JP6775069B2 - Rack axial force estimation device - Google Patents
Rack axial force estimation device Download PDFInfo
- Publication number
- JP6775069B2 JP6775069B2 JP2019124574A JP2019124574A JP6775069B2 JP 6775069 B2 JP6775069 B2 JP 6775069B2 JP 2019124574 A JP2019124574 A JP 2019124574A JP 2019124574 A JP2019124574 A JP 2019124574A JP 6775069 B2 JP6775069 B2 JP 6775069B2
- Authority
- JP
- Japan
- Prior art keywords
- axial force
- rack axial
- unit
- roll
- steering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000725 suspension Substances 0.000 claims description 73
- 238000013016 damping Methods 0.000 claims description 62
- 238000012937 correction Methods 0.000 description 41
- 238000004364 calculation method Methods 0.000 description 38
- 230000001133 acceleration Effects 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 230000008859 change Effects 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 12
- 239000006096 absorbing agent Substances 0.000 description 8
- 230000035939 shock Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 230000001052 transient effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Landscapes
- Steering Control In Accordance With Driving Conditions (AREA)
- Vehicle Body Suspensions (AREA)
Description
本発明は、ラック軸力推定装置に関する。 The present invention relates to a rack axial force estimation device.
操舵部材に対してアシストトルク又は反力トルクを印加するステアリング装置が知られている。また、ステアリング装置において、操舵角と車速から、タイヤ転舵時のラック軸力を推定する技術(特許文献1)が知られている。 A steering device that applies an assist torque or a reaction force torque to a steering member is known. Further, in a steering device, a technique of estimating a rack axial force at the time of turning a tire from a steering angle and a vehicle speed (Patent Document 1) is known.
操舵部材に対してアシストトルク又は反力トルクを印加する制御装置では、車両の運転者にとって違和感の少ないアシストトルク又は反力トルクを操舵部材に印加することが好ましい。 In the control device that applies the assist torque or the reaction force torque to the steering member, it is preferable to apply the assist torque or the reaction force torque to the steering member with less discomfort to the driver of the vehicle.
そのためには、車体の過渡状態におけるロール変化を好適に識別することが好ましい。本発明は、操舵部材に対してアシストトルク又は反力トルクを印加する制御装置において、車体の過渡状態におけるロール変化を好適に識別することを目的とする。 For that purpose, it is preferable to preferably identify the roll change in the transient state of the vehicle body. An object of the present invention is to preferably identify a roll change in a transient state of a vehicle body in a control device that applies an assist torque or a reaction force torque to a steering member.
かかる目的のもと、本発明は、車体のロールレートを参照して、サスペンション減衰力の推定値を算出し、前記サスペンション減衰力の推定値からラック軸力を推定するラック軸力推定装置である。 For this purpose, the present invention is a rack axial force estimation device that calculates an estimated value of suspension damping force with reference to the roll rate of the vehicle body and estimates rack axial force from the estimated value of suspension damping force. ..
本発明によれば、車体の過渡状態におけるロール変化を好適に識別することができる。 According to the present invention, the roll change in the transient state of the vehicle body can be preferably identified.
〔実施形態1〕
以下、本発明の実施形態1について、詳細に説明する。
[Embodiment 1]
Hereinafter,
(車両900の構成)
図1は、本実施形態に係る車両900の概略構成を示す図である。図1に示すように、車両900は、懸架装置(サスペンション)100、車体200、車輪300、タイヤ310、操舵部材410、ステアリングシャフト420、トルクセンサ430、舵角センサ440、トルク印加部460、ラックピニオン機構470、ラック軸480、エンジン500、ECU(Electronic Control Unit)(制御装置)600、発電装置700およびバッテリ800を備えている。
(Structure of vehicle 900)
FIG. 1 is a diagram showing a schematic configuration of a
タイヤ310が装着された車輪300は、懸架装置100によって車体200に懸架されている。車両900は、四輪車であるため、懸架装置100、車輪300およびタイヤ310については、それぞれ4つ設けられている。
The
なお、左側の前輪、右側の前輪、左側の後輪および右側の後輪のタイヤ及び車輪をそれぞれ、タイヤ310A及び車輪300A、タイヤ310B及び車輪300B、タイヤ310C及び車輪300C、並びに、タイヤ310D及び車輪300Dとも称する。以下、同様に、左側の前輪、右側の前輪、左側の後輪および右側の後輪にそれぞれ付随した構成を、符号「A」「B」「C」及び「D」を付して表現することがある。
The tires and wheels of the left front wheel, the right front wheel, the left rear wheel and the right rear wheel are the
懸架装置100は、油圧緩衝装置、アッパーアーム及びロアーアームを備えている。また、油圧緩衝装置は、当該油圧緩衝装置が発生させる減衰力を調整する電磁弁であるソレノイドバルブを備えている。ただし、これは本実施形態を限定するものではなく、油圧緩衝装置は、減衰力を調整する電磁弁として、ソレノイドバルブ以外の電磁弁を用いてもよい。例えば、上記電磁弁として、電磁流体(磁性流体)を利用した電磁弁を備える構成としてもよい。 The suspension device 100 includes a hydraulic shock absorber, an upper arm and a lower arm. Further, the hydraulic shock absorber includes a solenoid valve which is a solenoid valve for adjusting the damping force generated by the hydraulic shock absorber. However, this does not limit the present embodiment, and the hydraulic shock absorber may use a solenoid valve other than the solenoid valve as the solenoid valve for adjusting the damping force. For example, the solenoid valve may be provided with a solenoid valve using an electromagnetic fluid (magnetic fluid).
エンジン500には、発電装置700が付設されており、発電装置700によって生成された電力がバッテリ800に蓄積される。
A
運転者の操作する操舵部材410は、ステアリングシャフト420の一端に対してトルク伝達可能に接続されており、ステアリングシャフト420の他端は、ラックピニオン機構470に接続されている。
The
ラックピニオン機構470は、ステアリングシャフト420の軸周りの回転を、ラック軸480の軸方向に沿った変位に変換するための機構である。ラック軸480が軸方向に変位すると、タイロッド及びナックルアームを介して車輪300A及び車輪300Bが転舵される。
The rack and
トルクセンサ430は、ステアリングシャフト420に印加される操舵トルク、換言すれば、操舵部材410に印加される操舵トルクを検出し、検出結果を示すトルクセンサ信号をECU600に提供する。より具体的には、トルクセンサ430は、ステアリングシャフト420に内設されたトーションバーの捩れを検出し、検出結果をトルクセンサ信号として出力する。なお、トルクセンサ430として、ホールIC,MR素子、磁歪式トルクセンサなどの周知のセンサを用いてもよい。
The
舵角センサ440は、操舵部材410の舵角を検出し、検出結果をECU600に提供する。
The
トルク印加部460は、ECU600から供給されるステアリング制御量に応じたアシストトルク又は反力トルクを、ステアリングシャフト420に印加する。トルク印加部460は、ステアリング制御量に応じたアシストトルク又は反力トルクを発生させるモータと、当該モータが発生させたトルクをステアリングシャフト420に伝達するトルク伝達機構とを備えている。
The
なお、本明細書における「制御量」の具体例として、電流値、デューティー比、減衰率、減衰比等が挙げられる。 Specific examples of the "control amount" in the present specification include a current value, a duty ratio, an attenuation rate, and an attenuation ratio.
