WO2019116789A1 - 含フッ素有機化合物の製造方法及び製造装置 - Google Patents
含フッ素有機化合物の製造方法及び製造装置 Download PDFInfo
- Publication number
- WO2019116789A1 WO2019116789A1 PCT/JP2018/041370 JP2018041370W WO2019116789A1 WO 2019116789 A1 WO2019116789 A1 WO 2019116789A1 JP 2018041370 W JP2018041370 W JP 2018041370W WO 2019116789 A1 WO2019116789 A1 WO 2019116789A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorine
- organic compound
- reaction
- gas
- raw material
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J12/00—Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J10/00—Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/001—Feed or outlet devices as such, e.g. feeding tubes
- B01J4/002—Nozzle-type elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/008—Feed or outlet control devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/02—Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/10—Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C19/00—Acyclic saturated compounds containing halogen atoms
- C07C19/08—Acyclic saturated compounds containing halogen atoms containing fluorine
- C07C19/10—Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/28—Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
- C07C67/287—Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/307—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/76—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2204/00—Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices
- B01J2204/002—Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices the feeding side being of particular interest
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00164—Controlling or regulating processes controlling the flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00186—Controlling or regulating processes controlling the composition of the reactive mixture
Definitions
- the present invention relates to a method and an apparatus for producing a fluorine-containing organic compound.
- Patent Document 1 discloses a method for obtaining a target product in high yield by suppressing side reactions by performing direct fluorination reaction using a porous tubular reaction vessel.
- Patent Document 2 discloses a method for obtaining octafluoropropane with high purity while suppressing the formation of impurities that are difficult to separate, while using direct fluorination reaction.
- the present invention is a fluorine-containing organic compound capable of immediately detecting the occurrence of a side reaction in a direct fluorination reaction using fluorine gas and capable of producing a high purity fluorine-containing organic compound in a high yield.
- one aspect of the present invention is as follows [1] to [9].
- a raw material liquid containing a raw material organic compound having 2 or more carbon atoms having a hydrogen atom is reacted with a fluorine gas in a reaction vessel to replace the hydrogen atom of the raw material organic compound with a fluorine atom to obtain a fluorine-containing organic compound
- tetrafluoromethane contained in the gas phase part in the reaction vessel is continuously measured, and the supply amount of the fluorine gas to the reaction vessel is controlled according to the measured value of the tetrafluoromethane.
- a method of producing a fluorine-containing organic compound comprising:
- the raw material organic compound is 1,2,3,4-tetrachlorobutane
- the fluorine-containing organic compound is 1,2,3,4-tetrachloro-1,1,2,3,4,4,
- a raw material liquid containing a raw material organic compound having 2 or more carbon atoms having a hydrogen atom is reacted with fluorine gas, and the hydrogen atom of the raw material organic compound is substituted with a fluorine atom to form a fluorine-containing organic compound
- An apparatus for producing a fluorine-containing organic compound comprising: a reaction vessel; and a pipe for introducing a gas phase portion in the reaction vessel into an infrared spectrophotometer.
- the present embodiment shows an example of the present invention, and the present invention is not limited to the present embodiment.
- various changes or improvements can be added to this embodiment, and a form added with such changes or improvements can be included in the present invention.
- a raw material liquid containing a raw material organic compound having 2 or more carbon atoms having a hydrogen atom is caused to react with fluorine gas (F 2 ) in a reaction container
- fluorine gas (F 2 ) fluorine gas
- the tetrafluoromethane (CF 4 ) contained in the gas phase in the reaction vessel is continuously measured to replace the hydrogen atom of the group with a fluorine atom to form a fluorine-containing organic compound, and the measured value of tetrafluoromethane is determined.
- the method includes controlling the supply of fluorine gas to the reaction vessel.
- tetrafluoromethane which is a product of a side reaction generated in the direct fluorination reaction using fluorine gas, can be detected immediately after generation, so that the side reaction of the direct fluorination reaction is generated. It is possible to detect immediately. Therefore, according to the method for producing a fluorine-containing organic compound according to the present embodiment, the generation of side reactions can be suppressed and the generation of impurities can be sufficiently suppressed.
- the fluorine-containing organic compound widely used in the field etc. can be manufactured with high purity and high yield. Further, even if the material of the reaction vessel is opaque and the inside of the reaction vessel can not be visually monitored, it is possible to immediately detect the occurrence of the side reaction of the direct fluorination reaction.
- the manufacturing apparatus of the fluorine-containing organic compound shown in FIG. 1 is mention
- the raw material liquid 1 containing a hydrogen atom-containing raw material organic compound having 2 or more carbon atoms is reacted with fluorine gas to replace the hydrogen atom of the raw material organic compound with a fluorine atom.
- the reaction vessel 11 for producing a fluorine-containing organic compound, the fluorine gas introducing pipe 21 for introducing fluorine gas into the reaction vessel 11, and the gas phase portion 2 in the reaction vessel 11 are introduced to the infrared spectrophotometer 13. And an exhaust gas pipe 25.
- the reaction vessel 11 is formed of, for example, a metal such as stainless steel, and contains the raw material liquid 1.
- the dilution gas piping 23 is connected in the middle of the fluorine gas introduction piping 21, and the dilution gas is introduced from the dilution gas piping 23 to the fluorine gas introduction piping 21, and the fluorine gas is introduced in the fluorine gas introduction piping 21.
- the dilution gas can be mixed to make a fluorine gas diluted with the dilution gas.
- the inlet at the end (downstream end) of the fluorine gas introduction pipe 21 is disposed in the lower portion inside the reaction container 11, and the fluorine gas or mixed gas is contained in the lower portion inside the reaction container 11.
- the upstream end of the exhaust gas pipe 25 is connected to the upper side of the reaction vessel 11, and the downstream end is connected to the gas cell of the infrared spectrophotometer 13, and the gas phase in the reaction vessel 11 is Part 2 can be introduced into the gas cell of the infrared spectrophotometer 13.
- the side reaction in the present invention means "burning" of the raw material organic compound by the reaction with fluorine gas.
