[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019188951A1 - 制御装置、転舵装置、制御方法及びプログラム - Google Patents

制御装置、転舵装置、制御方法及びプログラム Download PDF

Info

Publication number
WO2019188951A1
WO2019188951A1 PCT/JP2019/012431 JP2019012431W WO2019188951A1 WO 2019188951 A1 WO2019188951 A1 WO 2019188951A1 JP 2019012431 W JP2019012431 W JP 2019012431W WO 2019188951 A1 WO2019188951 A1 WO 2019188951A1
Authority
WO
WIPO (PCT)
Prior art keywords
turning
angle
steering
target
yaw rate
Prior art date
Application number
PCT/JP2019/012431
Other languages
English (en)
French (fr)
Inventor
悠一 三浦
小島 崇
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to JP2020510058A priority Critical patent/JP7226433B2/ja
Priority to US16/981,546 priority patent/US11584429B2/en
Priority to EP19776746.0A priority patent/EP3778353A4/en
Priority to CN201980021122.XA priority patent/CN111902331B/zh
Publication of WO2019188951A1 publication Critical patent/WO2019188951A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0493Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting processor errors, e.g. plausibility of steering direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0418Electric motor acting on road wheel carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0466Controlling the motor for returning the steering wheel to neutral position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/003Backup systems, e.g. for manual steering

Definitions

  • the present invention relates to a control device, a steering device, a control method, and a program.
  • Patent Literature 1 describes a steering device that can be steered left and right independently.
  • a steering mechanism is provided for each of the left and right steered wheels, and each steered mechanism includes a steering actuator that uses an electric motor as a power source.
  • Each of the steered mechanisms can steer the steered wheels independently at different steering angles.
  • the steering device further includes a fail-safe mechanism that mechanically transmits the driving force of one of the steering actuators to the other steering actuator when an abnormality occurs in the steering actuator.
  • the driver inserts a pin into the engaging portions of the two shafts connected to the two steering actuators so that the two shafts are engaged.
  • two steering actuators are connected via two shafts so as to be able to transmit driving force. That is, the left and right steered wheels are mechanically connected by the two shafts.
  • the present invention provides a control device, a steering device, and a control device that suppress a decrease in turning ability of a vehicle when an abnormality occurs in one of the steering mechanisms in a steering device in which the left and right steering mechanisms are not connected to each other.
  • Methods and programs are provided.
  • a control device includes left and right steering mechanisms that are not mechanically connected to each other, and separates left and right steered wheels by the driving force of each actuator provided in each of the left and right steering mechanisms.
  • a steering device for a steering device for a vehicle that steers to a steering angle, a steering angle determination unit that determines a target steering angle for each of the left and right steering mechanisms, and a drive signal corresponding to the target steering angle
  • a steering command unit that outputs the drive signal to each actuator, and the steering angle determination unit is normal when an abnormality occurs in one of the left and right steering mechanisms.
  • the target turning angle with respect to the turning mechanism is set to be different from the target turning angle when both the left and right turning mechanisms are normal.
  • a steering device includes a control device according to an aspect of the present invention, a steering angle sensor that detects a steering angle, the left steering mechanism, and the right steering mechanism.
  • the left steering mechanism includes the left actuator that generates a driving force for individually steering the left steered wheels, and the right steered mechanism individually controls the right steered wheels.
  • the right actuator for generating a driving force for turning is provided.
  • the control method includes a left and right steering mechanism that is not mechanically connected to each other, and the left and right steered wheels are individually separated by the driving force of each actuator provided in each of the left and right steering mechanisms.
  • a steering device for a vehicle for steering to a vehicle wherein a target steering angle for each of the left and right steering mechanisms is determined, and a drive signal corresponding to the determined target steering angle is transmitted
  • the target turning angle with respect to a normal turning mechanism is set to the right and left turning mechanisms. It is determined so as to be different from the target turning angle when both mechanisms are normal.
  • a program determines a target turning angle for each of left and right turning mechanisms that are not mechanically connected to each other, and outputs a drive signal corresponding to the determined target turning angle to the left and right turning mechanisms.
  • the computer is caused to determine a target turning angle with respect to a normal turning mechanism so as to be different from a target turning angle when both the left and right turning mechanisms are normal.
  • control device or the like when an abnormality occurs in one of the left and right steering mechanisms that are not connected to each other, it is possible to suppress a decrease in the turning ability of the vehicle.
  • FIG. 1 is a diagram schematically illustrating an example of the overall configuration of the steering apparatus according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of the host ECU in FIG. 1.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of the left-turning ECU of FIG.
  • FIG. 4 is a block diagram illustrating an example of a functional configuration of the right-turning ECU in FIG.
  • FIG. 5 is a diagram illustrating an example of a relationship between a steering angle and a target turning angle in the left turning mechanism according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a relationship between a steering angle and a target turning angle in the right turning mechanism according to the first embodiment.
  • FIG. 1 is a diagram schematically illustrating an example of the overall configuration of the steering apparatus according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of the host ECU in FIG. 1.
  • FIG. 7 is a flowchart showing an example of an operation flow of the steering apparatus according to the first embodiment.
  • FIG. 8 is a diagram illustrating an example of a relationship between a steering angle and a target turning angle in the left turning mechanism according to the second embodiment.
  • FIG. 9 is a diagram illustrating an example of a relationship between a steering angle and a target turning angle in the right turning mechanism according to the second embodiment.
  • FIG. 10 is a diagram illustrating an example of a relationship between a steering angle and a target turning angle in the left turning mechanism according to the third embodiment.
  • FIG. 11 is a diagram illustrating an example of a relationship between a steering angle and a target turning angle in the right turning mechanism according to the third embodiment.
  • FIG. 8 is a diagram illustrating an example of a relationship between a steering angle and a target turning angle in the left turning mechanism according to the second embodiment.
  • FIG. 9 is a diagram illustrating an example of a relationship between a steering angle and a target turning angle in the right turning mechanism
  • FIG. 12 is a block diagram illustrating an example of the overall configuration of the steering apparatus according to the fourth embodiment.
  • FIG. 13 is a block diagram illustrating an example of a functional configuration of the host ECU in FIG. 1.
  • FIG. 14 is a block diagram illustrating an example of a functional configuration of the left turning ECU of FIG.
  • FIG. 15 is an explanatory diagram illustrating a proportional gain table and an integral gain table according to the fourth embodiment.
  • FIG. 16 is an explanatory diagram illustrating another example of the proportional gain table and the integral gain table according to the fourth embodiment.
  • FIG. 17 is a flowchart illustrating an example of an operation flow of the steering apparatus according to the fourth embodiment.
  • FIG. 18 is a block diagram illustrating an example of a functional configuration of a left steered ECU according to the fifth embodiment.
  • FIG. 19 is a graph illustrating an example of a yaw rate-turning angle map in the left turning mechanism according to the fifth embodiment.
  • FIG. 20 is a graph showing the relationship between the target yaw rate ratio and the target turning angle according to the fifth embodiment for each speed.
  • FIG. 21 is a graph showing an example of a yaw rate-turning angle map in the right turning mechanism according to the fifth embodiment.
  • FIG. 22 is a graph showing the relationship between the target yaw rate ratio and the target turning angle according to the fifth embodiment for each speed.
  • FIG. 23 is an explanatory diagram showing a yaw rate-steering angle map according to the first example.
  • FIG. 24 is an explanatory diagram showing a yaw rate-steering angle map according to the second example.
  • FIG. 25 is an explanatory diagram showing a yaw rate-steering angle map according to a third example.
  • FIG. 26 is a block diagram illustrating an example of a functional configuration of a left steered ECU according to the sixth embodiment.
  • FIG. 27 is a graph showing an example of a yaw rate-slip angle map in the left steering mechanism according to the sixth embodiment.
  • FIG. 28 is a graph showing the relationship between the target yaw rate ratio and the target slip angle according to the sixth embodiment for each speed.
  • FIG. 29 is a graph showing an example of a yaw rate-slip angle map in the right turning mechanism according to the sixth embodiment.
  • FIG. 30 is a graph showing the relationship between the target yaw rate ratio and the target slip angle according to the sixth embodiment for each speed.
  • FIG. 1 schematically shows an example of the overall configuration of the steering apparatus 100 according to the first embodiment.
  • the steering apparatus 100 is mounted on the vehicle 1 and has a steer-by-wire system configuration in which a left and right independent steering system is adopted.
  • the steered device 100 includes a steering wheel 2 as a steering member operated by a driver for steering, and a left steered wheel 3L and a right steered wheel 3R disposed on the front side of the vehicle 1.
  • the steering device 100 is not mechanically connected to the left steered mechanism 4L and the left steered mechanism 4L for individually steering the left steered wheels 3L, and the right steered wheels 3R are steered individually.
  • a right turning mechanism 4R for steering The left steered mechanism 4L steers the left steered wheel 3L according to the rotation operation of the steering wheel 2.
  • the right turning mechanism 4 ⁇ / b> R steers the right turning wheel 3 ⁇ / b> R according to the rotation operation of the steering wheel 2.
  • the left turning mechanism 4L and the right turning mechanism 4R each include a left turning actuator 5L and a right turning actuator 5R that are driven according to the rotation operation of the steering wheel 2.
  • Examples of the left turning actuator 5L and the right turning actuator 5R are electric motors.
  • the left steered mechanism 4L steers the left steered wheel 3L by the rotational driving force received from the left steered actuator 5L.
  • the right turning mechanism 4R turns the right turning wheel 3R by the rotational driving force received from the right turning actuator 5R.
  • the left steered actuator 5L steers only the left steered wheel 3L
  • the right steered actuator 5R steers only the right steered wheel 3R.
  • the left turning mechanism 4L and the right turning mechanism 4R have a left turning shaft 6L and a right turning shaft 6R, which are rotation axes for turning the left turning wheel 3L and the right turning wheel 3R, respectively.
  • the left turning shaft 6L and the right turning shaft 6R are supported by the front suspension of the vehicle 1.
  • the front suspension that supports the left turning shaft 6L and the right turning shaft 6R may be any type of suspension such as a strut type, a double wishbone type, and a multi-link type.
  • the steering apparatus 100 includes a steering angle sensor 10 that detects the steering angle of the steering wheel 2.
  • the steering angle sensor 10 detects the rotation angle and angular velocity of the rotation shaft of the steering wheel 2.
  • the turning device 100 includes a left turning angle sensor 11L that detects the turning angle of the left turning wheel 3L, and a right turning angle sensor 11R that detects the turning angle of the right turning wheel 3R.
  • the vehicle 1 is provided with a vehicle speed sensor 12 that detects the speed of the vehicle 1 and an inertial measurement device (hereinafter also referred to as “IMU (Inertial Measurement Unit)”) 13.
  • IMU Inertial Measurement Unit
  • the IMU 13 can be composed of a gyro sensor, an acceleration sensor, a geomagnetic sensor, and the like.
  • the IMU 13 detects the acceleration and angular velocity of the vehicle 1 in the triaxial direction. Examples of angular velocity in the three axial directions are the yawing, pitching and rolling directions.
  • the IMU 13 detects, for example, an angular velocity (also referred to as “yaw rate”) in the yawing direction. Further, the IMU 13 may detect angular velocities in the pitching and rolling directions.
  • the steering device 100 includes a host ECU (Electronic Control Unit) 20 and a storage unit 21.
  • the storage unit 21 may be arranged separately from the host ECU 20 and connected to the host ECU 20 or may be included in the host ECU 20.
  • the left turning mechanism 4L includes a left turning ECU 30L that is one of the lower ECUs
  • the right turning mechanism 4R includes a right turning ECU 30R that is one of the lower ECUs.
  • the host ECU 20 is connected to the left turning ECU 30L, the right turning ECU 30R, the steering angle sensor 10, the vehicle speed sensor 12, and the IMU 13.
  • the left turning ECU 30L is connected to the host ECU 20, the left turning angle sensor 11L, the left turning actuator 5L, and the right turning ECU 30R.
  • the right turning ECU 30R is connected to the host ECU 20, the right turning angle sensor 11R, the right turning actuator 5R, and the left turning ECU 30L.
  • the communication between the host ECU 20, the left turning ECU 30L, the right turning ECU 30R, the left turning actuator 5L, the right turning actuator 5R, and each sensor may be communication via an in-vehicle network such as CAN (ControllerCAArea Network). Good.
  • CAN ControllerCAArea Network
  • the host ECU 20, the left turning ECU 30 ⁇ / b> L, and the right turning ECU 30 ⁇ / b> R constitute a control device 50 of the vehicle 1.
  • the host ECU 20 steers the left steered wheels 3L and the right steered wheels 3R (" And is output to the left turning ECU 30L and the right turning ECU 30R.
  • the left turning ECU 30L outputs a turning angle (also referred to as “detected turning angle” or “actual turning angle”) detected by the left turning angle sensor 11L to the host ECU 20 and receives from the host ECU 20 Based on the above, the left steering actuator 5L is operated.
  • the right turning ECU 30R outputs the actual turning angle detected by the right turning angle sensor 11R to the host ECU 20, and operates the right turning actuator 5R based on the target turning angle received from the host ECU 20.
  • the left turning ECU 30L and the right turning ECU 30R are examples of a turning command unit. Note that the steering command unit can also be referred to as a signal output unit.
  • the storage unit 21 makes it possible to store and retrieve various information.
  • the storage unit 21 is realized by a storage device such as a ROM (Read-Only Memory), a RAM (Random Access Memory), a semiconductor memory such as a flash memory, a hard disk drive, or an SSD.
  • the storage unit 21 controls steering-steering information indicating the relationship between the steering angle input from the steering angle sensor 10 and the target turning angles of the left steered wheel 3L and the right steered wheel 3R corresponding to the steering angle.
  • the storage unit 21 provides steering-steering information when the left turning mechanism 4L and the right turning mechanism 4R are normal, and steering-steering when the left turning mechanism 4L or the right turning mechanism 4R is abnormal. Store information. Details of the steering-steering information will be described later.
  • the host ECU 20, the left turning ECU 30L, and the right turning ECU 30R may be configured by a microcomputer including a processor such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processing) and a memory.
  • the memory may be a volatile memory such as a RAM, a non-volatile memory such as a ROM, or the storage unit 21.
  • a part or all of the functions of the host ECU 20, the left turning ECU 30L, and the right turning ECU 30R may be achieved by the CPU executing a program recorded in the ROM using the RAM as a working memory.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of the host ECU 20 of FIG.
  • FIG. 3 is a block diagram showing an example of a functional configuration of the left turning ECU 30L of FIG.
  • FIG. 4 is a block diagram showing an example of a functional configuration of the right turning ECU 30R of FIG.
  • the host ECU 20 includes an acquisition unit 20a and a turning angle determination unit 20b.
  • the acquisition unit 20a acquires the steering angle detected by the steering angle sensor 10, the speed of the vehicle 1 detected by the vehicle speed sensor 12, and the yaw rate of the vehicle 1 detected by the IMU 13.
  • the acquisition unit 20 a acquires the rotation angle of the rotation shaft of the steering wheel 2 by acquiring the steering angle from the steering angle sensor 10. That is, it can be said that the acquisition unit 20a acquires a steering angle corresponding to the driver's steering. Further, the acquisition unit 20a acquires information on whether or not the left steering mechanism 4L and the right steering mechanism 4R have failed from the left steering ECU 30L and the right steering ECU 30R. The acquisition unit 20a acquires the actual turning angles of the left steered wheel 3L and the right steered wheel 3R from the left steered ECU 30L and the right steered ECU 30R. The turning angle determination unit 20b determines a target turning angle corresponding to the steering angle or the like acquired by the acquisition unit 20a for each of the left turning wheel 3L and the right turning wheel 3R. Details of the turning angle determination unit 20b will be described later.
  • the left turning ECU 30L includes a left turning control unit 31L, a drive circuit 32L, and a current detection unit 33L.
  • the left turning control unit 31L controls the operation of the left turning actuator 5L via the drive circuit 32L.
  • the drive circuit 32L is controlled by the left turning control unit 31L and supplies power to the left turning actuator 5L.
  • the drive circuit 32L is configured by an inverter circuit.
  • the current detection unit 33L detects the magnitude of the current flowing through the left turning actuator 5L.
  • the current detection unit 33L includes a circuit that measures current.
  • the left turning control unit 31L functions as a plurality of processing function units, and includes a turning angle deviation calculating unit 41L, a turning angle PI (Proportional Integral) control unit 42L, an angular velocity calculating unit 43L, and an angular velocity deviation calculating unit 44L.
  • the turning angle deviation calculation unit 41L calculates a deviation ⁇ L between the left target turning angle ⁇ LT given from the host ECU 20 and the left actual turning angle ⁇ LR detected by the left turning angle sensor 11L.
  • the deviation ⁇ L ⁇ LT ⁇ LR .
  • Turning angle PI control unit 42L by performing the PI calculation on the deviation .DELTA..delta L calculated by the steering angle deviation calculation unit 41L, computes a left target turning angular velocity omega LT is a target value of the left turning angular velocity .
  • Angular velocity calculating unit 43L by differentiating the left actual turning angle [delta] LR detected by the left steering angle sensor 11L time, calculates the left actual turning angular velocity omega LR is the angular velocity of the left actual turning angle [delta] LR To do.
  • the angular velocity deviation calculating unit 44L calculates a deviation ⁇ L between the left target turning angular velocity ⁇ LT calculated by the turning angle PI control unit 42L and the left actual turning angular velocity ⁇ LR calculated by the angular velocity calculating unit 43L. .
  • the deviation ⁇ L ⁇ LT ⁇ LR .
  • Angular velocity PI control unit 45L by performing the PI calculation on the deviation [Delta] [omega L calculated by the angular velocity deviation calculation unit 44L, computes a left target current value I LT which is a target value of a current to be supplied to the left steering actuator 5L .
  • the PWM control unit 48L by performing the PI calculation on the deviation [Delta] I L which is calculated by the current deviation calculation unit 46L, the actual current value I LR flowing to the left steering actuator 5L, for guiding the left target current value I LT A drive command value for the left steering actuator 5L is generated.
  • the PWM control unit 48L generates a left PWM control signal having a duty ratio corresponding to the drive command value, and outputs the left PWM control signal to the drive circuit 32L. Thereby, the drive circuit 32L supplies the electric power corresponding to a drive command value to the left turning actuator 5L.
  • the left failure detection unit 49L determines whether or not the left steering mechanism 4L has failed, and transmits first failure information indicating the determination result to the host ECU 20.
  • the failure of the left turning mechanism 4L means that the turning angle control for the left turning wheel 3L cannot be performed normally.
  • Left malfunction detecting section 49L for example, if the state steered angle deviation .DELTA..delta L is the first threshold value or more has continued for a first predetermined time or more, the state current deviation [Delta] I L is the second threshold or more second predetermined You may determine with the left steering mechanism 4L having failed, etc., when continuing for more than time.
  • the former case may correspond to a case where an abnormality such as sticking occurs in the physical structure for rotating the left turning shaft 6L.
  • the latter case may correspond to a case where an abnormality such as disconnection occurs in the left steering actuator 5L or the electrical structure that drives the left steering actuator 5L.
  • the host ECU 20 may determine that the left steered mechanism 4L has failed when a state in which communication with the left steered ECU 30L is not possible continues for a third predetermined time or longer.
  • Each component of the left steering control unit 31L and each component of the host ECU 20 are configured by a computer system (not shown) including a processor such as a CPU or a DSP and a memory such as a RAM and a ROM. Also good. Some or all of the functions of each component may be achieved by the CPU or DSP executing a program recorded in the ROM using the RAM as a working memory. In addition, some or all of the functions of each component may be achieved by a dedicated hardware circuit such as an electronic circuit or an integrated circuit. Part or all of the functions of each component may be configured by a combination of the above software functions and hardware circuits.
  • the right turning ECU 30R has the same configuration as that of the left turning ECU 30L except for the difference between left and right. That is, the right turning ECU 30R also includes a right turning control unit 31R, a drive circuit 32R, and a current detection unit 33R.
  • the right turning control unit 31R functions as a plurality of processing function units, and includes a turning angle deviation calculating unit 41R, a turning angle PI control unit 42R, an angular velocity calculating unit 43R, an angular velocity deviation calculating unit 44R, and an angular velocity PI.
  • It includes a control unit 45R, a current deviation calculation unit 46R, a current PI control unit 47R, a PWM control unit 48R, and a right failure detection unit 49R.
  • the configuration of the components of the right turning ECU 30R and the right turning control unit 31R is the same as that of the left turning ECU 30L and the left turning control unit 31L, and thus detailed description thereof is omitted.
  • the drive circuit 32R is controlled by the right turning control unit 31R and supplies power to the right turning actuator 5R.
  • the current detection unit 33R detects the magnitude of the current flowing through the right turning actuator 5R.
  • Right steering control unit 31R as left the actual turning angle [delta] RR detected by the right steering angle sensor 11R is equal to the right target turning angle [delta] RT given from the upper ECU 20, controls the drive circuit 32R To do.
  • Turning angle PI control unit 42R calculates the right target turning angular velocity omega RT.
  • Angular velocity calculating unit 43R calculates the right actual turning angular velocity omega RR is the angular velocity of the right actual turning angle [delta] RR.
  • the angular velocity PI control unit 45R calculates a right target current value IRT that is a target value of a current that should flow through the right turning actuator 5R.
  • Current PI control section 47R is an actual current value I RR flowing to the right steering actuator 5R, it generates a drive command value of the right steering actuator 5R for guiding the right target current value I RT.
  • the PWM control unit 48R generates a right PWM control signal corresponding to the drive command value, and outputs the right PWM control signal to the drive circuit 32R.
  • the drive circuit 32R supplies power corresponding to the drive command value to the right steering actuator 5R.
  • the right failure detection unit 49R determines whether or not the right steering mechanism 4R has failed, and transmits second failure information indicating the determination result to the host ECU 20.
  • the failure of the right turning mechanism 4R means that the turning angle control for the right turning wheel 3R cannot be performed normally.
  • Right malfunction detecting unit 49R for example, if the state steered angle deviation .DELTA..delta R is the first threshold value or more has continued first predetermined time, the state is the current deviation [Delta] I R is the second threshold or more second predetermined You may determine with the right steering mechanism 4R having failed, etc., when continuing for more than time.
  • the host ECU 20 may determine that the right steering mechanism 4R has failed, for example, when a state in which communication with the right steering ECU 30R cannot be performed continues for a third predetermined time or more.
  • the turning angle determination unit 20b has a normal state in which the left turning mechanism 4L and the right turning mechanism 4R have not failed, and an abnormality in which at least one of the left turning mechanism 4L and the right turning mechanism 4R has failed. Different target turning angles are determined depending on the state. That is, when the left steering mechanism 4L fails, the host ECU 20 causes the vehicle 1 to travel by controlling the turning angle of the normal right steering mechanism 4R on the opposite side. When the right steering mechanism 4R fails, the host ECU 20 causes the vehicle 1 to travel by controlling the turning angle of the normal left steering mechanism 4L. Further, the host ECU 20 stops the vehicle 1 or urges the driver to stop the vehicle 1 when both the left steering mechanism 4L and the right steering mechanism 4R fail.
  • the turning angle determination unit 20b is a correction that is a target turning angle obtained by correcting the target turning angle in the normal state in an abnormal state in which one of the left turning mechanism 4L and the right turning mechanism 4R has failed. Determine the target turning angle. Specifically, the turning angle determination unit 20b performs correction by changing the ratio of the target turning angle to the steering angle detected by the steering angle sensor 10 between a normal state and an abnormal state. The ratio is indicated by the target turning angle / steering angle. The ratio of the steering angle / steering angle is called the overall ratio of the steering, the overall gear ratio, or the like.
  • the turning angle determination unit 20b uses the steering angle detected by the steering angle sensor 10, the speed of the vehicle 1 detected by the vehicle speed sensor 12, the yaw rate of the vehicle 1 detected by the IMU 13, and the like.
  • the left target turning angle ⁇ LT and the right target turning angle ⁇ RT of the turning mechanism 4L and the right turning mechanism 4R are calculated.
  • the turning angle determination unit 20b outputs the calculated left target turning angle ⁇ LT and right target turning angle ⁇ RT to the left turning ECU 30L and the right turning ECU 30R, respectively, and the left actual turning angle ⁇ LR and right actual turning angle [delta] RR, respectively, to be equal with the left target turning angle [delta] LT and left target turning angle [delta] RT, to drive the left steering actuator 5L and the right steering actuator 5R.
  • the ratio of the left target turning angle / steering angle in the normal state is expressed as “first left ratio OR LC ”, and the ratio of the right target turning angle / steering angle in the normal state is expressed as “first right ratio OR RC ”. To do.
  • the first left ratio OR LC and the first right ratio OR RC can be calculated with respect to the left and right steering angles.
  • the first left ratio OR LC and the first right ratio OR RC may be constant regardless of the steering direction and the steering angle, or may vary depending on the steering direction and the steering angle. Further, the first left ratio OR LC and the first right ratio OR RC may be constant regardless of the speed of the vehicle 1 detected by the vehicle speed sensor 12 and / or the yaw rate of the vehicle 1 detected by the IMU 13. Well, it may vary accordingly.
  • the first left ratio OR LT and the first right ratio OR LR corresponding to the same steering angle in the same direction may be the same, but the steered wheels outside the turning direction and the inside in the turning direction when the vehicle 1 is turning Since the turning radius is different from the steered wheels, they may be different.
  • the ratio of the left target turning angle / steering angle in the abnormal state is expressed as “second left ratio OR LF ”, and the ratio of the right target turning angle / steering angle in the abnormal state is expressed as “second right ratio OR RF ”. It expresses.
  • the second left ratio OR LF is applied when the right turning mechanism 4R fails, and is used for turning the vehicle 1 by the left turning mechanism 4L only in the failure state of the right turning mechanism 4R.
  • the second right ratio OR RF is applied when the left steering mechanism 4L fails, and is used to cause the vehicle 1 to turn by the right steering mechanism 4R only when the left steering mechanism 4L fails.
  • the second left ratio OR LF is associated with the first left ratio OR LC
  • the second right ratio OR RF is associated with the first right ratio OR RC .
  • the second left ratio OR LF is The first right ratio OR LC is associated with the first left ratio OR LC
  • the second right ratio OR RF is associated with the first right ratio OR RC .
  • FIG. 5 is a diagram showing an example of the relationship between the steering angle and the target turning angle in the left turning mechanism 4L according to the first embodiment.
  • the relationship between the steering angle and the target turning angle in the normal state is indicated by a solid curve Lc
  • the relationship between the steering angle and the target turning angle in the failed state of the right turning mechanism 4R is indicated by a dashed curve. It is indicated by Lf.
  • the steering angle and the turning angle are shown as absolute values.
  • the above-described steering angle and turning angle, and the subsequent steering angle and turning angle are also expressed in absolute values.
  • the curve Lc indicates that the target turning angle increases linearly as the absolute value of the steering angle increases in right steering, and the absolute value of the steering angle in left steering. The larger the becomes, the larger the target turning angle becomes as a quadratic function.
  • the curve Lc is set based on the well-known Ackerman-Jantho theory, the curve Lc is not limited to this.
  • the second left ratio OR LF is the same as the first left ratio OR LC
  • the second left ratio OR LF is larger than the first left ratio OR LC .
  • the second left ratio OR LF / first left ratios OR LC is the ratio of the second left ratio OR LF and first left ratio OR LC in the same steering angle, steering angle Regardless of the case, the constant value LA is used, but the present invention is not limited to this.
  • the vehicle 1 can suppress a decrease in turning ability in the right turning in which the left steered wheel 3L is positioned outside in the turning direction of the vehicle 1.
  • the turning ability is greatly reduced.
  • the ratio of the left target turning angle / steering angle is made larger than that in the normal state, and the left target turning angle is made larger, so that a decrease in the turning ability of the vehicle 1 can be suppressed.
  • FIG. 6 is a diagram illustrating an example of the relationship between the steering angle and the target turning angle in the right turning mechanism 4R according to the first embodiment.
  • the relationship between the steering angle and the target turning angle in the normal state is indicated by a solid curve Rc, and the relationship between the steering angle and the target turning angle in the failed state of the left steering mechanism 4L is a dashed curve. Indicated by Rf.
  • the steering angle and the turning angle are shown as absolute values.
  • the curve Rc and the curve Rf coincide with each other, and in the right steering, the curve Rf draws a curve having a larger right turning target turning angle than the curve Rc. Therefore, in the left steering, the second right ratio OR RF is the same as the first right ratio OR RC , and in the right steering, the second right ratio OR RF is larger than the first right ratio OR RC .
  • the second right ratio OR RF / first right proportions OR RC is the ratio of the second right proportions OR RF and first right proportions OR RC in the same steering angle, steering angle Regardless of the case, the constant value RA is used, but the present invention is not limited to this.
  • the vehicle 1 When the left turning mechanism 4L is in a failure state, the vehicle 1 can suppress a decrease in turning ability in the left turning in which the right turning wheel 3R is positioned outside in the turning direction of the vehicle 1, In the right turning in which the right turning wheel 3R is located inside in the turning direction, the turning ability is greatly reduced. For this reason, lowering of the turning ability of the vehicle 1 can be suppressed by increasing the ratio of the right target turning angle / steering angle to be larger than that in the normal state and increasing the right target turning angle.
  • the target turning angle of the left turning mechanism 4L in the failed state of the right turning mechanism 4R is the input steering angle, and the relationship between the second left ratio OR LF and the first left ratio OR LC. From the second left ratio OR LF corresponding to the steering angle. Similarly, the target turning angle of the right turning mechanism 4R in the failed state of the left turning mechanism 4L is based on the input steering angle and the relationship between the second right ratio OR RF and the first right ratio OR RC. It can be determined from the second right ratio OR RF corresponding to the steering angle.
  • the target turning of the left turning mechanism 4L in the failed state of the right turning mechanism 4R can be determined from the input steering angle and the second left ratio OR LF corresponding to the speed and yaw rate of the vehicle 1.
  • the storage unit 21 may store in advance a map indicating the relationship between the target turning angle and the steering angle in the normal state and the left or right turning mechanism as shown in FIGS. 5 and 6. .
  • a map indicating the relationship between the target turning angle and the steering angle in the normal state and the left or right turning mechanism as shown in FIGS. 5 and 6.
  • the map corresponding to each speed and each yaw rate of the vehicle 1 is stored in the storage unit 21. It may be stored.
  • the turning angle determination unit 20b includes the failure information indicating whether or not the left turning mechanism 4L and the right turning mechanism 4R are lost from the left turning ECU 30L and the right turning ECU 30R, the speed of the vehicle 1 and According to the yaw rate, the target steering angle corresponding to the input steering angle of the steering angle sensor 10 is determined with reference to the maps corresponding to the left steering mechanism 4L and the right steering mechanism 4R in the storage unit 21. May be.
  • the function corresponding to each curve of FIG.5 and FIG.6 may be stored in the memory
  • the functions corresponding to the speed and yaw rate of the vehicle 1 are stored in the storage unit 21. It may be stored.
  • the turning angle determination unit 20b obtains a function corresponding to the speed and / or yaw rate of the vehicle 1 and the failure information from the storage unit 21, and uses this function as the input steering angle of the steering angle sensor 10. A corresponding target turning angle may be determined.
  • the left ratio ratio that is the ratio of the second left ratio OR LF and the first left ratio OR LC and the right ratio ratio that is the ratio of the second right ratio OR RF and the first right ratio OR RC are It may be calculated in advance for each steering angle of steering and right steering and stored in the storage unit 21.
  • the first left ratio OR LC and the first right ratio OR RC change according to the speed and / or yaw rate of the vehicle 1
  • the left ratio ratio and the right ratio ratio corresponding to each speed and each yaw rate of the vehicle 1 May be stored in the storage unit 21.
  • the turning angle determination unit 20b calculates the target turning angle in the normal state from the steering angle of the steering angle sensor 10, and the target turning angle in the normal state and the left ratio and right ratio ratio in the storage unit 21. From the above, a target turning angle corresponding to the failure information may be calculated. For example, when the right turning mechanism 4R fails, the left ratio ratio RL between the second left ratio OR LF and the first left ratio OR LC corresponding to the steering angle is stored from the steering angle of the steering angle sensor 10 or the like. It is determined from the part 21.
  • the second left ratio OR LF is calculated from the first left ratio OR LC and the left ratio ratio RL which are the ratio between the target turning angle and the steering angle in the normal state, and thereby the right turning mechanism 4R The left target turning angle in the failure state is calculated.
  • FIG. 7 shows a flowchart illustrating an example of an operation flow of the steering apparatus 100 according to the first embodiment.
  • the acquisition unit 20a of the host ECU 20 receives the left turning mechanism 4L and the right turning mechanism from the left turning ECU 30L and the right turning ECU 30R. Information on whether or not 4R has failed and the actual turning angles of the left steered wheel 3L and the right steered wheel 3R detected by the left steered angle sensor 11L and the right steered angle sensor 11R are acquired. Further, the acquisition unit 20a acquires the steering angle detected by the steering angle sensor 10, the speed of the vehicle 1 detected by the vehicle speed sensor 12, and the yaw rate of the vehicle 1 detected by the IMU 13.
  • step S002 the turning angle determination unit 20b of the host ECU 20 determines whether or not the left turning mechanism 4L has failed based on information acquired from the left turning ECU 30L. Also, the turning angle determination unit 20b determines that the left turning mechanism 4L has failed even when communication with the left turning ECU 30L is not possible for a third predetermined time or more. If the left turning mechanism 4L has not failed (No in step S002), the turning angle determination unit 20b proceeds to step S003, and if the left turning mechanism 4L has failed (Yes in step S002). The process proceeds to step S004.
  • step S003 the turning angle determination unit 20b determines whether or not the right turning mechanism 4R has failed based on information acquired from the right turning ECU 30R. Further, the turning angle determination unit 20b determines that the right turning mechanism 4R has failed even when communication with the right turning ECU 30R cannot be performed for a third predetermined time or more. If the right turning mechanism 4R has not failed (No in step S003), the turning angle determination unit 20b proceeds to step S005, and if the right turning mechanism 4R has failed (Yes in step S003). The process proceeds to step S006.
  • step S004 the turning angle determination unit 20b determines whether or not the right turning mechanism 4R has failed as in step S003.
  • the turning angle determination unit 20b proceeds to step S007, and when the right turning mechanism 4R has failed (Yes in step S004). The process proceeds to step S008.
  • step S005 the turning angle determination unit 20b determines the target turning angles of the left steered wheel 3L and the right steered wheel 3R in a normal state. Further, the turning angle determination unit 20b outputs the target turning angles of the left turning wheel 3L and the right turning wheel 3R to the left turning ECU 30L and the right turning ECU 30R, and proceeds to step S009.
  • the turning angle determination unit 20b may calculate the target turning angle of the left turning wheel 3L and the right turning wheel 3R based on the steering angle, the speed of the vehicle 1, and the yaw rate of the vehicle 1, and the speed of the vehicle 1 and the vehicle 5 and 6 corresponding to one yaw rate is acquired from the storage unit 21, and the target turning angle corresponding to the steering angle is calculated based on the relationship between the curves Lc and Rc in the map. Good.
  • the turning angle determination unit 20b calculates the target turning angle using a map.
  • step S006 the turning angle determination unit 20b determines the target turning angle of the left turning wheel 3L in a state where only the right turning mechanism 4R has failed. Further, the turning angle determination unit 20b outputs the target turning angle of the left turning wheel 3L to the left turning ECU 30L, and the process proceeds to step S009.
  • the turning angle determination unit 20b acquires a map as illustrated in FIG. 5 corresponding to the speed of the vehicle 1 and the yaw rate of the vehicle 1 from the storage unit 21, and corresponds to the steering angle based on the relationship of the curve Lf in the map. A target turning angle of the left steered wheel 3L is calculated.
  • step S007 the turning angle determination unit 20b determines the target turning angle of the right turning wheel 3R in a state where only the left turning mechanism 4L has failed. Further, the turning angle determination unit 20b outputs the target turning angle of the right turning wheel 3R to the right turning ECU 30R, and proceeds to step S009.
  • the turning angle determination unit 20b acquires a map as shown in FIG. 6 corresponding to the speed of the vehicle 1 and the yaw rate of the vehicle 1 from the storage unit 21, and corresponds to the steering angle based on the relationship of the curve Rf in the map. A target turning angle of the right turning wheel 3R is calculated.
  • step S008 the host ECU 20 prompts the driver to stop the vehicle 1, or activates a brake or the like to stop the vehicle 1.
  • step S009 the left turning ECU 30L and / or the right turning ECU 30R determines that the left actual turning angle and the right actual turning angle detected by the left turning angle sensor 11L and the right turning angle sensor 11R are the turning angles.
  • the left steered actuator 5L and / or the right steered actuator 5R are driven so as to be equal to the target steered angle of the left steered wheel 3L and / or the right steered wheel 3R acquired from the determining unit 20b.
  • the left turning ECU 30L and / or the right turning ECU 30R performs a turning operation.
  • the control device 50 including the host ECU 20, the left steering ECU 30L, and the right steering ECU 30R of the steering device 100 includes the left and right steering mechanisms 4L and 4R that are not mechanically connected to each other. And the left and right steered wheels 3L and 3R individually driven by the driving force of the steered actuators 5L and 5R respectively provided in the left and right steered mechanisms 4L and 4R. is there.
  • the control device 50 acquires the steering angle corresponding to the rotation angle of the rotation shaft of the steering wheel 2 and sets the target turning angle corresponding to the acquired steering angle to the ratio of the turning angle to the steering angle.
  • a left-turning ECU 30L and a right-turning ECU 30R are provided as command units.
  • the turning angle determination unit 20b determines whether the other turning mechanism is based on the second ratio obtained by changing the first ratio that is the above-described ratio at the normal time. The target turning angle of the rudder mechanism is determined.
  • the steering angle determination unit 20b has a normal steering mechanism (the other of the left and right steering mechanisms 4L and 4R) when an abnormality occurs in one of the left and right steering mechanisms 4L and 4R.
  • the target turning angle with respect to is different from the target turning angle when both the left and right turning mechanisms 4L and 4R are normal.
  • the control device 50 controls the steered mechanism 4L or 4R in which no abnormality has occurred and causes the vehicle 1 to travel.
  • an abnormality occurs in one of the steering mechanisms 4R or 4L
  • the turning radius becomes large, etc.
  • the turning performance of the vehicle 1 is reduced.
  • the second ratio is made larger than the first ratio, it is possible to increase the target turning angle of the turning mechanism 4L or 4R in which no abnormality has occurred even if the input steering angle is the same. Accordingly, an increase in the turning radius of the vehicle 1 can be effectively suppressed.
  • the steering angle determination unit 20b determines that the other steering mechanism When the 4R or 4L steered wheels 3R or 3L determine the target turning angle of the turn of the vehicle 1 located inside the steered wheels 3L or 3R of one steered mechanism 4L or 4R in the turning direction of the vehicle 1, Use a second ratio that is greater than one ratio. Further, in the turning angle determination unit 20b, the turning wheel 3R or 3L of the other turning mechanism 4R or 4L is positioned outside the turning wheel 3L or 3R of the one turning mechanism 4L or 4R in the turning direction of the vehicle 1. When determining the target turning angle of the turning of the vehicle 1, a second ratio equal to or lower than the first ratio is used.
  • the turning ability of the vehicle 1 in the case of the first turning in which the steered wheels 3R or 3L of the other turning mechanism 4R or 4L in which no abnormality has occurred is located inside the turning is abnormal.
  • This is lower than the turning ability of the vehicle 1 in the case of the second turn where the steered wheels 3R or 3L of the other turning mechanism 4R or 4L that is not located are located outside the turn.
  • the target turning angle calculated using the second ratio is larger than the target turning angle calculated using the first ratio with respect to the absolute value of the same steering angle. Therefore, the fall of the turning capability of the vehicle 1 can be suppressed effectively.
  • the target turning angle calculated using the second ratio with respect to the absolute value of the same steering angle is equal to or less than the target turning angle calculated using the first ratio. is there.
  • the absolute value of the target turning angle specifically, the target turning angle is differentiated between the first turning and the second turning.
  • the steering device 100 includes the control device 50, the steering angle sensor 10 that detects the steering angle, the left steering mechanism 4L, and the right steering mechanism 4R.
  • the steered mechanism 4L includes a left steered actuator 5L that generates a driving force for individually steering the left steered wheel 3L, and the right steered mechanism 4R individually handles the right steered wheel 3R. It has a right turning actuator 5R that generates a driving force for turning.
  • the steering device 100 as described above can achieve the same effects as the control device 50.
  • Embodiment 2 A steering apparatus according to Embodiment 2 will be described.
  • the steering angle-target steering angle map used by the steering angle determination unit 20b of the host ECU 20 is different from that of the first embodiment.
  • the points different from the first embodiment will be mainly described.
  • FIG. 8 shows an example of the relationship between the steering angle and the target turning angle in the left turning mechanism 4L according to the second embodiment.
  • FIG. 9 shows an example of the relationship between the steering angle and the target turning angle in the right turning mechanism 4R according to the second embodiment.
  • the second left ratio OR LF is applied as the third left ratio
  • the fourth left ratio is applied in the right steering in which the left steered wheel 3L is located on the outside.
  • the fourth left ratio is larger than the first left ratio OR LC and smaller than the third left ratio.
  • the third left ratio and the fourth left ratio are examples of the third ratio and the fourth ratio, respectively.
  • the decrease in the turning ability of the vehicle 1 is suppressed more greatly in the left steering in which the left steered wheel 3L is positioned on the inner side than in the right steering in which the left steered wheel 3L is positioned on the outer side.
  • the turning ability of the vehicle 1 is reduced by determining the target turning angle using the fourth left ratio. Can be suppressed.
  • the right ratio OR RF is applied as the third right ratio
  • the fourth right ratio is applied in the left steering where the right steered wheel 3R is located outside.
  • the fourth right ratio is larger than the first right ratio OR RC and smaller than the third right ratio.
  • the third right ratio and the fourth right ratio are examples of the third ratio and the fourth ratio, respectively.
  • the turning angle determination unit 20b calculates the target turning angle using the maps shown in FIGS. 8 and 9 stored in the storage unit 21, and will be described in the first embodiment. As described above, the target turning angle may be calculated using functions corresponding to the curves in FIGS. 8 and 9. Alternatively, the turning angle determination unit 20b may determine the left ratio of the third left ratio and the fourth left ratio and the first left ratio OR LC , the third right ratio, the fourth right ratio, and the first right ratio OR RC . The target turning angle may be calculated using the right ratio ratio.
  • the same effect as in the first embodiment can be obtained. Furthermore, in the turning device according to the second embodiment, when an abnormality occurs in one of the left and right turning mechanisms 4L and 4R, the turning angle determination unit 20b turns the other turning mechanism 4R or 4L.
  • the steering wheel 3R or 3L determines the target turning angle of the turning of the vehicle 1 positioned inside the turning wheel 3L or 3R of the one turning mechanism 4L or 4R in the turning direction of the vehicle 1, Use a third ratio that is greater than one ratio.
  • the steered angle determining unit 20b is configured such that the steered wheels 3R or 3L of the other steered mechanism 4R or 4L are positioned outside the steered wheels 3L or 3R of the steered mechanism 4L or 4R in the turning direction of the vehicle 1.
  • a fourth ratio larger than the first ratio is used as the second ratio.
  • the third ratio is larger than the fourth ratio.
  • the target turning angle calculated using the third ratio and the fourth ratio is larger than the target turning angle calculated using the first ratio. Therefore, it is possible to suppress a decrease in the turning ability of the vehicle 1 in both the left steering and the right steering. Since the third ratio is larger than the fourth ratio, it is possible to effectively suppress the decrease in the turning ability with respect to the first turning in which the turning ability is further reduced. Since the third ratio and the fourth ratio are both larger than the first ratio, the difference between the third ratio and the fourth ratio can be reduced. Therefore, the difference in turning ability of the vehicle 1 between the left steering and the right steering can be reduced, that is, the turning ability can be equalized.
  • Embodiment 3 A steering apparatus according to Embodiment 3 will be described.
  • the steering angle-target steering angle map used by the steering angle determination unit 20b of the host ECU 20 is different from that of the first embodiment.
  • the points different from the first embodiment will be mainly described.
  • FIG. 10 shows an example of the relationship between the steering angle and the target turning angle in the left turning mechanism 4L according to the third embodiment.
  • FIG. 11 shows an example of the relationship between the steering angle and the target turning angle in the right turning mechanism 4R according to the third embodiment.
  • the relationship between the steering angle and the target turning angle in the first embodiment is indicated by a curve Lf1
  • the steering angle and the target turning in the present embodiment are shown.
  • the relationship between the corners is indicated by a curve Lf2.
  • the second left ratio OR LF is applied as the sixth left ratio.
  • the fifth left ratio increases as the steering angle in the left direction, that is, the absolute value of the steering angle increases.
  • the fifth left ratio and the sixth left ratio are examples of the fifth ratio and the sixth ratio.
  • the target turning angle increases as the absolute value of the steering angle in the left direction increases in the left steering where the left turning wheel 3L is located inside.
  • the relationship between the steering angle and the target turning angle in the first embodiment in the failure state of the left turning mechanism 4L is indicated by a curve Rf1
  • the steering angle and the steering angle in the present embodiment are The relationship of the target turning angle is indicated by a curve Rf2.
  • the second right ratio OR RF is applied as the sixth right ratio.
  • the fifth right ratio increases as the steering angle in the right direction, that is, the absolute value of the steering angle increases.
  • the fifth right ratio and the sixth right ratio are examples of the fifth ratio and the sixth ratio.
  • the target steered angle increases as the absolute value of the steering angle in the rightward direction increases in the right steering where the right steered wheel 3R is located inside.
  • the turning angle determination unit 20b calculates the target turning angle using the maps as shown in FIGS. 10 and 11 stored in the storage unit 21, but will be described in the first embodiment. As described above, the target turning angle may be calculated using functions corresponding to the curves in FIGS. 10 and 11. Alternatively, the turning angle determination unit 20b may determine the left ratio of the fifth left ratio and the sixth left ratio and the first left ratio OR LC , the fifth right ratio, the sixth right ratio, and the first right ratio OR RC . The target turning angle may be calculated using the right ratio ratio.
  • the steering angle determination unit 20b has a second ratio that increases as the steering angle increases when an abnormality occurs in one of the left and right steering mechanisms 4L and 4R. Based on the fifth left ratio and the fifth right ratio, the target turning angle of the other turning mechanism 4R or 4L is determined.
  • a target turning angle is calculated.
  • the steering control using such a target turning angle can effectively suppress a decrease in the turning ability of the vehicle 1 that greatly decreases as the actual turning angle of the other steered wheel 3R or 3L increases. it can.
  • the ratio such as the fifth ratio that increases as the steering angle increases is also applied to the second turn in which the other steered wheel 3R or 3L in which no abnormality has occurred is located outside the turn. Also good.
  • the fourth left ratio and the fourth right ratio in the second embodiment may be increased as the steering angle increases.
  • FIG. 12 is a block diagram illustrating an example of the overall configuration of the steering apparatus 200 according to the fourth embodiment.
  • the steering device 200 is mounted on a vehicle 201 and has a steer-by-wire system configuration in which a left and right independent steering system is adopted.
  • the steered device 200 includes a steering wheel 202 as a steering member operated by the driver for steering, and a left steered wheel 203L and a right steered wheel 203R disposed on the front side of the vehicle 201.
  • the steering device 200 is not mechanically connected to the left turning mechanism 204L and the left turning mechanism 204L for individually turning the left turning wheel 203L, and the right turning wheel 203R is individually turned.
  • the left steered mechanism 204L steers the left steered wheel 203L according to the rotation operation of the steering wheel 202.
  • the right turning mechanism 204R steers the right turning wheel 203R according to the rotation operation of the steering wheel 202.
  • the left turning mechanism 204L and the right turning mechanism 204R each include a left turning actuator 205L and a right turning actuator 205R that are driven in accordance with the rotation operation of the steering wheel 202.
  • Examples of the left turning actuator 205L and the right turning actuator 205R are electric motors.
  • the left turning mechanism 204L steers the left steered wheel 203L by the rotational driving force received from the left turning actuator 205L.
  • the right turning mechanism 204R turns the right turning wheel 203R by the rotational driving force received from the right turning actuator 205R.
  • the left steered actuator 205L steers only the left steered wheel 203L
  • the right steered actuator 205R steers only the right steered wheel 203R.
  • the left turning mechanism 204L and the right turning mechanism 204R have a left turning shaft 206L and a right turning shaft 206R, which are rotation axes for turning the left turning wheel 203L and the right turning wheel 203R, respectively.
  • the left turning shaft 206L and the right turning shaft 206R are supported by the front suspension of the vehicle 201.
  • the front suspension that supports the left turning shaft 206L and the right turning shaft 206R may be any type of suspension such as a strut type, a double wishbone type, and a multi-link type.
  • the steering device 200 includes a steering angle sensor 210 that detects the steering angle of the steering wheel 202 as the target yaw rate of the vehicle 201.
  • the steering angle sensor 210 detects the rotation angle and angular velocity of the rotating shaft of the steering wheel 202.
  • the steering device 200 includes a left turning angle sensor 211L that detects the turning angle of the left turning wheel 203L, and a right turning angle sensor 211R that detects the turning angle of the right turning wheel 203R.
  • the vehicle 201 is provided with a vehicle speed sensor 212 that detects the speed V of the vehicle 201 and an inertial measurement device (hereinafter also referred to as “IMU (Inertial Measurement Unit)”) 213.
  • the IMU 213 can be composed of a gyro sensor, an acceleration sensor, a geomagnetic sensor, and the like.
  • the IMU 213 detects the acceleration and angular velocity of the vehicle 201 in the triaxial direction. Examples of angular velocity in the three axial directions are the yawing, pitching and rolling directions.
  • the IMU 213 detects, for example, an angular velocity (also referred to as “yaw rate”) in the yawing direction. Further, the IMU 213 may detect angular velocities in the pitching and rolling directions.
  • the steering device 200 includes a host ECU (Electronic Control Unit) 220 and a storage unit 221.
  • the storage unit 221 may be disposed separately from the host ECU 220 and may be electrically connected to the host ECU 220 or may be included in the host ECU 220.
  • the left turning mechanism 204L includes a left turning ECU 230L that is one of the lower ECUs
  • the right turning mechanism 204R includes a right turning ECU 230R that is one of the lower ECUs.
  • the host ECU 220 is electrically connected to the left turning ECU 230L, the right turning ECU 230R, the steering angle sensor 210, the vehicle speed sensor 212, and the IMU 213.
  • the left turning ECU 230L is electrically connected to the host ECU 220, the left turning angle sensor 211L, the left turning actuator 205L, and the right turning ECU 230R.
  • the right turning ECU 230R is electrically connected to the host ECU 220, the right turning angle sensor 211R, the right turning actuator 205R, and the left turning ECU 230L.
  • the communication between the host ECU 220, the left turning ECU 230L, the right turning ECU 230R, the left turning actuator 205L, the right turning actuator 205R, and each sensor may be communication via an in-vehicle network such as CAN (Controller Area Network). Good.
  • the host ECU 220, the left turning ECU 230 ⁇ / b> L, and the right turning ECU 230 ⁇ / b> R constitute a control device 250 of the vehicle 201.
  • the host ECU 220 determines a target yaw rate based on information acquired from the steering angle sensor 210, the vehicle speed sensor 212, the IMU 213, the left steering ECU 230L, the right steering ECU 230R, and the storage unit 221, and outputs a drive signal based on the target yaw rate to the left. It outputs to steering ECU230L and right steering ECU230R.
  • the storage unit 221 makes it possible to store and retrieve various information.
  • the storage unit 221 is realized by, for example, a ROM (Read-Only Memory), a RAM (Random Access Memory), a semiconductor memory such as a flash memory, a hard disk drive, or a storage device such as an SSD.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • semiconductor memory such as a flash memory, a hard disk drive, or a storage device such as an SSD.
  • the host ECU 220, the left turning ECU 230L, and the right turning ECU 230R may be configured by a microcomputer including a processor such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processing) and a memory.
  • the memory may be a volatile memory such as a RAM, a non-volatile memory such as a ROM, or the storage unit 221.
  • a part or all of the functions of the host ECU 220, the left turning ECU 230L, and the right turning ECU 230R may be achieved by the CPU executing a program recorded in the ROM using the RAM as a working memory.
  • FIG. 13 is a block diagram illustrating an example of a functional configuration of the host ECU 220 of FIG.
  • the host ECU 220 includes an acquisition unit 220a, a target yaw rate determination unit 220b, and a failure detection unit 220c.
  • the acquisition unit 220a acquires the steering angle detected by the steering angle sensor 210, the speed of the vehicle 201 detected by the vehicle speed sensor 212, and the yaw rate (also referred to as an actual yaw rate) of the vehicle 201 detected by the IMU 213. That is, the acquisition unit 220a is an example of an actual yaw rate acquisition unit.
  • the acquisition unit 220a acquires the rotation angle of the rotation shaft of the steering wheel 202 by acquiring the steering angle from the steering angle sensor 210.
  • the acquisition unit 220a acquires the actual turning angles of the left turning wheel 203L and the right turning wheel 203R from the left turning ECU 230L and the right turning ECU 230R, and obtains the speed of the vehicle 201 detected by the vehicle speed sensor 212.
  • the actual yaw rate of the vehicle 201 may be calculated and acquired based on the actual turning angle and the speed of the vehicle 201.
  • the target yaw rate determining unit 220b determines a target yaw rate corresponding to each of the left turning mechanism 204L and the right turning mechanism 204R. Specifically, the target yaw rate determination unit 220b determines the target yaw rate using the turning angle acquired by the acquisition unit 220a, the speed of the vehicle 201 detected by the vehicle speed sensor 212, the actual yaw rate detected by the IMU 213, and the like. calculate.
  • the failure detection unit 220c determines whether or not at least one of the left turning mechanism 204L and the right turning mechanism 204R has failed, and sets the failure information indicating the determination result to the left turning ECU 230L and the right turning ECU 230R. Send to.
  • the failure information is included in the drive signal.
  • the failure of the turning mechanism means that the turning angle control for the turning wheels cannot be performed normally.
  • the failure of the steering mechanism includes, for example, a state where the torque of the actuator has been lost, a state where the tire performance of the steered wheels has deteriorated, and the like.
  • the left turning mechanism 211L detects the target turning angle of the left turning mechanism 204L and the left turning angle sensor 211L.
  • a state where the deviation from the steering angle (steering angle deviation) is equal to or greater than a predetermined threshold is continued for a predetermined time, it is determined that there is a failure.
  • the failure detection unit 220c determines whether or not the right turning mechanism 204R has failed, the right turning angle sensor 211R detects the target turning angle of the right turning mechanism 204R and the right turning angle sensor 211R.
  • the turning angle deviation When a state in which the deviation from the actual turning angle (the turning angle deviation) is equal to or greater than a predetermined threshold is continued for a predetermined time, it is determined that there is a failure.
  • the turning angle deviation By using the turning angle deviation for the determination of the failure, it is possible to determine the presence or absence of the failure due to an abnormality in the physical structure for rotating the turning shaft.
  • the failure detection unit 220c may determine that there is a failure even when a state in which communication cannot be established between the host ECU 220 and the left turning ECU 230L or the right turning ECU 230R continues for a certain period of time.
  • the host ECU 220 creates a drive signal including the speed V of the vehicle 201 acquired by the acquisition unit 220a, the target yaw rate determined by the target yaw rate determination unit 220b, the failure information generated by the failure detection unit 220c, and the like. It outputs to rudder ECU230L and right turning ECU230R.
  • the left turning ECU 230L outputs the turning angle (also referred to as “detected turning angle” or “actual turning angle”) detected by the left turning angle sensor 211L to the upper ECU 220, Based on the drive signal received from the ECU 220, the left turning actuator 205L is operated.
  • the right turning ECU 230R outputs the actual turning angle detected by the right turning angle sensor 211R to the upper ECU 220, and operates the right turning actuator 205R based on the drive signal received from the upper ECU 220.
  • FIG. 14 is a block diagram showing an example of a functional configuration of the left turning ECU 230L of FIG.
  • the right-turning ECU 230R has basically the same configuration as the left-turning ECU 230L, and a description thereof will be omitted.
  • the left turning ECU 230L includes a left turning control unit 231L and a drive circuit 232L.
  • the left turning control unit 231L controls the operation of the left turning actuator 205L via the drive circuit 232L.
  • the left steering control unit 231L has a drive circuit 232L such that the actual yaw rate ⁇ R acquired by the acquisition unit 220a is equal to the target yaw rate ⁇ T included in the drive signal given from the host ECU 220.
  • the drive circuit 232L is controlled by the left turning control unit 231L and supplies power to the left turning actuator 205L.
  • the drive circuit 232L is configured by an inverter circuit.
  • the left steering control unit 231L includes a steering angle determination unit 233L and a steering command unit 234L.
  • the turning angle determination unit 233L determines the target turning angle for the left turning mechanism 204L by control based on the target yaw rate of the left turning mechanism 204L determined by the target yaw rate determination unit 220b.
  • the turning angle determination unit 233L functions as a plurality of processing function units, and includes a yaw rate deviation calculation unit 241L, a yaw rate PI (Proportional Integral) control unit 242L, and a gain determination unit 243L.
  • the yaw rate deviation calculation unit 241L calculates a deviation ⁇ L (yaw rate deviation) between the target yaw rate ⁇ T in the drive signal given from the host ECU 220 and the actual yaw rate ⁇ R acquired by the acquisition unit 220a.
  • the deviation ⁇ L ⁇ T ⁇ R.
  • the yaw rate PI control unit 242L performs PI control on the deviation ⁇ L calculated by the yaw rate deviation calculation unit 241L based on the gain determined by the gain determination unit 243L, so that the target turning of the left steered wheel 203L is performed. It calculates the steering angle [delta] L.
  • the gain determination unit 243L determines a gain used in the PI control by the yaw rate PI control unit 242L. Specifically, the gain determination unit 243L determines the gain based on the deviation ⁇ L obtained by the yaw rate deviation calculation unit 241L, the speed V of the vehicle 201, and the failure information. For example, the gain determination unit 243L includes a deviation [Delta] [gamma] L, and the speed V, based on the presence or absence of failure in the failure information, a proportional gain used in PI control, to determine an integration gain.
  • the gain determination unit 243L has a proportional gain table and an integral gain table. Based on these tables, the deviation ⁇ L , the speed V, and the presence or absence of failure in the failure information, the proportional gain and integration Determine the gain.
  • FIG. 15 is an explanatory diagram showing a proportional gain table and an integral gain table according to the fourth embodiment.
  • FIG. 15A shows a proportional gain table
  • FIG. 15B shows an integral gain table.
  • the proportional gain table includes a normal time table T11, a low speed table T12, a medium speed table T13, and a high speed table T14.
  • the normal table T11 is used when there is no failure.
  • the normal table T11 is constant at K pl without depending on the change in the deviation ⁇ L.
  • the table T12 for low speed, the table T13 for medium speed, and the table T14 for high speed are used when there is a failure.
  • the low speed table T12 is used when the speed V is in the low speed range.
  • the medium speed table T13 is used when the speed V is in the medium speed range.
  • the high speed table T14 is used when the speed V is in the high speed range.
  • the proportional gain increases as the speed V decreases.
  • the proportional gain is constant at K pl
  • the proportional gain is K It is constant at ph .
  • proportional gain with increasing deviation [Delta] [gamma] L also gradually increases linearly. This inclination increases as the speed V decreases.
  • the integral gain table includes a normal time table T21, a low speed table T22, a medium speed table T23, and a high speed table T24.
  • the normal table T21 is used when there is no failure.
  • the table T22 for low speed, the table T23 for medium speed, and the table T24 for high speed are used when there is a failure.
  • Other relationships are the same as in the proportional gain table.
  • the table is set for each stage by dividing the speed V into three stages.
  • the speed V may be divided into two stages or four or more stages, and a table may be set for each stage. Further, the speed V need not be taken into account in determining the gain.
  • a table when the speed V is not considered is shown in FIG.
  • FIG. 16 is an explanatory diagram illustrating another example of the proportional gain table and the integral gain table according to the fourth embodiment.
  • 16A shows a proportional gain table
  • FIG. 16B shows an integral gain table.
  • the proportional gain table includes a normal table T31 and a failure table T32.
  • the normal table T31 is used when there is no failure.
  • the normal table T31 is constant at K pl without depending on the change in the deviation ⁇ L.
  • Table T32 for the presence of failure used when there is a failure.
  • the proportional gain is constant at K pl
  • the proportional gain is K ph. It is constant at.
  • the proportional gain gradually increases linearly in a range where the deviation ⁇ L is larger than ⁇ c and smaller than K pl .
  • the integral gain table includes a normal table T41 and a failure table T42.
  • the normal table T41 is used when there is no failure.
  • the table for failure T42 is used when there is a failure.
  • Other relationships are the same as in the proportional gain table.
  • proportional gain table and integral gain table are merely examples. In practice, a proportional gain table and an integral gain table appropriate for the conditions of each vehicle 201 may be created by performing various experiments and simulations.
  • the target turning angle is obtained by PI control
  • the target turning angle can be obtained by other control methods such as P control, PD control, and PID control.
  • the gain determination unit 243L may determine a gain suitable for the control method.
  • the steering command unit 234L includes a current value determination unit 244L and a PWM (Pulse Width Modulation) control unit 245L.
  • PWM Pulse Width Modulation
  • Current value determination unit 244L based on the yaw rate PI control unit target steering angle [delta] L calculated by 242 L, and calculates the current value of the current to be supplied to the left steering actuator 205L, drive command including the current value Generate a value.
  • the PWM control unit 245L generates a left PWM control signal having a duty ratio corresponding to the drive command value, and outputs the left PWM control signal to the drive circuit 232L. Accordingly, the drive circuit 232L supplies power corresponding to the drive command value to the left turning actuator 205L.
  • Each component of the left steering control unit 231L and each component of the host ECU 220 are configured by a computer system (not shown) including a processor such as a CPU or a DSP and a memory such as a RAM and a ROM. Also good. Some or all of the functions of each component may be achieved by the CPU or DSP executing a program recorded in the ROM using the RAM as a working memory. In addition, some or all of the functions of each component may be achieved by a dedicated hardware circuit such as an electronic circuit or an integrated circuit. Part or all of the functions of each component may be configured by a combination of the above software functions and hardware circuits.
  • FIG. 17 is a flowchart illustrating an example of an operation flow of the steering apparatus 200 according to the fourth embodiment.
  • the acquisition unit 220a of the host ECU 220 detects the left steered wheel 203L detected by the left steered angle sensor 211L and the right steered angle sensor 211R.
  • the actual turning angle of the right turning wheel 203R, the steering angle detected by the steering angle sensor 210, the speed of the vehicle 201 detected by the vehicle speed sensor 212, and the actual yaw rate of the vehicle 201 detected by the IMU 213 are acquired.
  • step S2 the target yaw rate determination unit 220b of the host ECU 220 uses the actual turning angle acquired by the acquisition unit 220a, the speed of the vehicle 201 detected by the vehicle speed sensor 212, the actual yaw rate detected by the IMU 213, and the like.
  • the target yaw rate of each of the left turning mechanism 204L and the right turning mechanism 204R is calculated.
  • step S3 the failure detection unit 220c of the host ECU 220 determines whether or not at least one of the left steering mechanism 204L and the right steering mechanism 204R has failed, and creates failure information indicating the determination result. .
  • step S4 the host ECU 220 determines whether or not the failure information created by the failure detection unit 220c includes failures of both the left turning mechanism 204L and the right turning mechanism 204R. If YES in step S5, the process proceeds to step S5. If not included, the process proceeds to step S6.
  • step S5 the host ECU 220 prompts the driver to stop the vehicle 201 or activates a brake or the like to stop the vehicle 201.
  • step S6 the host ECU 220 creates a drive signal including the speed V of the vehicle 201 acquired by the acquisition unit 220a, the target yaw rate determined by the target yaw rate determination unit 220b, the failure information generated by the failure detection unit 220c, and the like. And output to the left turning ECU 230L and the right turning ECU 230R.
  • each of the turning angle determination unit 233L of the left turning ECU 230L and the turning angle determination unit (not shown) of the right turning ECU 230R includes the failure of the right turning mechanism 204R in the failure information. If it is included, the process proceeds to step S8. If it is not included, the process proceeds to step S9.
  • step S8 since the right turning mechanism 204R has failed and the right turning wheel 203R cannot be turned accurately, the turning angle determination unit of the right turning ECU 230R performs the target turning angle of the right turning wheel 203R. Without determining, only the turning angle determination unit 233L of the left turning ECU 230L determines the target turning angle of the left turning wheel 203L.
  • the proportional gain and the integral gain at the time of determination are determined based on the failure tables (low speed tables T12 and T22, medium speed tables T13 and T23, and high speed tables T14 and T24).
  • each of the steered angle determining unit 233L of the left steered ECU 230L and the steered angle determining unit of the right steered ECU 230R determines whether or not the failure information includes the failure of the left steered mechanism 204L. If it is included, the process proceeds to step S10. If it is not included, the process proceeds to step S11.
  • step S10 since the left turning mechanism 204L has failed and the left turning wheel 203L cannot be turned accurately, the turning angle determination unit 233L of the left turning ECU 230L performs the target turning of the left turning wheel 203L. Without determining the angle, only the turning angle determination unit of the right turning ECU 230R determines the target turning angle of the right turning wheel 203R.
  • the proportional gain and the integral gain at the time of determination are determined based on the failure tables (low speed tables T12 and T22, medium speed tables T13 and T23, and high speed tables T14 and T24).
  • each of the turning angle determination unit 233L of the left turning ECU 230L and the turning angle determination unit of the right turning ECU 230R includes any failure of the left turning mechanism 204L and the right turning mechanism 204R. Since there is no normal state, the target turning angles of the left steered wheel 203L and the right steered wheel 203R in the normal state are determined. The proportional gain and integral gain at the time of determination are determined based on the normal time tables T11 and T21.
  • step S12 the steering command unit 234L of the left steering ECU 230L and / or the steering command unit (not shown) of the right steering ECU 230R outputs power based on the determined target steering angle to the left steering actuator 205L and / Or output to the right steering actuator 205R.
  • the left turning ECU 230L and / or the right turning ECU 230R causes the left turning wheel 203L and / or the right turning wheel 203R to perform a turning operation.
  • the left turning ECU 230L and / or the right turning ECU 230R has the left actual turning angle and the right actual turning angle detected by the left turning angle sensor 211L and the right turning angle sensor 211R to the left.
  • the left steering actuator 205L and / or the right steering actuator 205R are driven so as to be equal to the target turning angle of the steering wheel 203L and / or the right turning wheel 203R.
  • the control device 250 including the upper ECU 220, the left steering ECU 230L, and the right steering ECU 230R of the steering device 200 according to the fourth embodiment described above includes the left and right steering mechanisms (left steered wheels 203L and The left and right steered wheels (left steered wheels 203L and right steered wheels) are driven by the driving force of the respective actuators (left steered actuator 205L and right steered actuator 205R) that are provided in each of the left and right steered mechanisms.
  • 203R is a control device of the steering device 200 for the vehicle 201 that individually steers.
  • the control device 250 determines a turning angle determination unit (determining the turning angle of the left turning ECU 230L) for determining the target turning angle for each of the left and right turning mechanisms based on the target yaw rate corresponding to each of the left and right turning mechanisms.
  • a turning angle determination unit determining the turning angle of the left turning ECU 230L for determining the target turning angle for each of the left and right turning mechanisms based on the target yaw rate corresponding to each of the left and right turning mechanisms.
  • 233L and a turning angle determination unit (not shown) of the right turning ECU 230R, and a turning command unit 234L that generates a drive signal corresponding to the target turning angle and outputs the drive signal to each actuator.
  • the turning angle determination unit determines a target turning angle for a normal steering mechanism and a target when both the left and right steering mechanisms are normal. Be different from the turning angle.
  • the steering device 200 includes the control device 250, the left steering mechanism (left steering mechanism 204L), and the right steering mechanism (right steering mechanism 204R).
  • the left steered mechanism has a left actuator (left steered actuator 205L) that generates a driving force for individually steering the left steered wheel, and the right steered mechanism includes the right steered wheel. It has a right actuator (right turning actuator 205R) that generates a driving force for turning individually.
  • the vehicle 201 when an abnormality occurs in one of the steering mechanisms, the vehicle 201 has a turning radius that is large even if the actual turning angle of the steering mechanism in which no abnormality has occurred before and after the occurrence of the abnormality is the same. The turning performance of the will be reduced. For this reason, when an abnormality occurs in one of the left and right steering mechanisms, the turning angle determination unit sets the target turning angle for the normal steering mechanism, and both the left and right steering mechanisms are normal. This is different from the target turning angle. As a result, the target turning angle of the turning mechanism in which no abnormality has occurred can be automatically increased as compared to before the occurrence of the abnormality, thereby effectively suppressing an increase in the turning radius of the vehicle 201. Can do.
  • control device 250 includes an acquisition unit 220a that acquires an actual yaw rate that is an actual yaw rate of the vehicle 201, and the turning angle determination unit is a yaw rate deviation (deviation ⁇ L ) that is a deviation between the actual yaw rate and the target yaw rate. Based on this, the gain of feedback control when determining the target turning angle is changed.
  • the gain suitable for a yaw rate deviation is determined by changing the gain of the feedback control at the time of determining a target turning angle based on a yaw rate deviation. Therefore, the target yaw rate can be reached in a short time while suppressing an excessive gain increase.
  • Embodiment 5 In the fourth embodiment, the case where the target turning angle is obtained by feedback control has been described. In this Embodiment 5, the case where a target turning angle is calculated
  • FIG. 18 is a block diagram illustrating an example of a functional configuration of the left turning ECU 230LA according to the fifth embodiment. Since the right steering ECU has basically the same configuration as the left steering ECU 230LA, a description thereof will be omitted.
  • the turning angle determination unit 233LA of the left turning ECU 230LA has a yaw rate control unit 242LA.
  • Yaw rate controller 242LA by performing the feedforward control with respect to the target yaw rate gamma T, determines a target steering angle [delta] L.
  • the yaw rate control unit 242LA performs the feedforward control based on the target yaw rate ⁇ T in the drive signal given from the host ECU 220 and the failure information, and determines the target turning angle ⁇ L. .
  • a yaw rate-steering angle map is used.
  • the yaw rate-steering angle map is a map showing the relationship between the target yaw rate and the target turning angle.
  • the yaw rate control unit 242LA has a yaw rate-steering angle map.
  • FIG. 19 is a graph showing an example of a yaw rate-turning angle map in the left turning mechanism 204L according to the fifth embodiment.
  • the yaw rate-steering angle map of FIG. 19 shows the relationship between the target yaw rate and the target turning angle when the vehicle 201 turns with only the left steering mechanism 204L in a failure state of the right steering mechanism 204R, as a solid line L11.
  • the relationship between the target yaw rate and the target turning angle during normal operation is indicated by a broken line L12.
  • the target turning angle and the target yaw rate are expressed as absolute values. The same applies to the subsequent target turning angle and target yaw rate.
  • Yaw rate controller 242LA when there is no failure of the right steering mechanism 204R to failure information based on the target yaw rate gamma T and dashed L12, [delta] target steering angle of the left steering mechanism 204L in the normal L To decide.
  • the dashed line L12 is shown in a straight line the absolute value of the target yaw rate gamma T is inclined to an absolute value larger upper right of as the target turning angle [delta] L becomes larger.
  • the broken line L12 is point-symmetric with respect to the origin. Note that the broken line L12 may be an exponential curve or a line segment in which a straight line and a curve are combined.
  • the yaw rate controller 242LA if it contains failure of right turning mechanism 204R to failure information based on the target yaw rate gamma T and solid L11, the right steering mechanism 204R at failure determining a target steering angle [delta] L of the left steering mechanism 204L.
  • the solid line L11 is the absolute value of the target steering angle [delta] L becomes larger as the absolute value of the target yaw rate gamma T becomes larger, is shown at an exponential curve inclined upper right as a whole.
  • the vehicle 201 can suppress a decrease in turning ability in the right turning in which the left turning wheel 203L is located outside in the turning direction of the vehicle 201.
  • the turning ability is greatly reduced.
  • a solid line L11 is set so that the left-right difference when the turning ability of the vehicle 201 is reduced can be suppressed.
  • a two-dot chain line L13 is an imaginary line obtained by rotating the solid line L11 by 180 degrees around the origin. The comparison between the solid line L11 and the two-dot chain line L13, the absolute value of the target steering angle [delta] L of the case where normal left steering mechanism 204L corresponds to the outer ring (e.g. a point in FIG.
  • the solid line L11 may change depending on the speed of the vehicle 201.
  • Figure 20 is a graph showing the relationship between the target yaw rate ratio G.gamma L and the target steering angle [delta] L according to the fifth embodiment for each speed V.
  • a broken line L20 indicates a normal relationship.
  • the solid line L21 indicates the relationship when the speed V is 10 km / h
  • the broken line L22 indicates the relationship when the speed V is 40 km / h
  • the alternate long and short dash line L23 indicates the case where the speed V is 80 km / h.
  • the relationship shows a relationship
  • a two-dot chain line L24 shows a relationship when the speed V is 120 km / h.
  • the low speed range is greater than 0 km / h but less than 30 km / h
  • the medium speed range is 30 km / h or more and less than 60 km / h
  • the high speed range is 60 km / h or more and less than 100 km / h, for example, 100 km / h or more and 130 km.
  • the ultra high speed range is less than / h. Since the turning angle acceptable becomes smaller as the speed increases, the most wide range of the target steering angle [delta] L that corresponds to the solid line L21, the narrowest range of the target steering angle [delta] L that corresponds to a two-dot chain line L24 .
  • Solid L21, the dashed line L22, as shown in dashed line L23 and the two-dot chain line L24, the target steering angle [delta] L showing the intersection of the broken line L20 is made smaller as the velocity V increases.
  • Solid L21, the dashed line L22, as shown in dashed line L23 and the two-dot chain line L24, the target steering angle [delta] L also speed V becomes smaller as the increase of the maximum value.
  • the solid line L11 of the yaw rate-steering angle map may be set for each speed V so that the relationship shown in FIG. Specifically, the yaw rate control unit 242LA may correct the solid line L11 so as to satisfy the relationship between the acquired speed V and the graph shown in FIG. Further, the yaw rate control unit 242LA may have a solid line L11 that satisfies the graph shown in FIG. 20 in advance for each speed, and may select an appropriate solid line L11 for the acquired speed V. As described above, the solid line L11 corresponding to each speed reflects the relationship shown in FIG. 20, and therefore, at any speed V, the target turning angle when the normal left turning mechanism 204L corresponds to the outer wheel. the absolute value of [delta] L, the normal left steering mechanism 204L can be made greater than the absolute value of the target steering angle [delta] L of the case which corresponds to the inner ring.
  • FIG. 21 is a graph showing an example of a yaw rate-turning angle map in the right turning mechanism 204R according to the fifth embodiment.
  • the yaw rate-steering angle map in FIG. 21 shows the relationship between the target yaw rate and the target turning angle when the vehicle 201 turns with only the right turning mechanism 204R in a failure state of the left turning mechanism 204L as a solid line L31.
  • the relationship between the target yaw rate and the target turning angle during normal operation is indicated by a broken line L32.
  • the yaw rate controller of the right steering ECU when there is no failure of the left steered mechanism 204L to failure information based on the target yaw rate gamma T and dashed L32, right rotation in the normal determining a target steering angle [delta] R of the steering mechanism 204R.
  • the broken line L32 is the absolute value of the target steering angle [delta] R becomes larger as the absolute value of the target yaw rate gamma T becomes larger, is shown by a straight line inclined in upper right.
  • the broken line L32 is point-symmetric with respect to the origin.
  • the broken line L32 may be an exponential curve or a line segment in which a straight line and a curve are combined.
  • the yaw rate controller of the right steering ECU (not shown), if it contains failure of the left steered mechanism 204L to failure information based on the target yaw rate gamma T and solid L31, Hidariten determining a target steering angle [delta] R of the right steering mechanism 204R during failure of the steering mechanism 204L.
  • the solid line L31 is the absolute value of the target steering angle [delta] R becomes larger as the absolute value of the target yaw rate gamma T becomes larger, is shown at an exponential curve inclined upper right as a whole.
  • the vehicle 201 can suppress a decrease in turning ability in the left turning in which the right turning wheel 203R is located outside in the turning direction of the vehicle 201.
  • the turning ability is greatly reduced.
  • a solid line L31 is set so that a decrease in the turning ability of the vehicle 201 can be suppressed.
  • the solid line L31, the absolute value of the target steering angle [delta] R in the case of normal right steering mechanism 204R corresponds to the inner ring
  • the normal right steering mechanism 204R corresponds to the outer ring and it has a line segment to be larger than the absolute value of the steering angle [delta] R.
  • a two-dot chain line L33 is an imaginary line obtained by rotating the solid line L31 by 180 degrees around the origin.
  • the comparison between the solid line L31 and the two-dot chain line L33, the absolute value of the target steering angle [delta] R in the case of normal right steering mechanism 204R corresponds to the inner ring (eg, point P31 in FIG.
  • the solid line L31 may change depending on the speed of the vehicle 201.
  • Figure 22 is a graph showing the relationship between the target yaw rate ratio G.gamma R and the target steering angle [delta] R according to the fifth embodiment for each speed V.
  • a broken line L40 indicates a normal relationship.
  • the solid line L41 indicates the relationship when the speed V is 10 km / h
  • the broken line L42 indicates the relationship when the speed V is 40 km / h
  • the alternate long and short dash line L43 indicates the case where the speed V is 80 km / h.
  • the relationship shows a relationship
  • a two-dot chain line L44 shows a relationship when the speed V is 120 km / h.
  • the low speed range is greater than 0 km / h but less than 30 km / h
  • the medium speed range is 30 km / h or more and less than 60 km / h
  • the high speed range is 60 km / h or more and less than 100 km / h, for example, 100 km / h or more and 130 km.
  • the ultra high speed range is less than / h. Since the turning angle acceptable becomes smaller as the speed increases, the most wide range of the target steering angle [delta] R corresponding to the solid line L41, the narrowest range of the target steering angle [delta] R corresponding to the two-dot chain line L44 .
  • Solid L41, the dashed line L42, as shown in dashed line L43 and the two-dot chain line L44, the target steering angle [delta] R indicating the intersection of the broken line L40 is made smaller as the velocity V increases.
  • Solid L41, the dashed line L42, as shown in dashed line L43 and the two-dot chain line L44, the target steering angle [delta] R also speed V becomes smaller as the increase of the maximum value.
  • the solid line L31 of the yaw rate-steering angle map may be set for each speed V so that the relationship shown in FIG. Specifically, the yaw rate control unit of the right steering ECU may correct the solid line L31 so as to satisfy the relationship between the acquired speed V and the graph shown in FIG. Further, the yaw rate control unit of the right steering ECU may have a solid line L31 that satisfies the graph shown in FIG. 22 in advance for each speed, and may select an appropriate solid line L31 for the acquired speed V. In this way, the solid line L31 corresponding to each speed reflects the relationship shown in FIG. 22, and therefore, at any speed V, the target turning angle when the normal right turning mechanism 204R corresponds to the inner wheel. the absolute value of [delta] R, the normal right steering mechanism 204R can be made larger than the absolute value of the target steering angle [delta] R in the case corresponding to the outer ring.
  • the turning angle determination unit 233LA has the yaw rate-steering angle map indicating the relationship between the target yaw rate and the target turning angle, and the determined target yaw rate and yaw rate-steering angle map are included. Based on this, a target turning angle is determined.
  • the target turning angle can be determined based on the yaw rate-turning angle map, an appropriate turning angle with respect to the target yaw rate can be determined by feedforward control.
  • the turning angle determination unit 233L is the case where an abnormality has occurred in one of the left and right turning mechanisms, and the absolute value of the target turning angle when the normal turning mechanism corresponds to the inner wheel, The absolute value of the target turning angle when the normal turning mechanism corresponds to the outer wheel is made larger.
  • the lateral force acting on the steered wheels of the failed steering mechanism has been determined in consideration of the tire slip angle and the lateral force resulting from the tire vertical load.
  • the lateral force is also a factor in reducing the turning ability.
  • the yaw rate control unit of the steered angle determining unit in the left and right steered ECUs may acquire the lateral force of each steered wheel and select a yaw rate-steered angle map based on the lateral force. .
  • the yaw rate control unit has a plurality of yaw rate-steering angle maps corresponding to each case in advance. Further, the yaw rate control unit may acquire the lateral force of each steered wheel from, for example, a well-known lateral force sensor provided in the vehicle 201, or may estimate the lateral force of each steered wheel from the detection result of each sensor. .
  • FIG. 23 is an explanatory diagram showing a yaw rate-steering angle map according to the first example.
  • FIG. 23A is a graph showing a yaw rate-steering angle map in the right steering mechanism 204R
  • FIG. 23B is a yaw rate-steering angle map in the left steering mechanism 204L. It is a graph which shows.
  • a broken line L52 is a yaw rate-steering angle map when the left and right steering mechanisms are normal.
  • An alternate long and two short dashes line L53 indicates a yaw rate when the vehicle 201 is turned only by the right steering mechanism 204R in a failure state of the left steering mechanism 204L and the lateral force F11 is not generated on the left steered wheel 203L. It is a turning angle map.
  • a solid line L51 is a yaw rate-steering angle map according to the first example, and is a case where the vehicle 201 is turned by only the right steering mechanism 204R in a failure state of the left steering mechanism 204L.
  • the yaw rate-steering angle map is obtained when the lateral force F11 in the direction opposite to the turning direction is generated (case 1).
  • the solid line L51 has a larger absolute value of the target turning angle than the two-dot chain line L53.
  • the yaw rate control unit of the right-turning ECU determines that it is case 1 based on the acquired failure information and lateral force
  • the yaw rate-steering angle map of the first example (solid line L51) Select Since the yaw rate control unit for the right turning determines the target turning angle using the solid line L51, the absolute value of the target turning angle for the right turning mechanism 204R is the target turning when no lateral force is generated. It becomes larger than the absolute value of the corner. Thereby, the fall of the turning capability in the case of the case 1 at the time of failure of the left steering mechanism 204L can be suppressed.
  • a broken line L62 is a yaw rate-steering angle map when the left and right steering mechanisms are normal.
  • An alternate long and two short dashes line L63 indicates a yaw rate when the vehicle 201 is turned only by the left steering mechanism 204L in a failure state of the right steering mechanism 204R and the lateral force F12 is not generated on the right steered wheel 203R. It is a turning angle map.
  • a solid line L61 is a yaw rate-steering angle map according to the first example, and is a case where the vehicle 201 is turned by only the left turning mechanism 204L in a failure state of the right turning mechanism 204R, and the right turning wheel 203R.
  • this is a yaw rate-steering angle map when a lateral force F12 in a direction opposite to the turning direction is generated (case 1).
  • the solid line L61 has a larger absolute value of the target turning angle than the two-dot chain line L63. If the yaw rate control unit 242LA of the left turning ECU 230LA determines that the case 1 is based on the acquired failure information and lateral force, the yaw rate-steering angle map (solid line L61) of the first example is used. select.
  • the absolute value of the target turning angle with respect to the left turning mechanism 204L is the target when no lateral force is generated. It becomes larger than the absolute value of the turning angle. Thereby, the fall of the turning capability in case 1 at the time of failure of the right turning mechanism 204R can be suppressed.
  • the steered angle determination unit determines the target turning with respect to the normal steered mechanism.
  • the absolute value of the steering angle is made larger than the absolute value of the target turning angle when no lateral force is generated. Accordingly, it is possible to suppress a decrease in turning ability when a lateral force is generated in a direction opposite to the turning direction with respect to the steered wheels of the turning mechanism that has become abnormal.
  • FIG. 24 is an explanatory diagram showing a yaw rate-steering angle map according to the second example.
  • FIG. 24A is a graph showing a yaw rate-steering angle map in the right steering mechanism 204R
  • FIG. 24B is a yaw rate-steering angle map in the left steering mechanism 204L. It is a graph which shows.
  • a broken line L72 is a yaw rate-steering angle map when the left and right turning mechanisms are normal.
  • An alternate long and two short dashes line L73 indicates a yaw rate when the vehicle 201 is turned only by the right steering mechanism 204R when the left steering mechanism 204L has failed, and the lateral force F21 is not generated on the left steered wheel 203L. It is a turning angle map.
  • a solid line L71 is a yaw rate-steering angle map according to the second example, and is a case where the vehicle 201 is turned only by the right steering mechanism 204R in a failure state of the left steering mechanism 204L.
  • the yaw rate-steering angle map when the lateral force F21 in the same direction as the turning direction is generated (case 2) is shown.
  • the solid line L71 has a smaller absolute value of the target turning angle than the two-dot chain line L73.
  • the yaw rate control unit of the right-turning ECU determines that it is case 2 based on the acquired failure information and lateral force
  • the yaw rate-steering angle map of the second example (solid line L71) Select Since the yaw rate control unit of the right turning ECU determines the target turning angle using the solid line L71, the absolute value of the target turning angle for the right turning mechanism 204R is the target turning angle when no lateral force is generated. It becomes smaller than the absolute value of the rudder angle. Thereby, the fall of the turning capability in case 2 at the time of failure of the left steering mechanism 204L can be suppressed.
  • a broken line L82 is a yaw rate-steering angle map when the left and right steering mechanisms are normal.
  • An alternate long and two short dashes line L83 indicates a yaw rate when the vehicle 201 is turned by the left turning mechanism 204L only in a failure state of the right turning mechanism 204R and the lateral force F22 is not generated on the right turning wheel 203R. It is a turning angle map.
  • a solid line L81 is a yaw rate-steering angle map according to the first example, and is a case where the vehicle 201 is turned by only the left steering mechanism 204L in a failure state of the right steering mechanism 204R.
  • this is a yaw rate-steering angle map when a lateral force F22 in the same direction as the turning direction is generated (case 2).
  • the solid line L81 has a smaller absolute value of the target turning angle than the two-dot chain line L83. If the yaw rate control unit 242LA of the left turning ECU 230LA determines that it is case 2 based on the acquired failure information and lateral force, the yaw rate-steering angle map (solid line L81) of the second example is used. select.
  • the absolute value of the target turning angle for the left turning mechanism 204L is the target when no lateral force is generated. It becomes smaller than the absolute value of the turning angle. Thereby, the fall of the turning capability in case 2 at the time of failure of the right turning mechanism 204R can be suppressed.
  • the steered angle determining unit determines whether the target for the normal steered mechanism is the target.
  • the absolute value of the turning angle is made smaller than the absolute value of the target turning angle when no lateral force is generated. Accordingly, it is possible to suppress a decrease in turning ability when a lateral force is generated in the same direction as the turning direction with respect to the steered wheels of the turning mechanism that has become abnormal.
  • FIG. 25 is an explanatory diagram showing a yaw rate-steering angle map according to a third example.
  • FIG. 25A is a graph showing a yaw rate-steering angle map in the left steering mechanism 204L
  • FIG. 25B is a yaw rate-steering angle map in the right steering mechanism 204R. It is a graph which shows.
  • FIG. 25 shows a yaw rate-turning angle map when the vehicle 201 is traveling on a cant road. On the cant road, a lateral force acts in the same direction on the steered wheels that are abnormal regardless of the turning direction.
  • the determination as to whether or not the vehicle is traveling on a cant can be made based on the acceleration, angular velocity, and the like in the three-axis directions of the vehicle 201 detected by the IMU 213.
  • a broken line L92 is a yaw rate-steering angle map when the left and right steering mechanisms are normal.
  • An alternate long and two short dashes line L93 indicates a yaw rate when the vehicle 201 is turned only by the right steering mechanism 204R in a state where the left steering mechanism 204L has failed, and the lateral force F31 is not generated on the left steered wheel 203L. It is a turning angle map.
  • a solid line L91 is a yaw rate-steering angle map according to the third example, and is a case where the vehicle 201 is turned by only the right steering mechanism 204R in a failure state of the left steering mechanism 204L.
  • a yaw rate-steering angle map when a lateral force F31 due to a cant road is generated (case 3) is shown.
  • the solid line L91 is set to be smaller than the absolute value of the target turning angle in the upper right region from the origin, and is set to be greater than or equal to the absolute value of the target turning angle in the lower left region from the origin, as compared with the two-dot chain line L93.
  • the solid steering line L91, the broken line L92, and the two-dot chain line L93 all have a negative target turning angle when the target yaw rate is zero. This is because, on a cant road, when the target yaw rate is set to zero, it is necessary to steer in a direction with a high slope.
  • the yaw rate control unit of the right-turning ECU determines that it is case 3 based on the acquired failure information and lateral force
  • the yaw rate-turning angle map (solid line L91) of the third example is determined. ) Is selected.
  • the yaw rate control unit of the right turning ECU determines the target turning angle using the solid line L91. For this reason, the absolute value of the target turning angle for the right turning mechanism 204R is greater than the absolute value of the target turning angle when no lateral force is generated when the right turning mechanism 204R corresponds to the inner wheel. Also grows.
  • the absolute value of the target turning angle for the right turning mechanism 204R is equal to or less than the absolute value of the target turning angle when no lateral force is generated when the right turning mechanism 204R corresponds to the outer wheel. Become. Thereby, the fall of the turning capability in case 3 at the time of failure of the right turning mechanism 204R can be suppressed.
  • a broken line L102 is a yaw rate-steering angle map when the left and right turning mechanisms are normal.
  • An alternate long and two short dashes line L103 indicates a yaw rate when the vehicle 201 is turned by the left steering mechanism 204L only when the right steering mechanism 204R has failed, and the lateral force F32 is not generated on the right steered wheel 203R. It is a turning angle map.
  • a solid line L101 is a yaw rate-steering angle map according to the third example, and is a case where the vehicle 201 is turned by only the left steering mechanism 204L in a failure state of the right steering mechanism 204R.
  • the yaw rate-steering angle map when the lateral force F32 caused by the cant road is generated (case 3) is shown.
  • the solid line L101 is set to be larger than the absolute value of the target turning angle in the lower left region from the origin, and is set to be equal to or less than the absolute value of the target turning angle in the upper right region from the origin, as compared with the two-dot chain line L103.
  • the solid steering line 101, the broken line L102, and the two-dot chain line L103 all have a negative target turning angle when the target yaw rate is zero. This is because, on a cant road, when the target yaw rate is set to zero, it is necessary to steer in a direction with a high slope.
  • the yaw rate-steering angle map (solid line L101) of the third example is determined.
  • the yaw rate control unit 242LA of the left turning ECU 230LA determines the target turning angle using the solid line L101. For this reason, the absolute value of the target turning angle with respect to the left turning mechanism 204L is greater than the absolute value of the target turning angle when no lateral force is generated when the left turning mechanism 204L corresponds to the inner wheel. Also grows.
  • the absolute value of the target turning angle for the left turning mechanism 204L is equal to or less than the absolute value of the target turning angle when no lateral force is generated when the left turning mechanism 204L corresponds to an outer wheel. Become. Thereby, the fall of the turning capability in case 3 at the time of failure of the right turning mechanism 204R can be suppressed.
  • the turning angle determination unit does not generate a lateral force when the vehicle 201 turns on a cant road and a lateral force is generated in the turning direction of the vehicle 201. If the lateral force is generated in the direction opposite to the turning direction, the absolute value of the target turning angle should be greater than the absolute value of the target turning angle when no lateral force is generated. . Thereby, even when one of the left and right steering mechanisms becomes abnormal when traveling on a cant road, it is possible to suppress a decrease in turning ability.
  • FIG. 26 is a block diagram illustrating an example of a functional configuration of the left turning ECU 230LB according to the sixth embodiment.
  • the right-turning ECU has basically the same configuration as the left-turning ECU 230LB, and a description thereof will be omitted.
  • the turning angle determination unit 233LB of the left turning ECU 230LB includes a slip angle control unit 242LB and a conversion unit 246LB.
  • Slip angle control unit 242LB by performing the feedforward control with respect to the target yaw rate gamma T, determines a target slip angle beta L. Specifically, the slip angle control unit 242LB performs feedforward control based on the target yaw rate ⁇ T in the drive signal given from the host ECU 220 and the failure information, and determines the target slip angle ⁇ L. .
  • a yaw rate-slip angle map is used.
  • the yaw rate-slip angle map is a map showing the relationship between the target yaw rate and the target slip angle.
  • the slip angle control unit 242LB has a yaw rate-slip angle map.
  • FIG. 27 is a graph showing an example of a yaw rate-slip angle map in the left steering mechanism 204L according to the sixth embodiment.
  • the yaw rate-slip angle map of FIG. 27 shows the relationship between the target yaw rate and the target slip angle when the vehicle 201 turns with only the left steering mechanism 204L in a state where the right steering mechanism 204R has failed, as a solid line L111.
  • the relationship between the target yaw rate and the target slip angle at the normal time is indicated by a broken line L112.
  • the target slip angle and the target yaw rate are expressed as absolute values.
  • Slip angle control unit 242LB when there is no failure of the right steering mechanism 204R to failure information based on the target yaw rate gamma T and dashed L112, beta target slip angle of the left steering mechanism 204L in the normal L To decide.
  • the broken line L112 is, the absolute value of the target slip angle beta L increases as the absolute value of the target yaw rate gamma T becomes larger, is shown at an exponential curve inclined upper left as a whole.
  • the broken line L112 is a curve that is point-symmetric with respect to the origin. Note that the broken line L112 may be a straight line or a line segment in which a straight line and a curved line are combined.
  • the slip angle control unit 242LB if it contains failure of right turning mechanism 204R to failure information based on the target yaw rate gamma T and solid L111, when the right steering mechanism 204R failure
  • the target slip angle ⁇ L of the left turning mechanism 204L at is determined.
  • the solid line L111 is, the absolute value of the target steering angle [delta] L becomes larger as the absolute value of the target yaw rate gamma T becomes larger, is shown at an exponential curve inclined upper left as a whole.
  • FIG. 28 is a graph showing the relationship between the target yaw rate ratio G ⁇ L and the target slip angle ⁇ L according to the sixth embodiment for each speed V.
  • a broken line L120 indicates a normal relationship.
  • the solid line L121 indicates the relationship when the speed V is 10 km / h
  • the broken line L122 indicates the relationship when the speed V is 40 km / h
  • the alternate long and short dash line L123 indicates the case where the speed V is 80 km / h.
  • a relationship is shown, and a two-dot chain line L124 shows a relationship when the speed V is 120 km / h.
  • the low speed range is greater than 0 km / h but less than 30 km / h
  • the medium speed range is 30 km / h or more and less than 60 km / h
  • the high speed range is 60 km / h or more and less than 100 km / h, for example, 100 km / h or more and 130 km.
  • the ultra high speed range is less than / h.
  • Solid L121, dashed L122, as shown in dashed line L123 and the two-dot chain line L124, the target slip angle beta L which becomes the maximum value is larger as the velocity V increases.
  • the solid line L111 of the yaw rate-slip angle map may be set for each speed V so that the relationship shown in FIG.
  • the slip angle control unit 242LB may correct the solid line L111 so as to satisfy the relationship between the acquired speed V and the graph shown in FIG.
  • the slip angle control unit 242LB may have a solid line L111 that satisfies the graph shown in FIG. 28 for each speed in advance, and may select an appropriate solid line L111 for the acquired speed V.
  • a solid line L111 corresponding to each speed, the relationship shown in FIG. 28 are reflected, in any of the velocity V, it is possible to determine the appropriate target slip angle beta L.
  • Conversion unit 246LB converts the target slip angle beta L slip angle control unit 242LB decides the target turning angle [delta] L. Conversion unit 246LB converts the target slip angle beta L to the target turning angle [delta] L by known conversion methods. For example, the conversion unit 246LB converts the target slip angle beta L to the target turning angle [delta] L based on the following equation (1).
  • ⁇ L is the target slip angle
  • ⁇ car is the vehicle body side slip angle
  • V is the vehicle speed
  • is the actual yaw rate
  • l f is the distance from the vehicle body center of gravity to the front wheel center
  • d f is a front tread.
  • FIG. 29 is a graph showing an example of a yaw rate-slip angle map in the right steering mechanism 204R according to the sixth embodiment.
  • the yaw rate-slip angle map in FIG. 29 shows, as a solid line L131, the relationship between the target yaw rate and the target slip angle when the vehicle 201 turns with only the right steering mechanism 204R in a failure state of the left steering mechanism 204L.
  • the relationship between the target yaw rate and the target slip angle at normal time is indicated by a broken line L132.
  • the slip angle control unit of the right steering ECU when there is no failure of the left steered mechanism 204L to failure information based on the target yaw rate gamma T and dashed L132, right at the time of normal determining a target slip angle ⁇ R of the steering mechanism 204R.
  • the broken line L132 the absolute value of the target steering angle [delta] R becomes larger as the absolute value of the target yaw rate gamma T becomes larger, it is shown at an exponential curve inclined upper left.
  • a broken line L132 is a point-symmetric curve with respect to the origin. Note that the broken line L132 may be a straight line or a line segment in which a straight line and a curved line are combined.
  • the slip angle control unit of the right steering ECU (not shown), if it contains failure of the left steered mechanism 204L to failure information based on the target yaw rate gamma T and solid L131, left determining a target slip angle ⁇ R of the right steering mechanism 204R at the time of failure of the steering mechanism 204L.
  • the solid line L131 is, the absolute value of the target slip angle beta R increases as the absolute value of the target yaw rate gamma T becomes larger, is shown at an exponential curve inclined upper left as a whole.
  • FIG. 30 is a graph showing the relationship between the target yaw rate ratio G.gamma R and the target slip angle beta R according to a sixth embodiment for each speed V.
  • a broken line L140 indicates a normal relationship.
  • a solid line L141 indicates a relationship when the speed V is 10 km / h
  • a broken line L142 indicates a relationship when the speed V is 40 km / h
  • an alternate long and short dash line L143 indicates a case where the speed V is 80 km / h.
  • a relationship is shown, and a two-dot chain line L144 shows a relationship when the speed V is 120 km / h.
  • the low speed range is greater than 0 km / h but less than 30 km / h
  • the medium speed range is 30 km / h or more and less than 60 km / h
  • the high speed range is 60 km / h or more and less than 100 km / h, for example, 100 km / h or more and 130 km.
  • the ultra high speed range is less than / h.
  • the solid line L131 of the yaw rate-slip angle map may be set for each speed V so that the relationship shown in FIG.
  • the slip angle control unit of the right turning ECU may correct the solid line L131 so as to satisfy the relationship between the acquired speed V and the graph shown in FIG.
  • the slip angle control unit of the right-turning ECU may have a solid line L131 that satisfies the graph shown in FIG. 30 for each speed in advance, and may select an appropriate solid line L131 for the acquired speed V.
  • a solid line L131 corresponding to each speed, the relationship shown in FIG. 30 are reflected, in any of the velocity V, it is possible to determine the appropriate target slip angle beta R.
  • Conversion of the right steering ECU converts the target slip angle beta R slip angle control unit of the right steering ECU decides the target turning angle [delta] R.
  • Converter converts the target slip angle beta R to the target steering angle [delta] R by known conversion methods.
  • the conversion unit converts the target slip angle beta R to the target steering angle [delta] R based on the above equation (1).
  • the turning angle determination unit 233LB has the yaw rate-slip angle map indicating the relationship between the target yaw rate and the target slip angle, and based on the determined target yaw rate and the yaw rate-slip angle map. A target slip angle is obtained, and a target turning angle is determined based on the target slip angle.
  • the target turning angle can be determined based on the yaw rate-slip angle map, an appropriate turning angle with respect to the target yaw rate can be determined by feedforward control.
  • the acquisition unit 220a acquires the target yaw rate by calculating the target yaw rate based on the detection result of the steering angle sensor 210 .
  • the acquisition unit may have any form as long as the target yaw rate can be acquired.
  • the vehicle 201 is an autonomous driving vehicle
  • an acquisition unit that calculates and acquires a target yaw rate based on a traveling route created during traveling may be used. That is, in this case, the acquisition unit is an example of a target yaw rate acquisition unit.
  • the control device includes the target yaw rate acquisition unit that calculates and acquires the target yaw rate based on the travel route created during automatic traveling, and the turning angle determination unit is acquired by the target yaw rate acquisition unit.
  • a target turning angle for each of the left and right turning mechanisms may be determined based on the target yaw rate. Therefore, even during automatic travel, if an abnormality occurs in one of the left and right steering mechanisms that are not connected to each other, it is possible to suppress a decrease in the turning ability of the vehicle.
  • the acquisition unit may acquire the target yaw rate calculated by a calculation unit different from the acquisition unit.
  • the target yaw rate may include a target turning radius. That is, the target turning radius may be used instead of the target yaw rate of the above embodiment, and in this case, the actual yaw rate is the actual turning radius.
  • the turning angle determination unit is provided in each of the left turning ECU 230L and the right turning ECU 230R is exemplified.
  • the turning angle determination unit may be provided in the host ECU.
  • the turning angle determination unit according to the fourth embodiment or the fifth embodiment is, in Case 1, the absolute value of the target turning angle with respect to a normal turning mechanism when the lateral force is not generated. It may be larger than the absolute value of the target turning angle. Further, in case 2, the turning angle determination unit according to the fourth embodiment or the fifth embodiment calculates the absolute value of the target turning angle with respect to a normal turning mechanism as the target turning angle when no lateral force is generated. It may be smaller than the absolute value of the rudder angle.
  • the turning angle determination unit is a case where the vehicle turns on a cant road in case 3, and a lateral force is generated with respect to the turning direction of the vehicle 201.
  • the lateral force is not generated, it is smaller than the absolute value of the target turning angle when the lateral force is not generated.
  • the lateral force is generated in the direction opposite to the turning direction, the lateral force is not generated. It is good also as more than the absolute value of the target turning angle in the case.
  • the technology of the present invention may be realized by a recording medium such as a system, apparatus, method, integrated circuit, computer program or computer-readable recording disk, and the system, apparatus, method, integrated circuit.
  • the present invention may be realized by any combination of a computer program and a recording medium.
  • the computer-readable recording medium includes a non-volatile recording medium such as a CD-ROM.
  • each processing unit included in the above embodiment is typically realized as an LSI (Large Scale Integration) that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • LSI Large Scale Integration
  • circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a processor such as a CPU reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • IC card or module is a computer system that includes a microprocessor, ROM, RAM, and the like.
  • the IC card or module may include the above-described LSI or system LSI.
  • the IC card or the module achieves its function by the microprocessor operating according to the computer program. These IC cards and modules may have tamper resistance.
  • the technique according to the present invention is useful for a steering device in which a mechanism for turning each steered wheel is independent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

互いに機械的に接続されていない左右の転舵機構(4L、4R)を備え且つ各転舵アクチュエータ(5L、5R)の駆動力によって左右の転舵輪(3L、3R)を個別に転舵する車両用の転舵装置(100)の制御装置(250)は、転舵機構(4L、4R)それぞれに対する目標転舵角を決定する転舵角決定部(20b)と、目標転舵角に対応した駆動信号を作成し、当該駆動信号を各アクチュエータ(5L、5R)に出力する転舵指令部(30L、30R)とを備える。転舵角決定部(20b)は、前記左右の転舵機構のうちの一方に異常が発生した場合には、正常な転舵機構に対する目標転舵角を、前記左右の転舵機構の両者が正常の場合の目標転舵角とは異なるようにする。

Description

制御装置、転舵装置、制御方法及びプログラム
 本発明は、制御装置、転舵装置、制御方法及びプログラムに関する。
 ステアリングホイールと転舵機構とが機械的に接続されていない転舵装置がある。例えば、特許文献1には、左右独立操舵可能であるステアリング装置が記載されている。左右の転舵輪それぞれに転舵機構が設けられ、各転舵機構は、電動モータを動力源とする転舵用アクチュエータを備える。転舵機構はそれぞれ、異なった操舵角で独立に転舵輪を転舵可能である。さらに、ステアリング装置は、転舵用アクチュエータに異常が発生した場合に、一方の転舵用アクチュエータの駆動力を他方の転舵用アクチュエータに機械的に伝達するフェールセーフ機構を備える。特許文献1に記載されるフェールセーフ機構では、2つの転舵用アクチュエータそれぞれと接続された2つのシャフトの係合部に、運転者がピンを挿入することによって、2つのシャフトが係合する。そして、2つのシャフトを介して、2つの転舵用アクチュエータが駆動力を伝達可能に接続される。つまり、左右の転舵輪が、2つのシャフトによって機械的に接続される。
特開2011-131777号公報
 ここで、特許文献1のように、2つのシャフトが係合することにより左右の転舵機構が互いに連結されたステアリング装置にあっては、一方の転舵機構に失陥等の異常が発生しても、異常が発生した転舵機構に接続された転舵輪が制動不能に陥りにくい。なお、転舵機構又は転舵輪が失陥するとは、当該転舵機構による転舵角制御又は当該転舵輪に対する転舵角制御が正常に行えなくなることを意味する。一方、軽量化やコストダウン等を目的として、左右の転舵機構が互いに連結されていないステアリング装置が検討されているが、一方の転舵機構に失陥等の異常が発生した場合には、異常が発生した転舵機構に接続された転舵輪が制御不能に陥る可能性が考えられる。この結果、車両の旋回能力が著しく低下する可能性がある。
 そこで、本発明は、左右の転舵機構が互いに連結されていない転舵装置において、一方の転舵機構に異常が発生した場合、車両の旋回能力の低下を抑える制御装置、転舵装置、制御方法及びプログラムを提供する。
 本発明の一態様に係る制御装置は、互いに機械的に接続されていない左右の転舵機構を備え且つ前記左右の転舵機構のそれぞれに備えられる各アクチュエータの駆動力によって左右の転舵輪を個別に転舵する車両用の転舵装置の制御装置であって、前記左右の転舵機構のそれぞれに対する目標転舵角を決定する転舵角決定部と、前記目標転舵角に対応した駆動信号を作成し、当該駆動信号を前記各アクチュエータに出力する転舵指令部とを備え、前記転舵角決定部は、左右の転舵機構のうちの一方に異常が発生した場合には、正常な転舵機構に対する目標転舵角を、左右の転舵機構の両者が正常の場合の目標転舵角とは異なるようにする。
 本発明の一態様に係る転舵装置は、本発明の一態様に係る制御装置と、操舵角を検出する操舵角センサと、前記左の転舵機構及び前記右の転舵機構とを備え、前記左の転舵機構は、前記左の転舵輪を個別に転舵するための駆動力を発生する左の前記アクチュエータを有し、前記右の転舵機構は、前記右の転舵輪を個別に転舵するための駆動力を発生する右の前記アクチュエータを有する。
 本発明の一態様に係る制御方法は、互いに機械的に接続されていない左右の転舵機構を備え且つ前記左右の転舵機構のそれぞれに備えられる各アクチュエータの駆動力によって左右の転舵輪を個別に転舵する車両用の転舵装置の制御方法であって、前記左右の転舵機構のそれぞれに対する目標転舵角を決定し、決定された目標転舵角に応じた駆動信号を、前記各アクチュエータに出力し、前記目標転舵角の決定では、前記左右の転舵機構のうちの一方に異常が発生した場合には、正常な転舵機構に対する目標転舵角を、前記左右の転舵機構の両者が正常の場合の目標転舵角とは異なるように決定する。
 本発明の一態様に係るプログラムは、互いに機械的に接続されていない左右の転舵機構のそれぞれに対する目標転舵角を決定し、決定された目標転舵角に応じた駆動信号を、前記左右の転舵機構のそれぞれに備えられ且つ左右の転舵輪を個別に転舵する各アクチュエータに出力し、前記目標転舵角の決定では、前記左右の転舵機構のうちの一方に異常が発生した場合には、正常な転舵機構に対する目標転舵角を、前記左右の転舵機構の両者が正常の場合の目標転舵角とは異なるように決定することをコンピュータに実行させる。
 本発明に係る制御装置等によると、互いに連結されていない左右の転舵機構の一方に異常が発生した場合、車両の旋回能力の低下を抑えることが可能となる。
図1は、実施の形態1に係る転舵装置の全体的な構成の一例を模式的に示す図である。 図2は、図1の上位ECUの機能的な構成の一例を示すブロック図である。 図3は、図1の左転舵ECUの機能的な構成の一例を示すブロック図である。 図4は、図1の右転舵ECUの機能的な構成の一例を示すブロック図である。 図5は、実施の形態1に係る左転舵機構における操舵角と目標転舵角との関係の一例を示す図である。 図6は、実施の形態1に係る右転舵機構における操舵角と目標転舵角との関係の一例を示す図である。 図7は、実施の形態1に係る転舵装置の動作の流れの一例を示すフローチャートである。 図8は、実施の形態2に係る左転舵機構における操舵角と目標転舵角との関係の一例を示す図である。 図9は、実施の形態2に係る右転舵機構における操舵角と目標転舵角との関係の一例を示す図である。 図10は、実施の形態3に係る左転舵機構における操舵角と目標転舵角との関係の一例を示す図である。 図11は、実施の形態3に係る右転舵機構における操舵角と目標転舵角との関係の一例を示す図である。 図12は、実施の形態4に係る転舵装置の全体的な構成の一例を示すブロック図である。 図13は、図1の上位ECUの機能的な構成の一例を示すブロック図である。 図14は、図1の左転舵ECUの機能的な構成の一例を示すブロック図である。 図15は、実施の形態4に係る比例ゲインテーブル及び積分ゲインテーブルを示す説明図である。 図16は、実施の形態4に係る比例ゲインテーブル及び積分ゲインテーブルのその他の例を示す説明図である。 図17は、実施の形態4に係る転舵装置の動作の流れの一例を示すフローチャートである。 図18は、実施の形態5に係る左転舵ECUの機能的な構成の一例を示すブロック図である。 図19は、実施の形態5に係る左転舵機構におけるヨーレート-転舵角マップの一例を示すグラフである。 図20は、実施の形態5に係る目標ヨーレート比率と目標転舵角との関係を速度毎に示すグラフである。 図21は、実施の形態5に係る右転舵機構におけるヨーレート-転舵角マップの一例を示すグラフである。 図22は、実施の形態5に係る目標ヨーレート比率と目標転舵角との関係を速度毎に示すグラフである。 図23は、第一の例に係るヨーレート-転舵角マップを示す説明図である。 図24は、第二の例に係るヨーレート-転舵角マップを示す説明図である。 図25は、第三の例に係るヨーレート-転舵角マップを示す説明図である。 図26は、実施の形態6に係る左転舵ECUの機能的な構成の一例を示すブロック図である。 図27は、実施の形態6に係る左転舵機構におけるヨーレート-すべり角マップの一例を示すグラフである。 図28は、実施の形態6に係る目標ヨーレート比率と目標すべり角との関係を速度毎に示すグラフである。 図29は、実施の形態6に係る右転舵機構におけるヨーレート-すべり角マップの一例を示すグラフである。 図30は、実施の形態6に係る目標ヨーレート比率と目標すべり角との関係を速度毎に示すグラフである。
 以下、実施の形態に係る転舵装置等を、図面を参照しながら説明する。なお、以下で説明される実施の形態は、包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ(工程)、並びにステップの順序等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は模式図であり、必ずしも厳密に図示されたものではない。さらに、各図において、実質的に同一の構成要素に対しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。
 [実施の形態1]
 まず、本発明の実施の形態1に係る転舵装置100の全体的な構成を説明する。図1には、実施の形態1に係る転舵装置100の全体的な構成の一例が模式的に示されている。転舵装置100は、車両1に搭載され、左右独立転舵システムが採用されたステア・バイ・ワイヤシステムの構成を備えている。転舵装置100は、運転者が操向のために操作する操舵部材としてのステアリングホイール2と、車両1の前方側に配置された左転舵輪3L及び右転舵輪3Rとを備える。さらに、転舵装置100は、左転舵輪3Lを個別に転舵するための左転舵機構4Lと、左転舵機構4Lと機械的に接続されておらず且つ右転舵輪3Rを個別に転舵するための右転舵機構4Rとを備える。左転舵機構4Lは、ステアリングホイール2の回転操作に応じて左転舵輪3Lを転舵する。右転舵機構4Rは、ステアリングホイール2の回転操作に応じて右転舵輪3Rを転舵する。
 左転舵機構4L及び右転舵機構4Rはそれぞれ、ステアリングホイール2の回転操作に応じて駆動される左転舵アクチュエータ5L及び右転舵アクチュエータ5Rを備える。左転舵アクチュエータ5L及び右転舵アクチュエータ5Rの例は、電動モータである。また、左転舵機構4Lは、左転舵アクチュエータ5Lから受ける回転駆動力により左転舵輪3Lを転舵させる。右転舵機構4Rは、右転舵アクチュエータ5Rから受ける回転駆動力により右転舵輪3Rを転舵させる。ステアリングホイール2と、左転舵機構4L及び右転舵機構4Rとの間には、ステアリングホイール2に加えられた操舵トルクを機械的に伝達する機械的結合はない。左転舵アクチュエータ5Lは、左転舵輪3Lのみを転舵し、右転舵アクチュエータ5Rは、右転舵輪3Rのみを転舵する。
 左転舵機構4L及び右転舵機構4Rはそれぞれ、左転舵輪3L及び右転舵輪3Rを転舵させるための回転軸である左転舵軸6L及び右転舵軸6Rを有している。左転舵軸6L及び右転舵軸6Rは、車両1のフロントサスペンションによって支持されている。左転舵軸6L及び右転舵軸6Rを支持するフロントサスペンションは、ストラット式、ダブルウィッシュボーン式及びマルチリンク式等のいかなる形式のサスペンションであってもよい。
 さらに、転舵装置100は、ステアリングホイール2の操舵角を検出する操舵角センサ10を備える。本実施の形態では、操舵角センサ10は、ステアリングホイール2の回転シャフトの回転角及び角速度を検出する。また、転舵装置100は、左転舵輪3Lの転舵角を検出する左転舵角センサ11Lと、右転舵輪3Rの転舵角を検出する右転舵角センサ11Rとを備える。
 また、車両1には、車両1の速度を検出する車速センサ12、及び慣性計測装置(以下、「IMU(Inertial Measurement Unit)」とも呼ぶ)13が設けられている。IMU13は、ジャイロセンサ、加速度センサ及び地磁気センサ等で構成され得る。例えば、IMU13は、車両1の3軸方向の加速度及び角速度等を検出する。角速度の3軸方向の例は、ヨーイング、ピッチング及びローリング方向である。IMU13は、例えばヨーイング方向の角速度(「ヨーレート」とも呼ぶ)を検出する。さらに、IMU13は、ピッチング及びローリング方向の角速度を検出してもよい。
 また、転舵装置100は、上位ECU(電子制御ユニット:Electronic Control Unit)20及び記憶部21を備える。記憶部21は、上位ECU20と別に配置され、上位ECU20と接続されていてもよく、上位ECU20に含まれていてもよい。左転舵機構4Lは、下位ECUの1つである左転舵ECU30Lを備え、右転舵機構4Rは、下位ECUの1つである右転舵ECU30Rを備える。上位ECU20は、左転舵ECU30L、右転舵ECU30R、操舵角センサ10、車速センサ12及びIMU13と接続されている。左転舵ECU30Lは、上位ECU20、左転舵角センサ11L、左転舵アクチュエータ5L及び右転舵ECU30Rと接続されている。右転舵ECU30Rは、上位ECU20、右転舵角センサ11R、右転舵アクチュエータ5R及び左転舵ECU30Lと接続されている。上位ECU20、左転舵ECU30L、右転舵ECU30R、左転舵アクチュエータ5L、右転舵アクチュエータ5R及び各センサ間の通信は、CAN(Controller Area Network)等の車載ネットワークを介した通信であってもよい。ここで、上位ECU20、左転舵ECU30L及び右転舵ECU30Rは、車両1の制御装置50を構成する。
 上位ECU20は、操舵角センサ10、車速センサ12、IMU13、左転舵ECU30L、右転舵ECU30R及び記憶部21から取得する情報に基づき、左転舵輪3L及び右転舵輪3Rの転舵角(「目標転舵角」とも呼ぶ)を決定し、左転舵ECU30L及び右転舵ECU30Rに出力する。
 左転舵ECU30Lは、左転舵角センサ11Lが検出する転舵角(「検出転舵角」又は「実転舵角」とも呼ぶ)を上位ECU20に出力し、上位ECU20から受け取る目標転舵角に基づき、左転舵アクチュエータ5Lを動作させる。右転舵ECU30Rは、右転舵角センサ11Rが検出する実転舵角を上位ECU20に出力し、上位ECU20から受け取る目標転舵角に基づき、右転舵アクチュエータ5Rを動作させる。左転舵ECU30L及び右転舵ECU30Rは、転舵指令部の一例である。なお、転舵指令部は、信号出力部ということも可能である。
 記憶部21は、種々の情報の格納及び取り出しを可能にする。記憶部21は、例えば、ROM(Read-Only Memory)、RAM(Random Access Memory)、フラッシュメモリなどの半導体メモリ、ハードディスクドライブ、又はSSD等の記憶装置によって実現される。記憶部21は、操舵角センサ10から入力される操舵角と、当該操舵角に対応する左転舵輪3L及び右転舵輪3Rの目標転舵角との関係を示す操舵-転舵情報を、制御マップ又は数式等の形式で格納する。記憶部21は、左転舵機構4L及び右転舵機構4Rが正常であるときの操舵-転舵情報と、左転舵機構4L又は右転舵機構4Rが異常であるときの操舵-転舵情報とを格納する。操舵-転舵情報の詳細は後述する。
 上位ECU20、左転舵ECU30L及び右転舵ECU30Rは、CPU(Central Processing Unit)又はDSP(Digital Signal Processor)等のプロセッサ及びメモリを備えるマイクロコンピュータにより構成されてもよい。メモリは、RAM等の揮発性メモリ、及び、ROM等の不揮発性メモリであってもよく、記憶部21であってもよい。上位ECU20、左転舵ECU30L及び右転舵ECU30Rの一部又は全部の機能は、CPUがRAMを作業用のメモリとして用いてROMに記録されたプログラムを実行することによって達成されてもよい。
 次いで、上位ECU20、左転舵ECU30L及び右転舵ECU30Rの詳細を説明する。図2は、図1の上位ECU20の機能的な構成の一例を示すブロック図である。図3は、図1の左転舵ECU30Lの機能的な構成の一例を示すブロック図である。図4は、図1の右転舵ECU30Rの機能的な構成の一例を示すブロック図である。図2に示すように、上位ECU20は、取得部20aと、転舵角決定部20bとを含む。取得部20aは、操舵角センサ10によって検出された操舵角、車速センサ12によって検出された車両1の速度、IMU13によって検出された車両1のヨーレートを取得する。取得部20aは、操舵角センサ10から操舵角を取得することによって、ステアリングホイール2の回転シャフトの回転角を取得する。つまり、取得部20aは、運転者の操舵に対応した操舵角を取得するとも言える。また、取得部20aは、左転舵ECU30L及び右転舵ECU30Rから左転舵機構4L及び右転舵機構4Rが失陥しているか否かの情報を取得する。取得部20aは、左転舵ECU30L及び右転舵ECU30Rから左転舵輪3L及び右転舵輪3Rの実転舵角を取得する。転舵角決定部20bは、取得部20aによって取得された操舵角等に応じた目標転舵角を、左転舵輪3L及び右転舵輪3Rそれぞれに対して決定する。転舵角決定部20bの詳細は、後述する。
 図3に示すように、左転舵ECU30Lは、左転舵制御部31Lと、駆動回路32Lと、電流検出部33Lとを含む。左転舵制御部31Lは、駆動回路32Lを介して、左転舵アクチュエータ5Lの動作を制御する。駆動回路32Lは、左転舵制御部31Lによって制御され、左転舵アクチュエータ5Lに電力を供給する。駆動回路32Lは、インバータ回路で構成される。電流検出部33Lは、左転舵アクチュエータ5Lを流れる電流の大きさを検出する。電流検出部33Lは、電流を計測する回路等で構成される。
 左転舵制御部31Lは、左転舵角センサ11Lによって検出される左実転舵角δLRが、上位ECU20から与えられる左目標転舵角δLTに等しくなるように、駆動回路32Lを制御する。左転舵制御部31Lは、複数の処理機能部として機能し、転舵角偏差演算部41Lと、転舵角PI(Proportional Integral)制御部42Lと、角速度演算部43Lと、角速度偏差演算部44Lと、角速度PI制御部45Lと、電流偏差演算部46Lと、電流PI制御部47Lと、PWM(Pulse Width Modulation)制御部48Lと、左失陥検出部49Lとを含む。
 転舵角偏差演算部41Lは、上位ECU20から与えられる左目標転舵角δLTと、左転舵角センサ11Lによって検出される左実転舵角δLRとの偏差Δδを演算する。なお、偏差Δδ=δLT-δLRである。転舵角PI制御部42Lは、転舵角偏差演算部41Lによって算出される偏差Δδに対するPI演算を行うことによって、左転舵角速度の目標値である左目標転舵角速度ωLTを演算する。角速度演算部43Lは、左転舵角センサ11Lによって検出される左実転舵角δLRを時間微分することによって、左実転舵角δLRの角速度である左実転舵角速度ωLRを演算する。
 角速度偏差演算部44Lは、転舵角PI制御部42Lによって算出される左目標転舵角速度ωLTと、角速度演算部43Lによって算出される左実転舵角速度ωLRとの偏差Δωを演算する。なお、偏差Δω=ωLT-ωLRである。角速度PI制御部45Lは、角速度偏差演算部44Lによって算出される偏差Δωに対するPI演算を行うことによって、左転舵アクチュエータ5Lに流すべき電流の目標値である左目標電流値ILTを演算する。電流偏差演算部46Lは、角速度PI制御部45Lによって算出される左目標電流値ILTと、電流検出部33Lによって検出される左転舵アクチュエータ5Lの実電流値ILRとの偏差ΔIを演算する。なお、偏差ΔI=ILT-ILRである。
 電流PI制御部47Lは、電流偏差演算部46Lによって算出された偏差ΔIに対するPI演算を行うことによって、左転舵アクチュエータ5Lに流れる実電流値ILRを、左目標電流値ILTに導くための左転舵アクチュエータ5Lの駆動指令値を生成する。PWM制御部48Lは、駆動指令値に対応するデューティ比の左PWM制御信号を生成し、駆動回路32Lに出力する。これにより、駆動回路32Lは、駆動指令値に対応した電力を、左転舵アクチュエータ5Lに供給する。
 左失陥検出部49Lは、左転舵機構4Lが失陥したか否かを判定し、その判定結果を示す第一失陥情報を上位ECU20に送信する。左転舵機構4Lが失陥するとは、左転舵輪3Lに対する転舵角制御が正常に行えないことを意味する。左失陥検出部49Lは、例えば、転舵角偏差Δδが第一閾値以上である状態が第一所定時間以上継続した場合、電流偏差ΔIが第二閾値以上である状態が第二所定時間以上継続した場合等に、左転舵機構4Lが失陥したと判定してもよい。前者のケースは、左転舵軸6Lを回転させるための物理的な構造に固着等の異常が発生するケースに該当し得る。後者のケースは、左転舵アクチュエータ5L又は左転舵アクチュエータ5Lを駆動する電気的な構造に断線等の異常が発生するケースに該当し得る。なお、上位ECU20は、左転舵ECU30Lとの間で通信できない状態が第三所定時間以上継続した場合等に、左転舵機構4Lが失陥したと判定してもよい。
 上述の左転舵制御部31Lの各構成要素及び上位ECU20の各構成要素は、CPU又はDSP等のプロセッサ、並びに、RAM及びROM等のメモリなどからなるコンピュータシステム(図示せず)により構成されてもよい。各構成要素の一部又は全部の機能は、CPU又はDSPがRAMを作業用のメモリとして用いてROMに記録されたプログラムを実行することによって達成されてもよい。また、各構成要素の一部又は全部の機能は、電子回路又は集積回路等の専用のハードウェア回路によって達成されてもよい。各構成要素の一部又は全部の機能は、上記のソフトウェア機能とハードウェア回路との組み合わせによって構成されてもよい。
 また、図4に示すように、右転舵ECU30Rは、左右の違いを除き、左転舵ECU30Lと同様の構成を有する。つまり、右転舵ECU30Rも、右転舵制御部31Rと、駆動回路32Rと、電流検出部33Rとを備えている。右転舵制御部31Rは、複数の処理機能部として機能し、転舵角偏差演算部41Rと、転舵角PI制御部42Rと、角速度演算部43Rと、角速度偏差演算部44Rと、角速度PI制御部45Rと、電流偏差演算部46Rと、電流PI制御部47Rと、PWM制御部48Rと、右失陥検出部49Rとを含む。このような右転舵ECU30R及びその右転舵制御部31Rの構成要素の構成は、左転舵ECU30L及びその左転舵制御部31Lと同様であるため、その詳細な説明を省略する。
 また、駆動回路32Rは、右転舵制御部31Rによって制御され、右転舵アクチュエータ5Rに電力を供給する。電流検出部33Rは、右転舵アクチュエータ5Rを流れる電流の大きさを検出する。右転舵制御部31Rは、右転舵角センサ11Rによって検出される左実転舵角δRRが、上位ECU20から与えられる右目標転舵角δRTに等しくなるように、駆動回路32Rを制御する。
 転舵角偏差演算部41Rは、右目標転舵角δRTと右実転舵角δRRとの偏差Δδ(Δδ=δRT-δRR)を演算する。転舵角PI制御部42Rは、右目標転舵角速度ωRTを演算する。角速度演算部43Rは、右実転舵角δRRの角速度である右実転舵角速度ωRRを演算する。角速度偏差演算部44Rは、右目標転舵角速度ωRTと右実転舵角速度ωRRとの偏差Δω(Δω=ωRT-ωRR)を演算する。角速度PI制御部45Rは、右転舵アクチュエータ5Rに流すべき電流の目標値である右目標電流値IRTを演算する。電流偏差演算部46Rは、右目標電流値IRTと右転舵アクチュエータ5Rの実電流値IRRとの偏差ΔI(I=IRT-IRR)を演算する。電流PI制御部47Rは、右転舵アクチュエータ5Rに流れる実電流値IRRを、右目標電流値IRTに導くための右転舵アクチュエータ5Rの駆動指令値を生成する。PWM制御部48Rは、駆動指令値に対応する右PWM制御信号を生成し、駆動回路32Rに出力し、駆動回路32Rは、駆動指令値に対応した電力を右転舵アクチュエータ5Rに供給する。
 右失陥検出部49Rは、右転舵機構4Rが失陥したか否かを判定し、その判定結果を示す第二失陥情報を上位ECU20に送信する。右転舵機構4Rが失陥するとは、右転舵輪3Rに対する転舵角制御が正常に行えないことを意味する。右失陥検出部49Rは、例えば、転舵角偏差Δδが第一閾値以上である状態が第一所定時間以上継続した場合、電流偏差ΔIが第二閾値以上である状態が第二所定時間以上継続した場合等に、右転舵機構4Rが失陥したと判定してもよい。なお、上位ECU20は、右転舵ECU30Rとの間で通信できない状態が第三所定時間以上継続した場合等に、右転舵機構4Rが失陥したと判定してもよい。
 次いで、上位ECU20の転舵角決定部20bによる目標転舵角の決定処理の詳細を説明する。転舵角決定部20bは、左転舵機構4L及び右転舵機構4Rが失陥していない正常状態と、左転舵機構4L及び右転舵機構4Rの少なくとも一方が失陥している異常状態との間で、異なる目標転舵角を決定する。つまり、上位ECU20は、左転舵機構4Lが失陥した場合、反対側の正常な右転舵機構4Rの転舵角を制御することによって、車両1を走行させる。上位ECU20は、右転舵機構4Rが失陥した場合、正常な左転舵機構4Lの転舵角を制御することによって、車両1を走行させる。また、上位ECU20は、左転舵機構4L及び右転舵機構4Rの両方が失陥した場合、車両1を停止させ、又は、運転者に車両1の停止を促す。
 転舵角決定部20bは、左転舵機構4L及び右転舵機構4Rの一方が失陥している異常状態では、正常状態の目標転舵角に補正を加えた目標転舵角である補正目標転舵角を決定する。具体的には、転舵角決定部20bは、操舵角センサ10によって検出される操舵角に対する目標転舵角の比率を、正常状態と異常状態との間で異ならせることによって、補正を加える。上記比率は、目標転舵角/操舵角で示される。転舵角/操舵角の比率は、ステアリングのオーバーオールレシオ、オーバーオールギアレシオ等と呼ばれる。
 転舵角決定部20bは、正常状態では、操舵角センサ10によって検出される操舵角、車速センサ12によって検出される車両1の速度、IMU13によって検出される車両1のヨーレート等を用いて、左転舵機構4L及び右転舵機構4Rそれぞれの左目標転舵角δLT及び右目標転舵角δRTを算出する。転舵角決定部20bは、算出された左目標転舵角δLT及び右目標転舵角δRTをそれぞれ、左転舵ECU30L及び右転舵ECU30Rに出力し、左実転舵角δLR及び右実転舵角δRRがそれぞれ、左目標転舵角δLT及び左目標転舵角δRTと等しくなるように、左転舵アクチュエータ5L及び右転舵アクチュエータ5Rを駆動させる。
 正常状態における左目標転舵角/操舵角の比率を「第一左比率ORLC」と表現し、正常状態における右目標転舵角/操舵角の比率を「第一右比率ORRC」と表現する。このような第一左比率ORLC及び第一右比率ORRCは、左方向及び右方向の各操舵角に対して、算出することができる。
 第一左比率ORLC及び第一右比率ORRCは、操舵方向及び操舵角に関わらず一定であってもよく、操舵方向及び操舵角に応じて変わってもよい。さらに、第一左比率ORLC及び第一右比率ORRCは、車速センサ12によって検出される車両1の速度、及び/又は、IMU13によって検出される車両1のヨーレートに関わらず一定であってもよく、これらに応じて変わってもよい。また、同じ方向の同じ操舵角に対応する第一左比率ORLT及び第一右比率ORLRは、同じであってもよいが、車両1の旋回時における旋回方向外側の転舵輪と旋回方向内側の転舵輪との間で旋回半径が異なるため、異なっていてもよい。
 また、異常状態における左目標転舵角/操舵角の比率を「第二左比率ORLF」と表現し、異常状態における右目標転舵角/操舵角の比率を「第二右比率ORRF」と表現する。第二左比率ORLFは、右転舵機構4Rの失陥時に適用され、右転舵機構4Rの失陥状態に左転舵機構4Lのみで車両1を旋回走行させるために用いられる。第二右比率ORRFは、左転舵機構4Lの失陥時に適用され、左転舵機構4Lの失陥状態に右転舵機構4Rのみで車両1を旋回走行させるために用いられる。
 左方向及び右方向の各操舵角について、第二左比率ORLFは、第一左比率ORLCに対応付けられ、第二右比率ORRFは、第一右比率ORRCに対応付けられる。また、第一左比率ORLC及び第一右比率ORRCが車両1の速度及び/又はヨーレートに応じて変化する場合、車両1の速度毎及びヨーレート毎に、第二左比率ORLFは、第一左比率ORLCに対応付けられ、第二右比率ORRFは、第一右比率ORRCに対応付けられる。
 具体的には、右転舵機構4Rの失陥状態に左転舵機構4Lのみで車両1を旋回走行させる場合、車両1の旋回方向において左転舵輪3Lが内側に位置する左操舵では、第二左比率ORLFは第一左比率ORLCよりも大きく設定され、車両1の旋回方向において左転舵輪3Lが外側に位置する右操舵では、第二左比率ORLFは第一左比率ORLC以下に設定される。このような関係が、図5に示されている。なお、図5は、実施の形態1に係る左転舵機構4Lにおける操舵角と目標転舵角との関係の一例を示す図である。
 図5では、正常状態の操舵角及び目標転舵角の関係が、実線の曲線Lcで示され、右転舵機構4Rの失陥状態の操舵角及び目標転舵角の関係が、破線の曲線Lfで示されている。図5では、操舵角及び転舵角は、絶対値で示されている。なお、本明細書では、上述した操舵角及び転舵角、並びに、以降の操舵角及び転舵角も、絶対値で表現されている。図5に示すように、本実施の形態では、曲線Lcは、右操舵において、操舵角の絶対値が大きくなるほど目標転舵角が一次関数的に大きくなり、左操舵において、操舵角の絶対値が大きくなるほど目標転舵角が二次関数的に大きくなる。このように、曲線Lcは、公知のアッカーマン・ジャントー理論に基づいて、曲線Lcが設定されているが、これに限定されない。
 右操舵では、曲線Lc及び曲線Lfが一致し、左操舵では、曲線Lfは、曲線Lcと比較して、より左転舵の目標転舵角が大きい曲線を描く。よって、右操舵では、第二左比率ORLFは第一左比率ORLCと同じであり、左操舵では、第二左比率ORLFは第一左比率ORLCよりも大きい。さらに、本実施の形態における左操舵では、同じ操舵角における第二左比率ORLFと第一左比率ORLCとの比率である第二左比率ORLF/第一左比率ORLCが、操舵角にかかわらず一定の値LAとされているが、これに限定されない。
 右転舵機構4Rが失陥状態のとき、車両1は、車両1の旋回方向において左転舵輪3Lが外側に位置する右転舵では、旋回能力の低下を抑えることができるが、車両1の旋回方向において左転舵輪3Lが内側に位置する左転舵では、旋回能力を大きく低下させる。このため、左目標転舵角/操舵角からなる比率を、正常状態よりも大きくし、左目標転舵角を大きくすることによって、車両1の旋回能力の低下が抑えられる。
 同様に、左転舵機構4Lの失陥状態に右転舵機構4Rのみで車両1を旋回走行させる場合、車両1の旋回方向において右転舵輪3Rが内側に位置する右操舵では、第二右比率ORRFは第一右比率ORRCよりも大きく設定され、車両1の旋回方向において右転舵輪3Rが外側に位置する左操舵では、第二右比率ORRFは第一右比率ORRC以下に設定される。このような関係が、図6に示されている。なお、図6は、実施の形態1に係る右転舵機構4Rにおける操舵角と目標転舵角との関係の一例を示す図である。
 図6では、正常状態の操舵角及び目標転舵角の関係が、実線の曲線Rcで示され、左転舵機構4Lの失陥状態の操舵角及び目標転舵角の関係が、破線の曲線Rfで示されている。図6では、操舵角及び転舵角は、絶対値で示されている。図6に示すように、左操舵では、曲線Rc及び曲線Rfが一致し、右操舵では、曲線Rfは、曲線Rcと比較して、より右転舵の目標転舵角が大きい曲線を描く。よって、左操舵では、第二右比率ORRFは第一右比率ORRCと同じであり、右操舵では、第二右比率ORRFは第一右比率ORRCよりも大きい。さらに、本実施の形態における右操舵では、同じ操舵角における第二右比率ORRFと第一右比率ORRCとの比率である第二右比率ORRF/第一右比率ORRCが、操舵角にかかわらず一定の値RAとされているが、これに限定されない。
 左転舵機構4Lが失陥状態のとき、車両1は、車両1の旋回方向において右転舵輪3Rが外側に位置する左転舵では、旋回能力の低下を抑えることができるが、車両1の旋回方向において右転舵輪3Rが内側に位置する右転舵では、旋回能力を大きく低下させる。このため、右目標転舵角/操舵角からなる比率を、正常状態よりも大きくし、右目標転舵角を大きくすることによって、車両1の旋回能力の低下が抑えられる。
 上述のように、右転舵機構4Rの失陥状態の左転舵機構4Lの目標転舵角は、入力される操舵角と、第二左比率ORLFと第一左比率ORLCとの関係に基づく当該操舵角に対応する第二左比率ORLFから、決定することが可能である。同様に、左転舵機構4Lの失陥状態の右転舵機構4Rの目標転舵角は、入力される操舵角と、第二右比率ORRFと第一右比率ORRCとの関係に基づく当該操舵角に対応する第二右比率ORRFから、決定することが可能である。例えば、第一左比率ORLC及び第一右比率ORRCが車両1の速度及び/又はヨーレートに応じて変化する場合、右転舵機構4Rの失陥状態の左転舵機構4Lの目標転舵角は、入力される操舵角と、車両1の速度及びヨーレートに対応する第二左比率ORLFとから、決定することが可能である。
 記憶部21には、図5及び図6に示すような正常状態及び左又は右の転舵機構の失陥状態の目標転舵角及び操舵角の関係を示すマップが予め格納されていてもよい。例えば、第一左比率ORLC及び第一右比率ORRCが車両1の速度及び/又はヨーレートに応じて変化する場合、車両1の各速度及び各ヨーレートに対応する上記マップが、記憶部21に格納されていてもよい。そして、転舵角決定部20bは、左転舵ECU30L及び右転舵ECU30Rから取得する左転舵機構4L及び右転舵機構4Rの失陥の有無を示す失陥情報と、車両1の速度及び/又はヨーレートとに応じて、記憶部21内の左転舵機構4L及び右転舵機構4Rに対応するマップを参照し、操舵角センサ10の入力操舵角に対応する目標転舵角を決定してもよい。
 又は、記憶部21には、図5及び図6の各曲線に対応する関数が予め格納されていてもよい。例えば、第一左比率ORLC及び第一右比率ORRCが車両1の速度及び/又はヨーレートに応じて変化する場合、車両1の各速度及び各ヨーレートに対応する上記関数が、記憶部21に格納されていてもよい。そして、転舵角決定部20bは、車両1の速度及び/又はヨーレートと失陥情報とに応じた関数を記憶部21から取得し、当関数を用いて、操舵角センサ10の入力操舵角に対応する目標転舵角を決定してもよい。
 又は、第二左比率ORLFと第一左比率ORLCとの比率である左比率比と、第二右比率ORRFと第一右比率ORRCとの比率である右比率比とが、左操舵及び右操舵の各操舵角に対して予め算出され、記憶部21に格納されていてもよい。例えば、第一左比率ORLC及び第一右比率ORRCが車両1の速度及び/又はヨーレートに応じて変化する場合、車両1の各速度及び各ヨーレートに対応する左比率比及び右比率比が、記憶部21に格納されていてもよい。そして、転舵角決定部20bは、操舵角センサ10の操舵角等から、正常状態の目標転舵角を算出し、正常状態の目標転舵角と記憶部21内の左比率及び右比率比とから、失陥情報に応じた目標転舵角を算出してもよい。例えば、右転舵機構4Rの失陥時、操舵角センサ10の操舵角等から、当該操舵角に対応する第二左比率ORLFと第一左比率ORLCとの左比率比Rが記憶部21内から決定される。そして、正常状態の目標転舵角と操舵角との比率である第一左比率ORLCと左比率比Rとから第二左比率ORLFが算出され、それにより、右転舵機構4Rの失陥状態での左目標転舵角が算出される。
 次に、実施の形態1に係る転舵装置100の動作を説明する。図7には、実施の形態1に係る転舵装置100の動作の流れの一例を示すフローチャートが示されている。図7に示すように、ステップS001において、車両1が走行を行っている時、上位ECU20の取得部20aは、左転舵ECU30L及び右転舵ECU30Rから、左転舵機構4L及び右転舵機構4Rが失陥しているか否かの情報、並びに、左転舵角センサ11L及び右転舵角センサ11Rによって検出された左転舵輪3L及び右転舵輪3Rの実転舵角を取得する。さらに、取得部20aは、操舵角センサ10によって検出された操舵角、車速センサ12によって検出された車両1の速度、及びIMU13によって検出された車両1のヨーレートを取得する。
 次いで、ステップS002において、上位ECU20の転舵角決定部20bは、左転舵機構4Lが失陥しているか否かを、左転舵ECU30Lから取得する情報に基づき、判定する。また、転舵角決定部20bは、左転舵ECU30Lと第三所定時間以上、通信できない場合も、左転舵機構4Lが失陥していると判定する。転舵角決定部20bは、左転舵機構4Lが失陥していない場合(ステップS002でNo)、ステップS003に進み、左転舵機構4Lが失陥している場合(ステップS002でYes)、ステップS004に進む。
 ステップS003において、転舵角決定部20bは、右転舵機構4Rが失陥しているか否かを、右転舵ECU30Rから取得する情報に基づき、判定する。また、転舵角決定部20bは、右転舵ECU30Rと第三所定時間以上、通信できない場合も、右転舵機構4Rが失陥していると判定する。転舵角決定部20bは、右転舵機構4Rが失陥していない場合(ステップS003でNo)、ステップS005に進み、右転舵機構4Rが失陥している場合(ステップS003でYes)、ステップS006に進む。
 ステップS004において、転舵角決定部20bは、ステップS003と同様に、右転舵機構4Rが失陥しているか否かを判定する。転舵角決定部20bは、右転舵機構4Rが失陥していない場合(ステップS004でNo)、ステップS007に進み、右転舵機構4Rが失陥している場合(ステップS004でYes)、ステップS008に進む。
 ステップS005において、転舵角決定部20bは、正常状態の左転舵輪3L及び右転舵輪3Rの目標転舵角を決定する。さらに、転舵角決定部20bは、左転舵輪3L及び右転舵輪3Rの目標転舵角を左転舵ECU30L及び右転舵ECU30Rに出力し、ステップS009に進む。転舵角決定部20bは、操舵角、車両1の速度及び車両1のヨーレートに基づき、左転舵輪3L及び右転舵輪3Rの目標転舵角を算出してもよく、車両1の速度及び車両1のヨーレートに対応する図5及び図6に示すようなマップを記憶部21から取得し、当該マップにおける曲線Lc及びRcの関係に基づき、操舵角に対応する目標転舵角を算出してもよい。以降において、転舵角決定部20bは、マップを用いて目標転舵角を算出するとして説明する。
 ステップS006において、転舵角決定部20bは、右転舵機構4Rのみが失陥している状態の左転舵輪3Lの目標転舵角を決定する。さらに、転舵角決定部20bは、左転舵輪3Lの目標転舵角を左転舵ECU30Lに出力し、ステップS009に進む。転舵角決定部20bは、車両1の速度及び車両1のヨーレートに対応する図5に示すようなマップを記憶部21から取得し、当該マップにおける曲線Lfの関係に基づき、操舵角に対応する左転舵輪3Lの目標転舵角を算出する。
 ステップS007において、転舵角決定部20bは、左転舵機構4Lのみが失陥している状態の右転舵輪3Rの目標転舵角を決定する。さらに、転舵角決定部20bは、右転舵輪3Rの目標転舵角を右転舵ECU30Rに出力し、ステップS009に進む。転舵角決定部20bは、車両1の速度及び車両1のヨーレートに対応する図6に示すようなマップを記憶部21から取得し、当該マップにおける曲線Rfの関係に基づき、操舵角に対応する右転舵輪3Rの目標転舵角を算出する。
 ステップS008において、上位ECU20は、車両1の停車を運転者に促す、又は、ブレーキ等を作動させ車両1を停車させる。
 ステップS009において、左転舵ECU30L及び/又は右転舵ECU30Rは、左転舵角センサ11L及び右転舵角センサ11Rによって検出される左実転舵角及び右実転舵角が、転舵角決定部20bから取得する左転舵輪3L及び/又は右転舵輪3Rの目標転舵角に等しくなるように、左転舵アクチュエータ5L及び/又は右転舵アクチュエータ5Rを駆動する。左転舵ECU30L及び/又は右転舵ECU30Rは、転舵動作する。
 上述のように実施の形態1に係る転舵装置100の上位ECU20、左転舵ECU30L及び右転舵ECU30Rを含む制御装置50は、互いに機械的に接続されていない左右の転舵機構4L及び4Rを備え且つ左右の転舵機構4L及び4Rそれぞれに備えられる各転舵アクチュエータ5L及び5Rの駆動力によって左右の転舵輪3L及び3Rを個別に転舵する車両用の転舵装置100の制御装置である。制御装置50は、ステアリングホイール2の回転シャフトの回転角に対応する操舵角を取得する取得部20aと、取得された操舵角に応じた目標転舵角を、操舵角に対する転舵角の比率に基づき、左右の転舵機構4L及び4Rそれぞれに対して決定する転舵角決定部20bと、決定された目標転舵角に応じた駆動信号を、各転舵アクチュエータ5L及び5Rに出力する転舵指令部としての左転舵ECU30L及び右転舵ECU30Rとを備える。転舵角決定部20bは、左右の転舵機構4L及び4Rのうちの一方に異常が発生した場合、正常時の上記比率である第一比率を変化させた第二比率に基づき、他方の転舵機構の目標転舵角を決定する。
 つまり、転舵角決定部20bは、左右の転舵機構4L及び4Rのうちの一方に異常が発生した場合には、正常な転舵機構(左右の転舵機構4L及び4Rのうちの他方)に対する目標転舵角を、左右の転舵機構4L及び4Rの両者が正常の場合の目標転舵角とは異なるようにしている。
 上記構成によると、制御装置50は、異常が発生していない転舵機構4L又は4Rを制御して、車両1を走行させる。一方の転舵機構4R又は4Lに異常が発生した場合、異常の発生前後において異常が発生していない転舵機構4L又は4Rの実転舵角が同じであっても、旋回半径が大きくなる等、車両1の旋回性能が低下する。操舵角に対する目標転舵角の比率を変更することによって、車両1の旋回半径の増加を抑制し、旋回性能の低下を抑制することが可能になる。例えば、第一比率よりも第二比率を大きくすることによって、入力される操舵角が同じであっても、異常が発生していない転舵機構4L又は4Rの目標転舵角を大きくすることができ、それにより、車両1の旋回半径の増加を効果的に抑制することができる。
 また、実施の形態1に係る転舵装置100の制御装置50において、左右の転舵機構4L及び4Rのうちの一方に異常が発生した場合、転舵角決定部20bは、他方の転舵機構4R又は4Lの転舵輪3R又は3Lが車両1の旋回方向において一方の転舵機構4L又は4Rの転舵輪3L又は3Rの内側に位置する車両1の旋回の目標転舵角を決定する場合、第一比率よりも大きい第二比率を使用する。また、転舵角決定部20bは、他方の転舵機構4R又は4Lの転舵輪3R又は3Lが車両1の旋回方向において一方の転舵機構4L及び4Rの転舵輪3L又は3Rの外側に位置する車両1の旋回の目標転舵角を決定する場合、第一比率以下の第二比率を使用する。
 上記構成において、異常が発生していない他方の転舵機構4R又は4Lの転舵輪3R又は3Lが旋回の内側に位置する第一の旋回の場合の車両1の旋回能力は、異常が発生していない他方の転舵機構4R又は4Lの転舵輪3R又は3Lが旋回の外側に位置する第二の旋回の場合の車両1の旋回能力よりも低い。このため、第一の旋回において、同じ操舵角の絶対値に対して、第二比率を用いて算出された目標転舵角は、第一比率を用いて算出された目標転舵角よりも大きくなるため、車両1の旋回能力の低下を効果的に抑えることができる。また、第二の旋回において、同じ操舵角の絶対値に対して、第二比率を用いて算出された目標転舵角は、第一比率を用いて算出された目標転舵角の同等以下である。これにより、第一の旋回及び第二の旋回の間で目標転舵角、具体的には目標転舵角の絶対値が差異付けられる。よって、例えば、第一の旋回が左旋回であり且つ第二の旋回が右旋回である場合、及び、第一の旋回が右旋回であり且つ第二の旋回が左旋回である場合において、車両1の左右の旋回能力の差を低減することができる。
 また、実施の形態1に係る転舵装置100は、上記制御装置50と、操舵角を検出する操舵角センサ10と、左の転舵機構4L及び右の転舵機構4Rとを備え、左の転舵機構4Lは、左の転舵輪3Lを個別に転舵するための駆動力を発生する左の転舵アクチュエータ5Lを有し、右の転舵機構4Rは、右の転舵輪3Rを個別に転舵するための駆動力を発生する右の転舵アクチュエータ5Rを有する。上述のような転舵装置100は、制御装置50と同様の効果を奏することができる。
 [実施の形態2]
 実施の形態2に係る転舵装置を説明する。実施の形態2に係る転舵装置において、上位ECU20の転舵角決定部20bが用いる操舵角-目標転舵角のマップが、実施の形態1と異なる。以下において、実施の形態1と異なる点を中心に説明する。
 図8には、実施の形態2に係る左転舵機構4Lにおける操舵角と目標転舵角との関係の一例が示されている。図9には、実施の形態2に係る右転舵機構4Rにおける操舵角と目標転舵角との関係の一例が示されている。図8に示すように、右転舵機構4Rの失陥状態に左転舵機構4Lのみで車両1を旋回走行させる場合、左転舵輪3Lが内側に位置する左操舵では、第二左比率ORLFが第三左比率として適用され、左転舵輪3Lが外側に位置する右操舵では、第四左比率が適用される。第四左比率は、第一左比率ORLCよりも大きく第三左比率よりも小さい。ここで、第三左比率及び第四左比率はそれぞれ、第三比率及び第四比率の一例である。
 右転舵機構4Rが失陥状態の場合、車両1の旋回能力の低下は、左転舵輪3Lが内側に位置する左操舵において、左転舵輪3Lが外側に位置する右操舵よりも大きく抑えられる。しかしながら、左転舵輪3Lが外側に位置する右操舵においても、車両1の旋回能力は低下するため、第四左比率を用いて目標転舵角を決定することによって、車両1の旋回能力の低下を抑制することができる。これにより、左転舵輪3Lが内側に位置する左操舵、及び、左転舵輪3Lが外側に位置する右操舵のいずれにおいても、車両1の旋回能力の低下が抑制され、且つ、左操舵及び右操舵の間での車両1の旋回能力の差の低減が可能になる。
 同様に、図9に示すように、左転舵機構4Lの失陥状態に右転舵機構4Rのみで車両1を旋回走行させる場合、右転舵輪3Rが内側に位置する右操舵では、第二右比率ORRFが第三右比率として適用され、右転舵輪3Rが外側に位置する左操舵では、第四右比率が適用される。第四右比率は、第一右比率ORRCよりも大きく第三右比率よりも小さい。この場合も、右転舵輪3Rが内側に位置する右操舵、及び、右転舵輪3Rが外側に位置する左操舵のいずれにおいても、車両1の旋回能力の低下が抑制され、且つ、左操舵及び右操舵の間での車両1の旋回能力の差の低減が可能になる。ここで、第三右比率及び第四右比率はそれぞれ、第三比率及び第四比率の一例である。
 本実施の形態では、転舵角決定部20bは、記憶部21に格納された図8及び図9に示すようなマップを用いて、目標転舵角を算出するが、実施の形態1で説明したように、図8及び図9の各曲線に対応する関数を用いて、目標転舵角を算出してもよい。又は、転舵角決定部20bは、第三左比率及び第四左比率と第一左比率ORLCとの左比率比と、第三右比率及び第四右比率と第一右比率ORRCとの右比率比とを用いて、目標転舵角を算出してもよい。
 上述のような実施の形態2に係る転舵装置によれば、実施の形態1と同様の効果が得られる。さらに、実施の形態2に係る転舵装置では、左右の転舵機構4L及び4Rのうちの一方に異常が発生した場合、転舵角決定部20bは、他方の転舵機構4R又は4Lの転舵輪3R又は3Lが車両1の旋回方向において一方の転舵機構4L又は4Rの転舵輪3L又は3Rの内側に位置する車両1の旋回の目標転舵角を決定する場合、第二比率として、第一比率よりも大きい第三比率を使用する。さらに、転舵角決定部20bは、他方の転舵機構4R又は4Lの転舵輪3R又は3Lが車両1の旋回方向において一方の転舵機構4L又は4Rの転舵輪3L又は3Rの外側に位置する車両1の旋回の目標転舵角を決定する場合、第二比率として、第一比率よりも大きい第四比率を使用する。そして、第三比率は、第四比率よりも大きい。
 上記構成によると、異常が発生していない他方の転舵輪3R又は3Lが旋回の内側及び外側それぞれに位置する第一の旋回及び第二の旋回において、同じ操舵角の絶対値に対して、第三比率及び第四比率を用いて算出された目標転舵角は、第一比率を用いて算出された目標転舵角よりも大きくなる。よって、左操舵及び右操舵のいずれにおいても、車両1の旋回能力の低下を抑えることができる。第三比率が第四比率よりも大きいため、より旋回能力が低下する第一の旋回に対して、旋回能力の低下の効果的な抑制が可能である。第三比率及び第四比率はいずれも第一比率よりも大きいため、第三比率及び第四比率の差異が低減され得る。よって、左操舵及び右操舵の間での車両1の旋回能力の差異の低減、つまり旋回能力の均等化が可能になる。
 [実施の形態3]
 実施の形態3に係る転舵装置を説明する。実施の形態3に係る転舵装置において、上位ECU20の転舵角決定部20bが用いる操舵角-目標転舵角のマップが、実施の形態1と異なる。以下において、実施の形態1と異なる点を中心に説明する。
 図10には、実施の形態3に係る左転舵機構4Lにおける操舵角と目標転舵角との関係の一例が示されている。図11には、実施の形態3に係る右転舵機構4Rにおける操舵角と目標転舵角との関係の一例が示されている。図10では、右転舵機構4Rの失陥状態について、実施の形態1での操舵角及び目標転舵角の関係は、曲線Lf1で示され、本実施の形態での操舵角及び目標転舵角の関係は、曲線Lf2で示されている。図10に示すように、右転舵機構4Rの失陥状態に左転舵機構4Lのみで車両1を旋回走行させる場合、左転舵輪3Lが内側に位置する左操舵では、第二左比率ORLFよりも大きい第五左比率が適用され、左転舵輪3Lが外側に位置する右操舵では、第二左比率ORLFが第六左比率として適用される。第五左比率は、左方向への操舵角、つまり、操舵角の絶対値が大きくなるほど大きくなる。ここで、第五左比率及び第六左比率は、第五比率及び第六比率の一例である。
 右転舵機構4Rが失陥状態の場合、左転舵輪3Lが内側に位置する左操舵において、左方向への操舵角の絶対値が大きくなるほど、目標転舵角が大きくなる。車両1の旋回能力は、実転舵角が大きくなる程大きく低下するが、この低下が効果的に抑制される。
 同様に、図11では、左転舵機構4Lの失陥状態について、実施の形態1での操舵角及び目標転舵角の関係は、曲線Rf1で示され、本実施の形態での操舵角及び目標転舵角の関係は、曲線Rf2で示されている。図11に示すように、左転舵機構4Lの失陥状態に右転舵機構4Rのみで車両1を旋回走行させる場合、右転舵輪3Rが内側に位置する右操舵では、第二右比率ORRFよりも大きい第五右比率が適用され、右転舵輪3Rが外側に位置する左操舵では、第二右比率ORRFが第六右比率として適用される。第五右比率は、右方向への操舵角、つまり、操舵角の絶対値が大きくなるほど大きくなる。ここで、第五右比率及び第六右比率は、第五比率及び第六比率の一例である。
 左転舵機構4Lが失陥状態の場合、右転舵輪3Rが内側に位置する右操舵において、右方向への操舵角の絶対値が大きくなるほど、目標転舵角が大きくなる。車両1の旋回能力は、実転舵角が大きくなる程大きく低下するが、この低下が効果的に抑制される。
 本実施の形態では、転舵角決定部20bは、記憶部21に格納された図10及び図11に示すようなマップを用いて、目標転舵角を算出するが、実施の形態1で説明したように、図10及び図11の各曲線に対応する関数を用いて、目標転舵角を算出してもよい。又は、転舵角決定部20bは、第五左比率及び第六左比率と第一左比率ORLCとの左比率比と、第五右比率及び第六右比率と第一右比率ORRCとの右比率比とを用いて、目標転舵角を算出してもよい。
 上述のような実施の形態3に係る転舵装置によれば、実施の形態1と同様の効果が得られる。さらに、実施の形態3に係る転舵装置では、転舵角決定部20bは、左及び右の転舵機構4L及び4Rの一方に異常が発生すると、操舵角が大きくなるほど大きい第二比率としての第五左比率及び第五右比率に基づき、他方の転舵機構4R又は4Lの目標転舵角を決定する。
 上記構成によると、異常が発生していない他方の転舵輪3R又は3Lが旋回の内側に位置する第一の旋回において、操舵角が大きくなる程大きくなる第五比率又は第六比率を用いて、目標転舵角が算出される。このような目標転舵角を用いた転舵制御は、他方の転舵輪3R又は3Lの実転舵角が大きくなる程大きく低下する車両1の旋回能力の低下を、効果的に抑制することができる。
 また、操舵角が大きくなる程大きくなる第五比率のような比率を、異常が発生していない他方の転舵輪3R又は3Lが旋回の外側に位置する第二の旋回に対しても適用してもよい。例えば、実施の形態2における第四左比率及び第四右比率を、操舵角が大きくなる程大きくなるようにしてもよい。
 [実施の形態4]
 まず、本発明の実施の形態4に係る車両用の転舵装置200の全体的な構成を説明する。図12は、実施の形態4に係る転舵装置200の全体的な構成の一例を示すブロック図である。転舵装置200は、車両201に搭載され、左右独立転舵システムが採用されたステア・バイ・ワイヤシステムの構成を備えている。転舵装置200は、運転者が操向のために操作する操舵部材としてのステアリングホイール202と、車両201の前方側に配置された左転舵輪203L及び右転舵輪203Rとを備える。さらに、転舵装置200は、左転舵輪203Lを個別に転舵するための左転舵機構204Lと、左転舵機構204Lと機械的に接続されておらず且つ右転舵輪203Rを個別に転舵するための右転舵機構204Rとを備える。左転舵機構204Lは、ステアリングホイール202の回転操作に応じて左転舵輪203Lを転舵する。右転舵機構204Rは、ステアリングホイール202の回転操作に応じて右転舵輪203Rを転舵する。
 左転舵機構204L及び右転舵機構204Rはそれぞれ、ステアリングホイール202の回転操作に応じて駆動される左転舵アクチュエータ205L及び右転舵アクチュエータ205Rを備える。左転舵アクチュエータ205L及び右転舵アクチュエータ205Rの例は、電動モータである。また、左転舵機構204Lは、左転舵アクチュエータ205Lから受ける回転駆動力により左転舵輪203Lを転舵させる。右転舵機構204Rは、右転舵アクチュエータ205Rから受ける回転駆動力により右転舵輪203Rを転舵させる。ステアリングホイール202と、左転舵機構204L及び右転舵機構204Rとの間には、ステアリングホイール202に加えられた操舵トルクを機械的に伝達する機械的結合はない。左転舵アクチュエータ205Lは、左転舵輪203Lのみを転舵し、右転舵アクチュエータ205Rは、右転舵輪203Rのみを転舵する。
 左転舵機構204L及び右転舵機構204Rはそれぞれ、左転舵輪203L及び右転舵輪203Rを転舵させるための回転軸である左転舵軸206L及び右転舵軸206Rを有している。左転舵軸206L及び右転舵軸206Rは、車両201のフロントサスペンションによって支持されている。左転舵軸206L及び右転舵軸206Rを支持するフロントサスペンションは、ストラット式、ダブルウィッシュボーン式及びマルチリンク式等のいかなる形式のサスペンションであってもよい。
 さらに、転舵装置200は、車両201の目標ヨーレートとして、ステアリングホイール202の操舵角を検出する操舵角センサ210を備える。ここでは、操舵角センサ210は、ステアリングホイール202の回転シャフトの回転角及び角速度を検出する。また、転舵装置200は、左転舵輪203Lの転舵角を検出する左転舵角センサ211Lと、右転舵輪203Rの転舵角を検出する右転舵角センサ211Rとを備える。
 また、車両201には、車両201の速度Vを検出する車速センサ212、及び慣性計測装置(以下、「IMU(Inertial Measurement Unit)」とも呼ぶ)213が設けられている。IMU213は、ジャイロセンサ、加速度センサ及び地磁気センサ等で構成され得る。例えば、IMU213は、車両201の3軸方向の加速度及び角速度等を検出する。角速度の3軸方向の例は、ヨーイング、ピッチング及びローリング方向である。IMU213は、例えばヨーイング方向の角速度(「ヨーレート」とも呼ぶ)を検出する。さらに、IMU213は、ピッチング及びローリング方向の角速度を検出してもよい。
 また、転舵装置200は、上位ECU(電子制御ユニット:Electronic Control Unit)220及び記憶部221を備える。記憶部221は、上位ECU220と別に配置され、上位ECU220と電気的に接続されていてもよく、上位ECU220に含まれていてもよい。左転舵機構204Lは、下位ECUの1つである左転舵ECU230Lを備え、右転舵機構204Rは、下位ECUの1つである右転舵ECU230Rを備える。上位ECU220は、左転舵ECU230L、右転舵ECU230R、操舵角センサ210、車速センサ212及びIMU213と電気的に接続されている。左転舵ECU230Lは、上位ECU220、左転舵角センサ211L、左転舵アクチュエータ205L及び右転舵ECU230Rと電気的に接続されている。右転舵ECU230Rは、上位ECU220、右転舵角センサ211R、右転舵アクチュエータ205R及び左転舵ECU230Lと電気的に接続されている。上位ECU220、左転舵ECU230L、右転舵ECU230R、左転舵アクチュエータ205L、右転舵アクチュエータ205R及び各センサ間の通信は、CAN(Controller Area Network)等の車載ネットワークを介した通信であってもよい。ここで、上位ECU220、左転舵ECU230L及び右転舵ECU230Rは、車両201の制御装置250を構成する。
 上位ECU220は、操舵角センサ210、車速センサ212、IMU213、左転舵ECU230L、右転舵ECU230R及び記憶部221から取得する情報に基づき、目標ヨーレートを決定し、当該目標ヨーレートに基づく駆動信号を左転舵ECU230L及び右転舵ECU230Rに出力する。
 記憶部221は、種々の情報の格納及び取り出しを可能にする。記憶部221は、例えば、ROM(Read-Only Memory)、RAM(Random Access Memory)、フラッシュメモリなどの半導体メモリ、ハードディスクドライブ、又はSSD等の記憶装置によって実現される。
 上位ECU220、左転舵ECU230L及び右転舵ECU230Rは、CPU(Central Processing Unit)又はDSP(Digital Signal Processor)等のプロセッサ及びメモリを備えるマイクロコンピュータにより構成されてもよい。メモリは、RAM等の揮発性メモリ、及び、ROM等の不揮発性メモリであってもよく、記憶部221であってもよい。上位ECU220、左転舵ECU230L及び右転舵ECU230Rの一部又は全部の機能は、CPUがRAMを作業用のメモリとして用いてROMに記録されたプログラムを実行することによって達成されてもよい。
 次いで、上位ECU220、左転舵ECU230L及び右転舵ECU230Rの詳細を説明する。図13は、図12の上位ECU220の機能的な構成の一例を示すブロック図である。
 図13に示すように、上位ECU220は、取得部220aと、目標ヨーレート決定部220bと、失陥検出部220cとを含む。取得部220aは、操舵角センサ210によって検出された操舵角、車速センサ212によって検出された車両201の速度、IMU213によって検出された車両201のヨーレート(実ヨーレートとも称す)を取得する。つまり、取得部220aは、実ヨーレート取得部の一例である。取得部220aは、操舵角センサ210から操舵角を取得することによって、ステアリングホイール202の回転シャフトの回転角を取得する。なお、取得部220aは、左転舵ECU230L及び右転舵ECU230Rから左転舵輪203L及び右転舵輪203Rの実転舵角を取得するとともに、車速センサ212によって検出された車両201の速度を取得し、当該実転舵角及び車両201の速度に基づいて車両201の実ヨーレートを算出し、取得してもよい。
 目標ヨーレート決定部220bは、左転舵機構204L及び右転舵機構204Rそれぞれに対応した目標ヨーレートを決定する。具体的には、目標ヨーレート決定部220bは、取得部220aによって取得された転舵角、車速センサ212によって検出された車両201の速度、IMU213によって検出された実ヨーレート等を用いて、目標ヨーレートを算出する。
 失陥検出部220cは、左転舵機構204L及び右転舵機構204Rの少なくとも一方が失陥したか否かを判定し、その判定結果を示す失陥情報を左転舵ECU230L及び右転舵ECU230Rに送信する。失陥情報は、駆動信号に含まれる。ここで、転舵機構の失陥とは、転舵輪に対する転舵角制御が正常に行えないことを意味する。転舵機構の失陥には、例えばアクチュエータのトルクが喪失した状態、転舵輪のタイヤ性能が低下した状態などが含まれる。
 失陥検出部220cは、左転舵機構204Lの失陥の有無を判断する際には、当該左転舵機構204Lの目標転舵角と、左転舵角センサ211Lによって検出される左実転舵角との偏差(転舵角偏差)が所定の閾値以上である状態が所定時間継続された場合に、失陥が有りと判断する。一方、失陥検出部220cは、右転舵機構204Rの失陥の有無を判断する際には、当該右転舵機構204Rの目標転舵角と、右転舵角センサ211Rによって検出される右実転舵角との偏差(転舵角偏差)が所定の閾値以上である状態が所定時間継続された場合に、失陥が有りと判断する。失陥の判断に転舵角偏差を用いることで、転舵軸を回転させるための物理的な構造の異常を起因とした失陥の有無を判断することができる。
 なお、失陥の有無の判断には、周知のその他の手法を採用することが可能である。例えば、転舵機構のアクチュエータに対する目標電流値と実電流値との偏差(電流偏差)を基にして失陥の有無を判断することも可能である。この場合には、アクチュエータを駆動する電気的な構造の異常を起因とした失陥の有無を判断することができる。
 また、失陥検出部220cは、上位ECU220と、左転舵ECU230Lまたは右転舵ECU230Rとの間で通信できない状態が一定時間継続した場合などにも失陥が有りと判断してもよい。
 上位ECU220は、取得部220aが取得した車両201の速度V、目標ヨーレート決定部220bが決定した目標ヨーレート、失陥検出部220cが作成した失陥情報などを含んだ駆動信号を作成し、左転舵ECU230L及び右転舵ECU230Rに出力する。
 図12に示すように、左転舵ECU230Lは、左転舵角センサ211Lが検出する転舵角(「検出転舵角」又は「実転舵角」とも呼ぶ)を上位ECU220に出力し、上位ECU220から受け取る駆動信号に基づき、左転舵アクチュエータ205Lを動作させる。右転舵ECU230Rは、右転舵角センサ211Rが検出する実転舵角を上位ECU220に出力し、上位ECU220から受け取る駆動信号に基づき、右転舵アクチュエータ205Rを動作させる。
 以下、左転舵ECU230Lについて詳細に説明する。図14は、図12の左転舵ECU230Lの機能的な構成の一例を示すブロック図である。なお、右転舵ECU230Rについては、左転舵ECU230Lと基本的に同じ構成であるのでその説明は省略する。
 図14に示すように、左転舵ECU230Lは、左転舵制御部231Lと、駆動回路232Lとを備えている。左転舵制御部231Lは、駆動回路232Lを介して、左転舵アクチュエータ205Lの動作を制御する。具体的には、左転舵制御部231Lは、取得部220aによって取得される実ヨーレートγが、上位ECU220から与えられた駆動信号に含まれる目標ヨーレートγに等しくなるように、駆動回路232Lを制御する。駆動回路232Lは、左転舵制御部231Lによって制御され、左転舵アクチュエータ205Lに電力を供給する。駆動回路232Lは、インバータ回路で構成される。
 左転舵制御部231Lは、転舵角決定部233Lと、転舵指令部234Lとを備えている。転舵角決定部233Lは、目標ヨーレート決定部220bで決定された左転舵機構204Lの目標ヨーレートに基づく制御により、左転舵機構204Lに対する目標転舵角を決定する。転舵角決定部233Lは、複数の処理機能部として機能し、ヨーレート偏差演算部241Lと、ヨーレートPI(Proportional Integral)制御部242Lと、ゲイン決定部243Lとを含んでいる。
 ヨーレート偏差演算部241Lは、上位ECU220から与えられた駆動信号内の目標ヨーレートγと、取得部220aによって取得される実ヨーレートγとの偏差Δγ(ヨーレート偏差)を演算する。なお、偏差Δγ=γ-γである。
 ヨーレートPI制御部242Lは、ヨーレート偏差演算部241Lによって算出される偏差Δγに対して、ゲイン決定部243Lで決定されたゲインに基づいて、PI制御を行うことによって、左転舵輪203Lの目標転舵角δを演算する。
 ゲイン決定部243Lは、ヨーレートPI制御部242LでのPI制御で用いられるゲインを決定する。具体的には、ゲイン決定部243Lは、ヨーレート偏差演算部241Lで求められた偏差Δγと、車両201の速度Vと、失陥情報とに基づいてゲインを決定する。例えば、ゲイン決定部243Lは、偏差Δγと、速度Vと、失陥情報内の失陥の有無とに基づいて、PI制御で用いられる比例ゲインと、積分ゲインとを決定する。ゲイン決定部243Lは、比例ゲインテーブルと、積分ゲインテーブルとを有しており、これらのテーブルと、偏差Δγ、速度V及び失陥情報内の失陥の有無とに基づいて比例ゲイン及び積分ゲインを決定する。
 図15は、実施の形態4に係る比例ゲインテーブル及び積分ゲインテーブルを示す説明図である。図15の(a)は比例ゲインテーブルを示し、図15の(b)は積分ゲインテーブルを示している。
 図15の(a)に示すように、比例ゲインテーブルは、正常時用のテーブルT11と、低速用のテーブルT12と、中速用のテーブルT13と、高速用のテーブルT14とを含んでいる。正常時用のテーブルT11は、失陥が無しの場合に用いられる。この例では、正常時用のテーブルT11は、偏差Δγの変化に依存せずにKplで一定となっている。低速用のテーブルT12、中速用のテーブルT13及び高速用のテーブルT14は、失陥が有りの場合に用いられる。低速用のテーブルT12は、速度Vが低速の範囲にある場合に用いられる。中速用のテーブルT13は、速度Vが中速の範囲にある場合に用いられる。高速用のテーブルT14は、速度Vが高速の範囲にある場合に用いられる。これらのテーブルT12~T14からもわかるように、速度Vが小さくなることに伴って比例ゲインが大きくなる。また、いずれのテーブルT12~T14において、偏差Δγがγ以下である場合には比例ゲインはKplで一定となっており、偏差Δγがγ以上である場合には比例ゲインはKphで一定となっている。いずれのテーブルT12~T14において、偏差Δγがγよりも大きく、Kplよりも小さい範囲では、偏差Δγの増加に伴って比例ゲインも直線状に漸増している。この傾きは、速度Vが小さくなることに伴って大きくなる。
 図15の(b)に示すように、積分ゲインテーブルは、正常時用のテーブルT21と、低速用のテーブルT22と、中速用のテーブルT23と、高速用のテーブルT24とを含んでいる。正常時用のテーブルT21は、失陥が無しの場合に用いられる。低速用のテーブルT22、中速用のテーブルT23及び高速用のテーブルT24は、失陥が有りの場合に用いられる。その他の関係性については、比例ゲインテーブルと同様である。
 なお、図15の例では、速度Vを三段階に分けて各段階に対してテーブルが設定されている場合を例示した。しかしながら、速度Vを二段階或いは四段階以上に分けて各段階に対してテーブルを設定してもよい。また、ゲインの決定に速度Vを考慮しなくてもよい。速度Vを考慮しない場合のテーブルは図16に示す。
 図16は、実施の形態4に係る比例ゲインテーブル及び積分ゲインテーブルのその他の例を示す説明図である。図16の(a)は比例ゲインテーブルを示し、図16の(b)は積分ゲインテーブルを示している。この場合、比例ゲインテーブルは、正常時用のテーブルT31と、失陥有り用のテーブルT32とを含んでいる。正常時用のテーブルT31は、失陥が無しの場合に用いられる。この例では、正常時用のテーブルT31は、偏差Δγの変化に依存せずにKplで一定となっている。失陥有り用のテーブルT32、失陥が有りの場合に用いられる。失陥有り用のテーブルT32は、偏差Δγがγ以下である場合には比例ゲインがKplで一定となっており、偏差Δγがγ以上である場合には比例ゲインがKphで一定となっている。失陥有り用のテーブルT32において、偏差Δγがγよりも大きく、Kplよりも小さい範囲では、比例ゲインは直線状に漸増している。
 図16の(b)に示すように、積分ゲインテーブルは、正常時用のテーブルT41と、失陥用のテーブルT42とを含んでいる。正常時用のテーブルT41は、失陥が無しの場合に用いられる。失陥用のテーブルT42は、失陥が有りの場合に用いられる。その他の関係性については、比例ゲインテーブルと同様である。
 上述した比例ゲインテーブル及び積分ゲインテーブルはあくまで一例である。実際には、種々の実験、シミュレーションを行うことにより、各車両201の条件に対して適切な比例ゲインテーブル及び積分ゲインテーブルを作成しておけばよい。
 また、本実施の形態では、目標転舵角がPI制御によって求められる場合を例示した。しかしながら、P制御、PD制御、PID制御などのその他の制御方法によって目標転舵角を求めることも可能である。その他の制御方法を採用する場合には、ゲイン決定部243Lは、当該制御方法に適したゲインを決定すればよい。
 図14に示すように転舵指令部234Lは、電流値決定部244Lと、PWM(Pulse Width Modulation)制御部245Lとを含む。
 電流値決定部244Lは、ヨーレートPI制御部242Lによって算出された目標転舵角δに基づいて、左転舵アクチュエータ205Lに流すべき電流の電流値を演算し、当該電流値を含んだ駆動指令値を生成する。
 PWM制御部245Lは、駆動指令値に対応するデューティ比の左PWM制御信号を生成し、駆動回路232Lに出力する。これにより、駆動回路232Lは、駆動指令値に対応した電力を、左転舵アクチュエータ205Lに供給する。
 上述の左転舵制御部231Lの各構成要素及び上位ECU220の各構成要素は、CPU又はDSP等のプロセッサ、並びに、RAM及びROM等のメモリなどからなるコンピュータシステム(図示せず)により構成されてもよい。各構成要素の一部又は全部の機能は、CPU又はDSPがRAMを作業用のメモリとして用いてROMに記録されたプログラムを実行することによって達成されてもよい。また、各構成要素の一部又は全部の機能は、電子回路又は集積回路等の専用のハードウェア回路によって達成されてもよい。各構成要素の一部又は全部の機能は、上記のソフトウェア機能とハードウェア回路との組み合わせによって構成されてもよい。
 次に、実施の形態4に係る転舵装置200の動作を説明する。図17は、実施の形態4に係る転舵装置200の動作の流れの一例を示すフローチャートである。図17に示すように、ステップS1において、車両201が走行を行っている時、上位ECU220の取得部220aは、左転舵角センサ211L及び右転舵角センサ211Rによって検出された左転舵輪203L及び右転舵輪203Rの実転舵角と、操舵角センサ210によって検出された操舵角、車速センサ212によって検出された車両201の速度、及びIMU213によって検出された車両201の実ヨーレートを取得する。
 ステップS2では、上位ECU220の目標ヨーレート決定部220bは、取得部220aによって取得された実転舵角、車速センサ212によって検出された車両201の速度、IMU213によって検出された実ヨーレート等を用いて、左転舵機構204L及び右転舵機構204Rそれぞれの目標ヨーレートを算出する。
 ステップS3では、上位ECU220の失陥検出部220cは、左転舵機構204L及び右転舵機構204Rの少なくとも一方が失陥したか否かを判定し、その判定結果を示す失陥情報を作成する。
 ステップS4では、上位ECU220は、失陥検出部220cが作成した失陥情報に、左転舵機構204L及び右転舵機構204Rの両者の失陥が含まれているか否かを判断し、含まれている場合にはステップS5に移行し、含まれていない場合にはステップS6に移行する。
 ステップS5では、上位ECU220は、車両201の停車を運転者に促す、又は、ブレーキ等を作動させ車両201を停車させる。
 ステップS6では、上位ECU220は、取得部220aが取得した車両201の速度V、目標ヨーレート決定部220bが決定した目標ヨーレート、失陥検出部220cが作成した失陥情報などを含んだ駆動信号を作成し、左転舵ECU230L及び右転舵ECU230Rに出力する。
 ステップS7では、左転舵ECU230Lの転舵角決定部233L及び右転舵ECU230Rの転舵角決定部(図示省略)のそれぞれは、失陥情報に右転舵機構204Rの失陥が含まれているか否かを判断し、含まれている場合にはステップS8に移行し、含まれていない場合にはステップS9に移行する。
 ステップS8では、右転舵機構204Rが失陥し、右転舵輪203Rの正確な転舵ができない状態であるので、右転舵ECU230Rの転舵角決定部は右転舵輪203Rの目標転舵角を決定せずに、左転舵ECU230Lの転舵角決定部233Lのみが、左転舵輪203Lの目標転舵角を決定する。この決定時における比例ゲイン及び積分ゲインは、失陥用のテーブル(低速用のテーブルT12、T22、中速用のテーブルT13、T23、高速用のテーブルT14、T24)に基づいて決定されている。
 ステップS9では、左転舵ECU230Lの転舵角決定部233L及び右転舵ECU230Rの転舵角決定部のそれぞれは、失陥情報に左転舵機構204Lの失陥が含まれているか否かを判断し、含まれている場合にはステップS10に移行し、含まれていない場合にはステップS11に移行する。
 ステップS10では、左転舵機構204Lが失陥し、左転舵輪203Lの正確な転舵ができない状態であるので、左転舵ECU230Lの転舵角決定部233Lは左転舵輪203Lの目標転舵角を決定せずに、右転舵ECU230Rの転舵角決定部のみが、右転舵輪203Rの目標転舵角を決定する。この決定時における比例ゲイン及び積分ゲインは、失陥用のテーブル(低速用のテーブルT12、T22、中速用のテーブルT13、T23、高速用のテーブルT14、T24)に基づいて決定されている。
 ステップS11では、左転舵ECU230Lの転舵角決定部233L及び右転舵ECU230Rの転舵角決定部のそれぞれは、左転舵機構204L及び右転舵機構204Rのいずれの失陥も含まれていない正常な状態であるので、正常状態の左転舵輪203L及び右転舵輪203Rの目標転舵角を決定する。この決定時における比例ゲイン及び積分ゲインは、正常時用のテーブルT11、T21に基づいて決定されている。
 ステップS12では、左転舵ECU230Lの転舵指令部234L及び/又は右転舵ECU230Rの転舵指令部(図示省略)は、決定された目標転舵角に基づく電力を、左転舵アクチュエータ205L及び/又は右転舵アクチュエータ205Rに出力する。これにより、左転舵ECU230L及び/又は右転舵ECU230Rは、左転舵輪203L及び/又は右転舵輪203Rを転舵動作させる。転舵動作時には、左転舵ECU230L及び/又は右転舵ECU230Rは、左転舵角センサ211L及び右転舵角センサ211Rによって検出される左実転舵角及び右実転舵角が、左転舵輪203L及び/又は右転舵輪203Rの目標転舵角に等しくなるように、左転舵アクチュエータ205L及び/又は右転舵アクチュエータ205Rを駆動する。
 上記実施の形態4に係る転舵装置200の上位ECU220、左転舵ECU230L及び右転舵ECU230Rを含む制御装置250は、互いに機械的に接続されていない左右の転舵機構(左転舵輪203L及び右転舵輪203R)を備え且つ左右の転舵機構のそれぞれに備えられる各アクチュエータ(左転舵アクチュエータ205L及び右転舵アクチュエータ205R)の駆動力によって左右の転舵輪(左転舵輪203L及び右転舵輪203R)を個別に転舵する車両201用の転舵装置200の制御装置である。制御装置250は、左右の転舵機構それぞれに対応した目標ヨーレートに基づいて、左右の転舵機構のそれぞれに対する目標転舵角を決定する転舵角決定部(左転舵ECU230Lの転舵角決定部233L及び右転舵ECU230Rの転舵角決定部(図示省略))と、目標転舵角に対応した駆動信号を作成し、当該駆動信号を各アクチュエータに出力する転舵指令部234Lとを備えている。転舵角決定部は、左右の転舵機構のうちの一方に異常が発生した場合には、正常な転舵機構に対する目標転舵角を、左右の転舵機構の両者が正常の場合の目標転舵角とは異なるようにする。
 また、上記実施の形態4に係る転舵装置200は、上記制御装置250と、左の転舵機構(左転舵機構204L)及び右の転舵機構(右転舵機構204R)とを備え、左の転舵機構は、左の転舵輪を個別に転舵するための駆動力を発生する左のアクチュエータ(左転舵アクチュエータ205L)を有し、右の転舵機構は、右の転舵輪を個別に転舵するための駆動力を発生する右のアクチュエータ(右転舵アクチュエータ205R)を有する。
 ここで、一方の転舵機構に異常が発生した場合、異常の発生前後において異常が発生していない転舵機構の実転舵角が同じであっても、旋回半径が大きくなる等、車両201の旋回性能が低下する。このため、左右の転舵機構のうちの一方に異常が発生した場合には、転舵角決定部が、正常な転舵機構に対する目標転舵角を、左右の転舵機構の両者が正常の場合の目標転舵角とは異なるようにしている。これにより、異常が発生していない転舵機構の目標転舵角を、異常発生前よりも自動的に大きくすることができ、それにより、車両201の旋回半径の増加を効果的に抑制することができる。
 また、制御装置250は、車両201の実際のヨーレートである実ヨーレートを取得する取得部220aを備え、転舵角決定部は、実ヨーレートと目標ヨーレートとの偏差であるヨーレート偏差(偏差Δγ)に基づいて、目標転舵角を決定する際のフィードバック制御のゲインを変更する。
 ここで、フィードバック制御のゲインを単に大きくすれば、目標ヨーレートに短時間で到達するが、過度にゲインを大きくしてしまうとオーバーシュートが発生して転舵制御が不安定となり、車両挙動も不安定となるおそれがある。一方、フィードバック制御のゲインを小さくすると、目標ヨーレートに到達するまでの時間が長くなってしまう。このため、本実施の形態では、目標転舵角を決定する際のフィードバック制御のゲインを、ヨーレート偏差に基づいて変更することで、ヨーレート偏差に対して適切なゲインを決定している。したがって、過度なゲインの増加を抑えながら、目標ヨーレートに短時間で到達させることができる。
 [実施の形態5]
 上記実施の形態4では、目標転舵角がフィードバック制御によって求められる場合について説明した。この実施の形態5では、目標転舵角がフィードフォワード制御によって求められる場合について説明する。なお、以下の説明において上記実施の形態4と同一の部分については同一の符号を付してその説明を省略する場合がある。
 図18は、実施の形態5に係る左転舵ECU230LAの機能的な構成の一例を示すブロック図である。なお、右転舵ECUについては、左転舵ECU230LAと基本的に同じ構成であるのでその説明は省略する。
 図18に示すように、左転舵ECU230LAの転舵角決定部233LAは、ヨーレート制御部242LAを有している。ヨーレート制御部242LAは、目標ヨーレートγに対してフィードフォワード制御を行うことで、目標転舵角δを決定する。具体的には、ヨーレート制御部242LAは、上位ECU220から与えられた駆動信号内の目標ヨーレートγと、失陥情報とに基づいてフィードフォワード制御を行って、目標転舵角δを決定する。このフィードフォワード制御時には、ヨーレート-転舵角マップが用いられる。ヨーレート-転舵角マップは、目標ヨーレートと目標転舵角との関係を示すマップである。ヨーレート制御部242LAは、ヨーレート-転舵角マップを有している。
 図19は、実施の形態5に係る左転舵機構204Lにおけるヨーレート-転舵角マップの一例を示すグラフである。図19のヨーレート-転舵角マップは、右転舵機構204Rの失陥状態に左転舵機構204Lのみで車両201を旋回走行させる場合の目標ヨーレートと目標転舵角との関係を実線L11で示し、正常時における目標ヨーレートと目標転舵角との関係を破線L12で示している。なお、本明細書では、目標転舵角及び目標ヨーレートを絶対値で表現する。以降の目標転舵角及び目標ヨーレートについても同様である。
 ヨーレート制御部242LAは、失陥情報に右転舵機構204Rの失陥がない場合には、目標ヨーレートγと破線L12に基づいて、正常時における左転舵機構204Lの目標転舵角δを決定する。この破線L12は、目標ヨーレートγの絶対値が大きくなるほど目標転舵角δの絶対値が大きくなる右斜め上に傾いた直線で示されている。破線L12は、原点を基準とした点対称となっている。なお、破線L12は、指数関数的な曲線であってもよいし、直線と曲線とが組み合わされた線分であってもよい。
 一方、ヨーレート制御部242LAは、失陥情報に右転舵機構204Rの失陥が含まれている場合には、目標ヨーレートγと実線L11に基づいて、右転舵機構204Rの失陥時における左転舵機構204Lの目標転舵角δを決定する。この実線L11は、目標ヨーレートγの絶対値が大きくなるほど目標転舵角δの絶対値が大きくなる、全体として右斜め上に傾いた指数関数的な曲線で示されている。
 ここで、右転舵機構204Rが失陥状態のとき、車両201は、車両201の旋回方向において左転舵輪203Lが外側に位置する右転舵では、旋回能力の低下を抑えることができるが、車両201の旋回方向において左転舵輪203Lが内側に位置する左転舵では、旋回能力を大きく低下させる。この車両201の旋回能力の低下した際の左右差を抑えられるような実線L11が設定されている。具体的には、実線L11では、正常な左転舵機構204Lが内輪に対応する場合の目標転舵角δの絶対値を、当該正常な左転舵機構204Lが外輪に対応する場合の目標転舵角δの絶対値よりも大きくするような線分となっている。図19において二点鎖線L13は、実線L11を原点を中心に180度回転させた仮想線である。実線L11と二点鎖線L13とを比較すれば、正常な左転舵機構204Lが外輪に対応する場合の目標転舵角δの絶対値(例えば図19における点P11)が、当該正常な左転舵機構204Lが内輪に対応する場合の目標転舵角δの絶対値(例えば図19における点P12)よりも大きくなっていることがわかる。このような実線L11に基づいて右転舵機構204Rが失陥状態のときの左転舵機構204Lの目標転舵角δが決定されるので、左転舵輪203Lが外輪に対応する場合と比較して内輪に対応する場合の旋回能力差を抑制することができる。
 また、実線L11は、車両201の速度によって変化してもよい。図20は、実施の形態5に係る目標ヨーレート比率Gγと目標転舵角δとの関係を速度V毎に示すグラフである。目標ヨーレート比率Gγは、内輪故障時の目標ヨーレートγと、外輪故障時の目標ヨーレートγとの比率の絶対値である。具体的には、Gγ=|γ/γ|である。
 破線L20は正常時の関係を示している。また、実線L21は速度Vが10km/hである場合の関係を示し、破線L22は速度Vが40km/hである場合の関係を示し、一点鎖線L23は速度Vが80km/hである場合の関係を示し、二点鎖線L24は速度Vが120km/hである場合の関係を示している。例えば0km/hより大きく30km/h未満を低速度域とし、30km/h以上60km/h未満を中速度域とし、60km/h以上100km/h未満を高速度域とし、例えば100km/h以上130km/h未満を超高速度域とする。許容される転舵角は速度が大きくなるほど小さくなるため、実線L21に対応する目標転舵角δの範囲が最も広く、二点鎖線L24に対応する目標転舵角δの範囲が最も狭い。実線L21、破線L22、一点鎖線L23及び二点鎖線L24に示すように、破線L20との交点を示す目標転舵角δは速度Vが大きくなるほど小さくなっている。実線L21、破線L22、一点鎖線L23及び二点鎖線L24に示すように、極大値となる目標転舵角δも速度Vが大きくなるほど小さくなっている。
 この図20に示す関係が満たされるように、ヨーレート-転舵角マップの実線L11を速度V毎に設定していてもよい。具体的には、ヨーレート制御部242LAは、取得した速度Vと、図20に示すグラフとの関係を満たすように実線L11を補正してもよい。また、ヨーレート制御部242LAは、図20に示すグラフを満たす実線L11を速度毎に予め有していて、取得した速度Vに対して適切な実線L11を選択してもよい。このように、各速度に対応する実線L11は、図20に示す関係が反映されているので、いずれの速度Vにおいても、正常な左転舵機構204Lが外輪に対応する場合の目標転舵角δの絶対値を、当該正常な左転舵機構204Lが内輪に対応する場合の目標転舵角δの絶対値よりも大きくすることができる。
 次に、右転舵機構204Rにおけるヨーレート-転舵角マップについて説明する。図21は、実施の形態5に係る右転舵機構204Rにおけるヨーレート-転舵角マップの一例を示すグラフである。図21のヨーレート-転舵角マップは、左転舵機構204Lの失陥状態に右転舵機構204Rのみで車両201を旋回走行させる場合の目標ヨーレートと目標転舵角との関係を実線L31で示し、正常時における目標ヨーレートと目標転舵角との関係を破線L32で示している。つまり、右転舵ECUのヨーレート制御部(図示省略)は、失陥情報に左転舵機構204Lの失陥がない場合には、目標ヨーレートγと破線L32に基づいて、正常時における右転舵機構204Rの目標転舵角δを決定する。この破線L32は、目標ヨーレートγの絶対値が大きくなるほど目標転舵角δの絶対値が大きくなる、右斜め上に傾いた直線で示されている。破線L32は、原点を基準とした点対称となっている。なお、破線L32は、指数関数的な曲線であってもよいし、直線と曲線とが組み合わされた線分であってもよい。
 一方、右転舵ECUのヨーレート制御部(図示省略)は、失陥情報に左転舵機構204Lの失陥が含まれている場合には、目標ヨーレートγと実線L31に基づいて、左転舵機構204Lの失陥時における右転舵機構204Rの目標転舵角δを決定する。この実線L31は、目標ヨーレートγの絶対値が大きくなるほど目標転舵角δの絶対値が大きくなる、全体として右斜め上に傾いた指数関数的な曲線で示されている。
 ここで、左転舵機構204Lが失陥状態のとき、車両201は、車両201の旋回方向において右転舵輪203Rが外側に位置する左転舵では、旋回能力の低下を抑えることができるが、車両201の旋回方向において右転舵輪203Rが内側に位置する右転舵では、旋回能力を大きく低下させる。この車両201の旋回能力の低下を抑えられるような実線L31が設定されている。具体的には、実線L31では、正常な右転舵機構204Rが内輪に対応する場合の目標転舵角δの絶対値を、当該正常な右転舵機構204Rが外輪に対応する場合の目標転舵角δの絶対値よりも大きくするような線分となっている。図21において二点鎖線L33は、原点を中心に実線L31を180度回転させた仮想線である。実線L31と二点鎖線L33とを比較すれば、正常な右転舵機構204Rが内輪に対応する場合の目標転舵角δの絶対値(例えば図21における点P31)が、当該正常な右転舵機構204Rが外輪に対応する場合の目標転舵角δの絶対値(例えば図21における点P32)よりも大きくなっていることがわかる。このような実線L31に基づいて左転舵機構204Lが失陥状態のときの右転舵機構204Rの目標転舵角δが決定されるので、右転舵輪203Rが内輪に位置する場合と比較して内輪に対応する場合の旋回能力差を抑制することができる。
 また、実線L31は、車両201の速度によって変化してもよい。図22は、実施の形態5に係る目標ヨーレート比率Gγと目標転舵角δとの関係を速度V毎に示すグラフである。目標ヨーレート比率Gγは、内輪故障時の目標ヨーレートγと、外輪故障時の目標ヨーレートγとの比率の絶対値である。具体的には、Gγ=|γ/γr|である。
 破線L40は正常時の関係を示している。また、実線L41は速度Vが10km/hである場合の関係を示し、破線L42は速度Vが40km/hである場合の関係を示し、一点鎖線L43は速度Vが80km/hである場合の関係を示し、二点鎖線L44は速度Vが120km/hである場合の関係を示している。例えば0km/hより大きく30km/h未満を低速度域とし、30km/h以上60km/h未満を中速度域とし、60km/h以上100km/h未満を高速度域とし、例えば100km/h以上130km/h未満を超高速度域とする。許容される転舵角は速度が大きくなるほど小さくなるため、実線L41に対応する目標転舵角δの範囲が最も広く、二点鎖線L44に対応する目標転舵角δの範囲が最も狭い。実線L41、破線L42、一点鎖線L43及び二点鎖線L44に示すように、破線L40との交点を示す目標転舵角δは速度Vが大きくなるほど小さくなっている。実線L41、破線L42、一点鎖線L43及び二点鎖線L44に示すように、極大値となる目標転舵角δも速度Vが大きくなるほど小さくなっている。
 この図22に示す関係が満たされるように、ヨーレート-転舵角マップの実線L31を速度V毎に設定していてもよい。具体的には、右転舵ECUのヨーレート制御部は、取得した速度Vと、図22に示すグラフとの関係を満たすように実線L31を補正してもよい。また、右転舵ECUのヨーレート制御部は、図22に示すグラフを満たす実線L31を速度毎に予め有していて、取得した速度Vに対して適切な実線L31を選択してもよい。このように、各速度に対応する実線L31は、図22に示す関係が反映されているので、いずれの速度Vにおいても、正常な右転舵機構204Rが内輪に対応する場合の目標転舵角δの絶対値を、当該正常な右転舵機構204Rが外輪に対応する場合の目標転舵角δの絶対値よりも大きくすることができる。
 このように、転舵角決定部233LAは、目標ヨーレートと目標転舵角との関係を示すヨーレート-転舵角マップを有しており、決定された目標ヨーレートとヨーレート-転舵角マップとに基づいて、目標転舵角を決定する。
 これによれば、ヨーレート-転舵角マップに基づいて目標転舵角を決定することができるので、目標ヨーレートに対して適切な転舵角をフィードフォワード制御によって決定することができる。
 また、転舵角決定部233Lは、左右の転舵機構のうちの一方に異常が発生した場合であって、正常な転舵機構が内輪に対応する場合の目標転舵角の絶対値を、当該正常な転舵機構が外輪に対応する場合の目標転舵角の絶対値よりも大きくする。
 これによれば、左右の転舵機構のうちの一方に異常が発生した場合であって、正常な転舵機構が内輪に対応した場合に、両輪正常時に対する旋回能力の低下を抑制することができる。
 [ヨーレート-転舵角マップの他の例]
 上記実施の形態5では、失陥した転舵機構の転舵輪に対して作用する横力については、タイヤすべり角、タイヤ垂直荷重に起因する横力を考慮して決めていたが、タイヤすべり角、タイヤ垂直荷重以外の要因(横風、路面の傾きなど)で横力が発生する場合を考慮していなかった。当該横力も旋回能力を低下させる一因でもある。このため、左右の転舵ECUにおける転舵角決定部のヨーレート制御部は、各転舵輪の横力を取得し、当該横力を基にして、ヨーレート-転舵角マップを選択してもよい。この場合、ヨーレート制御部は、予め各ケースに応じた複数のヨーレート-転舵角マップを有している。また、ヨーレート制御部は、例えば車両201に備わる周知の横力センサから各転舵輪の横力を取得してもよいし、各センサの検出結果から各転舵輪の横力を推定してもよい。
 以降、転舵輪に作用する横力を考慮した場合のヨーレート-転舵角マップの例(第一の例~第三の例)について説明する。
 図23は、第一の例に係るヨーレート-転舵角マップを示す説明図である。具体的には、図23の(a)は右転舵機構204Rにおけるヨーレート-転舵角マップを示すグラフであり、図23の(b)は、左転舵機構204Lにおけるヨーレート-転舵角マップを示すグラフである。
 図23の(a)において、破線L52は、左右の転舵機構が正常である場合のヨーレート-転舵角マップである。二点鎖線L53は、左転舵機構204Lの失陥状態に右転舵機構204Rのみで車両201を旋回走行させる場合であって左転舵輪203Lに横力F11が発生していない場合のヨーレート-転舵角マップである。実線L51は、第一の例に係るヨーレート-転舵角マップであり、左転舵機構204Lの失陥状態に右転舵機構204Rのみで車両201を旋回走行させる場合であって左転舵輪203Lに、旋回方向とは逆方向の横力F11が発生している場合(ケース1)のヨーレート-転舵角マップである。実線L51は、二点鎖線L53と比べると、目標転舵角の絶対値が大きく設定されている。図示しない右転舵ECUのヨーレート制御部は、取得した失陥情報及び横力に基づいて、ケース1であると判断した場合には、第一の例のヨーレート-転舵角マップ(実線L51)を選択する。右転舵のヨーレート制御部は、実線L51を用いて目標転舵角を決定するため、右転舵機構204Rに対する目標転舵角の絶対値は、横力が発生していない場合の目標転舵角の絶対値よりも大きくなる。これにより、左転舵機構204Lの失陥時におけるケース1の場合の旋回能力の低下を抑制することができる。
 図23の(b)において、破線L62は、左右の転舵機構が正常である場合のヨーレート-転舵角マップである。二点鎖線L63は、右転舵機構204Rの失陥状態に左転舵機構204Lのみで車両201を旋回走行させる場合であって右転舵輪203Rに横力F12が発生していない場合のヨーレート-転舵角マップである。実線L61は、第一の例に係るヨーレート-転舵角マップであり、右転舵機構204Rの失陥状態に左転舵機構204Lのみで車両201を旋回走行させる場合であって右転舵輪203Rに、旋回方向とは逆方向の横力F12が発生している場合(ケース1)のヨーレート-転舵角マップである。実線L61は、二点鎖線L63と比べると、目標転舵角の絶対値が大きく設定されている。左転舵ECU230LAのヨーレート制御部242LAは、取得した失陥情報及び横力に基づいて、ケース1であると判断した場合には、第一の例のヨーレート-転舵角マップ(実線L61)を選択する。左転舵ECU230LAのヨーレート制御部242LAは、実線L61を用いて目標転舵角を決定するため、左転舵機構204Lに対する目標転舵角の絶対値は、横力が発生していない場合の目標転舵角の絶対値よりも大きくなる。これにより、右転舵機構204Rの失陥時におけるケース1の場合の旋回能力の低下を抑制することができる。
 このように、異常となった転舵機構の転舵輪に対して旋回方向とは逆方向に横力が発生している場合には、転舵角決定部は、正常な転舵機構に対する目標転舵角の絶対値を、横力が発生していない場合の目標転舵角の絶対値よりも大きくする。これにより、異常となった転舵機構の転舵輪に対して旋回方向とは逆方向に横力が発生している場合の旋回能力の低下を抑制することができる。
 図24は、第二の例に係るヨーレート-転舵角マップを示す説明図である。具体的には、図24の(a)は右転舵機構204Rにおけるヨーレート-転舵角マップを示すグラフであり、図24の(b)は、左転舵機構204Lにおけるヨーレート-転舵角マップを示すグラフである。
 図24の(a)において、破線L72は、左右の転舵機構が正常である場合のヨーレート-転舵角マップである。二点鎖線L73は、左転舵機構204Lの失陥状態に右転舵機構204Rのみで車両201を旋回走行させる場合であって左転舵輪203Lに横力F21が発生していない場合のヨーレート-転舵角マップである。実線L71は、第二の例に係るヨーレート-転舵角マップであり、左転舵機構204Lの失陥状態に右転舵機構204Rのみで車両201を旋回走行させる場合であって左転舵輪203Lに、旋回方向とは同じ方向の横力F21が発生している場合(ケース2)のヨーレート-転舵角マップである。実線L71は、二点鎖線L73と比べると、目標転舵角の絶対値が小さく設定されている。図示しない右転舵ECUのヨーレート制御部は、取得した失陥情報及び横力に基づいて、ケース2であると判断した場合には、第二の例のヨーレート-転舵角マップ(実線L71)を選択する。右転舵ECUのヨーレート制御部は、実線L71を用いて目標転舵角を決定するため、右転舵機構204Rに対する目標転舵角の絶対値は、横力が発生していない場合の目標転舵角の絶対値よりも小さくなる。これにより、左転舵機構204Lの失陥時におけるケース2の場合の旋回能力の低下を抑制することができる。
 図24の(b)において、破線L82は、左右の転舵機構が正常である場合のヨーレート-転舵角マップである。二点鎖線L83は、右転舵機構204Rの失陥状態に左転舵機構204Lのみで車両201を旋回走行させる場合であって右転舵輪203Rに横力F22が発生していない場合のヨーレート-転舵角マップである。実線L81は、第一の例に係るヨーレート-転舵角マップであり、右転舵機構204Rの失陥状態に左転舵機構204Lのみで車両201を旋回走行させる場合であって右転舵輪203Rに、旋回方向とは同じ方向の横力F22が発生している場合(ケース2)のヨーレート-転舵角マップである。実線L81は、二点鎖線L83と比べると、目標転舵角の絶対値が小さく設定されている。左転舵ECU230LAのヨーレート制御部242LAは、取得した失陥情報及び横力に基づいて、ケース2であると判断した場合には、第二の例のヨーレート-転舵角マップ(実線L81)を選択する。左転舵ECU230LAのヨーレート制御部242LAは、実線L81を用いて目標転舵角を決定するため、左転舵機構204Lに対する目標転舵角の絶対値は、横力が発生していない場合の目標転舵角の絶対値よりも小さくなる。これにより、右転舵機構204Rの失陥時におけるケース2の場合の旋回能力の低下を抑制することができる。
 このように、異常となった転舵機構の転舵輪に対して、旋回方向とは同方向に横力が発生している場合には、転舵角決定部は、正常な転舵機構に対する目標転舵角の絶対値を、横力が発生していない場合の目標転舵角の絶対値よりも小さくする。これにより、異常となった転舵機構の転舵輪に対して旋回方向とは同方向に横力が発生している場合の旋回能力の低下を抑制することができる。
 図25は、第三の例に係るヨーレート-転舵角マップを示す説明図である。具体的には、図25の(a)は左転舵機構204Lにおけるヨーレート-転舵角マップを示すグラフであり、図25の(b)は、右転舵機構204Rにおけるヨーレート-転舵角マップを示すグラフである。なお、この図25では、車両201がカント路を走行している場合におけるヨーレート-転舵角マップを示している。カント路では、旋回方向によらず、異常となった転舵輪に対して同じ方向に横力が作用する。カント路に走行しているか否かの判断は、IMU213で検出された車両201の3軸方向の加速度及び角速度等に基づいて行うことができる。
 図25の(a)において、破線L92は、左右の転舵機構が正常である場合のヨーレート-転舵角マップである。二点鎖線L93は、左転舵機構204Lの失陥状態に右転舵機構204Rのみで車両201を旋回走行させる場合であって左転舵輪203Lに横力F31が発生していない場合のヨーレート-転舵角マップである。実線L91は、第三の例に係るヨーレート-転舵角マップであり、左転舵機構204Lの失陥状態に右転舵機構204Rのみで車両201を旋回走行させる場合であって左転舵輪203Lに、カント路を起因とした横力F31が発生している場合(ケース3)のヨーレート-転舵角マップである。実線L91は、二点鎖線L93と比べると、原点から右上の領域では目標転舵角の絶対値よりも小さく設定され、原点から左下の領域では目標転舵角の絶対値以上に設定されている。また、実線L91、破線L92及び二点鎖線L93は、いずれも目標ヨーレートがゼロのときに目標転舵角がマイナスとなっている。これは、カント路においては、目標ヨーレートをゼロとする場合に、傾斜の高い方向側に転舵しておく必要があるためである。
 図示しない右転舵ECUのヨーレート制御部は、取得した失陥情報及び横力などに基づいて、ケース3であると判断した場合には、第三の例のヨーレート-転舵角マップ(実線L91)を選択する。右転舵ECUのヨーレート制御部は、実線L91を用いて目標転舵角を決定する。このため、右転舵機構204Rに対する目標転舵角の絶対値は、当該右転舵機構204Rが内輪に対応する場合には、横力の発生していない場合の目標転舵角の絶対値よりも大きくなる。また、右転舵機構204Rに対する目標転舵角の絶対値は、当該右転舵機構204Rが外輪に対応する場合には、横力が発生していない場合の目標転舵角の絶対値以下となる。これにより、右転舵機構204Rの失陥時におけるケース3の場合の旋回能力の低下を抑制することができる。
 図25の(b)において、破線L102は、左右の転舵機構が正常である場合のヨーレート-転舵角マップである。二点鎖線L103は、右転舵機構204Rの失陥状態に左転舵機構204Lのみで車両201を旋回走行させる場合であって右転舵輪203Rに横力F32が発生していない場合のヨーレート-転舵角マップである。実線L101は、第三の例に係るヨーレート-転舵角マップであり、右転舵機構204Rの失陥状態に左転舵機構204Lのみで車両201を旋回走行させる場合であって右転舵輪203Rに、カント路を起因とした横力F32が発生している場合(ケース3)のヨーレート-転舵角マップである。実線L101は、二点鎖線L103と比べると、原点から左下の領域では目標転舵角の絶対値よりも大きく設定され、原点から右上の領域では目標転舵角の絶対値以下に設定されている。また、実線101、破線L102及び二点鎖線L103は、いずれも目標ヨーレートがゼロのときに目標転舵角がマイナスとなっている。これは、カント路においては、目標ヨーレートをゼロとする場合に、傾斜の高い方向側に転舵しておく必要があるためである。
 左転舵ECU230LAのヨーレート制御部242LAは、取得した失陥情報及び横力などに基づいて、ケース3であると判断した場合には、第三の例のヨーレート-転舵角マップ(実線L101)を選択する。左転舵ECU230LAのヨーレート制御部242LAは、実線L101を用いて目標転舵角を決定する。このため、左転舵機構204Lに対する目標転舵角の絶対値は、当該左転舵機構204Lが内輪に対応する場合には、横力の発生していない場合の目標転舵角の絶対値よりも大きくなる。また、左転舵機構204Lに対する目標転舵角の絶対値は、当該左転舵機構204Lが外輪に対応する場合には、横力が発生していない場合の目標転舵角の絶対値以下となる。これにより、右転舵機構204Rの失陥時におけるケース3の場合の旋回能力の低下を抑制することができる。
 このように、転舵角決定部は、車両201がカント路上を旋回する場合であって、車両201の旋回方向に対して横力が発生している場合には、横力の発生していない場合の目標転舵角の絶対値よりも小さくし、旋回方向と逆方向に横力が発生している場合には、横力が発生していない場合の目標転舵角の絶対値以上とする。これにより、カント路走行時において左右の転舵機構の一方が異常となった場合であっても旋回能力の低下を抑制することができる。
 [実施の形態6]
 実施の形態6では、フィードフォワード制御によって求められた目標すべり角に基づいて目標転舵角が決定される場合について説明する。なお、以下の説明において上記実施の形態4と同一の部分については同一の符号を付してその説明を省略する場合がある。
 図26は、実施の形態6に係る左転舵ECU230LBの機能的な構成の一例を示すブロック図である。なお、右転舵ECUについては、左転舵ECU230LBと基本的に同じ構成であるのでその説明は省略する。
 図26に示すように、左転舵ECU230LBの転舵角決定部233LBは、すべり角制御部242LBと、変換部246LBとを有している。すべり角制御部242LBは、目標ヨーレートγに対してフィードフォワード制御を行うことで、目標すべり角βを決定する。具体的には、すべり角制御部242LBは、上位ECU220から与えられた駆動信号内の目標ヨーレートγと、失陥情報とに基づいてフィードフォワード制御を行って、目標すべり角βを決定する。このフィードフォワード制御時には、ヨーレート-すべり角マップが用いられる。ヨーレート-すべり角マップは、目標ヨーレートと目標すべり角との関係を示すマップである。すべり角制御部242LBは、ヨーレート-すべり角マップを有している。
 図27は、実施の形態6に係る左転舵機構204Lにおけるヨーレート-すべり角マップの一例を示すグラフである。図27のヨーレート-すべり角マップは、右転舵機構204Rの失陥状態に左転舵機構204Lのみで車両201を旋回走行させる場合の目標ヨーレートと目標すべり角との関係を実線L111で示し、正常時における目標ヨーレートと目標すべり角との関係を破線L112で示している。なお、ここでは目標すべり角及び目標ヨーレートを絶対値で表現する。
 すべり角制御部242LBは、失陥情報に右転舵機構204Rの失陥がない場合には、目標ヨーレートγと破線L112に基づいて、正常時における左転舵機構204Lの目標すべり角βを決定する。この破線L112は、目標ヨーレートγの絶対値が大きくなるほど目標すべり角βの絶対値が大きくなる、全体として左斜め上に傾いた指数関数的な曲線で示されている。破線L112は、原点を基準とした点対称となる曲線である。なお、破線L112は、直線であってもよいし、直線と曲線とが組み合わされた線分であってもよい。
 一方、すべり角制御部242LBは、失陥情報に右転舵機構204Rの失陥が含まれている場合には、目標ヨーレートγと実線L111に基づいて、右転舵機構204Rの失陥時における左転舵機構204Lの目標すべり角βを決定する。この実線L111は、目標ヨーレートγの絶対値が大きくなるほど目標転舵角δの絶対値が大きくなる、全体として左斜め上に傾いた指数関数的な曲線で示されている。
 また、実線L111は、車両201の速度によって変化してもよい。図28は、実施の形態6に係る目標ヨーレート比率Gγと目標すべり角βとの関係を速度V毎に示すグラフである。目標ヨーレート比率Gγは、内輪故障時の目標ヨーレートγと、外輪故障時の目標ヨーレートγとの比率の絶対値である。具体的には、Gγ=|γ/γ|である。
 破線L120は正常時の関係を示している。また、実線L121は速度Vが10km/hである場合の関係を示し、破線L122は速度Vが40km/hである場合の関係を示し、一点鎖線L123は速度Vが80km/hである場合の関係を示し、二点鎖線L124は速度Vが120km/hである場合の関係を示している。例えば0km/hより大きく30km/h未満を低速度域とし、30km/h以上60km/h未満を中速度域とし、60km/h以上100km/h未満を高速度域とし、例えば100km/h以上130km/h未満を超高速度域とする。実線L121、破線L122、一点鎖線L123及び二点鎖線L124に示すように、極大値となる目標すべり角βは速度Vが大きくなるほど大きくなっている。
 この図28に示す関係が満たされるように、ヨーレート-すべり角マップの実線L111を速度V毎に設定していてもよい。具体的には、すべり角制御部242LBは、取得した速度Vと、図28に示すグラフとの関係を満たすように実線L111を補正してもよい。また、すべり角制御部242LBは、図28に示すグラフを満たす実線L111を速度毎に予め有していて、取得した速度Vに対して適切な実線L111を選択してもよい。このように、各速度に対応する実線L111は、図28に示す関係が反映されているので、いずれの速度Vにおいても、適切な目標すべり角βを決定することができる。
 変換部246LBは、すべり角制御部242LBが決定した目標すべり角βを目標転舵角δに変換する。変換部246LBは、周知の変換方法により目標すべり角βを目標転舵角δに変換する。例えば、変換部246LBは下記の式(1)に基づいて目標すべり角βを目標転舵角δに変換する。
Figure JPOXMLDOC01-appb-M000001
 ここで、βは目標すべり角であり、βcarは車体横すべり角であり、Vは車両の速度であり、γは実ヨーレートであり、lは車体重心から前輪中心までの距離であり、dはフロントトレッドである。
 なお、目標すべり角βを目標転舵角δに変換する際には以下の式(2)が用いられる。
Figure JPOXMLDOC01-appb-M000002
 次に、右転舵機構204Rにおけるヨーレート-すべり角マップについて説明する。図29は、実施の形態6に係る右転舵機構204Rにおけるヨーレート-すべり角マップの一例を示すグラフである。図29のヨーレート-すべり角マップは、左転舵機構204Lの失陥状態に右転舵機構204Rのみで車両201を旋回走行させる場合の目標ヨーレートと目標すべり角との関係を実線L131で示し、正常時における目標ヨーレートと目標すべり角との関係を破線L132で示している。つまり、右転舵ECUのすべり角制御部(図示省略)は、失陥情報に左転舵機構204Lの失陥がない場合には、目標ヨーレートγと破線L132に基づいて、正常時における右転舵機構204Rの目標すべり角βを決定する。この破線L132は、目標ヨーレートγの絶対値が大きくなるほど目標転舵角δの絶対値が大きくなる、左斜め上に傾いた指数関数的な曲線で示されている。破線L132は、原点を基準とした点対称となる曲線である。なお、破線L132は、直線であってもよいし、直線と曲線とが組み合わされた線分であってもよい。
 一方、右転舵ECUのすべり角制御部(図示省略)は、失陥情報に左転舵機構204Lの失陥が含まれている場合には、目標ヨーレートγと実線L131に基づいて、左転舵機構204Lの失陥時における右転舵機構204Rの目標すべり角βを決定する。この実線L131は、目標ヨーレートγの絶対値が大きくなるほど目標すべり角βの絶対値が大きくなる、全体として左斜め上に傾いた指数関数的な曲線で示されている。
 また、実線L131は、車両201の速度によって変化してもよい。図30は、実施の形態6に係る目標ヨーレート比率Gγと目標すべり角βとの関係を速度V毎に示すグラフである。目標ヨーレート比率Gγは、内輪故障時の目標ヨーレートγと、外輪故障時の目標ヨーレートγとの比率の絶対値である。具体的には、Gγ=|γ/γ|である。
 破線L140は正常時の関係を示している。また、実線L141は速度Vが10km/hである場合の関係を示し、破線L142は速度Vが40km/hである場合の関係を示し、一点鎖線L143は速度Vが80km/hである場合の関係を示し、二点鎖線L144は速度Vが120km/hである場合の関係を示している。例えば0km/hより大きく30km/h未満を低速度域とし、30km/h以上60km/h未満を中速度域とし、60km/h以上100km/h未満を高速度域とし、例えば100km/h以上130km/h未満を超高速度域とする。実線L141、破線L142、一点鎖線L143及び二点鎖線L144に示すように、極大値となる目標すべり角βも速度Vが大きくなるほど大きくなっている。
 この図30に示す関係が満たされるように、ヨーレート-すべり角マップの実線L131を速度V毎に設定していてもよい。具体的には、右転舵ECUのすべり角制御部は、取得した速度Vと、図30に示すグラフとの関係を満たすように実線L131を補正してもよい。また、右転舵ECUのすべり角制御部は、図30に示すグラフを満たす実線L131を速度毎に予め有していて、取得した速度Vに対して適切な実線L131を選択してもよい。このように、各速度に対応する実線L131は、図30に示す関係が反映されているので、いずれの速度Vにおいても、適切な目標すべり角βを決定することができる。
 右転舵ECUの変換部(図示省略)は、当該右転舵ECUのすべり角制御部が決定した目標すべり角βを目標転舵角δに変換する。変換部は、周知の変換方法により目標すべり角βを目標転舵角δに変換する。例えば、変換部は上記の式(1)に基づいて目標すべり角βを目標転舵角δに変換する。
 このように、転舵角決定部233LBは、目標ヨーレートと目標すべり角との関係を示すヨーレート-すべり角マップを有しており、決定された目標ヨーレートと、ヨーレート-すべり角マップとに基づいて目標すべり角を求め、当該目標すべり角に基づいて目標転舵角を決定する。
 これによれば、ヨーレート-すべり角マップに基づいて目標転舵角を決定することができるので、目標ヨーレートに対して適切な転舵角をフィードフォワード制御によって決定することができる。
 [その他]
 以上、本発明の1つ以上の態様に係る転舵装置等について、実施の形態に基づいて説明したが、本発明は、実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の1つ以上の態様の範囲内に含まれてもよい。
 例えば、上記実施の形態では、取得部220aが操舵角センサ210の検出結果に基づいて目標ヨーレートを算出することで当該目標ヨーレートを取得する場合を例示した。しかし、取得部としては、目標ヨーレートを取得できるのであれば、如何なる態様であってもよい。例えば、車両201が自動運転車である場合には、走行中に作成される走行経路に基づいて目標ヨーレートを算出して取得する取得部であってもよい。つまり、この場合には、取得部は、目標ヨーレート取得部の一例となる。このように、制御装置は、自動走行中に作成される走行経路に基づいて、目標ヨーレートを算出して取得する目標ヨーレート取得部を備え、転舵角決定部は、目標ヨーレート取得部が取得した目標ヨーレートに基づいて左右の転舵機構のそれぞれに対する目標転舵角を決定してもよい。したがって、自動走行時においても、互いに連結されていない左右の転舵機構の一方に異常が発生した場合に、車両の旋回能力の低下を抑えることが可能となる。
 また、取得部とは別の算出部が算出した目標ヨーレートを、取得部が取得してもよい。なお、目標ヨーレートは、目標旋回半径を含んでもよい。つまり、上記実施の形態の目標ヨーレートに変えて、目標旋回半径を使用してもよく、この場合、実ヨーレートは実旋回半径となる。
 また、上記実施の形態では、転舵角決定部が左転舵ECU230L及び右転舵ECU230Rのそれぞれに設けられている場合を例示した。しかし、転舵角決定部は上位ECUに設けられていてもよい。
 また、上記実施の形態5で述べたケース1、ケース2、ケース3での目標転舵角の決定条件は、実施の形態4または実施の形態6に対しても適用することができる。具体的には、実施の形態4または実施の形態5に係る転舵角決定部は、ケース1では、正常な転舵機構に対する目標転舵角の絶対値を、横力が発生していない場合の目標転舵角の絶対値よりも大きくしてもよい。また、実施の形態4または実施の形態5に係る転舵角決定部は、ケース2では、正常な転舵機構に対する目標転舵角の絶対値を、横力が発生していない場合の目標転舵角の絶対値よりも小さくしてもよい。また、実施の形態4または実施の形態5に係る転舵角決定部は、ケース3では、車両がカント路上を旋回する場合であって、車両201の旋回方向に対して横力が発生している場合には、横力の発生していない場合の目標転舵角の絶対値よりも小さくし、旋回方向と逆方向に横力が発生している場合には、横力が発生していない場合の目標転舵角の絶対値以上としてもよい。
 また、上述したように、本発明の技術は、システム、装置、方法、集積回路、コンピュータプログラム又はコンピュータ読取可能な記録ディスク等の記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。コンピュータ読み取り可能な記録媒体は、例えばCD-ROM等の不揮発性の記録媒体を含む。
 例えば、上記実施の形態に含まれる各処理部は典型的には集積回路であるLSI(Large Scale Integration:大規模集積回路)として実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 なお、上記実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUなどのプロセッサ等のプログラム実行部が、ハードディスク又は半導体メモリ等の記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、上記構成要素の一部又は全部は、脱着可能なIC(Integrated Circuit)カード又は単体のモジュールから構成されてもよい。ICカード又はモジュールは、マイクロプロセッサ、ROM、RAM等から構成されるコンピュータシステムである。ICカード又はモジュールは、上記のLSI又はシステムLSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、ICカード又はモジュールは、その機能を達成する。これらICカード及びモジュールは、耐タンパ性を有するとしてもよい。
 本発明に係る技術は、各転舵輪を転舵させる機構が独立している転舵装置に有用である。
1、201…車両、2、202…ステアリングホイール、3L、203L…左転舵輪、3R、203R…右転舵輪、4L、204L…左転舵機構、4R、204R…右転舵機構、5L、205L…左転舵アクチュエータ、5R、205R…右転舵アクチュエータ、20、220…上位ECU、20a、220a…取得部、20b、233L、233LA、233LB…転舵角決定部、21、221…記憶部、30L…左転舵ECU(転舵指令部)、230L…左転舵ECU、30R…右転舵ECU(転舵指令部)、230R…右転舵ECU、50、250…制御装置、100、200…転舵装置、234L…転舵指令部

Claims (17)

  1.  互いに機械的に接続されていない左右の転舵機構を備え且つ前記左右の転舵機構のそれぞれに備えられる各アクチュエータの駆動力によって左右の転舵輪を個別に転舵する車両用の転舵装置の制御装置であって、
     前記左右の転舵機構のそれぞれに対する目標転舵角を決定する転舵角決定部と、
     前記目標転舵角に対応した駆動信号を作成し、当該駆動信号を前記各アクチュエータに出力する転舵指令部とを備え、
     前記転舵角決定部は、前記左右の転舵機構のうちの一方に異常が発生した場合には、正常な転舵機構に対する目標転舵角を、前記左右の転舵機構の両者が正常の場合の目標転舵角とは異なるようにする
     制御装置。
  2.  運転者の操舵に対応する操舵角を取得する取得部を備え、
     前記転舵角決定部は、前記取得部で取得された操舵角に応じた前記目標転舵角を、操舵角に対する転舵角の比率に基づき、前記左右の転舵機構それぞれに対して決定する際に、前記左右の転舵機構のうちの一方に異常が発生した場合、正常時の前記比率である第一比率を変化させた第二比率に基づき、他方の前記転舵機構の目標転舵角を決定する
     請求項1に記載の制御装置。
  3.  前記左右の転舵機構のうちの一方に異常が発生した場合、前記転舵角決定部は、
     前記他方の転舵機構の前記転舵輪が車両の旋回方向において前記一方の転舵機構の前記転舵輪の内側に位置する車両の旋回の目標転舵角を決定する場合、前記第一比率よりも大きい前記第二比率を使用し、
     前記他方の転舵機構の前記転舵輪が前記車両の旋回方向において前記一方の転舵機構の前記転舵輪の外側に位置する車両の旋回の目標転舵角を決定する場合、前記第一比率以下の前記第二比率を使用する
     請求項2に記載の制御装置。
  4.  前記左右の転舵機構のうちの一方に異常が発生した場合、前記転舵角決定部は、
     前記他方の転舵機構の前記転舵輪が車両の旋回方向において前記一方の転舵機構の前記転舵輪の内側に位置する車両の旋回の目標転舵角を決定する場合、前記第二比率として、前記第一比率よりも大きい第三比率を使用し、
     前記他方の転舵機構の前記転舵輪が前記車両の旋回方向において前記一方の転舵機構の前記転舵輪の外側に位置する車両の旋回の目標転舵角を決定する場合、前記第二比率として、前記第一比率よりも大きい第四比率を使用し、
     前記第三比率は、前記第四比率よりも大きい
     請求項2に記載の制御装置。
  5.  前記転舵角決定部は、前記操舵角が大きくなるほど大きい前記第二比率に基づき、前記他方の転舵機構の目標転舵角を決定する
     請求項2または3に記載の制御装置。
  6.  前記転舵角決定部は、前記左右の転舵機構それぞれに対応した目標ヨーレートに基づいて前記左右の転舵機構のそれぞれに対する目標転舵角を決定する
     請求項1に記載の制御装置。
  7.  自動走行中に作成される走行経路に基づいて、前記目標ヨーレートを算出して取得する目標ヨーレート取得部を備え、
     前記転舵角決定部は、前記目標ヨーレート取得部が取得した前記目標ヨーレートに基づいて前記左右の転舵機構のそれぞれに対する目標転舵角を決定する
     請求項6に記載の制御装置。
  8.  前記転舵角決定部は、前記左右の転舵機構のうちの一方に異常が発生した場合であって、前記正常な転舵機構が内輪に対応する場合の目標転舵角の絶対値を、当該正常な転舵機構が外輪に対応する場合の目標転舵角の絶対値よりも大きくする
     請求項6または7に記載の制御装置。
  9.  車両の実際のヨーレートである実ヨーレートを取得する実ヨーレート取得部を備え、
     前記転舵角決定部は、前記実ヨーレートと前記目標ヨーレートとの偏差であるヨーレート偏差に基づいて、前記目標転舵角を決定する際のフィードバック制御のゲインを変更する
     請求項6~8のいずれか一項に記載の制御装置。
  10.  前記転舵角決定部は、前記目標ヨーレートと前記目標転舵角との関係を示すヨーレート-転舵角マップを有しており、前記決定された目標ヨーレートと、前記ヨーレート-転舵角マップとに基づいて、前記目標転舵角を決定する
     請求項6~8のいずれか一項に記載の制御装置。
  11.  前記転舵角決定部は、前記目標ヨーレートと前記転舵輪に対する目標すべり角との関係を示すヨーレート-すべり角マップを有しており、前記決定された目標ヨーレートと、前記ヨーレート-すべり角マップとに基づいて前記目標すべり角を求め、当該目標すべり角に基づいて前記目標転舵角を決定する
     請求項6~8のいずれか一項に記載の制御装置。
  12.  異常となった前記転舵機構の前記転舵輪に対して旋回方向とは逆方向に横力が発生している場合には、前記転舵角決定部は、前記正常な前記転舵機構に対する目標転舵角の絶対値を、横力が発生していない場合の目標転舵角の絶対値よりも大きくする
     請求項1~11のいずれか一項に記載の制御装置。
  13.  異常となった前記転舵機構の前記転舵輪に対して、旋回方向とは同方向に横力が発生している場合には、前記転舵角決定部は、前記正常な前記転舵機構に対する目標転舵角の絶対値を、横力が発生していない場合の目標転舵角の絶対値よりも小さくする
     請求項1~12のいずれか一項に記載の制御装置。
  14.  前記転舵角決定部は、前記車両がカント路上を旋回する場合であって、前記車両の旋回方向に対して横力が発生している場合には、横力の発生していない場合の目標転舵角の絶対値よりも小さくし、
     前記旋回方向と逆方向に横力が発生している場合には、横力が発生していない場合の目標転舵角の絶対値以上とする
     請求項1~13のいずれか一項に記載の制御装置。
  15.  請求項1~14のいずれか一項に記載の制御装置と、
     操舵角を検出する操舵角センサと、
     前記左の転舵機構及び前記右の転舵機構とを備え、
     前記左の転舵機構は、前記左の転舵輪を個別に転舵するための駆動力を発生する左の前記アクチュエータを有し、
     前記右の転舵機構は、前記右の転舵輪を個別に転舵するための駆動力を発生する右の前記アクチュエータを有する
     転舵装置。
  16.  互いに機械的に接続されていない左右の転舵機構を備え且つ前記左右の転舵機構のそれぞれに備えられる各アクチュエータの駆動力によって左右の転舵輪を個別に転舵する車両用の転舵装置の制御方法であって、
     前記左右の転舵機構のそれぞれに対する目標転舵角を決定し、
     決定された目標転舵角に応じた駆動信号を、前記各アクチュエータに出力し、
     前記目標転舵角の決定では、前記左右の転舵機構のうちの一方に異常が発生した場合には、正常な転舵機構に対する目標転舵角を、前記左右の転舵機構の両者が正常の場合の目標転舵角とは異なるように決定する
     制御方法。
  17.  互いに機械的に接続されていない左右の転舵機構のそれぞれに対する目標転舵角を決定し、
     決定された目標転舵角に応じた駆動信号を、前記左右の転舵機構のそれぞれに備えられ且つ左右の転舵輪を個別に転舵する各アクチュエータに出力し、
     前記目標転舵角の決定では、前記左右の転舵機構のうちの一方に異常が発生した場合には、正常な転舵機構に対する目標転舵角を、前記左右の転舵機構の両者が正常の場合の目標転舵角とは異なるように決定する
     ことをコンピュータに実行させるプログラム。
PCT/JP2019/012431 2018-03-26 2019-03-25 制御装置、転舵装置、制御方法及びプログラム WO2019188951A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020510058A JP7226433B2 (ja) 2018-03-26 2019-03-25 制御装置、転舵装置、制御方法及びプログラム
US16/981,546 US11584429B2 (en) 2018-03-26 2019-03-25 Control device, steering device, control method, and recording medium
EP19776746.0A EP3778353A4 (en) 2018-03-26 2019-03-25 CONTROL DEVICE, STEERING DEVICE, CONTROL METHOD AND PROGRAM
CN201980021122.XA CN111902331B (zh) 2018-03-26 2019-03-25 控制装置、转向装置、控制方法以及记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-058091 2018-03-26
JP2018058091 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188951A1 true WO2019188951A1 (ja) 2019-10-03

Family

ID=68058391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012431 WO2019188951A1 (ja) 2018-03-26 2019-03-25 制御装置、転舵装置、制御方法及びプログラム

Country Status (5)

Country Link
US (1) US11584429B2 (ja)
EP (1) EP3778353A4 (ja)
JP (1) JP7226433B2 (ja)
CN (1) CN111902331B (ja)
WO (1) WO2019188951A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4144617A4 (en) * 2020-05-18 2024-01-10 Great Wall Motor Company Limited CONTROL METHOD AND DEVICE

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017130B2 (ja) * 2018-08-13 2022-02-08 トヨタ自動車株式会社 ステアリングシステム
US11572095B2 (en) * 2019-02-28 2023-02-07 Steering Solutions Ip Holding Corporation Method and system for electronic power steering angle control with non-zero initial condition
KR20210031075A (ko) * 2019-09-11 2021-03-19 주식회사 만도 조향 제어 장치 및 그 방법, 그리고 조향 시스템
CA3099415A1 (en) * 2019-12-20 2021-02-05 Bombardier Transportation Gmbh Steering system for an autonomous vehicle
KR20220048524A (ko) * 2020-10-12 2022-04-20 현대자동차주식회사 자율주행차량의 사고 발생 후 차량 이동 방법
JP7200210B2 (ja) * 2020-12-25 2023-01-06 本田技研工業株式会社 移動体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210263A (ja) * 2002-12-11 2004-07-29 Conception & Dev Michelin Sa 車輪操舵用アクチュエータが故障した時の故障モードを備えた車両用ステアリングシステム
JP2007307972A (ja) * 2006-05-17 2007-11-29 Toyota Motor Corp 車両の操舵装置
JP2010179841A (ja) * 2009-02-06 2010-08-19 Nissan Motor Co Ltd 旋回挙動制御装置、及び旋回挙動制御方法
JP2011131777A (ja) 2009-12-25 2011-07-07 Nsk Ltd フォークリフト用ステアリング装置
JP2011183883A (ja) * 2010-03-05 2011-09-22 Jtekt Corp 電動パワーステアリング装置
JP2013107450A (ja) * 2011-11-18 2013-06-06 Jtekt Corp 四輪操舵制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322557A (ja) * 2000-05-17 2001-11-20 Toyota Motor Corp 車両の複数輪独立操舵装置
JP2006175925A (ja) * 2004-12-21 2006-07-06 Toyota Motor Corp 車両用操舵装置
JP4359315B2 (ja) 2007-03-27 2009-11-04 本田技研工業株式会社 車両の全輪操舵装置
EP1975041B1 (en) 2007-03-27 2013-10-16 Honda Motor Co., Ltd. Steering system
JP2009208718A (ja) 2008-03-06 2009-09-17 Honda Motor Co Ltd 後輪独立操舵制御装置
US9567003B2 (en) * 2012-11-07 2017-02-14 Nissan Motor Co., Ltd. Steering control device
JP6548023B2 (ja) * 2015-09-11 2019-07-24 株式会社ジェイテクト 車両用操舵装置
JP6579377B2 (ja) * 2015-11-30 2019-09-25 株式会社ジェイテクト 車両用操舵装置
DE102016208775B4 (de) 2016-05-20 2020-06-04 Ford Global Technologies, Llc Steer-by-Wire-System, Kraftfahrzeug und Verfahren zum Betreiben eines Steer-by-Wire-Systems
JP7017130B2 (ja) * 2018-08-13 2022-02-08 トヨタ自動車株式会社 ステアリングシステム
JP7259574B2 (ja) * 2019-06-17 2023-04-18 株式会社ジェイテクト 制御装置、および転舵装置
JP7275981B2 (ja) * 2019-08-09 2023-05-18 株式会社ジェイテクト 制御装置、および転舵装置
JP7275991B2 (ja) * 2019-08-20 2023-05-18 株式会社ジェイテクト 制御装置、および転舵装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210263A (ja) * 2002-12-11 2004-07-29 Conception & Dev Michelin Sa 車輪操舵用アクチュエータが故障した時の故障モードを備えた車両用ステアリングシステム
JP2007307972A (ja) * 2006-05-17 2007-11-29 Toyota Motor Corp 車両の操舵装置
JP2010179841A (ja) * 2009-02-06 2010-08-19 Nissan Motor Co Ltd 旋回挙動制御装置、及び旋回挙動制御方法
JP2011131777A (ja) 2009-12-25 2011-07-07 Nsk Ltd フォークリフト用ステアリング装置
JP2011183883A (ja) * 2010-03-05 2011-09-22 Jtekt Corp 電動パワーステアリング装置
JP2013107450A (ja) * 2011-11-18 2013-06-06 Jtekt Corp 四輪操舵制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778353A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4144617A4 (en) * 2020-05-18 2024-01-10 Great Wall Motor Company Limited CONTROL METHOD AND DEVICE

Also Published As

Publication number Publication date
EP3778353A4 (en) 2022-01-19
US11584429B2 (en) 2023-02-21
US20210016825A1 (en) 2021-01-21
CN111902331B (zh) 2023-06-09
JPWO2019188951A1 (ja) 2021-03-18
JP7226433B2 (ja) 2023-02-21
CN111902331A (zh) 2020-11-06
EP3778353A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2019188951A1 (ja) 制御装置、転舵装置、制御方法及びプログラム
CN110217288B (zh) 用于控制车辆的转向的装置和方法
EP3932761A1 (en) Vehicle abnormal lane change control method, device and system
JP5830554B2 (ja) 四輪操舵車両の制御方法
CN110126643B (zh) 电机失效状态下分布式驱动电动汽车的控制方法及系统
CN108454694A (zh) 车辆的驾驶辅助装置
CN111201180A (zh) 用于控制车辆的转向系统的方法
US8594888B2 (en) Steering control apparatus
US10807637B2 (en) Steering control device
JP4032985B2 (ja) 車両運動制御装置
CN108749919B (zh) 一种线控四轮独立转向系统容错控制系统及其控制方法
EP3789271B1 (en) Control device and steering device
JP2022512992A (ja) ステアリングおよび差動ブレーキングシステムの制御を含む障害物回避のための方法およびシステム
CN115339507B (zh) 转向控制系统
US20210053617A1 (en) Control device and steering device
JP7259574B2 (ja) 制御装置、および転舵装置
CN111587199B (zh) 驾驶辅助装置、驾驶辅助方法及驾驶辅助系统
JP2015151048A (ja) 車両用軌跡制御装置
Zheng et al. Active steering control with front wheel steering
JP7063136B2 (ja) 制御装置、車両用操舵装置、制御方法及びプログラム
WO2020184300A1 (ja) 車輪制御システムおよび車輪制御方法
JP7016301B2 (ja) 操舵制御装置及び操舵制御方法
JP2020100354A (ja) 制御装置及び転舵装置
JP5617499B2 (ja) 車両用舵角制御装置
US20240043062A1 (en) Method for Influencing a Vehicle Movement of a Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019776746

Country of ref document: EP

Effective date: 20201026