[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000000571A - Electric deionized water apparatus - Google Patents

Electric deionized water apparatus

Info

Publication number
JP2000000571A
JP2000000571A JP10168663A JP16866398A JP2000000571A JP 2000000571 A JP2000000571 A JP 2000000571A JP 10168663 A JP10168663 A JP 10168663A JP 16866398 A JP16866398 A JP 16866398A JP 2000000571 A JP2000000571 A JP 2000000571A
Authority
JP
Japan
Prior art keywords
chamber
water
deionized water
scale
concentrated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10168663A
Other languages
Japanese (ja)
Inventor
Masahiro Kuwata
政博 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP10168663A priority Critical patent/JP2000000571A/en
Publication of JP2000000571A publication Critical patent/JP2000000571A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject apparatus keeping deionizing capacity by preventing the scale precipitation of a hardness component in a concn. chamber or an electrode chamber even in water to be treated containing a large amt. of a hardness component. SOLUTION: In an electric deionized water making apparatus 1 having a desalting chamber, a concn. chamber and an electrode chamber and obtaining deionized water from the desalting chamber by applying voltage across a pair of electrodes, a mixed soln. of containing an acidic soln. and a scale inhibitor is added to a conc. water storage tank 2 storing conc. water discharged from the concn. chamber and this added soln. is returned to the inflow side of the concn. chamber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、濃縮室内や電極室
内での硬度成分のスケール析出を防止して、脱イオン性
能を維持する電気式脱イオン水製造装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric deionized water producing apparatus for preventing the precipitation of scale of a hardness component in a concentration chamber or an electrode chamber and maintaining deionization performance.

【0002】[0002]

【従来の技術】従来、脱イオン水を製造するには、イオ
ン交換樹脂が利用されている。このイオン交換樹脂は、
通常薬剤による再生を必要とする。このため、該イオン
交換樹脂を利用した脱イオンと電気透析作用を組合せ、
薬剤による再生が不要で、高度な脱イオン水を得る電気
式脱イオン水製造装置が知られている。
2. Description of the Related Art Conventionally, an ion exchange resin has been used for producing deionized water. This ion exchange resin
Usually requires regeneration with drugs. Therefore, the combination of deionization using the ion exchange resin and electrodialysis,
2. Description of the Related Art An electric deionized water producing apparatus that does not require regeneration with a chemical and obtains highly deionized water is known.

【0003】該電気式脱イオン水製造装置は、例えば、
基本的にはカチオン交換膜とアニオン交換膜で形成され
る隙間に、イオン交換体を充填して脱塩室とし、当該イ
オン交換体に被処理水を通過させると共に、前記両イオ
ン交換膜を介して直流電流を作用させて、両イオン交換
膜の外側に流れている濃縮水中に被処理水中のイオンを
電気的に排除しながら脱イオン水を製造するものであ
る。このため、濃縮水中にはイオンが濃縮されることと
なる。
The electric deionized water producing apparatus is, for example,
Basically, a gap formed by the cation exchange membrane and the anion exchange membrane is filled with an ion exchanger to form a desalination chamber, and water to be treated is passed through the ion exchanger, and the water is passed through both ion exchange membranes. A DC current is applied to produce deionized water while electrically removing ions in the water to be treated from the concentrated water flowing outside the ion exchange membranes. Therefore, ions are concentrated in the concentrated water.

【0004】この濃縮水は装置外へ排出されるが、電気
式脱イオン水製造装置の水利用率(回収率)を向上させ
るため捨てずに再利用している。すなわち、被処理水を
濃縮水とし、該濃縮水を循環使用し、その一部を装置外
へ排出することにより水利用率の向上と適度な濃縮水の
イオン濃度の維持を図っている。このように、濃縮水を
循環する方法は濃縮水中のイオン濃度が上昇するため濃
縮水の電気伝導率が上昇する。このため、電気が流れ易
く、当該装置に流れる電流量が多くなる。従って、イオ
ン除去率も向上する。また、該装置に印加する電圧を低
くできるため消費電力が少なくなるなどの効果がある。
[0004] The concentrated water is discharged out of the apparatus, but is reused instead of being discarded in order to improve the water utilization rate (recovery rate) of the electric deionized water producing apparatus. That is, the water to be treated is used as concentrated water, and the concentrated water is circulated and used, and a part of the water is discharged to the outside of the apparatus to improve the water utilization rate and maintain an appropriate ion concentration of the concentrated water. As described above, in the method of circulating the concentrated water, the electric conductivity of the concentrated water increases because the ion concentration in the concentrated water increases. Therefore, electricity easily flows, and the amount of current flowing through the device increases. Therefore, the ion removal rate also improves. Further, since the voltage applied to the device can be reduced, there is an effect that power consumption is reduced.

【0005】しかし、その反面、濃縮水中に当初は微量
に存在するCa、Mgなどの硬度成分も、長期間の循環
使用により濃縮されて濃縮室内や電極室内にスケールと
して析出しやすくなる。濃縮室内や電極室内にスケール
が発生すると、その部分での電気抵抗が上昇し、電流が
流れにくくなる。すなわち、スケール発生が無い場合と
同一の電流値を流すためには電圧を上昇させる必要があ
り、消費電力が増加する。また、スケール付着量が更に
増加すると電圧が更に上昇し、装置の最大電圧値を越え
た場合は電流値が低下することとなる。この場合、イオ
ン除去に必要な電流値が流せなくなり、処理水質の低下
を招く。
[0005] However, on the other hand, hardness components such as Ca and Mg which are initially present in a trace amount in the concentrated water are also concentrated by circulating for a long period of time and are likely to precipitate as scale in the concentration chamber or the electrode chamber. When scale is generated in the concentration chamber or the electrode chamber, the electric resistance in that part increases, and it becomes difficult for current to flow. That is, in order to flow the same current value as when there is no scale generation, the voltage needs to be increased, and power consumption increases. Further, when the amount of scale adhesion further increases, the voltage further increases, and when the voltage exceeds the maximum voltage value of the apparatus, the current value decreases. In this case, a current value required for ion removal cannot be passed, and the quality of treated water is reduced.

【0006】濃縮水中に硬度成分が濃縮することを防止
する方法としては、(1)逆浸透膜装置の被処理水を軟
化処理する方法、(2)逆浸透膜装置の透過水(電気式
脱イオン水製造装置の被処理水)を軟化処理する方法、
(3)濃縮水の排出量を多くし、濃縮水中への硬度成分
の濃縮を少なくする方法、が挙げられる。
As methods for preventing the hardness component from being concentrated in the concentrated water, there are (1) a method of softening water to be treated in a reverse osmosis membrane device, and (2) a method of permeating water (electrically A method for softening the water to be treated in the ionized water producing apparatus),
(3) A method of increasing the discharge amount of the concentrated water and reducing the concentration of the hardness component in the concentrated water.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記
(1)及び(2)の方法は、硬水軟化処理装置の設置及
び再生剤の管理が必要となり、コスト増加や設備の複雑
化を招く。また、上記(3)の方法は、被処理水の硬度
成分濃度が比較的高い場合は当該装置の水利用率(回収
率)が低下するという問題がある。
However, the above methods (1) and (2) require installation of a water softening apparatus and management of a regenerating agent, resulting in an increase in cost and an increase in complexity of equipment. Further, the method (3) has a problem that when the concentration of the hardness component of the water to be treated is relatively high, the water utilization rate (recovery rate) of the apparatus is reduced.

【0008】従って、本発明の目的は、濃縮室内や電極
室内での硬度成分のスケール析出を防止して、脱塩性能
を維持する電気式脱イオン水製造装置を提供することに
ある。
Accordingly, it is an object of the present invention to provide an electric deionized water producing apparatus which prevents scale precipitation of a hardness component in a concentration chamber or an electrode chamber and maintains desalination performance.

【0009】[0009]

【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、一般に、電気式脱イオ
ン水製造装置の被処理水のpH値は5〜7の範囲、濃縮
水のpH値は4〜8の範囲であり、濃縮水中に濃縮され
た硬度成分は、このpH範囲においては溶解力に乏しく
スケールが発生し易い。従って、濃縮水のpH値を酸性
側にすれば、硬度成分の溶解力が高まり、スケールの発
生を防止できる。しかし、強酸性にすると当該装置の金
属部分の腐食が発生し易くなる。そこで、濃縮水に更に
スケール発生防止剤を添加すれば、濃縮水のpH値を高
めに維持しても十分なスケール発生防止効果が得られる
と共に、金属腐食を防止できること等を見出し、本発明
を完成するに至った。
Under such circumstances, the present inventors have made intensive studies and as a result, generally, the pH value of the water to be treated in the electric deionized water producing apparatus is in the range of 5 to 7, and the concentration of concentrated water. The pH value is in the range of 4 to 8, and the hardness component concentrated in the concentrated water has poor dissolving power in this pH range and scale is easily generated. Therefore, when the pH value of the concentrated water is set to the acidic side, the dissolving power of the hardness component is increased, and the generation of scale can be prevented. However, if it is made strongly acidic, corrosion of the metal part of the device is likely to occur. Therefore, it has been found that if a scale generation inhibitor is further added to the concentrated water, a sufficient scale generation preventing effect can be obtained even if the pH value of the concentrated water is maintained at a high level, and metal corrosion can be prevented. It was completed.

【0010】すなわち、本発明は、脱塩室、濃縮室及び
電極室を有すると共に、一対の電極に電圧を印加するこ
とで脱塩室から脱イオン水を得る電気式脱イオン水製造
装置において、前記濃縮室に供給される濃縮水にスケー
ル発生防止剤及び酸性液を添加する電気式脱イオン水製
造装置を提供するものである。
That is, the present invention relates to an electric deionized water producing apparatus which has a deionization chamber, a concentration chamber and an electrode chamber, and obtains deionized water from the deionization chamber by applying a voltage to a pair of electrodes. It is an object of the present invention to provide an electric deionized water producing apparatus for adding a scale generation inhibitor and an acid solution to concentrated water supplied to the concentrating chamber.

【0011】このような電気式脱イオン水製造装置によ
れば、濃縮水は酸性側に調整され循環使用される。この
ため、濃縮水はCa、Mgなどの硬度成分の溶解力が増
加する。また、スケール発生防止剤により、例えば、シ
リカと硬度成分が複合した形態のスケールをミセル形成
による荷電反発などにより分散させたり、あるいはキレ
ート化により安定化させる。したがって、濃縮水が高濃
度に濃縮されても、濃縮室内や電極室内での炭酸カルシ
ウム、ケイ酸カルシウムなどのスケールの発生を両薬剤
の溶解作用、分散作用及び安定化作用により確実に防止
することができる。このようにスケール発生防止剤と酸
性液との相乗効果により、濃縮水に酸性液のみを添加す
る場合に比べて、濃縮水のpH値を高めに維持できるた
め、装置の金属部分の腐食の発生も同時に防止できる。
また、スケール発生防止剤は、酸性の溶液中で安定であ
り、長期間保管してもその効力が持続される。従って、
予め、スケール発生防止剤と酸性希釈溶液の混合液を調
製しておき、これを添加するようにすれば、供給設備が
簡易となり好ましい。
According to such an electric deionized water producing apparatus, the concentrated water is adjusted to the acidic side and is circulated. For this reason, the concentrated water has an increased ability to dissolve the hardness components such as Ca and Mg. Further, the scale in which silica and a hardness component are combined is dispersed by, for example, charge repulsion due to micelle formation, or is stabilized by chelation by the scale generation inhibitor. Therefore, even if the concentrated water is concentrated to a high concentration, the generation of scales such as calcium carbonate and calcium silicate in the concentration chamber or the electrode chamber is reliably prevented by the dissolving, dispersing and stabilizing actions of both agents. Can be. As described above, the synergistic effect of the scale generation inhibitor and the acidic solution allows the pH value of the concentrated water to be maintained higher than when only the acidic solution is added to the concentrated water. Can also be prevented at the same time.
Further, the scale generation inhibitor is stable in an acidic solution, and its effectiveness is maintained even after long-term storage. Therefore,
It is preferable to prepare a mixed solution of the scale generation inhibitor and the acidic diluting solution in advance, and to add the mixed solution, because the supply equipment is simplified.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態について、図
面を参照して説明する。図1は、本発明の実施の形態に
おける電気式脱イオン水製造装置の構成を示すブロック
図である。被処理水は、電気式脱イオン水製造装置(以
下、EDI装置ともいう)1に流入される。EDI装置
1は、イオン交換樹脂、イオン交換繊維等のイオン交換
体が充填された脱塩室と、この脱塩室とイオン交換膜を
介して仕切られた濃縮室と、これら脱塩室及び濃縮室に
電圧を印加する電極を持つ電極室を有している。そし
て、脱塩室に被処理水を、また、濃縮室に濃縮水を流通
することで、塩類をイオン交換膜を介し濃縮室を流れる
濃縮水中に移動させる。これによって、塩類が除去され
た処理水(脱イオン水)を得ると供に、塩類が濃縮され
た濃縮水を濃縮室に得ることができる。従って、脱塩室
から処理水が排出され、濃縮室から濃縮水が排出され
る。また、一対の電極を収納する電極室にも濃縮水(電
極水)を流通する。従って、該電極室からは電極水が排
出される。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an electric deionized water producing apparatus according to an embodiment of the present invention. The water to be treated flows into an electric deionized water producing apparatus (hereinafter, also referred to as an EDI apparatus) 1. The EDI apparatus 1 includes a desalting chamber filled with an ion exchanger such as an ion exchange resin and an ion exchange fiber, a concentrating chamber separated from the desalting chamber and an ion exchange membrane, and a desalting chamber and a concentrating chamber. An electrode chamber having an electrode for applying a voltage to the chamber is provided. Then, by flowing the water to be treated through the desalting chamber and the concentrated water through the concentration chamber, the salts are moved into the concentrated water flowing through the concentration chamber via the ion exchange membrane. Thereby, the treated water (deionized water) from which the salts have been removed can be obtained, and the concentrated water in which the salts have been concentrated can be obtained in the concentration chamber. Therefore, the treated water is discharged from the desalting chamber, and the concentrated water is discharged from the concentration chamber. Concentrated water (electrode water) also flows through the electrode chamber that houses the pair of electrodes. Therefore, electrode water is discharged from the electrode chamber.

【0013】一方、EDI装置1の濃縮室から排出され
る濃縮水の全量及び被処理水の一部の補給水は濃縮水貯
蔵槽2に流入される。また、スケール発生防止剤と酸性
液の混合液(以下、「混合液」と言う)は混合液注入配
管3により濃縮水貯蔵槽2に所定量が添加される。そし
て、濃縮水貯蔵槽2に貯蔵され、所定の酸濃度及びスケ
ール発生防止剤濃度に調整された濃縮水はEDI装置1
の濃縮室及び電極室にそれぞれ供給される。また、濃縮
水貯蔵槽2内の濃縮水はイオン濃度調整のためその一部
はブローされる。
On the other hand, the entire amount of the concentrated water discharged from the concentration chamber of the EDI device 1 and a part of the replenishment water to be treated flow into the concentrated water storage tank 2. A predetermined amount of a mixture of the scale generation inhibitor and the acidic liquid (hereinafter, referred to as “mixture”) is added to the concentrated water storage tank 2 through the mixture injection pipe 3. The concentrated water stored in the concentrated water storage tank 2 and adjusted to a predetermined acid concentration and a scale generation inhibitor concentration is supplied to the EDI device 1.
Are supplied to the concentration chamber and the electrode chamber, respectively. A part of the concentrated water in the concentrated water storage tank 2 is blown to adjust the ion concentration.

【0014】本発明の実施の形態によれば、濃縮水中に
添加された混合液により、該濃縮水のpHは酸性に維持
されてスケールの溶解力が増大する。また、所定の濃度
のスケール発生防止剤は、例えば、シリカと硬度成分が
複合したスケールをミセル形成による荷電反発などによ
り分散させたり、あるいはキレート化により安定化させ
る。従って、濃縮水が高濃度に濃縮されても濃縮室内で
のスケール発生を防止することができる。このため、当
該装置1においては、スケールの発生により電気抵抗が
上昇することに伴う性能低下を防止することができる。
また、濃縮水を高濃度に濃縮して使用することが可能と
なるため、当該装置1の水利用率を向上させると共に、
印加電圧を低くすることができ、消費電力を低減するこ
とができる。
According to the embodiment of the present invention, the pH of the concentrated water is maintained acidic by the mixture added to the concentrated water, and the dissolving power of the scale is increased. Further, the scale generation inhibitor having a predetermined concentration disperses, for example, a scale in which silica and a hardness component are combined by charge repulsion due to micelle formation, or stabilizes the scale by chelation. Therefore, even if the concentrated water is concentrated to a high concentration, it is possible to prevent the generation of scale in the concentration chamber. For this reason, in the device 1, it is possible to prevent a decrease in performance due to an increase in electric resistance due to generation of scale.
In addition, since the concentrated water can be used after being concentrated to a high concentration, the water utilization rate of the device 1 can be improved,
The applied voltage can be reduced, and power consumption can be reduced.

【0015】前記被処理水としては、特に制限されない
が、市水、工業用水を逆浸透膜処理した透過水、あるい
は半導体ウェハーを超純水で洗浄した際に排出される洗
浄排水等が挙げられる。また、該被処理水に含まれるC
a、Mgなどの硬度成分量およびシリカの量は、原水の
硬度成分濃度や使用する逆浸透膜装置の2価イオン除去
性能により異なるが、0.01〜2mg/L程度である。本
発明においては、特に、硬度成分およびシリカを多く含
有する水を被処理水とする場合に有効である。
The water to be treated is not particularly limited, and may be city water, permeated water obtained by treating industrial water with a reverse osmosis membrane, or washing wastewater discharged when a semiconductor wafer is washed with ultrapure water. . In addition, C contained in the water to be treated
The amounts of the hardness components such as a and Mg and the amount of silica vary depending on the hardness component concentration of the raw water and the divalent ion removal performance of the reverse osmosis membrane device used, but are about 0.01 to 2 mg / L. The present invention is particularly effective when water containing a large amount of a hard component and silica is used as the water to be treated.

【0016】前記スケール発生防止剤としては、ケイ酸
カルシウムなどのスケールを分散、安定化などにより濃
縮室内及び電極室内での発生、析出を抑制または防止す
るものであれば特に制限されないが、例えば、アクリル
酸系(共)重合体、マレイン酸系(共)重合体、スルホ
ン酸系(共)重合体、イタコン酸系(共)重合体などの
有機高分子化合物;オルトリン酸、2-ヒドロキシエチリ
デン-1,1-ジホスホン酸、ホスホノブタントリカルボン
酸又はこれらの塩などの有機又は無機リン化合物;エチ
レンジアミン、ジエチレントリアミンなどのアミン系重
合体又はニトリロ三酢酸、エチレンジアミン四酢酸塩、
ジエチレントリアミン五酢酸などのアミノカルボン酸系
共重合体又はグルコン酸、クエン酸、シュウ酸、ギ酸、
酒石酸、フィチン酸、コハク酸、乳酸などのキレート剤
が挙げられる。また、これらスケール発生防止剤は1種
又は2種以上使用することができる。
The scale generation inhibitor is not particularly limited as long as it suppresses or prevents generation and precipitation in the concentration chamber and the electrode chamber by dispersing and stabilizing scale such as calcium silicate. Organic polymer compounds such as acrylic acid (co) polymer, maleic acid (co) polymer, sulfonic acid (co) polymer and itaconic acid (co) polymer; orthophosphoric acid, 2-hydroxyethylidene- Organic or inorganic phosphorus compounds such as 1,1-diphosphonic acid, phosphonobutanetricarboxylic acid or a salt thereof; amine-based polymers such as ethylenediamine, diethylenetriamine or nitrilotriacetic acid, ethylenediaminetetraacetate;
Aminocarboxylic acid-based copolymers such as diethylenetriaminepentaacetic acid or gluconic acid, citric acid, oxalic acid, formic acid,
Chelating agents such as tartaric acid, phytic acid, succinic acid, lactic acid and the like. In addition, one or more of these scale generation inhibitors can be used.

【0017】前記スケール発生防止剤の添加量として
は、特に制限されないが、濃縮水中、0.01〜1,000mg/L
の範囲とすることが好ましい。添加量が0.01mg/L未満で
はスケール除去効率が劣り、1,000mg/L を越えるとスケ
ール除去効果が飽和すると共に、コスト高となる。
The amount of the scale inhibitor to be added is not particularly limited, but may be 0.01 to 1,000 mg / L in concentrated water.
It is preferable to be within the range. If the addition amount is less than 0.01 mg / L, the scale removal efficiency is inferior, and if it exceeds 1,000 mg / L, the scale removal effect is saturated and the cost increases.

【0018】前記スケール発生防止剤と混合される酸性
液としては、特に制限されないが、塩酸、硫酸などの工
業薬品が入手が容易であり、価格も安いために好適であ
る。該酸性液は、濃縮水のpH値が2.0〜4.0の範
囲となるように添加すればよい。濃縮水のpH値が2.
0未満であると装置内の金属部品を腐食させる傾向が大
きくなる。また、酸として塩酸を用いる場合、濃縮水中
への酸の多量添加は電極室での電気分解作用により次亜
塩素酸を発生し、この強い酸化力により、イオン交換膜
の表面を酸化劣化させる。また、硫酸の場合、濃縮水中
への酸の多量添加は濃縮水中のCaと反応して硫酸カル
シウムのスケールを発生する場合がある。従って、本発
明では、濃縮水のpH値をやや高めの3.0〜3.5の
範囲とし、これにスケール発生防止剤を濃縮水中、0.
01〜0.04mg/L添加して使用することが好ましい。
これにより、スケール発生防止効果が十分発揮されると
共に、イオン交換膜の表面が酸化劣化するほどの次亜塩
素酸の発生はなくなり、また、硫酸カルシウムのスケー
ルの発生も抑制できる。
The acidic liquid to be mixed with the scale generation inhibitor is not particularly limited, but industrial chemicals such as hydrochloric acid and sulfuric acid are easily available and are suitable because of their low cost. The acidic solution may be added so that the pH value of the concentrated water is in the range of 2.0 to 4.0. 1. The pH value of the concentrated water is 2.
If it is less than 0, the tendency to corrode metal parts in the apparatus increases. When hydrochloric acid is used as the acid, addition of a large amount of acid to the concentrated water generates hypochlorous acid by electrolysis in the electrode chamber, and the strong oxidizing power causes the surface of the ion exchange membrane to be oxidized and deteriorated. In addition, in the case of sulfuric acid, a large amount of acid added to the concentrated water may react with Ca in the concentrated water to generate calcium sulfate scale. Therefore, in the present invention, the pH value of the concentrated water is set to a slightly higher range of 3.0 to 3.5, and the scale generation inhibitor is added to the concentrated water at a pH of 0.1 to 3.5.
It is preferable to use it by adding 01 to 0.04 mg / L.
Thereby, the effect of preventing scale generation is sufficiently exhibited, and the generation of hypochlorous acid to the extent that the surface of the ion exchange membrane is oxidized and degraded is eliminated, and the generation of scale of calcium sulfate can be suppressed.

【0019】本発明において、混合液の作成や濃度調整
方法としては、特に制限されず、例えば、原液の酸性液
とスケール防止剤を混合する方法、塩酸、硫酸などの酸
性液の希釈溶液とスケール発生防止剤を混合する方法等
が挙げられ、このうち、酸の希釈溶液とスケール発生防
止剤を混合する方法が好ましい。
In the present invention, there are no particular restrictions on the method of preparing the mixture or adjusting the concentration, and examples thereof include a method of mixing an acid solution of a stock solution with a scale inhibitor, a method of diluting an acid solution such as hydrochloric acid and sulfuric acid, and a method of scaling. Examples of the method include a method of mixing a generation inhibitor, and among them, a method of mixing a dilute acid solution and a scale generation inhibitor is preferable.

【0020】濃縮水への混合液の注入場所としては、特
に制限されず、上記実施の形態例の他、濃縮水循環ライ
ンの配管4内へ注入する方法であってもよい。また、濃
縮水への混合液の注入方法は、連続注入方法又は間欠注
入方法のいずれでもよい。また、混合液とせず、酸性液
とスケール発生防止剤を別個の注入配管等で濃縮水に添
加するような方法であってもよい。
The location for injecting the mixture into the concentrated water is not particularly limited, and may be a method of injecting into the pipe 4 of the concentrated water circulation line in addition to the above-described embodiment. Further, the method of injecting the mixed solution into the concentrated water may be either a continuous injection method or an intermittent injection method. Further, a method may be used in which the acid solution and the scale generation inhibitor are added to the concentrated water via separate injection pipes or the like instead of the mixed solution.

【0021】[0021]

【実施例】次に、実施例を挙げて、本発明を更に具体的
に説明する。 実施例1 下記仕様のEDI装置及び図1の装置を用いて、20日
間の処理実験を行った。被処理水は、水道水を逆浸透膜
装置で処理した透過水にシリカと炭酸カルシウム溶液を
追加添加して、Ca濃度を0.2mg/L及びシリカ濃度を
0.2mg-SiO2/L に調整した電気伝導率が5.0μS/cm
の水を用いた。また、混合液はスケール発生防止剤と酸
性溶液を容量比で1:10で混合した溶液とし、添加量
は濃縮水中、スケール発生防止剤が15ppm となる量と
した。この時、濃縮水のpHは3〜3.5であった。評
価は20日間経過後の処理水の抵抗率を測定し、濃縮室
及び電極室内のスケール付着を目視観察することにより
行った。結果を表1に示す。
Next, the present invention will be described more specifically with reference to examples. Example 1 A processing experiment for 20 days was performed using an EDI device having the following specifications and the device shown in FIG. The water to be treated was prepared by adding silica and a calcium carbonate solution to the permeated water obtained by treating tap water with a reverse osmosis membrane device to reduce the Ca concentration to 0.2 mg / L and the silica concentration to 0.2 mg-SiO 2 / L. The adjusted electric conductivity is 5.0 μS / cm
Of water was used. The mixed solution was a solution in which a scale generation inhibitor and an acidic solution were mixed at a volume ratio of 1:10, and the added amount was 15 ppm of the scale generation inhibitor in concentrated water. At this time, the pH of the concentrated water was 3 to 3.5. The evaluation was performed by measuring the resistivity of the treated water after 20 days, and visually observing the scale adhesion in the concentration chamber and the electrode chamber. Table 1 shows the results.

【0022】(EDI装置等)・脱塩室の大きさ;縦1
00mm、横100mm、厚さ8mm(樹脂充填量80ml)図
1に示すように、3室の脱塩室の間に濃縮室2室があ
り、この3室の脱塩室の外側には一対の電極室が配さ
れ、陽極室及び電極室の厚さはそれぞれ約3.5mmであ
る。 ・処理水量:1台当たり、約15L/h ・印加電圧及び電流:80V、0.2A ・水温:25℃ ・使用イオン交換体:カチオン交換樹脂アンバーライト
IR120B アニオン交換樹脂アンバーライトIRA402(いずれ
もロームアンドハース社製) カチオン交換樹脂とアニオン交換樹脂の混合比1:1
(容積比) ・使用イオン交換膜:カチオン交換膜C−66、アニオ
ン交換膜AMH(いずれもトクヤマ社製) ・スケール発生防止剤:アクリル酸系共重合体(商品名
「アキュマ2000」ロームアンドハース社製) ・酸性液:10%濃度の塩酸溶液
(EDI device etc.) ・ Size of desalination room; length 1
As shown in FIG. 1, there are two concentrating chambers between the three desalting chambers, and a pair of condensing chambers outside the three desalting chambers. An electrode chamber is provided, and the thickness of each of the anode chamber and the electrode chamber is about 3.5 mm.・ Amount of treated water: about 15 L / h per unit ・ Applied voltage and current: 80 V, 0.2 A ・ Water temperature: 25 ° C. ・ Ion exchanger used: Cation exchange resin Amberlite IR120B Anion exchange resin Amberlite IRA402 (both ROHM) And Haas) 1: 1 mixture ratio of cation exchange resin and anion exchange resin
(Volume ratio)-Ion exchange membrane used: Cation exchange membrane C-66, anion exchange membrane AMH (all manufactured by Tokuyama Corporation)-Scale generation inhibitor: Acrylic acid-based copolymer (trade name "Acuma 2000" Rohm and Haas)・ Acid solution: 10% hydrochloric acid solution

【0023】比較例1 酸性液を添加せず、スケール発生防止剤のみを濃縮水貯
蔵槽に添加する以外は、実施例1と同様の方法で行っ
た。濃縮水のpHは6.8〜7.4の範囲であった。結
果を表1に示す。
Comparative Example 1 The procedure of Example 1 was repeated, except that only the scale generation inhibitor was added to the concentrated water storage tank without adding the acidic liquid. The pH of the retentate was in the range of 6.8-7.4. Table 1 shows the results.

【0024】比較例2 スケール発生防止剤の濃度が、濃縮水中、40ppm とな
るように添加した以外は、比較例1と同様の方法で行っ
た。
Comparative Example 2 The same procedure as in Comparative Example 1 was carried out except that the concentration of the scale generation inhibitor was added so as to be 40 ppm in the concentrated water.

【0025】比較例3 スケール発生防止剤を添加せず、酸性液のみを濃縮水貯
蔵槽に添加する以外は、実施例1と同様の方法で行っ
た。濃縮水のpHは3.0〜3.5の範囲であった。結
果を表1に示す。
Comparative Example 3 The same procedure as in Example 1 was carried out except that only the acid solution was added to the concentrated water storage tank without adding the scale generation inhibitor. The pH of the retentate was in the range of 3.0-3.5. Table 1 shows the results.

【0026】比較例4 濃縮水のpHが1.8〜2.2の範囲となるように酸性
液を添加した以外は、比較例3と同様の方法で行った。
濃縮水のpHは1.8〜2.2の範囲であった。結果を
表1に示す。
Comparative Example 4 The same procedure as in Comparative Example 3 was carried out, except that the acidic solution was added so that the pH of the concentrated water was in the range of 1.8 to 2.2.
The pH of the retentate was in the range of 1.8-2.2. Table 1 shows the results.

【0027】比較例5 混合液を添加しない以外は、実施例1と同様の方法で行
った。濃縮水のpHは6.8〜7.4の範囲であった。
結果を表1に示す。
Comparative Example 5 The same procedure as in Example 1 was carried out except that no mixed solution was added. The pH of the retentate was in the range of 6.8-7.4.
Table 1 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】表1より、実施例1、比較例2及び比較例
4は、スケールの析出が全く見られず、処理水質の低下
もなかった。比較例2はスケール発生防止剤の添加量が
実施例1の2.7倍であり、コストが嵩むという問題が
ある。また、比較例4は濃縮水が強酸性であり、金属部
分を腐食する恐れがある。これに対し、実施例1は比較
例2よりもスケール発生防止剤の添加量が少なく、ま
た、酸性液の添加量が比較例4よりも少ないにもかかわ
らず、スケールの析出が認められず、処理水質の低下も
なかった。また、pH値もやや高めであり装置の金属部
分の腐食の恐れもない。このように、実施例1では、ス
ケール発生防止剤と酸性液の相乗効果が認められる。ま
た、比較例1、比較例3及び比較例5のように、濃縮室
内にスケールが発生すると、その部分の電気抵抗が大き
くなり電流が流れ難くなる。従って、イオン交換体に吸
着した不純物イオンが再生され難くなり、その結果、当
該電気式脱イオン水製造装置の脱イオン性能が低下す
る。
From Table 1, it can be seen that in Example 1, Comparative Example 2 and Comparative Example 4, no scale deposition was observed and the quality of the treated water was not reduced. Comparative Example 2 has a problem that the amount of the scale generation inhibitor added is 2.7 times that of Example 1 and the cost is increased. In Comparative Example 4, the concentrated water is strongly acidic, and may corrode metal parts. On the other hand, in Example 1, the addition amount of the scale generation inhibitor was smaller than that of Comparative Example 2, and no scale deposition was observed, despite the addition amount of the acidic liquid being smaller than that of Comparative Example 4. There was no decrease in treated water quality. Further, the pH value is slightly higher, and there is no danger of corrosion of metal parts of the apparatus. Thus, in Example 1, a synergistic effect of the scale generation inhibitor and the acidic liquid is recognized. Further, when scale is generated in the enrichment chamber as in Comparative Example 1, Comparative Example 3, and Comparative Example 5, the electric resistance at that portion becomes large, and it becomes difficult for current to flow. Therefore, it becomes difficult to regenerate the impurity ions adsorbed on the ion exchanger, and as a result, the deionization performance of the electric deionized water producing apparatus is reduced.

【0030】[0030]

【発明の効果】本発明によれば、濃縮水は酸性側に調整
され循環使用される。このため、濃縮水はCa、Mgな
どの硬度成分の溶解力が増加する。また、スケール発生
防止剤により、例えば、シリカと硬度成分が複合した形
態のスケールをミセル形成による荷電反発などにより分
散させたり、あるいはキレート化により安定化させる。
したがって、濃縮水が高濃度に濃縮されても、濃縮室内
や電極室内での炭酸カルシウム、ケイ酸カルシウムなど
のスケールの発生を両薬剤の溶解作用、分散作用及び安
定化作用により確実に防止することができる。このよう
にスケール発生防止剤と酸性液との相乗効果により、濃
縮水に酸性液のみを添加する場合に比べて、濃縮水のp
H値を高めに維持できるため、装置の金属部分の腐食の
発生も同時に防止できる。また、スケール発生防止剤
は、酸性の溶液中で安定であり、長期間保管してもその
効力が持続される。従って、スケール発生防止剤と酸性
希釈溶液の混合液を予め調製した薬剤として使用するの
に好適である。このように、当該装置においては、スケ
ールの発生により電気抵抗が上昇することに伴う性能低
下を防止することができる。また、濃縮水を高濃度に濃
縮して使用することが可能となるため、当該装置の水利
用率を向上させると共に、印加電圧を低くすることがで
き、消費電力を低減することができる。
According to the present invention, the concentrated water is adjusted to the acidic side and recycled. For this reason, the concentrated water has an increased ability to dissolve the hardness components such as Ca and Mg. Further, the scale in which silica and a hardness component are combined is dispersed by, for example, charge repulsion due to micelle formation, or is stabilized by chelation by the scale generation inhibitor.
Therefore, even if the concentrated water is concentrated to a high concentration, the generation of scales such as calcium carbonate and calcium silicate in the concentration chamber or the electrode chamber is reliably prevented by the dissolving, dispersing and stabilizing actions of both agents. Can be. As described above, due to the synergistic effect of the scale generation inhibitor and the acidic solution, compared to the case where only the acidic solution is added to the concentrated solution, p
Since the H value can be kept high, the occurrence of corrosion of the metal part of the device can be prevented at the same time. Further, the scale generation inhibitor is stable in an acidic solution, and its effectiveness is maintained even after long-term storage. Therefore, it is suitable to use a mixed solution of a scale generation inhibitor and an acidic dilution solution as a previously prepared drug. As described above, in the device, it is possible to prevent performance degradation due to an increase in electric resistance due to generation of scale. Further, since the concentrated water can be used after being concentrated to a high concentration, the water utilization rate of the device can be improved, the applied voltage can be reduced, and the power consumption can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における電気式脱イオン水
製造装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an electric deionized water producing apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電気式脱イオン水製造装置 2 濃縮水貯蔵槽 3 混合液注入管 4 濃縮水循環ライン DESCRIPTION OF SYMBOLS 1 Electric deionized water production apparatus 2 Concentrated water storage tank 3 Mixed liquid injection pipe 4 Concentrated water circulation line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 5/10 620 C02F 5/10 620E 620A 630 630 5/14 5/14 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 5/10 620 C02F 5/10 620E 620A 630 630 5/14 5/14 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 脱塩室、濃縮室及び電極室を有すると共
に、一対の電極に電圧を印加することで脱塩室から脱イ
オン水を得る電気式脱イオン水製造装置において、前記
濃縮室に供給される濃縮水にスケール発生防止剤及び酸
性液を添加することを特徴とする電気式脱イオン水製造
装置。
1. An electric deionized water producing apparatus having a deionization chamber, a concentration chamber, and an electrode chamber, wherein voltage is applied to a pair of electrodes to obtain deionized water from the deionization chamber. An electric deionized water producing apparatus, wherein a scale generation inhibitor and an acid solution are added to the supplied concentrated water.
【請求項2】 脱塩室、濃縮室及び電極室を有すると共
に、一対の電極に電圧を印加することで脱塩室から脱イ
オン水を得る電気式脱イオン水製造装置において、前記
濃縮室に供給される濃縮水にスケール発生防止剤及び酸
性液を含有する混合液を添加することを特徴とする電気
式脱イオン水製造装置。
2. An electric deionized water producing apparatus having a deionization chamber, a concentration chamber, and an electrode chamber, wherein voltage is applied to a pair of electrodes to obtain deionized water from the desalination chamber. An electric deionized water producing apparatus, wherein a mixed liquid containing a scale generation inhibitor and an acidic liquid is added to the supplied concentrated water.
【請求項3】 前記スケール発生防止剤が、有機高分子
化合物、有機又は無機リン化合物、キレート剤から選ば
れる1種又は2種以上である請求項1又は2記載の電気
式脱イオン水製造装置。
3. The electric deionized water producing apparatus according to claim 1, wherein the scale generation inhibitor is one or more selected from an organic polymer compound, an organic or inorganic phosphorus compound, and a chelating agent. .
JP10168663A 1998-06-16 1998-06-16 Electric deionized water apparatus Pending JP2000000571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10168663A JP2000000571A (en) 1998-06-16 1998-06-16 Electric deionized water apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10168663A JP2000000571A (en) 1998-06-16 1998-06-16 Electric deionized water apparatus

Publications (1)

Publication Number Publication Date
JP2000000571A true JP2000000571A (en) 2000-01-07

Family

ID=15872202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10168663A Pending JP2000000571A (en) 1998-06-16 1998-06-16 Electric deionized water apparatus

Country Status (1)

Country Link
JP (1) JP2000000571A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310187A (en) * 2000-05-02 2001-11-06 Kurita Water Ind Ltd Slime preventing method
WO2011083443A2 (en) * 2010-01-11 2011-07-14 Ecolab Usa Inc. Control of hard water scaling in electrochemical cells
JP2018030088A (en) * 2016-08-24 2018-03-01 株式会社日本触媒 Scale inhibitor for geothermal power generation devices, and scale prevention method for geothermal water
WO2019111476A1 (en) * 2017-12-07 2019-06-13 栗田工業株式会社 Reverse osmosis membrane concentrated water treatment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310187A (en) * 2000-05-02 2001-11-06 Kurita Water Ind Ltd Slime preventing method
WO2011083443A2 (en) * 2010-01-11 2011-07-14 Ecolab Usa Inc. Control of hard water scaling in electrochemical cells
US20110168567A1 (en) * 2010-01-11 2011-07-14 Ecolab Usa Inc. Control of hard water scaling in electrochemical cells
WO2011083443A3 (en) * 2010-01-11 2011-12-08 Ecolab Usa Inc. Control of hard water scaling in electrochemical cells
JP2018030088A (en) * 2016-08-24 2018-03-01 株式会社日本触媒 Scale inhibitor for geothermal power generation devices, and scale prevention method for geothermal water
WO2019111476A1 (en) * 2017-12-07 2019-06-13 栗田工業株式会社 Reverse osmosis membrane concentrated water treatment method
JP2019098300A (en) * 2017-12-07 2019-06-24 栗田工業株式会社 Method of treating concentrated water of reverse osmosis membrane

Similar Documents

Publication Publication Date Title
US6274019B1 (en) Electrodeionization apparatus
AU2014212394B2 (en) Rechargeable electrochemical cells
JP2001129554A (en) Method and apparatus for making deionized water
JP2000000571A (en) Electric deionized water apparatus
JP2001038359A (en) Deionized water production and device therefor
JP2001259644A (en) Pure water producer and pure water production method using the same
JP3575260B2 (en) Pure water production equipment
JP4505965B2 (en) Pure water production method
JP3695338B2 (en) Method for producing deionized water
JP3484329B2 (en) Deionized water production equipment
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP3501339B2 (en) Electric deionized water production equipment
JP3511459B2 (en) Electric deionized water production equipment
JP2002186835A (en) Operation method for reverse osmosis membrane device
JP3555732B2 (en) Pure water production method
JPH11216340A (en) Production of deionized water
JP3202887B2 (en) Wastewater recovery method
JP2000005763A (en) Electric deionized water production device
JP2001219161A (en) Water cleaning apparatus
JP3979889B2 (en) How to produce deionized water
JP4300828B2 (en) Electrodeionization apparatus and operation method thereof
JP4631148B2 (en) Pure water production method
JP2000140853A (en) Electrical regeneration type deionizing device and operation thereof
JP2012196630A (en) Treatment equipment and treatment method of acid liquid
TW202438456A (en) Method for operating an electrodeionization device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050922