WO2019176158A1 - ピッキングシステムおよびロボットアームのエンドエフェクタ - Google Patents
ピッキングシステムおよびロボットアームのエンドエフェクタ Download PDFInfo
- Publication number
- WO2019176158A1 WO2019176158A1 PCT/JP2018/040118 JP2018040118W WO2019176158A1 WO 2019176158 A1 WO2019176158 A1 WO 2019176158A1 JP 2018040118 W JP2018040118 W JP 2018040118W WO 2019176158 A1 WO2019176158 A1 WO 2019176158A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- article
- distance
- detected
- detector
- detection
- Prior art date
Links
- 239000012636 effector Substances 0.000 title claims abstract description 40
- 238000001514 detection method Methods 0.000 claims abstract description 88
- 230000007246 mechanism Effects 0.000 claims abstract description 38
- 230000003287 optical effect Effects 0.000 claims abstract description 22
- 238000007405 data analysis Methods 0.000 claims description 22
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 2
- 238000009825 accumulation Methods 0.000 description 17
- 230000004048 modification Effects 0.000 description 15
- 238000012986 modification Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000001788 irregular Effects 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 7
- 230000007704 transition Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1612—Programme controls characterised by the hand, wrist, grip control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
- B25J9/1697—Vision controlled systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
- B25J13/086—Proximity sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/0019—End effectors other than grippers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
- B25J19/021—Optical sensing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
- B25J19/021—Optical sensing devices
- B25J19/022—Optical sensing devices using lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/02—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
- B25J9/04—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
- B25J9/041—Cylindrical coordinate type
- B25J9/042—Cylindrical coordinate type comprising an articulated arm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/026—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37281—Laser range finder
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37425—Distance, range
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/40—Robotics, robotics mapping to robotics vision
- G05B2219/40563—Object detection
Definitions
- Embodiments of the present invention relate to a picking system for picking an article with various manipulators (robot arms), and an end effector for a robot arm used in the picking system.
- the robot arm is equipped with an end effector at the arm tip according to the application.
- the end effector has, for example, an adsorption mechanism that adsorbs and releases an article by air as a mechanism (gripping mechanism) that holds the article at the time of picking.
- gripping is a concept that encompasses all aspects of holding an article including not only suction but also clamping. Therefore, the gripping mechanism may be configured as a clamping mechanism that clamps and releases an article with a plurality of fingers (nails).
- the article to be picked is selected based on the accumulation mode of the article group detected by the article detection unit such as a camera or a sensor.
- the selected article (hereinafter referred to as the selected article) is gripped by the end effector of the robot arm and moved from the accumulation area to a desired area.
- the end effector holds the various articles. Further, there is a possibility that an article that is actually gripped (hereinafter referred to as a gripped article) is not a selected article.
- the gripped article is estimated so as to move the gripped article to an appropriate place or release it at an appropriate height.
- the surface shape or size of the gripping article is detected, and the detected data is compared (matched) with master data of articles included in the article group.
- the master data is a set of data in which the surface shape and size of articles included in the article group are detected in advance. Therefore, in order to estimate the grasped article more quickly and efficiently, it is better that the matching range (search range) between the detection data and the master data is narrow.
- a picking system and an end effector for a robot arm that can narrow (narrow) the matching range of detection data when estimating a grasped article are provided.
- the end effector according to the embodiment is attached to the arm tip of a robot arm that picks an article, and is disposed at or near the boundary between the gripping mechanism that releasably grips the article and the article and the gripping mechanism, and radiates incident light.
- the detection value group indicating the detection result of the distance to the part has optical characteristics different from the detection value group indicating the distance to the article detected by the distance detector.
- the schematic diagram which shows the structure of the picking system of embodiment The block diagram which shows the structure of the picking system of embodiment.
- FIG. 1 and 2 show the configuration of the picking system 1 of the present embodiment.
- FIG. 1 is a schematic diagram of a picking system 1.
- FIG. 2 is a block diagram of the picking system 1.
- the picking system 1 includes a picking robot 11 and a distance detection device 12.
- the picking robot 11 is a robot that picks up an article 2 and includes a robot arm 3 and an arm control unit 4.
- the distance detection device 12 is a device that acquires and analyzes the distance data to the object 21 including the article 2 picked by the picking robot 11, and includes the distance detector 5 and the detector control unit 6. ing.
- the picking robot 11 and the distance detection device 12 are configured separately, but they may be configured in a unified manner.
- the robot arm 3 picks the articles 2 accumulated in the accumulation area 20, and moves the picked articles 2 from the accumulation area 20 to a desired area (hereinafter referred to as a movement destination area).
- the article 2 is a tangible object that can be picked, such as parcels including parcels, parcels, postal items, and various parts and products. It is assumed that the form (size, shape, weight, packing state, etc.) of the article 2 is not uniform but various.
- the robot arm 3 includes a base part 31, an arm part 32, and an end effector 33.
- the base portion 31 is installed on the installation surface 7.
- the base 31 is positioned and fixed with the same floor surface as the accumulation region 20 as the installation surface 7.
- the base 31 may be movable with respect to the floor without being positioned and fixed in this way. For example, it is good also as a structure which supports the base part 31 so that a slide is possible along the guide rail laid on the floor surface. Thereby, the robot arm 3 can be moved with respect to the floor surface.
- the arm portion 32 is connected and extended by a plurality of joint portions 34 from the proximal end to the distal end, which is a connection portion with the base portion 31.
- the arm part 32 is subdivided into a plurality of parts by a joint part 34.
- the portions 32a to 32e are sequentially connected from the base portion 31 by predetermined joint portions 34a to 34e, and are rotatable about predetermined shafts 35a to 35g, respectively.
- the arm portion 32 has five portions 32a to 32e connected by five joint portions 34a to 34e, and rotates around seven shafts 35a to 35g.
- the structure of the arm part 32 is not limited to this.
- the end effector 33 is detachably attached to the distal end (arm distal end portion 36) of the arm portion 32, and is rotatable about the shaft 35g together with the arm portion 32 portion (fifth portion) 32e.
- the end effector 33 is configured to be detachable with respect to the arm distal end portion 36, and various types having different sizes and shapes are applied depending on the article 2 to be picked. The detailed configuration of the end effector 33 will be described later.
- the arm portion 32 and the end effector 33 are rotated around the respective axes 35a to 35g by a control motor (not shown). As a result, the arm portion 32 is in a desired posture with respect to the base portion 31, and is freely displaced (operated) within a predetermined range.
- the predetermined range (that is, the movable range) includes the accumulation region 20 and the movement destination region of the article 2. Therefore, by rotating the arm portion 32 and the end effector 33 about the shafts 35a to 35g, it is possible to displace them with respect to the accumulation region 20 and the movement destination region.
- the robot arm 3 is not limited to the configuration in which the operation is controlled around the seven axes 35a to 35g as in the present embodiment, but the configuration in which the operation is controlled around the six or less axes or the eight or more axes. May be.
- the arm control unit 4 controls the robot arm 3.
- the arm control unit 4 includes, for example, a CPU, a memory, an input / output circuit, a timer, and the like.
- the arm control unit 4 reads various data by an input / output circuit, performs calculation by the CPU using a program read from the memory, and performs control based on the calculation result.
- the arm control unit 4 is connected to the robot arm 3 including the end effector 33 by wire or wirelessly, and transmits / receives various data and calculation results to / from these.
- the arm control unit 4 reads, for example, the detection data of the accumulation state of the article group 2s in the accumulation region 20 by the input / output circuit, calculates by the CPU using the program read from the memory, and based on the calculation result, the robot arm 3 and the operation of the end effector 33 are controlled.
- the arm control unit 4 is configured independently of the detector control unit 6, but these may be integrated.
- the distance detector 5 detects (measures) the distance to the object 21 including the article 2 picked by the robot arm 3.
- light is applied as the detection medium of the distance detector 5. Therefore, the distance detector 5 irradiates the object 21 with the incident light 50 and based on the time taken to receive (sense) the reflected light from the object 21 with respect to the incident light 50. To the object 21 is measured.
- the object 21 is an object that can receive the incident light 50 from the distance detector 5, and in addition to the picked article 2, an end effector 33 (a gripping mechanism 8 described later), a detected portion 9 described later, and air. Including.
- a laser range finder (LRF: Laser Range Finder) that oscillates and irradiates laser light and senses the laser light rebounding from the object 21 is applied to the distance detector 5.
- the laser light that is the incident light 50 may be infrared laser light, but may be laser light such as visible light, ultraviolet light, or X-ray.
- the distance detector 5 detects (measures) the distance to the object 21 on the movement trajectory of the article 2 picked by the robot arm 3 after picking.
