WO2019111476A1 - Reverse osmosis membrane concentrated water treatment method - Google Patents
Reverse osmosis membrane concentrated water treatment method Download PDFInfo
- Publication number
- WO2019111476A1 WO2019111476A1 PCT/JP2018/033474 JP2018033474W WO2019111476A1 WO 2019111476 A1 WO2019111476 A1 WO 2019111476A1 JP 2018033474 W JP2018033474 W JP 2018033474W WO 2019111476 A1 WO2019111476 A1 WO 2019111476A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reverse osmosis
- concentrated water
- osmosis membrane
- chamber
- concentration
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 72
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 49
- 238000001223 reverse osmosis Methods 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000005341 cation exchange Methods 0.000 claims abstract description 25
- 238000000909 electrodialysis Methods 0.000 claims abstract description 21
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 12
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000011575 calcium Substances 0.000 claims abstract description 9
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000002455 scale inhibitor Substances 0.000 claims abstract description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 4
- 238000011033 desalting Methods 0.000 claims description 14
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 2
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000003011 anion exchange membrane Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229910001424 calcium ion Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005374 membrane filtration Methods 0.000 description 4
- 238000001728 nano-filtration Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000002242 deionisation method Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- -1 sodium Chemical class 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 239000002349 well water Substances 0.000 description 2
- 235000020681 well water Nutrition 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000000262 chemical ionisation mass spectrometry Methods 0.000 description 1
- 238000005115 demineralization Methods 0.000 description 1
- 230000002328 demineralizing effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000012465 retentate Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/46—Apparatus therefor
- B01D61/463—Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/54—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/08—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/08—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
- C02F5/10—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
- C02F5/14—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
Definitions
- the present invention relates to a method of treating concentrated water of a reverse osmosis membrane, and more particularly to a method of treating concentrated water produced by water treatment using a reverse osmosis membrane using an ion exchange membrane.
- Examples of techniques for concentrating the concentrated water of the reverse osmosis membrane include evaporation, reverse osmosis membrane / nanofiltration membrane method, and electrodialysis method (paragraphs 0002 to 0006 of Patent Document 1).
- the evaporation method involves a phase change, which results in a large consumption of energy.
- the reverse osmosis membrane / nanofiltration membrane method and the electrodialysis method are energy saving techniques.
- divalent ions such as calcium have higher rejection than monovalent ions such as sodium, divalent ions are easily concentrated.
- divalent ions such as calcium have higher mobility than monovalent ions such as sodium, so that divalent ions are easily concentrated.
- scale is generated, which causes a problem that the scale is attached to the reverse osmosis membrane / nanofiltration membrane or the electrodialysis membrane to lower the performance.
- Non-Patent Document 1 In order to suppress an increase in calcium ion concentration in the concentration chamber, seawater is treated using a monovalent selective cation exchange membrane as an electrodialysis membrane in a salt production step or the like (Non-Patent Document 1).
- An object of the present invention is to provide a method of treating concentrated water of a reverse osmosis membrane which can stably electrodialyze concentrated water of the reverse osmosis membrane.
- the method for treating retentate of reverse osmosis membrane according to the present invention is to use monovalent selective cation exchange membrane for part or all of cation exchange membrane in the method for treating concentrate of reverse osmosis membrane by electrodialysis It features.
- the calcium concentration in the concentrated water of the reverse osmosis membrane is 2 mM or more.
- the flow rate in the concentration chamber of the electrodialysis is higher than the flow rate in the desalting chamber.
- At least one of hydrochloric acid, sulfuric acid and nitric acid is added to the feed water to the concentration chamber.
- a scale inhibitor is added to the feed water to the concentration chamber.
- the scale inhibitor has a phosphate or sulfonate group.
- the cation exchange membrane is a monovalent selective cation exchange membrane, the transfer of multivalent cations such as calcium ion and magnesium ion to the concentration chamber It is suppressed and the scale formation in the concentration chamber is suppressed. Thereby, it is possible to stably electrodialyze reverse osmosis membrane concentrated water having a high concentration such as calcium.
- concentrated water generated when the river water, well water, tap water, industrial water, waste water collected water, etc. are subjected to membrane separation treatment using a reverse osmosis membrane device is treated using a monovalent selective cation exchange membrane.
- the concentrated water generally has an inorganic salt concentration of about 0.5 to 2 wt%, a calcium concentration of 2 mM or more, for example, about 2 to 20 mM, and an organic concentration of about 5 to 100 mg / L as TOC.
- this concentrated water is treated using a monovalent selective cation exchange membrane. It is usually treated with an electrodialysis apparatus equipped with a monovalent selective cation exchange membrane.
- FIG. 1 shows a preferred example of this electrodialysis apparatus.
- This electrodialysis apparatus comprises an acid chamber, an anion exchange membrane AM, a desalting chamber, a first cation exchange membrane CM, a concentration chamber, a desalting chamber, between a positive electrode and a negative electrode respectively via a positive electrode chamber and a bipolar membrane BPM.
- a second cation exchange membrane CM, an alkali chamber, a bipolar membrane BPM, and a negative electrode chamber are provided.