操舵部材410、ステアリングシャフト420、トルクセンサ430、舵角センサ440、トルク印加部460、ラックピニオン機構470、ラック軸480、及びECU600は、本実施形態に係るステアリング装置を構成する。
The
なお、上述の説明において「トルク伝達可能に接続」とは、一方の部材の回転に伴い他方の部材の回転が生じるように接続されていることを指し、例えば、一方の部材と他方の部材とが一体的に成形されている場合、一方の部材に対して他方の部材が直接的又は間接的に固定されている場合、及び、一方の部材と他方の部材とが継手部材等を介して連動するよう接続されている場合を少なくとも含む。 In the above description, "connecting so that torque can be transmitted" means that the other member is connected so as to rotate with the rotation of one member, for example, one member and the other member. Is integrally molded, the other member is directly or indirectly fixed to one member, and one member and the other member are interlocked via a joint member or the like. At least include cases where it is connected to.
また、上記の例では、操舵部材410からラック軸480までが常時機械的に接続されたステアリング装置を例に挙げたが、これは本実施形態を限定するものではなく、本実施形態に係るステアリング装置は、例えばステア・バイ・ワイヤ方式のステアリング装置であってもよい。ステア・バイ・ワイヤ方式のステアリング装置に対しても本明細書において以下に説明する事項を適用することができる。
Further, in the above example, a steering device in which the
ECU600は、車両900が備える各種の電子機器を統括制御する。より具体的には、ECU600は、トルク印加部460に供給するステアリング制御量を調整することにより、ステアリングシャフト420に印加するアシストトルク又は反力トルクの大きさを制御する。
The ECU 600 collectively controls various electronic devices included in the
また、ECU600は、懸架装置100に含まれる油圧緩衝装置が備えるソレノイドバルブに対して、サスペンション制御量を供給することによって当該ソレノイドバルブの開閉を制御する。この制御を可能とするために、ECU600からソレノイドバルブへ駆動電力を供給する電力線が配されている。 Further, the ECU 600 controls the opening and closing of the solenoid valve by supplying a suspension control amount to the solenoid valve included in the hydraulic shock absorber included in the suspension device 100. In order to enable this control, a power line for supplying drive power from the ECU 600 to the solenoid valve is arranged.
また、車両900は、車輪300毎に設けられ各車輪300の車輪速を検出する車輪速センサ320、車両900の横方向の加速度を検出する横Gセンサ330、車両900の前後方向の加速度を検出する前後Gセンサ340、車両900のヨーレートを検出するヨーレートセンサ350、エンジン500が発生させるトルクを検出するエンジントルクセンサ510、エンジン500の回転数を検出するエンジン回転数センサ520、及びブレーキ装置が有するブレーキ液に印加される圧力を検出するブレーキ圧センサ530を備えている。これらの各種センサによる検出結果は、ECU600に供給される。
Further, the
なお、車両900は、車体200のロールレートを検出するロールレートセンサ、及び各サスペンションのストロークを検出するストロークセンサを更に備えていてもよい。
The
また、図示は省略するが、車両900は、ブレーキ時の車輪ロックを防ぐためのシステムであるABS(Antilock Brake System)、加速時等における車輪の空転を抑制するTCS(Traction Control System)、及び、旋回時のヨーモーメント制御やブレーキアシスト機能等のための自動ブレーキ機能を備えた車両挙動安定化制御システムであるVSA(Vehicle Stability Assist)制御可能なブレーキ装置を備えている。
Although not shown, the
ここで、ABS、TCS、及びVSAは、推定した車体速に応じて定まる車輪速と、車輪速センサ320によって検出された車輪速とを比較し、これら2つの車輪速の値が、所定の値以上相違している場合にスリップ状態であると判定する。ABS、TCS、及びVSAは、このような処理を通じて、車両900の走行状態に応じて最適なブレーキ制御やトラクション制御を行うことにより、車両900の挙動の安定化を図るものである。
Here, ABS, TCS, and VSA compare the wheel speed determined according to the estimated vehicle body speed with the wheel speed detected by the wheel speed sensor 320, and the values of these two wheel speeds are predetermined values. If the above differences are made, it is determined that the vehicle is in a slipped state. Through such processing, ABS, TCS, and VSA aim to stabilize the behavior of the
また、上述した各種のセンサによる検出結果のECU600への供給、及び、ECU600から各部への制御信号の伝達は、CAN(Controller Area Network)370を介して行われる。
Further, the supply of the detection results by the various sensors described above to the
(ECU600)
以下では、参照する図面を替えて、ECU600について具体的に説明する。図2は、ECU600の概略構成を示す図である。
(ECU 600)
Hereinafter, the
ステアリング制御部610は、CAN370に含まれる各種のセンサ検出結果を参照し、トルク印加部460に供給するステアリング制御量の大きさを決定する。
The
なお、本明細書において「〜を参照して」との表現には、「〜を用いて」「〜を考慮して」「〜に依存して」などの意味が含まれ得る。 In the present specification, the expression "refer to" may include meanings such as "using", "considering", and "depending on".
サスペンション制御部650は、CAN370に含まれる各種のセンサ検出結果を参照し、懸架装置100に含まれる油圧緩衝装置が備えるソレノイドバルブに対して供給するサスペンション制御量の大きさを決定する。
The
また、図2に示すように、ECU600では、サスペンション制御部650によって算出されたサスペンション制御量が、ステアリング制御部610に供給され、ステアリング制御量の大きさを決定するために参照される。
Further, as shown in FIG. 2, in the
なお、ロールレート値は、車両900の傾きが所定の微小時間変化しなかった場合の基準値として「0」をとる構成とし、当該基準値からのずれとしてロールレートを表すものであってもよい。
The roll rate value may be configured to take "0" as a reference value when the inclination of the
また、「制御量の大きさを決定する」との処理には、制御量の大きさをゼロに設定する、すなわち、制御量を供給しない場合も含まれる。 Further, the process of "determining the magnitude of the control amount" includes the case where the magnitude of the control amount is set to zero, that is, the control amount is not supplied.
また、ステアリング制御部610とサスペンション制御部650とが別々のECUとして実現される構成であってもよい。このような構成の場合、ステアリング制御部610とサスペンション制御部650とが通信手段を用いて相互に通信を行うことにより、本明細書に記載の制御が実現される。
Further, the
(ステアリング制御部)
続いて、図3を参照して、ステアリング制御部610についてより具体的に説明する。図3は、ステアリング制御部610の構成例を示すブロック図である。
(Steering control unit)
Subsequently, the
図3に示すように、ステアリング制御部610は、ベース制御量算出部611、軸力補正電流演算部612、制御量補正部613、及びラック軸力推定部620を備えている。
As shown in FIG. 3, the
ベース制御量算出部611は、トルクセンサ430から供給される操舵トルク、及び車輪速センサ320によって検出された車輪速に応じて定まる車速を参照し、アシストトルク又は反力トルクの大きさを制御するための制御量を算出する。ベース制御量算出部611によって算出された制御量は、制御量補正部613によって補正されたうえで、ステアリング制御量としてトルク印加部460に供給される。
The base control
(ラック軸力推定部)
ラック軸力推定部620は、ロールレートセンサから供給されたロールレートを参照して、ラック軸力を推定する。ラック軸力推定部620は、図3に示すようにロールレート関連サスペンション減衰力推定部621と、第1定数ゲイン適用部627とを備えている。なお、ロールレート関連サスペンション減衰力推定部621と、第1定数ゲイン適用部627とを、合わせてロールレート関連ラック軸力推定部628(特許請求の範囲における第1のラック軸力推定部)と、呼ぶ事もある。
(Rack axial force estimation unit)
The rack axial
ロールレート関連サスペンション減衰力推定部621は、図3に示したロールレートマップを参照してロールレートに応じたサスペンションの減衰力を推定する。このロールレートマップは、ロールレートを入力とし、ロールレートに応じたサスペンション減衰力の推定値を出力とするマップである。このロールレートマップにおいて、横軸はロールレートを示し、縦軸はサスペンション減衰力の推定値を示す。図3において、Df1〜Df3は、サスペンション制御量としてのサスペンション制御電流の値を示す。Df1〜Df3は、減衰係数に関連した値ということができる。
The roll rate-related suspension damping
ここで、減衰係数とは、ダンパのストローク速度と減衰力との関係を示す特性である減衰特性を数値化したものであり、減衰力とは、油圧緩衝装置を押し引きする際の抵抗力である。 Here, the damping coefficient is a numerical value of the damping characteristic, which is a characteristic showing the relationship between the stroke speed of the damper and the damping force, and the damping force is the resistance force when pushing and pulling the hydraulic shock absorber. is there.
このように、ロールレート関連サスペンション減衰力推定部621は、サスペンション制御量の値に応じて異なるロールレートマップを参照する。ロールレート関連サスペンション減衰力推定部621は、このロールレートマップを参照することによって、ロールレートに基づき、ロールレートに応じたサスペンション減衰力の推定値を算出し、算出したサスペンション減衰力の推定値を第1定数ゲイン適用部627に出力する。第1定数ゲイン適用部627はロールレートに応じたサスペンションの減衰力の推定値から、推定ラック軸力を算出し出力する。
As described above, the roll rate-related suspension damping
第1定数ゲイン適用部627は、ロールレートに応じたサスペンションの減衰力の推定値に対して、車両900に応じたゲインを適用する。より具体的には、ロールレート関連サスペンション減衰力推定部621から供給されたサスペンションの推定値に対して、車両900に応じた補正係数を乗算する。車両900に応じた補正係数としては、例えば、キャスター角β、ナックル長Lkn、トレッド幅TW、重心高Hg等に応じたゲインが挙げられる。
The first constant
また、ラック軸力推定部620は、サスペンション制御電流を更に参照して、ロールレートに応じたラック軸力を推定してもよい。この場合、ロールレート関連サスペンション減衰力推定部621が参照するロールレートマップは、ロールレート及びサスペンション制御電流を入力とし、ロールレートに応じたサスペンションの減衰力の推定値を出力とするマップである。ロールレート関連サスペンション減衰力推定部621は、このロールレートマップを参照することによって、ロールレートセンサから供給されたロールレート及びサスペンション制御部650から供給されたサスペンション制御電流に基づき、ロールレートに応じたサスペンションの減衰力の推定値を算出し、第1定数ゲイン適用部627に出力する。第1定数ゲイン適用部627はロールレートに応じたサスペンションの減衰力の推定値から、推定ラック軸力を算出し出力する。
Further, the rack axial
ここで、ロールレート関連サスペンション減衰力推定部621は、サスペンションの制御電流が大きい程、サスペンションの減衰力推定値を大きく算出し出力する。
Here, the roll rate-related suspension damping
すなわち、ラック軸力推定部620は、サスペンションの制御電流が大きいほど、推定ラック軸力を大きく算出し出力するという事もできる。
That is, it can be said that the rack axial
軸力補正電流演算部612は、ラック軸力推定部620によって推定されたラック軸力に応じて、補正電流の値を算出する。
The axial force correction
制御量補正部613は、ベース制御量算出部611が算出した制御量を、軸力補正電流演算部612から供給される補正電流によって補正することでステアリング制御量を生成する。換言すれば、制御量補正部613は、ベース制御量算出部611が算出した制御量を、ラック軸力推定部620によって推定されたラック軸力を参照して補正する。
The control
このように、制御量補正部613が、ベース制御量算出部611が算出した制御量を、ラック軸力推定部620によって推定されたラック軸力を参照して補正することにより、運転者にとって違和感の少ないアシストトルク又は反力トルクを操舵部材410に印加することができる。
In this way, the control
また、本実施形態に係るステアリング制御部610は、車体200のロールレートを参照してラック軸力を推定することによって、車体200のロールしている方向を推定することができるため、車体200の過渡状態におけるロール変化を識別することができる。このように、制御量補正部613が、ベース制御量算出部611が算出した制御量を、車体200の過渡状態のロール変化に応じて補正することにより、運転者にとって違和感の少ないアシストトルク又は反力トルクを操舵部材410に印加することができる。
Further, since the
(推定ラック軸力の演算方法)
続いて、図4及び5を参照して、推定ラック軸力の演算方法についてより具体的に説明する。まず、図4を参照して、ロール運動発生時の車両運動の変化の観点でのメカニズムについて説明する。
(Calculation method of estimated rack axial force)
Subsequently, the calculation method of the estimated rack axial force will be described more specifically with reference to FIGS. 4 and 5. First, with reference to FIG. 4, a mechanism from the viewpoint of a change in vehicle motion when a roll motion occurs will be described.
図4は、ロール運動発生時の車両運動の変化に関するメカニズムを示す図であり、(a)は直進時の車両状態を示し、(b)は旋回ロール時の車両状態を示し、(c)はロール角とサスペンションストロークの関係性を示す。 FIG. 4 is a diagram showing a mechanism related to a change in vehicle motion when a roll motion occurs, (a) shows a vehicle state when going straight, (b) shows a vehicle state when turning and rolling, and (c) is a diagram. The relationship between the roll angle and the suspension stroke is shown.
図4に示すように、旋回ロール時の車両状態、換言すれば運転者が操舵部材410を操作した車両900の車両状態では、タイヤコーナリングフォース、横G、遠心力、ロールモーメント、及び荷重移動が発生する。ここで、図4において、車両900の重心高はHg[m]、車両900のトレッド幅はTW[m]、車両900の4輪合計のコーナリングフォースはCF[kgf]、車両900の内輪側コーナリングフォースはCFin[kgf]、車両900の外輪側コーナリングフォースはCFout[kgf]、遠心力はFcnt[kgf]、横GはGy[G’]、ロールモーメントはMroll[kgf・m]、荷重移動はΔW[kgf]、ロール角はθroll[deg]、内輪側ストローク量はDin[m]、外輪側ストローク量はDout[m]と表される。
As shown in FIG. 4, in the vehicle state during a turning roll, in other words, in the vehicle state of the
図4(b)に示すように、旋回中の車両900の遠心力とタイヤコーナリングフォースは釣り合っており、下記式(1)のように表される。
As shown in FIG. 4B, the centrifugal force of the
ロールモーメントは下記式(2)、(3)のように表される。 The roll moment is expressed by the following equations (2) and (3).
上記式(2)、(3)をMrollについて連立することにより下記式(4)が求められる。 The following equation (4) can be obtained by combining the above equations (2) and (3) with respect to Mroll .
前輪と後輪との荷重の配分がa:bである場合、各車輪にかかる荷重は以下の通りである。 When the load distribution between the front wheels and the rear wheels is a: b, the load applied to each wheel is as follows.
なお、Wcarは車両900の重量を示し、1/2×a×Wcar及び1/2×a×Wcarは1G状態での荷重分を示し、−a×ΔW、−b×ΔW、a×ΔW、及びb×ΔWは荷重移動分を示す。
W car indicates the weight of the
図4(c)に示すように、内外輪でのサスペンション100のストロークによるロール角は下記式(5)のように表される。 As shown in FIG. 4C, the roll angle due to the stroke of the suspension 100 on the inner and outer rings is expressed by the following equation (5).
また、荷重移動とストローク量の関係式は、下記式(6)によって表される。なお、下記式(6)は前輪側の荷重移動とストローク量の関係式を表す。 The relational expression between the load transfer and the stroke amount is expressed by the following equation (6). The following equation (6) expresses the relational expression between the load transfer on the front wheel side and the stroke amount.
なお、DFfrは前輪減衰係数[kgfs/m]を表し、Kfrは前輪のバネ係数[kgf/m]を表す。 In addition, DF fr represents the front wheel damping coefficient [kgfs / m], and K fr represents the spring coefficient [kgf / m] of the front wheel.
内外輪でのサスペンション100の伸びのストローク量と縮みのストローク量が左右等価である場合、下記式(7)のように表される。 When the extension stroke amount and the contraction stroke amount of the suspension 100 on the inner and outer rings are equivalent on the left and right, it is expressed by the following equation (7).
なお、Deqは等価ストローク量[m]を表す。 Note that D eq represents the equivalent stroke amount [m].
上記式(5)に上記式(7)を適用し、三角関数を直線に近似することによって下記式(8)が求められる。 The following equation (8) can be obtained by applying the above equation (7) to the above equation (5) and approximating the trigonometric function to a straight line.
また、上記式(6)に上記式(7)を適用することによって、下記式(9)が求められる。 Further, by applying the above formula (7) to the above formula (6), the following formula (9) can be obtained.
なお、 In addition, it should be noted
はロールレートを示す。 Indicates the roll rate.
ここで、減衰係数DFfrはダンパ特性により、ストローク速度及び電流で決定されるため、上記式(9)において、 Here, since the damping coefficient DF fr is determined by the stroke speed and the current according to the damper characteristics, in the above equation (9),
を、 ,
と置き換える。また、上記式(9)において、 Replace with. Further, in the above formula (9),
と置き換え、式を整理し、下記式(10)を求める。 Replace with, rearrange the formula, and obtain the following formula (10).
上記式(10)に、上記式(4)を代入することによって、車両運動の変化に関する関係式である下記式(11)を求めることができる。 By substituting the above equation (4) into the above equation (10), the following equation (11), which is a relational expression regarding changes in vehicle motion, can be obtained.
次に、図5を参照して、ロール運動発生時の力の変化の観点でのメカニズムについて説明する。図5は、ロール運動発生時の力の変化に関するメカニズムを示す図であり、(a)はコーナリングフォースとタイヤ横力の関係性を示し、(b)はラック軸力の関係性を示す。ここで、図5において、コーナリングフォースはCF[kgf]、タイヤ横力はTFy[kgf]、横滑り角はα[°]、タイヤ転がり抵抗はTFx[kgf]、ニューマチックトレールはtp[m]、キャスタートレールはtc[m]、キャスター角はβ[°]、SATモーメント(タイヤ横力によるモーメント)はMSAT[kgf・m]、ラック軸力はRFSAT[kgf]、ナックル長はLkn[m]と表される。なお、ニューマチックトレールtpは、横滑り角αが所定の値より大きくなると減少する。このニューマチックトレールtpの減少によって、SATモーメントMSATが減少する。 Next, with reference to FIG. 5, the mechanism from the viewpoint of the change in force when the roll motion occurs will be described. 5A and 5B are diagrams showing a mechanism related to a change in force when a roll motion occurs, in which FIG. 5A shows the relationship between the cornering force and the tire lateral force, and FIG. 5B shows the relationship between the rack axial force. Here, in FIG. 5, the cornering force is CF [kgf], the tire lateral force is TF y [kgf], the skid angle is α [°], the tire rolling resistance is TF x [kgf], and the pneumatic trail is t p [. m], caster rail is t c [m], caster angle is β [°], SAT moment (moment due to tire lateral force) is M SAT [kgf ・ m], rack axial force is RF SAT [kgf], knuckle length Is expressed as L kn [m]. Incidentally, pneumatic trail t p decreases with slip angle α is larger than a predetermined value. This decrease in pneumatic trail t p, SAT moment M SAT is reduced.