- the distance detector 5 has an arbitrary position (as an example, the object 21 that passes through any part of the movement trajectory described above and the laser light irradiation sensing unit 51 can face each other. 1 (hereinafter referred to as a reference position P1). That is, the distance detector 5 reaches the target object 21 at a timing when the target object 21 passes through a distance detection position (a position P2 shown in FIG. 1 as an example, hereinafter referred to as a distance detection position P2) as a fixed point on the movement trajectory. Detect the distance.
- the distance detector 5 irradiates the incident light 50 over a predetermined length on a straight line that intersects the moving direction of the object 21.
- the distance detector 5 irradiates the incident light 50 linearly along one direction on a horizontal plane orthogonal to the moving direction (vertical direction) of the object 21.
- the distance detector 5 scans the surface of the object 21 in a planar shape over a predetermined range (distance detection) as the object 21 moves on the movement trajectory.
- the distance detector 5 is positioned and fixed at the reference position P1 and the object 21 is moved. However, the distance detector 5 is moved and the object 21 is stopped and the object 21 is moved. May be detected. Alternatively, both the distance detector 5 and the object 21 may be moved. And the distance detector 5 detects the distance to the target object 21 based on the optical characteristic of the reflected light with respect to the incident light 50 irradiated.
- the detector control unit 6 controls the distance detector 5.
- the detector control unit 6 includes, for example, a CPU, a memory, an input / output circuit, a timer, and the like.
- the detector control unit 6 reads various data by an input / output circuit, performs calculation by the CPU using a program read from the memory, and performs control based on the calculation result.
- the detector control unit 6 is connected to the distance detector 5 by wire or wirelessly, and transmits / receives various data and calculation results to / from the distance detector 5.
- the detector control unit 6 operates the distance detector 5 and sets the detection value detected by the distance detector 5 and the detection value group of the article 2 based on the detection value group of the detection unit 9 described later. It classify
- the detection value group is a time-series set of detection values acquired within a predetermined detection time.
- the detector control unit 6 includes a data analysis unit 61 and a data estimation unit 62.
- the data analysis unit 61 and the data estimation unit 62 are stored in a memory as a program, for example.
- the detector control unit 6 reads the detection value (distance data) of the distance detector 5 by an input / output circuit, and calculates with a CPU using a program (data analysis unit and data estimation unit) read from the memory. Then, based on the calculation result, the detection value analysis and estimation described later are executed.
- the data analysis unit 61 analyzes the detection values detected by the distance detector 5 and classifies the detection values into a plurality of detection value groups.
- the detection value is a value of distance data to the object 21.
- the data analysis unit 61 divides the distance data into a plurality of distance data groups depending on the presence or absence of time series of detection values detected by the distance detector 5 (hereinafter referred to as continuity of detection values). .
- the data analysis unit 61 determines that the detection value of the detection value is detected when the detection value detected by the distance detector 5 fluctuates over (below or below) a predetermined threshold (hereinafter referred to as a reference value). It is determined that there is no continuity. That is, the data analysis unit classifies (separates) the detection value group before and after the detection value exceeds the reference value. Alternatively, the data analysis unit 61 determines that there is no continuity when the variation of the detected value detected by the distance detector 5 varies beyond a predetermined variation rate (hereinafter referred to as a reference variation rate). That is, the data analysis unit 61 divides (separates) the detection value group before and after the fluctuation rate of the detection value exceeds the reference fluctuation rate.
- a predetermined variation rate hereinafter referred to as a reference variation rate
- the variation rate of the detection value is an index indicating the rate of variation of the current detection value with respect to the immediately preceding detection value.
- the reference value and the reference variation rate are set in advance according to the optical characteristics of the detected portion 9 described later, and are stored in the storage device (nonvolatile memory). These values are read by the data analysis unit 61 as analysis parameters when the detection values are divided into a plurality of detection value groups.
- the data estimation unit 62 estimates the detection value group of the article 2 from the plurality of detection value groups based on the classification determined by the data analysis unit 61. In other words, the data estimating unit 62 estimates and classifies the detected value group into the detected value group of the article 2 and the detected value group of the other object 21.
- the article 2 here is the article 2 actually picked by the robot arm (as an example, the article 2a shown in FIG. 1).
- the detection value group is a set of distance data (distance data group) to the object 21. That is, the data estimation unit 62 estimates a distance data group indicating the article 2 that is a matching range (search range) with the master data in accordance with the classification.
- the master data is distance data obtained when the distance to the article 2 is detected by the distance detector 5 fixed to the reference position P1 when the picked article 2 passes the distance detection position P2 on the movement trajectory.
- a reference detection value group reference distance data group acquired in advance for all articles 2 included in the article group 2s of the accumulation region 20.
- the data estimation unit 62 does not perform matching between the detected value group and the master data, but it is also possible to perform matching.
- the end effector 33 has the following configuration. As shown in FIG. 1, the end effector 33 includes a gripping mechanism 8 and a detected portion 9.
- the gripping mechanism 8 grips the article 2 releasably.
- the gripping is defined as a concept including all aspects of holding the article 2 such as suction and clamping.
- the end effector 33 performs adsorption and release of the article 2 by air. Therefore, the gripping mechanism 8 includes a base part, an adsorption part, a vacuum generator, a compressor, a solenoid valve, a pressure sensor (all not shown), and the like.
- the base portion is attached to the arm tip portion 36 of the robot arm 3.
- the suction portion is disposed on the side of the base portion opposite to the attachment side of the arm tip portion 36, and the inside is evacuated by the vacuum generator to suck the article 2, and the vacuum is broken (open to the atmosphere) to remove the article 2. release.
- the vacuum generator is connected to the compressor via an electromagnetic valve, and sucks and blows air into the suction portion.
- the electromagnetic valve controls the suction and blowing of air by a vacuum generator by opening and closing the valve.
- the pressure sensor is provided between the suction part and the vacuum generator, and measures the internal pressure of the suction part (the suction pressure of the article 2). The operations of the vacuum generator, the compressor, the solenoid valve, and the pressure sensor are all controlled by the control signal received from the arm control unit 4.
- the detected portion 9 is one of the objects 21 to which incident light 50 is irradiated from the distance detector 5, and the distance is detected (measured) by the distance detector 5, and the article 2 and the gripping mechanism 8. It is arranged at or near the boundary.
- the detected part 9 is a detected value group indicating a distance to the article 2 detected by the distance detector 5, which is a detection value group indicating a detection result of the distance to the detected part 9 detected by the distance detector 5.
- Such optical characteristics include both optical characteristics that can be detected by the distance detector 5 and optical characteristics that cannot be detected by the distance detector 5 (in other words, an abnormal value is detected). .
- the optical characteristic is one of far (infinite), absorption, and fluctuation.
- the detected value group of the detected portion 9 is a value indicating one of the optical characteristics of distant, absorption, and fluctuation.
- the reflectance of the reflected light in the to-be-detected part 9 of incident light (laser light) 50 is compared with the reflectance of the reflected light in the article 2 of incident light (laser light) 50, for example.
- the case where it is extremely high or extremely low, the case where the fluctuation cycle of the reflectance is short, and the case where the fluctuation range is large are included. For example, if the reflectance of reflected light is higher than a predetermined upper limit value, the reflectance corresponds to the detected part 9 having optical characteristics that are extremely high.
- the reflectance of reflected light is lower than a predetermined lower limit value, the reflectance corresponds to the detected part 9 having optical characteristics that are extremely low.
- These upper limit value and lower limit value may be set so as to be easily distinguishable from those according to the reflectance of the reflected light from the article 2.
- the detected portion 9 may be any member as long as it has such optical characteristics, and is constituted by, for example, a mirror, a black body, a member whose surface shape is different from the surface shape of the article 2 (hereinafter referred to as an irregular shape), or the like. Is done.
- the deformed body is, for example, a member whose surface has an irregular shape with a predetermined period.
- the detection value group of the distance to the mirror approximates a value indicating a distant place that is a detection value group in the air.
- the distance detection value group by the distance detector 5 is a value indicating absorption (abnormal value incapable of distance detection).
- incident light (laser light) 50 from the distance detector 5 is absorbed by the detected portion 9 without being substantially reflected, and therefore distance detection becomes impossible. That is, the light quantity is saturated, or the reflected light by the incident light (laser light) 50 from the distance detector 5 cannot be obtained, and the obtained values are innumerable.
- the distance detection value group by the distance detector 5 has a value indicating a fluctuation in a short cycle or a value having a large fluctuation width, for example.
- These detected parts 9 may be selected and applied according to the form of the article 2 included in the article group 2s.
- the article group 2s includes articles whose surface color (including packaging color, paint color, etc.) is black, a mirror or a deformed body is applied as the detected portion 9 instead of a black body.
- a mirror or a black body is applied as the detected portion 9 instead of the irregular shape.
- FIG. 3 shows a control flow of the arm control unit 4 for the robot arm 3 and the detector control unit 6 for the distance detector 5, that is, a distance data group estimation process indicating the article 2.
