WO2019189587A1 - 成形品の製造方法および成形品のプリフォーム - Google Patents
成形品の製造方法および成形品のプリフォーム Download PDFInfo
- Publication number
- WO2019189587A1 WO2019189587A1 PCT/JP2019/013625 JP2019013625W WO2019189587A1 WO 2019189587 A1 WO2019189587 A1 WO 2019189587A1 JP 2019013625 W JP2019013625 W JP 2019013625W WO 2019189587 A1 WO2019189587 A1 WO 2019189587A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- porous body
- thin film
- film layer
- precursor
- resin
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 46
- 239000010409 thin film Substances 0.000 claims abstract description 125
- 239000002243 precursor Substances 0.000 claims abstract description 82
- 230000008569 process Effects 0.000 claims abstract description 12
- 239000010410 layer Substances 0.000 claims description 152
- 239000012783 reinforcing fiber Substances 0.000 claims description 123
- 229920005989 resin Polymers 0.000 claims description 105
- 239000011347 resin Substances 0.000 claims description 105
- 239000000654 additive Substances 0.000 claims description 38
- 230000000996 additive effect Effects 0.000 claims description 35
- 238000000576 coating method Methods 0.000 claims description 31
- 239000011248 coating agent Substances 0.000 claims description 26
- 229920001187 thermosetting polymer Polymers 0.000 claims description 21
- 230000003746 surface roughness Effects 0.000 claims description 20
- 229920005992 thermoplastic resin Polymers 0.000 claims description 16
- 239000011247 coating layer Substances 0.000 claims description 8
- 238000013461 design Methods 0.000 abstract description 19
- 239000000047 product Substances 0.000 description 105
- 239000000835 fiber Substances 0.000 description 52
- 239000000463 material Substances 0.000 description 26
- 239000003973 paint Substances 0.000 description 22
- 239000006185 dispersion Substances 0.000 description 19
- 238000012360 testing method Methods 0.000 description 19
- 238000005452 bending Methods 0.000 description 16
- -1 polyethylene Polymers 0.000 description 16
- 229920000049 Carbon (fiber) Polymers 0.000 description 14
- 239000004917 carbon fiber Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 11
- 239000011800 void material Substances 0.000 description 11
- 239000004088 foaming agent Substances 0.000 description 10
- 238000000465 moulding Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000049 pigment Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000004952 Polyamide Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000003733 fiber-reinforced composite Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000013585 weight reducing agent Substances 0.000 description 4
- 102100040428 Chitobiosyldiphosphodolichol beta-mannosyltransferase Human genes 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000004760 aramid Substances 0.000 description 3
- 229920006231 aramid fiber Polymers 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 239000012792 core layer Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229920006305 unsaturated polyester Polymers 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000002841 Lewis acid Chemical class 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 229920006127 amorphous resin Polymers 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 238000009960 carding Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000001023 inorganic pigment Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 150000007517 lewis acids Chemical class 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920000412 polyarylene Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001470 polyketone Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920008285 Poly(ether ketone) PEK Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000009503 electrostatic coating Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000012812 general test Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000000077 insect repellent Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000002897 organic nitrogen compounds Chemical class 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920003253 poly(benzobisoxazole) Polymers 0.000 description 1
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B11/00—Making preforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
- B29C44/04—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
- B29C44/06—Making multilayered articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
- B29C44/08—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/003—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
- B29C70/0035—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties comprising two or more matrix materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/08—Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
- B29C70/086—Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/12—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/18—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length in the form of a mat, e.g. sheet moulding compound [SMC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/28—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/042—Coating with two or more layers, where at least one layer of a composition contains a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/056—Forming hydrophilic coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0085—Use of fibrous compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
- C08J9/365—Coating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2400/00—Characterised by the use of unspecified polymers
- C08J2400/22—Thermoplastic resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/10—Homopolymers or copolymers of propene
- C08J2423/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2463/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
- C08J2463/02—Polyglycidyl ethers of bis-phenols
Definitions
- the present invention relates to a method for producing a molded product excellent in design or liquid-proof property and a preform for the molded product.
- fiber reinforced composite materials in which reinforced fibers are combined with a matrix resin are widely used in industrial products such as automobiles, aircrafts, and sports products as structures with improved mechanical properties and light weight. Products using fiber reinforced composite materials are coated by painting or the like for the purpose of imparting design properties and liquid-proof properties.
- a technique for forming a coating layer on a fiber reinforced composite material a matrix resin and a resin layer are thermally cured by heating a preform in which a resin layer composed of a thermosetting resin and a solid additive is laminated on a prepreg layer.
- a technique has been proposed in which a functional resin is cured to form a cured resin layer having a predetermined thickness (see, for example, Patent Document 1).
- JP 2016-78451 A Japanese Patent No. 6123965 International Publication No. 2015/029634 JP 52-115875 A
- Patent Document 3 improves the rigidity of a core layer having voids.
- a prepreg in which a reinforcing fiber is impregnated with a matrix resin is used as the skin layer, it takes time to prepare the prepreg layer, and the core layer and the skin layer are joined in the previous step of the porous body forming step. Therefore, it is necessary to laminate the core layer and the skin layer in a desired configuration when molding.
- Patent Document 4 is a porous body using a foaming agent, the voids are discontinuous and do not have a problem of material penetration.
- the present invention has been made in view of the above, and is a method for producing a molded product that is excellent in rigidity and light weight, improves designability or liquidproofness, and can mold a molded product in a simple process. And it aims at providing the preform of a molded article.
- the method for producing a molded product according to the present invention is a method for producing a molded product in which the thin film layer (B) is formed on the surface of the porous body (A), and the following steps (I) to (II) are carried out. It carries out in order.
- the present invention is a preform of a molded product in which a thin film layer (B) is formed on the surface of a porous body (A) having reinforcing fibers (A1), a resin (A2), and voids (A3).
- the adhesion of the thin film layer (B) to the body (a) is classified as 0 to 3.
- the thin film layer (B) is formed into a porous body because the thin film layer is formed in the state of the precursor (a) of the porous body (A).
- a molded article excellent in design and liquid-proof property can be obtained while maintaining lightness without penetrating into the continuous porosity of (A). Furthermore, since there is no need to consider soaking, there are many choices of materials for forming the thin film layer (B), and the degree of freedom in design is high.
- process (II) which is a shaping
- the precursor (a) and thin film layer (B) of a porous body (A) are laminated
- a molded product can be manufactured easily.
- FIG. 1 is a schematic view showing an example of a dispersion state of reinforcing fibers in a reinforcing fiber mat according to the present invention.
- FIG. 2 is a schematic view showing an example of a reinforcing fiber mat manufacturing apparatus according to the present invention.
- FIG. 3 is a diagram for explaining the production of a molded product according to the present invention.
- FIG. 4 is a diagram for explaining the production of a molded product according to the present invention.
- the method for producing a molded product according to the present invention is a method for producing a molded product in which the thin film layer (B) is formed on the surface of the porous body (A), and the following steps (I) to (II) are carried out. It carries out in order.
- the porous body (A) In the molded article of the present invention, the porous body (A) has reinforcing fibers (A1), a resin (A2), and voids (A3).
- the reinforcing fibers (A1) include metal fibers such as aluminum, brass, and stainless steel, PAN-based, rayon-based, lignin-based, pitch-based carbon fibers, graphite fibers, and glass.
- metal fibers such as aluminum, brass, and stainless steel
- PAN-based, rayon-based, lignin-based, pitch-based carbon fibers, graphite fibers, and glass examples thereof include insulating fibers, aramid, PBO, polyphenylene sulfide, organic fibers such as polyester, acrylic, nylon, and polyethylene, and inorganic fibers such as silicon carbide and silicon nitride.
- the surface treatment may be given to these fibers.
- Examples of the surface treatment include a treatment with a coupling agent, a treatment with a sizing agent, a treatment with a bundling agent, and an adhesion treatment of an additive in addition to a treatment for depositing a metal as a conductor.
- these fibers may be used individually by 1 type, and may use 2 or more types together.
- PAN-based, pitch-based, and rayon-based carbon fibers that are excellent in specific strength and specific rigidity are preferably used from the viewpoint of weight reduction effect.
- glass fiber is preferably used, and it is particularly preferable to use carbon fiber and glass fiber in combination from the balance between mechanical properties and economic efficiency.
- aramid fibers are preferably used from the viewpoint of enhancing the impact absorbability and formability of the resulting porous body (A), and in particular, carbon fibers and aramid fibers are used in combination from the balance of mechanical properties and impact absorbability. It is preferable to do.
- a metal fiber made of a conductive metal or a reinforced fiber coated with a metal such as nickel, copper, or ytterbium can also be used.
- reinforcing fibers selected from the group consisting of metal fibers excellent in mechanical properties such as strength and elastic modulus, pitch-based carbon fibers, and PAN-based carbon fibers can be more preferably used.
- the reinforcing fiber (A1) is discontinuous and is preferably dispersed randomly in the porous body (A). More preferably, the dispersed state is substantially monofilament.
- substantially monofilament means that the reinforcing fiber single yarn is present in less than 500 fineness strands. More preferably, it is dispersed as a monofilament, that is, as a single yarn.
- the two-dimensional orientation angle of the reinforcing fiber (A1) arbitrarily selected in the porous body (A) is 1 ° or more.
- the ratio of single fibers hereinafter also referred to as fiber dispersion ratio
- fiber dispersion ratio is 80% or more.
- the mass fraction of the fiber bundle having at least 100 filaments in the reinforcing fiber (A1) corresponds to 100%.
- the reinforcing fibers (A1) are dispersed randomly.
- that the reinforcing fibers (A1) are randomly dispersed means that the arithmetic average value of the two-dimensional orientation angle of the reinforcing fibers (A1) arbitrarily selected in the porous body (A) is 30 ° or more, 60 It means that it is within the following range.
- the two-dimensional orientation angle is an angle formed by the single fiber of the reinforcing fiber (A1) and the single fiber intersecting with the single fiber, and 0 ° among the angles formed by the intersecting single fibers. As described above, the angle is defined as an acute angle within a range of 90 ° or less. This two-dimensional orientation angle will be further described with reference to the drawings.
- the single fiber 1a when used as a reference, the single fiber 1a intersects with the other single fibers 1b to 1f.
- the term “intersection” means a state in which a single fiber as a reference is observed crossing another single fiber in a two-dimensional plane to be observed, and the single fiber 1a and the single fibers 1b to 1f are not necessarily in contact with each other. There is no need to do so, and there is no exception to the state observed when they are projected. That is, when viewed with respect to the reference single fiber 1a, all of the single fibers 1b to 1f are the objects of evaluation of the two-dimensional orientation angle, and in FIG. Of the two angles to be formed, the angle is an acute angle within a range of 0 ° to 90 °.
