and the situation where the output value of the low pass filter 844 is less than the predetermined threshold is the case where the road surface is not a bad road It corresponds to Thus, the coefficient determination unit 846 outputs a coefficient having a value according to the road surface condition.
上記のように構成された路面判定部84によれば、ハイパスフィルタ840によって路面状況由来の車輪速変動を抽出し、バンドストップフィルタ841によってタイヤ310の偏心に起因した車輪速変動の寄与を除去し、ローパスフィルタ844によって車輪速変動を示す信号を出力し、第1の目標制御量に乗算する係数の値を、ローパスフィルタ844が出力した信号に応じて係数決定部846が決定する。
The road surface determination unit 84 configured as described above extracts the wheel speed fluctuation derived from the road surface condition by the high pass filter 840, and removes the contribution of the wheel speed fluctuation caused by the eccentricity of the tire 310 by the band stop filter 841. The low-pass filter 844 outputs a signal indicating wheel speed fluctuation, and the coefficient determination unit 846 determines the value of the coefficient to be multiplied by the first target control amount according to the signal output from the low-pass filter 844.
上記の構成によれば、車輪速信号を参照した路面状況判定結果に応じて、係数の値を好適に決定することができる。また、バンドストップフィルタ841によってタイヤ310の偏心に起因した車輪速変動の寄与を除去するのでより精度の高い判定を行うことができる。
According to the above configuration, the value of the coefficient can be suitably determined in accordance with the road surface condition determination result with reference to the wheel speed signal. In addition, since the band stop filter 841 eliminates the contribution of the wheel speed fluctuation caused by the eccentricity of the tire 310, it is possible to perform the determination with higher accuracy.
また、上述のように、係数決定部846は、ローパスフィルタ844の出力値が所定の閾値以上である場合に出力する係数を、ローパスフィルタ844の出力値が所定の閾値未満である場合に出力する係数より小さく設定する。
In addition, as described above, the coefficient determination unit 846 outputs a coefficient that is output when the output value of the low pass filter 844 is equal to or greater than a predetermined threshold when the output value of the low pass filter 844 is less than the predetermined threshold. Set smaller than the coefficient.
一般に、路面状態によっては、トルク由来の目標制御量を出力せずに、舵角由来の目標制御量を出力することにより、より快適な乗り心地を実現できる場合がある。係数決定部846が上記のような構成をとることによって、路面状態に応じて、トルク由来の目標制御量よりも舵角由来の目標制御量を優先的に出力することができるので、より快適な乗り心地を実現することができる。
In general, depending on the road surface condition, a more comfortable ride may be realized by outputting the target control amount derived from the steering angle without outputting the target control amount derived from torque. Since the coefficient determination unit 846 can output the target control amount derived from the steering angle prior to the target control amount derived from torque according to the road surface condition by adopting the configuration as described above, it is more comfortable. A ride can be realized.
図9は、ステアリング制御部610、サスペンション制御部650および統合制御部625によって行われる統合又は協調制御(「統合/協調制御」とも表記する)に含まれる各種の処理の流れを示す処理フロー図である。
FIG. 9 is a process flow diagram showing a flow of various processes included in integrated or coordinated control (also referred to as “integrated / coordinated control”) performed by the steering control unit 610, the suspension control unit 650, and the integrated control unit 625. is there.
図9に示す処理群S610は、ステアリング制御部610によって行われるステアリング制御処理であり、処理群S650は、サスペンション制御部650によって行われるサスペンション制御処理である。また、統合/協調制御処理S625は、統合制御部625によって行われる。なお、以下に説明する各処理は、ステアリング制御部610、サスペンション制御部650および統合制御部625によって実行される各種の工程を示すものでもある。
Processing group S610 shown in FIG. 9 is steering control processing performed by the steering control unit 610, and processing group S650 is suspension control processing performed by the suspension control unit 650. The integration / collaboration control processing S625 is performed by the integration control unit 625. The processes described below also indicate various processes performed by the steering control unit 610, the suspension control unit 650, and the integrated control unit 625.
なお、図9において、各種信号のやり取りを伴う各処理同士の関連性を実線の矢印で表し、それ以外の関連性を破線の矢印で表す。
In FIG. 9, the relationship between the respective processes involving the exchange of various signals is represented by a solid arrow, and the other relationships are represented by a broken arrow.
まず、図9に示すように、運転者の操舵により操舵トルクが発生する。
First, as shown in FIG. 9, steering torque is generated by the driver's steering.
(ステップS609)
ステップS609において、操舵情報の一例としての操舵トルクを示す操舵トルク信号に対して信号処理が行われる。当該信号処理は、操舵トルク信号に対する位相補償処理を含んでいてもよい。本ステップは、例えば、上述した信号処理部609によって行われる。 (Step S609)
In step S609, signal processing is performed on a steering torque signal indicating a steering torque as an example of steering information. The signal processing may include phase compensation processing for the steering torque signal. This step is performed, for example, by thesignal processing unit 609 described above.
ステップS609において、操舵情報の一例としての操舵トルクを示す操舵トルク信号に対して信号処理が行われる。当該信号処理は、操舵トルク信号に対する位相補償処理を含んでいてもよい。本ステップは、例えば、上述した信号処理部609によって行われる。 (Step S609)
In step S609, signal processing is performed on a steering torque signal indicating a steering torque as an example of steering information. The signal processing may include phase compensation processing for the steering torque signal. This step is performed, for example, by the
(ステップS611)
続いて、ステップS611において、信号処理後の操舵トルク信号を参照したベース制御量決定処理が行われる。本ステップは、例えば、上述した制御量算出部611が制御量(ベース制御量)を算出することによって行われる。 (Step S611)
Subsequently, in step S611, base control amount determination processing with reference to the steering torque signal after signal processing is performed. This step is performed, for example, by the controlamount calculation unit 611 described above calculating the control amount (base control amount).
続いて、ステップS611において、信号処理後の操舵トルク信号を参照したベース制御量決定処理が行われる。本ステップは、例えば、上述した制御量算出部611が制御量(ベース制御量)を算出することによって行われる。 (Step S611)
Subsequently, in step S611, base control amount determination processing with reference to the steering torque signal after signal processing is performed. This step is performed, for example, by the control
(ステップS630)
一方で、ステップS630では、車両状態情報の一例としてのロールレート値を参照したロールレート応動制御処理が行われる。本ステップは、例えば、ωフィードバック部620、ゲイン算出部630、及び乗算部640によって行われ、上述したゲイン後の補正制御量が算出される。 (Step S630)
On the other hand, in step S630, roll rate response control processing is performed with reference to the roll rate value as an example of the vehicle state information. This step is performed by, for example, theω feedback unit 620, the gain calculation unit 630, and the multiplication unit 640, and the correction control amount after the gain described above is calculated.
一方で、ステップS630では、車両状態情報の一例としてのロールレート値を参照したロールレート応動制御処理が行われる。本ステップは、例えば、ωフィードバック部620、ゲイン算出部630、及び乗算部640によって行われ、上述したゲイン後の補正制御量が算出される。 (Step S630)
On the other hand, in step S630, roll rate response control processing is performed with reference to the roll rate value as an example of the vehicle state information. This step is performed by, for example, the
なお、本ステップで参照するロールレート値は後述するロールレート算出処理(ステップS673)にて算出され、統合/協調制御処理(ステップS625)を経て、アシスト補正情報として提供される。
The roll rate value referred to in this step is calculated in a roll rate calculation process (step S673) to be described later (step S673), and provided as assist correction information through the integration / collaboration control process (step S625).
(ステップ612)
続いて、ステップS612において、モータ出力決定処理が行われる。本ステップでは、ベース制御量決定処理によって算出したベース制御量と、ロールレート応動制御処理によって算出したゲイン後の補正制御量とを参照してモータ出力を規定するステアリング制御量を決定する。本ステップは、例えば、上述した制御量補正部612によって行われる。 (Step 612)
Subsequently, in step S612, motor output determination processing is performed. In this step, a steering control amount defining the motor output is determined with reference to the base control amount calculated by the base control amount determination process and the corrected control amount after gain calculated by the roll rate response control process. This step is performed by, for example, the controlamount correction unit 612 described above.
続いて、ステップS612において、モータ出力決定処理が行われる。本ステップでは、ベース制御量決定処理によって算出したベース制御量と、ロールレート応動制御処理によって算出したゲイン後の補正制御量とを参照してモータ出力を規定するステアリング制御量を決定する。本ステップは、例えば、上述した制御量補正部612によって行われる。 (Step 612)
Subsequently, in step S612, motor output determination processing is performed. In this step, a steering control amount defining the motor output is determined with reference to the base control amount calculated by the base control amount determination process and the corrected control amount after gain calculated by the roll rate response control process. This step is performed by, for example, the control
(ステップS671)
一方で、ステップS671では、車輪速を参照した、路面入力に対する制御処理が行われ、車輪速に関連した目標制御量が算出される。本ステップは、例えば、上述した加減速・転舵時補正量算出部671、状態推定用一輪モデル適用部674、及びスカイフック制御部681によって行われる。 (Step S671)
On the other hand, in step S671, control processing is performed on the road surface input with reference to the wheel speed, and a target control amount related to the wheel speed is calculated. This step is performed by, for example, the above-described acceleration / deceleration / turning correctionamount calculation unit 671, the one-wheel model application unit for state estimation 674, and the skyhook control unit 681.
一方で、ステップS671では、車輪速を参照した、路面入力に対する制御処理が行われ、車輪速に関連した目標制御量が算出される。本ステップは、例えば、上述した加減速・転舵時補正量算出部671、状態推定用一輪モデル適用部674、及びスカイフック制御部681によって行われる。 (Step S671)
On the other hand, in step S671, control processing is performed on the road surface input with reference to the wheel speed, and a target control amount related to the wheel speed is calculated. This step is performed by, for example, the above-described acceleration / deceleration / turning correction
(ステップS673)
また、ステップS673では、横Gを参照したロールレート算出処理が行われ、ロールレート値、及び、横Gに関連した目標制御量が算出される。本ステップで算出されたロールレート値は、統合/協調制御処理(S625)を経て、アシスト補正情報として上述したロールレート応動制御処理(S630)にて参照される。本ステップは、例えば、上述した加減速・転舵時ピッチ・ロールレート算出部673によって行われる。 (Step S673)
In step S673, roll rate calculation processing with reference to the lateral G is performed, and a roll rate value and a target control amount related to the lateral G are calculated. The roll rate value calculated in this step is referred to in the roll rate response control process (S630) described above as assist correction information through integration / collaborative control process (S625). This step is performed by, for example, the above-described acceleration / deceleration / turning pitch / rollrate calculation unit 673.
また、ステップS673では、横Gを参照したロールレート算出処理が行われ、ロールレート値、及び、横Gに関連した目標制御量が算出される。本ステップで算出されたロールレート値は、統合/協調制御処理(S625)を経て、アシスト補正情報として上述したロールレート応動制御処理(S630)にて参照される。本ステップは、例えば、上述した加減速・転舵時ピッチ・ロールレート算出部673によって行われる。 (Step S673)
In step S673, roll rate calculation processing with reference to the lateral G is performed, and a roll rate value and a target control amount related to the lateral G are calculated. The roll rate value calculated in this step is referred to in the roll rate response control process (S630) described above as assist correction information through integration / collaborative control process (S625). This step is performed by, for example, the above-described acceleration / deceleration / turning pitch / roll
(ステップ682)
また、ステップS682では、S609において信号処理され、統合/協調制御処理(S625)を経た操舵トルク(減衰力補正情報)を参照した操舵トルク応動制御処理が行われ、操舵トルクに関連した目標制御量が算出される。本ステップは、例えば、上述したロール姿勢制御部682によって行われる。なお、本ステップは、統合/協調制御処理(S625)を経ていることを条件に、S609において信号処理する前の操舵トルクを参照してもよい。 (Step 682)
In step S682, steering torque responsive control processing is performed with reference to the steering torque (damping force correction information) subjected to signal processing in step S609 and subjected to integration / collaborative control processing (S625), and a target control amount related to steering torque Is calculated. This step is performed by, for example, the above-described rollposture control unit 682. In this step, the steering torque before signal processing in S609 may be referred to on the condition that the integration / collaboration control processing (S625) is performed.
また、ステップS682では、S609において信号処理され、統合/協調制御処理(S625)を経た操舵トルク(減衰力補正情報)を参照した操舵トルク応動制御処理が行われ、操舵トルクに関連した目標制御量が算出される。本ステップは、例えば、上述したロール姿勢制御部682によって行われる。なお、本ステップは、統合/協調制御処理(S625)を経ていることを条件に、S609において信号処理する前の操舵トルクを参照してもよい。 (Step 682)
In step S682, steering torque responsive control processing is performed with reference to the steering torque (damping force correction information) subjected to signal processing in step S609 and subjected to integration / collaborative control processing (S625), and a target control amount related to steering torque Is calculated. This step is performed by, for example, the above-described roll
(ステップS690)
ステップS690では、ステップS682、S671、及びS673にて算出された各目標制御量のうち、最も高い値を有する目標制御量を、サスペンションの減衰力を規定するサスペンション制御量として出力する。本ステップは、例えば、制御量セレクト部690によって行われる。 (Step S690)
In step S690, the target control amount having the highest value among the target control amounts calculated in steps S682, S671, and S673 is output as a suspension control amount defining the damping force of the suspension. This step is performed by, for example, the controlamount selection unit 690.
ステップS690では、ステップS682、S671、及びS673にて算出された各目標制御量のうち、最も高い値を有する目標制御量を、サスペンションの減衰力を規定するサスペンション制御量として出力する。本ステップは、例えば、制御量セレクト部690によって行われる。 (Step S690)
In step S690, the target control amount having the highest value among the target control amounts calculated in steps S682, S671, and S673 is output as a suspension control amount defining the damping force of the suspension. This step is performed by, for example, the control
(統合/協調制御処理)
ステップS625では、ステップS609にて処理された操舵トルク信号と、ステップS673にて算出されたロールレート値とを参照する。そして、上記操舵トルク信号を参照して取得した減衰力補正情報をステップS682に出力し、上記ロールレート値を参照して取得したアシスト補正情報をステップS630に出力する。本ステップは、統合制御部625によって行われる。統合制御部625は、上記のように、ステアリング制御部610が取得又は算出した情報として、操舵トルク信号を取得し得る。 (Integrated / coordinated control processing)
In step S625, the steering torque signal processed in step S609 and the roll rate value calculated in step S673 are referred to. Then, damping force correction information acquired with reference to the steering torque signal is output to step S682, and assist correction information acquired with reference to the roll rate value is output to step S630. This step is performed by theintegrated control unit 625. The integrated control unit 625 may obtain the steering torque signal as the information obtained or calculated by the steering control unit 610 as described above.
ステップS625では、ステップS609にて処理された操舵トルク信号と、ステップS673にて算出されたロールレート値とを参照する。そして、上記操舵トルク信号を参照して取得した減衰力補正情報をステップS682に出力し、上記ロールレート値を参照して取得したアシスト補正情報をステップS630に出力する。本ステップは、統合制御部625によって行われる。統合制御部625は、上記のように、ステアリング制御部610が取得又は算出した情報として、操舵トルク信号を取得し得る。 (Integrated / coordinated control processing)
In step S625, the steering torque signal processed in step S609 and the roll rate value calculated in step S673 are referred to. Then, damping force correction information acquired with reference to the steering torque signal is output to step S682, and assist correction information acquired with reference to the roll rate value is output to step S630. This step is performed by the
また、上記アシスト補正情報は、上記ロールレート値以外の他の情報をさらに含んでいてもよい。アシスト補正情報としてさらに含み得る情報の例には、S630におけるロールレート応動制御処理の一部の処理(例えば、ロールレート判定部633による処理の一部又は全部)による情報が含まれる。
The assist correction information may further include information other than the roll rate value. Examples of the information that may further be included as the assist correction information include information obtained by part of the roll rate response control process in S630 (for example, part or all of the process by the roll rate determination unit 633).
また、上記減衰力補正情報は、上記操舵トルクに加えて、サスペンション制御処理の一部の制御処理をさらに含んでいてもよい。減衰力補正情報がさらに含み得る情報の例には、サスペンション制御部650に入力されるべき舵角の情報(舵角信号)、および、S682における操舵トルク応動制御処理の一部の処理(例えば、ロール姿勢制御部682による処理の一部)による情報が含まれる。
In addition to the steering torque, the damping force correction information may further include control processing of a part of suspension control processing. Examples of information that the damping force correction information may further include include information on a steering angle (steering angle signal) to be input to the suspension control unit 650, and part of the processing of steering torque response control processing in S682 (for example, Information included in part of the processing by the roll posture control unit 682 is included.
図9に示すように、統合/協調制御では、以下に示すように、運転者の反応を含む少なくとも2つのフィードバックループが存在する。統合/協調制御では、ステアリング制御処理S610にて参照される操舵トルクがサスペンション制御処理S650にて、そして、サスペンション制御処理S650にて算出された車両状態としてのロールレート値がステアリング制御処理S610にて、適切なタイミングで参照される。
As shown in FIG. 9, in integrated / cooperative control, there are at least two feedback loops including a driver's response as shown below. In the integrated / coordinated control, the steering torque referred to in the steering control processing S610 is in the suspension control processing S650, and the roll rate value as the vehicle state calculated in the suspension control processing S650 is in the steering control processing S610. Referenced at the appropriate time.
(第1のループ)
ドライバの操舵→操舵トルク→統合/協調制御処理(S625)→操舵トルク応動制御処理(S682)→減衰力発生→車両挙動→ドライバの操舵
(第2のループ)
ドライバの操舵→車両挙動→ロールレート算出処理(S673)→ロールレート値→統合/協調制御処理(S625)→ロールレート応動制御処理(S630)→モータ出力決定処理(S612)→アシストトルク(又は反力トルク)発生→操舵トルク→ドライバの操舵
上記説明した構成により、運転者にとって違和感の少ないアシストトルク(又は反力トルク)及びサスペンションの減衰力を提供することができるので、高い乗り心地を実現することができる。 (First loop)
Driver's steering → steering torque → integration / coordinated control processing (S625) → steering torque response control processing (S682) → damping force generation → vehicle behavior → driver's steering (second loop)
Driver's steering → vehicle behavior → roll rate calculation process (S673) → roll rate value → integration / coordination control process (S625) → roll rate response control process (S630) → motor output determination process (S612) → assist torque (or reverse) Force torque) generation → steering torque → driver's steering With the above-described configuration, the driver can provide assist torque (or reaction torque) with less discomfort for the driver and damping force of the suspension, thus achieving high ride comfort. be able to.
ドライバの操舵→操舵トルク→統合/協調制御処理(S625)→操舵トルク応動制御処理(S682)→減衰力発生→車両挙動→ドライバの操舵
(第2のループ)
ドライバの操舵→車両挙動→ロールレート算出処理(S673)→ロールレート値→統合/協調制御処理(S625)→ロールレート応動制御処理(S630)→モータ出力決定処理(S612)→アシストトルク(又は反力トルク)発生→操舵トルク→ドライバの操舵
上記説明した構成により、運転者にとって違和感の少ないアシストトルク(又は反力トルク)及びサスペンションの減衰力を提供することができるので、高い乗り心地を実現することができる。 (First loop)
Driver's steering → steering torque → integration / coordinated control processing (S625) → steering torque response control processing (S682) → damping force generation → vehicle behavior → driver's steering (second loop)
Driver's steering → vehicle behavior → roll rate calculation process (S673) → roll rate value → integration / coordination control process (S625) → roll rate response control process (S630) → motor output determination process (S612) → assist torque (or reverse) Force torque) generation → steering torque → driver's steering With the above-described configuration, the driver can provide assist torque (or reaction torque) with less discomfort for the driver and damping force of the suspension, thus achieving high ride comfort. be able to.
〔実施形態2〕
実施形態1では、路面判定部84が、路面判定を行うための参照信号として、4輪の車輪速を示す車輪速信号を参照する構成について説明したが、本明細書の記載の発明はこれに限られない。以下では、路面判定部84が車輪速信号以外の参照信号を参照する場合について説明する。 Second Embodiment
In the first embodiment, the roadsurface determination unit 84 has described the configuration in which the wheel speed signal indicating the wheel speeds of the four wheels is referred to as a reference signal for performing the road surface determination. It is not limited. Hereinafter, the case where the road surface determination unit 84 refers to a reference signal other than the wheel speed signal will be described.
実施形態1では、路面判定部84が、路面判定を行うための参照信号として、4輪の車輪速を示す車輪速信号を参照する構成について説明したが、本明細書の記載の発明はこれに限られない。以下では、路面判定部84が車輪速信号以外の参照信号を参照する場合について説明する。 Second Embodiment
In the first embodiment, the road
なお、路面判定部84が以下の参照信号を参照する場合、ハイパスフィルタ840及びローパスフィルタ844におけるカットオフ周波数等のパラメータを参照信号に応じた好適な値としておけばよい。
When the road surface determination unit 84 refers to the following reference signal, parameters such as the cutoff frequency in the high pass filter 840 and the low pass filter 844 may be set as suitable values according to the reference signal.
また、路面判定部84は、ハイパスフィルタ840及びローパスフィルタ844を含む信号処理経路を複数備える構成とし、上述した車輪速信号及び以下に示す種々の参照信号のうち、複数の信号を参照して路面判定を行う構成としてもよい。このような構成とすれば路面判定の精度を向上させることができる。
In addition, the road surface determination unit 84 is configured to include a plurality of signal processing paths including the high pass filter 840 and the low pass filter 844, and the road surface is referred to with reference to a plurality of signals among the wheel speed signals described above and various reference signals shown below. It may be configured to perform the determination. With such a configuration, the accuracy of road surface determination can be improved.
(例1)舵角信号
路面判定部84は、操舵部材410の舵角を示す舵角信号を参照して路面状態を判定してもよい。一般に、路面に凹凸が存在する場合、当該凹凸に起因して舵角が変動する。したがって、舵角信号は、路面状況を判定するために好適な信号であると言える。 (Example 1) Steering Angle Signal The roadsurface determination unit 84 may determine the road surface state with reference to a steering angle signal indicating the steering angle of the steering member 410. Generally, when unevenness is present on the road surface, the steering angle fluctuates due to the unevenness. Therefore, it can be said that the steering angle signal is a signal suitable for determining the road surface condition.
路面判定部84は、操舵部材410の舵角を示す舵角信号を参照して路面状態を判定してもよい。一般に、路面に凹凸が存在する場合、当該凹凸に起因して舵角が変動する。したがって、舵角信号は、路面状況を判定するために好適な信号であると言える。 (Example 1) Steering Angle Signal The road
(例2)操舵トルク
路面判定部84は、操舵部材410に印加される操舵トルクを示す操舵トルク信号を参照して路面状態を判定してもよい。一般に、路面に凹凸が存在する場合、当該凹凸に起因して操舵トルクが変動する。したがって、操舵トルク信号は、路面状況を判定するために好適な信号であると言える。 (Example 2) Steering Torque The roadsurface determination unit 84 may determine the road surface state by referring to a steering torque signal indicating the steering torque applied to the steering member 410. Generally, when the road surface is uneven, the steering torque fluctuates due to the unevenness. Therefore, the steering torque signal can be said to be a suitable signal for determining the road surface condition.
路面判定部84は、操舵部材410に印加される操舵トルクを示す操舵トルク信号を参照して路面状態を判定してもよい。一般に、路面に凹凸が存在する場合、当該凹凸に起因して操舵トルクが変動する。したがって、操舵トルク信号は、路面状況を判定するために好適な信号であると言える。 (Example 2) Steering Torque The road
(例3)ステアリングアシストモータのモータ回転
路面判定部84は、トルク印加部460が備えているモータ(ステアリングアシストモータ)のモータ回転を参照して路面状態を判定してもよい。路面に凹凸が存在する場合、当該凹凸に起因してステアリングアシストモータのモータ回転数も変動する。したがって、ステアリングアシストモータのモータ回転数は、路面状況を判定するために好適な信号であると言える。 (Example 3) Motor Rotation of Steering Assist Motor The roadsurface determination unit 84 may determine the road surface state by referring to the motor rotation of the motor (steering assist motor) provided in the torque application unit 460. When the road surface has unevenness, the motor rotation speed of the steering assist motor also fluctuates due to the unevenness. Therefore, it can be said that the motor rotation number of the steering assist motor is a suitable signal for determining the road surface condition.
路面判定部84は、トルク印加部460が備えているモータ(ステアリングアシストモータ)のモータ回転を参照して路面状態を判定してもよい。路面に凹凸が存在する場合、当該凹凸に起因してステアリングアシストモータのモータ回転数も変動する。したがって、ステアリングアシストモータのモータ回転数は、路面状況を判定するために好適な信号であると言える。 (Example 3) Motor Rotation of Steering Assist Motor The road
(例4)ヨーレート信号
路面判定部84は、車両900のヨーレートを示すヨーレート信号を参照して路面状態を判定してもよい。路面に凹凸が存在する場合、当該凹凸に直接的に起因して、又は操舵トルク等を介して間接的に起因して車両900のヨーレートも変動する。したがって、ヨーレート信号は、路面状況を判定するために好適な信号であると言える。 (Example 4) The yaw rate signal The roadsurface determination unit 84 may determine the road surface condition with reference to a yaw rate signal indicating the yaw rate of the vehicle 900. When the unevenness is present on the road surface, the yaw rate of the vehicle 900 also changes due to the unevenness directly or indirectly through the steering torque or the like. Therefore, it can be said that the yaw rate signal is a signal suitable for determining the road surface condition.
路面判定部84は、車両900のヨーレートを示すヨーレート信号を参照して路面状態を判定してもよい。路面に凹凸が存在する場合、当該凹凸に直接的に起因して、又は操舵トルク等を介して間接的に起因して車両900のヨーレートも変動する。したがって、ヨーレート信号は、路面状況を判定するために好適な信号であると言える。 (Example 4) The yaw rate signal The road
(例5)横G信号、前後G信号
路面判定部84は、車両900の横方向の加速度を示す横G信号、及び車両900の前後方向の加速度を示す前後G信号の少なくとも何れかを参照して路面状態を判定してもよい。路面に凹凸が存在する場合、当該凹凸に直接的に起因して、又は操舵トルク等を介して間接的に起因して、車両900の横方向の加速度や前後方向の加速度が変動する。したがって、横G信号及び前後G信号は、路面状況を判定するために好適な信号であると言える。 (Example 5) Lateral G signal, longitudinal G signal The roadsurface determination unit 84 refers to at least one of a lateral G signal indicating lateral acceleration of the vehicle 900 and longitudinal G signal indicating longitudinal acceleration of the vehicle 900. The road surface condition may be determined. When the road surface has unevenness, the lateral acceleration and the longitudinal acceleration of the vehicle 900 fluctuate due to the unevenness directly or indirectly through the steering torque or the like. Therefore, the lateral G signal and the longitudinal G signal can be said to be suitable signals for determining the road surface condition.