- the robot arm 3 picks the article 2 (the article 2a in FIG. 1) from the accumulation area 20. Therefore, the arm control unit 4 operates the arm unit 32 of the robot arm 3 to grip the article 2 (S101). In this embodiment, the end effector 33 is controlled by the arm control unit 4, and the gripping mechanism 8 sucks the article 2. At that time, the article 2 to be attracted to the gripping mechanism 8 (suction part) is selected from the article group 2s accumulated in the accumulation region 20. Then, the arm control unit 4 operates the arm unit 32 to lower the gripping mechanism 8 (suction unit) toward the selected article 2 and operates the vacuum generator, the compressor, and the electromagnetic valve, and moves the article to the suction unit. 2 is adsorbed.
- the arm control part 4 After the article 2 is attracted by the gripping mechanism 8 (suction part), the arm control part 4 operates the arm part 32 so that each object 21 including the article 2 passes through the distance detection position P2 (S102). .
- the arm unit 32 pulls up the article 2 from the accumulation region 20 to a predetermined height in the vertical direction.
- the distance detection position P2 is set to an arbitrary position up to the predetermined height above the accumulation region 20 (see FIG. 1). Whether the article 2 is adsorbed to the gripping mechanism 8 (adsorption unit) is determined by the arm control unit 4 based on, for example, the internal pressure of the adsorption unit (adsorption pressure of the article 2) measured by a pressure sensor.
- the detector controller 6 operates the distance detector 5 to detect (measure) the distance to each object 21 including the article 2 (S103).
- the object 21 passes (rises) the distance detection position P2 in the order of the gripping mechanism 8, the detected portion 9, the article 2, and air (in the air).
- the distance detector 5 sequentially measures each distance to the gripping mechanism 8, the detected portion 9, the article 2, and air (in the air).
- FIG. 4 shows an example of how the distance data is detected by the distance detector 5.
- the distance detector 5 acquires distance data in the order of the region R1, the region RM, the region R2, and the region R3.
- the region R1 corresponds to the gripping mechanism 8
- the region RM corresponds to the detected portion 9
- the region R2 corresponds to the article 2 (2a)
- the region R3 corresponds to a light receiving region of incident light (laser light) in the air (in the air).
- the mirror is applied to the to-be-detected part 9 as an example.
- the laser light emitted from the distance detector 5 is the arrow A1 in the region R1, the arrow AM in the region RM, the arrow A2 in the region R2, and the region R3 reflects each as shown by arrow A3.
- the distance detector 5 acquires distance data in each of the regions R1, RM, R2, and R3 based on the reflection mode of the laser light as indicated by the arrows A1, AM, A2, and A3.
- the detector control unit 6 After acquiring the distance data by the distance detector 5, the detector control unit 6 analyzes the distance data.
- the data analysis unit 61 analyzes the distance data (detected values detected by the distance detector 5), and divides (separates) into a plurality of distance data groups (S104).
- FIG. 5 shows distance data acquisition results (distance data time transition) in the distance detector 5 in accordance with the laser light reflection mode shown in FIG.
- the distance data in each of the regions R1, RM, R2, and R3 has time series series, that is, continuity.
- the distance data between regions is cut off from continuity. That is, between the region R1 and the region RM, the distance data value rapidly increases from D1 to DM, exceeding the reference value DX. In addition, between the region RM and the region R2, the distance data value rapidly decreases from DM to D2, below the reference value DX. And between the area
- the distance data values D1, DM, D2, and D3 are representative values of the distance data in the regions R1, RM, R2, and R3, and the distance data in each region is a value near the representative value.
- the data analysis unit 61 converts the distance data acquired by the distance detector 5 into the distance data groups G1, GM, G2, G3 in the regions R1, RM, R2, R3 according to the variation mode based on the reference value DX. (Separate). In this case, the data analysis unit 61 may classify the distance data according to a variation mode based on the reference variation rate.
- the detector control unit 6 uses the distance data groups G1, GM, G2, and G3 from the article 2 (2a ) Is estimated (S105).
- the data estimation unit 62 classifies (separates) the distance data into the distance data group G2 of the article 2a and the distance data groups G1, GM, G3 of the other objects 21 according to the classification.
- the distance data obtained by the distance detector 5 is acquired in the order of the region R1, the region RM, the region R2, and the region R3, and the distance data of the article 2a corresponds to the region R2.
- the data estimating unit 62 is sandwiched between the distance data groups GM and G3 of the region RM and the region R3 in the distance data, and the distance data group G2 of the region R2 divided from these is used as the distance data group indicating the article 2a. Estimate as That is, by this, the distance data group G2 in the region R2 is estimated as a distance data group indicating the article 2a that is a matching range with the master data.
- the data estimation unit 62 ends the estimation process. For example, when the grasped article 2a is released and another article 2 is picked from the accumulation region 20, the arm control unit 4 and the detector control unit 6 perform the control from S101 to S105 again.
- FIG. 6 shows a configuration of the end effector 33a of the robot arm 3 according to the comparative example, and a state where the article 2 (2a) is adsorbed by the end effector 33a.
- the end effector 33a of the comparative example is not provided with the detected portion 9 (see FIG. 4).
- other configurations in the comparative example excluding the detected portion 9 are the same as those in the present embodiment. For this reason, about the structure similar to this embodiment (FIG. 4), the same code
- the distance detector 5 detects (measures) each distance to the gripping mechanism 8, the article 2a, and air (in the air) in order.
- the distance detector 5 acquires the distance data in the order of the region R1 (gripping mechanism 8), the region R2 (article 2a), and the region R3 (air).
- FIG. 7 shows a result of distance data acquisition (distance data time transition) in the distance detector 5 corresponding to the laser light reflection mode shown in FIG.
- the distance data in each of the regions R1, R2, and R3 has a time series series, that is, continuity.
- the distance data between the region R2 and the region R3 is cut off from continuity.
- the distance data between the region R1 and the region R2 has a series in a time series, that is, continuity, although there are some fluctuations.
- the distance data by the distance detector 5 is acquired in the order of the region R1, the region R2, and the region R3, and the distance data of the article 2a corresponds to the region R2. Yes.
- the detected portion 9 is not provided in the comparative example, the distance data value between the regions R1 and R2 does not increase rapidly beyond the reference value DX, and the distance data between these regions is not increased. The continuity of is not cut off.
- the distance data acquired by the distance detector 5 is only divided into the distance data group G12 in the regions R1 and R2 and the distance data group G3 in the region R3. That is, the distance data cannot be divided into distance data groups G1, G2, G3 in the regions R1, R2, R3. As a result, the distance data cannot be divided (separated) into a distance data group indicating the article 2 and a distance data group indicating the other object 21.
- the end effector 33 since the end effector 33 includes the detected portion 9 as described above, the distance data group G1 in the region R1 (gripping mechanism 8) and the distance data in the region R2 (article 2a).
- a distance data group GM in the region RM (detected part 9) can be interposed between the group G2 and the group G2. Thereby, the continuity of the distance data between the region R1 and the region R2 can be cut off.
- the distance data can be divided (separated) into the distance data group indicating the article 2 and the distance data group indicating the other object 21.
- the distance data group indicating the article 2 (as an example, the distance data group G2 indicating the article 2a) is estimated.
- Search range) can be narrowed (narrowed down).
- the article 2 since matching is not performed, the article 2 is not specified, but the distance data group indicating the article 2 is estimated. Therefore, by analyzing the distance data group, it is possible to estimate the shape and size of the picked article 2 (for example, the article 2a shown in FIG. 1). Therefore, for example, when the picked article 2 is released, the article 2 can be released at an optimum place and height based on the estimated shape and size. Thereby, it is possible to prevent the article 2 from being damaged at the time of release.
- the detected portion 9 may be a black body or a deformed body.
- a black body is applied is referred to as a first modification (FIGS. 8 and 9)
- a deformed body is applied to a second modification (FIGS. 10 and 11). explain.
- FIG. 8 shows an example of how the distance data is detected by the distance detector 5 when the detected portion 9a is a black body.
- FIG. 9 shows the result of distance data acquisition in the distance detector 5 in accordance with the laser light reflection mode shown in FIG.
- FIG. 10 shows an example of how the distance data is detected when the detected portion 9b is an irregular shape.
- FIG. 11 shows the result of distance data acquisition corresponding to the laser beam reflection mode shown in FIG.
- the other structure except the to-be-detected parts 9a and 9b in a 1st modification and a 2nd modification it is the same as that of this embodiment. For this reason, about the structure similar to this embodiment (FIG. 4), the same code
- the distance data in the region RB is an abnormal value (almost zero) for which distance detection is impossible.
- the distance data value falls rapidly below the reference value DX between the region R1 and the region R2, so that the continuity of the distance data between these regions can be broken.
- the distance data group G2 of the region R2 (article 2a) and the distance data group G1 of the region R1 (gripping mechanism 8) can be divided (separated).
- the distance data value in the region RI is a value that fluctuates finely at a constant short period.
- the distance data value does not change abruptly across the reference value DX between the region R1 and the region R2, and the continuity of the distance data between these regions is not interrupted.
- the distance data group GI in the region RI is detected in a mode clearly different from the distance data group G2 in the region R2 (article 2a).
- the distance data group G2 of the region R2 (article 2a) and the distance data group G1 of the region R1 (gripping mechanism 8) are separated. Can be separated (separated).
- the 1st modification, and the 2nd modification although the to-be-detected part 9, 9a, 9b is provided in the end effector 33 (gripping mechanism 8), instead of providing these,
- the surface of the gripping mechanism 8 base portion, suction portion, etc.
- the surface may be painted black.
- the mirrored portion or the black painted portion corresponds to the detected portion.
- the gripping mechanism 8 of the end effector 33 is an adsorption mechanism.
- the article 2 is sandwiched and released by a plurality of fingers (nails). It is good also as a clamping mechanism which performs.
- a mirror, a black body, a deformed body, or the like may be disposed as a detected portion in the vicinity of the tip of the finger (nail) that holds the article 2.
- the first modification, and the second modification the distance to the object 21 including the article 2 is detected (measured), and the distance data is divided into a plurality of distance data groups.
- the distance data is divided into a plurality of distance data groups.
- the surface shape of each object 21 may be detected from distance data, and the surface shape data may be divided into a plurality of surface shape data groups.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- General Physics & Mathematics (AREA)
- Manipulator (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
エンドエフェクタは、物品をピッキングするロボットアームのアーム先端部に取り付けられ、物品を解放可能に把持する把持機構と、物品と把持機構との境界もしくはその近傍に配置され、照射した入射光に対する反射光の光学的特性に基づいて対象物までの距離を検出する距離検出器から入射光が照射される被検出部と、を備え、被検出部は、距離検出器によって検出される被検出部までの距離の検出結果を示す検出値群が距離検出器によって検出される物品までの距離を示す検出値群とは異なる光学的特性を持つ。
Description
本発明の実施形態は、各種のマニピュレータ(ロボットアーム)で物品をピッキングするピッキングシステム、および該ピッキングシステムで使用されるロボットアームのエンドエフェクタに関する。
ロボットアームは、用途に応じたエンドエフェクタをアーム先端部に備えている。エンドエフェクタは、ピッキング時に物品を把持する機構(把持機構)として、例えばエアによって物品の吸着と解放を行う吸着機構などを有している。なお、把持は、吸着のみならず、挟持なども含む物品の保持態様全般を包含する概念である。したがって、把持機構は、複数の指(爪)によって物品の挟持と解放を行う挟持機構などとして構成される場合もある。
例えば、集積領域から物品をピッキングして所望の領域に移動させる場合、カメラやセンサなどの物品検出部によって検出された物品群の集積態様に基づいて、ピッキング対象の物品が選択される。選択された物品(以下、選択物品という)は、ロボットアームのエンドエフェクタで把持され、集積領域から所望の領域に移動される。
ここで、物品群が多種多様な物品を含んでいる場合、エンドエフェクタには、様々な物品が把持される。また、実際に把持されている物品(以下、把持物品という)が選択物品ではないおそれもある。
このため、物品が把持された後の次工程においては、把持物品を適正な場所へ移動させたり、適正な高さで解放させたりするべく、把持物品の推定が行われる。把持物品を推定するためには、例えば把持物品の表面形状や大きさなどを検出し、その検出データを物品群に含まれる物品のマスタデータと比較(マッチング)する。マスタデータは、物品群に含まれる物品の表面形状や大きさなどを予め検出したデータの集合である。したがって、より迅速かつ効率よく把持物品の推定を行うには、検出データとマスタデータとのマッチング範囲(探索範囲)は狭い方がよい。
そこで、把持された物品を推定する際の検出データのマッチング範囲を狭める(絞り込む)ことを可能とするピッキングシステムおよびロボットアームのエンドエフェクタを提供する。
実施形態のエンドエフェクタは、物品をピッキングするロボットアームのアーム先端部に取り付けられ、物品を解放可能に把持する把持機構と、物品と把持機構との境界もしくはその近傍に配置され、照射した入射光に対する反射光の光学的特性に基づいて対象物までの距離を検出する距離検出器から入射光が照射される被検出部と、を備え、被検出部は、距離検出器によって検出される被検出部までの距離の検出結果を示す検出値群が距離検出器によって検出される物品までの距離を示す検出値群とは異なる光学的特性を持つ。
以下、実施形態に係る物品のピッキングシステム、および該ピッキングシステムで使用されるマニピュレータ(以下、ロボットアームという)のエンドエフェクタについて、図1から図11を参照して説明する。
図1および図2には、本実施形態のピッキングシステム1の構成を示す。図1は、ピッキングシステム1の模式図である。図2は、ピッキングシステム1のブロック図である。図示するように、ピッキングシステム1は、ピッキングロボット11と、距離検出装置12とを備えて構成されている。ピッキングロボット11は、物品2をピッキングするロボットであり、ロボットアーム3と、アーム制御部4を備えて構成されている。距離検出装置12は、ピッキングロボット11にピッキングされた物品2を含む対象物21までの距離データを取得して解析する装置であり、距離検出器5と、検出器制御部6を備えて構成されている。本実施形態においては、ピッキングロボット11と距離検出装置12をそれぞれ別体構成としているが、これらは一元化して構成してもよい。
ロボットアーム3は、集積領域20に集積された物品2をピッキングし、ピッキングした物品2を集積領域20から所望の領域(以下、移動先領域という)に移動させる。物品2は、宅配物、小包、郵便物等を含む荷物、各種の部品や製品など、ピッキングの対象となり得る有形物である。物品2の形態(大きさ、形状、重量、梱包状態など)は、一律ではなく多種多様である場合を想定する。
図1に示すように、ロボットアーム3は、基台部31と、アーム部32と、エンドエフェクタ33とを備えて構成されている。
基台部31は、設置面7に設置されている。本実施形態では、基台部31は、集積領域20と同一の床面を設置面7として位置決め固定されている。なお、基台部31は、このように位置決め固定されることなく、床面に対して移動可能となっていてもよい。例えば、床面に敷設したガイドレールなどに沿って基台部31をスライド可能に支持する構成としてもよい。これにより、ロボットアーム3を床面に対して移動させることが可能となる。
基台部31は、設置面7に設置されている。本実施形態では、基台部31は、集積領域20と同一の床面を設置面7として位置決め固定されている。なお、基台部31は、このように位置決め固定されることなく、床面に対して移動可能となっていてもよい。例えば、床面に敷設したガイドレールなどに沿って基台部31をスライド可能に支持する構成としてもよい。これにより、ロボットアーム3を床面に対して移動させることが可能となる。
アーム部32は、基台部31との接続部位である基端から先端まで、複数の関節部34で連結されて伸長している。アーム部32は、関節部34によって複数に細分されている。各部分32a~32eは、基台部31から順次所定の関節部34a~34eで連結され、それぞれ所定の軸35a~35gまわりに回動可能とされている。本実施形態では、アーム部32は、5つの部分32a~32eが5つの関節部34a~34eで連結され、7つの軸35a~35gまわりに回動する。ただし、アーム部32の構成は、これに限定されない。
エンドエフェクタ33は、アーム部32の先端(アーム先端部36)に着脱自在に取り付けられており、アーム部32の部分(第5の部分)32eとともに軸35gまわりに回動可能とされている。また、エンドエフェクタ33は、アーム先端部36に対して着脱自在に構成されており、ピッキングする物品2に応じて、大きさや形状などが異なる各種のタイプが適用される。エンドエフェクタ33の詳細構成については、後述する。
アーム部32およびエンドエフェクタ33は、制御モータ(図示省略)によって各軸35a~35gまわりに回動する。これにより、アーム部32は、基台部31に対して所望の姿勢とされ、所定範囲内において自由に変位(動作)する。所定範囲(つまり、可動範囲)には、物品2の集積領域20および移動先領域が含まれている。したがって、アーム部32およびエンドエフェクタ33を軸35a~35gまわりに回動させることで、これらを集積領域20や移動先領域に対して変位させることが可能となる。
なお、ロボットアーム3は、本実施形態のように7つの軸35a~35gまわりに動作制御される構成には限定されず、6軸以下あるいは8軸以上の軸まわりに動作制御される構成であってもよい。
アーム制御部4は、ロボットアーム3を制御する。アーム制御部4は、例えば、CPU、メモリ、入出力回路、タイマなどを備えて構成されている。アーム制御部4は、各種データを入出力回路により読み込み、メモリから読み出したプログラムを用いてCPUで演算し、演算結果に基づいた制御を行う。本実施形態において、アーム制御部4は、エンドエフェクタ33を含むロボットアーム3と有線もしくは無線で接続され、これらとの間で各種データや演算結果などを送受信している。これにより、アーム制御部4は、例えば集積領域20における物品群2sの集積状況の検出データを入出力回路により読み込み、メモリから読み出したプログラムを用いてCPUで演算し、演算結果に基づいてロボットアーム3およびエンドエフェクタ33の動作を制御する。なお、本実施形態においては、アーム制御部4を検出器制御部6とは独立した構成としているが、これらは一元化して構成してもよい。
距離検出器5は、ロボットアーム3がピッキングした物品2を含む対象物21までの距離をそれぞれ検出(計測)する。本実施形態では、距離検出器5の検出媒体として光を適用する。したがって、距離検出器5は、対象物21に向けて入射光50を照射し、該入射光50に対する対象物21からの反射光を受光(感知)するまでの時間に基づいて、距離検出器5から対象物21までの距離を計測する。
対象物21は、距離検出器5からの入射光50を受け得る物体であり、ピッキングされた物品2の他、エンドエフェクタ33(後述する把持機構8)、後述する被検出部9、および空気を含む。一例として、距離検出器5には、レーザー光を発振、照射するとともに、対象物21からはね返ったレーザー光を感知するレーザーレンジファインダ(LRF:Laser Range Finder)を適用する。入射光50であるレーザー光は、赤外線レーザー光であればよいが、可視光線、紫外線、X線などのレーザー光でもよい。
距離検出器5は、ロボットアーム3がピッキングした物品2のピッキング後の移動軌跡上で、対象物21までの距離を検出(計測)する。本実施形態では一例として、距離検出器5は、前述した移動軌跡上のいずれかの箇所を通過する対象物21と、レーザー光の照射感知部51とが対向可能な任意の位置(一例として図1に示す位置P1、以下、基準位置P1という)に固定されている。すなわち、距離検出器5は、移動軌跡上の定点である距離検出位置(一例として図1に示す位置P2、以下、距離検出位置P2という)を対象物21が通過するタイミングで該対象物21までの距離を検出する。
その際、距離検出器5は、対象物21の移動方向と交差する直線上の所定長さに亘って入射光50を照射する。本実施形態では一例として、距離検出器5は、対象物21の移動方向(鉛直方向)と直交する水平面上の一方向に沿って直線状に入射光50を照射する。そして、対象物21が移動軌跡上を移動することで、距離検出器5は、対象物21の表面を所定範囲に亘って面状に走査(距離検出)する。このように本実施形態では、距離検出器5を基準位置P1に位置決め固定し、対象物21を移動させているが、距離検出器5を移動させるとともに対象物21を静止させて、対象物21までの距離を検出してもよい。あるいは、距離検出器5および対象物21の双方を移動させてもよい。そして、距離検出器5は、照射した入射光50に対する反射光の光学的特性に基づいて、対象物21までの距離を検出する。
検出器制御部6は、距離検出器5を制御する。検出器制御部6は、例えば、CPU、メモリ、入出力回路、タイマなどを備えて構成されている。検出器制御部6は、各種データを入出力回路により読み込み、メモリから読み出したプログラムを用いてCPUで演算し、演算結果に基づいた制御を行う。本実施形態において、検出器制御部6は、距離検出器5と有線もしくは無線で接続され、距離検出器5との間で各種データや演算結果などを送受信している。
検出器制御部6は、距離検出器5を動作させるともに、距離検出器5に検出された検出値を、後述する被検出部9の検出値群に基づいて、物品2の検出値群とそれ以外の検出値群とに区分する。検出値群は、所定の検出時間内に取得された検出値の時系列の集合である。かかる処理を実行するため、検出器制御部6は、データ解析部61と、データ推定部62とを含んで構成されている。データ解析部61およびデータ推定部62は、例えばプログラムとしてメモリに格納されている。本実施形態において、検出器制御部6は、距離検出器5の検出値(距離データ)を入出力回路により読み込み、メモリから読み出したプログラム(データ解析部およびデータ推定部)を用いてCPUで演算し、演算結果に基づいて後述する検出値の解析と推定を実行する。
データ解析部61は、距離検出器5が検出した検出値を解析して、複数の検出値群に区分する。検出値は、対象物21までの距離データの値である。例えば、データ解析部61は、距離検出器5に検出された検出値の時系列上の一連性(以下、検出値の連続性という)の有無により、距離データを複数の距離データ群に区分する。
かかる区分にあたって、データ解析部61は、距離検出器5に検出された検出値の変動が所定の閾値(以下、基準値という)を跨いで(超えてもしくは下回って)変動した場合、検出値の連続性がないと判定する。すなわち、データ解析部は、検出値が基準値を超える前後で検出値群を区分(分離)する。あるいは、データ解析部61は、距離検出器5に検出された検出値の変動が所定の変動率(以下、基準変動率という)を超えて変動した場合、連続性がないと判定する。すなわち、データ解析部61は、検出値の変動率が基準変動率を超える前後で検出値群を区分(分離)する。検出値の変動率は、直前の検出値に対する現在の検出値の変動の割合を示す指標である。基準値および基準変動率は、後述する被検出部9の光学的特性に応じて予め設定され、記憶装置(不揮発メモリ)に格納されている。これらの値は、検出値を複数の検出値群に区分する際、解析パラメータとしてデータ解析部61によって読み出される。
データ推定部62は、データ解析部61によって判定された区分に基づいて、複数の検出値群から物品2の検出値群を推定する。換言すれば、データ推定部62は、物品2の検出値群とそれ以外の対象物21の検出値群とに検出値群を推定により区分する。ここでの物品2は、ロボットアームに実際にピッキングされている物品2(一例として、図1に示す物品2a)である。検出値群は、対象物21までの距離データの集合(距離データ群)である。すなわち、データ推定部62は、かかる区分に応じて、マスタデータとのマッチング範囲(探索範囲)となる物品2を示す距離データ群を推定する。マスタデータは、ピッキングされた物品2が移動軌跡上の距離検出位置P2を通過した際に、基準位置P1に固定した距離検出器5で該物品2までの距離を検出した場合に得られる距離データを、集積領域20の物品群2sに含まれるすべての物品2について予め取得した基準検出値群(基準距離データ群)である。なお、本実施形態において、データ推定部62は、検出値群とマスタデータとのマッチングは行わないものとするが、マッチングを行うことも可能である。
データ解析部61による距離データの区分およびデータ推定部62による物品2を示す距離データ群の推定を容易にするため、エンドエフェクタ33は、次のような構成を備える。図1に示すように、エンドエフェクタ33は、把持機構8と、被検出部9とを備えて構成されている。
把持機構8は、物品2を解放可能に把持する。把持とは、例えば吸着、挟持など、物品2の保持態様全般を包含する概念として規定される。本実施形態では一例として、エンドエフェクタ33は、エアによって物品2の吸着と解放を行う。したがって、把持機構8は、ベース部、吸着部、真空発生器、コンプレッサ、電磁弁、圧力センサ(いずれも図示省略)などを備えて構成される。ベース部は、ロボットアーム3のアーム先端部36に取り付けられる。吸着部は、ベース部のアーム先端部36との取付側とは反対側に配置され、真空発生器によって内部が真空とされて物品2を吸着し、真空破壊(大気開放)されて物品2を解放する。真空発生器は、電磁弁を介してコンプレッサに接続され、吸着部の内部へのエアの吸い込みと吹き出しを行う。電磁弁は、真空発生器によるエアの吸い込みと吹き出しを弁の開閉によって制御している。圧力センサは、吸着部と真空発生器との間に設けられ、吸着部の内圧(物品2の吸着圧)を測定する。真空発生器、コンプレッサ、電磁弁、圧力センサはいずれも、アーム制御部4から受信した制御信号によって動作が制御される。
被検出部9は、距離検出器5から入射光50が照射される、端的には距離検出器5によって距離が検出(計測)される対象物21の一つであり、物品2と把持機構8との境界もしくはその近傍に配置されている。被検出部9は、距離検出器5によって検出される被検出部9までの距離の検出結果を示す検出値群が距離検出器5によって検出される物品2までの距離を示す検出値群とは異なる光学的特性を持つ。このような光学的特性には、距離検出器5によって検出可能な光学的特性と、距離検出器5では検出不可能な(換言すれば、異常値が検出される)光学的特性の双方を含む。例えば、光学的特性は、遠方(無限遠)、吸収、変動のいずれかである。この場合、被検出部9の検出値群は、遠方、吸収、変動のいずれかの光学的特性を示す値となる。また、光学的特性としては、例えば入射光(レーザー光)50の被検出部9での反射光の反射率が、入射光(レーザー光)50の物品2での反射光の反射率と比べて極めて高い場合や極めて低い場合、該反射率の変動周期が短い場合や変動幅が大きい場合などが挙げられる。例えば、反射光の反射率が所定の上限値よりも高ければ、該反射率が極めて高い光学的特性を持つ被検出部9に該当する。また、反射光の反射率が所定の下限値よりも低ければ、該反射率が極めて低い光学的特性を持つ被検出部9に該当する。これらの上限値および下限値は、物品2での反射光の反射率に応じて、これと容易に区別可能な値となるように設定すればよい。
被検出部9は、このような光学的特性を持った部材であれば何でもよく、例えば鏡、黒色体、表面形状が物品2の表面形状とは異なる部材(以下、異形体という)などにより構成される。異形体は、例えば表面が所定周期で凹凸形状をなす部材などである。被検出部9を鏡とした場合、距離検出器5による距離の検出値群は、遠方を示す値と近似する。この場合、鏡における入射光(レーザー光)50の反射は、空中への照射と類似するため、鏡までの距離の検出値群は、空中の検出値群である遠方を示す値と近似する。被検出部9を黒色体とした場合、距離検出器5による距離の検出値群は、吸収を示す値(距離検出が不能な異常値)となる。この場合、距離検出器5からの入射光(レーザー光)50はほぼ反射せずに被検出部9で吸収されるため、距離検出が不能となる。つまり、光量が飽和する状態、または距離検出器5からの入射光(レーザー光)50による反射光が得られない状態となり、得られる値は非数となる。被検出部9を異形体とした場合、距離検出器5による距離の検出値群は、例えば短周期での変動を示す値や変動幅が大きな値となる。
これらの被検出部9は、物品群2sに含まれる物品2の形態に応じて選択して適用すればよい。例えば、物品群2sに表面色(包装色や塗装色なども含む)が黒色の物品が含まれている場合、黒色体ではなく、鏡や異形体を被検出部9として適用する。あるいは、物品群2sに表面形状(包装紙の表面形状なども含む)が凹凸形状である物品が含まれている場合、異形体ではなく、鏡や黒色体を被検出部9として適用する。
距離検出器5による対象物21(把持機構8、被検出部9、物品2、空気)までの距離の検出時におけるロボットアーム3および距離検出器5の動作と作用について、アーム制御部4および検出器制御部6の制御フローに従って説明する。図3には、ロボットアーム3に対するアーム制御部4および距離検出器5に対する検出器制御部6の制御フロー、つまり物品2を示す距離データ群の推定処理を示す。
まず、ロボットアーム3は、集積領域20から物品2(図1では物品2a)をピッキングする。このため、アーム制御部4は、ロボットアーム3のアーム部32を動作させ、物品2を把持させる(S101)。本実施形態では、アーム制御部4にエンドエフェクタ33が動作制御され、把持機構8が物品2を吸着する。その際には、集積領域20に集積されている物品群2sから把持機構8(吸着部)に吸着させる物品2が選択される。そして、アーム制御部4は、アーム部32を動作させて把持機構8(吸着部)を選択された物品2に向けて下降させるとともに真空発生器、コンプレッサ、電磁弁を動作させ、吸着部に物品2を吸着させる。
把持機構8(吸着部)に物品2を吸着させた後、アーム制御部4は、物品2を含む各対象物21が距離検出位置P2をそれぞれ通過するようにアーム部32を動作させる(S102)。本実施形態では一例として、アーム部32は、物品2を集積領域20から所定高さまで鉛直方向に引き上げる。この場合、距離検出位置P2は、集積領域20の上方で、所定高さに至るまでの任意の位置に設定されている(図1参照)。把持機構8(吸着部)に物品2が吸着されているか否かは、例えば圧力センサによって測定された吸着部の内圧(物品2の吸着圧)に基づいてアーム制御部4が判定する。
対象物21が距離検出位置P2を通過する際、検出器制御部6は、距離検出器5を動作させ、物品2を含む各対象物21までの距離を検出(計測)させる(S103)。この場合、対象物21は、把持機構8、被検出部9、物品2、空気(空中)の順に距離検出位置P2を通過(上昇)する。したがって、距離検出器5は、把持機構8、被検出部9、物品2、空気(空中)までの各距離を順に計測する。
図4には、距離検出器5による距離データの検出態様の一例を示す。この場合、距離検出器5は、領域R1、領域RM、領域R2、領域R3の順に距離データを取得する。領域R1は把持機構8、領域RMは被検出部9、領域R2は物品2(2a)、領域R3は空気(空中)における入射光(レーザー光)の受光領域にそれぞれ相当する。なお、被検出部9には、一例として鏡が適用されている。物品2aを含む各対象物21が矢印UPに示すように上昇する際、距離検出器5から照射されたレーザー光は、領域R1では矢印A1、領域RMでは矢印AM、領域R2では矢印A2、領域R3では矢印A3で示すようにそれぞれ反射する。距離検出器5は、各矢印A1,AM,A2,A3で示すようなレーザー光の反射態様に基づいて、各領域R1,RM,R2,R3内における距離データをそれぞれ取得する。
距離検出器5による距離データの取得後、検出器制御部6は、距離データを解析する。本実施形態では、データ解析部61が距離データ(距離検出器5が検出した検出値)を解析し、複数の距離データ群に区分(分離)する(S104)。
図5には、図4に示すレーザー光の反射態様に応じた距離検出器5における距離データの取得結果(距離データの時間遷移)を示す。図5に示すように、各領域R1,RM,R2,R3内における距離データは、時系列上の一連性、つまり連続性を有している。これに対し、領域間における距離データは、連続性が断ち切られている。すなわち、領域R1と領域RMの間では、距離データ値がD1からDMに、基準値DXを超えて急激に上昇している。また、領域RMと領域R2の間では、距離データ値がDMからD2に、基準値DXを下回って急激に低下している。そして、領域R2と領域R3の間では、距離データ値がD2からD3に、基準値DXを超えて急激に上昇している。なお、距離データ値D1,DM,D2,D3は、領域R1,RM,R2,R3内における距離データの代表値であり、各領域における距離データは、該代表値付近の値となっている。
したがって、データ解析部61は、基準値DXに基づいた変動態様により、距離検出器5によって取得された距離データを、領域R1,RM,R2,R3における各距離データ群G1,GM,G2,G3に区分(分離)する。なおこの場合、データ解析部61は、基準変動率に基づいた変動態様によって距離データを区分してもよい。
データ解析部61によって、距離データが各距離データ群G1,GM,G2,G3に区分された後、検出器制御部6は、これらの距離データ群G1,GM,G2,G3から物品2(2a)の距離データ群を推定する(S105)。本実施形態では一例として、かかる区分に応じて、データ推定部62が物品2aの距離データ群G2と、それ以外の対象物21の距離データ群G1,GM,G3とに距離データを区分(分離)する。距離検出器5による距離データは、領域R1、領域RM、領域R2、領域R3の順に取得されており、物品2aの距離データは、領域R2に対応している。したがって、データ推定部62は、距離データのうち領域RMおよび領域R3の距離データ群GM,G3にそれぞれ挟まれ、これらと区分された領域R2の距離データ群G2を、物品2aを示す距離データ群として推定する。すなわちこれにより、領域R2の距離データ群G2は、マスタデータとのマッチング範囲となる物品2aを示す距離データ群として推定される。
物品2aを示す距離データ群を推定すると、データ推定部62は、該推定処理を終了する。そして、例えば把持されていた物品2aが解放され、集積領域20から別の物品2がピッキングされる際、アーム制御部4および検出器制御部6は、S101からS105までの制御を再び行う。
このように、本実施形態のピッキングシステム1によれば、ロボットアーム3のエンドエフェクタ33が被検出部9を備えているため、図6に示す比較例と比べ、次のような効果を奏する。
図6には、比較例に係るロボットアーム3のエンドエフェクタ33aの構成、および該エンドエフェクタ33aによって物品2(2a)が吸着された状態を示す。図6に示すように、比較例のエンドエフェクタ33aには、被検出部9(図4参照)が備えられていない。ただし、被検出部9を除いた比較例におけるその他の構成は、本実施形態と同様である。このため、本実施形態(図4)と同様の構成については、図面上で同一符号を付す。
図6には、比較例に係るロボットアーム3のエンドエフェクタ33aの構成、および該エンドエフェクタ33aによって物品2(2a)が吸着された状態を示す。図6に示すように、比較例のエンドエフェクタ33aには、被検出部9(図4参照)が備えられていない。ただし、被検出部9を除いた比較例におけるその他の構成は、本実施形態と同様である。このため、本実施形態(図4)と同様の構成については、図面上で同一符号を付す。
比較例において、距離検出器5は、把持機構8、物品2a、空気(空中)までの各距離を順に検出(計測)する。図6に示す距離データの検出態様において、距離検出器5は、領域R1(把持機構8)、領域R2(物品2a)、領域R3(空気)の順に距離データを取得する。図7には、図6に示すレーザー光の反射態様に応じた距離検出器5における距離データの取得結果(距離データの時間遷移)を示す。図7に示すように、各領域R1,R2,R3内における距離データは、時系列上の一連性、つまり連続性を有している。また、領域R2と領域R3の間における距離データは、連続性が断ち切られている。しかしながら、領域R1と領域R2の間における距離データは、多少の変動はあるものの、時系列上の一連性、つまり連続性を有している。
比較例においても上述した本実施形態と同様に、距離検出器5による距離データは、領域R1、領域R2、領域R3の順に取得されており、物品2aの距離データは、領域R2に対応している。しかしながら、比較例においては、被検出部9が備えられていないため、領域R1と領域R2の間で距離データ値が基準値DXを超えて急激に上昇することもなく、これら領域間における距離データの連続性は断ち切られていない。
したがって、距離検出器5によって取得された距離データは、領域R1,R2における距離データ群G12と領域R3における距離データ群G3とに区分されるにとどまる。すなわち、距離データを領域R1,R2,R3における各距離データ群G1,G2,G3に区分することができない。結果として、物品2を示す距離データ群とそれ以外の対象物21を示す距離データ群とに、距離データを区分(分離)することができない。
これに対し、本実施形態においては、上述したようにエンドエフェクタ33が被検出部9を備えているため、領域R1(把持機構8)における距離データ群G1と領域R2(物品2a)における距離データ群G2との間に領域RM(被検出部9)における距離データ群GMを介在させることができる。これにより、領域R1と領域R2の間における距離データの連続性を断ち切ることができる。
したがって本実施形態によれば、物品2を示す距離データ群とそれ以外の対象物21を示す距離データ群とに、距離データを区分(分離)することができる。これにより、例えば次工程において、距離データをマスタデータと比較(マッチング)する際、物品2を示す距離データ群(一例として、物品2aを示す距離データ群G2)が推定されているため、マッチング範囲(探索範囲)を狭める(絞り込む)ことができる。この結果、より迅速かつ効率よくマッチングを行うことができ、ひいては物品2の推定(特定)もより迅速かつ効率的に行うことが可能となる。
本実施形態では、マッチングは行っていないため、物品2は特定されないが、物品2を示す距離データ群は推定されている。したがって、かかる距離データ群を解析することで、ピッキングされた物品2(一例として、図1に示す物品2a)の形状や大きさを推定することは可能である。したがって、例えばピッキングした物品2を解放する際、推定した形状や大きさなどに基づいて、最適な場所や高さで物品2を解放することが可能となる。これにより、解放時における物品2の破損などの防止を図ることができる。
以上、本発明の実施形態を説明したが、上述した実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
本実施形態においては、被検出部9として鏡を適用しているが、上述したように被検出部9は、黒色体や異形体であってもよい。以下、黒色体を適用した実施形態を第1の変形例(図8および図9)、異形体を適用した実施形態を第2の変形例(図10および図11)として、これらの変形例について説明する。
図8には、被検出部9aを黒色体とした場合における距離検出器5による距離データの検出態様の一例を示す。図9には、図8に示すレーザー光の反射態様に応じた距離検出器5における距離データの取得結果を示す。同様に、図10には、被検出部9bを異形体とした場合における距離データの検出態様の一例を示す。図11には、図10に示すレーザー光の反射態様に応じた距離データの取得結果を示す。なお、第1の変形例および第2の変形例における被検出部9a,9bを除くその他の構成については、本実施形態と同様である。このため、本実施形態(図4)と同様の構成については、図面上で同一符号を付す。
図8および図9に示すように、被検出部9aを黒色体とした場合、距離検出器5から照射されたレーザー光は、領域RB(黒色体)では矢印ABで示すように反射せず、ほぼ吸収される。したがって、領域RBにおける距離データは、距離検出が不能な異常値(ほぼゼロ)となる。この場合、領域R1と領域R2の間で距離データ値が基準値DXを下回って急激に低下するため、これら領域間における距離データの連続性を断ち切ることができる。これにより、領域R2(物品2a)の距離データ群G2と領域R1(把持機構8)の距離データ群G1とを区分(分離)することができる。
また、図10および図11に示すように、被検出部9bを異形体とした場合、距離検出器5から照射されたレーザー光は、領域RI(異形体)では矢印AIで示すように反射する。したがって、領域RIにおける距離データ値は、一定の短周期で細かに変動する値となる。この場合、領域R1と領域R2の間で距離データ値が基準値DXを跨いで急激に変動することはなく、これら領域間における距離データの連続性は断ち切られない。しかしながら、領域RI(異形体)における距離データ群GIは、領域R2(物品2a)における距離データ群G2とは明らかに異なる態様で検出されている。このため、領域R1と領域R2の間に領域RIの距離データ群GIが介在することにより、領域R2(物品2a)の距離データ群G2と領域R1(把持機構8)の距離データ群G1とを区分(分離)することができる。
なお、上述した本実施形態、第1の変形例および第2の変形例では、エンドエフェクタ33(把持機構8)に被検出部9,9a,9bを設けているが、これらを設ける代わりに、例えば把持機構8(ベース部や吸着部など)の表面を鏡張りとしたり、該表面を黒色に塗装したりしてもよい。この場合、鏡張り部分や黒色塗装部分が被検出部に相当する。
また、上述した本実施形態、第1の変形例および第2の変形例においては、エンドエフェクタ33の把持機構8を吸着機構としているが、例えば複数の指(爪)によって物品2の挟持と解放を行う挟持機構としてもよい。この場合、物品2を挟持する指(爪)の先端近傍に被検出部として鏡、黒色体、異形体などを配置すればよい。
なお、上述した本実施形態、第1の変形例および第2の変形例においては、物品2を含む対象物21までの距離を検出(計測)し、距離データを複数の距離データ群に区分している。これに代えて、例えば距離データから各対象物21の表面形状を検出し、該表面形状のデータを複数の表面形状データ群に区分してもよい。
1…ピッキングシステム、2,2a…物品、2s…物品群、3…ロボットアーム、4…アーム制御部、5…距離検出器、6…検出器制御部、7…設置面、8…把持機構、9,9a,9b…被検出部、11…ピッキングロボット、12…距離検出装置、20…集積領域、21…対象物、31…基台部、32(32a~32e)…アーム部、33,33a…エンドエフェクタ、34(34a~34e)…関節部、35a~35g…軸、36…アーム先端部、50…入射光(レーザー光)、51…レーザー光の照射感知部、61…データ解析部、62…データ推定部、D1,D2,D3,DM…距離データ値、DX…基準値、G1,G2,G3,G12,GI,GM…距離データ群、P1…基準位置、P2…距離検出位置。
Claims (10)
- 物品をピッキングするロボットアームのアーム先端部に取り付けられ、前記物品を解放可能に把持する把持機構と、
前記物品と前記把持機構との境界もしくはその近傍に配置され、照射した入射光に対する反射光の光学的特性に基づいて対象物までの距離を検出する距離検出器から前記入射光が照射される被検出部と、を備え、
前記被検出部は、前記距離検出器によって検出される前記被検出部までの距離の検出結果を示す検出値群が前記距離検出器によって検出される前記物品までの距離を示す検出値群とは異なる前記光学的特性を持つ
ロボットアームのエンドエフェクタ。 - 前記被検出部の検出値群は、遠方、吸収、変動のいずれかの前記光学的特性を示す値である
請求項1に記載のロボットアームのエンドエフェクタ。 - 前記被検出部は、鏡、黒色体、表面形状が前記物品の表面形状とは異なる部材のいずれかである
請求項1に記載のロボットアームのエンドエフェクタ。 - アーム先端部に取り付けられたエンドエフェクタで物品をピッキングするロボットアームと、
前記ロボットアームの動作を制御するアーム制御部と、
前記ロボットアームにピッキングされた前記物品のピッキング後の移動軌跡上で、照射した入射光に対する反射光の光学的特性に基づいて前記物品を含む対象物までの距離をそれぞれ検出する距離検出器と、
前記距離検出器の動作を制御する検出器制御部と、を備え、
前記エンドエフェクタは、
前記物品を解放可能に把持する把持機構と、
前記物品と前記把持機構との境界もしくはその近傍に配置され、前記距離検出器から前記入射光が照射される被検出部と、を備え、
前記被検出部は、前記距離検出器によって検出される前記被検出部までの距離の検出結果を示す検出値群が前記距離検出器によって検出される前記物品までの距離を示す検出値群とは異なる前記光学的特性を持ち、
前記検出器制御部は、前記距離検出器に検出された検出値を、前記被検出部の検出値群に基づいて、前記物品の検出値群とそれ以外の検出値群とに区分する
ピッキングシステム。 - 前記検出器制御部は、
前記検出値を解析して複数の検出値群に区分するデータ解析部と、
前記データ解析部による区分に基づいて、前記複数の検出値群から前記物品の検出値群を推定するデータ推定部と、を備える
請求項4に記載のピッキングシステム。 - 前記データ解析部は、前記検出値をその連続性の有無により前記複数の検出値群に区分する
請求項5に記載のピッキングシステム。 - 前記データ解析部は、前記検出値の変動が所定の閾値を跨いで変動した場合、前記連続性がないと判定する
請求項6に記載のピッキングシステム。 - 前記データ解析部は、前記検出値の変動が所定の変動率を超えて変動した場合、前記連続性がないと判定する
請求項6に記載のピッキングシステム。 - 前記距離検出器は、レーザー光を発振して前記対象物に向けて照射するとともに、前記対象物からはね返った前記レーザー光を感知するレーザーレンジファインダである
請求項4に記載のピッキングシステム。 - 前記被検出部は、前記レーザーレンジファインダから照射される前記レーザー光の前記被検出部での反射光の反射率が、前記レーザー光の前記物品での反射光の反射率と比べて所定の上限値よりも高いもしくは所定の下限値よりも低い前記光学的特性を持つ
請求項9に記載のピッキングシステム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18909936.9A EP3738727A4 (en) | 2018-03-14 | 2018-10-29 | ENTRY SYSTEM AND TERMINAL EFFECTOR FOR ROBOT ARMS |
US17/009,035 US20200391379A1 (en) | 2018-03-14 | 2020-09-01 | Picking system and end effector of robot arm |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018047141A JP2019155549A (ja) | 2018-03-14 | 2018-03-14 | ピッキングシステムおよびロボットアームのエンドエフェクタ |
JP2018-047141 | 2018-03-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/009,035 Continuation US20200391379A1 (en) | 2018-03-14 | 2020-09-01 | Picking system and end effector of robot arm |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176158A1 true WO2019176158A1 (ja) | 2019-09-19 |
Family
ID=67906558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/040118 WO2019176158A1 (ja) | 2018-03-14 | 2018-10-29 | ピッキングシステムおよびロボットアームのエンドエフェクタ |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200391379A1 (ja) |
EP (1) | EP3738727A4 (ja) |
JP (1) | JP2019155549A (ja) |
WO (1) | WO2019176158A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114310863A (zh) * | 2020-09-29 | 2022-04-12 | 艾卡(南通)智能科技有限公司 | 一种模块化机器人执行工具 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO345105B1 (en) * | 2019-03-18 | 2020-09-28 | Macgregor Norway As | Multiaxial robotic arm |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07290388A (ja) * | 1994-04-22 | 1995-11-07 | Suzuki Motor Corp | チャック治具 |
JP2005231789A (ja) * | 2004-02-18 | 2005-09-02 | Fuji Photo Film Co Ltd | パンケーキ交換用ロボット。 |
JP2006060135A (ja) * | 2004-08-23 | 2006-03-02 | Kawasaki Heavy Ind Ltd | 基板状態検出装置 |
JP2009056513A (ja) | 2007-08-29 | 2009-03-19 | Toshiba Corp | 把持位置姿勢決定システムおよび把持位置姿勢決定方法 |
JP2011212818A (ja) | 2010-04-01 | 2011-10-27 | Toyota Motor Corp | 環境認識ロボット |
JP2011228616A (ja) * | 2010-03-31 | 2011-11-10 | Daihen Corp | 基板搬送ロボット |
JP2012051080A (ja) | 2010-09-02 | 2012-03-15 | Toyota Motor Corp | ロボット及びその制御方法 |
JP2013043271A (ja) * | 2011-08-26 | 2013-03-04 | Canon Inc | 情報処理装置、情報処理装置の制御方法、およびプログラム |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5802201A (en) * | 1996-02-09 | 1998-09-01 | The Trustees Of Columbia University In The City Of New York | Robot system with vision apparatus and transparent grippers |
JP2001277167A (ja) * | 2000-03-31 | 2001-10-09 | Okayama Pref Gov Shin Gijutsu Shinko Zaidan | 3次元姿勢認識手法 |
JP4759491B2 (ja) * | 2006-11-01 | 2011-08-31 | 株式会社ミツトヨ | マニピュレータ |
JP5685027B2 (ja) * | 2010-09-07 | 2015-03-18 | キヤノン株式会社 | 情報処理装置、物体把持システム、ロボットシステム、情報処理方法、物体把持方法およびプログラム |
US9102055B1 (en) * | 2013-03-15 | 2015-08-11 | Industrial Perception, Inc. | Detection and reconstruction of an environment to facilitate robotic interaction with the environment |
JP6415026B2 (ja) * | 2013-06-28 | 2018-10-31 | キヤノン株式会社 | 干渉判定装置、干渉判定方法、コンピュータプログラム |
US9272417B2 (en) * | 2014-07-16 | 2016-03-01 | Google Inc. | Real-time determination of object metrics for trajectory planning |
CN113731862B (zh) * | 2015-11-13 | 2024-04-12 | 伯克希尔格雷营业股份有限公司 | 用于提供各种物体的分拣的分拣系统和方法 |
-
2018
- 2018-03-14 JP JP2018047141A patent/JP2019155549A/ja active Pending
- 2018-10-29 WO PCT/JP2018/040118 patent/WO2019176158A1/ja unknown
- 2018-10-29 EP EP18909936.9A patent/EP3738727A4/en not_active Withdrawn
-
2020
- 2020-09-01 US US17/009,035 patent/US20200391379A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07290388A (ja) * | 1994-04-22 | 1995-11-07 | Suzuki Motor Corp | チャック治具 |
JP2005231789A (ja) * | 2004-02-18 | 2005-09-02 | Fuji Photo Film Co Ltd | パンケーキ交換用ロボット。 |
JP2006060135A (ja) * | 2004-08-23 | 2006-03-02 | Kawasaki Heavy Ind Ltd | 基板状態検出装置 |
JP2009056513A (ja) | 2007-08-29 | 2009-03-19 | Toshiba Corp | 把持位置姿勢決定システムおよび把持位置姿勢決定方法 |
JP2011228616A (ja) * | 2010-03-31 | 2011-11-10 | Daihen Corp | 基板搬送ロボット |
JP2011212818A (ja) | 2010-04-01 | 2011-10-27 | Toyota Motor Corp | 環境認識ロボット |
JP2012051080A (ja) | 2010-09-02 | 2012-03-15 | Toyota Motor Corp | ロボット及びその制御方法 |
JP2013043271A (ja) * | 2011-08-26 | 2013-03-04 | Canon Inc | 情報処理装置、情報処理装置の制御方法、およびプログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3738727A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114310863A (zh) * | 2020-09-29 | 2022-04-12 | 艾卡(南通)智能科技有限公司 | 一种模块化机器人执行工具 |
Also Published As
Publication number | Publication date |
---|---|
US20200391379A1 (en) | 2020-12-17 |
JP2019155549A (ja) | 2019-09-19 |
EP3738727A4 (en) | 2021-10-06 |
EP3738727A1 (en) | 2020-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9126337B2 (en) | Robot system having a robot for conveying a workpiece | |
JP6617237B1 (ja) | ロボットシステム、ロボットシステムの方法及び非一時的コンピュータ可読媒体 | |
US11958191B2 (en) | Robotic multi-gripper assemblies and methods for gripping and holding objects | |
US9694499B2 (en) | Article pickup apparatus for picking up randomly piled articles | |
US11904468B2 (en) | Robotic multi-gripper assemblies and methods for gripping and holding objects | |
CN113825598B (zh) | 物体抓取系统和方法 | |
CN113954107A (zh) | 用于在自动系统中提供高流量真空采集的系统和方法 | |
WO2019176158A1 (ja) | ピッキングシステムおよびロボットアームのエンドエフェクタ | |
JP6963897B2 (ja) | 物品把持移載装置 | |
CN113453854A (zh) | 混合机器人拾取装置 | |
JP6541397B2 (ja) | 情報処理装置、情報処理方法、およびプログラム | |
JP7027335B2 (ja) | 物品探りあて把持装置 | |
US10434649B2 (en) | Workpiece pick up system | |
JP2001105378A (ja) | ハンドリング装置 | |
JP7237496B2 (ja) | ピッキングシステム、情報処理装置及び情報処理プログラム | |
JP7419082B2 (ja) | 荷役装置および物品把持機構 | |
JP2022120550A5 (ja) | ||
TWI843996B (zh) | 具混合式吸盤尺寸之吸取式末端執行器 | |
Mueller et al. | A new multi-modal approach towards reliable bin-picking application | |
KR102185510B1 (ko) | 다수개의 기압 센서들을 갖는 로봇 핸드 및 그의 접촉 위치 결정 방법 | |
JP2019107737A (ja) | 物品の把持機構 | |
JP2023022875A (ja) | 物品保持装置、物品保持装置の制御方法及び制御装置 | |
JP2023082176A (ja) | 開閉式物体用のロボットグリッパアセンブリ及び物体をピッキングするための方法 | |
JP2023022819A (ja) | 物体更新機構を備えたロボットシステム及びロボットシステムを操作するための方法 | |
CN115258510A (zh) | 具有物体更新机制的机器人系统和用于操作所述机器人系统的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18909936 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018909936 Country of ref document: EP Effective date: 20200812 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |