[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019189587A1 - 成形品の製造方法および成形品のプリフォーム - Google Patents

成形品の製造方法および成形品のプリフォーム Download PDF

Info

Publication number
WO2019189587A1
WO2019189587A1 PCT/JP2019/013625 JP2019013625W WO2019189587A1 WO 2019189587 A1 WO2019189587 A1 WO 2019189587A1 JP 2019013625 W JP2019013625 W JP 2019013625W WO 2019189587 A1 WO2019189587 A1 WO 2019189587A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
thin film
film layer
precursor
resin
Prior art date
Application number
PCT/JP2019/013625
Other languages
English (en)
French (fr)
Inventor
聖 藤岡
光太郎 篠原
本間 雅登
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201980022259.7A priority Critical patent/CN111918768A/zh
Priority to KR1020207029745A priority patent/KR20200138278A/ko
Priority to JP2019519014A priority patent/JP7543648B2/ja
Priority to EP19775868.3A priority patent/EP3778210B1/en
Priority to US16/980,634 priority patent/US11993687B2/en
Publication of WO2019189587A1 publication Critical patent/WO2019189587A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/04Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • B29C44/06Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • B29C70/0035Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties comprising two or more matrix materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/18Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length in the form of a mat, e.g. sheet moulding compound [SMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2463/02Polyglycidyl ethers of bis-phenols

Definitions

  • the present invention relates to a method for producing a molded product excellent in design or liquid-proof property and a preform for the molded product.
  • fiber reinforced composite materials in which reinforced fibers are combined with a matrix resin are widely used in industrial products such as automobiles, aircrafts, and sports products as structures with improved mechanical properties and light weight. Products using fiber reinforced composite materials are coated by painting or the like for the purpose of imparting design properties and liquid-proof properties.
  • a technique for forming a coating layer on a fiber reinforced composite material a matrix resin and a resin layer are thermally cured by heating a preform in which a resin layer composed of a thermosetting resin and a solid additive is laminated on a prepreg layer.
  • a technique has been proposed in which a functional resin is cured to form a cured resin layer having a predetermined thickness (see, for example, Patent Document 1).
  • JP 2016-78451 A Japanese Patent No. 6123965 International Publication No. 2015/029634 JP 52-115875 A
  • Patent Document 3 improves the rigidity of a core layer having voids.
  • a prepreg in which a reinforcing fiber is impregnated with a matrix resin is used as the skin layer, it takes time to prepare the prepreg layer, and the core layer and the skin layer are joined in the previous step of the porous body forming step. Therefore, it is necessary to laminate the core layer and the skin layer in a desired configuration when molding.
  • Patent Document 4 is a porous body using a foaming agent, the voids are discontinuous and do not have a problem of material penetration.
  • the present invention has been made in view of the above, and is a method for producing a molded product that is excellent in rigidity and light weight, improves designability or liquidproofness, and can mold a molded product in a simple process. And it aims at providing the preform of a molded article.
  • the method for producing a molded product according to the present invention is a method for producing a molded product in which the thin film layer (B) is formed on the surface of the porous body (A), and the following steps (I) to (II) are carried out. It carries out in order.
  • the present invention is a preform of a molded product in which a thin film layer (B) is formed on the surface of a porous body (A) having reinforcing fibers (A1), a resin (A2), and voids (A3).
  • the adhesion of the thin film layer (B) to the body (a) is classified as 0 to 3.
  • the thin film layer (B) is formed into a porous body because the thin film layer is formed in the state of the precursor (a) of the porous body (A).
  • a molded article excellent in design and liquid-proof property can be obtained while maintaining lightness without penetrating into the continuous porosity of (A). Furthermore, since there is no need to consider soaking, there are many choices of materials for forming the thin film layer (B), and the degree of freedom in design is high.
  • process (II) which is a shaping
  • the precursor (a) and thin film layer (B) of a porous body (A) are laminated
  • a molded product can be manufactured easily.
  • FIG. 1 is a schematic view showing an example of a dispersion state of reinforcing fibers in a reinforcing fiber mat according to the present invention.
  • FIG. 2 is a schematic view showing an example of a reinforcing fiber mat manufacturing apparatus according to the present invention.
  • FIG. 3 is a diagram for explaining the production of a molded product according to the present invention.
  • FIG. 4 is a diagram for explaining the production of a molded product according to the present invention.
  • the method for producing a molded product according to the present invention is a method for producing a molded product in which the thin film layer (B) is formed on the surface of the porous body (A), and the following steps (I) to (II) are carried out. It carries out in order.
  • the porous body (A) In the molded article of the present invention, the porous body (A) has reinforcing fibers (A1), a resin (A2), and voids (A3).
  • the reinforcing fibers (A1) include metal fibers such as aluminum, brass, and stainless steel, PAN-based, rayon-based, lignin-based, pitch-based carbon fibers, graphite fibers, and glass.
  • metal fibers such as aluminum, brass, and stainless steel
  • PAN-based, rayon-based, lignin-based, pitch-based carbon fibers, graphite fibers, and glass examples thereof include insulating fibers, aramid, PBO, polyphenylene sulfide, organic fibers such as polyester, acrylic, nylon, and polyethylene, and inorganic fibers such as silicon carbide and silicon nitride.
  • the surface treatment may be given to these fibers.
  • Examples of the surface treatment include a treatment with a coupling agent, a treatment with a sizing agent, a treatment with a bundling agent, and an adhesion treatment of an additive in addition to a treatment for depositing a metal as a conductor.
  • these fibers may be used individually by 1 type, and may use 2 or more types together.
  • PAN-based, pitch-based, and rayon-based carbon fibers that are excellent in specific strength and specific rigidity are preferably used from the viewpoint of weight reduction effect.
  • glass fiber is preferably used, and it is particularly preferable to use carbon fiber and glass fiber in combination from the balance between mechanical properties and economic efficiency.
  • aramid fibers are preferably used from the viewpoint of enhancing the impact absorbability and formability of the resulting porous body (A), and in particular, carbon fibers and aramid fibers are used in combination from the balance of mechanical properties and impact absorbability. It is preferable to do.
  • a metal fiber made of a conductive metal or a reinforced fiber coated with a metal such as nickel, copper, or ytterbium can also be used.
  • reinforcing fibers selected from the group consisting of metal fibers excellent in mechanical properties such as strength and elastic modulus, pitch-based carbon fibers, and PAN-based carbon fibers can be more preferably used.
  • the reinforcing fiber (A1) is discontinuous and is preferably dispersed randomly in the porous body (A). More preferably, the dispersed state is substantially monofilament.
  • substantially monofilament means that the reinforcing fiber single yarn is present in less than 500 fineness strands. More preferably, it is dispersed as a monofilament, that is, as a single yarn.
  • the two-dimensional orientation angle of the reinforcing fiber (A1) arbitrarily selected in the porous body (A) is 1 ° or more.
  • the ratio of single fibers hereinafter also referred to as fiber dispersion ratio
  • fiber dispersion ratio is 80% or more.
  • the mass fraction of the fiber bundle having at least 100 filaments in the reinforcing fiber (A1) corresponds to 100%.
  • the reinforcing fibers (A1) are dispersed randomly.
  • that the reinforcing fibers (A1) are randomly dispersed means that the arithmetic average value of the two-dimensional orientation angle of the reinforcing fibers (A1) arbitrarily selected in the porous body (A) is 30 ° or more, 60 It means that it is within the following range.
  • the two-dimensional orientation angle is an angle formed by the single fiber of the reinforcing fiber (A1) and the single fiber intersecting with the single fiber, and 0 ° among the angles formed by the intersecting single fibers. As described above, the angle is defined as an acute angle within a range of 90 ° or less. This two-dimensional orientation angle will be further described with reference to the drawings.
  • the single fiber 1a when used as a reference, the single fiber 1a intersects with the other single fibers 1b to 1f.
  • the term “intersection” means a state in which a single fiber as a reference is observed crossing another single fiber in a two-dimensional plane to be observed, and the single fiber 1a and the single fibers 1b to 1f are not necessarily in contact with each other. There is no need to do so, and there is no exception to the state observed when they are projected. That is, when viewed with respect to the reference single fiber 1a, all of the single fibers 1b to 1f are the objects of evaluation of the two-dimensional orientation angle, and in FIG. Of the two angles to be formed, the angle is an acute angle within a range of 0 ° to 90 °.
  • the method for measuring the two-dimensional orientation angle is not particularly limited, and examples thereof include a method of observing the orientation of the reinforcing fiber (A1) from the surface of the component.
  • the average value of the two-dimensional orientation angle is measured by the following procedure. That is, the average value of the two-dimensional orientation angles with all the single fibers (single fibers 1b to 1f in FIG. 1) intersecting the randomly selected single fibers (single fibers 1a in FIG. 1) is measured. . For example, when there are many other single fibers that cross a certain single fiber, an arithmetic average value obtained by randomly selecting and measuring 20 other single fibers that intersect may be substituted. This measurement is repeated a total of 5 times with another single fiber as a reference, and the arithmetic average value is calculated as the arithmetic average value of the two-dimensional orientation angle.
  • the fiber dispersion rate of the reinforcing fiber (A1) is preferably 90% or more, and more preferably as it approaches 100%.
  • the arithmetic average value of the two-dimensional orientation angle of the reinforcing fiber (A1) is preferably in the range of 40 ° or more and 50 ° or less, and it is more preferable as it approaches 45 ° which is an ideal angle.
  • any of the above upper limits may be set as the upper limit, and any of the above lower limits may be set as the lower limit.
  • examples in which the reinforcing fibers (A1) do not take a discontinuous form include a sheet base material, a woven base material, and a non-crimp base material in which the reinforcing fibers (A1) are arranged in one direction.
  • the reinforcing fibers (A1) are regularly and densely arranged, voids (A3) in the porous body (A) are reduced, and impregnation with the resin (A2) becomes extremely difficult. In some cases, an unimpregnated portion is formed, or the choice of impregnation means and resin type is greatly limited.
  • the form of the reinforcing fiber (A1) may be either a continuous reinforcing fiber having the same length as the porous body (A) or a discontinuous reinforcing fiber having a finite length cut to a predetermined length.
  • discontinuous reinforcing fibers are preferable from the viewpoint of easily impregnating the resin (A2) and easily adjusting the amount thereof.
  • the mass average fiber length of the reinforcing fiber (A1) is in the range of 1 mm to 15 mm. Thereby, the reinforcement efficiency of a reinforced fiber (A1) can be improved and the dynamic characteristic excellent in the porous body (A) is given.
  • the mass average fiber length of the reinforcing fibers (A1) is 1 mm or more, the voids (A3) in the porous body (A) can be efficiently formed, so that the density can be lowered, in other words, the same It is preferable because a porous body (A) that is lightweight while being thick can be obtained.
  • the mass average fiber length of the reinforcing fiber (A1) is 15 mm or less, the reinforcing fiber (A1) in the porous body (A) becomes difficult to bend due to its own weight and does not hinder the expression of mechanical properties.
  • the resin (A2) component of the porous body (A) is removed by a method such as burning or elution, and 400 pieces are randomly selected from the remaining reinforcing fibers (A1), and the length is 10 ⁇ m. Units can be measured and calculated as their mass average fiber length.
  • the reinforcing fiber (A1) is preferably in the form of a nonwoven fabric from the viewpoint of easy impregnation of the reinforcing fiber (A1) with the resin (A2). Furthermore, since the reinforcing fiber (A1) has a non-woven form, in addition to the ease of handling of the non-woven fabric itself, it is easy to impregnate even in the case of a thermoplastic resin generally having a high viscosity. This is preferable because it can be achieved.
  • the form of the nonwoven fabric refers to a form in which the strands and / or monofilaments of the reinforcing fibers (A1) are dispersed in a plane without regularity, and a chopped strand mat, a continuous strand mat, a papermaking mat, a carding mat, An airlaid mat or the like can be exemplified (hereinafter these are collectively referred to as a reinforcing fiber mat).
  • examples of the resin (A2) include a thermoplastic resin and a thermosetting resin.
  • a thermosetting resin and a thermoplastic resin may be blended.
  • the resin (A2) is a matrix resin constituting the porous body (A) and the precursor (a) of the porous body (A).
  • the resin (A2) preferably contains at least one kind of thermoplastic resin.
  • Thermoplastic resins include “polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyesters such as liquid crystal polyester, polyethylene (PE), polypropylene (PP) , Polyolefins such as polybutylene, polyarylene sulfides such as polyoxymethylene (POM), polyamide (PA), polyphenylene sulfide (PPS), polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), poly Crystalline resins such as fluorinated resins such as ether ketone ketone (PEKK), polyether nitrile (PEN), polytetrafluoroethylene, and liquid crystal polymer (LCP); , Polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride
  • polyolefin is preferable from the viewpoint of lightness of the resulting porous body (A)
  • polyamide is preferable from the viewpoint of strength
  • amorphous resin such as polycarbonate and styrene resin is preferable from the viewpoint of surface appearance
  • Polyarylene sulfide is preferable from the viewpoint of heat resistance
  • polyether ether ketone is preferable from the viewpoint of continuous use temperature
  • fluorine resin is preferably used from the viewpoint of chemical resistance.
  • the resin (A2) preferably contains at least one thermosetting resin.
  • Thermosetting resins include unsaturated polyesters, vinyl esters, epoxy resins, phenol resins, urea resins, melamine resins, thermosetting polyimides, copolymers thereof, modified products, and resins obtained by blending at least two of these. Can be illustrated.
  • the porous body (A) according to the present invention is one of the components of the resin (A2) as long as the object of the present invention is not impaired, and an impact resistance improver such as an elastomer or a rubber component, and other fillers.
  • an impact resistance improver such as an elastomer or a rubber component
  • other fillers may contain additives.
  • fillers and additives include inorganic fillers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, and coloring inhibitors. , Heat stabilizers, mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, or coupling agents.
  • the porous body (A) of the present invention has voids (A3).
  • gap (A3) in this invention points out the space formed when the reinforcing fiber (A1) coat
  • the porous body (A) is obtained by heating the precursor (a) of the porous body (A) in which the reinforcing fiber (A1) is pre-impregnated with the resin (A2),
  • the void (A3) is formed by raising the reinforcing fiber (A1) by melting or softening.
  • the air gap (A3) is at least continuous in the thickness direction.
  • the porous body (A) of the present invention has a volume content (%) of the reinforcing fibers (A1) of 0.5 to 55% by volume, and a volume content (%) of the resin (A2) of 2.5 to
  • the volume content (%) of the void (A3) is preferably 85% by volume and 10 to 97% by volume.
  • the reinforcing effect derived from the reinforcing fiber (A2) can be made sufficient, which is preferable.
  • the volume content of the reinforcing fiber (A1) is 55% by volume or less, the volume content of the resin (A2) with respect to the reinforcing fiber (A1) is relatively increased, and the porous body (A) Since the reinforcing fibers (A1) are bound to each other and the reinforcing effect of the reinforcing fibers (A1) can be made sufficient, it is preferable because the mechanical properties of the porous body (A), in particular, the bending properties can be satisfied.
  • the reinforcing fibers (A1) in the porous body (A) are bound to each other, and the reinforcing fibers (A1 ) Is sufficient, and the mechanical properties of the porous body (A), particularly the bending elastic modulus, can be satisfied.
  • the volume content of the resin (A2) is 85% by volume or less, it is preferable because the formation of the voids (A3) is not inhibited.
  • the reinforcing fiber (A1) is covered with the resin (A2), and the thickness (covering thickness) of the covering resin (A2) is in the range of 1 ⁇ m or more and 15 ⁇ m or less. Is preferred.
  • the covering state of the reinforcing fibers (A1) coated with the resin (A2) is porous if at least the points where the single fibers of the reinforcing fibers (A1) constituting the porous body (A) intersect are covered.
  • the resin (A2) is around the reinforcing fiber (A1).
  • the film is covered with a thickness.
  • This state means that the surface of the reinforcing fiber (A1) is not exposed by the resin (A2), in other words, the reinforcing fiber (A1) forms an electric wire film with the resin (A2). Accordingly, the porous body (A) further has shape stability and sufficient mechanical properties.
  • the covering state of the reinforcing fiber (A1) coated with the resin (A2) is not necessarily covered with all of the reinforcing fibers (A1), and the shape stability of the porous body (A) according to the present invention is stable. As long as the properties, bending elastic modulus and bending strength are not impaired.
  • the volume content of the voids (A3) is preferably in the range of 10% by volume to 97% by volume. It is preferable that the content of the voids (A3) is 10% by volume or more because the density of the porous body (A) is low and the lightness can be satisfied. On the other hand, when the content of the voids (A3) is 97% by volume or less, in other words, the thickness of the resin (A2) coated around the reinforcing fibers (A1) is sufficient, It is preferable because the reinforcing fibers (A1) in the body (A) can be sufficiently reinforced and the mechanical properties are enhanced.
  • the upper limit value of the volume content of the gap (A3) is preferably 97% by volume. In the present invention, the volume content is 100% by volume of the total volume content of the reinforcing fiber (A1), the resin (A2), and the gap (A3) constituting the porous body (A).
  • the density ⁇ of the porous body (A) is preferably 0.9 g / cm 3 or less.
  • the density ⁇ of the porous body (A) is 0.9 g / cm 3 or less, this means that the mass when the porous body (A) is reduced, and as a result, the weight of the product is reduced.
  • This is preferable because it contributes to More preferably, it is 0.7 g / cm ⁇ 3 > or less, More preferably, it is 0.5 g / cm ⁇ 3 > or less.
  • the lower limit of the density in general, in the porous body (A) having the reinforcing fiber (A1) and the resin (A2), the reinforcing fiber (A1) and the resin (A2) which are constituent components thereof.
  • the value calculated from the volume ratio of each of the voids (A3) can be the lower limit.
  • the density of the porous body (A) itself varies depending on the reinforcing fibers (A1) and the resin (A2) used, but the viewpoint of maintaining the mechanical properties of the porous body (A). Therefore, it is preferably 0.03 g / cm 3 or more.
  • the precursor (a) of the porous body (A) of the present invention is one in which voids increase and expand with heating, and what is obtained by expansion of such voids is the porous body (A). Specifically, the thing before expansion after formation of a thin film layer (B) is represented. As long as it has undergone steps (I) and (II) according to the present invention, the precursor according to the present invention ( It can be regarded as a porous body (A) instead of a). At this time, the presence or absence of voids at the stage of the precursor (a) is not questioned, but from the viewpoint of forming a smooth thin film layer (B) in the step (I) and the surface quality of the obtained molded product. It is preferable that the volume content (A) of the voids contained in (a) is less than 10% by volume. More preferably, it is less than 5 volume%, More preferably, it is less than 3 volume%. *
  • the precursor (a) preferably contains a reinforcing fiber and a foaming agent that are compressed by pressurization in order to develop expansibility. It is more preferable that the precursor (a) includes reinforcing fibers that are compressed by pressurization from the viewpoint of increasing the degree of freedom of molding conditions.
  • the reinforcing fiber is preferably the type and form described above, more preferably discontinuous and randomly dispersed, and more preferably monofilamentous and randomly dispersed.
  • the foaming agent there are a physical foaming agent that foams by a pressure change of a compressed gas or a physical change such as gas, and a chemical foaming agent that generates a gas by thermal decomposition or chemical reaction.
  • a chemical foaming agent that generates nitrogen gas or carbon dioxide gas by thermal decomposition is called a pyrolytic chemical foaming agent.
  • a pyrolytic chemical foaming agent is a compound that is liquid or solid at room temperature, and is a compound that decomposes or vaporizes when heated. Further, the pyrolytic chemical foaming agent is preferably one that does not substantially interfere with the process of producing the structure precursor used in the method for producing a structure according to the present invention.
  • the temperature is preferably in the range of 180 to 250 ° C.
  • the void (A3) is a reinforcing fiber that has been compressed by pressurization by reducing the viscosity of the resin (A2) of the precursor (a) of the porous body (A). It is preferable that (A1) be raised and formed by a restoring force to return to the original state (the shape before compression). At this time, it is preferable that the reinforcing fibers (A1) are bonded to each other through the resin (A2), thereby exhibiting stronger compression characteristics and shape retention of the porous body (a).
  • the specific bending elastic modulus of the porous body (A) expressed as Ep 1/3 ⁇ ⁇ ⁇ 1 where Ep is the bending elastic modulus of the porous body (A) and ⁇ is the specific gravity of the porous body (A). Is preferably 3 or more.
  • the specific flexural modulus of the porous body (A) is less than 3, it is not desirable because even if the flexural modulus is high, the specific gravity is also high and the desired weight reduction effect as a molded product cannot be obtained.
  • the specific bending elastic modulus of steel or aluminum is 1.5 or less, which is a region of specific bending elastic modulus which is extremely superior to these metal materials.
  • the specific bending elastic modulus of the porous body (A) is larger than 20, the lightening effect is sufficient, but the bending elastic modulus is low, and the shape desired as a molded product is maintained. Is not desirable, and the bending elastic modulus of the porous body itself is inferior.
  • the bending elastic modulus Ep of the porous body (A) is preferably 3 GPa or more, more preferably 6 GPa or more.
  • the range is limited as a molded product, which is not desirable.
  • the porous body (A) of the present invention preferably has an elastic recovery force of 1 MPa or more at 50% compression.
  • the elastic recovery force is the compressive strength when the porous body (A) measured by JIS K7220 (2006) is compressed 50% in the thickness direction. Since the elastic recovery force at the time of 50% compression in the thickness direction is 1 MPa or more, the molded product has excellent shape retention, and thus, for example, excellent handleability when attached to another member as a product. Furthermore, in practical use, if the thickness direction of the molded product is used as the direction in which the load is applied, it can withstand minor loads, and further deforms when a certain load is applied. When used as, it is preferable from the viewpoint of protection for workers during installation. If the elastic recovery force at 50% compression is 1 MPa or more, there is no practical problem, but it is preferably 3 MPa or more, more preferably 5 MPa or more.
  • the difference in expansion coefficient in the thickness direction of the porous body (A) is preferably 300% or less.
  • the difference in expansion coefficient in the thickness direction of the porous body (A) is 300% or less, the thin film layer (B) formed on the surface of the porous body (A) can be prevented from cracking and wrinkling.
  • the expansion coefficient S of the porous body (A) is determined.
  • the thin film layer (B) has at least one function of a primer layer, a coating film layer, and a liquid-proof layer.
  • the primer layer means a layer having a function of improving adhesiveness with a paint formed thereafter.
  • a coating-film layer is a design layer which is the outer surface of the molded article as a final product.
  • the liquid-proof layer is a layer having a function capable of preventing the permeation of liquid, and when the thin film layer is an outer surface of a molded product as a final product, the liquid can be prevented from entering the porous body (A), In the case of the inner surface, the role of storing can be imparted without allowing the liquid that has entered the porous body (A) to permeate.
  • the thin film layer (B) preferably has an additive (B1) and a thermosetting resin (B2), or an additive (B1) and a thermoplastic resin (B3).
  • the additive (B1) is added for the purpose of imparting design properties such as coloring, pearly feeling and metallic feeling to the molded product.
  • Additives (B1) include pigments and glass beads. Specific examples include organic pigments such as azo pigments and phthalocyanine blue, metal pigments made of metal powders such as aluminum and brass, and inorganic pigments such as chromium oxide and cobalt blue. Of these, metal pigments and inorganic pigments are preferred from the viewpoint of heat resistance.
  • the reinforcing fiber is a dark color such as carbon fiber or aramid fiber
  • a pigment having two or more layers of structures having different refractive indexes is preferably used. For example, natural mica coated with titanium oxide or iron oxide, artificial mica, alumina flake, silica flake, and glass flake.
  • color can be developed by optical phenomena such as interference, diffraction, and scattering of light in the visible light region.
  • optical phenomenon such as light interference, diffraction, or scattering
  • a color can be generated by reflection of light of a specific wavelength, and therefore, it is preferably used when a dark reinforcing fiber is used.
  • the hollow additive (B1) it is preferable to use the hollow additive (B1).
  • hollow glass beads and porous resin particles are preferable in terms of weight reduction.
  • the additive (B1) may be in the form of a sphere, a fiber, or a flake.
  • the maximum dimension of the additive (B1) is preferably 200 ⁇ m or less.
  • the maximum dimension of the additive (B1) means the maximum diameter of the primary particles of the additive (B1) or the maximum diameter of the secondary particles when the additive (B1) is aggregated.
  • the maximum dimension of the additive (B1) is 200 ⁇ m or less, the surface of the thin film layer (B) becomes smooth and the design is improved.
  • the maximum size of the additive (B1) is determined by observing the additive (B1) using an electron microscope, and randomly selecting 100 arbitrary images from images enlarged so that the size can be measured to at least 1 ⁇ m. The additive (B1) was selected, and the value obtained by measuring the length when the two points on the outer contour line of each additive (B1) were selected so as to maximize the distance was the maximum length. Average value.
  • the maximum dimension of the additive (B1) is more preferably 150 ⁇ m, and further preferably 100 ⁇ m.
  • the lower limit of the maximum dimension of the additive (B1) is preferably 1 ⁇ m, more preferably 5 ⁇ m, and more preferably 10 ⁇ m.
  • the thermosetting resin (B2) includes a thermosetting resin (B2) and a curing agent (B2 '). Although it does not specifically limit as a thermosetting resin (B2), Arbitrary thermosetting resins (B2), such as an epoxy resin, unsaturated polyester, and a phenol resin, can be used. A thermosetting resin (B2) may be used independently and may be mix
  • the curing agent (B2 ′) for example, a compound that performs a stoichiometric reaction, such as aliphatic polyamine, aromatic polyamine, dicyandiamide, polycarboxylic acid, polycarboxylic acid hydrazide, acid anhydride, polymercaptan, polyphenol, There are compounds that act catalytically, such as imidazole, Lewis acid complexes, and onium salts. When a compound that undergoes a stoichiometric reaction is used, a curing accelerator such as imidazole, Lewis acid complex, onium salt, urea derivative, phosphine, and the like may be further added.
  • a curing accelerator such as imidazole, Lewis acid complex, onium salt, urea derivative, phosphine, and the like may be further added.
  • the molecule has a group containing a nitrogen atom such as an amino group, an amide group, an imidazole group, a urea group, or a hydrazide group.
  • Organic nitrogen compounds can be preferably used.
  • the curing agent may be used alone or in combination.
  • the thermoplastic resin (B3) is not particularly limited, but any thermoplastic resin (acrylic resin, urethane resin, polyamide resin, polyimide resin, vinyl chloride resin, etc.) B3) can be used.
  • a thermoplastic resin (B3) may be used independently and may be mix
  • a thermosetting resin (B2) and a thermoplastic resin (B3) can be selected similarly to resin (A2) which comprises a porous body (A).
  • the difference in refractive index between the pigment and the cured product of the thermosetting resin (B2) is 0.1.
  • the following is preferable. As the difference in refractive index is smaller, the transparency of the thin film layer (B) increases, so that the coloring effect of the pigment is strongly expressed.
  • the state of the material forming the thin film layer (B) can be classified into a solution system, a dispersion system, and a powder system.
  • a main element forming the thin film layer (B) is dissolved in a solvent, and there are types such as an organic solvent and water.
  • the main elements forming the thin film layer (B) are dispersed in a solvent and are in an emulsified state, and are also referred to as an emulsion type.
  • the powder system is in the form of a powder composed of a solid content without using a solvent.
  • the solvent is preferably water, and from the viewpoint of the formation time of the thin film layer (B), the solvent Is preferably an organic solvent.
  • the thickness of the thin film layer (B) is preferably 10 ⁇ m or more and 500 ⁇ m or less.
  • the thickness is less than 10 ⁇ m, it may be difficult to maintain the shape of the thin film layer (B) when the porous body (A) is formed in the step (II).
  • the thickness is thicker than 500 ⁇ m, it is possible to form a smooth surface or a surface excellent in design, but the mass of the molded product increases, and it is difficult to express the lightweight property of the molded product.
  • the thickness of the thin film layer (B) is 400 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the thickness of the thin film layer (B) is the individual thickness of each thin film layer (B).
  • the thickness of the thin film layer (B) located in at least one outer layer of the porous body (A) is preferably in the above range, and the thicknesses of the thin film layers (B) of both outer layers are each described above. A range is more preferable.
  • the surface roughness Ra2 of the thin film layer (B) is preferably 100 ⁇ m or less.
  • the surface roughness Ra2 is 100 ⁇ m or less, the surface becomes smooth, and a molded product having better design properties can be obtained.
  • the thin film layer (B) is a binder layer, the surface roughness Ra2 is preferably 30 ⁇ m or more in consideration of not only chemical bonding but also mechanical bonding (anchoring).
  • it is preferable that surface roughness Ra2 is 50 micrometers or less from a viewpoint of design property.
  • the density ⁇ is preferably 1.0 g / cm 3 or less.
  • the density ⁇ of the molded product is 1.0 g / cm 3 or less, it is preferable because the mass of the molded product is reduced, that is, it contributes to the weight reduction of the product. More preferably, it is 0.8 g / cm ⁇ 3 > or less, More preferably, it is 0.6 g / cm ⁇ 3 > or less.
  • the lower limit of the density is not limited, but generally a porous body (A) having reinforcing fibers (A1) and a resin (A2), an additive (B1) and a thermosetting resin (B2) or heat In a molded product having a thin film layer (B) made of a plastic resin (B3), the reinforcing fiber (A1), resin (A2) void (A3), additive (B1), and thermosetting resin, which are constituent components thereof
  • the value calculated from the volume ratios of (A2) and the thermoplastic resin (A3) can be the lower limit.
  • the density of the molded product varies depending on the reinforcing fiber (A1), the resin (A2), and the like to be used, but from the viewpoint of maintaining the mechanical properties of the molded product, 0.05 g / cm 3. The above is preferable.
  • Examples of the method for producing the precursor (a) include a method in which a resin in a melted or softened state is pressed or reduced in pressure to reduce or melt the reinforcing fiber mat.
  • a method in which a laminate in which a resin is disposed on both sides and / or the center of the reinforcing fiber mat in the thickness direction is heated and pressurized to melt and impregnate the resin can be preferably exemplified from the viewpoint of ease of production.
  • a step of pre-expanding the precursor (a) or a step of pre-forming the shape according to the purpose of the molded product may be performed.
  • the preform of the molded product according to the present invention is a molded product in which a thin film layer (B) is formed on the surface of a porous body (A) having reinforcing fibers (A1), a resin (A2), and voids (A3).
  • the adhesion of the thin film layer (B) to the precursor (a) is classified as 0 to 3.
  • the preform of the molded product according to the present invention is a precursor (a) of the porous body (A).
  • the thin film layer (B) are attached so as to have a predetermined adhesion, so that it is not necessary to laminate the precursor (a) and the thin film layer (B) in the molding step, and the handling property is excellent. Therefore, a molded product can be easily manufactured.
  • a thin film layer (B) is formed on the surface of the precursor (a) of the porous body (A) to obtain a preform (step (I)).
  • Examples of the method for producing the precursor (a) include a method of pressurizing or depressurizing a resin (A2) in a molten or softened state or a fluid state in a reinforcing fiber mat made of reinforcing fibers (A1).
  • a method in which a laminate in which the resin (A2) is disposed on both sides and / or the center in the thickness direction of the reinforcing fiber mat is heated and pressurized to melt and impregnate the resin (A2) is a viewpoint of ease of manufacture. Can be preferably exemplified.
  • the reinforcing fiber mat constituting the porous body (A) for example, there is a method of manufacturing the reinforcing fiber mat by dispersing the reinforcing fibers (A1) in advance in the form of strands and / or substantially monofilaments.
  • the reinforcing fiber mat As a manufacturing method of the reinforcing fiber mat, there are an airlaid method in which the reinforcing fiber (A1) is formed into a dispersion sheet by air flow, a carding method in which the reinforcing fiber (A1) is shaped into a sheet while mechanically combing the reinforcing fiber (A1)
  • a dry process and a wet process by a radrite method in which the reinforcing fibers (A1) are stirred in water to make paper can be cited.
  • a method of providing a fiber opening bar, a method of further vibrating the fiber opening bar, a method of making the card eyes fine, and a card rotation A method for adjusting the speed can be exemplified.
  • a method of adjusting the stirring condition of the reinforcing fiber (A1), a method of diluting the reinforcing fiber concentration of the dispersion, a method of adjusting the viscosity of the dispersion, and suppressing eddy currents when the dispersion is transferred A method etc. can be illustrated.
  • the reinforcing fiber mat is preferably manufactured by a wet process, and the reinforcing fiber mat (A1) is increased by increasing the concentration of input fibers or adjusting the flow rate (flow rate) of the dispersion and the speed of the mesh conveyor. ) Ratio can be easily adjusted. For example, by slowing the speed of the mesh conveyor with respect to the flow rate of the dispersion liquid, the orientation of the fibers in the obtained reinforcing fiber mat becomes difficult to take in the take-up direction, and a bulky reinforcing fiber mat can be manufactured.
  • the reinforcing fiber mat may be composed of reinforcing fibers alone, and the reinforcing fibers (A1) are mixed with a matrix resin component in a powder form or a fiber shape, or the reinforcing fibers (A1) are mixed with an organic compound or an inorganic compound.
  • the reinforcing fibers (A1) may be meshed with resin components.
  • a compression molding machine or a double belt press can be suitably used.
  • the productivity can be improved by using an intermittent press system in which two or more machines for heating and cooling are arranged in parallel.
  • a continuous type it is the latter, and since continuous processing can be performed easily, it is excellent in continuous productivity.
  • a thin film layer (B) is formed on the surface of the precursor (a) formed as described above.
  • the method for forming the thin film layer (B) is not particularly limited as long as the thin film layer (B) according to the purpose can be formed. Examples thereof include dry coating such as plating, wet coating using a solution, and a method of modifying the surface of the precursor (a) to form a thin film layer (B).
  • the thin film layer (B) is preferably formed by wet coating.
  • the coating method include brush coating, roller coating, spray coating, airless spray, roll coater, baking coating, dip coating, electrodeposition coating, electrostatic coating, powder coating, and UV curable coating. For the treatment at high temperature, baking coating is preferably used.
  • the thin film layer (B) is formed on the precursor (a), and then the precursor (a) is expanded to be molded into the porous body (A). Even when a resin in a state or a resin having fluidity, particularly a resin having a low viscosity such as that used in wet coating, is used, it prevents excessive penetration of the thin film layer (B) into the porous body (A). Therefore, a molded product having a thickness of the thin film layer (B) of 500 ⁇ m or less can be easily obtained. From this, it can be said that it is a manufacturing method with a high degree of freedom in selecting various coating methods and thin film layers as described above with respect to the appearance and design properties required for molded products.
  • the thin film layer (B) formed on the surface of the precursor (a) by the step (I) has an adherence to the precursor (a) according to JIS K5600-5-6 (1999) of classification 0-3. Is preferred. Since the thin film layer (B) has a predetermined adhesion to the surface of the precursor (a), the thin film layer (B) is peeled off even when the step (II) is performed at a place different from the step (I). Therefore, it is possible to obtain a molded product having excellent design properties.
  • the surface roughness Ra1 of the thin film layer (B) formed on the surface of the precursor (a) by the step (I) is preferably 50 ⁇ m or less.
  • the surface roughness Ra2 of the thin film layer (B) after the step (II) which is a molding step is set to a desired range. It becomes possible to do.
  • the precursor (a) is expanded and molded into the porous body (A) (step (II)), although not particularly limited, the precursor (a) of the porous body (A) is constituted. It is preferable to form the porous body (A) by reducing the viscosity of the resin (A2). As a method for reducing the viscosity of the resin (A2), it is preferable to heat the precursor (a) of the porous body (A).
  • the heating method is not particularly limited, and examples thereof include a method of heating in contact with a mold or a hot plate set to a desired temperature, and a method of heating in a non-contact state using a heater or the like.
  • thermoplastic resin When a thermoplastic resin is used as the resin (A2) constituting the porous body (A), it may be heated to a melting point or a softening point or higher, and when a thermosetting resin is used, the temperature is lower than the temperature at which the curing reaction starts. Heat at temperature.
  • the method for controlling the thickness of the porous body (A) and the molded product is not limited as long as the heated precursor (a) can be controlled to the target thickness, but the method of constraining the thickness using a metal plate or the like.
  • a method of controlling the thickness by the pressure applied to the precursor (a) is exemplified as a preferable method from the viewpoint of ease of production.
  • a compression molding machine or a double belt press can be suitably used.
  • the productivity can be improved by using an intermittent press system in which two or more machines for heating and cooling are arranged in parallel.
  • a continuous type it is the latter, and since continuous processing can be performed easily, it is excellent in continuous productivity.
  • the method for producing a molded article of the present invention preferably includes the step (III) of deforming the shape of the porous body (A) simultaneously with the step (II) or after the completion of the step (II).
  • Step (III) can be performed by applying pressure in a heated state and shaping the shape.
  • the molded article of the present invention produced as described above includes, for example, “a personal computer, a display, an OA device, a mobile phone, a portable information terminal, a PDA (a portable information terminal such as an electronic notebook), a video camera, an optical device, an audio, Cases such as air conditioners, lighting equipment, entertainment equipment, toy goods, and other home appliances, trays, chassis, interior members, diaphragms, speaker cones, or cases thereof, etc., electrical and electronic equipment parts, such as “speaker cones” Acoustic members, "Various members, Various frames, Various hinges, Various arms, Various axles, Various wheel bearings, Various beams", “Hood, Roof, Door, Fender, Trunk lid, Side panel, Rear end panel, Front body, Under Body, various pillars, various members, various frames, various beams, various supports, various rails, various Outer parts such as “hinge” or body parts, “bumper, bumper beam, molding, under cover, engine cover, current plate
  • volume content Vf of reinforcing fibers in the porous body (A) in the molded product Only the portion of the porous body (A) was cut out from the molded product as a test piece, and after measuring the mass Ws, the test piece was heated in air at 500 ° C. for 30 minutes to burn off the resin (A2) component, and the remaining reinforcement
  • the mass Wf of the fiber (A1) was measured and calculated by the following formula. At this time, for the density of the reinforcing fiber (A1) and the resin (A2), the result of measurement according to the submerged weighing method of JIS Z8807 (2012) is used.
  • Vf (volume%) (Wf / ⁇ f) / ⁇ Wf / ⁇ f + (Ws ⁇ Wf) / ⁇ r ⁇ ⁇ 100 ⁇ f: density of reinforcing fiber (A1) (g / cm 3 ) ⁇ r: density of resin (A2) (g / cm 3 )
  • Density of molded product ⁇ m A part including the porous body (A) and the thin film layer (B) is cut out from the molded product as a test piece, and (2) the apparent density of the molded product is measured in the same manner as the density ⁇ of the porous body (A) in the molded product. The density ⁇ m was calculated.
  • Thickness of thin film layer (B) A test piece was cut out 10 mm long and 10 mm wide from the molded article, and (5) the thin film layer (B) was adhered to the precursor (a) of the porous body (A) using a laser microscope in the same manner as the adhesion of the thin film layer (B). The thickness of B) was measured. The position on the porous body (A) side from the surface of the thin film layer (B) was measured at 10 positions at equal intervals from the end in the direction perpendicular to the thickness direction of the sample piece. The thickness of the thin film layer (B) was obtained by arithmetic average from the thickness of the thin film layer (B) at a total of 50 locations obtained by photographing 10 locations each with 5 test pieces.
  • the papermaking tank includes a mesh conveyor having a papermaking surface having a width of 500 mm at the bottom, and a conveyor capable of transporting a carbon fiber substrate (papermaking substrate) is connected to the mesh conveyor. Papermaking was performed at a carbon fiber concentration of 0.05% by mass in the dispersion.
  • the paper-made carbon fiber substrate was dried in a drying furnace at 200 ° C. for 30 minutes to obtain a reinforcing fiber mat 1 having a basis weight of 100 g / m 2 .
  • PP resin 200 g of basis weight comprising 80% by mass of unmodified polypropylene resin ("Prime Polypro” (registered trademark) J105G manufactured by Prime Polymer Co., Ltd.) and 20% by mass of acid-modified polypropylene resin ("Admer” QB510 manufactured by Mitsui Chemicals, Inc.) A resin sheet of / m 2 was produced.
  • the paint 1 contains a thermoplastic resin and functions as a primer layer.
  • the paint 2 contains a thermoplastic resin and functions as a coating layer.
  • the paint 3 contains a thermosetting resin and functions as a liquid-proof layer.
  • Example 1 As said process (I), the coating material 1 is spray-coated 3 times on the surface of the precursor (a) of a porous body (A), it is made to dry for 30 minutes, and the thin film layer which consists of the coating material 1 on a precursor (a) (B) was formed to obtain a preform. Table 1 shows the surface roughness Ra1 and adhesion of the thin film layer (B) of the preform obtained. Next, the preform was subjected to the following steps (II-1) to (II-5) as the step (II) to obtain a molded product. Table 1 shows the characteristics of the molded product obtained in Example 1.
  • Step (II-1) The preform is placed in a press molding die cavity preheated to 200 ° C., and the die is closed.
  • Step (II-2) After holding for 120 seconds, a pressure of 3 MPa is applied and the pressure is further held for 60 seconds.
  • Step (II-3) The mold cavity is opened, a metal spacer is inserted at the end thereof, and the thickness when the molded product is obtained is adjusted to 3.4 mm.
  • Step (II-5) Open the mold and take out the molded product.
  • Example 2 The coating material 2 was spray-applied twice on the surface of the precursor (a) and dried for 1 hour to form a thin film layer (B) made of the coating material 2 on the precursor (a) to obtain a preform.
  • Table 1 shows the surface roughness Ra1 and adhesion of the thin film layer (B) of the preform obtained.
  • the obtained preform was subjected to steps (II-1) to (II-5) in the same manner as in Example 1 to obtain a molded product.
  • the properties of the molded product obtained in Example 2 are shown in Table 1.
  • Example 3 The coating material 3 is applied once on the surface of the precursor (a) using a roller, and is dried in a drier at a furnace temperature of 50 ° C. for 1 hour to form a thin film layer made of the coating material 3 on the precursor (a). (B) was formed to obtain a preform. Table 1 shows the surface roughness Ra1 and adhesion of the thin film layer (B) of the preform obtained. Next, the obtained preform was subjected to steps (II-1) to (II-5) in the same manner as in Example 1 to obtain a molded product. The properties of the molded product obtained in Example 3 are shown in Table 1.
  • Example 4 A paint 4 in which 15 parts by weight of additive 1 was added to paint 3 was prepared. A thin film layer (B) made of the paint 4 was formed on the precursor (a) in the same manner as in Example 3 except that the paint 4 was used to obtain a molded product. Table 1 shows the surface roughness Ra1 and adhesion of the obtained thin film layer (B), and the characteristics of the molded product obtained in Example 4.
  • Example 5 A molded product was obtained in the same manner as in Example 1 except that the precursor (a) was placed in the mold shown in FIG. 3 to obtain a molded product.
  • Table 1 shows the surface roughness Ra1 and adhesion of the obtained thin film layer (B), and the characteristics of the molded product obtained in Example 5.
  • 4 is a precursor (a)
  • 5 is a thin film layer (B) made of paint 1
  • 3A is an upper mold
  • 3B is a lower mold.
  • Example 6 A preform having a thin film layer (B) formed on the surface used in Example 1 and a mold (3A, 3B) having a difference in unevenness of 0.6 mm shown in FIG. 4 were prepared. Next, as the above step (II), a molded product was obtained through the following steps (II-6) to (II-10). Table 1 shows the characteristics of the molded product obtained in Example 6. Step (II-6): The preform was placed in an IR heater set at 250 ° C. Step (II-7): After heating for 60 seconds, the preform is placed in a mold whose temperature is set to 120 ° C., a pressure of 3 MPa is applied, and the pressure is further maintained for 5 seconds.
  • Step (II-8) The mold cavity is opened, a metal spacer is inserted at the end, and the thickness of the concave portion of the molded product is adjusted to 3.4 mm.
  • Example 7 A molded product was obtained in the same manner as in Example 6 except that a mold having a difference in unevenness of 3.6 mm shown in FIG. 4 was prepared. Table 1 shows the characteristics of the molded product obtained in Example 7.
  • Example 8 A molded product was obtained in the same manner as in Example 1 except that the coating material 1 was applied after the fluorine-based release agent was applied to the surface of the precursor (a) of the porous body (A). Table 1 shows the surface roughness Ra1 and adhesion of the obtained thin film layer (B), and the characteristics of the molded product obtained in Example 8.
  • Example 9 Except for using the same material as in Example 1 and adjusting the thickness of the precursor (a) to 1.24 mm in the step (3) of obtaining the precursor (a) of the porous body (A).
  • a molded product was obtained in the same manner as in Example 1.
  • the properties of the molded product obtained in Example 9 are shown in Table 1.
  • Example 1 A porous body (A) was obtained in the same manner as in Example 1 without forming the thin film layer (B) on the surface of the precursor (a). A thin film layer (B) made of the paint 1 was formed on the resulting porous body (A) in the same manner as in Example 1 to obtain a molded product.
  • Table 2 shows the surface roughness Ra1 and adhesion of the obtained thin film layer (B), and the properties of the molded product obtained in Comparative Example 1.
  • Steps (II-1) to (II) were carried out in the same manner as in Example 1 except that three precursors (a) of the porous body (A) were stacked and the holding time in step (II) was 600 seconds. -5) to obtain a molded body containing no voids.
  • a thin film layer (B) made of the paint 1 was formed on the obtained molded body in the same manner as in Example 1 to obtain a molded product.
  • Table 2 shows the surface roughness Ra1 and adhesion of the obtained thin film layer (B), and the characteristics of the molded product obtained by Comparative Example 2.
  • Example 1 since the thin film layer (B) was previously formed on the precursor (a) of the porous body (A) and then expanded into the porous body (A), smooth and excessive penetration of the paint It was possible to easily obtain a molded article excellent in light weight without any.
  • Example 1 since the thin film layer (B) has a binder property, the adhesiveness of the subsequent design coating material is excellent.
  • Example 2 since the thin film layer (B) forms a coating layer that becomes the design surface of the final product, the obtained molded product can be immediately handled as a product, and a general coating process is performed. I could omit it.
  • Example 3 since the paint 3 made of the thermosetting resin (B2) was used as the thin film layer (B), a molded product that maintained high surface smoothness even after expansion could be obtained.
  • Example 4 since hollow glass beads are added as an additive (B1) to the coating material 4, it is possible to obtain a molded article having a lighter weight than that using a general additive (B1). did it.
  • Examples 5 to 7 it was confirmed that the present invention can be applied to the three-dimensional shape shaping required for the molded product.
  • Example 7 a molded product having a maximum thickness (large expansion coefficient difference) is obtained compared to the molded product obtained in Example 6, and the molded product exhibits high rigidity as a structural member due to the effect of thickness. It is clear to do.
  • Example 9 is an example in which the precursor (a) of the porous body (A) including voids in which the impregnation of the resin (A2) is insufficient is simulated, and the porosity of the precursor (a) is 10 % Or less, it was possible to obtain a molded article which was smooth and excellent in lightness without excessive penetration of the paint.
  • Comparative Example 1 since the paint 1 was applied to the porous body (A), the paint soaked into the molded product (porous body), and it was difficult to form a smooth coating film. .
  • the thin film layer (B) 1 similar to that in Example 1 is to be formed, it is apparent that the coating process needs to be repeated in many layers, and the coating process and weight increase.
  • Comparative Example 2 since a molded product containing no voids was coated, it was possible to form a smooth coating film, but the molded product was inferior in weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Laminated Bodies (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

剛性及び軽量性に優れ、意匠性、防液性を向上するとともに、簡易な工程で成形品を成形することができる成形品の製造方法を提供する。 本発明は、多孔質体(A)の表面に薄膜層(B)が形成された成形品の製造方法であって、以下の工程(I)~(II)をこの順に行う。 工程(I):前記多孔質体(A)の前駆体(a)の表面に前記薄膜層(B)を形成してプリフォームを得る工程 工程(II):前記前駆体(a)を膨張させて前記多孔質体(A)に成形する工程

Description

成形品の製造方法および成形品のプリフォーム
 本発明は、意匠性または防液性に優れた成形品の製造方法および成形品のプリフォームに関するものである。
 近年、強化繊維をマトリクス樹脂と複合させた繊維強化複合材料は、力学特性と軽量性を高めた構造体として、自動車、航空機、スポーツ製品等の産業用製品に広く使用されている。繊維強化複合材料を用いた製品は、意匠性や防液性の付与を目的として、塗装等によりコーティングが施されている。繊維強化複合材料にコーティング層を形成する技術として、プリプレグ層に、熱硬化性樹脂と固体状の添加物とからなる樹脂層を積層したプリフォームを加熱して、マトリクス樹脂および樹脂層の熱硬化性樹脂を硬化させ、所定の厚みを有する樹脂硬化層とする技術が提案されている(例えば、特許文献1参照)。
 一方、繊維強化複合材料のさらなる軽量化を目的として、所定の力学特性を有し、樹脂と強化繊維と空隙からなる構造体が提案されているが(例えば、特許文献2参照)、このような厚み方向に連続した空隙を有する構造体に意匠性等を目的としてコーティング層を設けた場合、コーティング層を構成する材料が染み込んでしまい目的とするコーティング層を得ることができないという問題を有していた。
特開2016-78451号公報 特許第6123965号公報 国際公開第2015/029634号 特開昭52-115875公報
 多孔質体の表面にスキン材やインキによる絵柄を設ける技術も提案されているが(例えば、特許文献3および4参照)、特許文献3のスキン層は空隙を有するコア層の剛性を向上させることを目的としたものであり、意匠性を鑑みるとさらなるコーティング層を設けることが必要となる。また、スキン層として強化繊維にマトリックス樹脂を含浸させたプリプレグを使用するため、プリプレグ層の作製に時間を要するとともに、多孔質体の成形工程の前工程では、コア層とスキン層が接合されていないため、成形する際にコア層とスキン層を所望の構成に積層する必要がある。一方、特許文献4は、発泡剤を用いた多孔質体であるため、空隙は非連続であり材料の染み込みという課題を有するものではない。
 本発明は、上記に鑑みてなされたものであって、剛性及び軽量性に優れ、意匠性または防液性を向上するとともに、簡易な工程で成形品を成形することができる成形品の製造方法および成形品のプリフォームを提供することを目的とする。
 本発明に係る成形品の製造方法は、多孔質体(A)の表面に薄膜層(B)が形成された成形品の製造方法であって、以下の工程(I)~(II)をこの順に行うことを特徴とする。
 工程(I):前記多孔質体(A)の前駆体(a)の表面に前記薄膜層(B)を形成してプリフォームを得る工程
 工程(II):前記前駆体(a)を膨張させて前記多孔質体(A)に成形する工程
 また、本発明は、強化繊維(A1)と樹脂(A2)と空隙(A3)とを有する多孔質体(A)の表面に薄膜層(B)が形成されている成形品のプリフォームであって、前記多孔質体(A)の前駆体(a)と、前記前駆体(a)の表面上の前記薄膜層(B)と、を備え、JIS K5600-5-6(1999)による前記前駆体(a)への前記薄膜層(B)の付着性が分類0~3である。
 本発明に係る成形品の製造方法および成形品のプリフォームによれば、多孔質体(A)の前駆体(a)の状態で薄膜層を形成するため、薄膜層(B)が多孔質体(A)の連続多孔に染み込むことがなく、軽量性を維持しつつ、意匠性、防液性に優れた成形品を得ることができる。さらに、染み込むことを考慮する必要がないため、薄膜層(B)を形成する材料の選択肢が多く、設計自由度が高い。また、成形工程である工程(II)を工程(I)とは異なる場所で行う場合であっても、多孔質体(A)の前駆体(a)と薄膜層(B)とを積層等する必要がなく、簡易に成形品を製造することができる。
図1は、本発明に係る強化繊維マットにおける強化繊維の分散状態の一例を示す模式図である。 図2は、本発明に係る強化繊維マットの製造装置の一例を示す模式図である。 図3は、本発明に係る成形品の製造を説明する図である。 図4は、本発明に係る成形品の製造を説明する図である。
 以下、本発明に係る成形品の製造方法について説明する。
 本発明に係る成形品の製造方法は、多孔質体(A)の表面に薄膜層(B)が形成された成形品の製造方法であって、以下の工程(I)~(II)をこの順に行うことを特徴とする。
 工程(I):多孔質体(A)の前駆体(a)の表面に薄膜層(B)を形成してプリフォームを得る工程
 工程(II):前駆体(a)を膨張させて多孔質体(A)に成形する工程
(多孔質体(A))
 本発明の成形品において、多孔質体(A)は、強化繊維(A1)と、樹脂(A2)と、空隙(A3)と、を有する。
 本発明の多孔質体(A)において、強化繊維(A1)としては、アルミニウム、黄銅、ステンレス等の金属繊維、PAN系、レーヨン系、リグニン系、ピッチ系の炭素繊維、黒鉛繊維、ガラス等の絶縁性繊維、アラミド、PBO、ポリフェニレンスルフィド、ポリエステル、アクリル、ナイロン、ポリエチレン等の有機繊維、シリコンカーバイト、シリコンナイトライド等の無機繊維を例示できる。また、これらの繊維に表面処理が施されているものであってもよい。表面処理としては、導電体として金属の被着処理の他に、カップリング剤による処理、サイジング剤による処理、結束剤による処理、添加剤の付着処理等がある。また、これらの繊維は1種類を単独で用いてもよいし、2種類以上を併用してもよい。中でも、軽量化効果の観点から、比強度、比剛性に優れるPAN系、ピッチ系、レーヨン系等の炭素繊維が好ましく用いられる。また、得られる多孔質体(A)の経済性を高める観点からは、ガラス繊維が好ましく用いられ、とりわけ力学特性と経済性とのバランスから炭素繊維とガラス繊維とを併用することが好ましい。さらに、得られる多孔質体(A)の衝撃吸収性や賦形性を高める観点からは、アラミド繊維が好ましく用いられ、とりわけ力学特性と衝撃吸収性とのバランスから炭素繊維とアラミド繊維とを併用することが好ましい。また、得られる多孔質体(A)の導電性を高める観点からは、導電性を有する金属からなる金属繊維やニッケルや銅やイッテルビウム等の金属を被覆した強化繊維を用いることもできる。これらの中で、強度と弾性率等の力学特性に優れる金属繊維、ピッチ系炭素繊維、及びPAN系炭素繊維からなる群より選ばれる強化繊維をより好ましく用いることができる。
 強化繊維(A1)は、不連続であり、多孔質体(A)中にランダムに分散していることが好ましい。また分散状態が略モノフィラメント状であることがより好ましい。強化繊維(A1)をかかる態様とすることで、シート状の多孔質体(A)の前駆体(a)ないし多孔質体(A)を、外力を加えて成形する場合に、複雑形状への賦型が容易となる。また、強化繊維(A1)をかかる態様とすることで、強化繊維(A1)によって形成された空隙(A3)が緻密化し、多孔質体(A)中における強化繊維(A1)の繊維束端における弱部が極小化できるため、優れた補強効率及び信頼性に加えて、等方性も付与される。
 ここで、略モノフィラメント状とは、強化繊維単糸が500本未満の細繊度ストランドにて存在することを指す。さらに好ましくは、モノフィラメント状、つまり単糸として分散していることである。
 ここで、略モノフィラメント状、又は、モノフィラメント状に分散しているとは、多孔質体(A)中にて任意に選択した強化繊維(A1)について、その二次元配向角が1°以上である単繊維の割合(以下、繊維分散率とも称す)が80%以上であることを指し、言い換えれば、多孔質体(A)中において単繊維の2本以上が接触して平行な束が20%未満であることをいう。従って、ここでは、少なくとも強化繊維(A1)におけるフィラメント数100本以下の繊維束の質量分率が100%に該当するものが特に好ましい。
 さらに、強化繊維(A1)はランダムに分散していることが、とりわけ好ましい。ここで、強化繊維(A1)がランダムに分散しているとは、多孔質体(A)中において任意に選択した強化繊維(A1)の二次元配向角の算術平均値が30°以上、60°以下の範囲内にあることをいう。かかる二次元配向角とは、強化繊維(A1)の単繊維とこの単繊維と交差する単繊維とで形成される角度のことであり、交差する単繊維同士が形成する角度のうち、0°以上、90°以下の範囲内にある鋭角側の角度と定義する。
 この二次元配向角について、図面を用いてさらに説明する。図1(a),(b)において、単繊維1aを基準とすると、単繊維1aは他の単繊維1b~1fと交差している。ここで、交差とは、観察する二次元平面において、基準とする単繊維が他の単繊維と交わって観察される状態のことを意味し、単繊維1aと単繊維1b~1fとが必ずしも接触している必要はなく、投影して見た場合に交わって観察される状態についても例外ではない。つまり、基準となる単繊維1aについて見た場合、単繊維1b~1fの全てが二次元配向角の評価対象であり、図1(a)中において二次元配向角は交差する2つの単繊維が形成する2つの角度のうち、0°以上、90°以下の範囲内にある鋭角側の角度である。
 二次元配向角を測定する方法としては、特に制限はないが、例えば、構成要素の表面から強化繊維(A1)の配向を観察する方法を例示できる。二次元配向角の平均値は、次の手順で測定する。すなわち、無作為に選択した単繊維(図1における単繊維1a)に対して交差している全ての単繊維(図1における単繊維1b~1f)との二次元配向角の平均値を測定する。例えば、ある単繊維に交差する別の単繊維が多数の場合には、交差する別の単繊維を無作為に20本選び測定した算術平均値を代用してもよい。この測定を別の単繊維を基準として合計5回繰り返し、その算術平均値を二次元配向角の算術平均値として算出する。
 強化繊維(A1)が略モノフィラメント状、且つ、ランダムに分散していることで、上述した略モノフィラメント状に分散した強化繊維(A1)により与えられる性能を最大限まで高めることができる。また、多孔質体(A)において力学特性に等方性を付与できる。かかる観点から、強化繊維(A1)の繊維分散率は90%以上であることが好ましく、100%に近づくほどより好ましい。また、強化繊維(A1)の二次元配向角の算術平均値は、40°以上、50°以下の範囲内にあることが好ましく、理想的な角度である45°に近づくほど好ましい。二次元配向角の好ましい範囲としては、上記した上限のいずれの値を上限としてもよく、上記した下限のいずれの値を下限としてもよい。
 一方、強化繊維(A1)が不連続状の形態をとらない例としては、強化繊維(A1)が一方向に配列されてなるシート基材、織物基材、及びノンクリンプ基材等がある。これらの形態は、強化繊維(A1)が規則的に密に配置されるため、多孔質体(A)中の空隙(A3)が少なくなってしまい、樹脂(A2)の含浸が極めて困難となり、未含浸部を形成したり、含浸手段や樹脂種の選択肢を大きく制限したりする場合がある。
 強化繊維(A1)の形態としては、多孔質体(A)と同程度の長さの連続性強化繊維、又は、所定長に切断された有限長の不連続性強化繊維のいずれであってもよいが、樹脂(A2)を容易に含浸させたり、その量を容易に調整できたりする観点からは、不連続性強化繊維であることが好ましい。
 強化繊維(A1)の質量平均繊維長が1mm以上15mm以下の範囲内にあることが好ましい。これにより、強化繊維(A1)の補強効率を高めることができ、多孔質体(A)に優れた力学特性を与えられる。強化繊維(A1)の質量平均繊維長が1mm以上である場合、多孔質体(A)中の空隙(A3)を効率よく形成できるため、密度を低くすることが可能となり、言い換えれば、同一の厚さでありながら軽量な多孔質体(A)を得ることができるので好ましい。一方、強化繊維(A1)の質量平均繊維長が15mm以下の場合には、多孔質体(A)中で強化繊維(A1)が、自重により屈曲しにくくなり、力学特性の発現を阻害しないため好ましい。質量平均繊維長は、多孔質体(A)の樹脂(A2)成分を焼失や溶出等の方法により取り除き、残った強化繊維(A1)から無作為に400本を選択し、その長さを10μm単位まで測定し、それらの質量平均繊維長として算出できる。
 強化繊維(A1)は不織布状の形態をとることが、強化繊維(A1)への樹脂(A2)の含浸の容易さの観点から好ましい。さらに、強化繊維(A1)が、不織布状の形態を有していることにより、不織布自体のハンドリング性の容易さに加え、一般的に高粘度とされる熱可塑性樹脂の場合においても含浸を容易なものとできるため好ましい。ここで、不織布状の形態とは、強化繊維(A1)のストランド及び/又はモノフィラメントが規則性なく面状に分散した形態を指し、チョップドストランドマット、コンティニュアンスストランドマット、抄紙マット、カーディングマット、エアレイドマット等を例示できる(以下、これらをまとめて強化繊維マットと称す)。
 本発明の多孔質体(A)において、樹脂(A2)としては、熱可塑性樹脂や熱硬化性樹脂を例示できる。また、本発明においては、熱硬化性樹脂と熱可塑性樹脂とがブレンドされていてもよい。樹脂(A2)は、多孔質体(A)および多孔質体(A)の前駆体(a)を構成するマトリックス樹脂となる。
 本発明における1つの形態において、樹脂(A2)は、少なくとも1種類以上の熱可塑性樹脂を含むことが好ましい。熱可塑性樹脂としては、「ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステル、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィン、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリフェニレンスルフィド(PPS)等のポリアリーレンスルフィド、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン等のフッ素系樹脂、液晶ポリマー(LCP)」等の結晶性樹脂、「スチレン系樹脂の他、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンエーテル(PPE)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリサルホン(PSU)、ポリエーテルサルホン、ポリアリレート(PAR)」等の非晶性樹脂、その他、フェノール系樹脂、フェノキシ樹脂、さらにポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系樹脂、及びアクリロニトリル系等の熱可塑エラストマー等や、これらの共重合体及び変性体等から選ばれる熱可塑性樹脂を例示できる。中でも、得られる多孔質体(A)の軽量性の観点からはポリオレフィンが好ましく、強度の観点からはポリアミドが好ましく、表面外観の観点からポリカーボネートやスチレン系樹脂のような非晶性樹脂が好ましく、耐熱性の観点からポリアリーレンスルフィドが好ましく、連続使用温度の観点からポリエーテルエーテルケトンが好ましく、さらに耐薬品性の観点からフッ素系樹脂が好ましく用いられる。
 本発明における1つの形態において、樹脂(A2)は、少なくとも1種類以上の熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、不飽和ポリエステル、ビニルエステル、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、熱硬化性ポリイミド、これらの共重合体、変性体、及びこれらの少なくとも2種類をブレンドした樹脂を例示できる。
 また、本発明の目的を損なわない範囲で、本発明に係る多孔質体(A)は樹脂(A2)の成分の1つとして、エラストマー又はゴム成分等の耐衝撃性向上剤、他の充填材や添加剤を含有してもよい。充填材や添加剤の例としては、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、又は、カップリング剤を例示できる。
 本発明の多孔質体(A)は、空隙(A3)を有する。本発明における空隙(A3)とは、樹脂(A2)により被覆された強化繊維(A1)が柱状の支持体となり、それが重なり合い、又は、交差することにより形成された空間のことを指す。例えば強化繊維(A1)に樹脂(A2)が予め含浸された多孔質体(A)の前駆体(a)を加熱して多孔質体(A)を得る場合、加熱に伴う樹脂(A2)の溶融ないしは軟化により、強化繊維(A1)が起毛することで空隙(A3)が形成される。これは、多孔質体(A)の前駆体(a)において、加圧により圧縮状態とされていた内部の強化繊維(A1)が、その弾性率に由来する起毛力によって起毛する性質に基づく。空隙(A3)は、少なくとも厚み方向に連続している。
 本発明の多孔質体(A)は、強化繊維(A1)の体積含有率(%)が、0.5~55体積%、樹脂(A2)の体積含有率(%)が、2.5~85体積%、空隙(A3)の体積含有率(%)が、10~97体積%であることが好ましい。
 多孔質体(A)において、強化繊維(A1)の体積含有率が0.5体積%以上である場合、強化繊維(A2)に由来する補強効果を十分なものとすることができるので好ましい。一方、強化繊維(A1)の体積含有率が55体積%以下の場合には、強化繊維(A1)に対する樹脂(A2)の体積含有率が相対的に多くなり、多孔質体(A)中の強化繊維(A1)同士を結着し、強化繊維(A1)の補強効果を十分なものとできるため、多孔質体(A)の力学特性、とりわけ曲げ特性を満足できるので好ましい。
 多孔質体(A)において、樹脂(A2)の体積含有率が2.5体積%以上である場合、多孔質体(A)中の強化繊維(A1)同士を結着し、強化繊維(A1)の補強効果を十分なものとすることができ、多孔質体(A)の力学特性、とりわけ曲げ弾性率を満足できるので好ましい。一方、樹脂(A2)の体積含有率が85体積%以下であれば、空隙(A3)の形成を阻害しないため好ましい。
 多孔質体(A)において、強化繊維(A1)は樹脂(A2)に被覆されており、被覆している樹脂(A2)の厚み(被覆厚み)が1μm以上、15μm以下の範囲内にあることが好ましい。樹脂(A2)に被覆された強化繊維(A1)の被覆状態は、少なくとも多孔質体(A)を構成する強化繊維(A1)の単繊維同士の交差する点が被覆されていれば、多孔質体(A)の形状安定性や、厚み制御の容易さ及び自由度の観点から十分であるが、さらに好ましい態様とすれば、樹脂(A2)は、強化繊維(A1)の周囲に、上述の厚みで被覆された状態であることが好ましい。この状態は、強化繊維(A1)の表面が樹脂(A2)によって露出していない、言い換えれば、強化繊維(A1)が樹脂(A2)により電線状の皮膜を形成していることを意味する。このことにより、多孔質体(A)は、さらに、形状安定性を有すると共に、力学特性の発現を十分なものとする。また、樹脂(A2)に被覆された強化繊維(A1)の被覆状態は、その強化繊維(A1)の全てにおいて被覆されている必要はなく、本発明に係る多孔質体(A)の形状安定性や、曲げ弾性率、曲げ強度を損なわない範囲内であればよい。
 多孔質体(A)において、空隙(A3)の体積含有率は、10体積%以上97体積%以下の範囲内であることが好ましい。空隙(A3)の含有率が10体積%以上であることにより、多孔質体(A)の密度が低くなるため軽量性を満足できるため好ましい。一方、空隙(A3)の含有率が97体積%以下の場合には、言い換えれば、強化繊維(A1)の周囲に被覆された樹脂(A2)の厚みが十分なものとなることから、多孔質体(A)中における強化繊維(A1)同士の補強を十分に行うことができ、力学特性が高くなるので好ましい。空隙(A3)の体積含有率の上限値は97体積%であることが好ましい。本発明において、体積含有率は多孔質体(A)を構成する強化繊維(A1)と、樹脂(A2)と、空隙(A3)のそれぞれの体積含有率の合計を100体積%とする。
 多孔質体(A)の密度ρは0.9g/cm以下であることが好ましい。多孔質体(A)の密度ρが0.9g/cm以下の場合、多孔質体(A)とした場合の質量が減少することを意味し、結果、製品とした場合の質量の軽量化に貢献することとなるので好ましい。より好ましくは0.7g/cm以下、さらに好ましくは0.5g/cm以下である。密度の下限については制限を設けないが、一般的に強化繊維(A1)と樹脂(A2)とを有する多孔質体(A)では、その構成成分である強化繊維(A1)、樹脂(A2)、及び空隙(A3)それぞれの体積割合から算出される値が下限となり得る。本発明に係る成形品においては、多孔質体(A)自身の密度は、使用する強化繊維(A1)や樹脂(A2)により異なるが、多孔質体(A)の力学特性を保持するという観点から、0.03g/cm以上であることが好ましい。
 本発明の多孔質体(A)の前駆体(a)は、加熱に伴い空隙が増加し膨張するものであり、かかる空隙の膨張により得られるものが多孔質体(A)であるが、より具体的には、薄膜層(B)の形成後に膨張させる前の物を表す。本発明に係る工程(I)および(II)を経たものであれば、その後所定の条件の加熱に伴ってさらに空隙が増加して膨張するものであったとしても、本発明に係る前駆体(a)といわず、多孔質体(A)とみなせる。このとき、前駆体(a)の段階における空隙の有無については問わないが、工程(I)において平滑な薄膜層(B)を形成することや得られる成形品の表面品位の観点から、前駆体(a)に含まれる空隙の体積含有率(A)が10体積%未満であることが好ましい。より好ましくは5体積%未満、さらに好ましくは3体積%未満である。 
 また前駆体(a)は、膨張性を発現するために加圧により圧縮状態とされた強化繊維や発泡剤を含むことが好ましい。前駆体(a)は、成形条件の自由度を高める観点から、加圧により圧縮状態とされた強化繊維を含むことがより好ましい。強化繊維としては、前述した種類や形態とすることが好ましく、より好ましくは不連続でランダムに分散していることであり、さらに好ましくはモノフィラメント状でランダムに分散している状態である。発泡剤としては、圧縮ガスの放圧や気体等の物理的変化によって発泡させる物理発泡剤と熱分解や化学反応によってガスを発生させる化学発泡剤とがある。これらの中で、熱分解によって窒素ガスや炭酸ガスを発生させる化学発泡剤を熱分解型化学発泡剤という。熱分解型化学発泡剤は、常温において液体又は固体の化合物であり、加熱された時に分解又は気化する化合物である。また、熱分解型化学発泡剤は、本発明に係る構造体の製造方法に用いる構造体前駆体を製造する過程を実質的に妨害しないものであることが好ましく、熱分解型化学発泡剤の分解温度は180~250℃の範囲内にあることが好ましい。
 多孔質体(A)において、空隙(A3)は、多孔質体(A)の前駆体(a)の樹脂(A2)の粘度を低下させることにより、加圧により圧縮状態とされていた強化繊維(A1)が起毛し、元の状態(圧縮前の形状)に戻ろうとする復元力によって形成されることが好ましい。このとき、強化繊維(A1)が樹脂(A2)を介して互いに結合されることにより、より強固な圧縮特性と多孔質体(a)の形状保持性を発現することから好ましい。
 多孔質体(A)の曲げ弾性率をEp、多孔質体(A)の比重をρとしたとき、Ep1/3・ρ-1として表される多孔質体(A)の比曲げ弾性率は3以上であることが好ましい。多孔質体(A)の比曲げ弾性率が3未満である場合、曲げ弾性率が高くとも、比重も高い状態であり、成形品としての所望する軽量化効果が得られないので望ましくない。一般的に鋼材やアルミニウムの比曲げ弾性率は1.5以下であり、これらの金属材料よりも極めて優れた比曲げ弾性率の領域となる。さらには、軽量化効果に着目される炭素繊維強化樹脂複合材料等の成形品の一般的な比曲げ弾性率である2.3を超える3以上であることが好ましく、さらに望ましくは5以上である。比曲げ弾性率の上限については特に限定はされないが、20以下であることが好ましい。多孔質体(A)の比曲げ弾性率が20より大きい場合には、軽量化効果は十分であるものの、曲げ弾性率が低いことを指し示しており、成形品として所望される形状を保持することが困難であることや、多孔質体自身の曲げ弾性率が劣ることから望ましくない。
 多孔質体(A)の曲げ弾性率Epは、3GPa以上が好ましく、さらに好ましくは6GPa以上である。多孔質体(A)の曲げ弾性率Epが3GPa未満である場合、成形品として範囲に制限が生じるため望ましくない。また、多孔質体(A)の設計を容易にするために、曲げ弾性率は等方性を有していることが望ましい。
 さらに本発明の多孔質体(A)は、50%圧縮時の弾性回復力が1MPa以上であることが好ましい。ここで、弾性回復力は、JIS K7220(2006)で測定される多孔質体(A)を厚み方向に50%圧縮した際の圧縮強度である。厚み方向の50%圧縮時の弾性回復力が1MPa以上であることにより、成形品は形状保持性に優れるため、例えば製品として他部材に取り付ける際のハンドリング性に優れる。さらに、実用上、成形品の厚み方向を負荷がかかる方向として用いた場合、軽微な荷重には耐えることができ、さらに、一定以上の荷重が加わった場合には変形するため、成形品を製品として用いた場合に、取り付け時における作業者への保護の観点から好ましい。50%圧縮時の弾性回復力は、1MPa以上あれば実用上問題ないが、好ましくは3MPa以上であり、より好ましくは5MPa以上である。
 本発明の成形品において、多孔質体(A)の厚み方向の膨張率差は300%以下であることが好ましい。多孔質体(A)の厚み方向の膨張率差は300%以下であることにより、多孔質体(A)の表面に形成された薄膜層(B)の割れやシワを防止することができる。多孔質体(A)の膨張率差を求めるに当たって、まず多孔質体(A)の膨張率Sを求める。まず、後述する工程(I)で表面に薄膜層(B)を形成した後の前駆体(a)と薄膜層(B)との合計の厚みt1および、工程(II)で得た成形品の厚みt2(多孔質体(A)と薄膜層(B)との合計の厚み)を測定する。測定した厚みおよび下記式より、最も大きな膨張率Sとなるものを最大膨張率Smax,最も小さな膨張率Sとなるものを最小膨張率Sminとした。
 膨張率S(%)=(t2÷t1)×100
 これらの膨張率および下記式より、膨張率差を算出した。
 膨張率差(%)=Smax-Smin
(薄膜層(B))
 本発明の成形品において、薄膜層(B)はプライマー層、塗膜層、防液層の少なくともいずれか一つの機能を有している。ここで、プライマー層は、その後に形成される塗料との接着性を向上する機能を有する層を意味する。塗膜層は、最終製品としての成形品の外表面である意匠層である。防液層は、液体の透過を防止しうる機能を有する層であり、薄膜層を最終製品としての成形品の外表面とした場合、多孔質体(A)への液体の浸入が防止でき、内表面とした場合、多孔質体(A)に浸入した液体を透過させることなく、貯蔵する役割を付与することができる。
 本発明の成形品において、薄膜層(B)は添加剤(B1)と熱硬化性樹脂(B2)、または添加剤(B1)と熱可塑性樹脂(B3)を有することが好ましい。
 添加剤(B1)は、成形品に対し、着色ならびにパール感やメタリック感をはじめとした意匠性を付与することを目的として添加される。
 添加剤(B1)としては、顔料やガラスビーズなどが挙げられる。具体的にはアゾ顔料、フタロシアニンブルーなどの有機顔料、アルミニウム、真鍮などの金属粉末からなる金属顔料、酸化クロム、コバルトブルーなどの無機顔料が挙げられる。なかでも、耐熱性の観点から金属顔料、無機顔料が好ましい。また、強化繊維が炭素繊維やアラミド繊維など濃色である場合には、屈折率が異なる構造を2層以上有する顔料が好ましく用いられる。例えば、酸化チタンや酸化鉄で被覆した天然マイカ、人工マイカ、アルミナフレーク、シリカフレーク、ガラスフレークである。かかる層構造とすることにより、可視光領域の光の干渉、回折、散乱といった光学現象によって発色させることができる。光の干渉、回折、散乱といった光学現象を利用すると、特定波長の光の反射によって発色できるため、濃色の強化繊維を用いた場合に、好ましく用いられる。
 また、薄膜層(B)および成形品の質量増加を抑制する観点から、中空形状の添加剤(B1)を用いることが好ましい。中でも中空ガラスビーズやポーラスな樹脂粒子などが軽量化の点で好ましい。
 添加剤(B1)は、球状、繊維状、フレーク状の形態であってよい。添加剤(B1)の最大寸法は、200μm以下であることが好ましい。ここで、添加剤(B1)の最大寸法とは、添加剤(B1)の一次粒子の最大径または添加剤(B1)が凝集等する場合は二次粒子の最大径を意味するものである。添加剤(B1)の最大寸法が200μm以下であることにより、薄膜層(B)の表面が平滑となり、意匠性が向上する。添加剤(B1)の最大寸法は、電子顕微鏡を用いて添加剤(B1)を観察し、寸法が少なくとも1μm単位まで測定可能な画像となるように拡大した画像から、無作為に任意の100個の添加剤(B1)を選び、それぞれの添加剤(B1)の外側輪郭線上の任意の2点を、その距離が最大になるように選んだときの長さを最大長さとして計測した値の平均値である。
 添加剤(B1)の最大寸法は、より好ましくは150μmであり、さらに好ましくは100μmである。添加剤(B1)最大寸法の下限は、1μmが好ましく、さらに好ましくは5μmであり、より好ましくは10μmである。
 本発明の薄膜層(B)において、熱硬化性樹脂(B2)は、熱硬化性樹脂(B2)と硬化剤(B2’)を含む。熱硬化性樹脂(B2)としては、特に限定されるものではないが、エポキシ樹脂、不飽和ポリエステル、フェノール樹脂など任意の熱硬化性樹脂(B2)を用いることができる。熱硬化性樹脂(B2)は、単独で用いてもよいし、適宜配合してもよい。意匠性を付与する添加剤(B1)を用いる場合、透明性の高いエポキシ樹脂や不飽和ポリエステルが好ましく用いられる。
 硬化剤(B2’)としては、例えば、脂肪族ポリアミン、芳香族ポリアミン、ジシアンジアミド、ポリカルボン酸、ポリカルボン酸ヒドラジド、酸無水物、ポリメルカプタン、ポリフェノールなど、化学量論的反応を行う化合物と、イミダゾール、ルイス酸錯体、オニウム塩のように触媒的に作用する化合物がある。化学量論的反応を行う化合物を用いる場合には、硬化促進剤、例えばイミダゾール、ルイス酸錯体、オニウム塩、尿素誘導体、ホスフィンなどをさらに配合する場合がある。硬化剤(B2’)の中でも、得られる成形品の耐熱性や力学特性が優れることから、分子中にアミノ基、アミド基、イミダゾール基、尿素基、ヒドラジド基などの窒素原子を含む基を有する、有機窒素化合物を好ましく用いることができる。硬化剤は、1種でも、複数種組み合わせて使用してもよい。
 本発明の薄膜層(B)において、熱可塑性樹脂(B3)としては、特に限定されるものではないが、アクリル樹脂、ウレタン樹脂、ポリアミド樹脂、ポリイミド樹脂、塩化ビニル樹脂等任意の熱可塑性樹脂(B3)を用いることができる。熱可塑性樹脂(B3)は、単独で用いてもよいし、適宜配合してもよい。また、熱硬化性樹脂(B2)および熱可塑性樹脂(B3)は、多孔質体(A)を構成する樹脂(A2)と同様に選択することができる。
 薄膜層(B)が、添加剤(B1)として顔料を使用し、熱硬化性樹脂(B2)を有する場合、顔料の熱硬化性樹脂(B2)の硬化物との屈折率差が0.1以下であることが好ましい。屈折率差が小さいほど、薄膜層(B)の透明度が上がるため、顔料の着色効果が強く発現する。
 薄膜層(B)を形成する材料の状態は、溶液系、分散系、粉体系に分類することができる。溶液系は、薄膜層(B)を形成する主要素が溶媒中に溶解したものであり、溶媒が有機溶剤や水などのタイプがある。分散系は、薄膜層(B)を形成する主要素が溶媒中に分散し、乳化状態になっているものであり、エマルジョンタイプとも言われる。粉体系は、溶媒を用いず、固形分からなる粉末状のものである。工程(I)の作業の簡便さの観点から、溶液系および分散系が好ましく、さらに作業環境の観点から、溶媒が水であるものが好ましく、薄膜層(B)の形成時間の観点から、溶媒が有機溶剤であるものが好ましい。
(成形品)
 本発明の成形品において、薄膜層(B)の厚みは10μm以上500μm以下であることが好ましい。厚みが10μmより薄い場合、工程(II)において多孔質体(A)に成形した際に、薄膜層(B)が形状を維持することが困難となる場合がある。また、厚みを500μmより厚くした場合、平滑な面や意匠性に優れた面を形成は可能であるが、成形品の質量が増加してしまい、成形品の軽量性を発現することが困難となる。より好ましくは、薄膜層(B)の厚みは400μm以下であり、さらに好ましくは300μm以下である。なお、薄膜層(B)が多孔質体(A)の表面ともう一方の表面の両方に設けられている場合、薄膜層(B)の厚みとは、それぞれの薄膜層(B)の個別の厚みを言うものとし、多孔質体(A)の少なくとも1方の外層に位置する薄膜層(B)の厚みが上記範囲であることが好ましく、両外層の薄膜層(B)の厚みがそれぞれ上記範囲であることがより好ましい。
 本発明の成形品において、薄膜層(B)の表面粗さRa2は、100μm以下であることが好ましい。表面粗さRa2が100μm以下であることにより、表面が平滑となり、より優れた意匠性を有する成形品を得ることができる。薄膜層(B)をバインダー層とする場合、化学的な接合だけでなく、機械的な接合(アンカリング)も考慮すると、表面粗さRa2が30μm以上であることが好ましい。一方、塗膜層とする場合、意匠性の観点から表面粗さRa2が50μm以下であることが好ましい。
 本発明の成形品において、密度ρは1.0g/cm以下であることが好ましい。成形品の密度ρが1.0g/cm以下の場合、成形品の質量が減少、すなわち、製品とした場合の質量の軽量化に貢献することとなるので好ましい。より好ましくは0.8g/cm以下、さらに好ましくは0.6g/cm以下である。密度の下限については制限を設けないが、一般的に強化繊維(A1)と樹脂(A2)とを有する多孔質体(A)と、添加剤(B1)と熱硬化性樹脂(B2)または熱可塑性樹脂(B3)からなる薄膜層(B)と、を有する成形品では、その構成成分である強化繊維(A1)、樹脂(A2)空隙(A3)、添加剤(B1)、熱硬化性樹脂(A2)、熱可塑性樹脂(A3)それぞれの体積割合から算出される値が下限となり得る。本発明に係る成形品においては、成形品の密度は、使用する強化繊維(A1)や樹脂(A2)等により異なるが、成形品の力学特性を保持するという観点から、0.05g/cm以上であることが好ましい。
 前駆体(a)を製造する方法としては、強化繊維マットに溶融ないし軟化した状態の樹脂を加圧または減圧して溶融含侵させる方法が挙げられる。具体的には、強化繊維マットの厚み方向の両側および/または中心に樹脂を配置した積層物を加熱、加圧して樹脂を溶融含浸させる方法が製造の容易さの観点から好ましく例示できる。
 また工程(I)の薄膜層(B)の形成を妨げない範囲で、前駆体(a)を予め膨張させる工程や成形品の目的に応じた形状に予め賦形する工程を経ていても良い。
(成形品のプリフォーム)
 本発明に係る成形品のプリフォームは、強化繊維(A1)と樹脂(A2)と空隙(A3)とを有する多孔質体(A)の表面に薄膜層(B)が形成されている成形品のプリフォームであって、多孔質体(A)の前駆体(a)と、前駆体(a)の表面上の薄膜層(B)と、を備え、JIS K5600-5-6(1999)による前記前駆体(a)への前記薄膜層(B)の付着性が分類0~3である。
  このようなプリフォームを用いることにより、薄膜層(B)が多孔質体(A)に過剰に染み込むことが抑制でき、成形品の軽量化を図ることができる。また、前駆体(a)を膨張させて、多孔質体(A)を形成した場合にも、薄膜層(B)の剥離を抑制でき、金型など形状の賦形性、追従性に優れる。また、成形工程である工程(II)を工程(I)とは異なる場所で行う場合であっても、本発明に係る成形品のプリフォームは、多孔質体(A)の前駆体(a)と薄膜層(B)とが所定の付着性を有するように付着されているため、成形工程で前駆体(a)と薄膜層(B)とを積層等する必要がなく、取り扱い性にも優れるため、簡易に成形品を製造することができる。
(成形品の製造方法)
 本発明の成形品の製造方法では、まず、多孔質体(A)の前駆体(a)の表面に薄膜層(B)を形成してプリフォームを得る(工程(I))。
 前駆体(a)を製造する方法としては、強化繊維(A1)からなる強化繊維マットに溶融ないし軟化した状態、流動性を有する状態の樹脂(A2)を加圧または減圧する方法が挙げられる。具体的には、強化繊維マットの厚み方向の両側および/または中心に樹脂(A2)を配置した積層物を、加熱、加圧して樹脂(A2)を溶融含浸させる方法が製造の容易さの観点から好ましく例示できる。
 多孔質体(A)を構成する強化繊維マットの製造方法としては、例えば強化繊維(A1)を予めストランド及び/又は略モノフィラメント状に分散して強化繊維マットを製造する方法がある。強化繊維マットの製造方法としては、強化繊維(A1)を空気流にて分散シート化するエアレイド法や、強化繊維(A1)を機械的に櫛削りながら形状を整えシート化するカーディング法等の乾式プロセス、強化繊維(A1)を水中にて攪拌して抄紙するラドライト法による湿式プロセスを公知技術として挙げることができる。強化繊維(A1)をよりモノフィラメント状に近づける手段としては、乾式プロセスにおいては、開繊バーを設ける方法やさらに開繊バーを振動させる方法、さらにカードの目をファインにする方法や、カードの回転速度を調整する方法等を例示できる。湿式プロセスにおいては、強化繊維(A1)の攪拌条件を調整する方法、分散液の強化繊維濃度を希薄化する方法、分散液の粘度を調整する方法、分散液を移送させる際に渦流を抑制する方法等を例示できる。特に、強化繊維マットは湿式プロセスで製造することが好ましく、投入繊維の濃度を増やしたり、分散液の流速(流量)とメッシュコンベアの速度を調整したりすることで強化繊維マットの強化繊維(A1)の割合を容易に調整できる。例えば、分散液の流速に対してメッシュコンベアの速度を遅くすることで、得られる強化繊維マット中の繊維の配向が引き取り方向に向き難くなり、嵩高い強化繊維マットを製造可能である。強化繊維マットは、強化繊維単体から構成されていてもよく、強化繊維(A1)が粉末形状や繊維形状のマトリックス樹脂成分と混合されていたり、強化繊維(A1)が有機化合物や無機化合物と混合されていたり、強化繊維(A1)同士が樹脂成分で目留めされていてもよい。
 上記各方法を実現するための設備としては、圧縮成形機やダブルベルトプレスを好適に用いることができる。バッチ式の場合は前者であり、加熱用と冷却用との2機以上を並列した間欠式プレスシステムとすることで生産性の向上が図れる。連続式の場合は後者であり、連続的な加工を容易に行うことができるので連続生産性に優れる。
 工程(I)では、上記のようにして形成した前駆体(a)の表面に、薄膜層(B)を形成する。薄膜層(B)を形成する方法としては、特に限定はされず、目的に応じた薄膜層(B)を形成することが出来れば良い。例えば、メッキなどのドライコーティングや溶液などを用いたウェットコーティング、前駆体(a)の表面を改質して薄膜層(B)とする方法などが挙げられる。中でも、薄膜層(B)はウェットコーティングにより形成することが好ましい。塗装方法としては、ハケ塗り、ローラー塗り、吹付塗装、エアレススプレー、ロールコーター、焼付け塗装、浸漬塗り、電着塗装、静電塗装、粉体塗装、紫外線硬化塗装などが挙げられる。高温での処理では、焼付け塗装が好ましく用いられる。
 また本発明の成形品の製造方法は、前駆体(a)に薄膜層(B)を形成した後に前駆体(a)を膨張させて多孔質体(A)に成形するため、溶融ないし軟化した状態の樹脂や流動性を有する状態の樹脂、特にウェットコーティングで用いられるような粘度の低い樹脂を用いた場合でも多孔質体(A)への薄膜層(B)の過剰な染み込むことを防止することができ、薄膜層(B)の厚みが500μm以下の成形品を容易に得ることができる。これより、成形品に要求される外観および意匠性に対し、上記したような様々な塗装方法や薄膜層の選択自由度が高い製造方法といえる。
 工程(I)により前駆体(a)の表面に形成された薄膜層(B)は、JIS K5600-5-6(1999)による前駆体(a)への付着性が分類0~3であることが好ましい。薄膜層(B)が前駆体(a)の表面に所定の付着性を有することにより、工程(II)を工程(I)とは異なる場所で行う場合にも、薄膜層(B)の剥れを防止でき意匠性に優れた成形品を得ることが可能となる。
 また、工程(I)により前駆体(a)の表面に形成された薄膜層(B)の表面粗さRa1は、50μm以下であることが好ましい。工程(I)後の薄膜層(B)の表面粗さRa1を50μm以下とすることにより、成形工程である工程(II)後の薄膜層(B)の表面粗さRa2を、所望する範囲とすることが可能となる。
 続いて、前駆体(a)を膨張させて多孔質体(A)に成形する(工程(II))としては、特に限定はされないが、多孔質体(A)の前駆体(a)を構成する樹脂(A2)の粘度を低下させることで多孔質体(A)に成形することが好ましい。樹脂(A2)の粘度を低下させる方法としては、多孔質体(A)の前駆体(a)を加熱することが好ましい。加熱方法については、特に限定されないが、所望の温度に設定した金型や熱板などに接触させて加熱する方法や、ヒーターなどを用いた非接触状態で加熱する方法が上げられる。多孔質体(A)を構成する樹脂(A2)として熱可塑性樹脂を使用する場合、融点または軟化点以上に加熱すればよく、熱硬化性樹脂を使用する場合、硬化反応が開始する温度より低い温度で加熱する。
 多孔質体(A)および成形品の厚み制御を行う方法としては、加熱される前駆体(a)を目的の厚みに制御できれば方法によらないが、金属板等を用いて厚みを拘束する方法、前駆体(a)に付与する圧力により厚み制御する方法等が製造の簡便さの観点から好ましい方法として例示される。上記方法を実現するための設備としては、圧縮成形機やダブルベルトプレスを好適に用いることができる。バッチ式の場合は前者であり、加熱用と冷却用の2機以上を並列した間欠式プレスシステムとすることで生産性の向上が図れる。連続式の場合は後者であり、連続的な加工を容易に行うことができるため連続生産性に優れる。
 さらに、本発明の成形品の製造方法において、前記工程(II)と同時、または前記工程(II)の完了後、多孔質体(A)の形状を変形させる工程(III)を含むことが好ましい。工程(III)は、加熱した状態で圧力を付与し、形状を賦型することにより行うことができる。
 以上のようにして製造した本発明の成形品は、例えば、「パソコン、ディスプレイ、OA機器、携帯電話、携帯情報端末、PDA(電子手帳等の携帯情報端末)、ビデオカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品等の筐体、トレイ、シャーシ、内装部材、振動板、スピーカーコーン、またはそのケース」等の電気、電子機器部品、「スピーカーコーン」等の音響部材、「各種メンバ、各種フレーム、各種ヒンジ、各種アーム、各種車軸、各種車輪用軸受、各種ビーム」、「フード、ルーフ、ドア、フェンダ、トランクリッド、サイドパネル、リアエンドパネル、フロントボディー、アンダーボディー、各種ピラー、各種メンバ、各種フレーム、各種ビーム、各種サポート、各種レール、各種ヒンジ」等の、外板、又は、ボディー部品、「バンパー、バンパービーム、モール、アンダーカバー、エンジンカバー、整流板、スポイラー、カウルルーバー、エアロパーツ」等の外装部品、「インストルメントパネル、シートフレーム、ドアトリム、ピラートリム、ハンドル、各種モジュール」等の内装部品、又は、「モーター部品、CNGタンク、ガソリンタンク」等の自動車、二輪車用構造部品、「バッテリートレイ、ヘッドランプサポート、ペダルハウジング、プロテクター、ランプリフレクター、ランプハウジング、ノイズシールド、スペアタイヤカバー」等の自動車、二輪車用部品、「遮音壁、防音壁などの壁内部材」等の建材、「ランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブ、シート」等の航空機用部品に好適に使用することができる。力学特性および形状賦型性の観点からは、自動車内外装、電気・電子機器筐体、自転車、スポーツ用品用構造材、航空機内装材、輸送用箱体、建材に好ましく用いられる。
 以下、実施例により本発明をさらに詳細に説明する。
(1)成形品における多孔質体(A)中の強化繊維の体積含有率Vf
 成形品から多孔質体(A)の部分のみを試験片として切り出し、質量Wsを測定した後、試験片を空気中500℃で30分間加熱して樹脂(A2)成分を焼き飛ばし、残った強化繊維(A1)の質量Wfを測定し、次式により算出した。このとき、強化繊維(A1)および樹脂(A2)の密度は、JIS Z8807(2012)の液中ひょう量法に従って測定した結果を用いる。
Vf(体積%)=(Wf/ρf)/{Wf/ρf+(Ws-Wf)/ρr}×100
ρf:強化繊維(A1)の密度(g/cm
ρr:樹脂(A2)の密度(g/cm
(2)成形品における多孔質体(A)の密度ρ  
 成形品から多孔質体(A)の部分のみを試験片として切り出し、JIS K7222(2005)を参考にして多孔質体(A)の見かけ密度を測定した。試験片の寸法は縦100mm、横100mmとした。試験片の縦、横、厚みをマイクロメーターで測定し、得られた値より試験片の体積Vを算出した。また、切り出した試験片の質量Mを電子天秤で測定した。得られた質量M及び体積Vを次式に代入することにより多孔質体(A)の密度ρを算出した。
ρ[g/cm]=M[g]/V[cm
(3)成形品の密度ρm
 成形品から多孔質体(A)および薄膜層(B)を含む部分を試験片として切り出し、(2)成形品における多孔質体(A)の密度ρと同様にして成形品の見かけ密度を測定し、密度ρmを算出した。
(4)多孔質体(A)の前駆体(a)および多孔質体(A)の空隙(A3)の体積含有率
 多孔質体(A)または前駆体(a)から縦10mm、横10mmに試験片を切り出し、断面を走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製 S-4800型)により観察し、試料片の表面から、等間隔に10箇所を1000倍の倍率で撮影した。それぞれの画像について、画像内の空隙(A3)の面積Aaを求めた。さらに、空隙(A3)の面積Aaを画像全体の面積で除算することにより空隙率を算出した。多孔質体(A)または前駆体(a)の空隙の体積含有率は、5枚の試験片でそれぞれ10箇所ずつ撮影した合計50箇所の空隙率から算術平均により求めた。
(5)多孔質体(A)の前駆体(a)への薄膜層(B)の付着性  
 JIS K5600-5-6(1999)塗料一般試験方法-塗膜の機械的性質―付着性(クロスカット法)に準じて薄膜層(B)の付着性を評価した。試料をレーザー顕微鏡(キーエンス(株)製、VK-9510)で400倍に拡大し、観察を行った。観察画像を汎用画像解析ソフトウェア上に展開し、ソフトウェアに組み込まれたプログラムを利用して観察画像中に見える薄膜層(B)が剥がれた面積を求めた。JIS K5600-5-6の表1の試験結果の分類の0~3を良好、4~5を不良と判定した。
(6)薄膜層(B)中の添加剤(B1)の最大寸法
 レーザー顕微鏡を用いて添加剤(B1)の形状を測定した。添加剤(B1)の最大寸法の測定は、添加剤(B1)単独での測定、樹脂(A2)と混合され、流動性を有する状態での測定、樹脂(A2)と混合され、流動性を有しない状態での測定(硬化または固化した状態)が想定される。添加剤(B1)、および流動性を有する場合はそのままの状態で、測定した。流動性を有しない場合は、エポキシ樹脂で包埋し、研磨して断面を観察して、最大寸法を測定した。
(7)薄膜層(B)の厚み  
 成形品から縦10mm、横10mmに試験片を切り出し、(5)多孔質体(A)の前駆体(a)への薄膜層(B)の付着性と同様にレーザー顕微鏡を用いて薄膜層(B)の厚みを測定した。試料片の厚み方向と垂直方向の端から、等間隔に10箇所の位置において、薄膜層(B)の表面から多孔質体(A)側の位置を測定した。薄膜層(B)の厚みは、5枚の試験片でそれぞれ10箇所ずつ撮影した合計50箇所の薄膜層(B)の厚みから算術平均により求めた。
(8)薄膜層(B)の表面粗さRa1およびRa2  
 工程(I)で形成された薄膜層(B)および成形品における薄膜層(B)について、表面粗さ計を用いて、JIS-B-0601(2001)に基づき、カットオフ値および基準長さを選定し、表面粗さRa1(μm)およびRa2(μm)を求めた。
(9)多孔質体(A)の厚み方向の膨張率差  
 工程(I)で薄膜層(B)が形成された後、前駆体(a)とその薄膜層(B)との合計の厚みt1を測定し、次いで工程(II)で成形された成形品の厚みt2(多孔質体(A)と薄膜層(B)との厚み)を測定した。測定した厚みおよび下記式より、最も大きな膨張率Sとなるものを最大膨張率Smax,最も小さな膨張率Sとなるものを最小膨張率Sminとした。
 膨張率S(%)=(t2÷t1)×100
 これらの膨張率および下記式より、膨張率差を算出した。
 膨張率差(%)=Smax-Smin
(10)多孔質体の通気性(厚み方向への通気性)
 下記(a)~(d)により多孔質体(A)の通気性を測定した。JIS規格で試験条件の上限とされている500Paまでに通気を確認できたものは「通気性あり」と判断、それ以外は、「通気性なし」と判断した。
 (a)多孔質体(A)から100mm×100mm、厚み5mmの試験片を切り出す(5mm以下であればそのまま。5mmよりも厚い場合は、切削加工などにより厚みを調整する)。
 (b)試験片の端部(カット面)を4面テープで覆う(厚み方向と垂直方向への通気を防ぐため)。
 (c)JIS L1096(2010) A法(フラジール法)が測定可能な試験機の円筒の一端に試験片を取り付ける。
 (d)傾斜形気圧計が500Pa以下の圧力となるように吸込みファンおよび空気孔を調整する。
(11)曲げ試験
 成形体から試験片を切り出し、ISO178法(1993)に従い曲げ弾性率を測定した。測定数n=5とし、算術平均値を曲げ弾性率Ecとした。測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。得られた結果より次式により、成形体の比曲げ弾性率を算出した。
 比曲げ弾性率=Ec1/3/ρ 
 下記の実施例および比較例において、以下の材料を使用した。
[強化繊維マット1]
 東レ(株)製“トレカ”T700S-12Kをカートリッジカッターで5mmにカットし、チョップド炭素繊維を得た。水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))とからなる濃度0.1質量%の分散液を作製し、この分散液とチョップド炭素繊維とを用いて図2に示す強化繊維マットの製造装置を用いて、強化繊維マットを製造した。図2に示す製造装置は、分散槽としての容器下部に開口コックを有する直径1000mmの円筒形状の容器、分散槽と抄紙槽とを接続する直線状の輸送部(傾斜角30°)を備えている。分散槽の上面の開口部には撹拌機が付属し、開口部からチョップド炭素繊維及び分散液(分散媒体)を投入可能である。抄紙槽が、底部に幅500mmの抄紙面を有するメッシュコンベアを備え、炭素繊維基材(抄紙基材)を運搬可能なコンベアをメッシュコンベアに接続している。抄紙は分散液中の炭素繊維濃度を0.05質量%として行った。抄紙した炭素繊維基材は200℃の乾燥炉で30分間乾燥し、目付けが100g/mの強化繊維マット1を得た。
[PP樹脂]
 未変性ポリプロピレン樹脂(プライムポリマー(株)製“プライムポリプロ”(登録商標)J105G)80質量%と、酸変性ポリプロピレン樹脂(三井化学(株)製“アドマー”QB510)20質量%とからなる目付200g/mの樹脂シートを作製した。
[塗料1]  
 日本ペイント(株)製「naxPPプライマー」を塗料1として準備した。塗料1は熱可塑性樹脂を含み、プライマー層として機能するものである。
[塗料2]  
 (株)アサヒペン製「クリエイティブカラースプレー」を塗料2として準備した。塗料2は熱可塑性樹脂を含み、塗膜層として機能するものである。
[塗料3]  
 主剤として三菱ケミカル(株)製のjER828を100質量部、硬化剤として東京化成工業(株)製トリエチレンテトラミンを11質量部の割合で混合し、塗料3として準備した。塗料3は熱硬化性樹脂を含み、防液層として機能するものである。
[添加剤1]
 スリーエム製グラスバブルズK20(かさ密度:0.13g/cm、メジアン径:60μm)を添加剤1として準備した。
[多孔質体(A)の前駆体(a)]
 強化繊維マットとして強化繊維マット1、樹脂シートとしてPP樹脂を、[樹脂シート/強化繊維マット/樹脂シート/強化繊維マット/強化繊維マット/樹脂シート/強化繊維マット/樹脂シート]の順番に配置した積層物を作製した。次いで、以下の工程(1)~(4)を経ることにより多孔質体(A)の前駆体(a)を得た。
工程(1):積層物を200℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
工程(2):次いで、3MPaの圧力を付与し、180秒間保持する。
工程(3):工程(2)の後、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
工程(4):金型を開いて前駆体(a)を取り出す。
(実施例1)
 上記工程(I)として、多孔質体(A)の前駆体(a)の表面に塗料1を3回スプレー塗布し、30分間乾燥させて、前駆体(a)上に塗料1からなる薄膜層(B)を形成し、プリフォームを得た。得られたプリフォームの薄膜層(B)の表面粗さRa1および付着性を表1に示す。
 次いで、プリフォームを、上記工程(II)として、以下の工程(II-1)~(II-5)を経ることにより成形品を得た。実施例1により得た成形品の特性を表1に示す。
工程(II-1):プリフォームを、200℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
工程(II-2):120秒間保持した後、3MPaの圧力を付与してさらに60秒間保持する。
工程(II-3):金型キャビティを開放し、その末端に金属スペーサーを挿入し、成形品を得る際の厚みが3.4mmとなるように調整する。
工程(II-4):金型キャビティを締結し、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
工程(II-5):金型を開いて成形品を取り出す。
(実施例2)
 前駆体(a)の表面に塗料2を2回スプレー塗布し、1時間乾燥させて前駆体(a)上に塗料2からなる薄膜層(B)を形成し、プリフォームを得た。得られたプリフォームの薄膜層(B)の表面粗さRa1および付着性を表1に示す。
 次いで、得られたプリフォームを、実施例1と同様にして工程(II-1)~(II-5)を経ることにより成形品を得た。実施例2により得た成形品の特性を表1に示す。
(実施例3)
 前駆体(a)の表面にローラーを用いて塗料3を1回塗布し、炉内温度を50℃とした乾燥機内で1時間乾燥させて、前駆体(a)上に塗料3からなる薄膜層(B)を形成し、プリフォームを得た。得られたプリフォームの薄膜層(B)の表面粗さRa1および付着性を表1に示す。
 次いで、得られたプリフォームを、実施例1と同様にして工程(II-1)~(II-5)を経ることにより成形品を得た。実施例3により得た成形品の特性を表1に示す。
(実施例4)
 塗料3に対し、添加剤1を15重量部添加した塗料4を調製した。塗料4を用いること以外は実施例3と同様にして、前駆体(a)上に塗料4からなる薄膜層(B)を形成し、成形品を得た。得られた薄膜層(B)の表面粗さRa1および付着性、実施例4により得た成形品の特性を表1に示す。
(実施例5)
 前駆体(a)を図3に示す金型に配置して成形品を得ること以外は実施例1と同様にして、成形品を得た。得られた薄膜層(B)の表面粗さRa1および付着性、実施例5により得た成形品の特性を表1に示す。なお、図3において、4は前駆体(a)、5は塗料1からなる薄膜層(B)、3Aは上金型、3Bは下金型である。
(実施例6)
 実施例1で用いた表面に薄膜層(B)を形成されたプリフォームと図4に示す凹凸の差が0.6mmの金型(3A、3B)を準備した。次いで、上記工程(II)として、以下の工程(II-6)~(II-10)を経ることにより成形品を得た。実施例6により得た成形品の特性を表1に示す。
工程(II-6):プリフォームを250℃に設定したIRヒーターに配置した。
工程(II-7):60秒間加熱した後、120℃に温度設定した金型内にプリフォームを配置し、3MPaの圧力を付与してさらに5秒間保持する。
工程(II-8):金型キャビティを開放し、その末端に金属スペーサーを挿入し、成形品の凹部の厚みが3.4mmとなるように調整する。
工程(II-9):金型キャビティを締結し、圧力を保持した状態で180秒間保持した。
工程(II-10):金型を開いて成形品を取り出す。
(実施例7)
 図4に示す凹凸の差が3.6mmの金型を準備すること以外は、実施例6と同様にして成形品を得た。実施例7により得た成形品の特性を表1に示す。
(実施例8)
 多孔質体(A)の前駆体(a)の表面にフッ素系離型剤を塗布した後に、塗料1を塗布すること以外は実施例1と同様にして成形品を得た。得られた薄膜層(B)の表面粗さRa1および付着性、実施例8により得た成形品の特性を表1に示す。
(実施例9)
 実施例1と同様の材料を用い、多孔質体(A)の前駆体(a)を得る工程(3)において前駆体の(a)の厚みが1.24mmとなるように調整すること以外は実施例1と同様にして成形品を得た。実施例9により得た成形品の特性を表1に示す。
(比較例1)
 前駆体(a)の表面に薄膜層(B)を形成せずに実施例1と同様にして多孔質体(A)を得た。得られた多孔質体(A)に対し、実施例1と同様にして塗料1からなる薄膜層(B)を形成して成形品を得た。得られた薄膜層(B)の表面粗さRa1および付着性、比較例1により得た成形品の特性を表2に示す。
(比較例2)
 多孔質体(A)の前駆体(a)を3枚重ね、工程(II)の保持時間を600秒とすること以外は、実施例1と同様にして工程(II-1)~工程(II-5)を行い、空隙を含まない成形体を得た。得られた成形体に対し、実施例1と同様にして塗料1からなる薄膜層(B)を形成して成形品を得た。得られた薄膜層(B)の表面粗さRa1および付着性、比較例2により得た成形品の特性を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
〔検討〕
 実施例1~5は、多孔質体(A)の前駆体(a)にあらかじめ薄膜層(B)を形成させた後に多孔質体(A)へと膨張させるため、平滑かつ塗料の過度な染み込みがない軽量性に優れた成形品を容易に得ることができた。実施例1では、薄膜層(B)がバインダー性を有しているため、その後の意匠性塗料の密着性に優れる。実施例2では、薄膜層(B)は最終製品の意匠面となる塗膜層を形成しているため、得られた成形品はすぐに製品として扱うことが可能となり、一般的な塗装工程を省略することができた。実施例3では、薄膜層(B)として熱硬化性樹脂(B2)からなる塗料3を用いたため、膨張後も高い表面平滑性を維持した成形品を得ることができた。また実施例4では、塗料4に添加剤(B1)として中空ガラスビーズを添加しているため、一般的な添加剤(B1)を用いたものよりも軽量性に優れた成形品を得ることができた。実施例5~7では、成形品に要求される3次元形状賦形に対しても適応可能であることが確認できた。実施例7においては、実施例6で得られた成形品よりも最大厚みの厚い(膨張率差の大きい)成形品が得られており、厚みの効果により成形品が構造部材として高い剛性を発現することは明らかである。またこのように、凹凸差が大きい(膨張率差の大きい)形状の成形品が得られることから、成形形状の自由度が高いことが示された。一方、好ましい膨張率差を超えたため、成形品の凸部分において、部分的に薄膜層(B)の厚みムラが生じた。実施例8では、薄膜層(B)の含浸を抑制することはできたが、多孔質体(A)の前駆体(a)と薄膜層(B)の付着性が乏しいため、多孔質体(A)と薄膜層(B)が分離している部分が生じた。実施例9では、模擬的に樹脂(A2)の含浸が不十分な空隙を含む多孔質体(A)の前駆体(a)を用いた例であり、前駆体(a)の空隙率が10%以下であれば、平滑かつ塗料の過度な染み込みがない軽量性に優れた成形品を得ることができた。一方、比較例1においては、多孔質体(A)に塗料1を塗布しているため、成形品(多孔質体)内部に塗料が染み込み、平滑な塗装膜を形成することが困難であった。また実施例1と同様の薄膜層(B)1を形成しようとした場合、塗装を何重にも重ねて行う必要が生じてしまい、塗装工程および重量が増加してしまうことは明白である。比較例2においては、空隙を含まない成形体に塗装を行うため、平滑な塗装膜を形成することは可能であったが、成形品として軽量性に劣っていた。
 本発明によれば、剛性及び軽量性に優れ、意匠性、防液性を備えた成形品を簡易な工程で製造することができる。
 1 強化繊維
 1a~1f 単繊維
 2 二次元配向角
 3 金型
 3A 上金型
 3B 下金型
 4 前駆体(a)
 5 薄膜層(B)

Claims (17)

  1.  多孔質体(A)の表面に薄膜層(B)が形成された成形品の製造方法であって、以下の工程(I)~(II)をこの順に行う、成形品の製造方法。
     工程(I):前記多孔質体(A)の前駆体(a)の表面に前記薄膜層(B)を形成してプリフォームを得る工程
     工程(II):前記前駆体(a)を膨張させて前記多孔質体(A)に成形する工程
  2.  工程(I)で得られたプリフォームにおいて、JIS K5600-5-6(1999)による前記前駆体(a)への前記薄膜層(B)の付着性が分類0~3である、請求項1に記載の成形品の製造方法。
  3.  前記薄膜層(B)が、プライマー層、塗膜層、防液層の少なくともいずれかである、請求項1または2に記載の成形品の製造方法。
  4.  工程(I)において、ウェットコーティングにより前記薄膜層(B)を前記前駆体(a)の表面に形成する、請求項1~3のいずれか1項に記載の成形品の製造方法。
  5.  前記薄膜層(B)が添加剤(B1)と熱硬化性樹脂(B2)とを有する、請求項1~4のいずれか1項に記載の成形品の製造方法。
  6.  前記薄膜層(B)が添加剤(B1)と熱可塑性樹脂(B3)とを有する、請求項1~4のいずれか1項に記載の成形品の製造方法。
  7.  前記添加剤(B1)の最大寸法が200μm以下である、請求項5または6に記載の成形品の製造方法。
  8.  前記薄膜層(B)の厚みが10~500μmである、請求項1~7のいずれか1項に記載の成形品の製造方法。
  9.  前記工程(I)で形成された前記薄膜層(B)の表面粗さRa1が50μm以下である、請求項1~8のいずれか1項に記載の成形品の製造方法。
  10.  前記工程(II)後の前記薄膜層(B)の表面粗さRa2が100μm以下である、請求項1~9のいずれか1項に記載の成形品の製造方法。
  11.  前記工程(II)と同時、または前記工程(II)の完了後、前記多孔質体(A)の形状を変形させる工程(III)を含む、請求項1~10のいずれか1項に記載の成形品の製造方法。
  12.  前記多孔質体(A)の厚み方向の膨張率差が300%以下である、請求項1~11のいずれか1項に記載の成形品の製造方法。
  13.  前記多孔質体(A)が、強化繊維(A1)と樹脂(A2)と前記空隙(A3)とを有する、請求項1~12のいずれか1項に記載の成形品の製造方法。
  14.  前記多孔質体(A)が厚み方向に連続した空隙(A3)を有する、請求項1~13のいずれか1項に記載の成形品の製造方法。
  15.  前記工程(II)において、前記多孔質体(A)が前記強化繊維(A1)の復元力によって膨張する、請求項13または14に記載の成形品の製造方法。
  16.  強化繊維(A1)と樹脂(A2)と空隙(A3)とを有する多孔質体(A)の表面に薄膜層(B)が形成されている成形品のプリフォームであって、
     前記多孔質体(A)の前駆体(a)と、
     前記前駆体(a)の表面上の前記薄膜層(B)と、
     を備え、JIS K5600-5-6(1999)による前記前駆体(a)への前記薄膜層(B)の付着性が分類0~3である、成形品のプリフォーム。
  17.  前記前駆体(a)に含まれる空隙の体積含有率が10体積%未満である、請求項16に記載の成形品のプリフォーム。
     
     
     
PCT/JP2019/013625 2018-03-30 2019-03-28 成形品の製造方法および成形品のプリフォーム WO2019189587A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980022259.7A CN111918768A (zh) 2018-03-30 2019-03-28 成型品的制造方法及成型品的预成型体
KR1020207029745A KR20200138278A (ko) 2018-03-30 2019-03-28 성형품의 제조 방법 및 성형품의 프리폼
JP2019519014A JP7543648B2 (ja) 2018-03-30 2019-03-28 成形品の製造方法
EP19775868.3A EP3778210B1 (en) 2018-03-30 2019-03-28 Method for manufacturing molded article and preform of molded article
US16/980,634 US11993687B2 (en) 2018-03-30 2019-03-28 Method for manufacturing molded article and preform of molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018070010 2018-03-30
JP2018-070010 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189587A1 true WO2019189587A1 (ja) 2019-10-03

Family

ID=68060297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013625 WO2019189587A1 (ja) 2018-03-30 2019-03-28 成形品の製造方法および成形品のプリフォーム

Country Status (7)

Country Link
US (1) US11993687B2 (ja)
EP (1) EP3778210B1 (ja)
JP (1) JP7543648B2 (ja)
KR (1) KR20200138278A (ja)
CN (1) CN111918768A (ja)
TW (1) TWI799560B (ja)
WO (1) WO2019189587A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204132A1 (ja) * 2022-04-20 2023-10-26 東レ株式会社 樹脂成形体およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113710469A (zh) * 2019-05-17 2021-11-26 大塚化学株式会社 复合叠层体及其制造方法
JP6759491B1 (ja) * 2019-05-17 2020-09-23 大塚化学株式会社 複合積層体及びその製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115875A (en) 1976-03-26 1977-09-28 Toppan Printing Co Ltd Process of embossing patter on foamed material surface
JPS57155897A (en) * 1981-03-20 1982-09-27 Matsushita Electric Ind Co Ltd Diaphragm for speaker
JPS6123965B2 (ja) 1980-09-30 1986-06-09 Nippon Kuraisu Kk
US4798763A (en) * 1986-07-11 1989-01-17 General Motors Corporation Method of molding a laminated foamable sheet
JPH04232047A (ja) * 1990-12-28 1992-08-20 Nippon Steel Corp 繊維強化熱可塑性樹脂成形品の外観改良方法
WO2014078496A2 (en) * 2012-11-19 2014-05-22 Dow Global Technologies Llc Expanding foam core prepreg
WO2015029634A1 (ja) 2013-08-30 2015-03-05 東レ株式会社 サンドイッチ構造体、それを用いた一体化成形品およびそれらの製造方法
JP2015101670A (ja) * 2013-11-26 2015-06-04 東邦テナックス株式会社 発泡樹脂シート、該発泡樹脂シートを用いる繊維強化熱硬化性樹脂複合成形体及びその製造方法
JP2016078451A (ja) 2014-10-17 2016-05-16 東レ株式会社 繊維強化複合材料の製造方法、樹脂基材およびプリフォーム
WO2017110533A1 (ja) * 2015-12-25 2017-06-29 東レ株式会社 構造体の製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113487A (en) 1975-10-31 1978-09-12 Toppan Printing Co., Ltd. Method for manufacture of expanded articles having an embossed surface
JPS57165897A (en) 1981-04-06 1982-10-13 Omron Tateisi Electronics Co Display unit
JPS59226103A (ja) 1983-06-03 1984-12-19 Sumitomo Metal Ind Ltd 硬質金属粉末の成形方法
JP3110207B2 (ja) 1993-05-11 2000-11-20 新日本製鐵株式会社 繊維強化熱可塑性樹脂多孔質成形品のリサイクル成形方法
JP2615373B2 (ja) 1994-06-29 1997-05-28 石油公団 長尺材の端部外面シール装置
JP5080905B2 (ja) 2007-08-28 2012-11-21 大日本塗料株式会社 型内被覆成形体及び型内被覆成形体の製造方法
JP4862913B2 (ja) * 2009-03-31 2012-01-25 東レ株式会社 プリプレグおよびプリフォーム
JP2013092551A (ja) 2011-10-24 2013-05-16 Aisin Seiki Co Ltd 樹脂ガラス
DE102012207365A1 (de) 2012-05-03 2013-11-07 Röchling Automotive AG & Co. KG Mehrschichtiges Bauteil und Verfahren zur Herstellung desselben
JP2013244470A (ja) 2012-05-28 2013-12-09 Shin-Etsu Chemical Co Ltd 含フッ素ドライコーティング剤のコーティング方法
US20160087283A1 (en) 2013-05-10 2016-03-24 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for manufacturing same, and polymer electrolyte fuel cell
JP6248466B2 (ja) * 2013-08-22 2017-12-20 東レ株式会社 繊維強化樹脂シート、一体成形品およびそれらの製造方法
JP6221949B2 (ja) 2014-06-06 2017-11-01 三菱ケミカル株式会社 多孔質中空糸膜膜の製造方法及び孔質中空糸膜膜
JP2016049649A (ja) 2014-08-29 2016-04-11 東レ株式会社 一体化成形体及びその製造方法
JP6720689B2 (ja) 2015-05-20 2020-07-08 王子ホールディングス株式会社 繊維強化プラスチック成形体及び繊維強化プラスチック成形体用基材
JP6822120B2 (ja) 2015-12-25 2021-01-27 東レ株式会社 遮音構造体
WO2017110532A1 (ja) 2015-12-25 2017-06-29 東レ株式会社 構造体
JP6123965B1 (ja) 2015-12-25 2017-05-10 東レ株式会社 構造体
WO2017205600A1 (en) 2016-05-26 2017-11-30 Hanwha Azdel, Inc. Prepregs, cores and composite articles including powder coated layers
WO2018142971A1 (ja) 2017-01-31 2018-08-09 東レ株式会社 一体化成形体及びその製造方法
US20210016549A1 (en) 2018-03-30 2021-01-21 Toray Industries, Inc. Molded article and method for producing molded article
JP2020163584A (ja) 2019-03-28 2020-10-08 東レ株式会社 サンドイッチ成形体の製造方法
US20240181745A1 (en) 2021-03-30 2024-06-06 Toray Industries, Inc. Flat, lightweight member and manufacturing method therefor
WO2023181645A1 (ja) 2022-03-24 2023-09-28 東レ株式会社 繊維強化樹脂構造体および繊維強化樹脂構造体の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115875A (en) 1976-03-26 1977-09-28 Toppan Printing Co Ltd Process of embossing patter on foamed material surface
JPS6123965B2 (ja) 1980-09-30 1986-06-09 Nippon Kuraisu Kk
JPS57155897A (en) * 1981-03-20 1982-09-27 Matsushita Electric Ind Co Ltd Diaphragm for speaker
US4798763A (en) * 1986-07-11 1989-01-17 General Motors Corporation Method of molding a laminated foamable sheet
JPH04232047A (ja) * 1990-12-28 1992-08-20 Nippon Steel Corp 繊維強化熱可塑性樹脂成形品の外観改良方法
WO2014078496A2 (en) * 2012-11-19 2014-05-22 Dow Global Technologies Llc Expanding foam core prepreg
WO2015029634A1 (ja) 2013-08-30 2015-03-05 東レ株式会社 サンドイッチ構造体、それを用いた一体化成形品およびそれらの製造方法
JP2015101670A (ja) * 2013-11-26 2015-06-04 東邦テナックス株式会社 発泡樹脂シート、該発泡樹脂シートを用いる繊維強化熱硬化性樹脂複合成形体及びその製造方法
JP2016078451A (ja) 2014-10-17 2016-05-16 東レ株式会社 繊維強化複合材料の製造方法、樹脂基材およびプリフォーム
WO2017110533A1 (ja) * 2015-12-25 2017-06-29 東レ株式会社 構造体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204132A1 (ja) * 2022-04-20 2023-10-26 東レ株式会社 樹脂成形体およびその製造方法

Also Published As

Publication number Publication date
TW201942214A (zh) 2019-11-01
EP3778210A4 (en) 2021-12-29
EP3778210A1 (en) 2021-02-17
CN111918768A (zh) 2020-11-10
KR20200138278A (ko) 2020-12-09
JP7543648B2 (ja) 2024-09-03
US11993687B2 (en) 2024-05-28
US20210009783A1 (en) 2021-01-14
JPWO2019189587A1 (ja) 2021-02-12
TWI799560B (zh) 2023-04-21
EP3778210B1 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
KR102117241B1 (ko) 구조체의 제조 방법
KR102135049B1 (ko) 구조체
TW201731967A (zh) 構造體
WO2019189587A1 (ja) 成形品の製造方法および成形品のプリフォーム
CN111936284B (zh) 成型品的制造方法
JP2014095034A (ja) 成形品及び成形品の製造方法
JP7143588B2 (ja) 構造体及びその製造方法
JP7294131B2 (ja) 成形品の製造方法
TWI820105B (zh) 成形品及成形品之製造方法
JP6123965B1 (ja) 構造体
JP2018104482A (ja) 構造体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019519014

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207029745

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019775868

Country of ref document: EP