- combustion means that organic compounds react continuously with oxygen while generating heat, converting them into carbon dioxide and water, but "burning" of the raw material organic compounds by reaction with fluorine gas means oxygen In the same manner as in the above case, it means that the raw material organic compounds react continuously with the fluorine gas while generating heat.
- the side reaction in the present invention means cutting of the carbon-carbon bond of the raw material organic compound by "burning" by the fluorine gas which often occurs when producing the fluorine-containing organic compound by the reaction of the raw material organic compound and fluorine gas.
- the reaction is carried out while controlling that the reaction conditions are controlled while confirming that tetrafluoromethane is not generated, “combustion” is suppressed, and the target object fluorine-containing organic compound is obtained with high purity and high yield. It can be manufactured.
- the direct fluorination reaction in this embodiment is carried out in the liquid phase. Therefore, the raw material liquid containing the raw material organic compound needs to be liquid under the reaction conditions for direct fluorination reaction.
- the raw material organic compound may be used as it is as the raw material liquid, or a solvent which does not react violently with fluorine gas (for example, Par A raw material organic compound solution in which a raw material organic compound is dissolved in a fluorocarbon, carbon tetrachloride, 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane) is used as a raw material liquid It is also good.
- a raw material organic compound solution in which the raw material organic compound is dissolved in a solvent which does not react violently with fluorine gas is used as a raw material liquid .
- the raw material organic compound has one or more hydrogen atoms in its structure. Since the hydrogen atom is substituted by the reaction with fluorine gas, the raw material organic compound is converted to a fluorine-containing organic compound. Since a large amount of heat is generated as the reaction of replacing hydrogen atoms with fluorine atoms, control of "combustion" becomes important.
- the raw material organic compound is an organic compound having 2 or more carbon atoms. When the number of carbons is 1, the target product generated by the reaction with fluorine gas can not be distinguished from the tetrafluoromethane to be monitored in the direct fluorination reaction in this embodiment, so the number of carbons is It needs to be 2 or more.
- the kind of the raw material organic compound is not particularly limited.
- aliphatic hydrocarbons such as hexane, heptane and octane, alcohols such as ethanol, propanol and butanol, ketones such as acetone, ethyl acetate and acetic acid
- esters such as butyl, low molecular weight ethers such as diethyl ether and tetrahydrofuran, and polyethers represented by polyethylene glycol.
- organic compound for example, sulfide such as dimethyl sulfide, carboxylic acid such as acetic acid and adipic acid, halogenated alkyl such as 1,2-dichloroethane, 1,2,3,4-tetrachlorobutane and the like Benzene, toluene, xylene, mesitylene, cymene, fluorene, carbazole, thiophene, pyrrole, furan, pyridine, triazine, benzophenone, salicylic acid, methyl salicylate, acetylsalicylic acid, methyl benzoate, benzoic acid, anisole, phenyl sulfide, 1,2 And aromatic compounds such as dichlorobenzene.
- sulfide such as dimethyl sulfide
- carboxylic acid such as acetic acid and adipic acid
- halogenated alkyl such as 1,2-dichloroethane, 1,2,
- the raw material organic compounds exemplified above are substituted by various substituents, they can be used as a raw material organic compound in the method for producing a fluorine-containing organic compound according to the present embodiment.
- the type of the fluorine-containing organic compound obtained by the fluorination of the raw material organic compound is not particularly limited, and, for example, it has a chemical structure in which a part of hydrogen atoms of the raw material organic compound is substituted by a fluorine atom It may be a fluorine organic compound, or may be a fluorine-containing organic compound having a chemical structure in which all of the hydrogen atoms of the raw material organic compounds are substituted by fluorine atoms.
- the fluorine gas used in the method for producing a fluorine-containing organic compound according to the present embodiment may be supplied from a gas cylinder or may be generated on site by electrolysis of hydrogen fluoride or the like. Further, the fluorine gas may contain hydrogen fluoride.
- a material of the reaction container 11 used in the manufacturing method of the fluorine-containing organic compound which concerns on this embodiment a thing which does not raise a violent reaction with fluorine gas is used.
- stainless steel such as SUS316L or nickel copper alloy such as Monel (registered trademark) can be mentioned.
- the direct fluorination reaction in the present embodiment can be carried out at a temperature of -30 ° C. or more and 180 ° C. or less and a pressure of 0.01 MPa or more and 1.0 MPa or less. Since the boiling point of tetrafluoromethane is about -128 ° C., under the reaction conditions of the direct fluorination reaction in this embodiment, tetrafluoromethane is a gas and remains in the reaction liquid unless excessive high temperature and pressure are reached. There is no.
- generation of “combustion” by fluorine gas is monitored by measuring tetrafluoromethane. If "burning" occurs during the reaction, tetrafluoromethane may be formed. And since the produced
- the analyzer for measuring tetrafluoromethane contained in the gas phase part 2 is not particularly limited, and examples thereof include an infrared spectrophotometer, a gas chromatograph, a liquid chromatograph, a nuclear magnetic resonance apparatus, a mass spectrometer and the like.
- an infrared spectrophotometer measures tetrafluoromethane continuously, if the gas phase portion 2 in the reaction vessel 11 is introduced into the gas cell through piping or the like so as to be constantly circulated. It is more preferable because it is possible. For example, it is also possible to measure tetrafluoromethane at intervals of 0.1 seconds, at intervals of 1 second, or at intervals of several seconds.
- the wave number 798 cm -1 of the resulting chart, 1240cm -1, 1290cm -1, 1540cm -1 by monitoring the peak in the vicinity of 2200 cm -1 More preferably, it is a peak near wavenumber 1240 cm ⁇ 1 , 1290 cm ⁇ 1 , more preferably a peak near wave number 1290 cm ⁇ 1 . Then, since there is no by-product having a wavelength that interferes with the monitoring of tetrafluoromethane, abnormal "combustion" can be reliably detected.
- the tetrafluoromethane contained in the gas phase portion 2 is continuously measured with an infrared spectrophotometer, and if, for example, the intensity of the peak in the vicinity of the wave number 1290 cm -1 exceeds a predetermined intensity, carbon- of the raw material organic compound Since this means that a side reaction including carbon bond breakage has occurred, the amount of fluorine gas supplied to the reaction solution is reduced or the supply of fluorine gas is stopped.