- the method for measuring the two-dimensional orientation angle is not particularly limited, and examples thereof include a method of observing the orientation of the reinforcing fiber (A1) from the surface of the component.
- the average value of the two-dimensional orientation angle is measured by the following procedure. That is, the average value of the two-dimensional orientation angles with all the single fibers (single fibers 1b to 1f in FIG. 1) intersecting the randomly selected single fibers (single fibers 1a in FIG. 1) is measured. . For example, when there are many other single fibers that cross a certain single fiber, an arithmetic average value obtained by randomly selecting and measuring 20 other single fibers that intersect may be substituted. This measurement is repeated a total of 5 times with another single fiber as a reference, and the arithmetic average value is calculated as the arithmetic average value of the two-dimensional orientation angle.
- the fiber dispersion rate of the reinforcing fiber (A1) is preferably 90% or more, and more preferably as it approaches 100%.
- the arithmetic average value of the two-dimensional orientation angle of the reinforcing fiber (A1) is preferably in the range of 40 ° or more and 50 ° or less, and it is more preferable as it approaches 45 ° which is an ideal angle.
- any of the above upper limits may be set as the upper limit, and any of the above lower limits may be set as the lower limit.
- examples in which the reinforcing fibers (A1) do not take a discontinuous form include a sheet base material, a woven base material, and a non-crimp base material in which the reinforcing fibers (A1) are arranged in one direction.
- the reinforcing fibers (A1) are regularly and densely arranged, voids (A3) in the porous body (A) are reduced, and impregnation with the resin (A2) becomes extremely difficult. In some cases, an unimpregnated portion is formed, or the choice of impregnation means and resin type is greatly limited.
- the form of the reinforcing fiber (A1) may be either a continuous reinforcing fiber having the same length as the porous body (A) or a discontinuous reinforcing fiber having a finite length cut to a predetermined length.
- discontinuous reinforcing fibers are preferable from the viewpoint of easily impregnating the resin (A2) and easily adjusting the amount thereof.
- the mass average fiber length of the reinforcing fiber (A1) is in the range of 1 mm to 15 mm. Thereby, the reinforcement efficiency of a reinforced fiber (A1) can be improved and the dynamic characteristic excellent in the porous body (A) is given.
- the mass average fiber length of the reinforcing fibers (A1) is 1 mm or more, the voids (A3) in the porous body (A) can be efficiently formed, so that the density can be lowered, in other words, the same It is preferable because a porous body (A) that is lightweight while being thick can be obtained.
- the mass average fiber length of the reinforcing fiber (A1) is 15 mm or less, the reinforcing fiber (A1) in the porous body (A) becomes difficult to bend due to its own weight and does not hinder the expression of mechanical properties.
- the resin (A2) component of the porous body (A) is removed by a method such as burning or elution, and 400 pieces are randomly selected from the remaining reinforcing fibers (A1), and the length is 10 ⁇ m. Units can be measured and calculated as their mass average fiber length.
- the reinforcing fiber (A1) is preferably in the form of a nonwoven fabric from the viewpoint of easy impregnation of the reinforcing fiber (A1) with the resin (A2). Furthermore, since the reinforcing fiber (A1) has a non-woven form, in addition to the ease of handling of the non-woven fabric itself, it is easy to impregnate even in the case of a thermoplastic resin generally having a high viscosity. This is preferable because it can be achieved.
- the form of the nonwoven fabric refers to a form in which the strands and / or monofilaments of the reinforcing fibers (A1) are dispersed in a plane without regularity, and a chopped strand mat, a continuous strand mat, a papermaking mat, a carding mat, An airlaid mat or the like can be exemplified (hereinafter these are collectively referred to as a reinforcing fiber mat).
- examples of the resin (A2) include a thermoplastic resin and a thermosetting resin.
- a thermosetting resin and a thermoplastic resin may be blended.
- the resin (A2) is a matrix resin constituting the porous body (A) and the precursor (a) of the porous body (A).
- the resin (A2) preferably contains at least one kind of thermoplastic resin.
- Thermoplastic resins include “polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyesters such as liquid crystal polyester, polyethylene (PE), polypropylene (PP) , Polyolefins such as polybutylene, polyarylene sulfides such as polyoxymethylene (POM), polyamide (PA), polyphenylene sulfide (PPS), polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), poly Crystalline resins such as fluorinated resins such as ether ketone ketone (PEKK), polyether nitrile (PEN), polytetrafluoroethylene, and liquid crystal polymer (LCP); , Polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride
- polyolefin is preferable from the viewpoint of lightness of the resulting porous body (A)
- polyamide is preferable from the viewpoint of strength
- amorphous resin such as polycarbonate and styrene resin is preferable from the viewpoint of surface appearance
- Polyarylene sulfide is preferable from the viewpoint of heat resistance
- polyether ether ketone is preferable from the viewpoint of continuous use temperature
- fluorine resin is preferably used from the viewpoint of chemical resistance.
- the resin (A2) preferably contains at least one thermosetting resin.
- Thermosetting resins include unsaturated polyesters, vinyl esters, epoxy resins, phenol resins, urea resins, melamine resins, thermosetting polyimides, copolymers thereof, modified products, and resins obtained by blending at least two of these. Can be illustrated.
- the porous body (A) according to the present invention is one of the components of the resin (A2) as long as the object of the present invention is not impaired, and an impact resistance improver such as an elastomer or a rubber component, and other fillers.
- an impact resistance improver such as an elastomer or a rubber component
- other fillers may contain additives.
- fillers and additives include inorganic fillers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, and coloring inhibitors. , Heat stabilizers, mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, or coupling agents.
- the porous body (A) of the present invention has voids (A3).
- gap (A3) in this invention points out the space formed when the reinforcing fiber (A1) coat
- the porous body (A) is obtained by heating the precursor (a) of the porous body (A) in which the reinforcing fiber (A1) is pre-impregnated with the resin (A2),
- the void (A3) is formed by raising the reinforcing fiber (A1) by melting or softening.
- the air gap (A3) is at least continuous in the thickness direction.
- the porous body (A) of the present invention has a volume content (%) of the reinforcing fibers (A1) of 0.5 to 55% by volume, and a volume content (%) of the resin (A2) of 2.5 to
- the volume content (%) of the void (A3) is preferably 85% by volume and 10 to 97% by volume.
- the reinforcing effect derived from the reinforcing fiber (A2) can be made sufficient, which is preferable.
- the volume content of the reinforcing fiber (A1) is 55% by volume or less, the volume content of the resin (A2) with respect to the reinforcing fiber (A1) is relatively increased, and the porous body (A) Since the reinforcing fibers (A1) are bound to each other and the reinforcing effect of the reinforcing fibers (A1) can be made sufficient, it is preferable because the mechanical properties of the porous body (A), in particular, the bending properties can be satisfied.
- the reinforcing fibers (A1) in the porous body (A) are bound to each other, and the reinforcing fibers (A1 ) Is sufficient, and the mechanical properties of the porous body (A), particularly the bending elastic modulus, can be satisfied.
- the volume content of the resin (A2) is 85% by volume or less, it is preferable because the formation of the voids (A3) is not inhibited.
- the reinforcing fiber (A1) is covered with the resin (A2), and the thickness (covering thickness) of the covering resin (A2) is in the range of 1 ⁇ m or more and 15 ⁇ m or less. Is preferred.
- the covering state of the reinforcing fibers (A1) coated with the resin (A2) is porous if at least the points where the single fibers of the reinforcing fibers (A1) constituting the porous body (A) intersect are covered.
- the resin (A2) is around the reinforcing fiber (A1).
- the film is covered with a thickness.
- This state means that the surface of the reinforcing fiber (A1) is not exposed by the resin (A2), in other words, the reinforcing fiber (A1) forms an electric wire film with the resin (A2). Accordingly, the porous body (A) further has shape stability and sufficient mechanical properties.
- the covering state of the reinforcing fiber (A1) coated with the resin (A2) is not necessarily covered with all of the reinforcing fibers (A1), and the shape stability of the porous body (A) according to the present invention is stable. As long as the properties, bending elastic modulus and bending strength are not impaired.
- the volume content of the voids (A3) is preferably in the range of 10% by volume to 97% by volume. It is preferable that the content of the voids (A3) is 10% by volume or more because the density of the porous body (A) is low and the lightness can be satisfied. On the other hand, when the content of the voids (A3) is 97% by volume or less, in other words, the thickness of the resin (A2) coated around the reinforcing fibers (A1) is sufficient, It is preferable because the reinforcing fibers (A1) in the body (A) can be sufficiently reinforced and the mechanical properties are enhanced.
- the upper limit value of the volume content of the gap (A3) is preferably 97% by volume. In the present invention, the volume content is 100% by volume of the total volume content of the reinforcing fiber (A1), the resin (A2), and the gap (A3) constituting the porous body (A).
- the density ⁇ of the porous body (A) is preferably 0.9 g / cm 3 or less.
- the density ⁇ of the porous body (A) is 0.9 g / cm 3 or less, this means that the mass when the porous body (A) is reduced, and as a result, the weight of the product is reduced.
- This is preferable because it contributes to More preferably, it is 0.7 g / cm ⁇ 3 > or less, More preferably, it is 0.5 g / cm ⁇ 3 > or less.
- the lower limit of the density in general, in the porous body (A) having the reinforcing fiber (A1) and the resin (A2), the reinforcing fiber (A1) and the resin (A2) which are constituent components thereof.
- the value calculated from the volume ratio of each of the voids (A3) can be the lower limit.
- the density of the porous body (A) itself varies depending on the reinforcing fibers (A1) and the resin (A2) used, but the viewpoint of maintaining the mechanical properties of the porous body (A). Therefore, it is preferably 0.03 g / cm 3 or more.
- the precursor (a) of the porous body (A) of the present invention is one in which voids increase and expand with heating, and what is obtained by expansion of such voids is the porous body (A). Specifically, the thing before expansion after formation of a thin film layer (B) is represented. As long as it has undergone steps (I) and (II) according to the present invention, the precursor according to the present invention ( It can be regarded as a porous body (A) instead of a). At this time, the presence or absence of voids at the stage of the precursor (a) is not questioned, but from the viewpoint of forming a smooth thin film layer (B) in the step (I) and the surface quality of the obtained molded product. It is preferable that the volume content (A) of the voids contained in (a) is less than 10% by volume. More preferably, it is less than 5 volume%, More preferably, it is less than 3 volume%. *
- the precursor (a) preferably contains a reinforcing fiber and a foaming agent that are compressed by pressurization in order to develop expansibility. It is more preferable that the precursor (a) includes reinforcing fibers that are compressed by pressurization from the viewpoint of increasing the degree of freedom of molding conditions.