- An anion exchange membrane, a desalting chamber, a first cation exchange membrane, and a plurality of concentration chambers are provided as a repeating unit (n pieces), and a concentration chamber of the nth repeating unit is an anion exchange membrane, a desalting chamber, and It may be provided so as to be connected to the alkali chamber via a cation exchange membrane.
- anion X - and cation Y + constituting salts (XY) in the water to be treated which passes through the inside of the deionization chamber pass through the anion exchange membrane AM and the cation exchange membrane CM, respectively, into the concentration chamber
- XY anion X - and cation Y + constituting salts
- a monovalent selective cation exchange membrane is used as the first cation exchange membrane (first CM).
- first CM the first cation exchange membrane
- monovalent cations preferentially permeate the first cation exchange membrane (first CM) and move to the concentration chamber.
- the rise in concentration of divalent cations, in particular, calcium ions and magnesium ions in the concentration chamber is suppressed, scale formation in the concentration chamber is suppressed, and the electrodialysis apparatus can be stably operated over a long period of time.
- Increasing the flow rate in the concentration chamber or adding an acid and a scale inhibitor to the concentration chamber is also effective in suppressing scale formation in the concentration chamber.
- the flow rate of the concentration chamber is preferable to twice or more, for example, 2 to 10 times, particularly 3 to 5 times the flow velocity of the desalting chamber.
- the acid hydrochloric acid, sulfuric acid or nitric acid is preferable, and it is preferable to add it so that the pH after addition is about 1 to 3.
- the scale inhibitor those having a phosphoric acid group or a sulfonic acid group are suitable.
- Comparative Example 1 The simulated reverse osmosis membrane concentrated water was treated using the electrodialysis apparatus having the membrane arrangement structure shown in FIG.
- a bipolar membrane (BP1-E manufactured by Astom Co., Ltd.), an anion exchange membrane (AHA manufactured by Astom Co., Ltd.), a cation exchange membrane (CMX manufactured by Astom Co., Ltd.), an anion exchange membrane (stock Seven chambers (positive chamber, acid chamber, desalting chamber, etc.) formed by laminating the film in this order: AHA made by Astom Co., Ltd., cation exchange membrane (CMX made by Astom Co., Ltd.), and bipolar membrane (BP1-E made by Astom)
- the electrodialysis apparatus of a concentration chamber, a desalting chamber, an alkali chamber, and a negative electrode chamber was used.
- a 0.5 M NaOH aqueous solution is passed at 100 mL / min through the positive and negative electrode chambers of this electrodialysis apparatus, and a simulated reverse osmosis membrane concentrated water is passed at 5 mL / min through the desalting chamber and the concentration chamber.
- a simulated reverse osmosis membrane concentrated water is passed at 5 mL / min through the desalting chamber and the concentration chamber.
- 25 mM aqueous sodium chloride solution was passed at 5 mL / min.
- the treatment was performed at a constant voltage operation of 50 V, and when the treatment was performed for 1 hour, the conductivity of the treatment liquid from the demineralization chamber was 100 mS / m or less until the first 15 minutes, and thereafter 100 mS / m. It exceeded and rose to nearly 250 mS / m (see Fig. 2). In addition, a large amount of calcium carbonate scale was observed in the concentration chamber.
- Example 1 Using an electrodialyzer having the same structure as Comparative Example 1 except that the first cation exchange membrane (first CM) between the desalting room and the concentration room is a monovalent selective cation exchange membrane (CIMS manufactured by Astom Co., Ltd.) The same simulated reverse osmosis membrane concentrated water was treated under the same conditions as in Comparative Example 1.
- first CM first cation exchange membrane
- CIMS monovalent selective cation exchange membrane
- the conductivity of the treatment liquid from the desalting chamber was 100 mS / m or less. Some calcium carbonate scale was observed in the concentration chamber.
- Example 2 In Example 1, 1 M hydrochloric acid was added so as to be diluted 100 times at the inlet of the concentration chamber, and the same simulated reverse osmosis membrane concentrated water was treated under the same conditions except that the flow rate in the concentration chamber was 15 mL / min. . As a result, the conductivity of the treatment liquid from the desalting chamber was 100 mS / m or less until the first 30 mim and thereafter between 100 mS / m and 125 mS / m (see FIG. 2). Moreover, the scale of calcium carbonate was not seen in the concentration chamber.
- the treated water quality from the deionization chamber can be stabilized, and the formation of calcium carbonate scale in the concentration chamber can also be suppressed.
- the addition of the acid to the concentration chamber and the increase of the flow rate in the concentration chamber further suppressed the formation of the calcium carbonate scale.
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Urology & Nephrology (AREA)
- General Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Electrochemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
A method for treating concentrated water from reverse osmosis membranes, characterized by using a monovalent selective cation exchange membrane for some or all cation exchange membranes and treating the concentrated water using electrodialysis. The calcium concentration in the concentrated water from the reverse osmosis membrane is ideally at least 2 mM. At least one type out of hydrochloric acid, sulfuric acid, and nitric acid may be added to the water supplied to a concentration chamber and a scale inhibitor may also be added.
Description
本発明は、逆浸透膜の濃縮水の処理方法に係り、特に、逆浸透膜を用いた水処理により生じる濃縮水をイオン交換膜を用いて処理する方法に関する。
The present invention relates to a method of treating concentrated water of a reverse osmosis membrane, and more particularly to a method of treating concentrated water produced by water treatment using a reverse osmosis membrane using an ion exchange membrane.
逆浸透膜によって河川水、井水、水道水、工業用水、排水回収水等の水を処理して脱塩水と濃縮水とに分離した場合に生じる濃縮水をさらに濃縮したり、濃縮、脱水して固形化したりすることがある。
Treats water such as river water, well water, tap water, industrial water, waste water, etc. by reverse osmosis membrane to further concentrate, concentrate or dehydrate concentrated water that is generated when it is separated into demineralized water and concentrated water. May solidify.
逆浸透膜の濃縮水を濃縮する技術として、蒸発法、逆浸透膜・ナノ濾過膜法、電気透析法が挙げられる(特許文献1の0002~0006段落)。蒸発法は、相変化を伴うため、エネルギーの消費量が大きくなる。一方、逆浸透膜・ナノ濾過膜法や電気透析法は省エネルギー技術である。
Examples of techniques for concentrating the concentrated water of the reverse osmosis membrane include evaporation, reverse osmosis membrane / nanofiltration membrane method, and electrodialysis method (paragraphs 0002 to 0006 of Patent Document 1). The evaporation method involves a phase change, which results in a large consumption of energy. On the other hand, the reverse osmosis membrane / nanofiltration membrane method and the electrodialysis method are energy saving techniques.
逆浸透膜・ナノ濾過膜法では、カルシウムのような2価のイオンの方がナトリウムのような1価のイオンよりも阻止率が高いため、2価のイオンが濃縮され易い。電気透析法でもカルシウムのような2価のイオンの方がナトリウムのような1価のイオンよりも移動度が大きいため、2価のイオンが濃縮され易い。カルシウムイオンの濃度が高い原水を濃縮するとスケールが生成し、逆浸透膜・ナノ濾過膜や電気透析膜に付着して性能を低下させるという問題が生じる。
In the reverse osmosis membrane / nanofiltration membrane method, since divalent ions such as calcium have higher rejection than monovalent ions such as sodium, divalent ions are easily concentrated. Even in the electrodialysis method, divalent ions such as calcium have higher mobility than monovalent ions such as sodium, so that divalent ions are easily concentrated. When raw water having a high concentration of calcium ions is concentrated, scale is generated, which causes a problem that the scale is attached to the reverse osmosis membrane / nanofiltration membrane or the electrodialysis membrane to lower the performance.
濃縮室におけるカルシウムイオン濃度の上昇を抑制するために製塩工程等において電気透析膜として1価選択性カチオン交換膜を用いて海水を処理することが行われている(非特許文献1)。
In order to suppress an increase in calcium ion concentration in the concentration chamber, seawater is treated using a monovalent selective cation exchange membrane as an electrodialysis membrane in a salt production step or the like (Non-Patent Document 1).
本発明は、逆浸透膜の濃縮水を安定して電気透析処理することができる逆浸透膜の濃縮水の処理方法を提供することを目的とする。
An object of the present invention is to provide a method of treating concentrated water of a reverse osmosis membrane which can stably electrodialyze concentrated water of the reverse osmosis membrane.
本発明の逆浸透膜の濃縮水の処理方法は、逆浸透膜の濃縮水を電気透析により処理する方法において、カチオン交換膜の一部もしくは全てに1価選択性カチオン交換膜を使用することを特徴とする。
The method for treating retentate of reverse osmosis membrane according to the present invention is to use monovalent selective cation exchange membrane for part or all of cation exchange membrane in the method for treating concentrate of reverse osmosis membrane by electrodialysis It features.
本発明の一態様では、逆浸透膜の濃縮水中のカルシウム濃度が2mM以上である。
In one aspect of the present invention, the calcium concentration in the concentrated water of the reverse osmosis membrane is 2 mM or more.
本発明の一態様では、電気透析の濃縮室における流速を脱塩室における流速よりも高くする。
In one aspect of the present invention, the flow rate in the concentration chamber of the electrodialysis is higher than the flow rate in the desalting chamber.
本発明の一態様では、濃縮室への供給水に塩酸、硫酸及び硝酸の少なくとも1種を添加する。
In one aspect of the present invention, at least one of hydrochloric acid, sulfuric acid and nitric acid is added to the feed water to the concentration chamber.
本発明の一態様では、濃縮室への供給水にスケール抑制剤を添加する。
In one aspect of the invention, a scale inhibitor is added to the feed water to the concentration chamber.
本発明の一態様では、スケール抑制剤が、リン酸基もしくはスルホン酸基を有する。
In one aspect of the invention, the scale inhibitor has a phosphate or sulfonate group.
本発明の逆浸透膜の濃縮水の処理方法では、少なくとも一部のカチオン交換膜を1価選択性カチオン交換膜としたので、濃縮室へのカルシウムイオン、マグネシウムイオンなどの多価カチオンの移動が抑制され、濃縮室でのスケール生成が抑制される。これにより、カルシウム等の濃度が高い逆浸透膜濃縮水を安定して電気透析処理することができる。
In the method of treating concentrated water of reverse osmosis membrane of the present invention, since at least a part of the cation exchange membrane is a monovalent selective cation exchange membrane, the transfer of multivalent cations such as calcium ion and magnesium ion to the concentration chamber It is suppressed and the scale formation in the concentration chamber is suppressed. Thereby, it is possible to stably electrodialyze reverse osmosis membrane concentrated water having a high concentration such as calcium.
また、濃縮室におけるカルシウムの濃度分極を抑制し、生成したスケールを流出させるため、濃縮室における流速を高くすることも有効である。さらに、濃縮室においてカルシウム濃度が増加してもスケールの生成を抑制するために、酸の添加、スケール抑制剤の添加も有効である。
In addition, it is also effective to increase the flow rate in the concentration chamber in order to suppress the concentration polarization of calcium in the concentration chamber and cause the produced scale to flow out. Furthermore, addition of an acid and addition of a scale inhibitor are also effective in order to suppress the formation of scale even if the calcium concentration increases in the concentration chamber.
本発明によって、逆浸透膜の濃縮水から、さらにイオンを濃縮した部分濃縮水と、排水や他のプロセスに転用が可能な部分脱塩水を安定的に得ることができる。
According to the present invention, it is possible to stably obtain, from concentrated water of a reverse osmosis membrane, partially concentrated water in which ions are further concentrated and partially demineralized water which can be diverted to drainage or other processes.
以下、本発明についてさらに詳細に説明する。
Hereinafter, the present invention will be described in more detail.
本発明では、河川水、井水、水道水、工業用水、排水回収水等を逆浸透膜装置で膜分離処理した際に生じる濃縮水を、1価選択性カチオン交換膜を用いて処理する。この濃縮水は、通常、無機塩分濃度が0.5~2wt%程度、カルシウム濃度が2mM以上例えば2~20mM程度であり、有機物濃度がTOCとして通常5~100mg/L程度である。
In the present invention, concentrated water generated when the river water, well water, tap water, industrial water, waste water collected water, etc. are subjected to membrane separation treatment using a reverse osmosis membrane device is treated using a monovalent selective cation exchange membrane. The concentrated water generally has an inorganic salt concentration of about 0.5 to 2 wt%, a calcium concentration of 2 mM or more, for example, about 2 to 20 mM, and an organic concentration of about 5 to 100 mg / L as TOC.
本発明では、この濃縮水を、1価選択性カチオン交換膜を用いて処理する。通常は1価選択性カチオン交換膜を備えた電気透析装置で処理する。図1は、この電気透析装置の好適な一例を示している。この電気透析装置は、陽極と陰極の間に、それぞれ正電極室及びバイポーラ膜BPMを介して酸室、アニオン交換膜AM、脱塩室、第1カチオン交換膜CM、濃縮室、脱塩室、第2カチオン交換膜CM、アルカリ室、バイポーラ膜BPM、負電極室を設けたものである。なお、アニオン交換膜、脱塩室、第1カチオン交換膜、濃縮室が繰り返し単位として複数個(n個)設けられ、第n番目の繰り返し単位の濃縮室がアニオン交換膜、脱塩室及び第2カチオン交換膜を介してアルカリ室に連なるように設けてもよい。
In the present invention, this concentrated water is treated using a monovalent selective cation exchange membrane. It is usually treated with an electrodialysis apparatus equipped with a monovalent selective cation exchange membrane. FIG. 1 shows a preferred example of this electrodialysis apparatus. This electrodialysis apparatus comprises an acid chamber, an anion exchange membrane AM, a desalting chamber, a first cation exchange membrane CM, a concentration chamber, a desalting chamber, between a positive electrode and a negative electrode respectively via a positive electrode chamber and a bipolar membrane BPM. A second cation exchange membrane CM, an alkali chamber, a bipolar membrane BPM, and a negative electrode chamber are provided. An anion exchange membrane, a desalting chamber, a first cation exchange membrane, and a plurality of concentration chambers are provided as a repeating unit (n pieces), and a concentration chamber of the nth repeating unit is an anion exchange membrane, a desalting chamber, and It may be provided so as to be connected to the alkali chamber via a cation exchange membrane.
この電気透析装置では、脱塩室内を通過する被処理水中の塩類(XY)を構成する陰イオンX-及び陽イオンY+がそれぞれアニオン交換膜AM、カチオン交換膜CMを通過して濃縮室内に濃縮されることにより、脱塩室からは塩分が除去された脱塩水が得られ、一方、濃縮室からは、塩分濃縮液が得られる。
In this electrodialysis apparatus, anion X - and cation Y + constituting salts (XY) in the water to be treated which passes through the inside of the deionization chamber pass through the anion exchange membrane AM and the cation exchange membrane CM, respectively, into the concentration chamber As a result of concentration, desalted water provides desalted water from which salt content has been removed, while a concentration liquid provides a salt concentrate.
本発明では、この電気透析装置において、第1カチオン交換膜(第1CM)として、1価選択性カチオン交換膜を用いる。これにより、脱塩室内のカチオンのうち1価カチオンが優先的に第1カチオン交換膜(第1CM)を透過して濃縮室に移動する。このため、濃縮室内の2価カチオン特にカルシウムイオン、マグネシウムイオンの濃度上昇が抑制され、濃縮室でのスケール生成が抑制され、電気透析装置が長期にわたって安定して運転されるようになる。
In the present invention, in this electrodialysis apparatus, a monovalent selective cation exchange membrane is used as the first cation exchange membrane (first CM). As a result, among the cations in the desalting chamber, monovalent cations preferentially permeate the first cation exchange membrane (first CM) and move to the concentration chamber. For this reason, the rise in concentration of divalent cations, in particular, calcium ions and magnesium ions in the concentration chamber is suppressed, scale formation in the concentration chamber is suppressed, and the electrodialysis apparatus can be stably operated over a long period of time.
濃縮室の流速を高くしたり、濃縮室に酸やスケール抑制剤を添加することも、濃縮室でのスケール生成を抑制する上で効果的である。
Increasing the flow rate in the concentration chamber or adding an acid and a scale inhibitor to the concentration chamber is also effective in suppressing scale formation in the concentration chamber.
具体的には、濃縮室の流速を脱塩室の流速の2倍以上、例えば2~10倍、特3~5倍とするのが好適である。酸としては、塩酸、硫酸又は硝酸が好適であり、添加後のpHが1~3程度となるように添加するのが好適である。スケール抑制剤としては、リン酸基又はスルホン酸基を有するものが好適である。
Specifically, it is preferable to set the flow rate of the concentration chamber to twice or more, for example, 2 to 10 times, particularly 3 to 5 times the flow velocity of the desalting chamber. As the acid, hydrochloric acid, sulfuric acid or nitric acid is preferable, and it is preferable to add it so that the pH after addition is about 1 to 3. As the scale inhibitor, those having a phosphoric acid group or a sulfonic acid group are suitable.
以下、比較例及び実施例について説明する。なお、以下の比較例及び実施例では、逆浸透膜濃縮水として、2.5mM塩化カルシウム、2.5mM炭酸水素ナトリウム、25mM塩化ナトリウムの水溶液であって、塩酸水溶液と水酸化ナトリウム水溶液でpH7に調整した模擬逆浸透膜濃縮水を用いた。この模擬逆浸透膜濃縮水の電導度(電気伝導度)は360mS/mである。
Hereinafter, comparative examples and examples will be described. In the following Comparative Examples and Examples, it is an aqueous solution of 2.5 mM calcium chloride, 2.5 mM sodium hydrogencarbonate and 25 mM sodium chloride as concentrated reverse osmosis membrane water, and adjusted to pH 7 with aqueous hydrochloric acid solution and aqueous sodium hydroxide solution. The adjusted simulated reverse osmosis membrane concentrate was used. The conductivity (electrical conductivity) of this simulated reverse osmosis membrane concentrate is 360 mS / m.
[比較例1]
図1に示す膜配列構造の電気透析装置を用いて模擬逆浸透膜濃縮水の処理を行った。 Comparative Example 1
The simulated reverse osmosis membrane concentrated water was treated using the electrodialysis apparatus having the membrane arrangement structure shown in FIG.
図1に示す膜配列構造の電気透析装置を用いて模擬逆浸透膜濃縮水の処理を行った。 Comparative Example 1
The simulated reverse osmosis membrane concentrated water was treated using the electrodialysis apparatus having the membrane arrangement structure shown in FIG.
具体的には、電気透析装置としては、バイポーラ膜(株式会社アストム製BP1-E)、アニオン交換膜(株式会社アストム製AHA)、カチオン交換膜(株式会社アストム製CMX)、アニオン交換膜(株式会社アストム製AHA)、カチオン交換膜(株式会社アストム製CMX)、バイポーラ膜(株式会社アストム製BP1-E)の順に膜を積層して成る、7室(正極室、酸室、脱塩室、濃縮室、脱塩室、アルカリ室、+負極室)の電気透析装置を用いた。
Specifically, as an electrodialysis apparatus, a bipolar membrane (BP1-E manufactured by Astom Co., Ltd.), an anion exchange membrane (AHA manufactured by Astom Co., Ltd.), a cation exchange membrane (CMX manufactured by Astom Co., Ltd.), an anion exchange membrane (stock Seven chambers (positive chamber, acid chamber, desalting chamber, etc.) formed by laminating the film in this order: AHA made by Astom Co., Ltd., cation exchange membrane (CMX made by Astom Co., Ltd.), and bipolar membrane (BP1-E made by Astom) The electrodialysis apparatus of a concentration chamber, a desalting chamber, an alkali chamber, and a negative electrode chamber was used.