- a signal is automatically sent to the solenoid valve installed in the pipe for supplying fluorine gas, and the solenoid valve automatically generates If it is set to be closed, the supply of fluorine gas to the reaction solution can be stopped immediately after the side reaction occurs. Then, for example, when the intensity of the peak near the wave number 1290 cm -1 falls below a predetermined intensity, the supply amount of fluorine gas to the reaction liquid can be increased or the supply of fluorine gas can be resumed.
- the fluorine gas to be reacted with the raw material organic compound can be supplied into the reaction system by blowing the fluorine gas into the raw material liquid in the reaction vessel 11 through piping or the like.
- the fluorine gas may be made only of fluorine gas, or may be a mixed gas obtained by diluting fluorine gas with a dilution gas.
- a dilution gas used for dilution an inert gas such as nitrogen gas or argon can be used.
- the manufacturing apparatus of the fluorine-containing organic compound used in this embodiment has a structure which can discharge the gaseous-phase part 2 from the reaction container 11.
- the reaction vessel 11 is tubular, and the raw material liquid flows from one end of the tubular reaction vessel 11 to the other end, and has a nozzle for blowing fluorine gas into the reaction vessel 11 from one end of the reaction vessel 11
- an apparatus for producing a fluorine-containing organic compound having a structure capable of discharging the gas phase portion 2 to the outside of the reaction vessel 11.
- a manufacturing apparatus of a fluorine-containing organic compound having a structure in which a nozzle for blowing fluorine gas into the inside from the bottom of the reaction vessel 11 and having a structure capable of discharging the gas phase portion 2 to the outside of the reaction vessel 11 be able to.
- the gas phase portion 2 can be discharged from the reaction container 11, so that the dilution gas and the excess fluorine gas are discharged from the reaction container 11. It has become so. Then, when “combustion” occurs, tetrafluoromethane is discharged from the reaction vessel 11 together with the dilution gas and the excess fluorine gas. By measuring tetrafluoromethane in this exhaust gas, it is possible to simplify the structure of the apparatus for producing a fluorine-containing organic compound.
- the conditions of the reaction of the raw material organic compound and the fluorine gas are appropriately selected according to the type of the raw material organic compound. That is, the reaction temperature, the reaction pressure, the concentration of fluorine gas in the mixed gas, the supply rate of fluorine gas, and the like are determined depending on the type of the raw material organic compound. These reaction conditions are preferably controlled such that "burning" is suppressed.
- Example 1 First, the structure of the manufacturing apparatus of a fluorine-containing organic compound is demonstrated.
- the apparatus for producing a fluorine-containing organic compound has the same configuration as the apparatus for producing a fluorine-containing organic compound shown in FIG. 1, and is equipped with a reaction vessel made of stainless steel having a capacity of 1 L. There is installed a stirrer having a single flat turbine (in the manufacturing apparatus of FIG. 1, the one with reference numeral 31 is a stirrer), a pipe for introducing fluorine gas, and a pipe for exhaust gas. .
- the pipe for introducing fluorine gas can supply fluorine gas diluted with nitrogen gas to the lower portion inside the reaction vessel.
- the exhaust gas piping connects the upper part of the reaction vessel and the gas cell of the infrared spectrophotometer, so that the gas phase part in the reaction vessel can be introduced into the gas cell of the infrared spectrophotometer .
- a pressure regulating valve is provided upstream of the infrared spectrophotometer for the pipe for exhaust gas, so that the pressure in the reaction vessel can be controlled.
- TCB 1,2,3,4-tetrachlorobutane
- HFTCB 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane
- TCB corresponds to the raw material organic compound
- HFTCB corresponds to the solvent.
- the reaction was carried out by blowing fluorine gas into the raw material liquid while stirring the raw material liquid at a rotational speed of 360 min -1 using a stirrer.
- the gas phase part in the reaction vessel was introduced into the gas cell of the infrared spectrophotometer, and the infrared spectrum analysis of the gas phase part was continuously conducted.
- the temperature of the raw material liquid in the reaction was 70 ° C., and the pressure in the reaction vessel was 0.45 MPa.
- the fluorine gas introduced into the reaction vessel is a mixed gas of nitrogen gas and fluorine gas, and the fluorine gas concentration in the mixed gas is 40% by volume.
- the flow rate of the mixed gas was 400 NmL / min (0 ° C., 0.1 MPa equivalent).
- No abnormality was found in the result of the infrared spectroscopy analysis for about 5 minutes after the mixture gas was blown into the raw material liquid. That is, as a result of infrared spectroscopy, a chart shown in (a) of FIG. 2 was obtained, and a peak of wave number 1290 cm ⁇ 1 was not confirmed (that is, tetrafluoromethane was not detected).
- the reaction was performed for a total of 5 hours, and the reaction was stopped when a total of 48 L of mixed gas (0 ° C., 0.1 MPa equivalent) was flowed.
- the reaction liquid was purged for a while using nitrogen gas to expel the gas dissolved in the reaction liquid, and then the mass of the reaction liquid was measured. An increase of 30 g from the mass before the reaction was observed. It turned out that there was no loss.
- the resulting reaction solution was analyzed to identify and quantify the compounds contained in the reaction solution.
- HFTCB was contained in the reaction liquid, and the yield of HFTCB obtained was 69% based on TCB.
- the identification and quantification methods are as follows. That is, after measuring the mass of the obtained reaction liquid, a part of the reaction liquid was analyzed by gas chromatography, and identification and quantification were performed by measuring the HFTCB concentration (mass%) in the reaction liquid.
- Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that the apparatus for producing a fluorine-containing organic compound was not equipped with an infrared spectrophotometer and infrared spectroscopy of the gas phase portion was not performed. After the reaction was continued for 5 hours without stopping the supply of the mixed gas, the supply of the mixed gas was stopped to stop the reaction. The reaction solution was purged with nitrogen gas for a while to expel the gas dissolved in the reaction solution, and then the mass of the reaction solution was measured, and it was 80 g less than that before the reaction.
- TCB which is a raw material organic compound and HFTCB used as a solvent cause an abnormal reaction with fluorine gas (for example, cleavage of a carbon-carbon bond) to generate a low boiling point substance such as tetrafluoromethane.