路面判定部84は、車両900の横方向の加速度を示す横G信号、及び車両900の前後方向の加速度を示す前後G信号の少なくとも何れかを参照して路面状態を判定してもよい。路面に凹凸が存在する場合、当該凹凸に直接的に起因して、又は操舵トルク等を介して間接的に起因して、車両900の横方向の加速度や前後方向の加速度が変動する。したがって、横G信号及び前後G信号は、路面状況を判定するために好適な信号であると言える。 (Example 5) Lateral G signal, longitudinal G signal The road
(例6)上下G信号
車両900が、車両900の上下方向の加速度を検出する上下Gセンサを備える構成とし、路面判定部84が、当該上下方向の加速度を示す上下G信号を参照して路面状態を判定する構成としてもよい。 (Example 6) Up and down Gsignal A vehicle 900 includes an up and down G sensor for detecting the acceleration in the up and down direction of the vehicle 900, and the road surface determination unit 84 refers to the up and down G signal indicating the up and down acceleration. It may be configured to determine the state.
車両900が、車両900の上下方向の加速度を検出する上下Gセンサを備える構成とし、路面判定部84が、当該上下方向の加速度を示す上下G信号を参照して路面状態を判定する構成としてもよい。 (Example 6) Up and down G
路面に凹凸が存在する場合、当該凹凸に起因して、車両900の上下方向の加速度が変動する。したがって、上下G信号は、路面状況を判定するために好適な信号であると言える。
When the unevenness is present on the road surface, the acceleration in the vertical direction of the vehicle 900 fluctuates due to the unevenness. Therefore, the upper and lower G signals can be said to be suitable signals for determining the road surface condition.
(例7)ピッチレート
路面判定部84は、車両状態推定部670が算出したピッチレート、及び加減速・転舵時補正量算出部671が算出したピッチレートである加減速時ピッチレートの少なくとも何れかを参照して路面状態を判定してもよい。路面に凹凸が存在する場合、当該凹凸に直接的に起因して、又は操舵トルク等を介して間接的に起因してピッチレートが変動する。したがって、ピッチレートは路面状況を判定するために好適な信号であると言える。 (Example 7) Pitch rate The roadsurface determination unit 84 performs at least one of the pitch rate calculated by the vehicle state estimation unit 670 and the acceleration / deceleration pitch rate which is the pitch rate calculated by the acceleration / deceleration / turning correction amount calculation unit 671. The road surface condition may be determined with reference to. When the unevenness is present on the road surface, the pitch rate changes due to the unevenness directly or indirectly through the steering torque or the like. Therefore, it can be said that the pitch rate is a suitable signal for determining the road surface condition.
路面判定部84は、車両状態推定部670が算出したピッチレート、及び加減速・転舵時補正量算出部671が算出したピッチレートである加減速時ピッチレートの少なくとも何れかを参照して路面状態を判定してもよい。路面に凹凸が存在する場合、当該凹凸に直接的に起因して、又は操舵トルク等を介して間接的に起因してピッチレートが変動する。したがって、ピッチレートは路面状況を判定するために好適な信号であると言える。 (Example 7) Pitch rate The road
〔ソフトウェアによる実現例〕
ECU600の制御ブロック(ステアリング制御部610、サスペンション制御部650および統合制御部625)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。 [Example of software implementation]
The control block (thesteering control unit 610, the suspension control unit 650, and the integrated control unit 625) of the ECU 600 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. It may be realized by software using Processing Unit).
ECU600の制御ブロック(ステアリング制御部610、サスペンション制御部650および統合制御部625)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。 [Example of software implementation]
The control block (the
後者の場合、ECU600は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(又はCPU)で読み取り可能に記録されたROM(Read Only Memory)又は記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(又はCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
In the latter case, the ECU 600 is a CPU that executes instructions of a program that is software that implements each function, a ROM (Read Only Memory) or a storage device in which the above program and various data are readably recorded by a computer (or CPU). (These are referred to as “recording media”), a RAM (Random Access Memory) for developing the above-mentioned program, and the like. Then, the object of the present invention is achieved by the computer (or CPU) reading and executing the program from the recording medium. As the recording medium, a “non-transitory tangible medium”, for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used. The program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. The present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
200 車体
600 ECU(制御装置)
610 ステアリング制御部(第1の制御部)
611 制御量算出部
612 制御量補正部
620 ωフィードバック部
625 統合制御部
630 ゲイン算出部
650 サスペンション制御部(第2の制御部)
673 ロールレート算出部
900 車両 200car body 600 ECU (control device)
610 Steering control unit (first control unit)
611 controlamount calculation unit 612 control amount correction unit 620 ω feedback unit 625 integrated control unit 630 gain calculation unit 650 suspension control unit (second control unit)
673 RollRate Calculation Unit 900 Vehicle
600 ECU(制御装置)
610 ステアリング制御部(第1の制御部)
611 制御量算出部
612 制御量補正部
620 ωフィードバック部
625 統合制御部
630 ゲイン算出部
650 サスペンション制御部(第2の制御部)
673 ロールレート算出部
900 車両 200
610 Steering control unit (first control unit)
611 control
673 Roll
Claims (8)
- 車両を制御する車両制御装置であって、
操舵部材に対して印加される操舵トルクを少なくとも参照して、前記車両の操舵を行うステアリング装置に対して印加するアシストトルク又は反力トルクの大きさを制御する第1の制御部と、
前記車両のサスペンションの減衰力を制御する第2の制御部と、
前記第1の制御部および前記第2の制御部が取得又は算出する情報を取得する統合制御部と
を備え、
前記統合制御部は、前記第1の制御部および前記第2の制御部から取得した情報を前記第1の制御部および前記第2の制御部へ出力し、
前記第1の制御部は、前記統合制御部から出力され前記第2の制御部が取得又は算出した情報を更に参照して前記アシストトルク又は反力トルクの大きさを制御し、
前記第2の制御部は、前記操舵トルク、又は、前記統合制御部から出力され前記第1の制御部が取得又は算出した情報を参照して前記車両のサスペンションの減衰力を制御し、
前記第2の制御部は、前記車両のロールレートを推定し、推定したロールレートを少なくとも参照して、前記車両のサスペンションの減衰力を制御し、
前記第2の制御部が取得又は算出した情報とは、前記推定したロールレートであることを特徴とする車両制御装置。 A vehicle control device for controlling a vehicle, wherein
A first control unit controlling at least a steering torque applied to a steering member to control a magnitude of an assist torque or a reaction torque applied to a steering apparatus for steering the vehicle;
A second control unit that controls a damping force of the suspension of the vehicle;
And an integrated control unit that acquires information acquired or calculated by the first control unit and the second control unit.
The integrated control unit outputs information acquired from the first control unit and the second control unit to the first control unit and the second control unit.
The first control unit controls the magnitude of the assist torque or the reaction torque by further referring to information output from the integrated control unit and obtained or calculated by the second control unit.
The second control unit controls the damping force of the suspension of the vehicle with reference to the steering torque or information output from the integrated control unit and acquired or calculated by the first control unit.
The second control unit estimates a roll rate of the vehicle, and at least refers to the estimated roll rate to control a damping force of a suspension of the vehicle.
The information acquired or calculated by the second control unit is the estimated roll rate. - 前記第1の制御部と前記第2の制御部とを一体として備えている請求項1に記載の車両制御装置。 The vehicle control device according to claim 1, wherein the first control unit and the second control unit are integrally provided.
- 前記第1の制御部と前記統合制御部とを一体として備えている請求項1に記載の車両制御装置。 The vehicle control device according to claim 1, wherein the first control unit and the integrated control unit are integrally provided.
- 前記第2の制御部と前記統合制御部とを一体として備えている請求項1に記載の車両制御装置。 The vehicle control device according to claim 1, wherein the second control unit and the integrated control unit are integrally provided.
- 前記第1の制御部と前記第2の制御部と前記統合制御部とを一体として備えている請求項1に記載の車両制御装置。 The vehicle control device according to claim 1, wherein the first control unit, the second control unit, and the integrated control unit are integrally provided.
- 前記推定したロールレートとは、少なくとも前記車両の横方向の加速度を参照して算出したロールレートである請求項1から5のいずれか1項に記載の車両制御装置。 The vehicle control device according to any one of claims 1 to 5, wherein the estimated roll rate is a roll rate calculated with reference to at least acceleration in a lateral direction of the vehicle.
- 前記統合制御部は、前記第1の制御部が取得又は算出した情報として、操舵トルク信号を取得する請求項1から6のいずれか1項に記載の車両制御装置。 The vehicle control device according to any one of claims 1 to 6, wherein the integrated control unit acquires a steering torque signal as the information acquired or calculated by the first control unit.
- 車両を制御する車両制御装置と、操舵部材に対してアシストトルク又は反力トルクを印加するトルク印加部と、サスペンションとを備えた車両であって、
前記車両制御装置は、
操舵部材に対して印加される操舵トルクを少なくとも参照して、前記車両の操舵を行うステアリング装置に対して印加するアシストトルク又は反力トルクの大きさを制御する第1の制御部と、
前記車両のサスペンションの減衰力を制御する第2の制御部と、
前記第1の制御部および前記第2の制御部が取得又は算出する情報を取得する統合制御部と
を備え、
前記統合制御部は、前記第1の制御部および前記第2の制御部から取得した情報を前記第1の制御部および前記第2の制御部へ出力し、
前記第1の制御部は、前記統合制御部から出力され前記第2の制御部が取得又は算出した情報を更に参照して前記アシストトルク又は反力トルクの大きさを制御し、
前記第2の制御部は、前記操舵トルク、又は、前記統合制御部から出力され前記第1の制御部が取得又は算出した情報を参照して前記車両のサスペンションの減衰力を制御し、
前記第2の制御部は、前記車両のロールレートを推定し、推定したロールレートを少なくとも参照して、前記車両のサスペンションの減衰力を制御し、
前記第2の制御部が取得又は算出した情報とは、前記推定したロールレートであり、
前記トルク印加部は、前記第1の制御部から供給される制御信号に応じて、前記操舵部材に対してアシストトルク又は反力トルクを印加し、
前記サスペンションは、前記第2の制御部から供給される制御信号に応じて、前記減衰力を変化させる
ことを特徴とする車両。 A vehicle comprising a vehicle control device for controlling a vehicle, a torque application unit for applying an assist torque or a reaction torque to a steering member, and a suspension,
The vehicle control device
A first control unit controlling at least a steering torque applied to a steering member to control a magnitude of an assist torque or a reaction torque applied to a steering apparatus for steering the vehicle;
A second control unit that controls a damping force of the suspension of the vehicle;
And an integrated control unit that acquires information acquired or calculated by the first control unit and the second control unit.
The integrated control unit outputs information acquired from the first control unit and the second control unit to the first control unit and the second control unit.
The first control unit controls the magnitude of the assist torque or the reaction torque by further referring to information output from the integrated control unit and obtained or calculated by the second control unit.
The second control unit controls the damping force of the suspension of the vehicle with reference to the steering torque or information output from the integrated control unit and acquired or calculated by the first control unit.
The second control unit estimates a roll rate of the vehicle, and at least refers to the estimated roll rate to control a damping force of a suspension of the vehicle.
The information acquired or calculated by the second control unit is the estimated roll rate,
The torque applying unit applies an assist torque or a reaction torque to the steering member according to a control signal supplied from the first control unit.
A vehicle, wherein the suspension changes the damping force in accordance with a control signal supplied from the second control unit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-249347 | 2017-12-26 | ||
JP2017249347A JP2018090248A (en) | 2017-12-26 | 2017-12-26 | Vehicle control device and vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019130600A1 true WO2019130600A1 (en) | 2019-07-04 |
Family
ID=62564208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/000906 WO2019130600A1 (en) | 2017-12-26 | 2018-01-16 | Vehicle control device and vehicle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018090248A (en) |
WO (1) | WO2019130600A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6969685B2 (en) * | 2018-08-03 | 2021-11-24 | 日産自動車株式会社 | Driving support method and driving support device |
JP6913072B2 (en) * | 2018-11-29 | 2021-08-04 | 本田技研工業株式会社 | Vehicle motion control device |
JP2021151828A (en) * | 2020-03-24 | 2021-09-30 | 日立Astemo株式会社 | Control system |
CN112782964B (en) * | 2020-12-25 | 2023-03-07 | 际络科技(上海)有限公司 | Automatic driving steering system, method, device, electronic equipment and storage medium |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06239169A (en) * | 1993-02-17 | 1994-08-30 | Toyota Motor Corp | Drive system control device vehicle equipped with active suspension |
JP2006051922A (en) * | 2004-01-30 | 2006-02-23 | Hitachi Ltd | Vehicle controller |
JP2006273185A (en) * | 2005-03-30 | 2006-10-12 | Honda Motor Co Ltd | Vehicular steering device |
JP2008179300A (en) * | 2007-01-25 | 2008-08-07 | Fuji Heavy Ind Ltd | Rollover suppression control device of vehicle |
JP2010036728A (en) * | 2008-08-05 | 2010-02-18 | Mitsubishi Electric Corp | Vehicle steering controller |
JP2016210352A (en) * | 2015-05-12 | 2016-12-15 | 日本精工株式会社 | Suspension controller, suspension device and vehicle |
JP6273059B1 (en) * | 2017-03-24 | 2018-01-31 | 株式会社ショーワ | Vehicle control device and vehicle |
-
2017
- 2017-12-26 JP JP2017249347A patent/JP2018090248A/en active Pending
-
2018
- 2018-01-16 WO PCT/JP2018/000906 patent/WO2019130600A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06239169A (en) * | 1993-02-17 | 1994-08-30 | Toyota Motor Corp | Drive system control device vehicle equipped with active suspension |
JP2006051922A (en) * | 2004-01-30 | 2006-02-23 | Hitachi Ltd | Vehicle controller |
JP2006273185A (en) * | 2005-03-30 | 2006-10-12 | Honda Motor Co Ltd | Vehicular steering device |
JP2008179300A (en) * | 2007-01-25 | 2008-08-07 | Fuji Heavy Ind Ltd | Rollover suppression control device of vehicle |
JP2010036728A (en) * | 2008-08-05 | 2010-02-18 | Mitsubishi Electric Corp | Vehicle steering controller |
JP2016210352A (en) * | 2015-05-12 | 2016-12-15 | 日本精工株式会社 | Suspension controller, suspension device and vehicle |
JP6273059B1 (en) * | 2017-03-24 | 2018-01-31 | 株式会社ショーワ | Vehicle control device and vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP2018090248A (en) | 2018-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018173306A1 (en) | Vehicle control device, and vehicle | |
WO2018173302A1 (en) | Control device and steering device | |
JP6543393B1 (en) | Steering control device and steering device | |
JP6285592B1 (en) | Road surface determination device, suspension control device, and suspension device | |
JP6359163B1 (en) | Suspension control device and suspension device | |
WO2019130599A1 (en) | Control device and steering device | |
WO2019130600A1 (en) | Vehicle control device and vehicle | |
WO2018173304A1 (en) | Suspension control device and suspension device | |
JP6553256B1 (en) | Steering control device and steering device | |
WO2018173303A1 (en) | Control device and suspension device | |
JP7059341B1 (en) | Suspension control device, vehicle and suspension control method | |
JP6775069B2 (en) | Rack axial force estimation device | |
US12145417B2 (en) | Suspension control device and suspension device | |
US20220314729A1 (en) | Suspension control device and suspension device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18896920 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18896920 Country of ref document: EP Kind code of ref document: A1 |