この電気透析装置の正、負の各電極室に0.5MのNaOH水溶液を100mL/minで通液し、脱塩室、濃縮室には5mL/minで模擬逆浸透膜濃縮水を通液し、酸室、アルカリ室には5mL/minで25mM塩化ナトリウム水溶液を通液した。
A 0.5 M NaOH aqueous solution is passed at 100 mL / min through the positive and negative electrode chambers of this electrodialysis apparatus, and a simulated reverse osmosis membrane concentrated water is passed at 5 mL / min through the desalting chamber and the concentration chamber. In an acid chamber and an alkaline chamber, 25 mM aqueous sodium chloride solution was passed at 5 mL / min.
処理は50Vの定電圧運転とし、1時間の処理を行ったところ、最初の15minまでは脱塩室からの処理液の電導度は100mS/m以下であったが、その後は、100mS/mを超え、250mS/m近くまで上昇した(図2参照)。また、濃縮室には炭酸カルシウムスケールが多く見られた。
The treatment was performed at a constant voltage operation of 50 V, and when the treatment was performed for 1 hour, the conductivity of the treatment liquid from the demineralization chamber was 100 mS / m or less until the first 15 minutes, and thereafter 100 mS / m. It exceeded and rose to nearly 250 mS / m (see Fig. 2). In addition, a large amount of calcium carbonate scale was observed in the concentration chamber.
[実施例1]
脱塩室と濃縮室の間の第1カチオン交換膜(第1CM)を1価選択性カチオン交換膜(株式会社アストム製CIMS)としたこと以外は比較例1と同一構造の電気透析装置を用い、比較例1と同一条件にて同一模擬逆浸透膜濃縮水を処理した。 Example 1
Using an electrodialyzer having the same structure as Comparative Example 1 except that the first cation exchange membrane (first CM) between the desalting room and the concentration room is a monovalent selective cation exchange membrane (CIMS manufactured by Astom Co., Ltd.) The same simulated reverse osmosis membrane concentrated water was treated under the same conditions as in Comparative Example 1.
脱塩室と濃縮室の間の第1カチオン交換膜(第1CM)を1価選択性カチオン交換膜(株式会社アストム製CIMS)としたこと以外は比較例1と同一構造の電気透析装置を用い、比較例1と同一条件にて同一模擬逆浸透膜濃縮水を処理した。 Example 1
Using an electrodialyzer having the same structure as Comparative Example 1 except that the first cation exchange membrane (first CM) between the desalting room and the concentration room is a monovalent selective cation exchange membrane (CIMS manufactured by Astom Co., Ltd.) The same simulated reverse osmosis membrane concentrated water was treated under the same conditions as in Comparative Example 1.
その結果、図2の通り、脱塩室からの処理液の電導度は100mS/m以下であった。濃縮室には若干の炭酸カルシウムスケールが見られた。
As a result, as shown in FIG. 2, the conductivity of the treatment liquid from the desalting chamber was 100 mS / m or less. Some calcium carbonate scale was observed in the concentration chamber.
[実施例2]
実施例1において、濃縮室の入口において1M塩酸を100倍希釈されるように添加し、濃縮室における流速を15mL/minとしたこと以外は同一条件にて同一模擬逆浸透膜濃縮水を処理した。その結果、脱塩室からの処理液の電導度は、最初の30mimまでは100mS/m以下で、その後は100mS/mから125mS/mの間であった(図2参照)。また、濃縮室には炭酸カルシウムのスケールが見られなかった。 Example 2
In Example 1, 1 M hydrochloric acid was added so as to be diluted 100 times at the inlet of the concentration chamber, and the same simulated reverse osmosis membrane concentrated water was treated under the same conditions except that the flow rate in the concentration chamber was 15 mL / min. . As a result, the conductivity of the treatment liquid from the desalting chamber was 100 mS / m or less until the first 30 mim and thereafter between 100 mS / m and 125 mS / m (see FIG. 2). Moreover, the scale of calcium carbonate was not seen in the concentration chamber.
実施例1において、濃縮室の入口において1M塩酸を100倍希釈されるように添加し、濃縮室における流速を15mL/minとしたこと以外は同一条件にて同一模擬逆浸透膜濃縮水を処理した。その結果、脱塩室からの処理液の電導度は、最初の30mimまでは100mS/m以下で、その後は100mS/mから125mS/mの間であった(図2参照)。また、濃縮室には炭酸カルシウムのスケールが見られなかった。 Example 2
In Example 1, 1 M hydrochloric acid was added so as to be diluted 100 times at the inlet of the concentration chamber, and the same simulated reverse osmosis membrane concentrated water was treated under the same conditions except that the flow rate in the concentration chamber was 15 mL / min. . As a result, the conductivity of the treatment liquid from the desalting chamber was 100 mS / m or less until the first 30 mim and thereafter between 100 mS / m and 125 mS / m (see FIG. 2). Moreover, the scale of calcium carbonate was not seen in the concentration chamber.
以上の比較例及び実施例より、本発明の通り1価選択性カチオン交換膜を用いることで、脱塩室からの処理水質を安定させ、濃縮室における炭酸カルシウムスケールの生成も抑制することができることが認められた。また、濃縮室に酸を添加し、濃縮室における流速を高くすることにより、炭酸カルシウムスケールの生成がさらに抑制されることが認められた。
From the above Comparative Examples and Examples, by using the monovalent selective cation exchange membrane as in the present invention, the treated water quality from the deionization chamber can be stabilized, and the formation of calcium carbonate scale in the concentration chamber can also be suppressed. Was recognized. Further, it was found that the addition of the acid to the concentration chamber and the increase of the flow rate in the concentration chamber further suppressed the formation of the calcium carbonate scale.
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
本出願は、2017年12月7日付で出願された日本特許出願2017-235319に基づいており、その全体が引用により援用される。 Although the invention has been described in detail with particular embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application 2017-235319 filed on Dec. 7, 2017, which is incorporated by reference in its entirety.
本出願は、2017年12月7日付で出願された日本特許出願2017-235319に基づいており、その全体が引用により援用される。 Although the invention has been described in detail with particular embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application 2017-235319 filed on Dec. 7, 2017, which is incorporated by reference in its entirety.
Claims (6)
- 逆浸透膜の濃縮水を電気透析により処理する方法において、カチオン交換膜の一部もしくは全てに1価選択性カチオン交換膜を使用することを特徴とする逆浸透膜の濃縮水の処理方法。 What is claimed is: 1. A method of treating concentrated water of a reverse osmosis membrane, comprising using a monovalent selective cation exchange membrane for part or all of the cation exchange membrane in the method of treating the concentrated water of the reverse osmosis membrane by electrodialysis.
- 逆浸透膜の濃縮水中のカルシウム濃度が2mM以上である請求項1に記載の逆浸透膜の濃縮水の処理方法。 The method for treating concentrated water of reverse osmosis membrane according to claim 1, wherein the calcium concentration in the concentrated water of the reverse osmosis membrane is 2 mM or more.
- 電気透析の濃縮室における流速を脱塩室における流速よりも高くすることを特徴とする請求項1又は2に記載の逆浸透膜の濃縮水の処理方法。 The method for treating concentrated water of a reverse osmosis membrane according to claim 1 or 2, characterized in that the flow rate in the concentration chamber of the electrodialysis is made higher than the flow rate in the desalting chamber.
- 濃縮室への供給水に塩酸、硫酸及び硝酸の少なくとも1種を添加することを特徴とする請求項1~3のいずれかに記載の逆浸透膜の濃縮水の処理方法。 The method for treating concentrated water of a reverse osmosis membrane according to any one of claims 1 to 3, wherein at least one of hydrochloric acid, sulfuric acid and nitric acid is added to the feed water to the concentration chamber.
- 濃縮室への供給水にスケール抑制剤を添加することを特徴とする請求項1~4のいずれかに記載の逆浸透膜の濃縮水の処理方法。 The method for treating concentrated water of a reverse osmosis membrane according to any one of claims 1 to 4, wherein a scale inhibitor is added to the feed water to the concentration chamber.
- スケール抑制剤が、リン酸基もしくはスルホン酸基を有することを特徴とする請求項5に記載の逆浸透膜の濃縮水の処理方法。 The method for treating concentrated water for a reverse osmosis membrane according to claim 5, wherein the scale inhibitor has a phosphoric acid group or a sulfonic acid group.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-235319 | 2017-12-07 | ||
JP2017235319A JP2019098300A (en) | 2017-12-07 | 2017-12-07 | Method of treating concentrated water of reverse osmosis membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019111476A1 true WO2019111476A1 (en) | 2019-06-13 |
Family
ID=66750902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/033474 WO2019111476A1 (en) | 2017-12-07 | 2018-09-10 | Reverse osmosis membrane concentrated water treatment method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2019098300A (en) |
TW (1) | TW201924770A (en) |
WO (1) | WO2019111476A1 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06269777A (en) * | 1993-03-16 | 1994-09-27 | Asahi Glass Co Ltd | Fresh water producing process |
JPH0747365A (en) * | 1993-08-10 | 1995-02-21 | Nomura Micro Sci Co Ltd | Extrapure water producing device |
JPH10323673A (en) * | 1997-03-28 | 1998-12-08 | Asahi Glass Co Ltd | Deionized water-producing method |
JP2000000571A (en) * | 1998-06-16 | 2000-01-07 | Japan Organo Co Ltd | Electric deionized water apparatus |
JP2000140853A (en) * | 1998-11-10 | 2000-05-23 | Kurita Water Ind Ltd | Electrical regeneration type deionizing device and operation thereof |
JP2002292371A (en) * | 2001-01-23 | 2002-10-08 | Goshu Yakuhin Kk | Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt |
US20040055955A1 (en) * | 2002-08-02 | 2004-03-25 | University Of South Carolina | Production of purified water and high value chemicals from salt water |
JP2008100175A (en) * | 2006-10-19 | 2008-05-01 | Japan Organo Co Ltd | Daily life water feed method and arrangement |
JP2008223115A (en) * | 2007-03-15 | 2008-09-25 | Asahi Kasei Chemicals Corp | Method for treating salt water |
WO2008153274A1 (en) * | 2007-06-11 | 2008-12-18 | Yoo, Yung-Geun | Preparation method of mineral water and mineral salt from deep ocean water |
JP2015029933A (en) * | 2013-07-31 | 2015-02-16 | 三菱重工業株式会社 | Potable water manufacturing apparatus and method |
JP2015524787A (en) * | 2012-08-16 | 2015-08-27 | ラマン, アヒランRAMAN, Ahilan | Method and system for producing sodium chloride brine |
-
2017
- 2017-12-07 JP JP2017235319A patent/JP2019098300A/en active Pending
-
2018
- 2018-09-10 WO PCT/JP2018/033474 patent/WO2019111476A1/en active Application Filing
- 2018-09-19 TW TW107132907A patent/TW201924770A/en unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06269777A (en) * | 1993-03-16 | 1994-09-27 | Asahi Glass Co Ltd | Fresh water producing process |
JPH0747365A (en) * | 1993-08-10 | 1995-02-21 | Nomura Micro Sci Co Ltd | Extrapure water producing device |
JPH10323673A (en) * | 1997-03-28 | 1998-12-08 | Asahi Glass Co Ltd | Deionized water-producing method |
JP2000000571A (en) * | 1998-06-16 | 2000-01-07 | Japan Organo Co Ltd | Electric deionized water apparatus |
JP2000140853A (en) * | 1998-11-10 | 2000-05-23 | Kurita Water Ind Ltd | Electrical regeneration type deionizing device and operation thereof |
JP2002292371A (en) * | 2001-01-23 | 2002-10-08 | Goshu Yakuhin Kk | Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt |
US20040055955A1 (en) * | 2002-08-02 | 2004-03-25 | University Of South Carolina | Production of purified water and high value chemicals from salt water |
JP2008100175A (en) * | 2006-10-19 | 2008-05-01 | Japan Organo Co Ltd | Daily life water feed method and arrangement |
JP2008223115A (en) * | 2007-03-15 | 2008-09-25 | Asahi Kasei Chemicals Corp | Method for treating salt water |
WO2008153274A1 (en) * | 2007-06-11 | 2008-12-18 | Yoo, Yung-Geun | Preparation method of mineral water and mineral salt from deep ocean water |
JP2015524787A (en) * | 2012-08-16 | 2015-08-27 | ラマン, アヒランRAMAN, Ahilan | Method and system for producing sodium chloride brine |
JP2015029933A (en) * | 2013-07-31 | 2015-02-16 | 三菱重工業株式会社 | Potable water manufacturing apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
TW201924770A (en) | 2019-07-01 |
JP2019098300A (en) | 2019-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2663906C (en) | Method and apparatus for desalination | |
US7459088B2 (en) | Water desalination process and apparatus | |
CN107381886B (en) | Method for realizing near-zero emission of reverse osmosis concentrated water | |
US20100282675A1 (en) | System and method for reversible cation-exchange desalination | |
JP2015029931A (en) | Desalination apparatus and desalination method, method for producing fresh water, and method for co-producing fresh water, salt and valuable-material | |
JP6053631B2 (en) | Desalination apparatus and desalination method, and method of co-production of fresh water, salt and valuables | |
JP2009095821A (en) | Method of treating salt water | |
Turek et al. | Energy consumption and gypsum scaling assessment in a hybrid nanofiltration‐reverse osmosis‐electrodialysis system | |
KR20080094303A (en) | High efficiency seawater electrolytic apparatus and method including a pretreatment process | |
JP2005342664A (en) | Method for producing mineral water | |
JP5731262B2 (en) | Desalination treatment method and desalination treatment system | |
JPH08108184A (en) | Water treatment apparatus | |
WO2019111476A1 (en) | Reverse osmosis membrane concentrated water treatment method | |
US20230295019A1 (en) | Hybrid electrochemical and membrane-based processes for treating water with high silica concentrations | |
JP5995747B2 (en) | Water treatment system and method for producing valuable materials from seawater | |
Turek et al. | Boron removal from dual-staged seawater nanofiltration permeate by electrodialysis | |
CN108341527B (en) | High-recovery removal bitter and fishiness | |
JPH06254356A (en) | Ph adjusting method of salt water incorporating hardly soluble salt group | |
US20240238727A1 (en) | Systems and methods for reducing magnesium, calcium, and/or sulfate from sodium chloride brine during concentration by high-pressure nanlfiltration | |
JP2014024013A (en) | Desalination method of sea water or the like | |
TWI487671B (en) | Waste water treatment system and method | |
JPH1085755A (en) | Desalting method by electrodialyser | |
JP2004290894A (en) | Deep sea water desalination system | |
JP2018135277A (en) | Method for producing bath salts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18886131 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18886131 Country of ref document: EP Kind code of ref document: A1 |