- reaction was performed in the same manner as in Example 1 except that the pressure in the reaction vessel was 0.15 MPa and the concentration of fluorine gas in the mixed gas was 20% by volume. The reaction was carried out for 10 hours, and the reaction was stopped when a total of 48 L (0 ° C., 0.1 MPa equivalent) of mixed gas was passed. During the reaction, the reaction of TCB and fluorine gas to generate the target product HFTCB normally proceeded.
- the gas phase part in the reaction vessel was introduced into the gas cell of the infrared spectrophotometer and the infrared spectrum analysis of the gas phase part was continuously performed, but the flow rate of the fluorine gas supplied is small Therefore, a peak at a wave number of 1290 cm -1 was not confirmed (ie, tetrafluoromethane was not detected). And, the yield of the obtained HFTCB was 70% based on TCB.
- Example 2 A method for producing a fluorine-containing organic compound using the same apparatus for producing a fluorine-containing organic compound as in Example 1 will be described by taking a method of reacting fluorine gas with hexaethylene glycol ester for fluorination as an example.
- a reaction vessel 5 g of hexaethylene glycol-diperfluorobenzene ester in which both ends of hexaethylene glycol were protected with an ester and 1200 g of HFTCB were added and mixed to obtain a raw material liquid.
- hexaethylene glycol-diperfluorobenzene ester corresponds to the raw material organic compound
- HFTCB corresponds to the solvent.
- the structural formula of hexaethylene glycol-diperfluorobenzene ester is as shown below.
- the reaction was carried out by blowing fluorine gas into the raw material liquid while stirring the raw material liquid at a rotational speed of 360 min -1 using a stirrer.
- the gas phase part in the reaction vessel was introduced into the gas cell of the infrared spectrophotometer, and the infrared spectrum analysis of the gas phase part was continuously conducted.
- the temperature of the raw material liquid during the reaction was 10 ° C.
- the pressure in the reaction vessel was 0.2 MPa.
- the fluorine gas introduced into the reaction vessel is a mixed gas of nitrogen gas and fluorine gas, and the fluorine gas concentration in the mixed gas is 20% by volume.
- the flow rate of the mixed gas was 500 NmL / min (0 ° C., 0.1 MPa equivalent).
- the reaction was performed for a total of 3 hours. After purging the reaction solution for a while using nitrogen gas to expel the gas dissolved in the reaction solution, the mass of the reaction solution was measured, and it was found that an increase of 4 g was observed and there was no loss of the reaction solution.
- the resulting reaction solution was analyzed to identify and quantify the compounds contained in the reaction solution.
- the reaction solution contains a fluorinated product of hexaethylene glycol-diperfluorobenzene ester, and the yield of the obtained fluorinated product is 70% based on hexaethylene glycol-diperfluorobenzene ester Met.
- Comparative Example 2 The reaction was performed in the same manner as in Example 2 except that the apparatus for producing a fluorine-containing organic compound was not equipped with an infrared spectrophotometer and infrared spectroscopy of the gas phase portion was not performed. After continuing the reaction for 1 hour without stopping the supply of the mixed gas, the supply of the mixed gas was stopped to stop the reaction. The reaction solution was purged with nitrogen gas for a while to expel the gas dissolved in the reaction solution, and then the mass of the reaction solution was measured, which was 17 g smaller than before the reaction.
- hexaethylene glycol-diperfluorobenzene ester which is a raw material organic compound
- HFTCB used as a solvent cause an abnormal reaction with fluorine gas (for example, cleavage of a carbon-carbon bond), and low-boiling substances such as tetrafluoromethane are It is estimated that it was generated.
- Example 3 Regarding a method for producing a fluorine-containing organic compound using the same apparatus for producing a fluorine-containing organic compound as in Example 1, the method for fluorinating 1,5-pentanedioic acid dimethyl ester by reacting it with fluorine gas is taken as an example explain.
- a reaction vessel 10.30 g of 1,5-pentanedioic acid dimethyl ester and 900 g of HFTCB were added and mixed to obtain a raw material liquid.
- 1,5-pentanedioic acid dimethyl ester corresponds to a raw material organic compound
- HFTCB corresponds to a solvent.
- the reaction was carried out by blowing fluorine gas into the raw material liquid while stirring the raw material liquid at a rotational speed of 370 min -1 using a stirrer.
- the gas phase part in the reaction vessel was introduced into the gas cell of the infrared spectrophotometer, and the infrared spectrum analysis of the gas phase part was continuously conducted.
- the temperature of the raw material solution during the reaction was 0 ° C.
- the pressure in the reaction vessel was 0.15 MPa.
- the fluorine gas introduced into the reaction vessel is a mixed gas of nitrogen gas and fluorine gas, and the fluorine gas concentration in the mixed gas is 20% by volume.
- the flow rate of the mixed gas was 300 NmL / min (0 ° C., 0.1 MPa equivalent).
- reaction was performed for a total of 6 hours.
- the reaction solution was purged for a while using nitrogen gas to expel the gas dissolved in the reaction solution, and then the mass of the reaction solution was measured. It was found that an increase of 10 g was observed and there was no loss of the reaction solution.
- the resulting reaction solution was analyzed to identify and quantify the compounds contained in the reaction solution.
- the reaction solution contains a fluorinated product of 1,5-pentanedioic acid dimethyl ester, and the yield of the fluorinated product obtained is 75% based on 1,5-pentanedioic acid dimethyl ester Met.
- the formula for calculating the yield of the obtained fluoride is as follows.
- Comparative Example 3 The reaction was performed in the same manner as in Example 3 except that the apparatus for producing a fluorine-containing organic compound was not equipped with an infrared spectrophotometer and infrared spectroscopy of the gas phase portion was not performed. After continuing the reaction for 30 minutes without stopping the supply of the mixed gas, the supply of the mixed gas was stopped to stop the reaction. The reaction solution was purged with nitrogen gas for a while to expel the gas dissolved in the reaction solution, and then the mass of the reaction solution was measured, and it was 10 g smaller than before the reaction.