コーナリングフォース、タイヤ横力、及び転がり抵抗の関係式は下記式(12)のように表される。 The relational expression of the cornering force, the tire lateral force, and the rolling resistance is expressed by the following equation (12).
また、キングピン軸周りでのタイヤ横力によるSATモーメントは下記式(13)のように表される。 Further, the SAT moment due to the lateral force of the tire around the kingpin axis is expressed by the following equation (13).
また、ラック軸力は下記式(14)のように表される。 The rack axial force is expressed by the following equation (14).
上記式(14)に上記式(13)を代入する。ここで、横滑り角が小さく、 Substitute the above equation (13) into the above equation (14). Here, the skid angle is small,
である場合、 If it is,
となり、力の変化に関する関係式である下記式(15)を求めることができる。 Therefore, the following equation (15), which is a relational equation relating to the change in force, can be obtained.
上記式(11)及び上記式(15)の関係式を、CFについて連立して整理すると下記式(16)を求めることができる。 The following equation (16) can be obtained by arranging the relational expressions of the above equations (11) and the above equations (15) simultaneously with respect to CF.
ラック軸力推定部620は、上記式(16)を用いることによって、ロールレート、ロール角、及び車両900に応じた係数を入力し、推定ラック軸力を出力することができる。なお、ロールレート関連ラック軸力推定部628が推定する、ロールレートに関する推定ラック軸力(ロールレート関連推定ラック軸力、特許請求の範囲における第1のラック軸力)は、上記式(16)における、
By using the above equation (16), the rack axial
に対応する。また、実施形態2において後述するロール角関連ラック軸力推定部622(特許請求の範囲における第2のラック軸力推定部)が推定する、ロール角に関する推定ラック軸力(ロール角関連推定ラック軸力、特許請求の範囲における第1のラック軸力)は、上記式(16)における、 Corresponds to. Further, the estimated rack axial force related to the roll angle (roll angle-related estimated rack axis) estimated by the roll angle-related rack axial force estimation unit 622 (second rack axial force estimation unit in the claims) described later in the second embodiment. The force, the first rack axial force in the claims) is the force in the above equation (16).
に対応する。また、実施形態3において後述するトレールマップ適用部624が決定する補正係数は、上記式(16)における、
Corresponds to. Further, the correction coefficient determined by the trail
に対応する。また、後述する第2定数ゲイン適用部626が決定する補正係数は、上記式(16)における、
Corresponds to. The correction coefficient determined by the second constant
に対応する。 Corresponds to.
(サスペンション制御部)
続いて、図6を参照してサスペンション制御部について説明する。図6はサスペンション制御部650の構成例を示すブロック図である。
(Suspension control unit)
Subsequently, the suspension control unit will be described with reference to FIG. FIG. 6 is a block diagram showing a configuration example of the
サスペンション制御部650は、図6に示すように、CAN入力部660、車両状態推定部670、操縦安定性・乗心地制御部680、及び制御量セレクト部690を備えている。
As shown in FIG. 6, the
CAN入力部660は、CAN370を介して各種の信号を取得する。図6に示すように、CAN入力部660は、以下の信号を取得する(括弧書きは取得元を示す)。
The
・4輪の車輪速(車輪速センサ320A〜D)
・ヨーレート(ヨーレートセンサ350)
・前後G(前後Gセンサ340)
・横G(横Gセンサ330)
・ブレーキ圧(ブレーキ圧センサ530)
・エンジントルク(エンジントルクセンサ510)
・エンジン回転数(エンジン回転数センサ520)
・舵角(舵角センサ440)
車両状態推定部670は、CAN入力部660が取得した各種の信号を参照して車両900の状態を推定する。車両状態推定部670は、推定結果として、4輪のバネ上速度、4輪のストローク速度、ピッチレート、ロールレート、転舵時ロールレート、及び、加減速時ピッチレートを出力する。
・ Wheel speed of 4 wheels (
・ Yaw rate (yaw rate sensor 350)
・ Front and rear G (front and rear G sensor 340)
・ Horizontal G (horizontal G sensor 330)
・ Brake pressure (brake pressure sensor 530)
・ Engine torque (engine torque sensor 510)
-Engine speed (engine speed sensor 520)
・ Rudder angle (rudder angle sensor 440)
The vehicle
車両状態推定部670は、図6に示すように、加減速・転舵時補正量算出部671、加減速・転舵時ピッチ・ロールレート算出部673、及び、状態推定用一輪モデル適用部674を備えている。
As shown in FIG. 6, the vehicle
加減速・転舵時補正量算出部671は、ヨーレート、前後G、4輪の車輪速、ブレーキ圧、エンジントルク、及びエンジン回転数を参照して、車体前後速度、内外輪差比、及び調整ゲインの算出を行い、算出結果を状態推定用一輪モデル適用部674に供給する。
The acceleration / deceleration / steering correction
加減速・転舵時ピッチ・ロールレート算出部673は、前後G、及び横Gを参照して、転舵時ロールレート、及び加減速時ピッチレートを算出する。算出結果は、状態推定用一輪モデル適用部674に供給される。
The acceleration / deceleration / steering pitch / roll
また、加減速・転舵時ピッチ・ロールレート算出部673は、算出した転舵時ロールレートを、ロールレート値として、ステアリング制御部610に供給する。加減速・転舵時ピッチ・ロールレート算出部673は、制御量セレクト部690の出力するサスペンション制御量を更に参照する構成としてもよい。加減速・転舵時ピッチ・ロールレート算出部673の詳細については参照する図面を替えて後述する。
Further, the acceleration / deceleration / steering pitch / roll
このように、加減速・転舵時ピッチ・ロールレート算出部673は、前後G、及び横Gを参照して算出した転舵時ロールレートをロールレート値としてステアリング制御部610に供給し、ステアリング制御部610は、当該ロールレート値を参照して、アシストトルク又は反力トルクの大きさを制御するための制御量を補正するので、ステアリング制御部610はより好適にアシストトルク又は反力トルクの大きさを補正することができる。
In this way, the acceleration / deceleration / steering pitch / roll
また、上述のように、加減速・転舵時ピッチ・ロールレート算出部673が、制御量セレクト部690の出力するサスペンション制御量を更に参照する構成とすれば、ステアリング制御部610は更に好適にアシストトルク又は反力トルクの大きさを補正することができる。
Further, as described above, if the acceleration / deceleration / steering pitch / roll
状態推定用一輪モデル適用部674は、加減速・転舵時補正量算出部671による算出結果を参照して、各輪に対して状態推定用一輪モデルを適用し、4輪のバネ上速度、4輪のストローク速度、ピッチレート、及びロールレートを算出する。算出結果は、操縦安定性・乗心地制御部680に供給される。
The state estimation single-wheel
操縦安定性・乗心地制御部680は、スカイフック制御部681、ロール姿勢制御部682、ピッチ姿勢制御部683、及び、バネ下制御部684を備えている。
The steering stability / riding
スカイフック制御部681は、路面の凹凸を乗り越える際の車両の動揺を抑制し、乗り心地を高める乗り心地制御(制振制御)を行う。スカイフック制御部681は、一例として、4輪のバネ上速度、4輪のストローク速度、ピッチレート、及びロールレートを参照して、スカイフック目標制御量を決定し、その結果を制御量セレクト部690に供給する。 The skyhook control unit 681 performs ride comfort control (vibration control control) that suppresses the shaking of the vehicle when overcoming the unevenness of the road surface and enhances the ride comfort. As an example, the skyhook control unit 681 determines the skyhook target control amount with reference to the spring speed of the four wheels, the stroke speed of the four wheels, the pitch rate, and the roll rate, and determines the result as the control amount selection unit. Supply to 690.
より具体的な例として、スカイフック制御部681は、バネ上速度に基づいてバネ上−減衰力マップを参照することにより減衰力ベース値を設定する。また、スカイフック制御部681は、設定した減衰力ベース値に対してスカイフックゲインを乗じることによりスカイフック目標減衰力を算出する。そして、スカイフック目標減衰力とストローク速度とに基づいてスカイフック目標制御量を決定する。 As a more specific example, the skyhook control unit 681 sets the damping force base value by referring to the spring-damping force map based on the spring speed. Further, the skyhook control unit 681 calculates the skyhook target damping force by multiplying the set damping force base value by the skyhook gain. Then, the skyhook target control amount is determined based on the skyhook target damping force and the stroke speed.
ロール姿勢制御部682は、転舵時ロールレート、及び舵角を参照してロール姿勢制御を行い、舵角に応じた目標制御量である舵角比例目標制御量、舵角速度に応じた目標制御量である舵角速度比例目標制御量、及び、ロールレートに応じた目標制御量であるロールレート比例目標制御量を決定し、その結果を制御量セレクト部690に供給する。
The roll
また、ロール姿勢制御部682は、操舵トルクを示す操舵トルク信号を参照して上記各種の目標制御量を算出する構成としてもよい。ここで、ステアリング制御部610が操舵トルク信号をサスペンション制御部650に供給し、当該操舵トルク信号をステアリング制御部610が参照する構成としてもよい。なお、操舵トルク信号は、位相補償されたものを用いる構成としてもよい。これにより、更に快適な乗り心地を実現することが期待できる。
Further, the roll
このように、ロール姿勢制御部682は、加減速・転舵時ピッチ・ロールレート算出部673が算出した転舵時ロールレートを参照してロール姿勢制御を行うので、好適な姿勢制御を行うことができる。また、加減速・転舵時ピッチ・ロールレート算出部673が算出した転舵時ロールレートは、ロール姿勢制御部682によるロール姿勢制御のみならず、上述のように、ステアリング制御部610によるアシストトルク又は反力トルクの大きさの補正にも用いられるので、構成要素の増加を抑制しつつ、好適な姿勢制御と違和感のない操舵感を提供することができる。
In this way, the roll
ピッチ姿勢制御部683は、加減速時ピッチレートを参照してピッチ制御を行い、ピッチ目標制御量を決定し、その結果を制御量セレクト部690に供給する。
The pitch
バネ下制御部684は、4輪の車輪速を参照して、車両900のバネ下の制振制御を行い、バネ下制振制御目標制御量を決定する。決定結果は、制御量セレクト部690に供給される。
The
制御量セレクト部690は、スカイフック目標制御量、舵角比例目標制御量、舵角速度比例目標制御量、ロールレート比例目標制御量、ピッチ目標制御量、及び、バネ下制振制御目標制御量のうち、最も大きい値を有する目標制御量を、サスペンション制御量として出力する。
The control
サスペンション制御量に基づいて、油圧緩衝装置の減衰特性が変化し、サスペンションの減衰力が制御される。 The damping characteristic of the hydraulic shock absorber changes based on the suspension control amount, and the damping force of the suspension is controlled.
〔変形例〕
本実施形態に係るラック軸力推定部620は、ロールレートセンサから供給されたロールレートに代えて、サスペンション制御部650の車両状態推定部670が出力するロールレート、換言すれば、サスペンションの減衰力を制御する制御量を算出するために参照される推定値としてのロールレートを、ロールレート関連ラック軸力推定部628への入力として用いてもよい。
[Modification example]
The rack axial
また、本実施形態に係るラック軸力推定部620は、サスペンション制御部650から供給されるサスペンション制御電流に代えて、ストロークセンサから供給されるセンサ値をロールレート関連ラック軸力推定部628への入力として用いてもよい。ここで、本明細書において、サスペンション制御電流及びストロークセンサのセンサ値のように減衰係数に関連した値を、減衰係数関連値と表現する。
Further, the rack axial
このように、本実施形態に係るラック軸力推定部620は、ロールレートと減衰係数関連値とを用いて、ラック軸力を推定する構成である。本実施形態に係るラック軸力推定部620は、ロールレートと減衰係数関連値とを用いてラック軸力を推定するので、ラック軸力を好適に推定することができる。
As described above, the rack axial
〔実施形態2〕
以下、本発明の実施形態2について、図7を参照して説明する。
[Embodiment 2]
Hereinafter, Embodiment 2 of the present invention will be described with reference to FIG. 7.
図7は、本実施形態に係るステアリング制御部の構成例を示すブロック図である。本実施形態に係るステアリング制御部は、実施形態1に係るステアリング制御部610において、ラック軸力推定部620がロール角関連ラック軸力推定部622と加算部623とを更に備える構成である。以下の説明では、すでに説明した部材と同様の部材には同じ符号を付してその説明を省略する。
FIG. 7 is a block diagram showing a configuration example of the steering control unit according to the present embodiment. The steering control unit according to the present embodiment has a configuration in which the rack axial
ロールレート関連ラック軸力推定部628は、実施形態1と同様に、ロールレートセンサ又は車両状態推定部670から供給されたロールレートを参照して、ラック軸力を推定し、推定したラック軸力であるロールレート関連推定ラック軸力を加算部623に供給する。
Similar to the first embodiment, the roll rate-related rack axial
ロール角関連ラック軸力推定部622は、ロール角を参照して、ラック軸力を推定し、推定したロール角関連推定ラック軸力を加算部623に供給する。ロール角の取得方法としては、例えば、
・ロールレートセンサから供給されるロールレートを積分し、積分した値をロール角として取得する、
・車両状態推定部670が出力するロールレートを積分し、積分した値をロール角として取得する、及び、
・車両900がロール角センサを備える構成とし、当該ロール角センサからロール角を取得する
等が挙げられる。また、ロール角関連ラック軸力推定部622としては、例えば、ロール角から減衰力を推定するロール角関連減衰力推定部と、推定されたロール角関連減衰力推定値に車両900に応じたゲインを乗算する第3定数ゲイン適用部と、から構成されるものが挙げられるが、本実施形態に係るロール角関連ラック軸力推定部622はこれに限定されるものではない。なお、第3定数ゲイン適用部としては、一例として増幅器が挙げられる。
The roll angle-related rack axial
-Integrate the roll rate supplied from the roll rate sensor and acquire the integrated value as the roll angle.
-The roll rate output by the vehicle
-The
加算部623は、ロールレート関連ラック軸力推定部628から供給されたロールレート関連推定ラック軸力と、ロール角関連ラック軸力推定部622から供給されたロール角関連推定ラック軸力とを加算し、ロール関連推定ラック軸力を算出する。なお、加算部623は、推定されたラック軸力であるロールレート関連推定ラック軸力と、推定されたロール角関連推定ラック軸力とを加算し、推定されたラック軸力を算出する構成であるため、ロール関連ラック軸力推定部(特許請求の範囲における第3のラック軸力推定部)と換言することができる。
The
このように、本実施形態に係るラック軸力推定部620は、上述したロールレート及び減衰係数関連値に加えて、更にロール角を参照して、ロールに関するラック軸力(特許請求の範囲における第3のラック軸力)を推定することができる。
As described above, the rack axial
制御量補正部613は、ベース制御量算出部611が算出した制御量を、軸力補正電流演算部612から供給される補正電流によって補正することでステアリング制御量を生成する。換言すれば、制御量補正部613は、ベース制御量算出部611が算出した制御量を、ラック軸力推定部620によって算出されたロール関連推定ラック軸力(ロールレート関連推定ラック軸力とロール角関連推定ラック軸力とを加算して得られた推定ラック軸力)を参照して補正する。
The control
このように、制御量補正部613が、ベース制御量算出部611が算出した制御量を、ラック軸力推定部620によって算出されたロール関連推定ラック軸力を参照して補正することにより、運転者にとって違和感の少ないアシストトルク又は反力トルクを操舵部材410に印加することができる。
In this way, the control
〔実施形態3〕
以下、本発明の実施形態3について、図8を参照して説明する。
[Embodiment 3]
Hereinafter, Embodiment 3 of the present invention will be described with reference to FIG.
図8は、本実施形態に係るステアリング制御部の構成例を示すブロック図である。本実施形態に係るステアリング制御部は、実施形態2に係るステアリング制御部610において、ラック軸力推定部620がトレールマップ適用部624と、乗算部625と、第2定数ゲイン適用部626とを更に備える構成である。更に、実施形態2に係るステアリング制御部610において、ロールレート関連ラック軸力推定部628から第1定数ゲイン適用部627を除き、ロール角関連ラック軸力推定部622における、第3定数ゲイン適用部(増幅器)を除いた構成である。
以下の説明では、すでに説明した部材と同様の部材には同じ符号を付してその説明を省略する。
FIG. 8 is a block diagram showing a configuration example of the steering control unit according to the present embodiment. In the steering control unit according to the present embodiment, in the
In the following description, the same members as those already described will be designated by the same reference numerals and the description thereof will be omitted.
トレールマップ適用部624は、図8に示すように、トレールマップを参照して補正係数を決定する。なお、トレールマップ適用部624において用いられるトレールマップは、タイヤ310の横滑り角から推定されてもよく、従来技術を用いて推定されてもよい。
As shown in FIG. 8, the trail
乗算部625は、加算部623から供給されるロール関連推定減衰力(ロールレート関連推定減衰力とロール角関連推定減衰力とを加算して得られた推定減衰力)に対して、トレールマップ適用部624から供給される補正係数を乗算する。
The
第2定数ゲイン適用部626は、乗算部625から供給された推定減衰力(ロール関連推定ラック軸力に対してトレールマップ適用部624から供給された補正係数を乗算した推定ラック軸力)に対して、車両900に応じたゲインを適用する。より具体的には、乗算部625から供給された推定減衰力(ロール関連推定減衰力に対してトレールマップ適用部624から供給された補正係数を乗算した推定減衰力)に対して、車両900に応じた補正係数を乗算し、推定ラック軸力を算出する。車両900に応じた補正係数としては、例えば、キャスター角β、ナックル長Lkn、トレッド幅TW、重心高Hg等に応じたゲインが挙げられる。
The second constant
本実施形態は、実施形態2に係るロールレート関連ラック軸力推定部628における第1定数ゲイン適用部627と、ロール角関連ラック軸力推定部622における第3定数ゲイン適用部と、を第2定数ゲイン適用部626に置き換えたものである。
In the present embodiment, the first constant
したがって、本実施形態においては、ロールレート関連ラック軸力推定部628におけるロールレート関連サスペンション減衰力推定部621と、第2定数ゲイン適用部626と、を合わせてロールレート関連ラック軸力推定部628とみなすことができ、ロール角関連ラック軸力推定部622における、ロール角関連減衰力推定部と、第2定数ゲイン適用部626と、を合わせてロール角関連ラック軸力推定部622と、みなすことができる。
Therefore, in the present embodiment, the roll rate-related suspension damping
したがって、本実施形態はロールレート関連ラック軸力と、ロール角関連ラック軸力とから、ロール関連ラック軸力を推定する構成ということができる。 Therefore, it can be said that the present embodiment has a configuration in which the roll-related rack axial force is estimated from the roll rate-related rack axial force and the roll angle-related rack axial force.