- the reinforcing fiber is preferably the type and form described above, more preferably discontinuous and randomly dispersed, and more preferably monofilamentous and randomly dispersed.
- the foaming agent there are a physical foaming agent that foams by a pressure change of a compressed gas or a physical change such as gas, and a chemical foaming agent that generates a gas by thermal decomposition or chemical reaction.
- a chemical foaming agent that generates nitrogen gas or carbon dioxide gas by thermal decomposition is called a pyrolytic chemical foaming agent.
- a pyrolytic chemical foaming agent is a compound that is liquid or solid at room temperature, and is a compound that decomposes or vaporizes when heated. Further, the pyrolytic chemical foaming agent is preferably one that does not substantially interfere with the process of producing the structure precursor used in the method for producing a structure according to the present invention.
- the temperature is preferably in the range of 180 to 250 ° C.
- the void (A3) is a reinforcing fiber that has been compressed by pressurization by reducing the viscosity of the resin (A2) of the precursor (a) of the porous body (A). It is preferable that (A1) be raised and formed by a restoring force to return to the original state (the shape before compression). At this time, it is preferable that the reinforcing fibers (A1) are bonded to each other through the resin (A2), thereby exhibiting stronger compression characteristics and shape retention of the porous body (a).
- the specific bending elastic modulus of the porous body (A) expressed as Ep 1/3 ⁇ ⁇ ⁇ 1 where Ep is the bending elastic modulus of the porous body (A) and ⁇ is the specific gravity of the porous body (A). Is preferably 3 or more.
- the specific flexural modulus of the porous body (A) is less than 3, it is not desirable because even if the flexural modulus is high, the specific gravity is also high and the desired weight reduction effect as a molded product cannot be obtained.
- the specific bending elastic modulus of steel or aluminum is 1.5 or less, which is a region of specific bending elastic modulus which is extremely superior to these metal materials.
- the specific bending elastic modulus of the porous body (A) is larger than 20, the lightening effect is sufficient, but the bending elastic modulus is low, and the shape desired as a molded product is maintained. Is not desirable, and the bending elastic modulus of the porous body itself is inferior.
- the bending elastic modulus Ep of the porous body (A) is preferably 3 GPa or more, more preferably 6 GPa or more.
- the range is limited as a molded product, which is not desirable.
- the porous body (A) of the present invention preferably has an elastic recovery force of 1 MPa or more at 50% compression.
- the elastic recovery force is the compressive strength when the porous body (A) measured by JIS K7220 (2006) is compressed 50% in the thickness direction. Since the elastic recovery force at the time of 50% compression in the thickness direction is 1 MPa or more, the molded product has excellent shape retention, and thus, for example, excellent handleability when attached to another member as a product. Furthermore, in practical use, if the thickness direction of the molded product is used as the direction in which the load is applied, it can withstand minor loads, and further deforms when a certain load is applied. When used as, it is preferable from the viewpoint of protection for workers during installation. If the elastic recovery force at 50% compression is 1 MPa or more, there is no practical problem, but it is preferably 3 MPa or more, more preferably 5 MPa or more.
- the difference in expansion coefficient in the thickness direction of the porous body (A) is preferably 300% or less.
- the difference in expansion coefficient in the thickness direction of the porous body (A) is 300% or less, the thin film layer (B) formed on the surface of the porous body (A) can be prevented from cracking and wrinkling.
- the expansion coefficient S of the porous body (A) is determined.
- the thin film layer (B) has at least one function of a primer layer, a coating film layer, and a liquid-proof layer.
- the primer layer means a layer having a function of improving adhesiveness with a paint formed thereafter.
- a coating-film layer is a design layer which is the outer surface of the molded article as a final product.
- the liquid-proof layer is a layer having a function capable of preventing the permeation of liquid, and when the thin film layer is an outer surface of a molded product as a final product, the liquid can be prevented from entering the porous body (A), In the case of the inner surface, the role of storing can be imparted without allowing the liquid that has entered the porous body (A) to permeate.
- the thin film layer (B) preferably has an additive (B1) and a thermosetting resin (B2), or an additive (B1) and a thermoplastic resin (B3).
- the additive (B1) is added for the purpose of imparting design properties such as coloring, pearly feeling and metallic feeling to the molded product.
- Additives (B1) include pigments and glass beads. Specific examples include organic pigments such as azo pigments and phthalocyanine blue, metal pigments made of metal powders such as aluminum and brass, and inorganic pigments such as chromium oxide and cobalt blue. Of these, metal pigments and inorganic pigments are preferred from the viewpoint of heat resistance.
- the reinforcing fiber is a dark color such as carbon fiber or aramid fiber
- a pigment having two or more layers of structures having different refractive indexes is preferably used. For example, natural mica coated with titanium oxide or iron oxide, artificial mica, alumina flake, silica flake, and glass flake.
- color can be developed by optical phenomena such as interference, diffraction, and scattering of light in the visible light region.
- optical phenomenon such as light interference, diffraction, or scattering
- a color can be generated by reflection of light of a specific wavelength, and therefore, it is preferably used when a dark reinforcing fiber is used.
- the hollow additive (B1) it is preferable to use the hollow additive (B1).
- hollow glass beads and porous resin particles are preferable in terms of weight reduction.
- the additive (B1) may be in the form of a sphere, a fiber, or a flake.
- the maximum dimension of the additive (B1) is preferably 200 ⁇ m or less.
- the maximum dimension of the additive (B1) means the maximum diameter of the primary particles of the additive (B1) or the maximum diameter of the secondary particles when the additive (B1) is aggregated.
- the maximum dimension of the additive (B1) is 200 ⁇ m or less, the surface of the thin film layer (B) becomes smooth and the design is improved.
- the maximum size of the additive (B1) is determined by observing the additive (B1) using an electron microscope, and randomly selecting 100 arbitrary images from images enlarged so that the size can be measured to at least 1 ⁇ m. The additive (B1) was selected, and the value obtained by measuring the length when the two points on the outer contour line of each additive (B1) were selected so as to maximize the distance was the maximum length. Average value.
- the maximum dimension of the additive (B1) is more preferably 150 ⁇ m, and further preferably 100 ⁇ m.
- the lower limit of the maximum dimension of the additive (B1) is preferably 1 ⁇ m, more preferably 5 ⁇ m, and more preferably 10 ⁇ m.
- the thermosetting resin (B2) includes a thermosetting resin (B2) and a curing agent (B2 '). Although it does not specifically limit as a thermosetting resin (B2), Arbitrary thermosetting resins (B2), such as an epoxy resin, unsaturated polyester, and a phenol resin, can be used. A thermosetting resin (B2) may be used independently and may be mix
- the curing agent (B2 ′) for example, a compound that performs a stoichiometric reaction, such as aliphatic polyamine, aromatic polyamine, dicyandiamide, polycarboxylic acid, polycarboxylic acid hydrazide, acid anhydride, polymercaptan, polyphenol, There are compounds that act catalytically, such as imidazole, Lewis acid complexes, and onium salts. When a compound that undergoes a stoichiometric reaction is used, a curing accelerator such as imidazole, Lewis acid complex, onium salt, urea derivative, phosphine, and the like may be further added.
- a curing accelerator such as imidazole, Lewis acid complex, onium salt, urea derivative, phosphine, and the like may be further added.
- the molecule has a group containing a nitrogen atom such as an amino group, an amide group, an imidazole group, a urea group, or a hydrazide group.
- Organic nitrogen compounds can be preferably used.
- the curing agent may be used alone or in combination.
- the thermoplastic resin (B3) is not particularly limited, but any thermoplastic resin (acrylic resin, urethane resin, polyamide resin, polyimide resin, vinyl chloride resin, etc.) B3) can be used.
- a thermoplastic resin (B3) may be used independently and may be mix
- a thermosetting resin (B2) and a thermoplastic resin (B3) can be selected similarly to resin (A2) which comprises a porous body (A).
- the difference in refractive index between the pigment and the cured product of the thermosetting resin (B2) is 0.1.
- the following is preferable. As the difference in refractive index is smaller, the transparency of the thin film layer (B) increases, so that the coloring effect of the pigment is strongly expressed.
- the state of the material forming the thin film layer (B) can be classified into a solution system, a dispersion system, and a powder system.
- a main element forming the thin film layer (B) is dissolved in a solvent, and there are types such as an organic solvent and water.
- the main elements forming the thin film layer (B) are dispersed in a solvent and are in an emulsified state, and are also referred to as an emulsion type.
- the powder system is in the form of a powder composed of a solid content without using a solvent.
- the solvent is preferably water, and from the viewpoint of the formation time of the thin film layer (B), the solvent Is preferably an organic solvent.
- the thickness of the thin film layer (B) is preferably 10 ⁇ m or more and 500 ⁇ m or less.
- the thickness is less than 10 ⁇ m, it may be difficult to maintain the shape of the thin film layer (B) when the porous body (A) is formed in the step (II).
- the thickness is thicker than 500 ⁇ m, it is possible to form a smooth surface or a surface excellent in design, but the mass of the molded product increases, and it is difficult to express the lightweight property of the molded product.
- the thickness of the thin film layer (B) is 400 ⁇ m or less, and more preferably 300 ⁇ m or less.
- the thickness of the thin film layer (B) is the individual thickness of each thin film layer (B).
- the thickness of the thin film layer (B) located in at least one outer layer of the porous body (A) is preferably in the above range, and the thicknesses of the thin film layers (B) of both outer layers are each described above. A range is more preferable.
- the surface roughness Ra2 of the thin film layer (B) is preferably 100 ⁇ m or less.
- the surface roughness Ra2 is 100 ⁇ m or less, the surface becomes smooth, and a molded product having better design properties can be obtained.
- the thin film layer (B) is a binder layer, the surface roughness Ra2 is preferably 30 ⁇ m or more in consideration of not only chemical bonding but also mechanical bonding (anchoring).
- it is preferable that surface roughness Ra2 is 50 micrometers or less from a viewpoint of design property.
- the density ⁇ is preferably 1.0 g / cm 3 or less.
- the density ⁇ of the molded product is 1.0 g / cm 3 or less, it is preferable because the mass of the molded product is reduced, that is, it contributes to the weight reduction of the product. More preferably, it is 0.8 g / cm ⁇ 3 > or less, More preferably, it is 0.6 g / cm ⁇ 3 > or less.
- the lower limit of the density is not limited, but generally a porous body (A) having reinforcing fibers (A1) and a resin (A2), an additive (B1) and a thermosetting resin (B2) or heat In a molded product having a thin film layer (B) made of a plastic resin (B3), the reinforcing fiber (A1), resin (A2) void (A3), additive (B1), and thermosetting resin, which are constituent components thereof
- the value calculated from the volume ratios of (A2) and the thermoplastic resin (A3) can be the lower limit.
- the density of the molded product varies depending on the reinforcing fiber (A1), the resin (A2), and the like to be used, but from the viewpoint of maintaining the mechanical properties of the molded product, 0.05 g / cm 3. The above is preferable.
- Examples of the method for producing the precursor (a) include a method in which a resin in a melted or softened state is pressed or reduced in pressure to reduce or melt the reinforcing fiber mat.
- a method in which a laminate in which a resin is disposed on both sides and / or the center of the reinforcing fiber mat in the thickness direction is heated and pressurized to melt and impregnate the resin can be preferably exemplified from the viewpoint of ease of production.
- a step of pre-expanding the precursor (a) or a step of pre-forming the shape according to the purpose of the molded product may be performed.
- the preform of the molded product according to the present invention is a molded product in which a thin film layer (B) is formed on the surface of a porous body (A) having reinforcing fibers (A1), a resin (A2), and voids (A3).
- the adhesion of the thin film layer (B) to the precursor (a) is classified as 0 to 3.
- the preform of the molded product according to the present invention is a precursor (a) of the porous body (A).
- the thin film layer (B) are attached so as to have a predetermined adhesion, so that it is not necessary to laminate the precursor (a) and the thin film layer (B) in the molding step, and the handling property is excellent. Therefore, a molded product can be easily manufactured.
- a thin film layer (B) is formed on the surface of the precursor (a) of the porous body (A) to obtain a preform (step (I)).
- Examples of the method for producing the precursor (a) include a method of pressurizing or depressurizing a resin (A2) in a molten or softened state or a fluid state in a reinforcing fiber mat made of reinforcing fibers (A1).
- a method in which a laminate in which the resin (A2) is disposed on both sides and / or the center in the thickness direction of the reinforcing fiber mat is heated and pressurized to melt and impregnate the resin (A2) is a viewpoint of ease of manufacture. Can be preferably exemplified.
- the reinforcing fiber mat constituting the porous body (A) for example, there is a method of manufacturing the reinforcing fiber mat by dispersing the reinforcing fibers (A1) in advance in the form of strands and / or substantially monofilaments.
- the reinforcing fiber mat As a manufacturing method of the reinforcing fiber mat, there are an airlaid method in which the reinforcing fiber (A1) is formed into a dispersion sheet by air flow, a carding method in which the reinforcing fiber (A1) is shaped into a sheet while mechanically combing the reinforcing fiber (A1)
- a dry process and a wet process by a radrite method in which the reinforcing fibers (A1) are stirred in water to make paper can be cited.
- a method of providing a fiber opening bar, a method of further vibrating the fiber opening bar, a method of making the card eyes fine, and a card rotation A method for adjusting the speed can be exemplified.
- a method of adjusting the stirring condition of the reinforcing fiber (A1), a method of diluting the reinforcing fiber concentration of the dispersion, a method of adjusting the viscosity of the dispersion, and suppressing eddy currents when the dispersion is transferred A method etc. can be illustrated.
- the reinforcing fiber mat is preferably manufactured by a wet process, and the reinforcing fiber mat (A1) is increased by increasing the concentration of input fibers or adjusting the flow rate (flow rate) of the dispersion and the speed of the mesh conveyor. ) Ratio can be easily adjusted. For example, by slowing the speed of the mesh conveyor with respect to the flow rate of the dispersion liquid, the orientation of the fibers in the obtained reinforcing fiber mat becomes difficult to take in the take-up direction, and a bulky reinforcing fiber mat can be manufactured.
- the reinforcing fiber mat may be composed of reinforcing fibers alone, and the reinforcing fibers (A1) are mixed with a matrix resin component in a powder form or a fiber shape, or the reinforcing fibers (A1) are mixed with an organic compound or an inorganic compound.
- the reinforcing fibers (A1) may be meshed with resin components.
- a compression molding machine or a double belt press can be suitably used.
- the productivity can be improved by using an intermittent press system in which two or more machines for heating and cooling are arranged in parallel.
- a continuous type it is the latter, and since continuous processing can be performed easily, it is excellent in continuous productivity.
- a thin film layer (B) is formed on the surface of the precursor (a) formed as described above.
- the method for forming the thin film layer (B) is not particularly limited as long as the thin film layer (B) according to the purpose can be formed. Examples thereof include dry coating such as plating, wet coating using a solution, and a method of modifying the surface of the precursor (a) to form a thin film layer (B).
- the thin film layer (B) is preferably formed by wet coating.
- the coating method include brush coating, roller coating, spray coating, airless spray, roll coater, baking coating, dip coating, electrodeposition coating, electrostatic coating, powder coating, and UV curable coating. For the treatment at high temperature, baking coating is preferably used.
- the thin film layer (B) is formed on the precursor (a), and then the precursor (a) is expanded to be molded into the porous body (A). Even when a resin in a state or a resin having fluidity, particularly a resin having a low viscosity such as that used in wet coating, is used, it prevents excessive penetration of the thin film layer (B) into the porous body (A). Therefore, a molded product having a thickness of the thin film layer (B) of 500 ⁇ m or less can be easily obtained. From this, it can be said that it is a manufacturing method with a high degree of freedom in selecting various coating methods and thin film layers as described above with respect to the appearance and design properties required for molded products.
- the thin film layer (B) formed on the surface of the precursor (a) by the step (I) has an adherence to the precursor (a) according to JIS K5600-5-6 (1999) of classification 0-3. Is preferred. Since the thin film layer (B) has a predetermined adhesion to the surface of the precursor (a), the thin film layer (B) is peeled off even when the step (II) is performed at a place different from the step (I). Therefore, it is possible to obtain a molded product having excellent design properties.
- the surface roughness Ra1 of the thin film layer (B) formed on the surface of the precursor (a) by the step (I) is preferably 50 ⁇ m or less.
- the surface roughness Ra2 of the thin film layer (B) after the step (II) which is a molding step is set to a desired range. It becomes possible to do.
- the precursor (a) is expanded and molded into the porous body (A) (step (II)), although not particularly limited, the precursor (a) of the porous body (A) is constituted. It is preferable to form the porous body (A) by reducing the viscosity of the resin (A2). As a method for reducing the viscosity of the resin (A2), it is preferable to heat the precursor (a) of the porous body (A).
- the heating method is not particularly limited, and examples thereof include a method of heating in contact with a mold or a hot plate set to a desired temperature, and a method of heating in a non-contact state using a heater or the like.
- thermoplastic resin When a thermoplastic resin is used as the resin (A2) constituting the porous body (A), it may be heated to a melting point or a softening point or higher, and when a thermosetting resin is used, the temperature is lower than the temperature at which the curing reaction starts. Heat at temperature.
- the method for controlling the thickness of the porous body (A) and the molded product is not limited as long as the heated precursor (a) can be controlled to the target thickness, but the method of constraining the thickness using a metal plate or the like.
- a method of controlling the thickness by the pressure applied to the precursor (a) is exemplified as a preferable method from the viewpoint of ease of production.
- a compression molding machine or a double belt press can be suitably used.
- the productivity can be improved by using an intermittent press system in which two or more machines for heating and cooling are arranged in parallel.
- a continuous type it is the latter, and since continuous processing can be performed easily, it is excellent in continuous productivity.
- the method for producing a molded article of the present invention preferably includes the step (III) of deforming the shape of the porous body (A) simultaneously with the step (II) or after the completion of the step (II).
- Step (III) can be performed by applying pressure in a heated state and shaping the shape.
- the molded article of the present invention produced as described above includes, for example, “a personal computer, a display, an OA device, a mobile phone, a portable information terminal, a PDA (a portable information terminal such as an electronic notebook), a video camera, an optical device, an audio, Cases such as air conditioners, lighting equipment, entertainment equipment, toy goods, and other home appliances, trays, chassis, interior members, diaphragms, speaker cones, or cases thereof, etc., electrical and electronic equipment parts, such as “speaker cones” Acoustic members, "Various members, Various frames, Various hinges, Various arms, Various axles, Various wheel bearings, Various beams", “Hood, Roof, Door, Fender, Trunk lid, Side panel, Rear end panel, Front body, Under Body, various pillars, various members, various frames, various beams, various supports, various rails, various Outer parts such as “hinge” or body parts, “bumper, bumper beam, molding, under cover, engine cover, current plate
- volume content Vf of reinforcing fibers in the porous body (A) in the molded product Only the portion of the porous body (A) was cut out from the molded product as a test piece, and after measuring the mass Ws, the test piece was heated in air at 500 ° C. for 30 minutes to burn off the resin (A2) component, and the remaining reinforcement
- the mass Wf of the fiber (A1) was measured and calculated by the following formula. At this time, for the density of the reinforcing fiber (A1) and the resin (A2), the result of measurement according to the submerged weighing method of JIS Z8807 (2012) is used.
- Vf (volume%) (Wf / ⁇ f) / ⁇ Wf / ⁇ f + (Ws ⁇ Wf) / ⁇ r ⁇ ⁇ 100 ⁇ f: density of reinforcing fiber (A1) (g / cm 3 ) ⁇ r: density of resin (A2) (g / cm 3 )
- Density of molded product ⁇ m A part including the porous body (A) and the thin film layer (B) is cut out from the molded product as a test piece, and (2) the apparent density of the molded product is measured in the same manner as the density ⁇ of the porous body (A) in the molded product. The density ⁇ m was calculated.
- Thickness of thin film layer (B) A test piece was cut out 10 mm long and 10 mm wide from the molded article, and (5) the thin film layer (B) was adhered to the precursor (a) of the porous body (A) using a laser microscope in the same manner as the adhesion of the thin film layer (B). The thickness of B) was measured. The position on the porous body (A) side from the surface of the thin film layer (B) was measured at 10 positions at equal intervals from the end in the direction perpendicular to the thickness direction of the sample piece. The thickness of the thin film layer (B) was obtained by arithmetic average from the thickness of the thin film layer (B) at a total of 50 locations obtained by photographing 10 locations each with 5 test pieces.
- the papermaking tank includes a mesh conveyor having a papermaking surface having a width of 500 mm at the bottom, and a conveyor capable of transporting a carbon fiber substrate (papermaking substrate) is connected to the mesh conveyor. Papermaking was performed at a carbon fiber concentration of 0.05% by mass in the dispersion.
- the paper-made carbon fiber substrate was dried in a drying furnace at 200 ° C. for 30 minutes to obtain a reinforcing fiber mat 1 having a basis weight of 100 g / m 2 .
- PP resin 200 g of basis weight comprising 80% by mass of unmodified polypropylene resin ("Prime Polypro” (registered trademark) J105G manufactured by Prime Polymer Co., Ltd.) and 20% by mass of acid-modified polypropylene resin ("Admer” QB510 manufactured by Mitsui Chemicals, Inc.) A resin sheet of / m 2 was produced.
- the paint 1 contains a thermoplastic resin and functions as a primer layer.
- the paint 2 contains a thermoplastic resin and functions as a coating layer.
- the paint 3 contains a thermosetting resin and functions as a liquid-proof layer.
- Example 1 As said process (I), the coating material 1 is spray-coated 3 times on the surface of the precursor (a) of a porous body (A), it is made to dry for 30 minutes, and the thin film layer which consists of the coating material 1 on a precursor (a) (B) was formed to obtain a preform. Table 1 shows the surface roughness Ra1 and adhesion of the thin film layer (B) of the preform obtained. Next, the preform was subjected to the following steps (II-1) to (II-5) as the step (II) to obtain a molded product. Table 1 shows the characteristics of the molded product obtained in Example 1.
- Step (II-1) The preform is placed in a press molding die cavity preheated to 200 ° C., and the die is closed.
- Step (II-2) After holding for 120 seconds, a pressure of 3 MPa is applied and the pressure is further held for 60 seconds.
- Step (II-3) The mold cavity is opened, a metal spacer is inserted at the end thereof, and the thickness when the molded product is obtained is adjusted to 3.4 mm.
- Step (II-5) Open the mold and take out the molded product.
- Example 2 The coating material 2 was spray-applied twice on the surface of the precursor (a) and dried for 1 hour to form a thin film layer (B) made of the coating material 2 on the precursor (a) to obtain a preform.
- Table 1 shows the surface roughness Ra1 and adhesion of the thin film layer (B) of the preform obtained.
- the obtained preform was subjected to steps (II-1) to (II-5) in the same manner as in Example 1 to obtain a molded product.
- the properties of the molded product obtained in Example 2 are shown in Table 1.
- Example 3 The coating material 3 is applied once on the surface of the precursor (a) using a roller, and is dried in a drier at a furnace temperature of 50 ° C. for 1 hour to form a thin film layer made of the coating material 3 on the precursor (a). (B) was formed to obtain a preform. Table 1 shows the surface roughness Ra1 and adhesion of the thin film layer (B) of the preform obtained. Next, the obtained preform was subjected to steps (II-1) to (II-5) in the same manner as in Example 1 to obtain a molded product. The properties of the molded product obtained in Example 3 are shown in Table 1.
- Example 4 A paint 4 in which 15 parts by weight of additive 1 was added to paint 3 was prepared. A thin film layer (B) made of the paint 4 was formed on the precursor (a) in the same manner as in Example 3 except that the paint 4 was used to obtain a molded product. Table 1 shows the surface roughness Ra1 and adhesion of the obtained thin film layer (B), and the characteristics of the molded product obtained in Example 4.
- Example 5 A molded product was obtained in the same manner as in Example 1 except that the precursor (a) was placed in the mold shown in FIG. 3 to obtain a molded product.
- Table 1 shows the surface roughness Ra1 and adhesion of the obtained thin film layer (B), and the characteristics of the molded product obtained in Example 5.
- 4 is a precursor (a)
- 5 is a thin film layer (B) made of paint 1
- 3A is an upper mold
- 3B is a lower mold.
- Example 6 A preform having a thin film layer (B) formed on the surface used in Example 1 and a mold (3A, 3B) having a difference in unevenness of 0.6 mm shown in FIG. 4 were prepared. Next, as the above step (II), a molded product was obtained through the following steps (II-6) to (II-10). Table 1 shows the characteristics of the molded product obtained in Example 6. Step (II-6): The preform was placed in an IR heater set at 250 ° C. Step (II-7): After heating for 60 seconds, the preform is placed in a mold whose temperature is set to 120 ° C., a pressure of 3 MPa is applied, and the pressure is further maintained for 5 seconds.
- Step (II-8) The mold cavity is opened, a metal spacer is inserted at the end, and the thickness of the concave portion of the molded product is adjusted to 3.4 mm.
- Example 7 A molded product was obtained in the same manner as in Example 6 except that a mold having a difference in unevenness of 3.6 mm shown in FIG. 4 was prepared. Table 1 shows the characteristics of the molded product obtained in Example 7.
- Example 8 A molded product was obtained in the same manner as in Example 1 except that the coating material 1 was applied after the fluorine-based release agent was applied to the surface of the precursor (a) of the porous body (A). Table 1 shows the surface roughness Ra1 and adhesion of the obtained thin film layer (B), and the characteristics of the molded product obtained in Example 8.
- Example 9 Except for using the same material as in Example 1 and adjusting the thickness of the precursor (a) to 1.24 mm in the step (3) of obtaining the precursor (a) of the porous body (A).
- a molded product was obtained in the same manner as in Example 1.
- the properties of the molded product obtained in Example 9 are shown in Table 1.
- Example 1 A porous body (A) was obtained in the same manner as in Example 1 without forming the thin film layer (B) on the surface of the precursor (a). A thin film layer (B) made of the paint 1 was formed on the resulting porous body (A) in the same manner as in Example 1 to obtain a molded product.
- Table 2 shows the surface roughness Ra1 and adhesion of the obtained thin film layer (B), and the properties of the molded product obtained in Comparative Example 1.
- Steps (II-1) to (II) were carried out in the same manner as in Example 1 except that three precursors (a) of the porous body (A) were stacked and the holding time in step (II) was 600 seconds. -5) to obtain a molded body containing no voids.
- a thin film layer (B) made of the paint 1 was formed on the obtained molded body in the same manner as in Example 1 to obtain a molded product.
- Table 2 shows the surface roughness Ra1 and adhesion of the obtained thin film layer (B), and the characteristics of the molded product obtained by Comparative Example 2.
- Example 1 since the thin film layer (B) was previously formed on the precursor (a) of the porous body (A) and then expanded into the porous body (A), smooth and excessive penetration of the paint It was possible to easily obtain a molded article excellent in light weight without any.
- Example 1 since the thin film layer (B) has a binder property, the adhesiveness of the subsequent design coating material is excellent.
- Example 2 since the thin film layer (B) forms a coating layer that becomes the design surface of the final product, the obtained molded product can be immediately handled as a product, and a general coating process is performed. I could omit it.
- Example 3 since the paint 3 made of the thermosetting resin (B2) was used as the thin film layer (B), a molded product that maintained high surface smoothness even after expansion could be obtained.
- Example 4 since hollow glass beads are added as an additive (B1) to the coating material 4, it is possible to obtain a molded article having a lighter weight than that using a general additive (B1). did it.
- Examples 5 to 7 it was confirmed that the present invention can be applied to the three-dimensional shape shaping required for the molded product.
- Example 7 a molded product having a maximum thickness (large expansion coefficient difference) is obtained compared to the molded product obtained in Example 6, and the molded product exhibits high rigidity as a structural member due to the effect of thickness. It is clear to do.
- Example 9 is an example in which the precursor (a) of the porous body (A) including voids in which the impregnation of the resin (A2) is insufficient is simulated, and the porosity of the precursor (a) is 10 % Or less, it was possible to obtain a molded article which was smooth and excellent in lightness without excessive penetration of the paint.
- Comparative Example 1 since the paint 1 was applied to the porous body (A), the paint soaked into the molded product (porous body), and it was difficult to form a smooth coating film. .
- the thin film layer (B) 1 similar to that in Example 1 is to be formed, it is apparent that the coating process needs to be repeated in many layers, and the coating process and weight increase.
- Comparative Example 2 since a molded product containing no voids was coated, it was possible to form a smooth coating film, but the molded product was inferior in weight.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Laminated Bodies (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
- Molding Of Porous Articles (AREA)
Abstract
Description
工程(I):前記多孔質体(A)の前駆体(a)の表面に前記薄膜層(B)を形成してプリフォームを得る工程
工程(II):前記前駆体(a)を膨張させて前記多孔質体(A)に成形する工程
本発明に係る成形品の製造方法は、多孔質体(A)の表面に薄膜層(B)が形成された成形品の製造方法であって、以下の工程(I)~(II)をこの順に行うことを特徴とする。
工程(I):多孔質体(A)の前駆体(a)の表面に薄膜層(B)を形成してプリフォームを得る工程
工程(II):前駆体(a)を膨張させて多孔質体(A)に成形する工程
本発明の成形品において、多孔質体(A)は、強化繊維(A1)と、樹脂(A2)と、空隙(A3)と、を有する。
この二次元配向角について、図面を用いてさらに説明する。図1(a),(b)において、単繊維1aを基準とすると、単繊維1aは他の単繊維1b~1fと交差している。ここで、交差とは、観察する二次元平面において、基準とする単繊維が他の単繊維と交わって観察される状態のことを意味し、単繊維1aと単繊維1b~1fとが必ずしも接触している必要はなく、投影して見た場合に交わって観察される状態についても例外ではない。つまり、基準となる単繊維1aについて見た場合、単繊維1b~1fの全てが二次元配向角の評価対象であり、図1(a)中において二次元配向角は交差する2つの単繊維が形成する2つの角度のうち、0°以上、90°以下の範囲内にある鋭角側の角度である。
膨張率S(%)=(t2÷t1)×100
これらの膨張率および下記式より、膨張率差を算出した。
膨張率差(%)=Smax-Smin
本発明の成形品において、薄膜層(B)はプライマー層、塗膜層、防液層の少なくともいずれか一つの機能を有している。ここで、プライマー層は、その後に形成される塗料との接着性を向上する機能を有する層を意味する。塗膜層は、最終製品としての成形品の外表面である意匠層である。防液層は、液体の透過を防止しうる機能を有する層であり、薄膜層を最終製品としての成形品の外表面とした場合、多孔質体(A)への液体の浸入が防止でき、内表面とした場合、多孔質体(A)に浸入した液体を透過させることなく、貯蔵する役割を付与することができる。
本発明の成形品において、薄膜層(B)の厚みは10μm以上500μm以下であることが好ましい。厚みが10μmより薄い場合、工程(II)において多孔質体(A)に成形した際に、薄膜層(B)が形状を維持することが困難となる場合がある。また、厚みを500μmより厚くした場合、平滑な面や意匠性に優れた面を形成は可能であるが、成形品の質量が増加してしまい、成形品の軽量性を発現することが困難となる。より好ましくは、薄膜層(B)の厚みは400μm以下であり、さらに好ましくは300μm以下である。なお、薄膜層(B)が多孔質体(A)の表面ともう一方の表面の両方に設けられている場合、薄膜層(B)の厚みとは、それぞれの薄膜層(B)の個別の厚みを言うものとし、多孔質体(A)の少なくとも1方の外層に位置する薄膜層(B)の厚みが上記範囲であることが好ましく、両外層の薄膜層(B)の厚みがそれぞれ上記範囲であることがより好ましい。
また工程(I)の薄膜層(B)の形成を妨げない範囲で、前駆体(a)を予め膨張させる工程や成形品の目的に応じた形状に予め賦形する工程を経ていても良い。
本発明に係る成形品のプリフォームは、強化繊維(A1)と樹脂(A2)と空隙(A3)とを有する多孔質体(A)の表面に薄膜層(B)が形成されている成形品のプリフォームであって、多孔質体(A)の前駆体(a)と、前駆体(a)の表面上の薄膜層(B)と、を備え、JIS K5600-5-6(1999)による前記前駆体(a)への前記薄膜層(B)の付着性が分類0~3である。
このようなプリフォームを用いることにより、薄膜層(B)が多孔質体(A)に過剰に染み込むことが抑制でき、成形品の軽量化を図ることができる。また、前駆体(a)を膨張させて、多孔質体(A)を形成した場合にも、薄膜層(B)の剥離を抑制でき、金型など形状の賦形性、追従性に優れる。また、成形工程である工程(II)を工程(I)とは異なる場所で行う場合であっても、本発明に係る成形品のプリフォームは、多孔質体(A)の前駆体(a)と薄膜層(B)とが所定の付着性を有するように付着されているため、成形工程で前駆体(a)と薄膜層(B)とを積層等する必要がなく、取り扱い性にも優れるため、簡易に成形品を製造することができる。
本発明の成形品の製造方法では、まず、多孔質体(A)の前駆体(a)の表面に薄膜層(B)を形成してプリフォームを得る(工程(I))。
また本発明の成形品の製造方法は、前駆体(a)に薄膜層(B)を形成した後に前駆体(a)を膨張させて多孔質体(A)に成形するため、溶融ないし軟化した状態の樹脂や流動性を有する状態の樹脂、特にウェットコーティングで用いられるような粘度の低い樹脂を用いた場合でも多孔質体(A)への薄膜層(B)の過剰な染み込むことを防止することができ、薄膜層(B)の厚みが500μm以下の成形品を容易に得ることができる。これより、成形品に要求される外観および意匠性に対し、上記したような様々な塗装方法や薄膜層の選択自由度が高い製造方法といえる。
成形品から多孔質体(A)の部分のみを試験片として切り出し、質量Wsを測定した後、試験片を空気中500℃で30分間加熱して樹脂(A2)成分を焼き飛ばし、残った強化繊維(A1)の質量Wfを測定し、次式により算出した。このとき、強化繊維(A1)および樹脂(A2)の密度は、JIS Z8807(2012)の液中ひょう量法に従って測定した結果を用いる。
Vf(体積%)=(Wf/ρf)/{Wf/ρf+(Ws-Wf)/ρr}×100
ρf:強化繊維(A1)の密度(g/cm3)
ρr:樹脂(A2)の密度(g/cm3)
成形品から多孔質体(A)の部分のみを試験片として切り出し、JIS K7222(2005)を参考にして多孔質体(A)の見かけ密度を測定した。試験片の寸法は縦100mm、横100mmとした。試験片の縦、横、厚みをマイクロメーターで測定し、得られた値より試験片の体積Vを算出した。また、切り出した試験片の質量Mを電子天秤で測定した。得られた質量M及び体積Vを次式に代入することにより多孔質体(A)の密度ρを算出した。
ρ[g/cm3]=M[g]/V[cm3]
成形品から多孔質体(A)および薄膜層(B)を含む部分を試験片として切り出し、(2)成形品における多孔質体(A)の密度ρと同様にして成形品の見かけ密度を測定し、密度ρmを算出した。
多孔質体(A)または前駆体(a)から縦10mm、横10mmに試験片を切り出し、断面を走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製 S-4800型)により観察し、試料片の表面から、等間隔に10箇所を1000倍の倍率で撮影した。それぞれの画像について、画像内の空隙(A3)の面積Aaを求めた。さらに、空隙(A3)の面積Aaを画像全体の面積で除算することにより空隙率を算出した。多孔質体(A)または前駆体(a)の空隙の体積含有率は、5枚の試験片でそれぞれ10箇所ずつ撮影した合計50箇所の空隙率から算術平均により求めた。
JIS K5600-5-6(1999)塗料一般試験方法-塗膜の機械的性質―付着性(クロスカット法)に準じて薄膜層(B)の付着性を評価した。試料をレーザー顕微鏡(キーエンス(株)製、VK-9510)で400倍に拡大し、観察を行った。観察画像を汎用画像解析ソフトウェア上に展開し、ソフトウェアに組み込まれたプログラムを利用して観察画像中に見える薄膜層(B)が剥がれた面積を求めた。JIS K5600-5-6の表1の試験結果の分類の0~3を良好、4~5を不良と判定した。
レーザー顕微鏡を用いて添加剤(B1)の形状を測定した。添加剤(B1)の最大寸法の測定は、添加剤(B1)単独での測定、樹脂(A2)と混合され、流動性を有する状態での測定、樹脂(A2)と混合され、流動性を有しない状態での測定(硬化または固化した状態)が想定される。添加剤(B1)、および流動性を有する場合はそのままの状態で、測定した。流動性を有しない場合は、エポキシ樹脂で包埋し、研磨して断面を観察して、最大寸法を測定した。
成形品から縦10mm、横10mmに試験片を切り出し、(5)多孔質体(A)の前駆体(a)への薄膜層(B)の付着性と同様にレーザー顕微鏡を用いて薄膜層(B)の厚みを測定した。試料片の厚み方向と垂直方向の端から、等間隔に10箇所の位置において、薄膜層(B)の表面から多孔質体(A)側の位置を測定した。薄膜層(B)の厚みは、5枚の試験片でそれぞれ10箇所ずつ撮影した合計50箇所の薄膜層(B)の厚みから算術平均により求めた。
工程(I)で形成された薄膜層(B)および成形品における薄膜層(B)について、表面粗さ計を用いて、JIS-B-0601(2001)に基づき、カットオフ値および基準長さを選定し、表面粗さRa1(μm)およびRa2(μm)を求めた。
工程(I)で薄膜層(B)が形成された後、前駆体(a)とその薄膜層(B)との合計の厚みt1を測定し、次いで工程(II)で成形された成形品の厚みt2(多孔質体(A)と薄膜層(B)との厚み)を測定した。測定した厚みおよび下記式より、最も大きな膨張率Sとなるものを最大膨張率Smax,最も小さな膨張率Sとなるものを最小膨張率Sminとした。
膨張率S(%)=(t2÷t1)×100
これらの膨張率および下記式より、膨張率差を算出した。
膨張率差(%)=Smax-Smin
下記(a)~(d)により多孔質体(A)の通気性を測定した。JIS規格で試験条件の上限とされている500Paまでに通気を確認できたものは「通気性あり」と判断、それ以外は、「通気性なし」と判断した。
(a)多孔質体(A)から100mm×100mm、厚み5mmの試験片を切り出す(5mm以下であればそのまま。5mmよりも厚い場合は、切削加工などにより厚みを調整する)。
(b)試験片の端部(カット面)を4面テープで覆う(厚み方向と垂直方向への通気を防ぐため)。
(c)JIS L1096(2010) A法(フラジール法)が測定可能な試験機の円筒の一端に試験片を取り付ける。
(d)傾斜形気圧計が500Pa以下の圧力となるように吸込みファンおよび空気孔を調整する。
成形体から試験片を切り出し、ISO178法(1993)に従い曲げ弾性率を測定した。測定数n=5とし、算術平均値を曲げ弾性率Ecとした。測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。得られた結果より次式により、成形体の比曲げ弾性率を算出した。
比曲げ弾性率=Ec1/3/ρ
[強化繊維マット1]
東レ(株)製“トレカ”T700S-12Kをカートリッジカッターで5mmにカットし、チョップド炭素繊維を得た。水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))とからなる濃度0.1質量%の分散液を作製し、この分散液とチョップド炭素繊維とを用いて図2に示す強化繊維マットの製造装置を用いて、強化繊維マットを製造した。図2に示す製造装置は、分散槽としての容器下部に開口コックを有する直径1000mmの円筒形状の容器、分散槽と抄紙槽とを接続する直線状の輸送部(傾斜角30°)を備えている。分散槽の上面の開口部には撹拌機が付属し、開口部からチョップド炭素繊維及び分散液(分散媒体)を投入可能である。抄紙槽が、底部に幅500mmの抄紙面を有するメッシュコンベアを備え、炭素繊維基材(抄紙基材)を運搬可能なコンベアをメッシュコンベアに接続している。抄紙は分散液中の炭素繊維濃度を0.05質量%として行った。抄紙した炭素繊維基材は200℃の乾燥炉で30分間乾燥し、目付けが100g/m2の強化繊維マット1を得た。
未変性ポリプロピレン樹脂(プライムポリマー(株)製“プライムポリプロ”(登録商標)J105G)80質量%と、酸変性ポリプロピレン樹脂(三井化学(株)製“アドマー”QB510)20質量%とからなる目付200g/m2の樹脂シートを作製した。
日本ペイント(株)製「naxPPプライマー」を塗料1として準備した。塗料1は熱可塑性樹脂を含み、プライマー層として機能するものである。
[塗料2]
(株)アサヒペン製「クリエイティブカラースプレー」を塗料2として準備した。塗料2は熱可塑性樹脂を含み、塗膜層として機能するものである。
[塗料3]
主剤として三菱ケミカル(株)製のjER828を100質量部、硬化剤として東京化成工業(株)製トリエチレンテトラミンを11質量部の割合で混合し、塗料3として準備した。塗料3は熱硬化性樹脂を含み、防液層として機能するものである。
スリーエム製グラスバブルズK20(かさ密度:0.13g/cm3、メジアン径:60μm)を添加剤1として準備した。
強化繊維マットとして強化繊維マット1、樹脂シートとしてPP樹脂を、[樹脂シート/強化繊維マット/樹脂シート/強化繊維マット/強化繊維マット/樹脂シート/強化繊維マット/樹脂シート]の順番に配置した積層物を作製した。次いで、以下の工程(1)~(4)を経ることにより多孔質体(A)の前駆体(a)を得た。
工程(1):積層物を200℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
工程(2):次いで、3MPaの圧力を付与し、180秒間保持する。
工程(3):工程(2)の後、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
工程(4):金型を開いて前駆体(a)を取り出す。
上記工程(I)として、多孔質体(A)の前駆体(a)の表面に塗料1を3回スプレー塗布し、30分間乾燥させて、前駆体(a)上に塗料1からなる薄膜層(B)を形成し、プリフォームを得た。得られたプリフォームの薄膜層(B)の表面粗さRa1および付着性を表1に示す。
次いで、プリフォームを、上記工程(II)として、以下の工程(II-1)~(II-5)を経ることにより成形品を得た。実施例1により得た成形品の特性を表1に示す。
工程(II-1):プリフォームを、200℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
工程(II-2):120秒間保持した後、3MPaの圧力を付与してさらに60秒間保持する。
工程(II-3):金型キャビティを開放し、その末端に金属スペーサーを挿入し、成形品を得る際の厚みが3.4mmとなるように調整する。
工程(II-4):金型キャビティを締結し、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
工程(II-5):金型を開いて成形品を取り出す。
前駆体(a)の表面に塗料2を2回スプレー塗布し、1時間乾燥させて前駆体(a)上に塗料2からなる薄膜層(B)を形成し、プリフォームを得た。得られたプリフォームの薄膜層(B)の表面粗さRa1および付着性を表1に示す。
次いで、得られたプリフォームを、実施例1と同様にして工程(II-1)~(II-5)を経ることにより成形品を得た。実施例2により得た成形品の特性を表1に示す。
前駆体(a)の表面にローラーを用いて塗料3を1回塗布し、炉内温度を50℃とした乾燥機内で1時間乾燥させて、前駆体(a)上に塗料3からなる薄膜層(B)を形成し、プリフォームを得た。得られたプリフォームの薄膜層(B)の表面粗さRa1および付着性を表1に示す。
次いで、得られたプリフォームを、実施例1と同様にして工程(II-1)~(II-5)を経ることにより成形品を得た。実施例3により得た成形品の特性を表1に示す。
塗料3に対し、添加剤1を15重量部添加した塗料4を調製した。塗料4を用いること以外は実施例3と同様にして、前駆体(a)上に塗料4からなる薄膜層(B)を形成し、成形品を得た。得られた薄膜層(B)の表面粗さRa1および付着性、実施例4により得た成形品の特性を表1に示す。
前駆体(a)を図3に示す金型に配置して成形品を得ること以外は実施例1と同様にして、成形品を得た。得られた薄膜層(B)の表面粗さRa1および付着性、実施例5により得た成形品の特性を表1に示す。なお、図3において、4は前駆体(a)、5は塗料1からなる薄膜層(B)、3Aは上金型、3Bは下金型である。
実施例1で用いた表面に薄膜層(B)を形成されたプリフォームと図4に示す凹凸の差が0.6mmの金型(3A、3B)を準備した。次いで、上記工程(II)として、以下の工程(II-6)~(II-10)を経ることにより成形品を得た。実施例6により得た成形品の特性を表1に示す。
工程(II-6):プリフォームを250℃に設定したIRヒーターに配置した。
工程(II-7):60秒間加熱した後、120℃に温度設定した金型内にプリフォームを配置し、3MPaの圧力を付与してさらに5秒間保持する。
工程(II-8):金型キャビティを開放し、その末端に金属スペーサーを挿入し、成形品の凹部の厚みが3.4mmとなるように調整する。
工程(II-9):金型キャビティを締結し、圧力を保持した状態で180秒間保持した。
工程(II-10):金型を開いて成形品を取り出す。
図4に示す凹凸の差が3.6mmの金型を準備すること以外は、実施例6と同様にして成形品を得た。実施例7により得た成形品の特性を表1に示す。
多孔質体(A)の前駆体(a)の表面にフッ素系離型剤を塗布した後に、塗料1を塗布すること以外は実施例1と同様にして成形品を得た。得られた薄膜層(B)の表面粗さRa1および付着性、実施例8により得た成形品の特性を表1に示す。
実施例1と同様の材料を用い、多孔質体(A)の前駆体(a)を得る工程(3)において前駆体の(a)の厚みが1.24mmとなるように調整すること以外は実施例1と同様にして成形品を得た。実施例9により得た成形品の特性を表1に示す。
前駆体(a)の表面に薄膜層(B)を形成せずに実施例1と同様にして多孔質体(A)を得た。得られた多孔質体(A)に対し、実施例1と同様にして塗料1からなる薄膜層(B)を形成して成形品を得た。得られた薄膜層(B)の表面粗さRa1および付着性、比較例1により得た成形品の特性を表2に示す。
多孔質体(A)の前駆体(a)を3枚重ね、工程(II)の保持時間を600秒とすること以外は、実施例1と同様にして工程(II-1)~工程(II-5)を行い、空隙を含まない成形体を得た。得られた成形体に対し、実施例1と同様にして塗料1からなる薄膜層(B)を形成して成形品を得た。得られた薄膜層(B)の表面粗さRa1および付着性、比較例2により得た成形品の特性を表2に示す。
実施例1~5は、多孔質体(A)の前駆体(a)にあらかじめ薄膜層(B)を形成させた後に多孔質体(A)へと膨張させるため、平滑かつ塗料の過度な染み込みがない軽量性に優れた成形品を容易に得ることができた。実施例1では、薄膜層(B)がバインダー性を有しているため、その後の意匠性塗料の密着性に優れる。実施例2では、薄膜層(B)は最終製品の意匠面となる塗膜層を形成しているため、得られた成形品はすぐに製品として扱うことが可能となり、一般的な塗装工程を省略することができた。実施例3では、薄膜層(B)として熱硬化性樹脂(B2)からなる塗料3を用いたため、膨張後も高い表面平滑性を維持した成形品を得ることができた。また実施例4では、塗料4に添加剤(B1)として中空ガラスビーズを添加しているため、一般的な添加剤(B1)を用いたものよりも軽量性に優れた成形品を得ることができた。実施例5~7では、成形品に要求される3次元形状賦形に対しても適応可能であることが確認できた。実施例7においては、実施例6で得られた成形品よりも最大厚みの厚い(膨張率差の大きい)成形品が得られており、厚みの効果により成形品が構造部材として高い剛性を発現することは明らかである。またこのように、凹凸差が大きい(膨張率差の大きい)形状の成形品が得られることから、成形形状の自由度が高いことが示された。一方、好ましい膨張率差を超えたため、成形品の凸部分において、部分的に薄膜層(B)の厚みムラが生じた。実施例8では、薄膜層(B)の含浸を抑制することはできたが、多孔質体(A)の前駆体(a)と薄膜層(B)の付着性が乏しいため、多孔質体(A)と薄膜層(B)が分離している部分が生じた。実施例9では、模擬的に樹脂(A2)の含浸が不十分な空隙を含む多孔質体(A)の前駆体(a)を用いた例であり、前駆体(a)の空隙率が10%以下であれば、平滑かつ塗料の過度な染み込みがない軽量性に優れた成形品を得ることができた。一方、比較例1においては、多孔質体(A)に塗料1を塗布しているため、成形品(多孔質体)内部に塗料が染み込み、平滑な塗装膜を形成することが困難であった。また実施例1と同様の薄膜層(B)1を形成しようとした場合、塗装を何重にも重ねて行う必要が生じてしまい、塗装工程および重量が増加してしまうことは明白である。比較例2においては、空隙を含まない成形体に塗装を行うため、平滑な塗装膜を形成することは可能であったが、成形品として軽量性に劣っていた。
1a~1f 単繊維
2 二次元配向角
3 金型
3A 上金型
3B 下金型
4 前駆体(a)
5 薄膜層(B)
Claims (17)
- 多孔質体(A)の表面に薄膜層(B)が形成された成形品の製造方法であって、以下の工程(I)~(II)をこの順に行う、成形品の製造方法。
工程(I):前記多孔質体(A)の前駆体(a)の表面に前記薄膜層(B)を形成してプリフォームを得る工程
工程(II):前記前駆体(a)を膨張させて前記多孔質体(A)に成形する工程 - 工程(I)で得られたプリフォームにおいて、JIS K5600-5-6(1999)による前記前駆体(a)への前記薄膜層(B)の付着性が分類0~3である、請求項1に記載の成形品の製造方法。
- 前記薄膜層(B)が、プライマー層、塗膜層、防液層の少なくともいずれかである、請求項1または2に記載の成形品の製造方法。
- 工程(I)において、ウェットコーティングにより前記薄膜層(B)を前記前駆体(a)の表面に形成する、請求項1~3のいずれか1項に記載の成形品の製造方法。
- 前記薄膜層(B)が添加剤(B1)と熱硬化性樹脂(B2)とを有する、請求項1~4のいずれか1項に記載の成形品の製造方法。
- 前記薄膜層(B)が添加剤(B1)と熱可塑性樹脂(B3)とを有する、請求項1~4のいずれか1項に記載の成形品の製造方法。
- 前記添加剤(B1)の最大寸法が200μm以下である、請求項5または6に記載の成形品の製造方法。
- 前記薄膜層(B)の厚みが10~500μmである、請求項1~7のいずれか1項に記載の成形品の製造方法。
- 前記工程(I)で形成された前記薄膜層(B)の表面粗さRa1が50μm以下である、請求項1~8のいずれか1項に記載の成形品の製造方法。
- 前記工程(II)後の前記薄膜層(B)の表面粗さRa2が100μm以下である、請求項1~9のいずれか1項に記載の成形品の製造方法。
- 前記工程(II)と同時、または前記工程(II)の完了後、前記多孔質体(A)の形状を変形させる工程(III)を含む、請求項1~10のいずれか1項に記載の成形品の製造方法。
- 前記多孔質体(A)の厚み方向の膨張率差が300%以下である、請求項1~11のいずれか1項に記載の成形品の製造方法。
- 前記多孔質体(A)が、強化繊維(A1)と樹脂(A2)と前記空隙(A3)とを有する、請求項1~12のいずれか1項に記載の成形品の製造方法。
- 前記多孔質体(A)が厚み方向に連続した空隙(A3)を有する、請求項1~13のいずれか1項に記載の成形品の製造方法。
- 前記工程(II)において、前記多孔質体(A)が前記強化繊維(A1)の復元力によって膨張する、請求項13または14に記載の成形品の製造方法。
- 強化繊維(A1)と樹脂(A2)と空隙(A3)とを有する多孔質体(A)の表面に薄膜層(B)が形成されている成形品のプリフォームであって、
前記多孔質体(A)の前駆体(a)と、
前記前駆体(a)の表面上の前記薄膜層(B)と、
を備え、JIS K5600-5-6(1999)による前記前駆体(a)への前記薄膜層(B)の付着性が分類0~3である、成形品のプリフォーム。 - 前記前駆体(a)に含まれる空隙の体積含有率が10体積%未満である、請求項16に記載の成形品のプリフォーム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980022259.7A CN111918768A (zh) | 2018-03-30 | 2019-03-28 | 成型品的制造方法及成型品的预成型体 |
KR1020207029745A KR20200138278A (ko) | 2018-03-30 | 2019-03-28 | 성형품의 제조 방법 및 성형품의 프리폼 |
JP2019519014A JP7543648B2 (ja) | 2018-03-30 | 2019-03-28 | 成形品の製造方法 |
EP19775868.3A EP3778210B1 (en) | 2018-03-30 | 2019-03-28 | Method for manufacturing molded article and preform of molded article |
US16/980,634 US11993687B2 (en) | 2018-03-30 | 2019-03-28 | Method for manufacturing molded article and preform of molded article |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018070010 | 2018-03-30 | ||
JP2018-070010 | 2018-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019189587A1 true WO2019189587A1 (ja) | 2019-10-03 |
Family
ID=68060297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/013625 WO2019189587A1 (ja) | 2018-03-30 | 2019-03-28 | 成形品の製造方法および成形品のプリフォーム |
Country Status (7)
Country | Link |
---|---|
US (1) | US11993687B2 (ja) |
EP (1) | EP3778210B1 (ja) |
JP (1) | JP7543648B2 (ja) |
KR (1) | KR20200138278A (ja) |
CN (1) | CN111918768A (ja) |
TW (1) | TWI799560B (ja) |
WO (1) | WO2019189587A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023204132A1 (ja) * | 2022-04-20 | 2023-10-26 | 東レ株式会社 | 樹脂成形体およびその製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113710469A (zh) * | 2019-05-17 | 2021-11-26 | 大塚化学株式会社 | 复合叠层体及其制造方法 |
JP6759491B1 (ja) * | 2019-05-17 | 2020-09-23 | 大塚化学株式会社 | 複合積層体及びその製造方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52115875A (en) | 1976-03-26 | 1977-09-28 | Toppan Printing Co Ltd | Process of embossing patter on foamed material surface |
JPS57155897A (en) * | 1981-03-20 | 1982-09-27 | Matsushita Electric Ind Co Ltd | Diaphragm for speaker |
JPS6123965B2 (ja) | 1980-09-30 | 1986-06-09 | Nippon Kuraisu Kk | |
US4798763A (en) * | 1986-07-11 | 1989-01-17 | General Motors Corporation | Method of molding a laminated foamable sheet |
JPH04232047A (ja) * | 1990-12-28 | 1992-08-20 | Nippon Steel Corp | 繊維強化熱可塑性樹脂成形品の外観改良方法 |
WO2014078496A2 (en) * | 2012-11-19 | 2014-05-22 | Dow Global Technologies Llc | Expanding foam core prepreg |
WO2015029634A1 (ja) | 2013-08-30 | 2015-03-05 | 東レ株式会社 | サンドイッチ構造体、それを用いた一体化成形品およびそれらの製造方法 |
JP2015101670A (ja) * | 2013-11-26 | 2015-06-04 | 東邦テナックス株式会社 | 発泡樹脂シート、該発泡樹脂シートを用いる繊維強化熱硬化性樹脂複合成形体及びその製造方法 |
JP2016078451A (ja) | 2014-10-17 | 2016-05-16 | 東レ株式会社 | 繊維強化複合材料の製造方法、樹脂基材およびプリフォーム |
WO2017110533A1 (ja) * | 2015-12-25 | 2017-06-29 | 東レ株式会社 | 構造体の製造方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4113487A (en) | 1975-10-31 | 1978-09-12 | Toppan Printing Co., Ltd. | Method for manufacture of expanded articles having an embossed surface |
JPS57165897A (en) | 1981-04-06 | 1982-10-13 | Omron Tateisi Electronics Co | Display unit |
JPS59226103A (ja) | 1983-06-03 | 1984-12-19 | Sumitomo Metal Ind Ltd | 硬質金属粉末の成形方法 |
JP3110207B2 (ja) | 1993-05-11 | 2000-11-20 | 新日本製鐵株式会社 | 繊維強化熱可塑性樹脂多孔質成形品のリサイクル成形方法 |
JP2615373B2 (ja) | 1994-06-29 | 1997-05-28 | 石油公団 | 長尺材の端部外面シール装置 |
JP5080905B2 (ja) | 2007-08-28 | 2012-11-21 | 大日本塗料株式会社 | 型内被覆成形体及び型内被覆成形体の製造方法 |
JP4862913B2 (ja) * | 2009-03-31 | 2012-01-25 | 東レ株式会社 | プリプレグおよびプリフォーム |
JP2013092551A (ja) | 2011-10-24 | 2013-05-16 | Aisin Seiki Co Ltd | 樹脂ガラス |
DE102012207365A1 (de) | 2012-05-03 | 2013-11-07 | Röchling Automotive AG & Co. KG | Mehrschichtiges Bauteil und Verfahren zur Herstellung desselben |
JP2013244470A (ja) | 2012-05-28 | 2013-12-09 | Shin-Etsu Chemical Co Ltd | 含フッ素ドライコーティング剤のコーティング方法 |
US20160087283A1 (en) | 2013-05-10 | 2016-03-24 | Mitsubishi Rayon Co., Ltd. | Porous electrode substrate, method for manufacturing same, and polymer electrolyte fuel cell |
JP6248466B2 (ja) * | 2013-08-22 | 2017-12-20 | 東レ株式会社 | 繊維強化樹脂シート、一体成形品およびそれらの製造方法 |
JP6221949B2 (ja) | 2014-06-06 | 2017-11-01 | 三菱ケミカル株式会社 | 多孔質中空糸膜膜の製造方法及び孔質中空糸膜膜 |
JP2016049649A (ja) | 2014-08-29 | 2016-04-11 | 東レ株式会社 | 一体化成形体及びその製造方法 |
JP6720689B2 (ja) | 2015-05-20 | 2020-07-08 | 王子ホールディングス株式会社 | 繊維強化プラスチック成形体及び繊維強化プラスチック成形体用基材 |
JP6822120B2 (ja) | 2015-12-25 | 2021-01-27 | 東レ株式会社 | 遮音構造体 |
WO2017110532A1 (ja) | 2015-12-25 | 2017-06-29 | 東レ株式会社 | 構造体 |
JP6123965B1 (ja) | 2015-12-25 | 2017-05-10 | 東レ株式会社 | 構造体 |
WO2017205600A1 (en) | 2016-05-26 | 2017-11-30 | Hanwha Azdel, Inc. | Prepregs, cores and composite articles including powder coated layers |
WO2018142971A1 (ja) | 2017-01-31 | 2018-08-09 | 東レ株式会社 | 一体化成形体及びその製造方法 |
US20210016549A1 (en) | 2018-03-30 | 2021-01-21 | Toray Industries, Inc. | Molded article and method for producing molded article |
JP2020163584A (ja) | 2019-03-28 | 2020-10-08 | 東レ株式会社 | サンドイッチ成形体の製造方法 |
US20240181745A1 (en) | 2021-03-30 | 2024-06-06 | Toray Industries, Inc. | Flat, lightweight member and manufacturing method therefor |
WO2023181645A1 (ja) | 2022-03-24 | 2023-09-28 | 東レ株式会社 | 繊維強化樹脂構造体および繊維強化樹脂構造体の製造方法 |
-
2019
- 2019-03-28 JP JP2019519014A patent/JP7543648B2/ja active Active
- 2019-03-28 KR KR1020207029745A patent/KR20200138278A/ko unknown
- 2019-03-28 US US16/980,634 patent/US11993687B2/en active Active
- 2019-03-28 CN CN201980022259.7A patent/CN111918768A/zh active Pending
- 2019-03-28 WO PCT/JP2019/013625 patent/WO2019189587A1/ja active Application Filing
- 2019-03-28 EP EP19775868.3A patent/EP3778210B1/en active Active
- 2019-03-29 TW TW108111146A patent/TWI799560B/zh active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52115875A (en) | 1976-03-26 | 1977-09-28 | Toppan Printing Co Ltd | Process of embossing patter on foamed material surface |
JPS6123965B2 (ja) | 1980-09-30 | 1986-06-09 | Nippon Kuraisu Kk | |
JPS57155897A (en) * | 1981-03-20 | 1982-09-27 | Matsushita Electric Ind Co Ltd | Diaphragm for speaker |
US4798763A (en) * | 1986-07-11 | 1989-01-17 | General Motors Corporation | Method of molding a laminated foamable sheet |
JPH04232047A (ja) * | 1990-12-28 | 1992-08-20 | Nippon Steel Corp | 繊維強化熱可塑性樹脂成形品の外観改良方法 |
WO2014078496A2 (en) * | 2012-11-19 | 2014-05-22 | Dow Global Technologies Llc | Expanding foam core prepreg |
WO2015029634A1 (ja) | 2013-08-30 | 2015-03-05 | 東レ株式会社 | サンドイッチ構造体、それを用いた一体化成形品およびそれらの製造方法 |
JP2015101670A (ja) * | 2013-11-26 | 2015-06-04 | 東邦テナックス株式会社 | 発泡樹脂シート、該発泡樹脂シートを用いる繊維強化熱硬化性樹脂複合成形体及びその製造方法 |
JP2016078451A (ja) | 2014-10-17 | 2016-05-16 | 東レ株式会社 | 繊維強化複合材料の製造方法、樹脂基材およびプリフォーム |
WO2017110533A1 (ja) * | 2015-12-25 | 2017-06-29 | 東レ株式会社 | 構造体の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023204132A1 (ja) * | 2022-04-20 | 2023-10-26 | 東レ株式会社 | 樹脂成形体およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201942214A (zh) | 2019-11-01 |
EP3778210A4 (en) | 2021-12-29 |
EP3778210A1 (en) | 2021-02-17 |
CN111918768A (zh) | 2020-11-10 |
KR20200138278A (ko) | 2020-12-09 |
JP7543648B2 (ja) | 2024-09-03 |
US11993687B2 (en) | 2024-05-28 |
US20210009783A1 (en) | 2021-01-14 |
JPWO2019189587A1 (ja) | 2021-02-12 |
TWI799560B (zh) | 2023-04-21 |
EP3778210B1 (en) | 2023-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102117241B1 (ko) | 구조체의 제조 방법 | |
KR102135049B1 (ko) | 구조체 | |
TW201731967A (zh) | 構造體 | |
WO2019189587A1 (ja) | 成形品の製造方法および成形品のプリフォーム | |
CN111936284B (zh) | 成型品的制造方法 | |
JP2014095034A (ja) | 成形品及び成形品の製造方法 | |
JP7143588B2 (ja) | 構造体及びその製造方法 | |
JP7294131B2 (ja) | 成形品の製造方法 | |
TWI820105B (zh) | 成形品及成形品之製造方法 | |
JP6123965B1 (ja) | 構造体 | |
JP2018104482A (ja) | 構造体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019519014 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19775868 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207029745 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019775868 Country of ref document: EP |