- 1,5-pentanedioic acid dimethyl ester which is a raw material organic compound and HFTCB used as a solvent cause an abnormal reaction with fluorine gas (for example, cleavage of a carbon-carbon bond), and a low boiling point substance such as tetrafluoromethane is It is estimated that it was generated.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
例えば特許文献1には、多孔質の管状反応容器を使用して直接フッ素化反応を行うことにより、副反応を抑制して高い収率で目的物を得る方法が開示されている。また、特許文献2には、直接フッ素化反応を利用しながらも、分離困難な不純物の生成を抑制しつつ高純度のオクタフルオロプロパンを得る方法が開示されている。
本発明は、フッ素ガスを用いる直接フッ素化反応において副反応の発生を即時に検出することが可能であり、高純度の含フッ素有機化合物を高収率で製造することができる含フッ素有機化合物の製造方法及び製造装置を提供することを課題とする。
[1] 水素原子を有する炭素数2以上の原料有機化合物を含有する原料液とフッ素ガスとを反応容器内で反応させ、前記原料有機化合物の前記水素原子をフッ素原子に置換して含フッ素有機化合物を生成させるに際して、前記反応容器内の気相部分に含まれるテトラフルオロメタンを連続的に測定し、前記テトラフルオロメタンの測定値に応じて前記フッ素ガスの前記反応容器への供給量を制御することを含む含フッ素有機化合物の製造方法。
[3] 前記赤外分光光度計で、波数798cm-1、1240cm-1、1290cm-1、1540cm-1、及び2200cm-1の近傍のピークを測定する[2]に記載の含フッ素有機化合物の製造方法。
[5] 前記含フッ素有機化合物は、前記原料有機化合物が有する水素原子の全てがフッ素原子に置換された化学構造を有する[1]~[4]のいずれか一項に記載の含フッ素有機化合物の製造方法。
[7] 水素原子を有する炭素数2以上の原料有機化合物を含有する原料液とフッ素ガスとを反応させ、前記原料有機化合物の前記水素原子をフッ素原子に置換して含フッ素有機化合物を生成させる反応容器と、前記反応容器内の気相部分を赤外分光光度計に導入する配管と、を備える含フッ素有機化合物の製造装置。
[9] 前記原料有機化合物が1,2,3,4-テトラクロロブタンであり、前記含フッ素有機化合物が1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタンである[7]に記載の含フッ素有機化合物の製造装置。
また、排ガス用配管25の上流側端部は、反応容器11の上方側部分に接続され、下流側端部は赤外分光光度計13のガスセルに接続されており、反応容器11内の気相部分2を赤外分光光度計13のガスセルに導入できるようになっている。
また、原料有機化合物は、炭素数2以上の有機化合物である。炭素数が1である場合は、フッ素ガスとの反応により生成する目的の生成物と、本実施形態における直接フッ素化反応で監視対象とするテトラフルオロメタンとの区別がつかなくなるため、炭素数は2以上である必要がある。
原料有機化合物のフッ素化により得られる含フッ素有機化合物の種類は、特に限定されるものではなく、例えば、原料有機化合物が有する水素原子のうち一部がフッ素原子に置換された化学構造を有する含フッ素有機化合物でもよいし、原料有機化合物が有する水素原子の全てがフッ素原子に置換された化学構造を有する含フッ素有機化合物でもよい。
本実施形態に係る含フッ素有機化合物の製造方法において用いられる反応容器11の材質としては、フッ素ガスと激しい反応を起こさないものが用いられる。例えば、SUS316L等のステンレス鋼や、モネル(登録商標)等のニッケル銅合金があげられる。
これらの分析装置のうち赤外分光光度計は、配管等を介して反応容器11内の気相部分2をガスセルに導入して常時流通するようにしておけば、テトラフルオロメタンを連続的に測定することが可能であるため、より好ましい。例えば、テトラフルオロメタンを0.1秒間隔、1秒間隔、あるいは数秒間隔で測定することも可能である。
〔実施例1〕
まず、含フッ素有機化合物の製造装置の構成について説明する。含フッ素有機化合物の製造装置は、図1に示す含フッ素有機化合物の製造装置と同様の構成を有しており、容量1Lのステンレス鋼製の反応容器を備えており、反応容器には、6枚のフラットタービンを有する撹拌機(図1の製造装置においては、符号31を付したものが撹拌機である)と、フッ素ガス導入用の配管と、排ガス用の配管と、が設置されている。
原料液中に混合ガスを吹き込み始めてから5分程度の間は、赤外分光分析の結果に異常は見られなかった。すなわち、赤外分光分析の結果、図2の(a)に示すチャートが得られ、波数1290cm-1のピークが確認されることはなかった(すなわち、テトラフルオロメタンは検出されなかった)。
そこで、反応をすぐさま停止するために、混合ガスの供給を停止した。反応を停止した状態で赤外分光分析を続け、赤外分光分析の結果が、図2の(a)に示す異常のないチャートに戻ったことを確認した後に、再び混合ガスを供給して反応を再開した。
HFTCBの収率の算出式は、以下の通りである。
収率=(HFTCBの増加モル量)/(TCBの初期投入モル量)=(64.2g/304)/(60.0g/196)=0.69
含フッ素有機化合物の製造装置が赤外分光光度計を備えておらず、気相部分の赤外分光分析を行わない点を除いては、実施例1と同様にして反応を行った。混合ガスの供給を停止させることなく反応を5時間続けた後に、反応を停止するために混合ガスの供給を停止した。窒素ガスを用いて反応液をしばらくパージして、反応液に溶存しているガスを追い出した後に、反応液の質量を測定したところ、反応前よりも80g減少していた。これは、原料有機化合物であるTCBや溶媒として使用したHFTCBがフッ素ガスと異常反応(例えば炭素-炭素結合の切断)を起こし、テトラフルオロメタンなどの低沸点物質が生成したと推定される。
反応容器内の圧力が0.15MPaである点と、混合ガス中のフッ素ガス濃度が20体積%である点とを除いては、実施例1と同様にして反応を行った。反応を10時間行い、混合ガスを合計48L(0℃、0.1MPa換算)流したところで反応を停止した。反応中は、TCBとフッ素ガスとの反応により目的物であるHFTCBが生成する反応が正常に進行した。すなわち、反応中は、反応容器内の気相部分を赤外分光光度計のガスセルに導入して、気相部分の赤外分光分析を連続的に行ったが、供給するフッ素ガスの流量が小さいため、波数1290cm-1のピークが確認されることはなかった(すなわち、テトラフルオロメタンは検出されなかった)。そして、得られたHFTCBの収率は、TCBを基準として70%であった。
実施例1と同様の含フッ素有機化合物の製造装置を用いて含フッ素有機化合物を製造する方法について、ヘキサエチレングリコールエステルにフッ素ガスを反応させてフッ素化する方法を例にして説明する。
反応容器に、ヘキサエチレングリコールの両末端をエステルで保護したヘキサエチレングリコール-ジパーフルオロベンゼンエステル5gと、HFTCB1200gとを加えて混合し、原料液とした。ここで、ヘキサエチレングリコール-ジパーフルオロベンゼンエステルは原料有機化合物に相当し、HFTCBは溶媒に相当する。なお、ヘキサエチレングリコール-ジパーフルオロベンゼンエステルの構造式は、以下に示す通りである。
反応中の原料液の温度は10℃、反応容器内の圧力は0.2MPaとした。また、反応容器内に導入するフッ素ガスは、窒素ガスとフッ素ガスの混合ガスであり、混合ガス中のフッ素ガス濃度は20体積%とした。さらに、混合ガスの流量は、500NmL/min(0℃、0.1MPa換算)とした。
反応を停止した状態で赤外分光分析を続け、赤外分光分析の結果が、図2の(a)に示したものと同様の異常のないチャートに戻ったことを確認した後に、再び混合ガスを供給して反応を再開した。その後は、赤外分光分析の結果が異常のないチャートを示し続けたので、合計3時間反応を行った。窒素ガスを用いて反応液をしばらくパージして、反応液に溶存しているガスを追い出した後に、反応液の質量を測定したところ、4gの増加が見られ反応液の損失がないことが分かった。
得られた前記フッ化物の収率の算出式は、以下の通りである。
収率=(ヘキサエチレングリコール-ジパーフルオロベンゼンエステルのフッ素化物の増加モル量)/(ヘキサエチレングリコール-ジパーフルオロベンゼンエステルの初期投入モル量)=(6.8g/1214.19)/(5.0g/626.40)=0.70
なお、ヘキサエチレングリコール-ジパーフルオロベンゼンエステルのフッ素化物(ヘキサエチレングリコール-ジパーフルオロシクロヘキサンエステル)の構造式は、以下に示す通りである。
含フッ素有機化合物の製造装置が赤外分光光度計を備えておらず、気相部分の赤外分光分析を行わない点を除いては、実施例2と同様にして反応を行った。混合ガスの供給を停止させることなく反応を1時間続けた後に、反応を停止するために混合ガスの供給を停止した。窒素ガスを用いて反応液をしばらくパージして、反応液に溶存しているガスを追い出した後に、反応液の質量を測定したところ、反応前よりも17g減少していた。これは、原料有機化合物であるヘキサエチレングリコール-ジパーフルオロベンゼンエステルや溶媒として使用したHFTCBがフッ素ガスと異常反応(例えば炭素-炭素結合の切断)を起こし、テトラフルオロメタンなどの低沸点物質が生成したと推定される。
実施例1と同様の含フッ素有機化合物の製造装置を用いて含フッ素有機化合物を製造する方法について、1,5-ペンタン二酸ジメチルエステルにフッ素ガスを反応させてフッ素化する方法を例にして説明する。
反応容器に、1,5-ペンタン二酸ジメチルエステル10.30gと、HFTCB900gとを加えて混合し、原料液とした。ここで、1,5-ペンタン二酸ジメチルエステルは原料有機化合物に相当し、HFTCBは溶媒に相当する。
反応中の原料液の温度は0℃、反応容器内の圧力は0.15MPaとした。また、反応容器内に導入するフッ素ガスは、窒素ガスとフッ素ガスの混合ガスであり、混合ガス中のフッ素ガス濃度は20体積%とした。さらに、混合ガスの流量は、300NmL/min(0℃、0.1MPa換算)とした。
反応を停止した状態で赤外分光分析を続け、赤外分光分析の結果が、図2の(a)に示す異常のないチャートに戻ったことを確認した後に、再び混合ガスを供給して反応を再開した。その後は、赤外分光分析の結果が異常のないチャートを示し続けたので、合計6時間反応を行った。窒素ガスを用いて反応液をしばらくパージして、反応液に溶存しているガスを追い出した後に、反応液の質量を測定したところ、10gの増加が見られ反応液の損失がないことが分かった。
得られた前記フッ化物の収率の算出式は、以下の通りである。
収率=(1,5-ペンタン二酸ジメチルエステルのフッ素化物の増加モル量)/(1,5-ペンタン二酸ジメチルエステルの初期投入モル量)=(18.14g/376.05)/(10.30g/160.17)=0.75
含フッ素有機化合物の製造装置が赤外分光光度計を備えておらず、気相部分の赤外分光分析を行わない点を除いては、実施例3と同様にして反応を行った。混合ガスの供給を停止させることなく反応を30分続けた後に、反応を停止するために混合ガスの供給を停止した。窒素ガスを用いて反応液をしばらくパージして、反応液に溶存しているガスを追い出した後に、反応液の質量を測定したところ、反応前よりも10g減少していた。これは、原料有機化合物である1,5-ペンタン二酸ジメチルエステルや溶媒として使用したHFTCBがフッ素ガスと異常反応(例えば炭素-炭素結合の切断)を起こし、テトラフルオロメタンなどの低沸点物質が生成したと推定される。
2 気相部分
11 反応容器
13 赤外分光光度計
31 攪拌機
Claims (9)
- 水素原子を有する炭素数2以上の原料有機化合物を含有する原料液とフッ素ガスとを反応容器内で反応させ、前記原料有機化合物の前記水素原子をフッ素原子に置換して含フッ素有機化合物を生成させるに際して、前記反応容器内の気相部分に含まれるテトラフルオロメタンを連続的に測定し、前記テトラフルオロメタンの測定値に応じて前記フッ素ガスの前記反応容器への供給量を制御することを含む含フッ素有機化合物の製造方法。
- 前記反応容器内の気相部分を赤外分光光度計に導入して前記テトラフルオロメタンを測定する請求項1に記載の含フッ素有機化合物の製造方法。
- 前記赤外分光光度計で、波数798cm-1、1240cm-1、1290cm-1、1540cm-1、及び2200cm-1の近傍のピークを測定する請求項2に記載の含フッ素有機化合物の製造方法。
- 前記赤外分光光度計で測定した波数1290cm-1の近傍のピークの強度が、予め定めた強度を超えた場合に、前記フッ素ガスの供給量を低下させるか、又は、前記フッ素ガスの供給を停止する請求項2に記載の含フッ素有機化合物の製造方法。
- 前記含フッ素有機化合物は、前記原料有機化合物が有する水素原子の全てがフッ素原子に置換された化学構造を有する請求項1~4のいずれか一項に記載の含フッ素有機化合物の製造方法。
- 前記原料有機化合物が1,2,3,4-テトラクロロブタンであり、前記含フッ素有機化合物が1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタンである請求項1~4のいずれか一項に記載の含フッ素有機化合物の製造方法。
- 水素原子を有する炭素数2以上の原料有機化合物を含有する原料液とフッ素ガスとを反応させ、前記原料有機化合物の前記水素原子をフッ素原子に置換して含フッ素有機化合物を生成させる反応容器と、前記反応容器内の気相部分を赤外分光光度計に導入する配管と、を備える含フッ素有機化合物の製造装置。
- 前記含フッ素有機化合物は、前記原料有機化合物が有する水素原子の全てがフッ素原子に置換された化学構造を有する請求項7に記載の含フッ素有機化合物の製造装置。
- 前記原料有機化合物が1,2,3,4-テトラクロロブタンであり、前記含フッ素有機化合物が1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタンである請求項7に記載の含フッ素有機化合物の製造装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019558972A JP7203045B2 (ja) | 2017-12-12 | 2018-11-07 | 含フッ素有機化合物の製造方法 |
EP18888818.4A EP3725759B1 (en) | 2017-12-12 | 2018-11-07 | Method for producing fluorine-containing organic compounds |
CN201880076516.0A CN111386254B (zh) | 2017-12-12 | 2018-11-07 | 含氟有机化合物的制造方法和制造装置 |
KR1020207014563A KR102405564B1 (ko) | 2017-12-12 | 2018-11-07 | 불소 함유 유기 화합물의 제조 방법 및 제조 장치 |
US16/770,115 US11192836B2 (en) | 2017-12-12 | 2018-11-07 | Method and apparatus for producing fluorine-containing organic compound |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017237871 | 2017-12-12 | ||
JP2017-237871 | 2017-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019116789A1 true WO2019116789A1 (ja) | 2019-06-20 |
Family
ID=66819246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/041370 WO2019116789A1 (ja) | 2017-12-12 | 2018-11-07 | 含フッ素有機化合物の製造方法及び製造装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11192836B2 (ja) |
EP (1) | EP3725759B1 (ja) |
JP (1) | JP7203045B2 (ja) |
KR (1) | KR102405564B1 (ja) |
CN (1) | CN111386254B (ja) |
TW (1) | TWI683798B (ja) |
WO (1) | WO2019116789A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111138275A (zh) * | 2019-12-30 | 2020-05-12 | 天津市长芦化工新材料有限公司 | 全氟烷基二酰氟及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4377715A (en) | 1979-12-26 | 1983-03-22 | Allied Corporation | Production of perfluoropropane |
JPH04500520A (ja) * | 1988-09-28 | 1992-01-30 | エクスフルアー・リサーチ・コーポレーシヨン | 液相フツ素置換 |
JP2001311686A (ja) * | 2000-04-28 | 2001-11-09 | Showa Denko Kk | フッ素化合物濃度の測定方法、測定装置及びフッ素化合物の製造方法 |
JP2002069014A (ja) | 2000-08-30 | 2002-03-08 | Showa Denko Kk | オクタフルオロプロパンの製造方法及びその用途 |
WO2010001774A1 (ja) * | 2008-07-01 | 2010-01-07 | 昭和電工株式会社 | 1,2,3,4-テトラクロロヘキサフルオロブタンの製造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59132359A (ja) * | 1983-01-19 | 1984-07-30 | Mitsubishi Electric Corp | Sf↓6ガス封入電気機器内ガスの簡易ガス分析器 |
US5322904A (en) | 1988-09-28 | 1994-06-21 | Exfluor Research Corporation | Liquid-phase fluorination |
US7179653B2 (en) * | 2000-03-31 | 2007-02-20 | Showa Denko K.K. | Measuring method for concentration of halogen and fluorine compound, measuring equipment thereof and manufacturing method of halogen compound |
TW493069B (en) * | 2000-03-31 | 2002-07-01 | Showa Denko Kk | Measuring method for concentration of halogen and fluorine compound, measuring equipment thereof and manufacturing method of halogen compound |
US6162955A (en) * | 2000-06-12 | 2000-12-19 | Ulsan Chemical Co., Ltd. | Manufacturing method for perfluoroethane |
US6720464B2 (en) | 2000-08-30 | 2004-04-13 | Showa Denko K.K. | Production and use of octafluoropropane |
US7094614B2 (en) * | 2001-01-16 | 2006-08-22 | International Business Machines Corporation | In-situ monitoring of chemical vapor deposition process by mass spectrometry |
JP4703865B2 (ja) * | 2001-02-23 | 2011-06-15 | 昭和電工株式会社 | パーフルオロカーボン類の製造方法およびその用途 |
JP4377715B2 (ja) | 2004-02-20 | 2009-12-02 | 株式会社神戸製鋼所 | 捻回特性に優れた高強度pc鋼線 |
US7247759B1 (en) * | 2006-01-04 | 2007-07-24 | Honeywell International Inc. | Fluorination reactor |
JP4687792B2 (ja) * | 2006-10-20 | 2011-05-25 | ダイキン工業株式会社 | 五フッ化ヨウ素の製造方法 |
WO2009139352A1 (ja) * | 2008-05-16 | 2009-11-19 | 昭和電工株式会社 | 1,2,3,4-テトラクロロヘキサフルオロブタンの製造方法および精製方法 |
JP6139985B2 (ja) * | 2013-05-31 | 2017-05-31 | 理研計器株式会社 | Cf4ガス濃度測定方法およびcf4ガス濃度測定装置 |
JP6253282B2 (ja) * | 2013-07-08 | 2017-12-27 | 理研計器株式会社 | Cf4ガス濃度測定方法およびcf4ガス濃度測定装置 |
CN103664503B (zh) * | 2013-12-18 | 2016-02-10 | 中昊晨光化工研究院有限公司 | 1,2,3,4-四氯六氟丁烷的合成 |
CN103940771A (zh) * | 2014-04-25 | 2014-07-23 | 国家电网公司 | 利用光谱吸收法测量sf6分解物cf4气体浓度的方法 |
CN107667085B (zh) * | 2015-06-04 | 2021-05-25 | 索尔维特殊聚合物意大利有限公司 | 用于合成1,2,3,4-四氯-六氟-丁烷的方法 |
-
2018
- 2018-11-07 WO PCT/JP2018/041370 patent/WO2019116789A1/ja unknown
- 2018-11-07 EP EP18888818.4A patent/EP3725759B1/en active Active
- 2018-11-07 CN CN201880076516.0A patent/CN111386254B/zh active Active
- 2018-11-07 JP JP2019558972A patent/JP7203045B2/ja active Active
- 2018-11-07 US US16/770,115 patent/US11192836B2/en active Active
- 2018-11-07 KR KR1020207014563A patent/KR102405564B1/ko active IP Right Grant
- 2018-11-19 TW TW107140994A patent/TWI683798B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4377715A (en) | 1979-12-26 | 1983-03-22 | Allied Corporation | Production of perfluoropropane |
JPH04500520A (ja) * | 1988-09-28 | 1992-01-30 | エクスフルアー・リサーチ・コーポレーシヨン | 液相フツ素置換 |
JP2001311686A (ja) * | 2000-04-28 | 2001-11-09 | Showa Denko Kk | フッ素化合物濃度の測定方法、測定装置及びフッ素化合物の製造方法 |
JP2002069014A (ja) | 2000-08-30 | 2002-03-08 | Showa Denko Kk | オクタフルオロプロパンの製造方法及びその用途 |
WO2010001774A1 (ja) * | 2008-07-01 | 2010-01-07 | 昭和電工株式会社 | 1,2,3,4-テトラクロロヘキサフルオロブタンの製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111138275A (zh) * | 2019-12-30 | 2020-05-12 | 天津市长芦化工新材料有限公司 | 全氟烷基二酰氟及其制备方法 |
CN111138275B (zh) * | 2019-12-30 | 2022-06-10 | 天津市长芦化工新材料有限公司 | 全氟烷基二酰氟及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102405564B1 (ko) | 2022-06-07 |
JP7203045B2 (ja) | 2023-01-12 |
KR20200067888A (ko) | 2020-06-12 |
US11192836B2 (en) | 2021-12-07 |
CN111386254B (zh) | 2023-08-22 |
EP3725759A1 (en) | 2020-10-21 |
TWI683798B (zh) | 2020-02-01 |
EP3725759A4 (en) | 2021-03-03 |
US20200346998A1 (en) | 2020-11-05 |
CN111386254A (zh) | 2020-07-07 |
TW201932436A (zh) | 2019-08-16 |
JPWO2019116789A1 (ja) | 2021-01-07 |
EP3725759B1 (en) | 2024-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rembaum et al. | Kinetics of the thermal decomposition of diacetyl peroxide. I. Gaseous phase | |
WO2019116789A1 (ja) | 含フッ素有機化合物の製造方法及び製造装置 | |
CN110114304B (zh) | 四氟化硫的制造方法 | |
Zebarjad et al. | Investigation of CO2 and methanol solubility at high pressure and temperature in the ionic liquid [EMIM][BF4] employed during methanol synthesis in a membrane-contactor reactor | |
CN101648872A (zh) | 一种三乙胺氟化氢络合物的制备方法 | |
WO2014023883A1 (fr) | Procede de production de difluoromethane | |
TWI714123B (zh) | 六氟-1,3-丁二烯之製造方法 | |
CN110650937B (zh) | 八氟环戊烯的制造方法 | |
Buncel et al. | HYDROLYSIS OF A SERIES OF PRIMARY ALKYL CHLOROSULFATES: ENTROPY OF ACTIVATION AS A CRITERION OF FRAGMENTATION IN SOLVOLYTIC REACTIONS | |
CN110981686A (zh) | 一种1,1,2,2-四氘代乙烯的制备方法及制备装置 | |
JP5235082B2 (ja) | クロル化方法及びその反応終点の検知方法 | |
Hirschberg et al. | Selective elemental fluorination in ionic liquids | |
KR102469036B1 (ko) | 테트라플루오로메탄의 제조 방법 | |
Miller et al. | Kinetics of Aromatic Nitration | |
CN107867978B (zh) | 一种七氟丙基三氟甲基醚的合成方法 | |
KR102487699B1 (ko) | 테트라플루오로메탄의 제조 방법 | |
JP7198780B2 (ja) | テトラフルオロメタンの製造方法 | |
Uhlenbruck et al. | A Carbon Capture and Utilization Process for the Production of Solid Carbon Materials from Atmospheric CO2–Part 1: Process Performance | |
EP4245747A1 (en) | Method for producing fluorenone | |
Kito et al. | Assessment of autoxidative resistance for organic solvent by pressure monitoring test | |
WO2022154782A1 (en) | Ozonolysis of polycyclic aromatic hydrocarbons in liquid co2 | |
Guarda et al. | Synthesis and characterization of poly (tetrafluoroethyleneperoxides) | |
JP2011251935A (ja) | 9−フルオレノン類の製造方法 | |
JP2014240514A (ja) | 金属リチウムの回収方法 | |
JP2020011926A (ja) | ハロゲン化エーテル類の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18888818 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019558972 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207014563 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018888818 Country of ref document: EP Effective date: 20200713 |