ここで、乗算部625、及び第2定数ゲイン適用部626は、加算部623から供給される推定ラック軸力に対して、車両900に応じた補正係数を乗算する構成であるため、乗算部625、及び第2定数ゲイン適用部626の何れか又は双方を車両状態係数乗算部とも呼ぶ。
Here, since the
このように、本実施形態に係るラック軸力推定部620は、上述したロールレート、減衰係数関連値、及びロール角に加えて、車両900に応じた補正係数を参照して、ラック軸力を推定することができる。
As described above, the rack axial
制御量補正部613は、ベース制御量算出部611が算出した制御量を、軸力補正電流演算部612から供給される補正電流によって補正することでステアリング制御量を生成する。換言すれば、制御量補正部613は、ベース制御量算出部611が算出した制御量を、ラック軸力推定部620によって算出されたロール関連推定ラック軸力(ロールレート関連推定ラック軸力とロール角関連推定ラック軸力とを加算して得られた推定ラック軸力)と、車両900に応じた補正係数とを参照して補正する。
The control
このように、制御量補正部613が、ベース制御量算出部611が算出した制御量を、ラック軸力推定部620によって算出されたロール関連推定ラック軸力(ロールレート関連推定ラック軸力とロール角関連推定ラック軸力とを加算して得られた推定ラック軸力)と、車両900に応じた補正係数とを参照して補正することにより、運転者にとって違和感の少ないアシストトルク又は反力トルクを操舵部材410に印加することができる。
In this way, the control
〔ソフトウェアによる実現例〕
ECU600の制御ブロック(ステアリング制御部610、サスペンション制御部650)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
[Example of realization by software]
The control block (
後者の場合、ECU600は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
In the latter case, the
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
200 車体
600 ECU(制御装置)
610 ステアリング制御部
611 ベース制御量算出部
612 軸力補正電流演算部
613 制御量補正部
620 ラック軸力推定部
621 ロールレート関連サスペンション減衰力推定部
622 ロール角関連ラック軸力推定部(第2のラック軸力推定部)
623 ロール関連ラック軸力推定部(加算部,第3のラック軸力推定部)
624 トレールマップ適用部(車両状態係数乗算部)
625 乗算部(車両状態係数乗算部)
626 第2定数ゲイン適用部(車両状態係数乗算部)
627 第1定数ゲイン適用部(車両状態係数乗算部)
628 ロールレート関連ラック軸力推定部(第1のラック軸力推定部)
900 車両
200
610
623 Roll-related rack axial force estimation unit (addition unit, third rack axial force estimation unit)
624 Trail map application part (Vehicle state coefficient multiplication part)
625 Multiplication part (Vehicle state coefficient multiplication part)
626 Second constant gain application part (vehicle state coefficient multiplication part)
627 First constant gain application part (vehicle state coefficient multiplication part)
628 Roll rate related rack axial force estimation unit (first rack axial force estimation unit)
900 vehicles
Claims (5)
前記ロール角から第2のラック軸力を推定する第2のラック軸力推定部と、
前記第1のラック軸力と前記第2のラック軸力とを用いて、第3のラック軸力を推定する第3のラック軸力推定部と、を備えている
ことを特徴とする請求項3に記載のラック軸力推定装置。 A first rack axial force estimation unit that estimates a first rack axial force based on the roll rate and the damping coefficient related value, and
A second rack axial force estimation unit that estimates the second rack axial force from the roll angle,
The claim is characterized in that it includes a third rack axial force estimation unit that estimates a third rack axial force using the first rack axial force and the second rack axial force. The rack axial force estimation device according to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019124574A JP6775069B2 (en) | 2019-07-03 | 2019-07-03 | Rack axial force estimation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019124574A JP6775069B2 (en) | 2019-07-03 | 2019-07-03 | Rack axial force estimation device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018124556A Division JP6553256B1 (en) | 2018-06-29 | 2018-06-29 | Steering control device and steering device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020001692A JP2020001692A (en) | 2020-01-09 |
JP6775069B2 true JP6775069B2 (en) | 2020-10-28 |
Family
ID=69098514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019124574A Active JP6775069B2 (en) | 2019-07-03 | 2019-07-03 | Rack axial force estimation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6775069B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11321685A (en) * | 1998-05-11 | 1999-11-24 | Toyota Motor Corp | Steering control device for vehicle |
JP4479443B2 (en) * | 2004-09-27 | 2010-06-09 | トヨタ自動車株式会社 | Electric power steering device |
JP5170496B2 (en) * | 2006-03-31 | 2013-03-27 | 株式会社ジェイテクト | Electric power steering device |
US9376140B2 (en) * | 2013-01-11 | 2016-06-28 | Nissan Motor Co., Ltd. | Steering control device |
JP6279121B1 (en) * | 2017-03-24 | 2018-02-14 | 株式会社ショーワ | Control device and steering device |
JP6328841B1 (en) * | 2017-12-25 | 2018-05-23 | 株式会社ショーワ | Control device and steering device |
-
2019
- 2019-07-03 JP JP2019124574A patent/JP6775069B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020001692A (en) | 2020-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6543393B1 (en) | Steering control device and steering device | |
JP6273059B1 (en) | Vehicle control device and vehicle | |
JP6279121B1 (en) | Control device and steering device | |
CN104417564B (en) | Vehicle behavior control device | |
JP6285592B1 (en) | Road surface determination device, suspension control device, and suspension device | |
US20220324281A1 (en) | Suspension control device and suspension device | |
JP6359163B1 (en) | Suspension control device and suspension device | |
US20210061041A1 (en) | Steering control device and steering device | |
WO2019130600A1 (en) | Vehicle control device and vehicle | |
WO2018173304A1 (en) | Suspension control device and suspension device | |
WO2019097732A1 (en) | Vehicle state inference device, control device, suspension control device, suspension device, steering control device, and steering device | |
WO2018173303A1 (en) | Control device and suspension device | |
JP6775069B2 (en) | Rack axial force estimation device | |
US12145417B2 (en) | Suspension control device and suspension device | |
US20220314729A1 (en) | Suspension control device and suspension device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200731 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200731 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201005 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6775069 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |