WO2019189722A1 - ヘアピン型一本鎖rna分子の製造方法 - Google Patents
ヘアピン型一本鎖rna分子の製造方法 Download PDFInfo
- Publication number
- WO2019189722A1 WO2019189722A1 PCT/JP2019/013923 JP2019013923W WO2019189722A1 WO 2019189722 A1 WO2019189722 A1 WO 2019189722A1 JP 2019013923 W JP2019013923 W JP 2019013923W WO 2019189722 A1 WO2019189722 A1 WO 2019189722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rna molecule
- linker
- oligo rna
- stranded oligo
- stranded
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 61
- 230000014509 gene expression Effects 0.000 claims abstract description 90
- 238000000034 method Methods 0.000 claims abstract description 82
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 70
- 238000000137 annealing Methods 0.000 claims abstract description 65
- 108090000364 Ligases Proteins 0.000 claims abstract description 35
- 102000003960 Ligases Human genes 0.000 claims abstract description 35
- 101001095872 Enterobacteria phage T4 RNA ligase 2 Proteins 0.000 claims abstract description 27
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 803
- 125000002652 ribonucleotide group Chemical group 0.000 claims description 208
- 238000006243 chemical reaction Methods 0.000 claims description 181
- 239000002773 nucleotide Substances 0.000 claims description 100
- 125000003729 nucleotide group Chemical group 0.000 claims description 67
- 230000000295 complement effect Effects 0.000 claims description 50
- 101710188535 RNA ligase 2 Proteins 0.000 claims description 34
- 101710204104 RNA-editing ligase 2, mitochondrial Proteins 0.000 claims description 34
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 claims description 26
- 125000000719 pyrrolidinyl group Chemical group 0.000 claims description 15
- 229930024421 Adenine Natural products 0.000 claims description 13
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 claims description 13
- 229960000643 adenine Drugs 0.000 claims description 13
- 125000003386 piperidinyl group Chemical group 0.000 claims description 13
- 229940035893 uracil Drugs 0.000 claims description 13
- 101100127661 Homo sapiens LAMA1 gene Proteins 0.000 claims description 12
- 101150027218 LAMA1 gene Proteins 0.000 claims description 12
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 claims description 12
- 101150112014 Gapdh gene Proteins 0.000 claims description 11
- 101150077556 LMNA gene Proteins 0.000 claims description 11
- 108091028664 Ribonucleotide Proteins 0.000 claims description 9
- 239000002336 ribonucleotide Substances 0.000 claims description 9
- 229910021645 metal ion Inorganic materials 0.000 claims description 8
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 claims description 4
- 108700026220 vif Genes Proteins 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 abstract description 3
- 125000005647 linker group Chemical group 0.000 description 255
- 239000000243 solution Substances 0.000 description 86
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 57
- 102000004190 Enzymes Human genes 0.000 description 43
- 108090000790 Enzymes Proteins 0.000 description 43
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 40
- 229910052799 carbon Inorganic materials 0.000 description 36
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 34
- 238000001195 ultra high performance liquid chromatography Methods 0.000 description 33
- -1 cyclic amine Chemical class 0.000 description 31
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 28
- 239000000203 mixture Substances 0.000 description 26
- 102000039446 nucleic acids Human genes 0.000 description 26
- 108020004707 nucleic acids Proteins 0.000 description 26
- 150000007523 nucleic acids Chemical class 0.000 description 26
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 25
- 125000004430 oxygen atom Chemical group O* 0.000 description 25
- 230000035484 reaction time Effects 0.000 description 25
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 23
- 239000000872 buffer Substances 0.000 description 21
- 125000001424 substituent group Chemical group 0.000 description 20
- 125000004429 atom Chemical group 0.000 description 19
- 229910052757 nitrogen Inorganic materials 0.000 description 19
- 101710086015 RNA ligase Proteins 0.000 description 18
- 150000001721 carbon Chemical group 0.000 description 18
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 18
- 125000006239 protecting group Chemical group 0.000 description 18
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 17
- 230000000692 anti-sense effect Effects 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 16
- 230000001629 suppression Effects 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 125000004433 nitrogen atom Chemical group N* 0.000 description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 14
- 229960002429 proline Drugs 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- 230000002829 reductive effect Effects 0.000 description 13
- 238000004007 reversed phase HPLC Methods 0.000 description 13
- 229910052717 sulfur Inorganic materials 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 239000002202 Polyethylene glycol Substances 0.000 description 12
- 125000002947 alkylene group Chemical group 0.000 description 12
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 12
- 229940104302 cytosine Drugs 0.000 description 12
- 108020004999 messenger RNA Proteins 0.000 description 12
- 238000001426 native polyacrylamide gel electrophoresis Methods 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 229920001223 polyethylene glycol Polymers 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 150000008300 phosphoramidites Chemical class 0.000 description 11
- 108020004459 Small interfering RNA Proteins 0.000 description 10
- 239000004055 small Interfering RNA Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 108091028043 Nucleic acid sequence Proteins 0.000 description 8
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 8
- 230000006819 RNA synthesis Effects 0.000 description 8
- 150000003147 proline derivatives Chemical class 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 239000004721 Polyphenylene oxide Substances 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 125000006245 phosphate protecting group Chemical group 0.000 description 7
- 229920000570 polyether Polymers 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 150000002430 hydrocarbons Chemical group 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 230000002194 synthesizing effect Effects 0.000 description 6
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical compound C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 6
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000706 filtrate Substances 0.000 description 5
- 230000009368 gene silencing by RNA Effects 0.000 description 5
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000012044 organic layer Substances 0.000 description 5
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 125000004434 sulfur atom Chemical group 0.000 description 5
- 238000001308 synthesis method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- VKIGAWAEXPTIOL-UHFFFAOYSA-N 2-hydroxyhexanenitrile Chemical compound CCCCC(O)C#N VKIGAWAEXPTIOL-UHFFFAOYSA-N 0.000 description 4
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 238000003505 heat denaturation Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- 239000008215 water for injection Substances 0.000 description 4
- 0 C*C(N(CCC1)C1C(N*C)=O)=O Chemical compound C*C(N(CCC1)C1C(N*C)=O)=O 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 101500025614 Homo sapiens Transforming growth factor beta-1 Proteins 0.000 description 3
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- JVTFFCYVRMOWAS-UHFFFAOYSA-N N1C(=O)NC(=O)C=C1.N1C(N)=NC=2N=CNC2C1=O.N1C(N)=NC=2N=CNC2C1=O Chemical compound N1C(=O)NC(=O)C=C1.N1C(N)=NC=2N=CNC2C1=O.N1C(N)=NC=2N=CNC2C1=O JVTFFCYVRMOWAS-UHFFFAOYSA-N 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 108091081021 Sense strand Proteins 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- HVVNJUAVDAZWCB-YFKPBYRVSA-N [(2s)-pyrrolidin-2-yl]methanol Chemical group OC[C@@H]1CCCN1 HVVNJUAVDAZWCB-YFKPBYRVSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 238000006911 enzymatic reaction Methods 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 229940099456 transforming growth factor beta 1 Drugs 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 3
- ZPGDWQNBZYOZTI-SFHVURJKSA-N (2s)-1-(9h-fluoren-9-ylmethoxycarbonyl)pyrrolidine-2-carboxylic acid Chemical compound OC(=O)[C@@H]1CCCN1C(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 ZPGDWQNBZYOZTI-SFHVURJKSA-N 0.000 description 2
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 2
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 2
- LDHYTBAFXANWKM-UHFFFAOYSA-N 2-amino-3,7-dihydropurin-6-one Chemical compound O=C1NC(N)=NC2=C1NC=N2.O=C1NC(N)=NC2=C1N=CN2 LDHYTBAFXANWKM-UHFFFAOYSA-N 0.000 description 2
- 101100235718 Homo sapiens LMNA gene Proteins 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 241000222722 Leishmania <genus> Species 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000008118 PEG 6000 Substances 0.000 description 2
- 229920002584 Polyethylene Glycol 6000 Polymers 0.000 description 2
- 229920002594 Polyethylene Glycol 8000 Polymers 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 241000223105 Trypanosoma brucei Species 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 125000004103 aminoalkyl group Chemical group 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 125000006575 electron-withdrawing group Chemical group 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 2
- 229960005542 ethidium bromide Drugs 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 125000001072 heteroaryl group Chemical group 0.000 description 2
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 2
- 125000004449 heterocyclylalkenyl group Chemical group 0.000 description 2
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 108010042502 laminin A Proteins 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000011535 reaction buffer Substances 0.000 description 2
- 239000002342 ribonucleoside Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 1
- JBWYRBLDOOOJEU-UHFFFAOYSA-N 1-[chloro-(4-methoxyphenyl)-phenylmethyl]-4-methoxybenzene Chemical compound C1=CC(OC)=CC=C1C(Cl)(C=1C=CC(OC)=CC=1)C1=CC=CC=C1 JBWYRBLDOOOJEU-UHFFFAOYSA-N 0.000 description 1
- MTHMGIJBEBMASP-UHFFFAOYSA-N 2-amino-3,7-dihydropurin-6-one;6-amino-1h-pyrimidin-2-one Chemical compound NC=1C=CNC(=O)N=1.O=C1NC(N)=NC2=C1NC=N2.O=C1NC(N)=NC2=C1NC=N2 MTHMGIJBEBMASP-UHFFFAOYSA-N 0.000 description 1
- VMQHILPYRDYKPJ-UHFFFAOYSA-N 2-amino-3,7-dihydropurin-6-one;6-amino-1h-pyrimidin-2-one Chemical compound NC=1C=CNC(=O)N=1.NC=1C=CNC(=O)N=1.O=C1NC(N)=NC2=C1NC=N2 VMQHILPYRDYKPJ-UHFFFAOYSA-N 0.000 description 1
- HFAXWDQGHOTPQN-UHFFFAOYSA-N 2-amino-3,7-dihydropurin-6-one;7h-purin-6-amine Chemical compound NC1=NC=NC2=C1NC=N2.O=C1NC(N)=NC2=C1NC=N2.O=C1NC(N)=NC2=C1NC=N2 HFAXWDQGHOTPQN-UHFFFAOYSA-N 0.000 description 1
- DFMCZPLZFNEJLW-UHFFFAOYSA-N 3-bis[di(propan-2-yl)amino]phosphanylperoxypropanenitrile Chemical compound CC(C)N(C(C)C)P(N(C(C)C)C(C)C)OOCCC#N DFMCZPLZFNEJLW-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- BLFRQYKZFKYQLO-UHFFFAOYSA-N 4-aminobutan-1-ol Chemical compound NCCCCO BLFRQYKZFKYQLO-UHFFFAOYSA-N 0.000 description 1
- AORGTMKGXHVPOD-UHFFFAOYSA-N 6-amino-1H-pyrimidin-2-one 1H-pyrimidine-2,4-dione Chemical compound Nc1ccnc(=O)[nH]1.Nc1ccnc(=O)[nH]1.O=c1cc[nH]c(=O)[nH]1 AORGTMKGXHVPOD-UHFFFAOYSA-N 0.000 description 1
- IWHLYPDWHHPVAA-UHFFFAOYSA-N 6-hydroxyhexanoic acid Chemical compound OCCCCCC(O)=O IWHLYPDWHHPVAA-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000282832 Camelidae Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 108091028075 Circular RNA Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 241000701533 Escherichia virus T4 Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000282575 Gorilla Species 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 101100281953 Homo sapiens GAPDH gene Proteins 0.000 description 1
- 101001066129 Homo sapiens Glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229920002538 Polyethylene Glycol 20000 Polymers 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 229930185560 Pseudouridine Natural products 0.000 description 1
- PTJWIQPHWPFNBW-UHFFFAOYSA-N Pseudouridine C Natural products OC1C(O)C(CO)OC1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-UHFFFAOYSA-N 0.000 description 1
- 238000010357 RNA editing Methods 0.000 description 1
- 230000026279 RNA modification Effects 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- FKCMADOPPWWGNZ-YUMQZZPRSA-N [(2r)-1-[(2s)-2-amino-3-methylbutanoyl]pyrrolidin-2-yl]boronic acid Chemical group CC(C)[C@H](N)C(=O)N1CCC[C@H]1B(O)O FKCMADOPPWWGNZ-YUMQZZPRSA-N 0.000 description 1
- YQVISGXICTVSDQ-UHFFFAOYSA-O [c-]1nn[nH]n1.CC(C)[NH2+]C(C)C Chemical compound [c-]1nn[nH]n1.CC(C)[NH2+]C(C)C YQVISGXICTVSDQ-UHFFFAOYSA-O 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- WGDUUQDYDIIBKT-UHFFFAOYSA-N beta-Pseudouridine Natural products OC1OC(CN2C=CC(=O)NC2=O)C(O)C1O WGDUUQDYDIIBKT-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000009615 deamination Effects 0.000 description 1
- 238000006481 deamination reaction Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 102000047486 human GAPDH Human genes 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 150000003053 piperidines Chemical class 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- PTJWIQPHWPFNBW-GBNDHIKLSA-N pseudouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-GBNDHIKLSA-N 0.000 description 1
- 208000005069 pulmonary fibrosis Diseases 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000001981 tert-butyldimethylsilyl group Chemical group [H]C([H])([H])[Si]([H])(C([H])([H])[H])[*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000006177 thiolation reaction Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y605/00—Ligases forming phosphoric ester bonds (6.5)
- C12Y605/01—Ligases forming phosphoric ester bonds (6.5) forming phosphoric ester bonds (6.5.1)
- C12Y605/01003—RNA ligase (ATP) (6.5.1.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1136—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
- C12P19/30—Nucleotides
- C12P19/34—Polynucleotides, e.g. nucleic acids, oligoribonucleotides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/12—Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
- C12N2310/122—Hairpin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/318—Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/50—Physical structure
- C12N2310/53—Physical structure partially self-complementary or closed
- C12N2310/531—Stem-loop; Hairpin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2330/00—Production
- C12N2330/30—Production chemically synthesised
Definitions
- the present invention relates to a method for producing a hairpin type single-stranded RNA molecule.
- RNA interference is known as a technique for suppressing gene expression (Non-patent Document 1).
- RNA interference a method using a short double-stranded RNA molecule called siRNA (small interfering RNA) is often used.
- siRNA small interfering RNA
- Patent Document 1 a gene expression suppression technique using a circular RNA molecule partially forming a double strand by intramolecular annealing has been reported (Patent Document 1).
- Patent Document 2 discloses a hairpin single-stranded long RNA molecule in which a sense strand and an antisense strand of siRNA are linked to a single strand using one or two linkers formed using a cyclic amine derivative. It has been reported that siRNA can be stabilized. However, since this single-stranded long RNA molecule cannot be efficiently synthesized by the phosphoramidite method using a general-purpose amidite such as TBDMS amidite, a special RNA amidite is used for the synthesis (for example, Patent Documents 2 and 3). Must be used.
- Patent Document 4 discloses a method of ligating a first nucleic acid strand and a second nucleic acid strand using an auxiliary nucleic acid as a third nucleic acid strand and T4 RNA ligase 2, but the auxiliary nucleic acid is long. This indicates that the reaction is so slow that the auxiliary nucleic acids that provide good ligation efficiency in the method are limited.
- An object of the present invention is to provide an efficient method for producing a hairpin single-stranded RNA molecule that suppresses the expression of the title gene.
- the present inventors have obtained a hairpin type single-stranded RNA molecule containing an expression suppressing sequence for a target gene having a linker such as a non-nucleotide linker or a nucleotide linker.
- a linker such as a non-nucleotide linker or a nucleotide linker.
- the present invention includes the following.
- a method for producing a hairpin single-stranded RNA molecule that suppresses expression of a target gene An annealing step for annealing the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule;
- the first single-stranded oligo RNA molecule comprises a first RNA portion and a second RNA portion linked via a first linker, wherein one of the first RNA portion and the second RNA portion is Can be complementarily bound to the other
- the second single-stranded oligo RNA molecule comprises a third RNA portion and a fourth RNA portion linked via a second linker, wherein one of the third RNA portion and the fourth
- a method for producing a hairpin single-stranded RNA molecule is represented by the following formula (I), and the second single-stranded oligo RNA molecule is represented by the following formula (II): 5′-Xs-Lx 1 -Xa-3 ′ Formula (I) 5'-Ya 1 -Ya 2 -Ya 3 -Lx 2 -Ys-3 'Formula (II)
- Xs, Xa, Ya 1 , Ya 2 , Ya 3 and Ys represent one or more ribonucleotide residues
- Lx 1 and Lx 2 represent a first linker and a second linker, respectively, Ya 3 is complementary to Ys
- Xa-Ya 1 generated in the ligation process is complementary to Xs
- Xa-Ya 1 -Ya 2 -Ya 3 generated in the ligation step includes a gene expression suppress
- the first single-stranded oligo RNA molecule has uracil (U) or adenine (A) at the 3 ′ end
- the second single-stranded oligo RNA molecule has uracil (U) at the 5 ′ end.
- the first linker and the second linker are each independently (i) a non-nucleotide linker containing at least one of a pyrrolidine skeleton and a piperidine skeleton, or (ii) a nucleotide linker. ] To [3].
- the hairpin single-stranded RNA molecule has a base sequence represented by SEQ ID NO: 1, wherein the 24th and 25th ribonucleotide residues are linked via a first linker, and the 50th and 51st
- the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule are any of the following (1) to (6), The manufacturing method in any one.
- 24th and 25th A first single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 19, wherein the ribonucleotide residues are linked via a first linker, and the 16th and 17th ribonucleotide residues are Combination with the second single-stranded oligo RNA molecule consisting of the base sequence
- the first single-stranded oligo RNA molecule having the base sequence represented by SEQ ID NO: 29 and the 21st and 22nd ribonucleotide residues are linked via a second linker (5)
- the first single-stranded oligo RNA molecule having the base sequence represented by No. 31 and the 22nd and 23rd ribonucleotide residues are represented by SEQ ID NO: 30 linked via a second linker.
- a first single-stranded oligo RNA molecule comprising: a second first consisting of a base sequence represented by SEQ ID NO: 32 in which the 23rd and 24th ribonucleotide residues are linked via a second linker Combination with a single-stranded oligo RNA molecule [12]
- a single-stranded oligo RNA molecule which is any one of the following (a) to (l): (A) Single-stranded oligo RNA molecule comprising the base sequence represented by SEQ ID NO: 7 in which the 24th and 25th ribonucleotide residues are linked via a linker (b) The 10th and 11th ribonucleotides Single-stranded oligo RNA molecule (c
- Single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 28 (i) represented by SEQ ID NO: 31 in which the 24th and 25th ribonucleotide residues are linked via a linker
- Single-stranded oligo RNA molecule consisting of a base sequence (j) represented by SEQ ID NO: 30 in which the 22nd and 23rd ribonucleotide residues are linked via a linker
- Single-stranded oligo RNA molecule consisting of a base sequence represented by SEQ ID NO: 33 in which 24th and 25th ribonucleotide residues are linked via a linker
- a single-stranded oligo RNA molecule [13] comprising the base sequence represented by SEQ ID NO: 32 in which the 23rd and 24th ribonucleotide residues are linked via a linker (1) to (6)
- the first single-stranded oligo RNA molecule having the base sequence represented by SEQ ID NO: 29 and the 21st and 22nd ribonucleotide residues are linked via a second linker (5)
- the first single-stranded oligo RNA molecule having the base sequence represented by No. 31 and the 22nd and 23rd ribonucleotide residues are represented by SEQ ID NO: 30 linked via a second linker.
- Combination with a second single-stranded oligo RNA molecule comprising a base sequence (6)
- a first single-stranded oligo RNA molecule comprising: a second first consisting of a base sequence represented by SEQ ID NO: 32 in which the 23rd and 24th ribonucleotide residues are linked via a second linker
- RNA molecule that suppresses the expression of a target gene can be efficiently produced.
- FIG. 1 is a schematic diagram of a ligation method according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of an ssTbRNA molecule (SEQ ID NO: 1).
- P represents a proline derivative.
- the 29th (U) to 47th (C) of SEQ ID NO: 1 corresponds to an active sequence (gene expression suppressing sequence for TGF- ⁇ 1 gene; antisense sequence).
- FIG. 3 shows the ligation efficiency after annealing and ligation reaction using T4 RNA ligase 2 of a set (pair) of single-stranded oligo RNA molecules (strands 1 and 2) of 004 to 019 shown in Table 1.
- FIG. 1 is a schematic diagram of a ligation method according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of an ssTbRNA molecule (SEQ ID NO: 1).
- P represents a proline derivative.
- FIG. 4 shows the structure of single-stranded oligo RNA molecules (Strands 1 and 2) 011, 016, and 018. The right side of each pair is Strand 1 and the left side is Strand 2.
- FIG. 5 shows the change in ligation efficiency over time when 016 oligonucleic acids were ligated at different oligo RNA concentrations and different reaction temperatures.
- FIG. 6 shows the change in ligation efficiency over time when 011, 016, and 018 oligo RNAs (100 ⁇ M) were used and ligated at different reaction temperatures.
- A shows the result of ligation at 25 ° C. and B shows 37 ° C.
- FIG. 7 shows the results of denaturing PAGE analysis when 011 oligo RNA was ligated under different ATP concentrations.
- FIG. 8 shows ligation efficiency when 011 oligo RNA was ligated under different ATP concentrations.
- FIG. 9 shows changes over time in ligation efficiency when 016 oligo RNAs were ligated under different oligo RNA concentrations and different pH conditions.
- FIG. 10 shows the ligation efficiency when 016 oligo RNAs were ligated under different pH conditions.
- FIG. 11 shows the ligation efficiency when 016 oligo RNAs were ligated under different oligo RNA concentrations and different MgCl 2 concentrations.
- A shows the result of ligation in the presence of 10 ⁇ M or 100 ⁇ M oligo RNA, and B shows the presence of 10 ⁇ M or 200 ⁇ M oligo RNA.
- FIG. 9 shows changes over time in ligation efficiency when 016 oligo RNAs were ligated under different oligo RNA concentrations and different pH conditions.
- FIG. 10 shows the ligation efficiency when 016 oligo RNAs were lig
- FIG. 12 shows the ligation efficiency when 016 oligo RNAs were ligated under different MgCl 2 concentrations and different pH conditions.
- A shows the results of ligation at pH 7.5
- B shows pH 8.0.
- FIG. 13 shows the ligation efficiency when ligation was performed by adding PEG using different enzyme amounts.
- FIG. 14 shows the time course of the ligation reaction using different oligo RNA concentrations.
- FIG. 15 shows the production amount of the target product ssTbRNA molecule in the ligation reaction performed with the initial oligo RNA concentration of 100 ⁇ M and sequentially adding oligo RNA.
- Production amount of ssTbRNA molecule (nmol) (addition amount of single-stranded oligo RNA molecule) ⁇ (FLP (Full Length Product, full-length product) (%)) / 100.
- H on the horizontal axis of the graph represents the time after the start of ligation.
- the oligo RNA concentration of 100 ⁇ M (10 nmol) at the start of ligation and the enzyme concentration of 4 units / nmol oligo RNA became the oligo RNA concentration of 300 ⁇ M (40 nmol) and the enzyme concentration of 1 unit / nmol oligo RNA after the final addition.
- FIG. 17 shows a hairpin type single-stranded RNA molecule containing a gene expression suppressing sequence for the GAPDH gene, the LAMA1 gene, or the LMNA gene, and the dividing position thereof. (1) to (7) indicate division positions. Gene expression suppression sequences (active sequences / antisense sequences) for each gene are shown in a frame.
- FIG. 17 shows a hairpin type single-stranded RNA molecule containing a gene expression suppressing sequence for the GAPDH gene, the LAMA1 gene, or the LMNA gene, and the dividing position thereof.
- (1) to (7) indicate division positions. Gene expression suppression sequences (active sequences / antisense sequences) for each gene are shown in a frame.
- FIG. 18 shows annealing using a pair of single-stranded oligo RNA molecules (strands 1 and 2) that are split fragments of a hairpin single-stranded RNA molecule containing a gene expression suppressing sequence for the GAPDH gene, the LAMA1 gene, or the LMNA gene. And the ligation efficiency after the ligation reaction.
- FIG. 19 shows the ligation efficiency after annealing and ligation reaction using T4 RNA ligase of the set (pair) of strand 1 and strand 2 shown in Table 1.
- the present invention relates to a method for producing a hairpin single-stranded RNA molecule that suppresses the expression of a target gene.
- the hairpin type single-stranded RNA molecule produced by the method of the present invention is such that the 3 ′ end of the sense strand of the double-stranded RNA containing the gene expression suppressing sequence and the 5 ′ end of the antisense strand are non-nucleotide linkers or nucleotides
- One or more ribonucleotide residues are further linked via a sequence containing a linker, such as a non-nucleotide linker or a nucleotide linker, to the 3 ′ end of the antisense strand.
- hairpin type means that a single-stranded RNA molecule forms one or more double-stranded structures by intramolecular annealing (self-annealing).
- the hairpin single-stranded RNA molecule produced by the method of the present invention typically has a 5 ′ end region including the 5 ′ end and a 3 ′ end region including the 3 ′ end separately annealed separately. This forms two double-stranded structures.
- RNA Ribonucleic acid molecule
- nucleic acid may be composed only of nucleotides, but nucleotides and non-nucleotide substances (for example, cyclic amine derivatives such as proline derivatives) You may be comprised from.
- a hairpin single-stranded RNA molecule that suppresses the expression of a target gene is 2 in a sequence sandwiched between two linkers (for example, a non-nucleotide linker, a nucleotide linker, or a linker that combines them). They can be produced by synthesizing them into fragments, annealing them, and ligating them. Ligation means that two nucleic acids (typically RNA in the present invention) are linked by bonding (phosphodiester bond) a 5′-phosphate group and a 3′-hydroxyl group at their ends.
- a relatively long hairpin single-stranded RNA molecule is produced by ligation of a pair of shorter single-stranded RNA molecules, thereby producing a high yield of the hairpin single-stranded RNA molecule. Manufacturing can be realized.
- the present invention is a method for producing a hairpin single-stranded RNA molecule that suppresses the expression of a target gene, An annealing step for annealing the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule; A ligation step of ligating the 3 ′ end of the first single-stranded oligo RNA molecule and the 5 ′ end of the second single-stranded oligo RNA molecule with an Rnl2 family ligase; A method for producing a hairpin single-stranded RNA molecule, wherein the sequence generated by ligation of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule includes a gene expression suppressing sequence for the target gene. About.
- the first single-stranded oligo RNA molecule comprises a first RNA portion and a second RNA portion linked via a first linker, the first RNA portion and the second RNA portion.
- One of the RNA moieties can bind complementarily to the other. Due to its complementary binding, the first linker can form a loop and the first RNA portion and the second RNA portion can form a stem adjacent to the loop.
- the first RNA portion is located on the 5 'end side
- the second RNA portion is located on the 3' end side.
- the second single-stranded oligo RNA molecule includes a third RNA portion and a fourth RNA portion linked via a second linker, and one of the third RNA portion and the fourth RNA portion. Can be complementarily bound to the other. Due to its complementary binding, the second linker can form a loop, and the third and fourth RNA portions can form a stem adjacent to the loop. In the second single-stranded oligo RNA molecule, the third RNA portion is located on the 5 'end side and the fourth RNA portion is located on the 3' end side. Each of the first to fourth RNA portions contains one or more ribonucleotide residues.
- the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule contain self-complementary sequences, and can each form a hairpin structure by intramolecular annealing (self-annealing).
- One of the first RNA portion and the second RNA portion preferably has a longer base length than the other.
- the third RNA portion preferably has a longer base length than the fourth RNA portion.
- the fourth RNA portion preferably has a longer base length than the first RNA portion.
- the RNA portion having the longer base length is the ribonucleotide residue or sequence thereof complementary to the RNA portion having the shorter base length.
- it is adjacent to one linker.
- the RNA portion having the longer base length is the ribonucleotide residue or sequence thereof complementary to the RNA portion having the shorter base length.
- it is adjacent to the two linkers.
- one of two RNA parts (first and second RNA parts or third and fourth RNA parts) contained in a single-stranded oligo RNA molecule can be complementarily bound to the other.
- “Is the length of one of the two RNA parts (usually the RNA part having the shorter base length) is the other RNA part (usually the RNA having the longer base length). Part), in which case the full length of the former RNA part is complementary to the corresponding ribonucleotide residue or sequence thereof in the latter RNA part. It is.
- One of the two RNA portions contained in a single-stranded oligo RNA molecule is completely complementary to the corresponding ribonucleotide residue or sequence thereof in the other RNA portion (ie, all ribonucleotides in one RNA portion). More preferably, the nucleotide residue has no mismatch to the corresponding ribonucleotide residue in the other RNA portion.
- one of the two RNA parts contained in the single-stranded oligo RNA molecule is one or more, for example one or two ribonucleotides, as long as stable base pairing can be formed with the other RNA part. Residue mismatches may also be included, in which case they are also “complementarily capable of binding”. However, it is preferable that the mismatch does not exist in the ribonucleotide residue at the molecular end to be ligated in the method of the present invention.
- one of the first RNA portion and the fourth RNA portion is shorter than the other, preferably 1 to 7 bases long, eg 1 to 6 bases long, 1 to 4 bases long, 1 to The length is 3 bases, 1 base or 2 bases.
- the longer one (the other) of the first RNA portion and the fourth RNA portion may be 19 to 28 bases long, for example, 19 to 27 bases long, 19 to 25 bases long, 19 to 23 bases
- the base length may be 20 to 28 bases, 21 to 27 bases, 20 to 25 bases, 22 to 27 bases, 23 to 26 bases, 24 to 28 bases, or 26 to 28 bases.
- the second RNA portion is not limited to the following, but may be 1 to 20 bases long, for example 2 to 20 bases long, 2 It may be -15 bases long, 3-10 bases long, 3-6 bases long, 5-12 bases long, or 9-12 bases long. If the first RNA portion is shorter than the fourth RNA portion, the second RNA portion may be, but is not limited to, 8 to 38 bases long, such as 8 to 36 bases long, 12 The length may be ⁇ 36 bases, 14 to 34 bases, 14 to 33 bases, 14 to 36 bases, or 20 to 34 bases.
- the base sequence of the first RNA portion may contain CC (cytosine-cytosine) adjacent to the linker.
- the base sequence of the second RNA portion is such that it is complementary to the sequence. It is preferable that GG (guanine-guanine) is contained adjacent to the ⁇ .
- the base sequence of the first RNA portion may comprise ACC (adenine-cytosine-cytosine), GCC (guanine-cytosine-cytosine), or UCC (uracil-cytosine-cytosine) adjacent to the linker.
- the base sequence of the second RNA portion is GGU (guanine-guanine-uracil), GGC (guanine-guanine-cytosine), adjacent to the linker, respectively, so as to be complementary to the sequence, or GGA (guanine-guanine-adenine) is preferably included.
- the base sequence of the third RNA portion may include C (cytosine) adjacent to the linker.
- the base sequence of the fourth RNA portion is It is preferable that G (guanine) is contained adjacently.
- the base length of the first or second single-stranded oligo RNA molecule is not limited to the following, but is preferably 13 to 48 bases.
- the base length of the first single-stranded oligo RNA molecule ie, the total base length of the first RNA portion and the second RNA portion (including the linker portion) Is preferably 21-48 bases long, for example, 21-45 bases long, 25-45 bases long, 26-35 bases long, 26-30 bases long, 26-28 bases long, or 33-36. Base length.
- the base length of the first single-stranded oligo RNA molecule ie, the total base length of the first RNA portion and the second RNA portion (including the linker portion) Is preferably 13 to 45 bases, for example, 13 to 43 bases, 15 to 41 bases, 15 to 30 bases, 17 to 25 bases, or 20 to 25 bases.
- the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule are complementary to each other in the sequence of the 5 'end or the 3' end.
- the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule are molecules between complementary sequences at 5 ′ end or 3 ′ end (preferably, between completely complementary sequences). Interplexes can be formed. More specifically, in one embodiment, the sequence at the 5 ′ end of the first single-stranded oligo RNA molecule forming the hairpin structure (into the stem loop of the hairpin structure at the 5 ′ end of the first RNA portion).
- Sequence not included and 5 ′ end sequence of the second single-stranded oligo RNA molecule forming the hairpin structure (sequence not included in the stem loop of the 5 ′ end of the third RNA portion of the hairpin structure) ) are complementary to each other and can form intermolecular duplexes.
- the sequence at the 3 ′ end of the first single-stranded oligo RNA molecule that has formed the hairpin structure (the sequence that is not included in the stem loop of the hairpin structure at the 3 ′ end of the second RNA portion)
- the sequence at the 3 ′ end of the second single-stranded oligo RNA molecule forming the hairpin structure (the sequence at the 3 ′ end of the fourth RNA portion and not included in the stem loop of the hairpin structure) is complementary to each other. And can form intermolecular duplexes.
- the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule form an intermolecular duplex between complementary sequences at the 5 ′ end or the 3 ′ end.
- a double-stranded oligo RNA is generated.
- the length of the complementary sequence (not including the gap portion described below) between the first and second single-stranded oligo RNA molecules is not limited to the following, but is usually 6 bases or longer, For example, 7 or more bases, 10 or more bases, 12 or more bases, 14 or more bases, or 18 or more bases, for example, 6 to 27 bases, 7 to 25 bases, 10 to 25 bases, 12 to 23 bases It may be long, 12-22 bases long, 12-15 bases long, or 18-23 bases long.
- the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule form a duplex
- the 3 ′ end of the first single-stranded oligo RNA molecule Ribonucleotide residues and the 5 ′ end ribonucleotide residue of the second single-stranded oligo RNA molecule generate a nick.
- the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule are molecules having a complementary sequence between the first and second single-stranded oligo RNA molecules.
- nick refers to a state in which a phosphodiester bond between two nucleotide residues is broken and a 3 ′ hydroxyl group and a 5 ′ phosphate group are released in one nucleotide strand of a nucleic acid duplex.
- Nicks can be linked by a ligation reaction.
- the annealing step of the method of the present invention when the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule form a duplex, the 5 ′ end of the first single-stranded oligo RNA molecule There is a gap of one or more ribonucleotide residues between this ribonucleotide residue and the 3 ′ terminal ribonucleotide residue of the second single-stranded oligo RNA molecule.
- the gap of one or more ribonucleotide residues may be a gap of 1 to 4 residues (1, 2, 3, or 4 residues). No base pairing is formed at this gap.
- the gap between the 5 ′ terminal ribonucleotide residue of the first single stranded oligo RNA molecule and the 3 ′ terminal ribonucleotide residue of the second single stranded oligo RNA molecule is the first single stranded oligo RNA molecule.
- the RNA molecule and the second single-stranded oligo RNA molecule are annealed, they may be closer to the first linker or closer to the second linker.
- the sequence generated by ligation of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule includes a gene expression suppressing sequence for the target gene.
- the first RNA portion or the fourth RNA portion may include a gene expression suppressing sequence (sense sequence or antisense sequence; for example, sense sequence) for the target gene.
- the sequence in which the second RNA portion and the third RNA portion are linked by ligation can contain a gene expression suppression sequence (antisense sequence or sense sequence; for example, an antisense sequence) for the target gene.
- the second RNA portion or the third RNA portion may contain a gene expression suppressing sequence (antisense sequence or sense sequence; for example, an antisense sequence) for the target gene.
- the linker for example, the first linker and the second linker may be a non-nucleotide linker, a nucleotide linker, or a combination thereof.
- the first single stranded oligo RNA molecule has uracil (U) or adenine (A) at the 3 ′ end and the second single stranded oligo RNA molecule has uracil (5 ′ end).
- a single-stranded oligo RNA molecule having uracil (U) or adenine (A) at the 3 ′ end or 5 ′ end means that the ribonucleotide residue at the 3 ′ end or 5 ′ end of the single-stranded oligo RNA molecule Means containing uracil (U) or adenine (A) as a base.
- a preferred combination of the base of the 3 ′ end ribonucleotide residue of the first single-stranded oligo RNA molecule and the base of the 5 ′ end ribonucleotide residue of the second single-stranded oligo RNA molecule is , UA, UU, AU, or AA.
- Lx 1 and Lx 2 are linkers (for example, non-nucleotide linkers, nucleotide linkers, or combinations thereof).
- linkers for example, non-nucleotide linkers, nucleotide linkers, or combinations thereof.
- relatively long hairpin single-stranded RNA molecules can be produced by ligating pairs of shorter single-stranded RNA molecules, thereby achieving high yields.
- a method for producing a hairpin single-stranded RNA molecule that suppresses expression of a target gene comprises A first single-stranded oligo RNA molecule represented by the following formula (I) (in FIG. 1, strand 1): 5′-Xs-Lx 1 -Xa-3 ′ Formula (I) And a second single-stranded oligo RNA molecule represented by the following formula (II) (strand 2 in FIG.
- the method for producing a hairpin single-stranded RNA molecule that suppresses the expression of a target gene comprises: The first single-stranded oligo RNA molecule represented by the following formula (A): 5′-XXs-Lx 1 -XXa 3 -XXa 2 -XXa 1 -3 'Formula (A) And a second single-stranded oligo RNA molecule represented by the following formula (B): 5′-YYa-Lx 2 -YYs-3 ′ Formula (B) And an ligation step of ligating the 3 ′ end of the first single-stranded oligo RNA molecule and the 5 ′ end of the second single-stranded oligo RNA molecule. This ligation can be performed by Rnl2 family ligase.
- oligo RNA and “oligo RNA molecule” refer to an RNA molecule having a base sequence of 49 bases or less in length (the number of residues of linker moieties such as non-nucleotide linkers and nucleotide linkers is not counted). .
- the terms “oligo RNA” and “oligo RNA molecule” are usually used interchangeably.
- the single-stranded oligo RNA molecule according to the present invention may be referred to as single-stranded oligo RNA, oligonucleic acid, single-stranded nucleic acid molecule, oligo RNA, or oligo RNA molecule.
- Xs, Xa, Ya 1 , Ya 2 , Ya 3 , and Ys represent one or more ribonucleotide residues.
- Lx 1 and Lx 2 each independently represent a linker, for example, non-nucleotide linker, nucleotide linker, or combinations thereof.
- Formula (I) represents a structure in which the regions Xs and Xa are connected via Lx 1 .
- Formula (II) has a structure in which a ribonucleotide sequence (Ya 1 -Ya 2 -Ya 3 ) in which regions Ya 1 , Ya 2 , and Ya 3 are linked in this order and a region Ys are linked through Lx 2 Represents.
- XXs, XXa 3 , XXa 2 , XXa 1 , YYa, and YYs represent one or more ribonucleotide residues.
- Lx 1 and Lx 2 each independently represent a linker, for example, non-nucleotide linker, nucleotide linker, or combinations thereof.
- Formula (A), region XXa 3, XXa 2, and XXa 1 is linked ribonucleotide sequence in this order (XXa 3 -XXa 2 -XXa 1) a region XXs is linked via a Lx 1 structure Represents.
- Formula (B), the area YYa and YYs have represents a linking structure via Lx 2.
- Xs, Xa, Ya 1 , Ya 2 , Ya 3 , Ys, XXs, XXa 3 , XXa 2 , XXa 1 , YYa, and YYs consist of ribonucleotide residues.
- the ribonucleotide residue may have any nucleobase selected from adenine, uracil, guanine, or cytosine.
- the ribonucleotide residue may also be a modified ribonucleotide residue, for example, having a modified nucleobase (modified base).
- Modifications include, but are not limited to, fluorescent dye labels, methylation, halogenation, pseudouridine, amination, deamination, thiolation, dihydrolation, and the like.
- Xs, Xa, Ya 1 , Ya 2 , Ya 3 , and Ys may each independently consist of only unmodified ribonucleotide residues, or modified ribonucleotides in addition to unmodified ribonucleotide residues A residue may be included, and it may consist only of a modified ribonucleotide residue.
- Xs may contain a modified ribonucleotide residue at the 5 ′ end.
- Ys may contain a modified ribonucleotide residue at the 3 ′ end.
- XXs, XXa 3 , XXa 2 , XXa 1 , YYa, and YYs may each independently consist only of unmodified ribonucleotide residues, or in addition to unmodified ribonucleotide residues
- the modified ribonucleotide residue may be included, or the modified ribonucleotide residue alone may be included.
- XXs may contain a modified ribonucleotide residue at the 5 ′ end.
- YYs may contain a modified ribonucleotide residue at the 3 ′ end.
- Xa-Ya 1 (nucleotide sequence in which Xa and Ya 1 are linked by ligation) generated in the ligation step is complementary to Xs.
- Xs may be 19 to 28 bases long, for example 19 to 27 bases long, 19 to 25 bases long, 19 to 23 bases long, 20 to 28 bases long, 21 bases to 27 bases, 21 It may be 25 to 25 bases, 22 to 27 bases, 23 to 26 bases, 24 to 28 bases, or 26 to 28 bases long.
- XXa 1 -YYa (nucleotide sequence in which XXa 1 and YYa are linked by ligation) generated in the ligation step is complementary to YYs.
- YYs may be 19 to 28 bases long, such as 19 to 27 bases long, 19 to 25 bases long, 19 to 23 bases long, 20 to 28 bases long, 21 bases to 27 bases, 21 The base may be 25 to 25 bases, 22 to 27 bases long, 23 to 26 bases long, 24 to 28 bases long, or 26 to 28 bases long.
- Xa is complementary to the corresponding residue or sequence in Xs.
- the base sequence of Xs may contain C (cytosine) adjacent to the linker.
- the base sequence of Xa includes G (guanine) adjacent to the linker so as to be complementary to Xs.
- the base sequence of Xs may contain CC (cytosine-cytosine) adjacent to the linker.
- the base sequence of Xa includes GG (guanine-guanine) adjacent to the linker so as to be complementary to Xs.
- the base sequence of Xs may contain ACC (adenine-cytosine-cytosine) adjacent to the linker.
- the base sequence of Xa includes GGU (guanine-guanine-uracil) adjacent to the linker so as to be complementary to Xs.
- Xa may comprise the base uracil (U) or adenine (A) at the 3 'end.
- Xa may be 1 to 20 bases long, for example, 2 to 20 bases long, 2 to 15 bases long, 3 to 10 bases long, 3 to 6 bases long, 5 to 12 bases long, or 9 to 12 bases long It may be.
- XXa 3 is complementary to XXs.
- the base sequence of XXs may include C (cytosine) adjacent to the linker.
- the base sequence of XXa 3 is such that the complement of the XXs, including G (guanine) adjacent to the linker.
- the base sequence of XXs may contain CC (cytosine-cytosine) adjacent to the linker.
- the base sequence of XXa 3 is such that the complement of the XXs, GG adjacent to the linker - containing (guanine guanine).
- the base sequence of XXs may include ACC (adenine-cytosine-cytosine; in the 5 ′ to 3 ′ direction) adjacent to the linker.
- the base sequence of XXa 3 is to be complementary to the XXs, GGU adjacent to the linker; including (guanine - uracil - guanine in the direction of 5 'to 3').
- the base sequence of XXa 1 may contain the base uracil (U) or adenine (A) at the 3 ′ end.
- XXa 3 and XXs are preferably 1 to 7 bases long, for example, 1 to 4 bases long, 1 base long or 2 bases long. In one embodiment, if YYs of 26-28 bases in length, XXa 3 and XXs may be one bases in length.
- Ya 3 is complementary to Ys.
- the base sequence of Ya 3 may include C (cytosine) adjacent to the linker.
- the base sequence of the Ys is as will become complementary to Ya 3, including G (guanine) adjacent to the linker.
- Ya 3 and Ys are preferably 1 to 7 bases long, for example, 1 to 4 bases long, 1 base long or 2 bases long. In one embodiment, when Xs is 26 to 28 bases in length, Ya 3 and Ys may be 1 base in length.
- YYa is complementary to the corresponding residue or sequence in YYs.
- the base sequence of YYa may include C (cytosine) adjacent to the linker.
- the base sequence of YYs includes G (guanine) adjacent to the linker so as to be complementary to YYa.
- YYa may be 2 to 20 bases long, for example, 2 to 15 bases long, 3 to 10 bases long, 3 to 6 bases long, 5 to 12 bases long, or 9 to 12 bases long.
- complementary means that two nucleic acids or nucleotides can form a stable base pairing between them.
- Two complementary nucleic acids have the same base length.
- Two complementary nucleic acids typically consist of each other's complementary sequences (complementary strands), ie, are completely complementary.
- the two complementary nucleic acids may each contain a modified base and a nucleobase capable of forming a base pair with it at the corresponding position during annealing.
- Ya 2 does not form base pairing with any of Xs and Ys when the hairpin single-stranded RNA molecule according to the present invention after ligation undergoes intramolecular annealing (self-annealing).
- Ya 2 is preferably 1 to 4 bases in length, for example, 1, 2, or 3 bases in length.
- XXa 2 when the hairpin single-stranded RNA molecules according to the present invention after ligation occurs intramolecular annealing (self-annealing), do not form with any base pairing XXs and YYs.
- XXa 2 is preferably 1 to 4 bases in length, for example, 1, 2, or 3 bases in length.
- the total base length of Xs and Xa in formula (I) (not including a linker moiety such as a non-nucleotide linker, a nucleotide linker, or a combination thereof) Is preferably 21 to 48 bases long, for example, 21 to 45 bases long, 25 to 45 bases long, 26 to 35 bases long, 26 to 30 bases long, 26 to 28 bases long, or 33 to 36 bases long is there.
- Ya 1 in the formula (II) is preferably 6 to 27 bases long, for example, 7 to 25 bases long, 10 to 25 bases long, 12 to It is 23 bases long, 12-22 bases long, 12-15 bases long, or 18-23 bases long.
- the total base length of Ya 1 , Ya 2 , Ya 3 , and Ys in formula (II) Is preferably 13 to 45 bases long, such as 13 to 43 bases, 15 to 41 bases, 15 to 30 bases, 17 to 25 bases, or 20 to 25 bases. It is long.
- the total base length of XXs, XXa 3 , XXa 2 , and XXa 1 in formula (A) is preferably 13 to 45 bases long, such as 13 to 43 bases, 15 to 41 bases, 15 to 30 bases, 17 to 25 bases, or 20 to 25 bases. It is long.
- XXa 1 is preferably 6 to 27 bases long, for example 7 to 25 bases long, 10 to 25 bases long, 12 to 23 bases long, 12 to 22 bases long, 12 to 15 bases long, or 18 to 23 bases It is long.
- the total base length of YYa and YYs in formula (B) (not including a linker moiety such as a non-nucleotide linker, a nucleotide linker, or a combination thereof) ) Is preferably 21 to 48 bases long, for example, 21 to 45 bases long, 25 to 45 bases long, 26 to 35 bases long, 26 to 30 bases long, 26 to 28 bases long, or 33 to 36 bases long It is.
- the linker for example, the first linker and the second linker are not particularly limited, but each may independently be, for example, a non-nucleotide linker, a nucleotide linker, or a combination thereof.
- a nucleotide linker consists of one or more nucleotide residues (ribonucleotide residues or deoxyribonucleotide residues, preferably ribonucleotide residues).
- Non-nucleotide linkers do not contain nucleotide residues.
- the structural unit of the linker used in the present invention is not particularly limited, and may be a nucleotide residue and / or a non-nucleotide residue.
- a linker that is a combination of a non-nucleotide linker and a nucleotide linker includes both nucleotide and non-nucleotide residues.
- the linker of the present invention can be composed of any of the following residues (1) to (7), for example.
- both the first linker and the second linker may consist of nucleotide residues (nucleotide linkers), or consist of non-nucleotide residues (non-nucleotide linkers). It may be. Alternatively, one of the first linker and the second linker may be a nucleotide residue, and the other may be a non-nucleotide residue. (In the above formula, the linker Lx 1 and Lx 2) first linker and second linker may be the same structure or may have different structures.
- the linker used in the present invention for example, the first linker and the second linker (Lx 1 and Lx 2 in the above formula) contain non-nucleotide residues
- the number of non-nucleotide residues is not particularly limited. For example, it may be 1 to 8, 1 to 6, 1 to 4, 1, 2 or 3.
- a “non-nucleotide residue” refers to a building block of a non-nucleotide linker.
- the non-nucleotide residue is not limited to the following, and may be, for example, a cyclic amine derivative having a pyrrolidine skeleton or a piperidine skeleton.
- the non-nucleotide residue may be, for example, a unit (one) having a structure represented by the following formula (III).
- the linker for example, the first linker and the second linker (wherein Lx 1 and Lx 2 ) are non-nucleotides containing at least one of a pyrrolidine skeleton and a piperidine skeleton. It may be a linker.
- the first linker and the second linker (Lx 1 and Lx 2 in the above formula) may have the same structure or different structures.
- the first linker and the second linker in the above formula, Lx 1 and Lx 2 ) may each independently have a non-nucleotide structure containing a pyrrolidine skeleton, or a non-nucleotide structure containing a piperidine skeleton.
- the hairpin single-stranded RNA molecule produced by the method of the present invention is excellent in nuclease resistance because the sense strand and the antisense strand are connected by such a linker.
- the pyrrolidine skeleton may be, for example, a pyrrolidine derivative skeleton in which one or more carbon atoms constituting the 5-membered ring of pyrrolidine are substituted.
- a carbon atom other than the 2-position carbon atom (C-2) is preferred.
- the carbon atom may be substituted with, for example, a nitrogen atom, an oxygen atom, or a sulfur atom.
- the pyrrolidine skeleton may contain, for example, a carbon-carbon double bond or a carbon-nitrogen double bond in the 5-membered ring of pyrrolidine.
- the carbon atom and nitrogen atom constituting the 5-membered ring of pyrrolidine may be bonded to, for example, a hydrogen atom or a substituent as described later.
- the linker Lx 1 may link, for example, Xs and Xa in the formula (I) and XXs and XXa 3 in the formula (A) via any group of the pyrrolidine skeleton.
- the linker Lx 2 may link, for example, Ya 3 and Ys in the formula (II) and YYa and YYs in the formula (B) via any group of the pyrrolidine skeleton.
- pyrrolidine skeleton examples include a proline skeleton and a prolinol skeleton.
- the piperidine skeleton may be, for example, a skeleton of a piperidine derivative in which one or more carbons constituting the six-membered ring of piperidine are substituted. It is preferable.
- the carbon atom may be substituted with, for example, a nitrogen atom, an oxygen atom, or a sulfur atom.
- the piperidine skeleton may contain, for example, a carbon-carbon double bond or a carbon-nitrogen double bond in the 6-membered ring of piperidine.
- the carbon atom and nitrogen atom constituting the piperidine 6-membered ring may be bonded to, for example, a hydrogen atom or a substituent as described later.
- the linker Lx 1 may link, for example, Xs and Xa in the formula (I) and XXs and XXa 3 in the formula (A) via any group of the piperidine skeleton.
- the linker Lx 2 may link, for example, Ya 3 and Ys in the formula (II) and YYa and YYs in the formula (B) via any group of the piperidine skeleton. They can be linked via any one carbon atom of the 6-membered ring and a nitrogen atom, preferably via the nitrogen atom (C-2) at the 2-position of the 6-membered ring.
- the linker may contain, for example, only non-nucleotide residues having the non-nucleotide structure described above.
- the linker region may be represented by, for example, the following formula (III) or may include one or more non-nucleotide residues represented by the following formula (III).
- X 1 and X 2 are each independently H 2 , O, S or NH
- Y 1 and Y 2 are each independently a single bond, CH 2 , NH, O or S
- R 3 is a hydrogen atom or substituent bonded to C-3, C-4, C-5 or C-6 on ring A
- L 1 is an alkylene chain consisting of n atoms, wherein the hydrogen atom on the alkylene carbon atom is replaced with OH, OR a , NH 2 , NHR a , NR a R b , SH, or SR a May or may not be substituted
- L 1 is a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with an oxygen atom
- Y 1 is NH, O, or S
- L 2 is an alkylene chain consisting of m atoms, wherein the hydrogen atom on the alkylene carbon atom is substituted with OH, OR c , NH 2 , NHR c , NR c R d , SH or SR c May not be substituted, or L 2 is a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with an oxygen atom,
- Y 2 is NH, O or S
- the atom of L 2 bonded to Y 2 is carbon
- the atom of L 2 bonded to OR 2 is carbon, and oxygen atoms are not adjacent to each other.
- R a , R b , R c and R d are each independently a substituent or a protecting group; l is 1 or 2; m is an integer ranging from 0 to 30; n is an integer ranging from 0 to 30; In ring A, one carbon atom other than C-2 on ring A may be substituted with a nitrogen atom, an oxygen atom, or a sulfur atom. Ring A may contain a carbon-carbon double bond or a carbon-nitrogen double bond, Here, R 1 and R 2 may or may not be present. When present, R 1 and R 2 are each independently represented by the formula (III) in which R 1 and R 2 are not present. The represented non-nucleotide residue.
- Xs and Xa in the formula (I) and XXs and XXa 3 in the formula (A) can be linked to the linker Lx 1 via —OR 1 — or —OR 2 — in formula (III).
- Xs may be linked to linker Lx 1 through —OR 1 — and Xa through —OR 2 —.
- Xs may be linked to linker Lx 1 through —OR 2 — and Xa through —OR 1 —.
- XXs may be linked to linker Lx 1 via —OR 1 — and XXa 3 via —OR 2 —.
- XXs may be linked to linker Lx 1 via —OR 2 — and XXa 3 via —OR 1 —.
- Ya 3 and Ys in the formula (II) and YYa and YYs in the formula (B) can be linked to the linker Lx 2 via —OR 1 — or —OR 2 — in formula (III).
- Ya 3 may be linked to linker Lx 2 through —OR 1 — and Ys through —OR 2 —.
- Ya 3 may be linked to linker Lx 2 via —OR 2 — and Ys via —OR 1 —.
- YYa may be linked to linker Lx 2 through —OR 1 — and YYs through —OR 2 —.
- YYa may be linked to linker Lx 2 via —OR 2 — and YYs via —OR 1 —.
- Xs is linked via —OR 2 —
- Xa is linked via —OR 1 — to Linker Lx 1 and Ya 3 is linked via —OR 2 — and Ys is —OR 1 It may be linked to the linker Lx 2 via —.
- XXs is linked to linker Lx 1 through —OR 2 —, XXa 3 through —OR 1 —, and YYa through —OR 2 —, and YYs is —OR.
- the linker Lx 2 may be linked via 1- .
- X 1 and X 2 are each independently, for example, H 2 , O, S or NH.
- X 1 being H 2 means that X 1 together with the carbon atom to which X 1 is bonded forms CH 2 (methylene group). The same is true for X 2.
- Y 1 and Y 2 are each independently a single bond, CH 2 , NH, O or S.
- l 1 or 2.
- ring A is a 5-membered ring, for example, the pyrrolidine skeleton.
- the pyrrolidine skeleton include a proline skeleton and a prolinol skeleton, and examples thereof include a divalent structure.
- ring A is a 6-membered ring, for example, the piperidine skeleton.
- one carbon atom other than C-2 on ring A may be substituted with a nitrogen atom, an oxygen atom or a sulfur atom.
- Ring A may contain a carbon-carbon double bond or a carbon-nitrogen double bond in ring A.
- Ring A may be, for example, either L-type or D-type.
- R 3 is a hydrogen atom or a substituent bonded to C-3, C-4, C-5 or C-6 on the ring A.
- R 3 is the above-described substituent, the substituent R 3 may be one, plural, or absent, and when plural, it may be the same or different.
- the substituent R 3 is, for example, halogen, OH, OR 4 , NH 2 , NHR 4 , NR 4 R 5 , SH, SR 4 or an oxo group ( ⁇ O).
- R 4 and R 5 are, for example, each independently a substituent or a protecting group, and may be the same or different.
- substituents include halogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cyclylalkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, heterocyclylalkenyl. , Heterocyclylalkyl, heteroarylalkyl, silyl, silyloxyalkyl and the like. The same applies hereinafter.
- the substituent R 3 may be any of these listed substituents.
- the protecting group is, for example, a functional group that converts a highly reactive functional group to be inert, and examples thereof include known protecting groups.
- the description of the literature J. F. W. McOmie, “Protecting Groups in Organic Chemistry”, Plenum Press, London and New York, 1973) can be used for the protecting group.
- the protecting group is not particularly limited, and examples thereof include tert-butyldimethylsilyl group (TBDMS), bis (2-acetoxyethyloxy) methyl group (ACE), triisopropylsilyloxymethyl group (TOM), 1- (2 -Cyanoethoxy) ethyl group (CEE), 2-cyanoethoxymethyl group (CEM), tolylsulfonylethoxymethyl group (TEM), dimethoxytrityl group (DMTr) and the like.
- TBDMS tert-butyldimethylsilyl group
- ACE (2-acetoxyethyloxy) methyl group
- TOM triisopropylsilyloxymethyl group
- CEE 2-Cyanoethoxymethyl group
- CEM 2-cyanoethoxymethyl group
- TEM dimethoxytrityl group
- DMTr dimethoxytrityl group
- R 3 is OR 4
- the protecting group is not particularly
- L 1 is an alkylene chain consisting of n atoms.
- the hydrogen atom on the alkylene carbon atom may be substituted with, for example, OH, OR a , NH 2 , NHR a , NR a R b , SH, or SR a , or may not be substituted.
- L 1 may be a polyether chain in which one or more carbon atoms of the alkylene chain are replaced with an oxygen atom.
- the polyether chain is, for example, polyethylene glycol.
- Y 1 is NH, O, or S
- the L 1 atom bonded to Y 1 is carbon
- the L 1 atom bonded to OR 1 is carbon
- oxygen atoms are not adjacent to each other. That is, for example, when Y 1 is O, the oxygen atom and the oxygen atom of L 1 are not adjacent, and the oxygen atom of OR 1 and the oxygen atom of L 1 are not adjacent.
- L 2 is an alkylene chain composed of m atoms.
- the hydrogen atom on the alkylene carbon atom may be substituted with, for example, OH, OR c , NH 2 , NHR c , NR c R d , SH or SR c , or may not be substituted.
- L 2 may be a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with an oxygen atom.
- Y 2 is NH, O, or S
- the L 2 atom bonded to Y 2 is carbon
- the L 2 atom bonded to OR 2 is carbon
- oxygen atoms are not adjacent to each other. That is, for example, when Y 2 is O, the oxygen atom and the oxygen atom of L 2 are not adjacent, and the oxygen atom of OR 2 and the oxygen atom of L 2 are not adjacent.
- N in L 1 and m in L 2 are not particularly limited, and the lower limit is, for example, 0, and the upper limit is not particularly limited.
- n and m can be appropriately set depending on, for example, the desired lengths of the linkers Lx 1 and Lx 2 .
- n and m are each preferably from 0 to 30, more preferably from 0 to 20, and even more preferably from 0 to 15 from the viewpoints of production cost and yield, for example.
- n + m is, for example, 0 to 30, preferably 0 to 20, and more preferably 0 to 15.
- R a , R b , R c and R d are each independently a substituent or a protecting group, for example.
- the substituent and the protecting group are the same as described above, for example.
- hydrogen atoms may be independently substituted with halogens such as Cl, Br, F and I, for example.
- the linker is represented by any of the following formulas (IV-1) to (IV-9) or represented by the following formulas (IV-1) to (IV-9): It may contain one or more non-nucleotide residues.
- q is an integer of 0 to 10.
- the linker is represented by the following formula (V) or (VI), or one or two non-nucleotide residues represented by the following formula (V) or (VI): It may contain more than one.
- the first RNA moiety (Xs, XXs) is on the 2-position carbon atom side in formula (VI) and the second RNA moiety (Xa, XXa 3 ) is the 1-position nitrogen in formula (VI). in atomic side, coupled with a linker Lx 1, third RNA portion (Ya 3, YYA) in 2-position carbon atom side, a fourth RNA portion (Ys, YYs) is 1-position nitrogen of formula (VI) in atomic side, it may be linked with a linker Lx 2.
- the linker represented by the formula (VI) may be an optically active substance represented by the following formula (VI-1) or (VI-2).
- Xa is complementary to the 3 ′ region of Xs
- Ya 3 is complementary to Ys.
- Xa turns back toward Xs
- Xa forms a double strand by self-annealing with Xs.
- Ys is folded toward the Ya 3, Ys by Ya 3 and self-annealing to form duplexes.
- YYA is complementary to 5 'side region of the YYs
- XXa 3 is complementary to XXs. Therefore, in the first single-stranded oligo RNA molecule, XXa 3 folds toward XXs, and XXa 3 forms a duplex by self-annealing with XXs. Similarly, in the second single-stranded oligo RNA molecule, YYa folds toward YYs, and YYa forms a double strand by self-annealing with YYs.
- the linker as described above tends to form a ⁇ -turn structure. Therefore, the first single-stranded oligo RNA molecule of the formula (I) has a folded structure on the ⁇ -turn side by the linker Lx 1 so that when Xa self-anneals with Xs, the 3 ′ end of Xa is It is considered that the structure of the second single-stranded oligo RNA molecule (II) is easily accessible to the 5 ′ end (5 ′ end of Ya 1 ). The same applies to the first and second single-stranded oligo RNA molecules of the formulas (A) and (B).
- the linker eg, the first linker and the second linker (wherein Lx 1 and Lx 2 ) may be nucleotide linkers consisting of one or more nucleotide residues.
- the linker is a nucleotide linker
- the length is not particularly limited, but the sequence before and after the linker, for example, the first RNA portion and the second RNA portion, or the third RNA portion and the fourth RNA. It is preferable that the length does not hinder the formation of a double chain by the portion.
- the length (number of bases) and the base sequence of the first linker and the second linker (in the above formula, Lx 1 and Lx 2 ) which are nucleotide linkers may be the same or different.
- the length of the nucleotide linker may be, for example, 1 base or more, 2 bases or more, or 3 bases or more, and may be 100 bases or less, 80 bases or less, or 50 bases or less, for example.
- the length of such a nucleotide linker may be, for example, 1 to 50 bases, 1 to 30 bases, 3 to 20 bases, 3 to 10 bases, or 3 to 7 bases. There may be 4, 5, 6, 7, 8, 9 or 10 bases.
- the nucleotide linker is preferably not self-complementary and has a structure that does not cause self-annealing within the sequence.
- the linker used in the present invention for example, the first linker and the second linker (in the above formula, Lx 1 and Lx 2 ) are used to convert an unmodified nucleotide residue and a modified nucleotide residue (for example, a modified ribonucleotide residue).
- a modified nucleotide residue for example, a modified ribonucleotide residue.
- the number of modified nucleotide residues is not particularly limited, and may be, for example, 1 to 5, 1 to 4, 1 to 3, for example 1 or 2.
- nucleotide linkers used in the present invention include 5′-CACACACC-3 ′, 5′-CACACACA-3 ′, or An example of the linker is a 5′-UUCG-3 ′ RNA sequence.
- the first linker and the second linker (wherein Lx 1 and Lx 2 ) are each independently 5′-CACACACC-3 ′, Selected from 5'-CCACACACC-3 'and 5'-UUCCG-3'.
- the first linker consists of the 5′-CACACACC-3 ′ RNA sequence
- the second linker is 5′-UUCCG-3. It consists of 'RNA sequence.
- the first and second single-stranded oligo RNA molecules can be prepared using RNA synthesis methods known to those skilled in the art.
- RNA synthesis methods known to those skilled in the art include the phosphoramidite method and the H-phosphonate method.
- a ribonucleoside bound to a hydrophobic group of a carrier is elongated by a condensation reaction with an RNA amidite (ribonucleoside phosphoramidite), undergoes a condensation reaction with an RNA amidite through oxidation and deprotection.
- RNA synthesis can be performed.
- the first and second single-stranded oligo RNA molecules of the formulas (I) and (II) will be described as an example.
- the first and second single-stranded oligo RNA molecules according to the present invention can be synthesized by an RNA synthesis method, for example, After synthesizing the sequence (Xa, Ys) from the 3 ′ end to the front of the linker by the phosphoramidite method, a non-nucleotide residue such as a cyclic amine derivative having a pyrrolidine skeleton or a piperidine skeleton is bound. It can be produced by forming a linker and sequentially synthesizing a sequence (Xs; or Ya 3 , Ya 2 , and Ya 1 ) from the linker to the 5 ′ end.
- the first and second single-stranded oligo RNA molecules according to the present invention can be synthesized by the RNA synthesis method, for example, phosphoramidite method, of the sequence (Xa, Ys) from the 3 ′ end side to the nucleotide linker. Synthesis, followed by synthesis of a nucleotide linker sequence, and further by sequentially synthesizing a sequence (Xs; or Ya 3 , Ya 2 , and Ya 1 ) from the back of the nucleotide linker to the 5 ′ end can do.
- the RNA synthesis method for example, phosphoramidite method
- RNA amidite can be used.
- TDMS t-butyldimethylsilyl
- TOM triisopropylsilyloxymethyl
- ACE bis (2-acetoxyethoxy) methyl
- RNA amidites can also be used.
- any solid phase carrier such as polystyrene carrier, acrylamide carrier, or glass carrier can be used for RNA synthesis.
- the carrier may be in any form such as a bead, plate, chip, tube or the like.
- carriers, polystyrene beads, for example NittoPhase (R) HL rG (ibu ), or rU (KINOVATE) include, but are not limited to.
- a cyclic amine derivative for forming a non-nucleotide linker is a monomer for RNA synthesis and has, for example, a structure of the following formula (VII).
- This cyclic amine derivative basically corresponds to each of the above linker structures, and the description of the linker structure is also incorporated in this cyclic amine derivative.
- the cyclic amine derivative that forms a linker can be used, for example, as an amidite for automatic nucleic acid synthesis, and can be applied to, for example, a general nucleic acid automatic synthesizer.
- X 1 and X 2 are each independently H 2 , O, S or NH; Y 1 and Y 2 are each independently a single bond, CH 2 , NH, O or S; R 1 and R 2 are each independently H, a protecting group or a phosphate protecting group; R 3 is a hydrogen atom or substituent bonded to C-3, C-4, C-5 or C-6 on ring A; L 1 is an alkylene chain consisting of n atoms, wherein the hydrogen atom on the alkylene carbon atom is replaced with OH, OR a , NH 2 , NHR a , NR a R b , SH, or SR a May or may not be substituted, or L 1 is a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with an oxygen atom,
- Y 1 is NH, O, or S
- the atom of L 1 bonded to Y 1 is carbon
- the atom of L 1 is atom of L 1
- L 2 is an alkylene chain consisting of m atoms, wherein the hydrogen atom on the alkylene carbon atom is substituted with OH, OR c , NH 2 , NHR c , NR c R d , SH or SR c May not be substituted, or L 2 is a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with an oxygen atom,
- Y 2 is NH, O or S
- the atom of L 2 bonded to Y 2 is carbon
- the atom of L 2 bonded to OR 2 is carbon, and oxygen atoms are not adjacent to each other.
- R a , R b , R c and R d are each independently a substituent or a protecting group; l is 1 or 2; m is an integer ranging from 0 to 30; n is an integer ranging from 0 to 30; In ring A, one carbon atom other than C-2 on ring A may be substituted with a nitrogen atom, an oxygen atom or a sulfur atom, Ring A may contain a carbon-carbon double bond or a carbon-nitrogen double bond.
- R 1 and R 2 are each independently H, a protecting group, or a phosphate protecting group, as described above.
- the protecting group is the same as described in the above formula (III), and can be selected from, for example, group I as a specific example.
- group I include a dimethoxytrityl (DMTr) group, a TBDMS group, an ACE group, a TOM group, a CEE group, a CEM group, a TEM group, and a silyl-containing group represented by the following formula. It is preferably any of the above silyl-containing groups.
- the phosphate protecting group can be represented by the following formula, for example. -P (OR 6 ) (NR 7 R 8 )
- R 6 is a hydrogen atom or an arbitrary substituent.
- R 6 is preferably a hydrocarbon group, for example, and the hydrocarbon group may be substituted with an electron withdrawing group or may not be substituted.
- R 6 is, for example, halogen, haloalkyl, heteroaryl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, silyl, silyloxyalkyl, heterocyclylalkenyl, heterocyclylalkyl, heteroarylalkyl, and alkyl, alkenyl, alkynyl, aryl, arylalkyl , Hydrocarbons such as cycloalkyl, cycloalkenyl, cycloalkylalkyl, cyclylalkyl and the like, and may be substituted with an electron-withdrawing group or may not be substituted.
- Specific examples of R 6 include a ⁇ -cyanoethyl group, a nitrophenylethyl group, and
- R 7 and R 8 are each a hydrogen atom or an arbitrary substituent, and may be the same or different.
- R 7 and R 8 are preferably, for example, a hydrocarbon group, and the hydrocarbon group may be further substituted with an arbitrary substituent or may not be substituted.
- the hydrocarbon group is, for example, the same as the enumeration for R 6 described above, and is preferably a methyl group, an ethyl group, or an isopropyl group.
- specific examples of —NR 7 R 8 include a diisopropylamino group, a diethylamino group, and an ethylmethylamino group.
- the substituents R 7 and R 8 are combined together with the nitrogen atom to which they are bonded (that is, —NR 7 R 8 is combined), and a nitrogen-containing ring (eg, piperidyl group, morpholino group, etc.) May be formed.
- a nitrogen-containing ring eg, piperidyl group, morpholino group, etc.
- phosphate protecting group can be selected from the following group II, for example.
- Group II includes, for example, —P (OCH 2 CH 2 CN) (N (i-Pr) 2 ), —P (OCH 3 ) (N (i-Pr) 2 ), and the like.
- i-Pr represents isopropyl.
- R 1 and R 2 are H or a protecting group, and the other is H or a phosphate protecting group.
- R 1 is the protecting group
- R 2 is preferably H or the phosphate protecting group, specifically, when R 1 is selected from group I above, R 2 is , H or above group II.
- R 1 is the above phosphate protecting group
- R 2 is preferably H or the above protecting group, specifically, when R 1 is selected from the above group II, 2 is preferably selected from H or Group I above.
- the cyclic amine derivative may be represented by any of the following formulas (VII-1) to (VII-9).
- n and m are the same as in the above formula (VII).
- the cyclic amine derivative may be a prolinol derivative represented by the following formula (VIII) or a proline derivative represented by the following formula (IX).
- the cyclic amine derivative may contain a labeling substance, for example, a stable isotope.
- the above cyclic amine derivative can be synthesized, for example, according to the method for producing a monomer for nucleic acid molecule synthesis described in International Publication WO2013 / 027843 or International Publication WO2016 / 159374.
- the first single-stranded oligo RNA molecule for example, strand 1 in FIG. 1
- the second single-stranded oligo RNA molecule for example, strand 2 in FIG. 1
- a hairpin single-stranded RNA molecule that suppresses the expression of the target gene according to the present invention can be produced.
- Xa-Ya 1 -Ya 2 -Ya 3 generated in the ligation step contains a gene expression suppressing sequence for the target gene.
- the gene expression suppressing sequence may be contained in Xa, Xa-Ya 1 , Xa-Ya 1 -Ya 2 , or Xa-Ya 1 -Ya 2 -Ya 3 .
- XXa 3 -XXa 2 -XXa 1 -YYa generated in the ligation step contains a gene expression suppressing sequence for the target gene.
- the gene expression suppressing sequence may be contained in YYa, XXa 1 -YYa, XXa 2 -XXa 1 -YYa, or XXa 3 -XXa 2 -XXa 1 -YYa.
- the gene expression suppressing sequence is preferably a sense sequence or an antisense sequence of the whole or a part of mRNA transcribed from the target gene. Since Xa-Ya 1 generated in the ligation step is complementary to Xs, Xs may also contain a gene expression suppressing sequence for the target gene. Similarly, since XXa 1 -YYa is complementary to YYs, YYs may also contain a gene expression suppressing sequence for the target gene.
- the hairpin single-stranded RNA molecule may include one gene expression suppressing sequence or two or more.
- the hairpin single-stranded RNA molecule may have, for example, two or more same gene expression suppression sequences for the same target gene, or may have two or more different gene expression suppression sequences for the same target. Two or more different gene expression suppression sequences for different target genes may be included.
- a hairpin single-stranded RNA molecule having two or more gene expression suppressing sequences for different target genes is useful for suppressing the expression of two or more different target genes.
- the “gene” refers to a genomic region that is transcribed into mRNA, and may be a protein coding region or an RNA coding region.
- the hairpin single-stranded RNA molecule according to the present invention has an ability to suppress the expression of a target gene via a gene expression suppressing sequence.
- the suppression of target gene expression by the hairpin single-stranded RNA molecule according to the present invention is preferably by RNA interference, but is not limited thereto.
- RNA interference generally, a long double-stranded RNA (dsRNA) is cleaved into a short double-stranded RNA (siRNA: small interfering RNA) of about 19 to 21 base pairs protruding at the 3 ′ end by Dicer in the cell.
- Various types of sequences of single-stranded RNA contained in siRNA that binds to the target mRNA have been reported, for example, depending on the type of target gene.
- a single-stranded RNA sequence (preferably an antisense sequence) contained in siRNA can be used as a gene expression suppressing sequence.
- the hairpin single-stranded RNA molecule produced by the method of the present invention can be cleaved in vivo to generate siRNA, thereby suppressing the expression of the target gene.
- the hairpin single-stranded RNA molecule according to the present invention can be used for treatment or prevention of a disease or disorder associated with expression or increased expression of a target gene.
- the gene expression suppression sequence is preferably 19 to 30 bases long, more preferably 19 to 27 bases long, and may be 19, 20, 21, 22, or 23 bases long, for example.
- the gene expression suppressing sequence is preferably composed of an RNA sequence that is completely identical or completely complementary to at least a partial sequence of mRNA of the target gene.
- the gene expression suppressing sequence can be designed by a conventional method with respect to the base sequence of the target gene.
- the target gene may be any gene, for example, any disease-related gene.
- the target gene is preferably derived from the same species as the target that causes gene expression suppression in a living body, cell, tissue or organ by a hairpin single-stranded RNA molecule, for example, human, chimpanzee, gorilla, etc. Mammals, fish, insects, etc. including primates, horses, cattle, pigs, sheep, goats, camels, donkeys, etc., pets such as dogs, cats, rabbits, rodents such as mice, rats, guinea pigs, etc. May be derived from other animals, plants, fungi and the like.
- the target gene is not particularly limited, and examples thereof include TGF- ⁇ 1 gene, GAPDH gene, LAMA1 gene, and LMNA gene.
- the mRNA sequence of the human TGF- ⁇ 1 (transforming growth factor- ⁇ 1) gene can be obtained, for example, based on GenBank (NCBI) accession number NM_000660 (NCBI Gene ID: 7040).
- the mRNA sequence of the human GAPDH (glyceraldehyde-3-phosphate dehydrogenase) gene can be obtained, for example, based on GenBank (NCBI) accession number NM_002046 (NCBI Gene ID: 2597).
- the mRNA sequence of the human LAMA1 gene can be obtained, for example, based on GenBank accession number NM_005559 (NCBI Gene ID: 284217).
- the mRNA sequence of the human LMNA gene can be obtained, for example, based on GenBank accession number NM_170707 (NCBI Gene ID: 4000).
- the target gene is a TGF- ⁇ 1 gene
- the hairpin single-stranded RNA molecule produced by the method of the present invention suppresses the expression of the TGF- ⁇ 1 gene in vivo.
- Such a hairpin single-stranded RNA molecule is capable of treating or preventing a disease or disorder associated with TGF- ⁇ 1 gene expression or increased expression, for example, pulmonary fibrosis or acute lung disease, through gene expression suppression of the TGF- ⁇ 1 gene. Can be used for.
- the hairpin single-stranded RNA molecule according to the present invention that suppresses the expression of other target genes such as GAPDH gene, LAMA1 gene, and LMNA gene can also be expressed through the suppression of the expression of the target gene. It can be used for the treatment or prevention of diseases or disorders associated with increased expression.
- Such a hairpin single-stranded RNA molecule consisting of the base sequence represented by SEQ ID NO: 1 has an RNA sequence consisting of the base sequence represented by SEQ ID NO: 2 in the direction from the 5 'end to the 3'end; Linker (non-nucleotide linker, nucleotide linker, or a combination thereof; Lx 1 in FIG. 1 ), an RNA sequence comprising the base sequence represented by SEQ ID NO: 3, and the above linker (non-nucleotide linker, nucleotide Sex linker, or a combination thereof; Lx 2 in FIG. 1) and a base G (guanine).
- the hairpin single-stranded RNA molecule comprising the base sequence represented by SEQ ID NO: 1 contains a gene expression suppression sequence for the target gene TGF- ⁇ 1 gene.
- the 29th to 47th sequences of the base sequence represented by SEQ ID NO: 1 correspond to the gene expression suppression sequence (active sequence; SEQ ID NO: 50).
- the present invention provides a method for producing a hairpin single-stranded RNA molecule comprising this gene expression suppressing sequence.
- first single-stranded oligo RNA molecule (Strand 1) and the second single-stranded oligo RNA molecule (Strand 2) for producing such RNA molecules are listed in Table 1 below. Yes.
- the linker containing P (proline derivative) is as described above. It may be substituted with any linker such as other non-nucleotide linkers or nucleotide linkers.
- the first single stranded oligo RNA molecule has uracil (U) or adenine (A) at the 3 ′ end and the second single stranded oligo RNA molecule is at the 5 ′ end. It is preferable to have uracil (U) or adenine (A).
- first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule for producing a hairpin type single-stranded RNA molecule consisting of the base sequence represented by SEQ ID NO: 1, (1) a first single-stranded oligo RNA molecule having a base sequence represented by SEQ ID NO: 7 in which the 24th and 25th ribonucleotide residues are linked via a first linker (Lx 1 ); Combination with the second single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 6 in which the 10th and 11th ribonucleotide residues are linked via the second linker (Lx 2 ) , (2) a first single-stranded oligo RNA molecule having a base sequence represented by SEQ ID NO: 19 in which the 24th and 25th ribonucleotide residues are linked via a first linker (Lx 1 );
- These first single-stranded oligo RNA molecules contain U or A at the 3 ′ end (the 3 ′ end of Xa). These second single-stranded oligo RNA molecules contain U or A at the 5 ′ end (the 5 ′ end of Ya 1 ).
- the 24th and 25th ribonucleotide residues are linked via the first linker (Lx 1 )”
- the 24th ribonucleotide residue (base: C) and the 25th ribonucleotide residue (base: G) of the base sequence represented by SEQ ID NO: 19 are the first linker. through Lx 1 it means that it is bound.
- the linkers Lx 1 and Lx 2 are preferably represented by the formula (VI), for example, the formula (VI- 1) or represented by formula (VI-2).
- the present invention provides a single-stranded oligo that can be used as a first single-stranded oligo RNA molecule or a second single-stranded oligo RNA molecule for the production of hairpin single-stranded RNA molecules according to the method of the present invention.
- RNA molecules are provided.
- examples of single-stranded oligo RNA molecules used for the production of a hairpin single-stranded RNA molecule that suppresses the expression of the target gene TGF- ⁇ 1 gene include the following (a) to (l): But not limited to: (A) a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 7 in which the 24th and 25th ribonucleotide residues are linked via a linker; (B) a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 6 in which the 10th and 11th ribonucleotide residues are linked via a linker; (C) a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 19 in which the 24th and 25th ribonucleotide residues are linked via a linker; (D) a single-stranded oligo RNA molecule
- single-stranded oligo RNA molecules (a) and (b); (c) and (d); (e) and (f); (g) and (h); (i) and (j) Or (k) and (l) can be used in combination in the method for producing a hairpin single-stranded RNA molecule according to the present invention.
- FIG. 1 An example of a hairpin-type single-stranded RNA molecule for the GAPDH gene consists of the base sequence represented by SEQ ID NO: 51, and the 22nd and 23rd nucleotides (ribonucleotide residues) serve as the first linker (Lx 1 ). RNA molecules in which the 48th and 49th nucleotides (ribonucleotide residues) are linked via a second linker (Lx 2 ).
- RNA molecule for the LAMA1 gene consists of the base sequence represented by SEQ ID NO: 52, and the 24th and 25th nucleotides (ribonucleotide residues) serve as the first linker (Lx 1 ).
- RNA molecule for the LAMA1 gene consists of a base sequence represented by SEQ ID NO: 53, and the first and second nucleotides (ribonucleotide residues) are nucleotide-like first linkers This is an RNA molecule linked via (Lx 1 ) and having the 56th and 61st nucleotides (ribonucleotide residues) linked via a nucleotide-like second linker (Lx 2 ).
- RNA molecule for the LMNA gene consists of the base sequence represented by SEQ ID NO: 54, and the 24th and 25th nucleotides (ribonucleotide residues) serve as the first linker (Lx 1 ).
- Examples of gene expression suppression sequences (antisense sequences; SEQ ID NOs: 55, 56 and 57, respectively) for the GAPDH gene, LAMA1 gene, or LMNA gene as target genes are also shown in FIG.
- the present invention also provides a method for producing a hairpin single-stranded RNA molecule comprising any of these gene expression suppressing sequences.
- Examples of single-stranded oligo RNA molecules used for the production of hairpin single-stranded RNA molecules that suppress the expression of the target gene GAPDH gene include (m) and (n) below, but are not limited to these: (M) a single-stranded oligo RNA molecule having the base sequence represented by SEQ ID NO: 37 in which the 22nd and 23rd ribonucleotide residues are linked via a linker, and (n) the 20th and 21st nucleotides A single-stranded oligo RNA molecule having a base sequence represented by SEQ ID NO: 36 in which ribonucleotide residues are linked via a linker
- the single-stranded oligo RNA molecules (m) and (n) can be combined and used in the method for producing a hairpin single-stranded RNA molecule according to the present invention.
- Examples of single-stranded oligo RNA molecules used for the production of hairpin-type single-stranded RNA molecules that suppress the expression of the target gene LAMA1 gene include, but are not limited to, the following (o) to (v): (O) a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 39 in which the 24th and 25th ribonucleotide residues are linked via a linker; (P) a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 38 in which the 16th and 17th ribonucleotide residues are linked via a linker; (Q) a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 41 in which the 24th and 25th ribonucleotide residues are linked via a linker; (R) a single-stranded oligo RNA molecule consisting of the base sequence
- single-stranded oligo RNA molecules (o) and (p); (q) and (r); (s) and (t); or (u) and (v) are combined in the present invention. It can be used in a method for producing such a hairpin single-stranded RNA molecule.
- Examples of single-stranded oligo RNA molecules used for the production of hairpin single-stranded RNA molecules that suppress the expression of the target gene LMNA gene include, but are not limited to, (w) to (z) below: (W) a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 47 in which the 24th and 25th ribonucleotide residues are linked via a linker; (X) a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 46 in which the 21st and 22nd ribonucleotide residues are linked via a linker; (Y) a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 49 in which the 24th and 25th ribonucleotide residues are linked via a linker; A single-stranded oligo RNA molecule consisting of a base sequence represented by SEQ ID
- the single-stranded oligo RNA molecules (w) and (x); or (y) and (z) may be used in combination in the method for producing a hairpin single-stranded RNA molecule according to the present invention. it can.
- the “linker” in the single-stranded oligo RNA molecules (a) to (z) corresponds to the first linker or the second linker, and the above-mentioned linker can be used.
- the nucleotide linkers in the single-stranded oligo RNA molecules (s) to (v) may be substituted with the above-mentioned linkers (for example, other nucleotide linkers).
- a hairpin single-stranded RNA molecule can be produced by ligating the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule.
- the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule are annealed prior to ligation.
- the annealing reaction can be triggered by mixing the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule in an aqueous medium.
- the annealing step comprises mixing the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule in an aqueous medium (usually water or a buffer), for a certain time (for example, The reaction may be performed by standing for 1 to 15 minutes) or may be used for the ligation reaction without standing.
- the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule may be heat-denatured (for example, heated at a temperature of 90 ° C. or higher), but may not be performed. .
- the reaction solution containing the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule is heated at, for example, a heat denaturing temperature (eg, 90 ° C. or higher), and then an annealing temperature.
- a heat denaturing temperature eg, 90 ° C. or higher
- an annealing temperature e.g, the Tm value based on the Ya 1 sequence of the single-stranded oligo RNA molecule is a temperature in the range of ⁇ 5 ° C., for example, 55 to 60 ° C.). Up to °C).
- the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule are mixed at room temperature (15 to 35 ° C.) for a certain time (for example, 1 minute to 1
- the annealing step may be performed by standing for a period of time or 5 to 15 minutes.
- the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule may be mixed in equimolar amounts in the reaction solution.
- “mixing in equimolar amounts” means that the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule are mixed at a molar ratio of 1: 1.1 to 1.1: 1. It means mixing.
- an annealing reaction solution containing a double-stranded oligo RNA obtained by annealing the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule is subjected to ligation.
- a part of the annealing reaction solution may be added to the ligation reaction solution, or the ligation reaction solution may be prepared using the total amount of the annealing reaction solution.
- the ligation may be an enzymatic ligation. Enzymatic ligation may be ligation with RNA ligases, in particular Rnl2 family ligases.
- Rnl2 family ligase (Rnl2 family member) is responsible for RNA nick sealing activity, ie, RNA nick (nick in RNA duplex or RNA-DNA duplex) with its 3 ′ hydroxyl group (3′-OH) and 5
- An enzyme with ligase activity that fills (seals) by linking 'phosphate groups (5'-PO 4 ) (eg, Nandakumar J. et al., Cell 127, p. 71-84 (2006)).
- Rnl2 family ligases include T4 RNA ligase 2, trypanosoma brucei (eg Trypanosoma brucei) and leishmania genus (eg leishmania tarenotolae) RNA editing ligase (REL), vibriophage KVP40RnmEP2 Examples include, but are not limited to, ligase, baculovirus XcGV ligase, and mutants or modifications thereof. These ligases are well known to those skilled in the art and are commercially available or can be obtained according to the teachings of articles and the like. For example, T4 RNA ligase 2 is commercially available from New England Biolabs.
- T4 RNA ligase 2 protein is encoded by the gene gp24.1 of bacteriophage T4. Isolation of T4 RNA ligase 2 is described, for example, in Nandakumar J. and Shuman S., (2005) J. Biol. Chem., 280: 23484-23489; Nandakumar J., et al., (2004) J. Biol. Chem., 279: 31337-31347; Nandakumar J. and Shuman S., (2004) Mol. Cell, 16: 211-221.
- the “Rnl2 family ligase” is not limited to an isolated natural ligase, but may be a recombinant protein, mutant, deletion (such as truncated form), peptide (as long as it has RNA nick sealing activity)
- tags such as His, HA, c-Myc, V5, DDDDK, etc.
- fusion with other proteins modified proteins such as glycosylation or lipid addition proteins, and the like are included.
- the ligation reaction solution can be prepared using components usually used for ligation or a buffer containing the same.
- the ligation reaction solution contains components that can be used for RNA ligation, such as Tris (Tris) -HCl, Divalent metal ions, dithiothreitol (DTT), adenosine triphosphate (ATP) and the like may also be included.
- the divalent metal ion include, but are not limited to, Mg 2+ and Mn 2+ .
- the ligation reaction solution usually contains a divalent metal ion in the form of a salt, for example, a metal chloride (MgCl 2 , MnCl 2, etc.).
- Ligation of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule can be achieved by RNA ligase or other enzymes having activity to link the ends of RNAs or dsRNA nicks, particularly Rnl2 family ligases. Can be used.
- RNA ligase dsRNA ligase can be used.
- dsRNA ligase is an enzyme mainly having an activity of linking double-stranded RNA (dsRNA) nicks. Examples of the dsRNA ligase include, but are not limited to, T4 RNA ligase 2.
- T4 RNA ligase 2 catalyzes the formation of 3 ' ⁇ 5' phosphodiester bonds.
- Rnl2 family ligase was added to the ligation reaction solution, and the annealed first single-stranded oligo RNA molecule and second single-stranded oligo RNA molecule were ligated together with the Rnl2 family ligase.
- the 3 ′ end of the first single-stranded oligo RNA molecule constituting the double-stranded oligo RNA molecule and the 5 ′ end of the second single-stranded oligo RNA molecule (antisense strand) Can be ligated to a single strand.
- the ligation of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule is a ligation reaction comprising equimolar amounts of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule. You may carry out in a liquid.
- “including in an equimolar amount” includes the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule in a molar ratio of 1: 1.1 to 1.1: 1. Means that.
- the ligation is carried out by using a first single-stranded oligo RNA molecule and a second single-stranded oligo RNA molecule of 10 ⁇ M or more, 40 ⁇ M or more, 100 ⁇ M or more, 150 ⁇ M or more, 200 ⁇ M or more, 300 ⁇ M or more, Alternatively, the reaction may be performed in a ligation reaction solution containing 500 ⁇ M or more.
- the ligation reaction solution may contain a first single-stranded oligo RNA molecule and a second single-stranded oligo RNA molecule at 10,000 ⁇ M or less, for example, 1,000 ⁇ M or less, 500 ⁇ M or less.
- the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule are used in a ligation reaction, for example, at a concentration of 50-500 ⁇ M, 100-300 ⁇ M, or 100-250 ⁇ M. May be.
- the ligation reaction solution comprising equimolar amounts of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule comprises the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule.
- Strand oligo RNA molecules are included at such concentrations.
- the first and second single-stranded oligo RNA molecules are used at a higher concentration (or amount) relative to the concentration (or amount) of the Rnl2 family ligase in the reaction solution.
- the production efficiency of the single-stranded RNA molecule can be increased.
- the ligation reaction may comprise 0.01 U / ⁇ L or more of Rnl2 family ligase, such as 0.01 U / ⁇ L or more, 0.08 U / ⁇ L or more, 0.2 U / ⁇ L or more, or 0 It may be contained at a concentration of 35 U / ⁇ L or more.
- the ligation reaction solution may contain Rnl2 family ligase at a concentration of, for example, 10 U / ⁇ L or less, 1 U / ⁇ L or less, or 0.5 U / ⁇ L or less.
- a ligation reaction comprising equimolar amounts of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule comprises Rnl2 family ligase at such a concentration.
- the ligation reaction may have a pH of 6.5 or higher, such as pH 7.0 to 9.0, pH 7.4 or higher, pH 7.4 to 8.6, pH 7.5 to 8.5, or The pH may be 7.5 to 8.0.
- the ligation reaction solution containing equimolar amounts of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule may have such a pH.
- the ligation reaction comprises 1 mM or more, such as 1-20 mM, 2-10 mM, 3-6 mM, or 5 mM divalent metal ions. In one embodiment, the ligation reaction comprises 1 mM or more, such as 1-20 mM, 2-10 mM, 3-6 mM, or 5 mM Mg 2+ or Mn 2+ , for example, may include that concentration of MgCl 2 . In one embodiment, a ligation reaction solution containing equimolar amounts of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule contains a divalent metal ion at such a concentration.
- the ligation reaction solution may contain other additive substances such as polyethylene glycol (PEG).
- PEG polyethylene glycol
- the ligation reaction solution may contain polyethylene glycol in an amount of, for example, 3 to 30 w / v%, 5 to 20 w / v%, 5 to 15 w / v%, or 10 to 30 w / v%.
- the ligation reaction solution containing equimolar amounts of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule comprises polyethylene glycol at such a concentration.
- the addition of such polyethylene glycol is 0.4 U / ⁇ L or less, such as 0.01 to 0.4 U / ⁇ L, 0.08 to 0.4 U / ⁇ L, or 0.1 U / ⁇ L to 0. It may be used in a ligation reaction containing less than 3 U / ⁇ L RNA ligase.
- the ligation reaction solution usually contains ATP.
- the ligation reaction solution contains ATP at a concentration of, for example, 5 mM or less, 2 mM or less, 1 mM or less, and / or 0.1 mM or more, or 0.1 to 1.5 mM.
- the ligation reaction solution may contain Tris-HCl, for example, 10 to 70 mM Tris-HCl, but is not limited to this concentration.
- the ligation reaction solution may contain dithiothreitol (DTT), for example, 0.1 to 5 mM DTT, but is not limited to this concentration.
- DTT dithiothreitol
- the ligation reaction time may be a time suitable for the ligation reaction of the double-stranded oligo RNA of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule according to the present invention.
- the ligation reaction may be performed over a reaction time of, for example, 20 minutes or more, 30 minutes or more, 1 hour or more, 2 hours or more, or 3 hours or more.
- the reaction time of ligation in the present invention may be 4 hours or more, 6 hours or more, 8 hours or more, 10 hours or more, 12 hours or more, 24 hours or more, or 48 hours or more.
- the ligation reaction when using a ligation reaction solution containing the first and second single-stranded oligo RNA molecules at a particularly high concentration (for example, 100 ⁇ M or 200 ⁇ M or more), the ligation reaction may be performed for a longer time.
- a longer time for example, 4 hours or longer
- 12 hours or more, or 24 hours or more may be used.
- Such a longer reaction time may be used, particularly when high concentrations of single-stranded oligo RNA molecules are used.
- the ligation step may be performed while adding the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule stepwise.
- “Add stepwise” for the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule means that in the ligation step, the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule This means that the oligo RNA molecule is added to the reaction solution multiple times at intervals of time.
- the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule are added stepwise to the reaction system by adding the single-stranded oligo RNA molecule and performing an additional reaction step for further ligation reaction once or repeatedly. Ligation can be performed.
- the additional reaction step may be repeated two times, three times, four times or more.
- the initial incubation time (initial reaction time) for ligation of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule may be in accordance with the above ligation reaction time. It may be 4 hours or more, 8 hours or more, 12 hours or more, or 24 hours or more.
- the incubation time (addition reaction time) after adding the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule is, for example, 4 hours or more, 8 hours or more, 12 hours or more, or 24 hours or more. It may be.
- the additional reaction time for each cycle may be the same as or different from each other.
- the initial reaction time for ligation and the additional reaction time for each cycle may be the same or different.
- the concentration of the single-stranded RNA molecule initially added to the ligation reaction solution is the same as above.
- the concentration may be 40 ⁇ M or more, 100 ⁇ M or more, 150 ⁇ M or more, or 200 ⁇ M or more.
- the amount of single-stranded RNA molecules added to the ligation reaction solution in each additional reaction step may be the same or different from the amount (number of moles) of single-stranded RNA molecules contained in the initial reaction solution. For example, it may be 4 nmol or more, 10 nmol or more, 15 nmol or more, or 20 nmol or more.
- reaction inhibition decreased ligation efficiency due to high-concentration single-stranded RNA molecules is reduced.
- the content of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule in the reaction solution can be increased, thereby increasing the yield of the hairpin single-stranded RNA molecule.
- the above reaction conditions can be used in any combination.
- the temperature of the annealing step, the time of the annealing step, the mixing ratio of the first single-stranded oligo RNA molecule to be annealed and the second single-stranded oligo RNA molecule, the first and second single strands in the ligation reaction solution Amount (concentration) of strand oligo RNA molecule, type and amount of enzyme (eg, Rnl2 family ligase), type and concentration of divalent metal ion, pH, ATP concentration, additive components and concentrations such as PEG, in reaction solution
- Arbitrarily combining a plurality of conditions selected from the above conditions such as other buffer components, ligation reaction time, stepwise addition (additional addition) of the first and second single-stranded oligo RNA molecules during the ligation reaction Can do.
- a relatively high concentration (for example, 100 ⁇ M to 300 ⁇ M) of the first and second single-stranded oligo RNA molecules in the ligation reaction solution may be combined with other conditions.
- the amount of enzyme (eg, Rnl2 family ligase) used eg, 0.01 U / ⁇ L to 1 U / ⁇ L
- Rnl2 family ligase eg, 0.01 U / ⁇ L to 1 U / ⁇ L
- RNA ligase in the method of the present invention, by adjusting the ligation reaction conditions as described above, a smaller amount of RNA ligase than the amount of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule used.
- the ligase of the Rnl2 family can be used to increase the yield of the ligation product relatively or absolutely.
- the amount of RNA ligase used, particularly the Rnl2 family ligase is 0.001 unit per amount (nmol) of the first single-stranded oligo RNA molecule and / or the second single-stranded oligo RNA molecule. (U) or more, 0.01 unit or more, 0.1 unit or more, 0.2 unit or more, or 1 unit or more.
- an RNA ligase having an amount of“ X ”units or less per mole (nmol) of the first single-stranded oligo RNA molecule and / or the second single-stranded oligo RNA molecule refers to the first single-stranded oligo RNA molecule.
- the amount of RNA ligase, particularly the Rnl2 family ligase, is “X” as compared to either the number of moles of strand oligo RNA molecule or the number of moles of second single-stranded oligo RNA molecule (nmol) or both. Means less than unit.
- the amount of RNA ligase used may be determined based on the smaller number of moles (nmol) of the first single-stranded oligo RNA molecule and the second single-stranded oligo RNA molecule.
- the number of moles (nmol) of the first single-stranded oligo RNA molecule may be calculated as the total amount of the first single-stranded oligo RNA molecule added to the ligation reaction system.
- the number of moles of the first single-stranded oligo RNA molecule in the initial ligation reaction solution and the number of moles of the first single-stranded oligo RNA molecule added to the reaction system in the additional reaction step Calculated as the total number of moles.
- the temperature of the ligation reaction may vary depending on the enzyme used (Rnl2 family ligase), for example, 10 to 50 ° C., 15 to 45 ° C., 20 to 40 ° C., 20 to 30 ° C., or 23 to 28 ° C. Good.
- T4 RNA ligase 2 when used, it may be 10-50 ° C, 15-45 ° C, 20-40 ° C, 20-30 ° C, or 23-28 ° C.
- the ligation reaction solution contains a high proportion of hairpin single-stranded RNA molecules containing the gene expression suppressing sequence according to the present invention.
- the hairpin single-stranded RNA molecule containing the gene expression suppressing sequence according to the present invention in the ligation reaction solution can be purified by methods known to those skilled in the art. Purification techniques include reverse phase chromatography, reverse phase high performance liquid chromatography (RP-HPLC), ultra high performance liquid chromatography (UHPLC), ion exchange chromatography, and other chromatographic methods, gel filtration, column purification, polyacrylamide gel Examples include, but are not limited to, electrophoresis (PAGE) or any combination thereof.
- a preferred embodiment of the method of the present invention is advantageous in that nucleic acid impurities in the ligation reaction solution after the production of the hairpin single-stranded RNA molecule according to the present invention can be reduced.
- a highly stable gene expression-inhibiting single-stranded RNA molecule can be produced using a general-purpose RNA amidite while reducing the generation of nucleic acid impurities.
- the hairpin single-stranded RNA molecule produced by the method of the present invention can be used for suppressing the expression of a target gene by administering it into a living body or a cell by a conventional method.
- the present invention also relates to a kit for producing a hairpin single-stranded RNA molecule for suppressing the expression of a target gene, comprising a combination (pair) of single-stranded oligo RNA molecules according to the present invention.
- a kit for producing a hairpin single-stranded RNA molecule for suppressing the expression of a target gene comprising a combination (pair) of single-stranded oligo RNA molecules according to the present invention.
- a kit can be suitably used for carrying out the method for producing a hairpin single-stranded RNA molecule that suppresses the expression of a target gene according to the present invention.
- Kits for the production of RNA molecules include, but are not limited to: (I) a first single-stranded oligo RNA molecule having a base sequence represented by SEQ ID NO: 7 in which the 24th and 25th ribonucleotide residues are linked via a first linker; A combination with a second single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 6 in which the 11th ribonucleotide residue is linked via a second linker; (Ii) a first single-stranded oligo RNA molecule consisting of a base sequence represented by SEQ ID NO: 19 in which the 24th and 25th ribonucleotide residues are linked via a first linker; A combination with
- kits for producing a hairpin single-stranded RNA molecule for suppressing the expression of the GAPDH gene comprising the combination of the following single-stranded oligo RNA molecules (vii): Including but not limited to: (Vii) a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 37 in which the 22nd and 23rd ribonucleotide residues are linked via a first linker, and the 20th and 21st A combination with a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 36, in which ribonucleotide residues are linked via a second linker.
- a hairpin single-stranded RNA for suppressing the expression of the LAMA1 gene comprising a combination of single-stranded oligo RNA molecules of any of the following (viii) to (xi):
- kits for the production of molecules include, but are not limited to, kits for the production of molecules: (Viii) a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 39 in which the 24th and 25th ribonucleotide residues are linked via a first linker, and the 16th and 17th A combination with a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 38 in which ribonucleotide residues are linked via a second linker; (Ix) a single-stranded oligo RNA molecule consisting of a base sequence represented by SEQ ID NO: 41 in which the 24th and 25th ribonucleotide residues are
- kits for the production of molecules include, but are not limited to, kits for the production of molecules: (Xii) a single-stranded oligo RNA molecule consisting of a base sequence represented by SEQ ID NO: 47 in which the 24th and 25th ribonucleotide residues are linked via a first linker, and the 21st and 22nd A combination with a single-stranded oligo RNA molecule consisting of the base sequence represented by SEQ ID NO: 46 in which ribonucleotide residues are linked via a second linker; (Xiii) a single-stranded oligo RNA molecule consisting of a base sequence represented by SEQ ID NO: 49 in which the 24th and 25th ribonucle
- Proline diamide amidite used to generate the hairpin single-stranded RNA molecule of the present invention containing a proline derivative linker can be synthesized, for example, as described in International Publication WO2013 / 027843. it can. Specific synthesis examples are shown below, but the synthesis method is not limited thereby.
- Fmoc-hydroxyamide-L-proline Fmoc-L-proline is used as a starting material.
- Fmoc is a 9-fluorenylmethyloxycarbonyl group.
- Fmoc-L-proline (10.00 g, 29.64 mmol), 4-amino-1-butanol (3.18 g, 35.56 mmol) and 1-hydroxybenzotriazole (10.90 g, 70.72 mmol) were mixed, The mixture is degassed under reduced pressure and filled with argon gas.
- the mixture is diluted with dichloromethane (100 mL), washed with saturated aqueous sodium hydrogen carbonate (150 mL), and the organic layer is separated. The organic layer is dried over sodium sulfate and then filtered. About the obtained filtrate, the solvent is distilled off under reduced pressure.
- anhydrous dimethylformamide (39 mL) and piperidine (18.7 mL, 189 mmol) are added and stirred at room temperature for 1 hour. After completion of the reaction, the solvent is distilled off from the mixture at room temperature under reduced pressure.
- DMTr-diamide-L-proline amidite The obtained DMTr-hydroxydiamide-L-proline (8.55 g, 14.18 mmol) is mixed with anhydrous acetonitrile and dried azeotropically three times at room temperature. To the resulting residue is added diisopropylammonium tetrazolide (2.91 g, 17.02 mmol), degassed under reduced pressure and filled with argon gas.
- L-proline amidite is obtained.
- Example 1 Synthesis of single-stranded oligo RNA molecule
- ssTbRNA molecule hairpin type single-stranded RNA molecule having a linker using a proline derivative and a human TGF- ⁇ 1 gene expression suppressing sequence. 2
- RNA ligase T4 RNA ligase 2
- a pair of single-stranded oligo RNA molecules (Strand 1 and Strand 2; Table 1) in which the dividing position in the ssTbRNA molecule was shifted by one base were prepared as follows.
- each single-stranded oligo RNA molecule (strand 1 and strand 2) is converted into a nucleic acid synthesizer (trade name AKTA oligopilot-100; GE Healthcare Life Sciences or trade name nS-8) based on the phosphoramidite method.
- nS-8II manufactured by Gene Design Co., Ltd.
- RNA synthesis based on the phosphoramidite method, as RNA amidite, 5′-O-DMT-2′-O-TBDMSi-RNA phosphoramidite (ThermoFisher Scientific) or 5′-O-DMT-2′-O— TBDMS-RNA phosphoramidite (Sigma-Aldrich) was used.
- the carrier polystyrene beads NitoPhase (R) HL rG ( ibu), or rU; KINOVATE); using (Chemgenes Universal UnyLinker Support 1000 ⁇ ) or porous glass (CPG) beads.
- RNA sequences (Xs; or Ya 3 , Ya 2 , and Ya 1 in FIG. 1) immediately after the linker to the 5 ′ end on the “side”, single-stranded oligo RNA molecules of strand 1 and strand 2 was made.
- These single-stranded oligo RNA molecules have linkers represented by the formula (VI-1) as Lx 1 and Lx 2 , and Xa is the 1st nitrogen atom side in the formula (VI-1), and Xs Is linked to the linker Lx 1 on the 2nd carbon atom side, Ys is linked to the 1st nitrogen atom side in the formula (VI-1), and Ya 3 is linked to the linker Lx 2 on the 2nd carbon atom side.
- strand 2 antisense side
- synthesis was completed in the DMTr-OFF state, and single-stranded oligo RNA molecules were excised and deprotected at the base and 2 'positions by conventional methods.
- strand 1 sense side
- synthesis was completed in the DMTr-ON state.
- Example 2 Examination of ligation method (division position) In order to examine the split position of the ssTbRNA molecule into two split fragments, the paired strands 1 and 2 (Table 1) were ligated using RNA ligase (T4 RNA ligase 2), and the ligation efficiency was determined.
- T4 RNA ligase 2 RNA ligase 2
- each pair of strand 1 and strand 2 was dissolved in water for injection (DW), and equimolar amounts were mixed. This equimolar mixture was heat-denatured by heating at 93 ° C. for 1 minute, then allowed to stand at 55 ° C. for 15 minutes for annealing, and the temperature was lowered to 4 ° C. After the temperature was lowered, the reaction solution was analyzed by reverse phase high performance liquid chromatography (RP-HPLC) (20 ° C.) and native polyacrylamide gel electrophoresis (Native PAGE), and the annealing state of strand 1 and strand 2 was examined.
- RP-HPLC reverse phase high performance liquid chromatography
- Native PAGE native polyacrylamide gel electrophoresis
- Native PAGE Native PAGE
- double-stranded oligo RNA in which strand 1 and strand 2 were annealed was obtained. There were pairs that were shown to anneal almost all of strand 1 and strand 2 and pairs annealed at a lower rate.
- the resulting double-stranded oligo RNA (final concentration of each of strand 1 and strand 2 of 10 ⁇ M) was added to buffer (50 mM Tris-HCl, 2 mM MgCl 2 , 1 mM dithiothreitol (DTT), 400 ⁇ M adenosine triphosphate (ATP). ) was prepared, and 2 ⁇ L of 10 U / ⁇ L T4 RNA ligase 2 (New England Biolabs; the same applies hereinafter) (40 U / nmol oligo RNA) was added to a reaction volume of 50 ⁇ L. The reaction was incubated at 37 ° C. for 30 minutes.
- the conditions of the denatured PAGE are as follows. Denaturing PAGE: 19% acrylamide, 7.5M urea, 200V, 90 minutes after electrophoresis, stained with ethidium bromide (EtBr)
- Ligation efficiency (FLP (%) was calculated by the following formula using the area percentage method based on the UHPLC analysis result.
- pairs 011, 016, and 018 suitable for the ligation method were selected.
- the reaction solution after annealing the strands 1 and 2 of the pairs 011, 016, and 018 as described above and ligating them by ligation was analyzed by RP-HPLC under the above conditions.
- the target ssTbRNA molecule and The amount of nucleic acid impurities in the reaction solution other than the free strand 1 and the strand 2 was very small, and the amount of defects (those lacking a part of the ssTbRNA molecule sequence) that appeared near the peak of the ssTbRNA molecule was also small (Table). 2).
- the values of the strand 1, the strand 2, and the ssTbRNA molecule represent respective peak area ratios based on the chromatogram.
- the RRT relative retention time including the peak of the ssTbRNA molecule; here, the retention time of the peak of the ssTbRNA molecule is 1 Relative holding time
- the total value of peak area% was calculated.
- strand 1 and strand 2 were dissolved in water for injection, and equimolar amounts were mixed at 40 ⁇ M each.
- the mixture was heat-denatured by heating at 93 ° C. for 1 minute, then allowed to stand at 55 ° C. for 15 minutes for annealing, and the temperature was lowered to 4 ° C. After the temperature was lowered, the reaction solution was analyzed by reverse phase high performance liquid chromatography (RP-HPLC) (20 ° C.) and native polyacrylamide gel electrophoresis (Native PAGE), and the annealing state of strand 1 and strand 2 was examined.
- RP-HPLC reverse phase high performance liquid chromatography
- Native PAGE native polyacrylamide gel electrophoresis
- the RP-HPLC did not confirm the peak of the single strand, and a double-stranded peak produced by annealing was observed. Further, even in non-denaturing polyacrylamide gel electrophoresis, annealing of almost all molecules of the strand 1 and the strand 2 was confirmed under both the heat denaturing condition and the room temperature condition.
- the annealing state of single-stranded oligo RNA molecules of strand 1 and strand 2 was confirmed by RP-HPLC and native polyacrylamide gel electrophoresis (Native PAGE), and the two were confirmed by RP-HPLC. It was used for the ligation reaction after confirming that the purity (FLP) of the strand RNA was 95% or more.
- Native PAGE Native PAGE
- Example 4 Examination of ligation method (reaction temperature and reaction time) Using three types of pairs 011, 016, and 018 (Table 1; hereinafter, each pair is also simply referred to as 011, 016, and 018), the temperature and time of the ligation reaction were examined. The structures of the strands 1 and 2 of 011, 016, and 018 are shown in FIG.
- each pair of strand 1 and strand 2 was dissolved in water for injection and mixed in equimolar amounts. This equimolar mixture was allowed to stand at room temperature for 10 minutes, and double-stranded oligo RNA was prepared by annealing.
- the resulting double-stranded oligo RNA (an equimolar mixture of strand 1 and strand 2; final concentration of each strand 10 ⁇ M, 40 ⁇ M, or 100 ⁇ M) was added to T4 RNA ligase 2 (New England Biolabs) buffer (50 mM Tris- 100 ⁇ L of a reaction solution containing 0.4 U / ⁇ L T4 RNA ligase 2 in HCl, 2 mM MgCl 2 , 1 mM DTT, 400 ⁇ M ATP, pH 7.5 (25 ° C.)) is incubated at 25 ° C. or 37 ° C. and ligated. did.
- T4 RNA ligase 2 New England Biolabs
- the amount of enzyme (T4 RNA ligase 2) used for this ligation reaction is 40 U / nmol oligo RNA, 10 U / nmol oligo RNA, or 4 U / nmol oligo RNA.
- samples of 20-25 ⁇ L were taken after 0.5, 2, 4, or 24 hours, and heated at 85 ° C. for 20 minutes to inactivate the enzyme.
- the reaction solution after heat inactivation was analyzed by denaturing PAGE and UHPLC, and the ligation efficiency (FLP (%)) was calculated.
- the conditions for denaturing PAGE and UHPLC and the method for calculating FLP (%) are the same as in Example 2.
- the ligation efficiency did not change greatly depending on the reaction temperature and reaction time, and both were very high.
- the ligation efficiency decreased as compared to 10 ⁇ M or 40 ⁇ M, but the ligation efficiency increased as the reaction time increased.
- the ligation efficiency after 4 hours was higher when incubated at 25 ° C. than at 37 ° C.
- the results for 016 are shown in FIG.
- the results of the ligation reaction at an oligo RNA concentration of 100 ⁇ M are shown in FIG. 6 (A: 25 ° C., B: 37 ° C.).
- the ligation efficiency at 011 and 016 was particularly high.
- Example 5 Examination of ligation method (ATP concentration) Using the 011 double-stranded oligo RNA (equal molar mixture) prepared in the same manner as in Example 4, the ATP concentration in the ligation reaction solution was examined. ATP was added to T4 RNA ligase 2 (New England Biolabs) attached buffer (50 mM Tris-HCl, 2 mM MgCl 2 , 1 mM DTT, 400 ⁇ M ATP, pH 7.5 (25 ° C.)) to give an ATP concentration of 0.4 mM (added) None) 1 mM, 2 mM, 5 mM, or 10 mM.
- T4 RNA ligase 2 New England Biolabs
- FIG. 7 shows the result of denaturation PAGE
- FIG. 8 shows FLP (%) shown at an oligo RNA concentration of 40 ⁇ M. Increasing the ATP concentration inhibited the ligation reaction.
- Example 6 Examination of ligation method (pH) Using 016 double-stranded oligo RNA (equimolar mixture) prepared in the same manner as in Example 4, the pH conditions of the ligation reaction solution were examined. The following three types of buffers were used.
- the results are shown in FIG.
- the pH 7.5 reaction solution showed a ligation efficiency of 95% or more when reacted for 24 hours even when it contained a high concentration of oligo RNA.
- Example 7 Examination of ligation method (pH 8.0 or more) Using 016 double-stranded oligo RNA (equimolar mixture) prepared in the same manner as in Example 4, the pH conditions of the ligation reaction solution were further examined. The following four types of buffers were used.
- Example 8 Examination of ligation method (divalent ion concentration) Using 016 double-stranded oligo RNA (equal molar mixture) prepared in the same manner as in Example 4, the MgCl 2 concentration in the ligation reaction solution was examined. The following five types of buffers were used.
- FIG. 11 The results are shown in FIG. 11 (A: 10 ⁇ M or 100 ⁇ M oligo RNA, B: 10 ⁇ M or 200 ⁇ M oligo RNA).
- a ligation efficiency of 95% or more was shown by a reaction of 4 hours or more at a MgCl 2 concentration of 2 mM or more.
- a ligation efficiency of 95% or more is shown by a reaction for 24 hours or more at a MgCl 2 concentration of 2 mM or more, and a ligation efficiency of 5 mM MgCl 2 is particularly rapid after 4 hours. An increase was observed. From this result, it was shown that when a higher concentration of oligo RNA is used, the progress of the ligation reaction can be accelerated by appropriately increasing the MgCl 2 concentration.
- Example 9 Examination of enzyme ligation method (divalent ion concentration and pH) Using 016 double-stranded oligo RNA (equal molar mixture) prepared in the same manner as in Example 4, the concentration of divalent ions in the ligation reaction solution was examined. The following six types of buffers were used. (1) 50 mM Tris-HCl (pH 7.5), 1 mM DTT, 400 ⁇ M ATP, 2 mM, 5 mM, or 10 mM MgCl 2 (2) 50 mM Tris-HCl (pH 8.0), 1 mM DTT, 400 ⁇ M ATP, 2 mM, 5 mM, or 10 mM MgCl 2
- Example 10 Examination of enzyme ligation method (PEG addition) Using 018 double-stranded oligo RNA (equal molar mixture) prepared in the same manner as in Example 4, the influence on the ligation efficiency due to the addition of PEG to the ligation reaction solution was examined.
- Double stranded oligo RNA (final of each strand) in buffer (5, 10, or 15% (w / v) PEG 8000, 50 mM Tris-HCl (pH 8.0), 2 mM MgCl 2 , 1 mM DTT, 400 ⁇ M ATP) And a reaction solution containing 0.4 U / ⁇ L or 0.2 U / ⁇ L of T4 RNA ligase 2 was incubated at 25 ° C. for 30 minutes, 4 hours, or 24 hours and ligated.
- the amount of the enzyme (T4 RNA ligase 2) used in this ligation reaction is 2 U / nmol oligo RNA or 1 U / nmol oligo RNA, and compared with the enzyme amount in Example 4, 1/20 and 1 respectively. / 40.
- the enzyme was inactivated by heating at 85 ° C. for 20 minutes.
- the reaction solution after heat inactivation was analyzed by denaturing PAGE and UHPLC, and the ligation efficiency (FLP (%)) was calculated.
- the conditions for denaturing PAGE and UHPLC and the method for calculating FLP (%) are the same as in Example 2.
- Example 11 Analysis of reaction time course in enzyme ligation method Using 016 double-stranded oligo RNA (an equimolar mixture) prepared in the same manner as in Example 4, the time course of the ligation reaction was examined.
- Double-stranded oligo RNA (final concentration of each strand 100 ⁇ M or 200 ⁇ M), 0.4 U / ⁇ L T4 RNA ligase 2 in buffer (50 mM Tris-HCl (pH 8.0), 5 mM MgCl 2 , 1 mM DTT, 400 ⁇ M ATP) 80 ⁇ L of the reaction solution contained therein was incubated at 25 ° C. and ligated. During the ligation reaction, samples were taken 1, 2, 3, 4, 6, 9, 12, 15, 18, and 24 hours after the start, and the enzyme was inactivated by heating at 85 ° C. for 20 minutes, followed by UHPLC analysis. The FLP% was calculated. The UHPLC conditions and the FLP (%) calculation method are the same as in Example 2.
- Example 12 Additional addition of oligo RNA in enzyme ligation method Using 016 double-stranded oligo RNA (equal molar mixture) prepared in the same manner as in Example 4, one of strand 1 and strand 2 was used in the ligation reaction phase. A method for increasing the yield of ssTbRNA molecules by sequentially adding single-stranded oligo RNA molecules was examined.
- Double-stranded oligo RNA (final concentration 100 ⁇ M; total amount of oligo RNA in 100 ⁇ L reaction solution is 10 nmol for each of strand 1 and strand 2)
- T4 RNA ligase 2 (0.4 U / ⁇ L; 4 U / nmol oligo RNA) in a buffer (50 mM Tris-HCl (pH 8.0), 5 mM MgCl 2 , 1 mM DTT, 400 ⁇ M ATP) is dispensed into 4 tubes and incubated at 25 ° C.
- the ligation reaction was started.
- 016 strands in 016 double-stranded oligo RNA were placed in three tubes. (Equimolar mixture of 1 and strand 2) was added in an amount (11.1 ⁇ L) to give 10 nmol of each strand, followed by incubation.
- the oligo RNA concentration in the reaction solution after addition of oligo RNA is 180 ⁇ M (concentration of each strand), and the amount of enzyme (T4 RNA ligase 2) is 0.36 U / ⁇ L (2 U / nmol oligo RNA).
- oligo RNA twelve hours after addition of oligo RNA, 016 double-stranded oligo RNA (equal equimolar mixture as above) was added to 2 tubes out of 3 tubes added with oligo RNA (11.1 ⁇ L) to each strand of 10 nmol. ) And further incubated.
- concentration of oligo RNA in the reaction solution after the second addition of oligo RNA is 245 ⁇ M (concentration of each strand), and the amount of enzyme (T4 RNA ligase 2) is 0.33 U / ⁇ L (1.33 U / nmol oligo RNA).
- oligo RNA (equal equimolar mixture as described above) was added to one tube out of two tubes added with oligo RNA twice. ) And incubated for a further 12 hours.
- the oligo RNA concentration in the reaction solution after the third oligo RNA addition is 300 ⁇ M (concentration of each strand), and the amount of enzyme (T4 RNA ligase 2) is 0.3 U / ⁇ L (1 U / nmol oligo RNA).
- the reaction solution was sampled from these tubes every 12 hours and heated at 85 ° C. for 20 minutes to inactivate the enzyme.
- the obtained samples after the reaction are as follows.
- the reaction time refers to the time from the start of the ligation reaction.
- Tube 1 100 ⁇ M oligo RNA (total 10 nmol for each strand; no addition), enzyme amount 0.4 U / ⁇ L, reaction temperature 25 ° C., reaction time 12, 24, 36, or 48 hours
- Tube 2 180 ⁇ M oligo RNA (each strand 20 nmol; added once), enzyme amount 0.36 U / ⁇ L, reaction temperature 25 ° C., reaction time 24, 36, or 48 hours tube 3) 245 ⁇ M oligo RNA (total 30 nmol for each strand; added twice), enzyme Amount 0.33 U / ⁇ L, reaction temperature 25 ° C., reaction time 36 or 48 hours
- Tube 4 300 ⁇ M oligo RNA (total 40 nmol for each strand; added 3 times), enzyme amount 0.3 U / ⁇ L, reaction temperature 25 ° C. 48 hours reaction time
- the production amount (nmol) of the target product (ssTbRNA molecule) was calculated from the addition amount of FLP% and single-stranded oligo RNA molecules. The result is shown in FIG.
- Double-stranded oligo RNA (final concentration 200 ⁇ M; total amount of oligo RNA in 100 ⁇ L reaction solution is 20 nmol for each of strand 1 and strand 2), and T4 RNA ligase 2 (0.4 U / ⁇ L; 4 U / nmol oligo) RNA) in a buffer (50 mM Tris-HCl, 5 mM MgCl 2 , 1 mM DTT, 400 ⁇ M ATP (pH 8.0)) is dispensed into 4 tubes and incubated at 25 ° C. The ligation reaction was started.
- a buffer 50 mM Tris-HCl, 5 mM MgCl 2 , 1 mM DTT, 400 ⁇ M ATP (pH 8.0)
- 016 strands 1 and 2 in 016 double-stranded oligo RNA were placed in three tubes.
- the oligo RNA was added up to the third time every 12 hours, and the ligation reaction was continued.
- the reaction solution was sampled from these tubes every 12 hours and heated at 85 ° C. for 20 minutes to inactivate the enzyme.
- the obtained samples after the reaction are as follows.
- the reaction time refers to the time from the start of the ligation reaction.
- Tube 1 200 ⁇ M oligo RNA (total 20 nmol for each strand; no addition), enzyme amount 0.4 U / ⁇ L, reaction temperature 25 ° C., reaction time 12, 24, 36, or 48 hours tube 2) 327 ⁇ M oligo RNA (each strand 40 nmol; added once), enzyme amount 0.36 U / ⁇ L, reaction temperature 25 ° C., reaction time 24, 36, or 48 hours tube 3) 415 ⁇ M oligo RNA (total 60 nmol for each strand; added twice), enzyme Amount 0.33 U / ⁇ L, reaction temperature 25 ° C., reaction time 36, or 48 hours Tube 4) 480 ⁇ M oligo RNA (total 80 nmol for each strand; added 3 times), enzyme amount 0.3 U / ⁇ L, reaction temperature 25 ° C. 48 hours reaction time
- the production amount (nmol) of the target product (ssTbRNA molecule) was calculated from the addition amount of FLP% and single-stranded oligo RNA molecules. The result is shown in FIG.
- the amount of hairpin single-stranded RNA molecules (here, ssTbRNA molecules) can be increased by sequentially adding oligo RNA to the ligation reaction phase. It was.
- RNA ligase use amount (the enzyme amount is 0.4 U / ⁇ L with respect to the starting oligo RNA amount of 10 ⁇ M)
- a ligation efficiency of more than 90% of FLP can be obtained under the same ligation reaction conditions as described above, but per 100 ⁇ L reaction solution.
- the amount of ssTbRNA molecules produced is less than 1 nmol.
- the amount of enzyme used per oligo RNA amount is reduced from 1/30 to 1/40 under an efficient reaction condition showing 90% or more of FLP. It was shown that it can be reduced.
- RNA molecules Production of hairpin single-stranded RNA molecules for other target genes
- Strand RNA molecules were prepared by the method of ligating two split fragments, strand 1 and strand 2, as in Examples 1 and 2.
- the linker the same proline derivative as in Examples 1 and 2 or a nucleotide linker was used.
- FIG. 17 shows the hairpin type single-stranded RNA molecule and the dividing position in the molecule.
- gene expression suppression sequences antisense sequences for each gene contained in the hairpin single-stranded RNA molecule are shown in a frame.
- Table 5 shows a pair of strand 1 and strand 2, which are two fragment fragments of each hairpin type single-stranded RNA molecule.
- the pair of strand 1 and strand 2 in Table 5 has UU, AA, AU, or UA as a terminal base combination to be ligated.
- each pair of strand 1 and strand 2 was annealed to obtain double-stranded oligo RNA.
- the resulting double-stranded oligo RNA (final concentration of each of strand 1 and strand 2 of 10 ⁇ M) was added to buffer (50 mM Tris-HCl, 2 mM MgCl 2 , 1 mM dithiothreitol (DTT), 400 ⁇ M adenosine triphosphate (ATP).
- buffer 50 mM Tris-HCl, 2 mM MgCl 2 , 1 mM dithiothreitol (DTT), 400 ⁇ M adenosine triphosphate (ATP).
- reaction solution pH 7.5 [25 ° C.]
- 2 ⁇ L of 10 U / ⁇ L T4 RNA ligase 2 (New England Biolabs) (40 U / nmol oligo RNA) was added to a reaction solution volume of 50 ⁇ L. .
- the reaction was incubated at 37 ° C. for 30 minutes.
- Each ligation product was subjected to LC-MS analysis and confirmed to have the expected molecular weight.
- the LC apparatus and MS apparatus used for the LC-MS analysis are the same as those used in Example 2.
- each pair of strand 1 and strand 2 was annealed to obtain double-stranded oligo RNA.
- the resulting double-stranded oligo RNA (final concentration of each of strand 1 and strand 2 of 10 ⁇ M) was added to buffer (50 mM Tris-HCl, 10 mM MgCl 2 , 5 mM dithiothreitol (DTT), 1 mM adenosine triphosphate (ATP). ) was prepared, and 0.5 ⁇ L of 10 U / ⁇ L T4 RNA ligase (Promega) (10 U / nmol oligo RNA) was added to a reaction volume of 50 ⁇ L. The reaction was incubated at 37 ° C. for 30 minutes.
- the present invention uses a general-purpose amidite, and enables efficient production of a hairpin single-stranded RNA molecule containing an expression suppression sequence for a target gene while reducing the amount of enzyme used.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Endocrinology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
[1]標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造方法であって、
第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子とをアニーリングするアニーリング工程と、
前記第1の一本鎖オリゴRNA分子の3’末端と前記第2の一本鎖オリゴRNA分子の5’末端とをRnl2ファミリーのリガーゼによりライゲーションするライゲーション工程とを含み、
前記第1の一本鎖オリゴRNA分子は、第1のリンカーを介して連結された第1のRNA部分と第2のRNA部分を含み、第1のRNA部分と第2のRNA部分の一方は他方に対して相補的に結合可能であり、
前記第2の一本鎖オリゴRNA分子は、第2のリンカーを介して連結された第3のRNA部分と第4のRNA部分を含み、第3のRNA部分と第4のRNA部分の一方は他方に対して相補的に結合可能であり、
前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子とは5’末端又は3’末端の相補的な配列間で分子間二重鎖を形成可能であり、
アニーリング工程において前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子が二重鎖を形成するとき、前記第1の一本鎖オリゴRNA分子の3’末端のリボヌクレオチド残基と前記第2の一本鎖オリゴRNA分子の5’末端のリボヌクレオチド残基はニックを生成し、また前記第1の一本鎖オリゴRNA分子の5’末端のリボヌクレオチド残基と前記第2の一本鎖オリゴRNA分子の3’末端のリボヌクレオチド残基の間には1個以上のリボヌクレオチド残基のギャップが存在し、
前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子とのライゲーションにより生成される配列は、前記標的遺伝子に対する遺伝子発現抑制配列を含む、
ヘアピン型一本鎖RNA分子の製造方法。
[2]前記第1の一本鎖オリゴRNA分子は、下記式(I)で表され、前記第2の一本鎖オリゴRNA分子は、下記式(II)で表され、
5’-Xs-Lx1-Xa-3’ ・・・式(I)
5’-Ya1-Ya2-Ya3-Lx2-Ys-3’ ・・・式(II)
式(I)及び式(II)中、Xs、Xa、Ya1、Ya2、Ya3及びYsは、1個又はそれ以上のリボヌクレオチド残基を表し、
Lx1及びLx2は、それぞれ、第1のリンカー及び第2のリンカーを表し、
Ya3は、Ysと相補的であり、
ライゲーション工程で生じるXa-Ya1は、Xsと相補的であり、
ライゲーション工程で生じるXa-Ya1-Ya2-Ya3は、前記標的遺伝子に対する遺伝子発現抑制配列を含む、
上記[1]に記載の製造方法。
[3]前記第1の一本鎖オリゴRNA分子が3’末端にウラシル(U)又はアデニン(A)を有し、前記第2の一本鎖オリゴRNA分子が5’末端にウラシル(U)又はアデニン(A)を有する、上記[1]又は[2]に記載の製造方法。
[4]第1のリンカー及び第2のリンカーは、それぞれ独立して、(i)ピロリジン骨格及びピペリジン骨格の少なくとも一方を含む非ヌクレオチド性リンカー、又は(ii)ヌクレオチド性リンカーである、上記[1]~[3]のいずれかに記載の製造方法。
[5]Rnl2ファミリーのリガーゼが、T4 RNAリガーゼ2である、上記[1]~[4]のいずれかに記載の製造方法。
[6]pH7.4~8.6の反応液中で前記ライゲーションが行われる、上記[1]~[5]のいずれかに記載の製造方法。
[7]2~10mMの二価金属イオンを含む反応液中で前記ライゲーションが行われる、上記[1]~[6]のいずれかに記載の製造方法。
[8]第1のリンカー及び第2のリンカーは、それぞれ独立して、下記式(VI)で表される非ヌクレオチド性リンカーである、上記[1]~[7]のいずれかに記載の製造方法。
[10]前記ヘアピン型一本鎖RNA分子は、配列番号1で表される塩基配列からなり、24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結され、50番目と51番目のリボヌクレオチド残基が第2のリンカーを介して連結されている、上記[1]~[9]のいずれかに記載の製造方法。
[11]前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子は、以下の(1)~(6)のいずれかである、上記[1]~[10]のいずれかに記載の製造方法。
(1)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号7で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、10番目と11番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号6で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(2)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号19で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号18で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(3)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号27で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号26で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(4)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号29で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号28で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(5)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号31で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号30で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(6)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号33で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号32で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
[12]以下の(a)~(l)のいずれかである、一本鎖オリゴRNA分子。
(a)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号7で表される塩基配列からなる一本鎖オリゴRNA分子
(b)10番目と11番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号6で表される塩基配列からなる一本鎖オリゴRNA分子
(c)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号19で表される塩基配列からなる一本鎖オリゴRNA分子
(d)16番目と17番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号18で表される塩基配列からなる一本鎖オリゴRNA分子
(e)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号27で表される塩基配列からなる一本鎖オリゴRNA分子
(f)20番目と21番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号26で表される塩基配列からなる一本鎖オリゴRNA分子
(g)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号29で表される塩基配列からなる一本鎖オリゴRNA分子
(h)21番目と22番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号28で表される塩基配列からなる一本鎖オリゴRNA分子
(i)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号31で表される塩基配列からなる一本鎖オリゴRNA分子
(j)22番目と23番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号30で表される塩基配列からなる一本鎖オリゴRNA分子
(k)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号33で表される塩基配列からなる一本鎖オリゴRNA分子
(l)23番目と24番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号32で表される塩基配列からなる一本鎖オリゴRNA分子
[13]以下の(1)~(6)のいずれかの一本鎖オリゴRNA分子の組み合わせを含む、TGF-β1遺伝子の発現を抑制するためのヘアピン型一本鎖RNA分子の製造用のキット。
(1)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号7で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、10番目と11番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号6で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(2)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号19で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号18で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(3)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号27で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号26で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(4)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号29で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号28で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(5)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号31で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号30で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(6)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号33で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号32で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
本発明は、標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造方法に関する。本発明の方法により製造されるヘアピン型一本鎖RNA分子は、遺伝子発現抑制配列を含む二本鎖RNAのセンス鎖の3’末端及びアンチセンス鎖の5’末端が、非ヌクレオチド性リンカー又はヌクレオチド性リンカーなどのリンカーを含む配列を介して連結され、そのアンチセンス鎖の3’末端に非ヌクレオチド性リンカー又はヌクレオチド性リンカーなどのリンカーを含む配列を介して1個以上のリボヌクレオチド残基がさらに連結された一本鎖構造を有する。本発明の方法により製造されるヘアピン型一本鎖RNA分子の5’末端と3’末端は、結合されていない。本明細書において「ヘアピン型」とは、一本鎖RNA分子が分子内アニーリング(自己アニーリング)により1つ以上の二重鎖構造を形成することを意味する。本発明の方法により製造されるヘアピン型一本鎖RNA分子は、典型的には、その5’末端を含む5’側領域と3’末端を含む3’側領域がそれぞれ別個に分子内アニーリングすることにより、2つの二重鎖構造を形成する。本明細書において「RNA」、「RNA分子」、「核酸分子」及び「核酸」は、ヌクレオチドのみから構成されていてもよいが、ヌクレオチドと非ヌクレオチド物質(例えば、プロリン誘導体などの環状アミン誘導体)から構成されていてもよい。
第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子とをアニーリングするアニーリング工程と、
前記第1の一本鎖オリゴRNA分子の3’末端と前記第2の一本鎖オリゴRNA分子の5’末端とをRnl2ファミリーのリガーゼによりライゲーションするライゲーション工程とを含み、
第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子とのライゲーションにより生成される配列は、前記標的遺伝子に対する遺伝子発現抑制配列を含む、ヘアピン型一本鎖RNA分子の製造方法に関する。
下記式(I)で表される第1の一本鎖オリゴRNA分子(図1中、ストランド1):
5’-Xs-Lx1-Xa-3’ ・・・式(I)
と、下記式(II)で表される第2の一本鎖オリゴRNA分子(図1中、ストランド2):
5’-Ya1-Ya2-Ya3-Lx2-Ys-3’ ・・・式(II)
をアニーリングするアニーリング工程と、第1の一本鎖オリゴRNA分子の3’末端と第2の一本鎖オリゴRNA分子の5’末端とをライゲーションするライゲ-ション工程とを含む。このライゲーションはRnl2ファミリーのリガーゼにより行うことができる。
下記式(A)で表される第1の一本鎖オリゴRNA分子:
5’-XXs-Lx1-XXa3-XXa2-XXa1-3’ ・・・式(A)
と、下記式(B)で表される第2の一本鎖オリゴRNA分子:
5’-YYa-Lx2-YYs-3’ ・・・式(B)
をアニーリングするアニーリング工程と、第1の一本鎖オリゴRNA分子の3’末端と第2の一本鎖オリゴRNA分子の5’末端とをライゲーションするライゲ-ション工程とを含む。このライゲーションはRnl2ファミリーのリガーゼにより行うことができる。
(1)非修飾ヌクレオチド残基
(2)修飾ヌクレオチド残基
(3)非修飾ヌクレオチド残基と修飾ヌクレオチド残基の組み合わせ
(4)非ヌクレオチド残基
(5)非ヌクレオチド残基と非修飾ヌクレオチド残基の組み合わせ
(6)非ヌクレオチド残基と修飾ヌクレオチド残基の組み合わせ
(7)非ヌクレオチド残基、非修飾ヌクレオチド残基及び修飾ヌクレオチド残基の組み合わせ
X1及びX2は、それぞれ独立して、H2、O、S又はNHであり;
Y1及びY2は、それぞれ独立して、単結合、CH2、NH、O又はSであり;
R3は、環A上のC-3、C-4、C-5又はC-6に結合する水素原子又は置換基であり、
L1は、n個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、ORa、NH2、NHRa、NRaRb、SH、もしくはSRaで置換されても置換されていなくてもよく、又は、
L1は、上記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ここで、Y1が、NH、O又はSの場合、Y1に結合するL1の原子は炭素であり、OR1に結合するL1の原子は炭素であり、酸素原子同士は隣接せず;
L2は、m個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、ORc、NH2、NHRc、NRcRd、SHもしくはSRcで置換されても置換されていなくてもよく、又は、
L2は、上記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ここで、Y2が、NH、O又はSの場合、Y2に結合するL2の原子は炭素であり、OR2に結合するL2の原子は炭素であり、酸素原子同士は隣接せず;
Ra、Rb、Rc及びRdは、それぞれ独立して、置換基又は保護基であり;
lは、1又は2であり;
mは、0~30の範囲の整数であり;
nは、0~30の範囲の整数であり;
環Aは、環A上のC-2以外の1個の炭素原子が、窒素原子、酸素原子、硫黄原子で置換されてもよく、
環A内に、炭素-炭素二重結合又は炭素-窒素二重結合を含んでもよく、
ここで、R1及びR2は、存在しても存在しなくてもよく、存在する場合、R1及びR2は、それぞれ独立して、R1及びR2が存在しない式(III)で表される非ヌクレオチド残基である。
X1及びX2は、それぞれ独立して、H2、O、S又はNHであり;
Y1及びY2は、それぞれ独立して、単結合、CH2、NH、O又はSであり;
R1及びR2は、それぞれ独立して、H、保護基又はリン酸保護基であり;
R3は、環A上のC-3、C-4、C-5又はC-6に結合する水素原子又は置換基であり;
L1は、n個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、ORa、NH2、NHRa、NRaRb、SH、もしくはSRaで置換されても置換されていなくてもよく、又は、
L1は、上記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ここで、Y1が、NH、O又はSの場合、Y1に結合するL1の原子は炭素であり、OR1に結合するL1の原子は炭素であり、酸素原子同士は隣接せず;
L2は、m個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、ORc、NH2、NHRc、NRcRd、SHもしくはSRcで置換されても置換されていなくてもよく、又は、
L2は、上記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ここで、Y2が、NH、O又はSの場合、Y2に結合するL2の原子は炭素であり、OR2に結合するL2の原子は炭素であり、酸素原子同士は隣接せず;
Ra、Rb、Rc及びRdは、それぞれ独立して、置換基又は保護基であり;
lは、1又は2であり;
mは、0~30の範囲の整数であり;
nは、0~30の範囲の整数であり;
環Aは、環A上のC-2以外の1個の炭素原子が、窒素原子、酸素原子又は硫黄原子で置換されてもよく、
環A内に、炭素-炭素二重結合又は炭素-窒素二重結合を含んでもよい。
-P(OR6)(NR7R8)
(1)24番目と25番目のリボヌクレオチド残基が第1のリンカー(Lx1)を介して連結されている配列番号7で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、10番目と11番目のリボヌクレオチド残基が第2のリンカー(Lx2)を介して連結されている配列番号6で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、
(2)24番目と25番目のリボヌクレオチド残基が第1のリンカー(Lx1)を介して連結されている配列番号19で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカー(Lx2)を介して連結されている配列番号18で表される塩基配列からなる第2の一本鎖オリゴRNA分子の組み合わせ、
(3)24番目と25番目のリボヌクレオチド残基が第1のリンカー(Lx1)を介して連結されている配列番号27で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカー(Lx2)を介して連結されている配列番号26で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(4)24番目と25番目のリボヌクレオチド残基が第1のリンカー(Lx1)を介して連結されている配列番号29で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカー(Lx2)を介して連結されている配列番号28で表される塩基配列からなる第2の一本鎖オリゴRNA分子の組み合わせ
(5)24番目と25番目のリボヌクレオチド残基が第1のリンカー(Lx1)を介して連結されている配列番号31で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカー(Lx2)を介して連結されている配列番号30で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、及び
(6)24番目と25番目のリボヌクレオチド残基が第1のリンカー(Lx1)を介して連結されている配列番号33で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカー(Lx2)を介して連結されている配列番号32で表される塩基配列からなる第2の一本鎖オリゴRNA分子の組み合わせ、
が挙げられる。これらの第1の一本鎖オリゴRNA分子は、3’末端(Xaの3’末端)にU又はAを含む。これらの第2の一本鎖オリゴRNA分子は、5’末端(Ya1の5’末端)にU又はAを含む。
(a)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号7で表される塩基配列からなる一本鎖オリゴRNA分子、
(b)10番目と11番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号6で表される塩基配列からなる一本鎖オリゴRNA分子、
(c)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号19で表される塩基配列からなる一本鎖オリゴRNA分子、
(d)16番目と17番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号18で表される塩基配列からなる一本鎖オリゴRNA分子、
(e)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号27で表される塩基配列からなる一本鎖オリゴRNA分子、
(f)20番目と21番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号26で表される塩基配列からなる一本鎖オリゴRNA分子、
(g)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号29で表される塩基配列からなる一本鎖オリゴRNA分子、
(h)21番目と22番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号28で表される塩基配列からなる一本鎖オリゴRNA分子、
(i)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号31で表される塩基配列からなる一本鎖オリゴRNA分子、
(j)22番目と23番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号30で表される塩基配列からなる一本鎖オリゴRNA分子、
(k)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号33で表される塩基配列からなる一本鎖オリゴRNA分子、及び
(l)23番目と24番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号32で表される塩基配列からなる一本鎖オリゴRNA分子。
(m)22番目と23番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号37で表される塩基配列からなる一本鎖オリゴRNA分子、及び
(n)20番目と21番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号36で表される塩基配列からなる一本鎖オリゴRNA分子
(o)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号39で表される塩基配列からなる一本鎖オリゴRNA分子、
(p)16番目と17番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号38で表される塩基配列からなる一本鎖オリゴRNA分子、
(q)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号41で表される塩基配列からなる一本鎖オリゴRNA分子、
(r)22番目と23番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号40で表される塩基配列からなる一本鎖オリゴRNA分子、
(s)24番目と31番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている配列番号43で表される塩基配列からなる一本鎖オリゴRNA分子、
(t)21番目と26番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている配列番号42で表される塩基配列からなる一本鎖オリゴRNA分子、
(u)24番目と31番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている配列番号45で表される塩基配列からなる一本鎖オリゴRNA分子、及び
(v)22番目と27番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている配列番号44で表される塩基配列からなる一本鎖オリゴRNA分子。
(w)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号47で表される塩基配列からなる一本鎖オリゴRNA分子、
(x)21番目と22番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号46で表される塩基配列からなる一本鎖オリゴRNA分子、
(y)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号49で表される塩基配列からなる一本鎖オリゴRNA分子、及び
(z)23番目と24番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号48で表される塩基配列からなる一本鎖オリゴRNA分子。
(i)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号7で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、10番目と11番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号6で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、
(ii)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号19で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号18で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、
(iii)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号27で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号26で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、
(iv)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号29で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号28で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、
(v)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号31で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号30で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、及び
(vi)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号33で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号32で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ。
(vii)22番目と23番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号37で表される塩基配列からなる一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号36で表される塩基配列からなる一本鎖オリゴRNA分子との組み合わせ。
(viii)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号39で表される塩基配列からなる一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号38で表される塩基配列からなる一本鎖オリゴRNA分子との組み合わせ、
(ix)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号41で表される塩基配列からなる一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号40で表される塩基配列からなる一本鎖オリゴRNA分子との組み合わせ、
(x)配列番号43で表される塩基配列からなる一本鎖オリゴRNA分子(24番目と31番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている)と、配列番号42で表される塩基配列からなる一本鎖オリゴRNA分子(21番目と26番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている)との組み合わせ、
(xi)配列番号45で表される塩基配列からなる一本鎖オリゴRNA分子(24番目と31番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている)と、配列番号44で表される塩基配列からなる一本鎖オリゴRNA分子(22番目と27番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている)との組み合わせ。
(xii)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号47で表される塩基配列からなる一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号46で表される塩基配列からなる一本鎖オリゴRNA分子との組み合わせ、
(xiii)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号49で表される塩基配列からなる一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号48で表される塩基配列からなる一本鎖オリゴRNA分子との組み合わせ。
プロリン誘導体リンカーを含む本発明のヘアピン型一本鎖RNA分子を生成するために用いるプロリンジアミドアミダイトは、例えば、国際公開WO2013/027843の記載に従って合成することができる。具体的な合成例を以下に示すが、合成方法はそれにより限定されない。
Fmoc-L-プロリンを開始原料とする。Fmocは、9-フルオレニルメチルオキシカルボニル基である。Fmoc-L-プロリン(10.00g、29.64mmol)、4-アミノ-1-ブタノール(3.18g、35.56mmol)及び1-ヒドロキシベンゾトリアゾール(10.90g、70.72mmol)を混合し、その混合物に対し、減圧下で脱気し、アルゴンガスを充填する。得られた混合物に、無水アセトニトリル(140mL)を室温で加え、さらに、ジシクロヘキシルカルボジイミド(7.34g、35.56mmol)の無水アセトニトリル溶液(70mL)を添加した後、アルゴン雰囲気下、室温で15時間撹拌する。反応終了後、生成した沈殿をろ別し、回収したろ液について、減圧下で溶媒を留去する。得られた残渣にジクロロメタン(200mL)を加え、飽和重曹水(200mL)で洗浄する。そして、有機層を回収し、硫酸マグネシウムで乾燥した後、ろ過する。得られたろ液について、減圧下で溶媒を留去し、その残渣にジエチルエーテル(200mL)を加え、粉末化する。生じた粉末を濾取することにより、無色粉末状物質としてFmoc-ヒドロキシアミド-L-プロリンが得られる。
Fmoc-ヒドロキシアミド-L-プロリン(7.80g、19.09mmol)を無水ピリジン(5mL)と混合し、室温で2回共沸乾燥する。得られた残留物に、4,4’-ジメトキシトリチルクロリド(8.20g、24.20mmol)、4-ジメチルアミノピリジン(DMAP)(23mg、0.19mmol)及び無水ピリジン(39mL)を加える。この混合物を、室温で1時間撹拌した後、メタノール(7.8mL)を加え、室温で30分撹拌する。この混合物を、ジクロロメタン(100mL)で希釈し、飽和重曹水(150mL)で洗浄後、有機層を分離する。この有機層を、硫酸ナトリウムで乾燥した後、ろ過する。得られたろ液について、減圧下で溶媒を留去する。得られた未精製の残渣に、無水ジメチルホルムアミド(39mL)及びピペリジン(18.7mL、189mmol)を加え、室温で1時間撹拌する。反応終了後、その混合液から、減圧下、室温で、溶媒を留去する。得られた残渣をシリカゲルカラムクロマトグラフィー(商品名Wakogel C-300、展開溶媒CH2Cl2:CH3OH=9:1、0.05%ピリジン含有)に供することにより、淡黄色油状物質としてDMTr-アミド-L-プロリンが得られる。DMTrは、ジメトキシトリチル基である。
得られたDMTr-アミド-L-プロリン(6.01g、12.28mmol)、N-(3’-ジメチルアミノプロピル)-N’-エチルカルボジイミド(EDC)(2.83g、14.74mmol)、1-ヒドロキシベンゾトリアゾール(3.98g、29.47mmol)及びトリエチルアミン(4.47g、44.21mmol)の無水ジクロロメタン溶液(120mL)を混合する。この混合液に、さらに、アルゴン雰囲気下、室温で、6-ヒドロキシヘキサン酸(1.95g、14.47mmol)を加え、その後、アルゴン雰囲気下、室温で、1時間撹拌する。得られた混合液をジクロロメタン(600mL)で希釈し、飽和食塩水(800mL)で3回洗浄する。有機層を回収し、硫酸ナトリウムで乾燥した後、ろ過する。得られたろ液について、減圧下で溶媒を留去する。これにより、淡黄色泡状物質としてDMTr-ヒドロキシジアミド-L-プロリンが得られる。
得られたDMTr-ヒドロキシジアミド-L-プロリン(8.55g、14.18mmol)を無水アセトニトリルと混合し、室温で3回共沸乾燥する。得られた残留物に、ジイソプロピルアンモニウムテトラゾリド(2.91g、17.02mmol)を加え、減圧下で脱気し、アルゴンガスを充填する。その混合物に対し、無水アセトニトリル(10mL)を加え、さらに、2-シアノエトキシ-N,N,N’,N’-テトライソプロピルホスホロジアミダイト(5.13g、17.02mmol)の無水アセトニトリル溶液(7mL)を加える。この混合物を、アルゴン雰囲気下、室温で2時間撹拌する。得られた混合物をジクロロメタンで希釈し、飽和重曹水(200mL)で3回洗浄した後、飽和食塩水(200mL)で洗浄する。有機層を回収し、硫酸ナトリウムで乾燥した後、ろ過する。得られたろ液について、減圧下に溶媒を留去する。得られた残渣を、充填剤としてアミノシリカゲルを用いたカラムクロマトグラフィー(展開溶媒ヘキサン:酢酸エチル=1:3、0.05%ピリジン含有)に供することにより、無色シロップ状物質としてDMTr-ジアミド-L-プロリンアミダイトが得られる。
以下の実施例では、プロリン誘導体を用いたリンカーとヒトTGF-β1遺伝子発現抑制配列とを有するヘアピン型一本鎖RNA分子(以下、「ssTbRNA分子」とも称する。;図2)を、その2つの分割フラグメントである一本鎖オリゴRNA分子(ストランド1及びストランド2)をRNAリガーゼ(T4 RNAリガーゼ2)を用いてライゲーションすることにより、作製する(ライゲーション法;図1)。
ssTbRNA分子の2つの分割フラグメントへの分割位置を検討するため、ペアのストランド1及びストランド2(表1)をRNAリガーゼ(T4 RNAリガーゼ2)を用いてライゲーションし、そのライゲーション効率を決定した。
・カラム:ACQUITY UPLC Oligonucleotide BEH C18 Column, 130A, 1.7μm, 2.1mm x 100mm
・移動相:A) 0.1M 酢酸トリエチルアンモニウム(TEAA)、B) アセトニトリル(MeCN)
・分析条件:B5-30%、10分、20℃、0.4ml/min
未変性PAGE;19%アクリルアミド、150V、90分間の泳動
・カラム:ACQUITY UPLC Oligonucleotide BEH C18 Column, 130A, 1.7μm, 2.1mm x 100mm
・移動相:A) 100mM ヘキサフルオロ-2-プロパノール(HFIP)-8mM トリエチルアミン(TEA)、B) メタノール(MeOH)
・分析条件:B5-40%、10分、80℃、0.4ml/min
変性PAGE;19%アクリルアミド、7.5M尿素、200V、90分間の泳動後、エチジウムブロマイド(EtBr)にて染色
=(目的のライゲーション生成物のピーク面積)/(クロマトグラム中の総ピーク面積)×100
・LC装置:UHPLC UltiMate3000(ThermoFisher Scientific社製)
・MS装置:Q-Exactive(ThermoFisher Scientific社製)
ペア011、016、及び018のストランド1及びストランド2の一本鎖オリゴRNA分子を用い、2つの条件でアニーリングテストを行った。
・カラム:ACQUITY UPLC Oligonucleotide BEH C18 Column, 130Å, 1.7μm, 2.1mm x 100mm
・移動相:A) 0.1M 酢酸トリエチルアンモニウム(TEAA)、B) アセトニトリル(MeCN)
・分析条件:B5-30%、10分、20℃、0.4ml/min
未変性PAGE;19%アクリルアミド、150V、90分間の泳動
3種類のペア011、016、及び018(表1;以下、各ペアを単に011、016、及び018とも称する)をそれぞれ用いて、ライゲーション反応の温度と時間について検討を行った。なお011、016、及び018のストランド1及びストランド2の構造を図4に示す。
実施例4と同様に調製した011の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応液中のATP濃度の検討を行った。T4 RNAリガーゼ2(New England Biolabs)の添付バッファー(50mM Tris-HCl、2mM MgCl2、1mM DTT、400μM ATP、pH7.5(25℃))に、ATPを添加してATP濃度0.4mM(添加なし)、1mM、2mM、5mM、又は10mMとした。このように調製したバッファー中、二本鎖オリゴRNA(各ストランドの最終濃度10μM、20μM、又は40μM)とT4 RNAリガーゼ2を含む反応液25μLを、37℃で30分インキュベートし、ライゲーションした。ライゲーション反応後、85℃で20分加熱して酵素を失活させ、その反応液を、変性PAGE、及びUHPLCにより解析し、ライゲーション効率(FLP(%))を算出した。変性PAGE及びUHPLCの条件、並びにFLP(%)の算出方法は、実施例2と同じである。
実施例4と同様に調製した016の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応液のpH条件の検討を行った。以下の3種類のバッファーを用いた。
(1) 50mM Tris-HCl(pH 7.0)、2mM MgCl2、1mM ジチオトレイトール(DTT)、400μM ATP
(2) 50mM Tris-HCl(pH 7.5)、2mM MgCl2、1mM DTT、400μM ATP
(3) 50mM Tris酢酸(pH 6.5)、2mM MgCl2、1mM DTT、400μM ATP
実施例4と同様に調製した016の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応液のpH条件をさらに検討した。以下の4種類のバッファーを用いた。
(1) 50mM Tris-HCl(pH 7.0)、2mM MgCl2、1mM DTT、400μM ATP
(2) 50mM Tris-HCl(pH 7.5)、2mM MgCl2、1mM DTT、400μM ATP
(3) 50mM Tris-HCl(pH 8.0)、2mM MgCl2、1mM DTT、400μM ATP、
(4) 50mM Tris-HCl(pH 8.5)、2mM MgCl2、1mM DTT、400μM ATP
実施例4と同様に調製した016の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応液中のMgCl2濃度の検討を行った。以下の5種類のバッファーを用いた。
(1) 0.5mM MgCl2、50mM Tris-HCl(pH 7.5)、1mM DTT、400μM ATP
(2) 1mM MgCl2、50mM Tris-HCl(pH 7.5)、1mM DTT、400μM ATP
(3) 2mM MgCl2、50mM Tris-HCl(pH 7.5)、1mM DTT、400μM ATP
(4) 5mM MgCl2、50mM Tris-HCl(pH 7.5)、1mM DTT、400μM ATP
(5) 10mM MgCl2、50mM Tris-HCl(pH 7.5)、1mM DTT、400μM ATP
実施例4と同様に調製した016の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応液中の2価イオン濃度の検討を行った。以下の6種類のバッファーを用いた。
(1) 50mM Tris-HCl(pH 7.5)、1mM DTT、400μM ATP、2mM、5mM、又は10mM MgCl2
(2) 50mM Tris-HCl(pH 8.0)、1mM DTT、400μM ATP、2mM、5mM、又は10mM MgCl2
実施例4と同様に調製した018の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応溶液へのPEGの添加によるライゲーション効率への影響を調べた。
実施例4と同様に調製した016の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応のタイムコースの検討を行った。
実施例4と同様に調製した016の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応相にストランド1及びストランド2の一本鎖オリゴRNA分子を順次添加することによりssTbRNA分子の収量を増加させる方法を検討した。
チューブ2)180μM オリゴRNA(各ストランドについてトータル20nmol;1回追加)、酵素量0.36U/μL、反応温度25℃、反応時間24、36、又は48時間
チューブ3)245μM オリゴRNA(各ストランドについてトータル30nmol;2回追加)、酵素量0.33U/μL、反応温度25℃、反応時間36、又は48時間
チューブ4)300μM オリゴRNA(各ストランドについてトータル40nmol;3回追加)、酵素量0.3U/μL、反応温度25℃、反応時間48時間
チューブ2)327μM オリゴRNA(各ストランドについてトータル40nmol;1回追加)、酵素量0.36U/μL、反応温度25℃、反応時間24、36、又は48時間
チューブ3)415μM オリゴRNA(各ストランドについてトータル60nmol;2回追加)、酵素量0.33U/μL、反応温度25℃、反応時間36、又は48時間
チューブ4)480μM オリゴRNA(各ストランドについてトータル80nmol;3回追加)、酵素量0.3U/μL、反応温度25℃、反応時間48時間
ヒトTGF-β1遺伝子の代わりにヒトGAPDH遺伝子、ヒトLAMA1遺伝子、又はヒトLMNA遺伝子に対する遺伝子発現抑制配列を含むヘアピン型一本鎖RNA分子を、実施例1及び2と同様に2つの分割フラグメントであるストランド1及びストランド2をライゲーションする方法により作製した。リンカーとしては、実施例1及び2と同様のプロリン誘導体、又はヌクレオチド性リンカーを用いた。
実施例2の実験と並行して、T4 RNAリガーゼ2の代わりにT4 RNAリガーゼを用いて、表1に示したストランド1及びストランド2がアニーリングした二本鎖オリゴRNAをライゲーションし、そのライゲーション効率を決定した。
Claims (13)
- 標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造方法であって、
第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子とをアニーリングするアニーリング工程と、
前記第1の一本鎖オリゴRNA分子の3’末端と前記第2の一本鎖オリゴRNA分子の5’末端とをRnl2ファミリーのリガーゼによりライゲーションするライゲーション工程とを含み、
前記第1の一本鎖オリゴRNA分子は、第1のリンカーを介して連結された第1のRNA部分と第2のRNA部分を含み、第1のRNA部分と第2のRNA部分の一方は他方に対して相補的に結合可能であり、
前記第2の一本鎖オリゴRNA分子は、第2のリンカーを介して連結された第3のRNA部分と第4のRNA部分を含み、第3のRNA部分と第4のRNA部分の一方は他方に対して相補的に結合可能であり、
前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子とは5’末端又は3’末端の相補的な配列間で分子間二重鎖を形成可能であり、
アニーリング工程において前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子が二重鎖を形成するとき、前記第1の一本鎖オリゴRNA分子の3’末端のリボヌクレオチド残基と前記第2の一本鎖オリゴRNA分子の5’末端のリボヌクレオチド残基はニックを生成し、また前記第1の一本鎖オリゴRNA分子の5’末端のリボヌクレオチド残基と前記第2の一本鎖オリゴRNA分子の3’末端のリボヌクレオチド残基の間には1個以上のリボヌクレオチド残基のギャップが存在し、
前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子とのライゲーションにより生成される配列は、前記標的遺伝子に対する遺伝子発現抑制配列を含む、
ヘアピン型一本鎖RNA分子の製造方法。 - 前記第1の一本鎖オリゴRNA分子は、下記式(I)で表され、前記第2の一本鎖オリゴRNA分子は、下記式(II)で表され、
5’-Xs-Lx1-Xa-3’ ・・・式(I)
5’-Ya1-Ya2-Ya3-Lx2-Ys-3’ ・・・式(II)
式(I)及び式(II)中、Xs、Xa、Ya1、Ya2、Ya3及びYsは、1個又はそれ以上のリボヌクレオチド残基を表し、
Lx1及びLx2は、それぞれ、第1のリンカー及び第2のリンカーを表し、
Ya3は、Ysと相補的であり、
ライゲーション工程で生じるXa-Ya1は、Xsと相補的であり、
ライゲーション工程で生じるXa-Ya1-Ya2-Ya3は、前記標的遺伝子に対する遺伝子発現抑制配列を含む、
請求項1に記載の製造方法。 - 前記第1の一本鎖オリゴRNA分子が3’末端にウラシル(U)又はアデニン(A)を有し、前記第2の一本鎖オリゴRNA分子が5’末端にウラシル(U)又はアデニン(A)を有する、請求項1又は2に記載の製造方法。
- 第1のリンカー及び第2のリンカーは、それぞれ独立して、(i)ピロリジン骨格及びピペリジン骨格の少なくとも一方を含む非ヌクレオチド性リンカー、又は(ii)ヌクレオチド性リンカーである、請求項1~3のいずれか一項に記載の製造方法。
- Rnl2ファミリーのリガーゼが、T4 RNAリガーゼ2である、請求項1~4のいずれか一項に記載の製造方法。
- pH7.4~8.6の反応液中で前記ライゲーションが行われる、請求項1~5のいずれか一項に記載の製造方法。
- 2~10mMの二価金属イオンを含む反応液中で前記ライゲーションが行われる、請求項1~6のいずれか一項に記載の製造方法。
- 前記標的遺伝子は、TGF-β1遺伝子、GAPDH遺伝子、LAMA1遺伝子又はLMNA遺伝子である、請求項1~8のいずれか一項に記載の製造方法。
- 前記ヘアピン型一本鎖RNA分子は、配列番号1で表される塩基配列からなり、24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結され、50番目と51番目のリボヌクレオチド残基が第2のリンカーを介して連結されている、請求項1~9のいずれか一項に記載の製造方法。
- 前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子は、以下の(1)~(6)のいずれかである、請求項1~10のいずれか一項に記載の製造方法。
(1)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号7で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、10番目と11番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号6で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(2)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号19で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号18で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(3)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号27で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号26で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(4)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号29で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号28で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(5)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号31で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号30で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(6)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号33で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号32で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ - 以下の(a)~(l)のいずれかである、一本鎖オリゴRNA分子。
(a)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号7で表される塩基配列からなる一本鎖オリゴRNA分子
(b)10番目と11番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号6で表される塩基配列からなる一本鎖オリゴRNA分子
(c)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号19で表される塩基配列からなる一本鎖オリゴRNA分子
(d)16番目と17番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号18で表される塩基配列からなる一本鎖オリゴRNA分子
(e)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号27で表される塩基配列からなる一本鎖オリゴRNA分子
(f)20番目と21番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号26で表される塩基配列からなる一本鎖オリゴRNA分子
(g)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号29で表される塩基配列からなる一本鎖オリゴRNA分子
(h)21番目と22番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号28で表される塩基配列からなる一本鎖オリゴRNA分子
(i)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号31で表される塩基配列からなる一本鎖オリゴRNA分子
(j)22番目と23番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号30で表される塩基配列からなる一本鎖オリゴRNA分子
(k)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号33で表される塩基配列からなる一本鎖オリゴRNA分子
(l)23番目と24番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号32で表される塩基配列からなる一本鎖オリゴRNA分子 - 以下の(1)~(6)のいずれかの一本鎖オリゴRNA分子の組み合わせを含む、TGF-β1遺伝子の発現を抑制するためのヘアピン型一本鎖RNA分子の製造用のキット。
(1)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号7で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、10番目と11番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号6で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(2)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号19で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号18で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(3)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号27で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号26で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(4)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号29で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号28で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(5)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号31で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号30で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(6)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号33で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号32で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/981,329 US11920131B2 (en) | 2018-03-30 | 2019-03-29 | Method of producing hairpin single-stranded RNA molecule |
CA3094160A CA3094160A1 (en) | 2018-03-30 | 2019-03-29 | Method for producing hairpin single-stranded rna molecule |
EP19777814.5A EP3778886A4 (en) | 2018-03-30 | 2019-03-29 | METHOD FOR PRODUCING A HAIRPIN SINGLE-STRANDED RNA MOLECULE |
KR1020207018860A KR20200136363A (ko) | 2018-03-30 | 2019-03-29 | 헤어핀형 1개쇄 rna 분자의 제조 방법 |
BR112020017769-5A BR112020017769A2 (pt) | 2018-03-30 | 2019-03-29 | Método e kit para produzir uma molécula de rna de fita simples, e, molécula de oligorna de fita simples. |
AU2019242331A AU2019242331A1 (en) | 2018-03-30 | 2019-03-29 | Method for producing hairpin single-stranded RNA molecule |
CN201980019534.XA CN111819280A (zh) | 2018-03-30 | 2019-03-29 | 发夹型单链rna分子的制备方法 |
MX2020009556A MX2020009556A (es) | 2018-03-30 | 2019-03-29 | Metodo para producir molecula de acido ribonucleico (arn) de hebra unica en horquilla. |
JP2019520762A JP6631751B1 (ja) | 2018-03-30 | 2019-03-29 | ヘアピン型一本鎖rna分子の製造方法 |
RU2020130258A RU2020130258A (ru) | 2018-03-30 | 2019-03-29 | Способ получения шпилечной одноцепочечной молекулы рнк |
ZA2020/05149A ZA202005149B (en) | 2018-03-30 | 2020-08-19 | Method for producing hairpin single-stranded rna molecule |
IL277346A IL277346A (en) | 2018-03-30 | 2020-09-14 | A method for creating a hairpin single-helical RNA molecule |
PH12020551487A PH12020551487A1 (en) | 2018-03-30 | 2020-09-16 | Method for producing hairpin single-stranded rna molecule |
US18/424,639 US20240167033A1 (en) | 2018-03-30 | 2024-01-26 | Method of producing hairpin single-stranded rna molecule |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018070423 | 2018-03-30 | ||
JP2018-070423 | 2018-03-30 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/981,329 A-371-Of-International US11920131B2 (en) | 2018-03-30 | 2019-03-29 | Method of producing hairpin single-stranded RNA molecule |
US18/424,639 Division US20240167033A1 (en) | 2018-03-30 | 2024-01-26 | Method of producing hairpin single-stranded rna molecule |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019189722A1 true WO2019189722A1 (ja) | 2019-10-03 |
Family
ID=68061953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/013923 WO2019189722A1 (ja) | 2018-03-30 | 2019-03-29 | ヘアピン型一本鎖rna分子の製造方法 |
Country Status (16)
Country | Link |
---|---|
US (2) | US11920131B2 (ja) |
EP (1) | EP3778886A4 (ja) |
JP (2) | JP6631751B1 (ja) |
KR (1) | KR20200136363A (ja) |
CN (1) | CN111819280A (ja) |
AU (1) | AU2019242331A1 (ja) |
BR (1) | BR112020017769A2 (ja) |
CA (1) | CA3094160A1 (ja) |
IL (1) | IL277346A (ja) |
MX (1) | MX2020009556A (ja) |
PH (1) | PH12020551487A1 (ja) |
RU (1) | RU2020130258A (ja) |
SA (1) | SA520420072B1 (ja) |
TW (1) | TWI772632B (ja) |
WO (1) | WO2019189722A1 (ja) |
ZA (1) | ZA202005149B (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020071407A1 (ja) * | 2018-10-02 | 2020-04-09 | 東レ株式会社 | ヘアピン型一本鎖rna分子の製造方法 |
WO2021113494A1 (en) * | 2019-12-03 | 2021-06-10 | Beam Therapeutics Inc. | Synthetic guide rna, compositions, methods, and uses thereof |
WO2021193954A1 (ja) * | 2020-03-27 | 2021-09-30 | 住友化学株式会社 | 核酸オリゴマーの製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240046780A (ko) * | 2021-08-27 | 2024-04-09 | 페킹 유니버시티 | 원형 rna를 제조하기 위한 구축물 및 방법 |
CN117660374A (zh) * | 2022-09-08 | 2024-03-08 | 凯莱英医药集团(天津)股份有限公司 | Rna连接酶在寡核苷酸制备上的应用 |
CN115774075B (zh) * | 2023-02-15 | 2023-06-06 | 江苏耀海生物制药有限公司 | 一种基于RP-HPLC分析体外转录产物成分circRNA的方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003532380A (ja) * | 1999-12-02 | 2003-11-05 | モレキュラー ステージング,インコーポレイテッド | 線状自己アニーリングセグメントからの一本鎖環状dnaの産出 |
US20040058886A1 (en) | 2002-08-08 | 2004-03-25 | Dharmacon, Inc. | Short interfering RNAs having a hairpin structure containing a non-nucleotide loop |
JP2008278784A (ja) * | 2007-05-09 | 2008-11-20 | Institute Of Physical & Chemical Research | 1本鎖環状rnaおよびその製造方法 |
WO2011052013A1 (ja) | 2009-10-29 | 2011-05-05 | 株式会社バイオダイナミクス研究所 | 核酸鎖の結合および修飾方法 |
WO2013027843A1 (ja) | 2011-08-25 | 2013-02-28 | 株式会社ボナック | 配糖体化合物、チオエーテルの製造方法、エーテル、エーテルの製造方法、配糖体化合物の製造方法、核酸の製造方法 |
WO2016159374A1 (ja) | 2015-04-02 | 2016-10-06 | 株式会社ボナック | 配糖体化合物の製造方法 |
WO2017073767A1 (ja) * | 2015-10-30 | 2017-05-04 | 株式会社ボナック | TGF-β1遺伝子の発現を抑制する一本鎖核酸分子を安定に含有する組成物 |
JP2018070423A (ja) | 2016-11-01 | 2018-05-10 | スタンレー電気株式会社 | ウルツ鉱構造のZnOS混晶粒子の製造方法 |
WO2018182008A1 (ja) * | 2017-03-31 | 2018-10-04 | 株式会社ボナック | 遺伝子発現制御機能を有する環状型核酸分子 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009102081A1 (ja) | 2008-02-15 | 2009-08-20 | Riken | 環状1本鎖核酸複合体およびその製造方法 |
WO2012005368A1 (ja) | 2010-07-08 | 2012-01-12 | 株式会社ボナック | 遺伝子発現制御のための一本鎖核酸分子 |
ES2443346T3 (es) | 2010-08-03 | 2014-02-19 | Bonac Corporation | Molécula de ARN monocatenario que tiene esqueleto alicíclico que contiene nitrógeno |
WO2013077446A1 (ja) | 2011-11-26 | 2013-05-30 | 株式会社ボナック | 遺伝子発現制御のための一本鎖核酸分子 |
ES2645996T3 (es) | 2012-01-07 | 2017-12-11 | Bonac Corporation | Molécula de ácido nucleico monocatenario que tiene una cadena principal de aminoácidos |
WO2014110272A1 (en) | 2013-01-09 | 2014-07-17 | The Penn State Research Foundation | Low sequence bias single-stranded dna ligation |
US11535888B2 (en) | 2015-08-21 | 2022-12-27 | Thomas Jefferson University | Dumbbell-PCR: a method to quantify specific small RNA variants with a single nucleotide resolution at terminal sequences |
GB201612011D0 (en) | 2016-07-11 | 2016-08-24 | Glaxosmithkline Ip Dev Ltd | Novel processes for the production of oligonucleotides |
TWI830718B (zh) | 2018-02-09 | 2024-02-01 | 日商住友化學股份有限公司 | 核酸分子之製造方法 |
JP6817493B2 (ja) | 2018-03-30 | 2021-01-20 | 住友化学株式会社 | 一本鎖rnaの製造方法 |
-
2019
- 2019-03-29 AU AU2019242331A patent/AU2019242331A1/en active Pending
- 2019-03-29 BR BR112020017769-5A patent/BR112020017769A2/pt unknown
- 2019-03-29 CA CA3094160A patent/CA3094160A1/en active Pending
- 2019-03-29 TW TW108111164A patent/TWI772632B/zh active
- 2019-03-29 KR KR1020207018860A patent/KR20200136363A/ko not_active Application Discontinuation
- 2019-03-29 CN CN201980019534.XA patent/CN111819280A/zh active Pending
- 2019-03-29 RU RU2020130258A patent/RU2020130258A/ru unknown
- 2019-03-29 JP JP2019520762A patent/JP6631751B1/ja active Active
- 2019-03-29 US US16/981,329 patent/US11920131B2/en active Active
- 2019-03-29 EP EP19777814.5A patent/EP3778886A4/en not_active Withdrawn
- 2019-03-29 MX MX2020009556A patent/MX2020009556A/es unknown
- 2019-03-29 WO PCT/JP2019/013923 patent/WO2019189722A1/ja active Application Filing
- 2019-10-01 JP JP2019181613A patent/JP7363316B2/ja active Active
-
2020
- 2020-08-19 ZA ZA2020/05149A patent/ZA202005149B/en unknown
- 2020-08-31 SA SA520420072A patent/SA520420072B1/ar unknown
- 2020-09-14 IL IL277346A patent/IL277346A/en unknown
- 2020-09-16 PH PH12020551487A patent/PH12020551487A1/en unknown
-
2024
- 2024-01-26 US US18/424,639 patent/US20240167033A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003532380A (ja) * | 1999-12-02 | 2003-11-05 | モレキュラー ステージング,インコーポレイテッド | 線状自己アニーリングセグメントからの一本鎖環状dnaの産出 |
US20040058886A1 (en) | 2002-08-08 | 2004-03-25 | Dharmacon, Inc. | Short interfering RNAs having a hairpin structure containing a non-nucleotide loop |
JP2008278784A (ja) * | 2007-05-09 | 2008-11-20 | Institute Of Physical & Chemical Research | 1本鎖環状rnaおよびその製造方法 |
WO2011052013A1 (ja) | 2009-10-29 | 2011-05-05 | 株式会社バイオダイナミクス研究所 | 核酸鎖の結合および修飾方法 |
WO2013027843A1 (ja) | 2011-08-25 | 2013-02-28 | 株式会社ボナック | 配糖体化合物、チオエーテルの製造方法、エーテル、エーテルの製造方法、配糖体化合物の製造方法、核酸の製造方法 |
WO2016159374A1 (ja) | 2015-04-02 | 2016-10-06 | 株式会社ボナック | 配糖体化合物の製造方法 |
WO2017073767A1 (ja) * | 2015-10-30 | 2017-05-04 | 株式会社ボナック | TGF-β1遺伝子の発現を抑制する一本鎖核酸分子を安定に含有する組成物 |
JP2018070423A (ja) | 2016-11-01 | 2018-05-10 | スタンレー電気株式会社 | ウルツ鉱構造のZnOS混晶粒子の製造方法 |
WO2018182008A1 (ja) * | 2017-03-31 | 2018-10-04 | 株式会社ボナック | 遺伝子発現制御機能を有する環状型核酸分子 |
Non-Patent Citations (10)
Title |
---|
"GenBank (NCBI", Database accession no. NM_002046 |
"GenBank", Database accession no. NM_170707 |
"NCBI", Database accession no. 284217 |
CHENG, K. ET AL.: "RNA ligation of very small pseudo nick structures by T4 RNA ligase 2, leading to efficient production of versatile RNA rings", RSC ADVANCES, vol. 9, no. 15, 14 March 2019 (2019-03-14), pages 8620 - 8627, XP055638625 * |
FIRE ET AL., NATURE, vol. 391, no. 6669, 19 February 1998 (1998-02-19), pages 806 - 811 |
J.F.W. MCOMIE: "Protecting Groups in Organic Chemistry", 1973, PLENUM PRESS |
NANDAKUMAR J. ET AL., CELL, vol. 127, 2006, pages 71 - 84 |
NANDAKUMAR J., J. BIOL. CHEM., vol. 279, 2004, pages 31337 - 31347 |
NANDAKUMAR J.SHUMAN S., J. BIOL. CHEM., vol. 280, 2005, pages 23484 - 23489 |
NANDAKUMAR J.SHUMAN S., MOL. CELL, vol. 16, 2004, pages 211 - 221 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020071407A1 (ja) * | 2018-10-02 | 2020-04-09 | 東レ株式会社 | ヘアピン型一本鎖rna分子の製造方法 |
US11891602B2 (en) | 2018-10-02 | 2024-02-06 | Toray Industries, Inc. | Method of producing hairpin single-stranded RNA molecules |
WO2021113494A1 (en) * | 2019-12-03 | 2021-06-10 | Beam Therapeutics Inc. | Synthetic guide rna, compositions, methods, and uses thereof |
WO2021193954A1 (ja) * | 2020-03-27 | 2021-09-30 | 住友化学株式会社 | 核酸オリゴマーの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US11920131B2 (en) | 2024-03-05 |
JPWO2019189722A1 (ja) | 2020-04-30 |
BR112020017769A2 (pt) | 2021-01-05 |
PH12020551487A1 (en) | 2021-08-23 |
JP7363316B2 (ja) | 2023-10-18 |
CN111819280A (zh) | 2020-10-23 |
RU2020130258A (ru) | 2022-05-04 |
US20210024930A1 (en) | 2021-01-28 |
JP2019213567A (ja) | 2019-12-19 |
AU2019242331A1 (en) | 2020-09-10 |
MX2020009556A (es) | 2020-10-05 |
EP3778886A1 (en) | 2021-02-17 |
ZA202005149B (en) | 2022-01-26 |
IL277346A (en) | 2020-10-29 |
US20240167033A1 (en) | 2024-05-23 |
TW202003842A (zh) | 2020-01-16 |
JP6631751B1 (ja) | 2020-01-15 |
EP3778886A4 (en) | 2022-11-02 |
KR20200136363A (ko) | 2020-12-07 |
SA520420072B1 (ar) | 2024-04-21 |
CA3094160A1 (en) | 2019-10-03 |
TWI772632B (zh) | 2022-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6631751B1 (ja) | ヘアピン型一本鎖rna分子の製造方法 | |
JP6817493B2 (ja) | 一本鎖rnaの製造方法 | |
MXPA06002660A (es) | Oligonucleotidos modificados para inhibicion de telomerasa. | |
JP6864767B2 (ja) | 核酸分子の製造方法 | |
WO2012074038A1 (ja) | 修飾1本鎖ポリヌクレオチド | |
CN106459134B (zh) | 寡核苷酸组合物及其制备方法 | |
WO2020071407A1 (ja) | ヘアピン型一本鎖rna分子の製造方法 | |
JP2016130232A (ja) | オリゴヌクレオチド | |
JP6828219B1 (ja) | 核酸分子の製造方法 | |
US11110114B2 (en) | Dinucleotides | |
WO2021024467A1 (ja) | 一本鎖rnaの製造方法 | |
KR102677783B1 (ko) | 올리고뉴클레오티드 유도체 또는 그 염 | |
JP6429264B2 (ja) | ボラノホスフェート化合物、及び核酸オリゴマー | |
EP2495323A1 (en) | Modified double-stranded polynucleotide | |
WO2024104386A1 (zh) | 一类含七元杂环的三齿缀合基团 | |
Mutisya | Synthesis, biophysical properties and biological activities of non-ionic RNA analogues having triazole and amide internucleoside linkages | |
JP2005162650A (ja) | C−ヌクレオシド又はc−ヌクレオチド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019520762 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19777814 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019242331 Country of ref document: AU Date of ref document: 20190329 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3094160 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020017769 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019777814 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 112020017769 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200831 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 520420072 Country of ref document: SA |