[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019172133A1 - エレクトロクロミック素子およびスマートウィンドウ - Google Patents

エレクトロクロミック素子およびスマートウィンドウ Download PDF

Info

Publication number
WO2019172133A1
WO2019172133A1 PCT/JP2019/008157 JP2019008157W WO2019172133A1 WO 2019172133 A1 WO2019172133 A1 WO 2019172133A1 JP 2019008157 W JP2019008157 W JP 2019008157W WO 2019172133 A1 WO2019172133 A1 WO 2019172133A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide nanoparticles
transparent electrode
nanocrystal layer
layer
Prior art date
Application number
PCT/JP2019/008157
Other languages
English (en)
French (fr)
Inventor
知輝 鴻池
佐藤 英次
伸之 伊藤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2020504988A priority Critical patent/JPWO2019172133A1/ja
Publication of WO2019172133A1 publication Critical patent/WO2019172133A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect

Definitions

  • This disclosure relates to an electrochromic device and a smart window.
  • An electrochromic element whose optical properties reversibly change when a voltage is applied is known.
  • a smart window capable of electrically controlling light transmittance.
  • Patent Document 1 discloses an electrochromic element used for an infrared type smart window.
  • An electrochromic device 900 shown in FIG. 20 includes a first substrate 911, a second substrate 912, a first transparent electrode 901, a second transparent electrode 902, a nanocrystal layer 903, an electrolytic solution 905, a power source 906, a seal portion 907, and a spacer 908. Is provided.
  • the first substrate 911 and the second substrate 912 are provided so as to face each other. Each of the first substrate 911 and the second substrate 912 is transparent.
  • the first transparent electrode 901 is provided on the surface of the first substrate 911 on the second substrate 912 side.
  • the second transparent electrode 902 is provided on the surface of the second substrate 912 on the first substrate 911 side.
  • the nanocrystal layer 903 is provided on the first transparent electrode 901.
  • the nanocrystal layer 903 includes metal oxide nanoparticles having a particle size of several nanometers to several tens of nanometers.
  • the electrolytic solution 905 is enclosed in a region surrounded by the seal portion 907 and is located between the nanocrystal layer 903 and the second transparent electrode 902.
  • the power source 906 is electrically connected to the first transparent electrode 901 and the second transparent electrode 902, and can apply a predetermined voltage between the first transparent electrode 901 and the second transparent electrode 902.
  • the spacer 908 is provided between the nanocrystal layer 903 and the second transparent electrode 902 and defines the height of the region in which the electrolytic solution 905 is enclosed.
  • the nanocrystal layer 903 of the electrochromic device 900 expresses electrochromism using localized surface plasmon resonance (LSPR).
  • LSPR localized surface plasmon resonance
  • Non-Patent Document 1 discloses various nanocrystals used as electrochromic materials.
  • the nanocrystal layer 903 is provided only on one side of the pair of transparent electrodes (specifically, on the first transparent electrode 901).
  • the inventor of the present application examined providing a further nanocrystal layer on the other side of the pair of transparent electrodes.
  • the surface area of the metal oxide nanoparticles is increased as compared with the case where the nanocrystal layer is provided only on one side. Therefore, it is considered that more charges can be stored in the nanocrystal layer when voltage is applied, and the desired transmission spectrum can be maintained for a long time even when the circuit is shut off (that is, suitable memory properties can be provided). It is done.
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide an electrochromic device and a smart window that include two nanocrystal layers and can operate suitably.
  • An electrochromic device includes a first transparent electrode and a second transparent electrode facing each other, and a surface of the first transparent electrode on the second transparent electrode side, and a plurality of first metal oxides
  • An electrolyte layer provided between the first nanocrystal layer and the second nanocrystal layer, wherein the plurality of first metal oxide nanoparticles and the plurality of second metal oxide nanoparticles are configured
  • the elements are the same, and the thickness of the first nanocrystal layer is different from the thickness of the second nanocrystal layer.
  • the thickness of the second nanocrystal layer is not less than 1% and not more than 30% of the thickness of the first nanocrystal layer.
  • an average particle size of the plurality of first metal oxide nanoparticles is different from an average particle size of the plurality of second metal oxide nanoparticles.
  • An electrochromic device includes a first transparent electrode and a second transparent electrode facing each other, and a surface of the first transparent electrode on the second transparent electrode side, and a plurality of first metal oxides
  • An electrolyte layer provided between the first nanocrystal layer and the second nanocrystal layer, wherein the plurality of first metal oxide nanoparticles and the plurality of second metal oxide nanoparticles are configured
  • the elements are the same, and the average particle size of the plurality of first metal oxide nanoparticles is different from the average particle size of the plurality of second metal oxide nanoparticles.
  • an average particle diameter of the plurality of second metal oxide nanoparticles is 5 nm to 100 nm larger than an average particle diameter of the plurality of first metal oxide nanoparticles.
  • the composition ratio of the plurality of first metal oxide nanoparticles is different from the composition ratio of the plurality of second metal oxide nanoparticles.
  • An electrochromic device includes a first transparent electrode and a second transparent electrode facing each other, and a surface of the first transparent electrode on the second transparent electrode side, and a plurality of first metal oxides
  • An electrolyte layer provided between the first nanocrystal layer and the second nanocrystal layer, wherein the plurality of first metal oxide nanoparticles and the plurality of second metal oxide nanoparticles are configured
  • the elements are the same, and the composition ratio of the plurality of first metal oxide nanoparticles is different from the composition ratio of the plurality of second metal oxide nanoparticles.
  • the plurality of first metal oxide nanoparticles and the plurality of second metal oxide nanoparticles are each a plurality of antimony-doped tin oxide nanoparticles.
  • the plurality of first metal oxide nanoparticles and the plurality of second metal oxide nanoparticles are each a plurality of tin-doped indium oxide nanoparticles.
  • the electrochromic device further includes a first substrate that supports the first transparent electrode, and a second substrate that supports the second transparent electrode, and the first substrate and the second substrate.
  • a first substrate that supports the first transparent electrode
  • a second substrate that supports the second transparent electrode
  • Each of these is a flexible resin substrate.
  • each of the first transparent electrode and the second transparent electrode is divided into a plurality of electrically independent sub-electrodes.
  • a smart window according to an embodiment of the present invention includes an electrochromic device having any one of the above-described configurations.
  • the smart window further includes a translucent plate, and the electrochromic element is bonded to the translucent plate.
  • a transmission spectrum of each of the first nanocrystal layer and the second nanocrystal layer changes according to a change in applied voltage, and the first nanocrystal layer and the second nanocrystal layer
  • the nanocrystal layer having a relatively large change in the transmission spectrum in accordance with the change in the applied voltage is positioned between the relatively small nanocrystal layer and the light transmitting plate.
  • the smart window further includes a glazing channel disposed to surround a peripheral edge of the translucent plate and a peripheral edge of the electrochromic element, and the electrochromic element surrounds the electrolyte layer.
  • the sealing portion is further provided, and the sealing portion overlaps the glazing channel when viewed from the normal direction of the light transmitting plate.
  • the smart window further includes a first light-transmitting plate and a second light-transmitting plate disposed so as to face the first light-transmitting plate with a predetermined gap therebetween.
  • the chromic element is bonded to the second light transmitting plate side of the first light transmitting plate, and an intermediate layer having a predetermined thickness is located between the electrochromic element and the second light transmitting plate. .
  • the smart window is provided between the electrochromic element and the second light transmitting plate, a spacer that defines a thickness of the intermediate layer, a peripheral portion of the first light transmitting plate, A glazing channel disposed so as to surround a peripheral edge of the electrochromic element and a peripheral edge of the second light-transmitting plate, and the electrochromic element is provided to surround the electrolyte layer
  • the spacer further overlaps the glazing channel, and the seal portion overlaps the spacer and the glazing channel when viewed from the normal direction of the first light transmission plate.
  • the smart window is provided between the electrochromic element and the second light transmitting plate, a spacer that defines a thickness of the intermediate layer, a peripheral portion of the first light transmitting plate, A glazing channel disposed so as to surround a peripheral edge of the electrochromic element and a peripheral edge of the second light-transmitting plate, and the electrochromic element is provided to surround the electrolyte layer
  • the spacer is overlapped with the glazing channel, the seal portion is overlapped with the glazing channel, and when viewed from the normal direction of the first light transmission plate, and more than the spacer Located inside.
  • the smart window further includes a first light-transmitting plate and a second light-transmitting plate disposed so as to face the first light-transmitting plate with a predetermined gap therebetween.
  • the chromic element is disposed between the first light transmissive plate and the second light transmissive plate, and a first intermediate layer having a predetermined thickness between the first light transmissive plate and the electrochromic element. And a second intermediate layer having a predetermined thickness is located between the electrochromic element and the second light transmitting plate.
  • the electrochromic element includes a pair of antireflection films positioned on the outermost surface on the first light transmitting plate side and the outermost surface on the second light transmitting plate side.
  • the smart window is provided between the first light-transmitting plate and the electrochromic device, and defines a first spacer that defines a thickness of the first intermediate layer, the electrochromic device, and the electrochromic device.
  • a second spacer provided between the second light-transmitting plate and defining a thickness of the second intermediate layer; a peripheral portion of the first light-transmitting plate; a peripheral portion of the electrochromic element; and the second transparent member.
  • a glazing channel disposed so as to surround a peripheral portion of the optical plate, wherein the electrochromic element further includes a seal portion provided so as to surround the electrolyte layer, and the first translucent plate When viewed from the normal direction, the first spacer and the second spacer overlap the glazing channel, and the seal portion includes the first spacer and the second spacer. It overlaps the over support and the glazing channel.
  • the smart window is provided between the first light-transmitting plate and the electrochromic device, and defines a first spacer that defines a thickness of the first intermediate layer, the electrochromic device, and the electrochromic device.
  • a second spacer provided between the second light-transmitting plate and defining a thickness of the second intermediate layer; a peripheral portion of the first light-transmitting plate; a peripheral portion of the electrochromic element; and the second transparent member.
  • a glazing channel disposed so as to surround a peripheral portion of the optical plate, wherein the electrochromic element further includes a seal portion provided so as to surround the electrolyte layer, and the first translucent plate When viewed from the normal direction, the first spacer and the second spacer overlap the glazing channel, and the seal portion includes the glazing channel. It overlaps in, and, is located inside the first spacer and the second spacer.
  • an electrochromic device and a smart window that include two nanocrystal layers and can operate suitably.
  • FIG. 2 is a cross-sectional view schematically showing an electrochromic device 100 including a spacer 8.
  • FIG. It is a figure which shows the example of the other structure of the seal part. It is sectional drawing which shows typically the electrochromic element 200 in embodiment of this indication. It is a graph which shows the transmission spectrum of the light control cell D, E, and F. It is sectional drawing which shows typically the electrochromic element 300 in embodiment of this indication. It is sectional drawing which shows typically the electrochromic element 400 in embodiment of this indication.
  • FIG. 3 is a block diagram schematically illustrating a smart window 500 according to an embodiment of the present disclosure. (A) And (b) is sectional drawing and the top view which show the light control part 20 of the smart window 500 typically.
  • FIG. 10 is a cross-sectional view schematically showing an electrochromic element 900 of Patent Document 1.
  • FIG. 10 is a cross-sectional view schematically showing an electrochromic element 900 of Patent Document 1.
  • the inventor of the present application has found that in a configuration in which a nanocrystal layer is provided only on one of a pair of transparent electrodes, the deterioration of the transparent electrode and the electrolytic solution can occur. In addition, it has been found that the same problem can occur in the configuration in which the nanocrystal layer is provided not only on one side of the pair of transparent electrodes but also on the other side.
  • the inventor of the present application has conducted a more detailed study, and by using metal oxide nanoparticles having the same constituent elements as the materials of the two nanocrystal layers, an electrochemical balance can be obtained, and the transparent electrode and the electrolyte can be deteriorated. It has been found that can be suppressed.
  • the use of metal oxide nanoparticles having the same constituent elements is advantageous in terms of production cost, simplification of the production process, and the like.
  • FIG. 1 is a cross-sectional view schematically showing an electrochromic device 100.
  • the electrochromic element 100 includes a first transparent electrode 1 and a second transparent electrode 2, a first nanocrystal layer 3 and a second nanocrystal layer 4, and an electrolyte layer 5.
  • the first transparent electrode 1 and the second transparent electrode 2 are arranged so as to face each other.
  • the first transparent electrode 1 and the second transparent electrode 2 are each transparent and substantially colorless.
  • the first transparent electrode 1 and the second transparent electrode 2 are electrically connected to a power source 6.
  • the first transparent electrode 1 is supported on the first substrate 11.
  • the second transparent electrode 2 is supported on the second substrate 12.
  • the first substrate 11 and the second substrate 12 are each transparent and substantially colorless.
  • the first nanocrystal layer 3 is provided on the surface of the first transparent electrode 1 on the second transparent electrode 2 side.
  • the first nanocrystal layer 3 includes a plurality of metal oxide nanoparticles (hereinafter referred to as “first metal oxide nanoparticles”).
  • the second nanocrystal layer 4 is provided on the surface of the second transparent electrode 2 on the first transparent electrode 1 side.
  • the second nanocrystal layer 4 includes a plurality of metal oxide nanoparticles (hereinafter referred to as “second metal oxide nanoparticles”).
  • the first metal oxide nanoparticles and the second metal oxide nanoparticles are particulate crystals (nanocrystals) each having a particle size of several nm to several tens of nm.
  • the electrolyte layer 5 is provided between the first nanocrystal layer 3 and the second nanocrystal layer 4.
  • the electrolyte layer 5 is surrounded by the seal portion 7.
  • the first metal oxide nanoparticles contained in the first nanocrystal layer 3 and the second metal oxide nanoparticles contained in the second nanocrystal layer 4 are electrochromic materials. Therefore, the transmission spectra of the first nanocrystal layer 3 and the second nanocrystal layer 4 change according to the voltage applied between the first transparent electrode 1 and the second transparent electrode 2. This change in the transmission spectrum is accompanied by a change in transmittance in the near infrared region. Therefore, the electrochromic element 100 of this embodiment can control the transmittance of near infrared light.
  • the near-infrared region refers to a wavelength range of about 800 nm or more and about 2500 nm or less.
  • the acquisition rate of solar heat from sunlight can be controlled by controlling the transmittance of the near-infrared light. For example, near-infrared light can be prevented from entering the room in summer, and near-infrared light can be taken into the room in winter.
  • first metal oxide nanoparticles and the second metal oxide nanoparticles for example, antimony-doped tin oxide (ATO) nanoparticles and tin-doped indium oxide nanoparticles are used. It can be used suitably.
  • ATO antimony-doped tin oxide
  • the principle that the first nanocrystal layer 3 and the second nanocrystal layer 4 exhibit electrochromism will be described later.
  • the change in the transmission spectrum of the first nanocrystal layer 3 and the second nanocrystal layer 4 is not only the change in the transmittance in the near infrared region, but also the change in the transmittance in the visible region (a range from about 400 nm to about 800 nm). May be accompanied.
  • the first metal oxide nanoparticles and the second metal oxide nanoparticles have the same constituent elements (that is, contain the same elements).
  • the thickness t1 of the first nanocrystal layer 3 is different from the thickness t2 of the second nanocrystal layer 4.
  • the thickness t2 of the second nanocrystal layer 4 is smaller than the thickness t1 of the first nanocrystal layer 3.
  • the thickness t2 of the second nanocrystal layer 4 is not less than 1% and not more than 30% of the thickness t1 of the first nanocrystal layer 3.
  • the electrochromic device 100 includes a pair of nanocrystal layers (first electrodes) provided on one side and the other side of a pair of transparent electrodes (first transparent electrode 1 and second transparent electrode 2).
  • a nanocrystal layer 3 and a second nanocrystal layer 4 thereby, the total surface area of the metal oxide nanoparticles is increased as compared with the case where the nanocrystal layer is provided only on one side of the pair of transparent electrodes. Therefore, more charge can be stored in the nanocrystal layer when a voltage is applied, and a desired transmission spectrum can be maintained for a long time even in a state where the circuit is shut off (a state where power supply from the power source 6 is stopped). That is, a suitable memory property can be realized.
  • the first metal oxide nanoparticles and the second metal oxide nanoparticles have the same constituent elements. Thereby, since electrochemical balance is taken on both sides of the electrolyte layer 5, the deterioration of the first transparent electrode 1, the second transparent electrode 2, and the electrolyte layer 5 can be suppressed. Further, the fact that the first metal oxide nanoparticles and the second metal oxide nanoparticles have the same constituent elements is advantageous in terms of manufacturing cost, simplification of the manufacturing process, and the like.
  • the thickness t1 of the first nanocrystal layer 3 and the thickness t2 of the second nanocrystal layer 4 are different. As a result, the operation shift range of the transmission spectrum can be sufficiently widened, as will be described in detail later with the verification results.
  • Non-Patent Document 1 by injecting electrons into a transparent conductive oxide (TCO) nanostructure such as an ITO (Tin-doped Indium-Oxide) nanocrystal layer, near-infrared It is known that the transmission spectrum of a region can be changed. In short, the principle is to shift the absorption wavelength by localized surface plasmon resonance (LSPR) of the TCO nanostructure by applying a voltage. This will be described in more detail below.
  • TCO transparent conductive oxide
  • ITO Tin-doped Indium-Oxide
  • the resonance frequency of LSPR is proportional to the plasma frequency ⁇ p .
  • N is the electron density
  • e is the charge of the electron
  • m is the effective mass of the electron
  • ⁇ 0 is the dielectric constant of the vacuum. Therefore, when a negative voltage is applied to the TCO nanostructure to increase the electron density, the plasma frequency ⁇ p increases, and the resonance frequency of the LSPR also increases. Therefore, the resonance wavelength of LSPR becomes short (that is, shifts to the short wavelength side).
  • the resonance wavelength of the LSPR can be set in the near infrared region, so that the transmission spectrum in the near infrared region can be changed.
  • the function of changing the transmission spectrum in this way is not unique to the ITO nanocrystal layer containing ITO nanoparticles.
  • the above-described functions can be achieved if the nanoparticles are sized so as to cause LSPR (for example, 100 nm or less), and the nanocrystal layer can inject electrons from the transparent electrode.
  • nanoparticles nanoparticles of various metal oxides such as ATO, PTO (phosphorus-doped tin oxide), AZO (aluminum-doped zinc oxide), GZO (gallium-doped zinc oxide) can be used.
  • an electrochromic element 800 shown in FIG. 2 was produced.
  • the electrochromic element 800 shown in FIG. 2 is different from the electrochromic element 100 shown in FIG. 1 in that the second nanocrystal layer 4 is omitted.
  • the nanocrystal layer 3 of the electrochromic element 800 includes ATO nanoparticles having an average particle diameter of 20 nm.
  • the firing temperature when forming the nanocrystal layer 3 is 200 ° C.
  • Three electrochromic devices 800 having nanocrystal layer 3 with thicknesses t1 of 840 mm, 4650 mm, and 7620 mm were fabricated (referred to as “light control cell A”, “light control cell B”, and “light control cell C”, respectively). ).
  • the thickness t1 of the nanocrystal layer 3 is an average value obtained by measuring the thicknesses at three locations from the center to the outer periphery of the nanocrystal layer 3 formed on the first transparent electrode 1 with a stylus step meter. It is.
  • the average particle diameter of a nanoparticle is a biaxial average meter of 100 nanoparticles observed using a transmission electron microscope (TEM).
  • FIG. 3 shows transmission spectra of the light control cells A, B and C when the potential of the second transparent electrode 2 is 0 V and DC voltages of ⁇ 3 V and +3 V are applied to the first transparent electrode 1.
  • Table 1 shows the transmittance of light having a wavelength of 2000 nm when the DC voltages of ⁇ 3 V and +3 V are applied to the first transparent electrode 1 for the light control cells A, B, and C.
  • Table 1 also shows the operation shift range.
  • the “operation shift range” is the difference between the transmittance of light with a wavelength of 2000 nm when +3 V is applied and the transmittance of light with a wavelength of 2000 nm when -3 V is applied.
  • the operation shift range of the light control cell C (the thickness of the nanocrystal layer 3 is 7620 mm) is 56.6%
  • the light control cell B the thickness of the nanocrystal layer 3 is 4650 mm.
  • the operation shift ranges of the light control cell A (the thickness of the nanocrystal layer 3 is 840 mm) are 45.5% and 15.6%, respectively. That is, the dimming cell A has a narrower operation shift range of 41.0% than the dimming cell C.
  • the reason why the operation shift range becomes narrower as the thickness t1 of the nanocrystal layer 3 is smaller is that the optical path length of the light transmitted through the nanocrystal layer 3 becomes shorter as the thickness t1 of the nanocrystal layer 3 becomes smaller. Conceivable.
  • the operation shift range can be varied by adjusting the thickness of the nanocrystal layer, by using a combination of a pair of nanocrystal layers having different thicknesses, the transmission spectrum of the electrochromic device can be reduced.
  • the operation shift range can be sufficiently widened. Specifically, by making the operation shift range of one nanocrystal layer less than or equal to half of the operation shift range of the other nanocrystal layer, the operation shift range of the entire electrochromic device can be sufficiently widened. .
  • a prototype example (Example 1) of the electrochromic element 100 was manufactured as follows, and the optical characteristics thereof were verified.
  • glass substrates were prepared as the first substrate 11 and the second substrate 12, respectively.
  • titanium-doped indium oxide Tianium-doped Indium Oxide: InTiO
  • InTiO titanium-doped Indium Oxide
  • the second transparent electrode 2 was formed on the second substrate 12.
  • a dispersion of ATO nanoparticles is applied on the first transparent electrode 1 by spin coating, dried on a hot plate at 140 ° C. for 1 minute, and then fired at 200 ° C. for 60 minutes, A first nanocrystal layer 3 having a thickness of 7620 mm was formed.
  • the ATO nanoparticle dispersion used contains ATO nanoparticles with an average particle size of 20 nm, and the dispersion medium is a 2: 1 mixture of methyl isobutyl ketone and isobutanol.
  • a dispersion of ATO nanoparticles is applied on the second transparent electrode 2 by spin coating, dried on a hot plate at 140 ° C. for 1 minute, and then fired at 200 ° C. for 60 minutes, A second nanocrystal layer 4 having a thickness of 840 mm was formed.
  • the ATO nanoparticle dispersion used contains ATO nanoparticles with an average particle size of 20 nm, and the dispersion medium is a 2: 1 mixture of methyl isobutyl ketone and isobutanol.
  • an electrochromic element of Comparative Example 1 was produced in the same manner as Example 1 except that the second nanocrystal layer 4 was not formed.
  • FIG. 4 shows the transmission spectrum of Example 1 and Comparative Example 1 when the potential of the second transparent electrode 2 is 0 V and DC voltages of ⁇ 3 V and +3 V are applied to the first transparent electrode 1.
  • Table 2 shows the transmittance of light with a wavelength of 2000 nm and the operation shift range when DC voltages of ⁇ 3 V and +3 V are applied to the first transparent electrode 1 for Example 1 and Comparative Example 1.
  • the operation shift range of Comparative Example 1 is 56.6%, whereas the operation shift range of Example 1 is 49.6%, and the decrease in the operation shift range is 7%. 0.0%.
  • Comparative Example 2 an electrochromic device was fabricated in the same manner as in Example 1 except that the thickness of both the first nanocrystal layer 3 and the second nanocrystal layer 4 was 9780 mm. Further, as Comparative Example 3, an electrochromic element was produced in the same manner as Comparative Example 2 except that the second nanocrystal layer 4 was not formed.
  • FIG. 5 shows transmission spectra of Comparative Example 2 and Comparative Example 3 when the potential of the second transparent electrode 2 is 0 V and DC voltages of ⁇ 3 V and +3 V are applied to the first transparent electrode 1.
  • Table 3 shows the transmittance and operation shift range of light having a wavelength of 2000 nm when DC voltages of ⁇ 3 V and +3 V are applied to the first transparent electrode 1 for Comparative Example 2 and Comparative Example 3.
  • the operation shift range of Comparative Example 3 is 56.8%, whereas the operation shift range of Comparative Example 2 is 0.3%. 3 is as narrow as 55.5% (49.3% for the first embodiment). This is because the transmission spectrum shifts of the first nanocrystal layer 3 and the second nanocrystal layer 4 are opposite to each other.
  • first nanocrystal layer 3 and second nanocrystal layer 4 prevents the operation shift range from being narrowed. it can.
  • Table 4 shows the results of visually observing the occurrence of bubbles in the electrolyte layer 5 for Example 1 and Comparative Examples 1, 2, and 3. As shown in Table 4, it can be seen that in Comparative Examples 1 and 3, bubbles were generated and the electrolyte was deteriorated. On the other hand, in Example 1 (and Comparative Example 2), it can be seen that bubbles are not generated and the deterioration of the electrolytic solution is suppressed.
  • the electrochromic device 100 including two nanocrystal layers and capable of operating appropriately.
  • the operation shift range for light having a wavelength of 2000 nm in the transmission spectrum of the second nanocrystal layer 4 is the operation for light having a wavelength of 2000 nm in the transmission spectrum of the first nanocrystal layer 3. It is preferably less than half of the shift range.
  • the thickness t2 of the second nanocrystal layer 4 is preferably 1% or more and 30% or less of the thickness t1 of the first nanocrystal layer 3. In Example 1, the thickness t2 of the second nanocrystal layer 4 is about 11% of the thickness t1 of the first nanocrystal layer 3.
  • the metal oxide used as the material for the metal oxide nanoparticles is not limited to the exemplified ATO and ITO.
  • a substantially transparent material such as AZO (Aluminum-doped Zinc Oxide) or GZO (Gallium-doped Zinc Oxide) can be used.
  • a material that absorbs light in the visible region such as a composite tungsten oxide or lanthanum hexaboride represented by CsxWyO 3 (x and y indicate composition ratios), can also be used.
  • the average particle diameter of the metal oxide nanoparticles is typically 0.1 nm or more and 1000 nm or less. However, if the average particle size of the metal oxide nanoparticles is too large, it may become difficult to operate. From the viewpoint of ease of operation, the average particle size of the metal oxide nanoparticles is 30 nm or less. It is preferable.
  • each of the first nanocrystal layer 3 and the second nanocrystal layer 4 is typically 100 mm or more and 50000 mm or less. From the viewpoint of the transparency of visible light and the operation shift range of the transmission spectrum, the thickness of each of the first nanocrystal layer 3 and the second nanocrystal layer 4 is preferably 1000 to 15000 mm.
  • the formation method of the first nanocrystal layer 3 and the second nanocrystal layer 4 is not particularly limited.
  • a liquid or semi-solid in which metal oxide nanoparticles are dispersed is applied onto the first substrate 11 or the second substrate 12 and baked to form the first nanocrystal layer 3 and the second nanocrystal layer 4.
  • the dispersion of metal oxide nanoparticles may be applied by a spin coating method, or may be applied by a printing method using a paste to which a vehicle is appropriately added. Further, the coating may be performed by a bar coating method, a slit coating method, a gravure coating method or a die coating method.
  • the firing temperature is such that organic components on the nanocrystal surface are removed and sintering is suitably performed, sufficient solvent resistance can be obtained. However, if the firing temperature is too high and the sintering proceeds excessively, there is a possibility that an LSPR having a desired wavelength cannot be obtained.
  • firing is performed at a temperature of 200 ° C. or higher and 300 ° C. or lower for 60 minutes, for example.
  • first nanocrystal layer 3 and the second nanocrystal layer 4 are made of a solvent system such as polyvinylidene fluoride (PVDF) as a binder in order to improve the binding property with the first substrate 11 and the second substrate 12.
  • PVDF polyvinylidene fluoride
  • a binder, an aqueous binder such as styrene / butadiene rubber, a photo-curing resin, a thermosetting resin, or the like may also be included.
  • the first substrate 11 and the second substrate 12 for example, glass substrates can be used.
  • the plastic substrate formed from resin materials such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and a polyimide, may be sufficient.
  • These illustrated substrates may be provided with a gas barrier layer formed from an inorganic material or an organic material.
  • the step of forming the nanocrystal layer includes a baking step, it is preferable to use a polyimide substrate with high heat resistance as the plastic substrate.
  • the thickness may be reduced by etching after the two substrates are bonded together.
  • Transparent electrode As the material of the first transparent electrode 1 and the second transparent electrode 2, in addition to InTiO, a material that transmits near-infrared light such as tantalum-substituted tin oxide using anatase-type titanium dioxide as a seed layer or ITO with adjusted carrier density Can be used.
  • the first transparent electrode 1 and the second transparent electrode 2 can be formed by depositing these materials on the first substrate 1 and the second substrate 2 by sputtering, vapor deposition, coating, or the like.
  • the material of the first transparent electrode 1 and the second transparent electrode 2 has a characteristic of reflecting far-infrared light.
  • Infrared light radiated from the room is classified as far-infrared light having a wavelength of about 10 ⁇ m. Therefore, if the first transparent electrode 1 and the second transparent electrode 2 have the characteristic of reflecting far-infrared light, the state of the nanocrystal layer is controlled so that the transmittance of near-infrared light is increased.
  • the indoor heat does not escape to the outdoors as radiant heat, and an ideal state can be realized. Further, even when control is performed so that the transmittance of near-infrared light is lowered in summer, it is possible to prevent the far-infrared light from the outside from entering the room, so that an ideal state can be realized.
  • the electrode extraction (connection to the external wiring) of the first transparent electrode 1 may be performed at one place or at a plurality of places. .
  • the assembly process of the electrochromic element 100 can be simplified and the routing of the wiring can be simplified.
  • a partial response speed delay can be prevented even when there is a resistance component between the first transparent electrode 1 and the second transparent electrode 2, that is, when a current flows.
  • the first transparent electrode 1 may be divided into a plurality of electrically independent sub-electrodes.
  • the transmission spectrum can be changed for each region corresponding to the sub-electrodes.
  • 6A and 6B show an example of a configuration in which the first transparent electrode 1 is divided into a plurality of sub-electrodes 1a.
  • the electrode lead-out portions EP are gathered at one place by routing the plurality of sub-electrodes 1a. An unnecessary voltage drop can be prevented by disposing the lead-out portion of the sub-electrode 1a away from the operation portion of the electrochromic element 100 such as the outside of the seal portion 7 or under the seal portion 7.
  • the plurality of sub-electrodes 1a are directly connected to the wiring without being routed. That is, the electrode extraction part EP is dispersed in a plurality of places.
  • the second transparent electrode 2 may be divided into a plurality of electrically independent sub-electrodes or may not be divided.
  • the electrolyte layer 5 is made of, for example, an electrolytic solution.
  • an electrolytic solution a material that is easily ionized such as lithium hexafluorophosphate (LiPF 6 ), sodium hexafluorophosphate (NaPF 6 ), lithium borofluoride (LiBF 4 ), or the like can be used.
  • ethylene carbonate (EC), diethyl carbonate (DEC), a mixture of EC and DC, propylene carbonate, or the like can be used.
  • an ionic liquid composed of a cyclic quaternary ammonium cation and an imide anion may be used.
  • the electrolyte layer 5 may be composed of a solid electrolyte.
  • a solid electrolyte such as polyethylene oxide containing a lithium salt may be used, or a plastic crystal may be used.
  • the electrochromic element 100 defines the distance (cell thickness) between the first substrate 11 and the second substrate 12 as shown in FIG. It is preferable to provide a spacer 8 for the purpose.
  • the spacer 8 is provided between the first nanocrystal layer 3 and the second nanocrystal layer 4.
  • the spacer 8 can be formed by a photolithography process using a photosensitive resin material.
  • the spacer 8 is, for example, 10 ⁇ m square and 10 ⁇ m high.
  • the formation method of the spacer 8 is not limited to the photolithography process, but may be, for example, a screen printing method.
  • the electrolyte layer 5 is composed of a solid electrolyte, it is not necessary to provide the spacer 8 if the solid electrolyte has appropriate elasticity.
  • seal portion 7 As a material of the seal portion 7, for example, a UV curable resin material can be used.
  • FIG. 8 shows an example of another configuration of the seal portion 7.
  • the seal portion 7 has two regions 7 a and 7 b formed from different materials (seal materials).
  • the area 7a positioned relatively inside is referred to as “inside area”
  • the area 7b positioned relatively outside is referred to as “outside area”.
  • the inner region 7a is formed from a sealing material having higher solvent resistance than the sealing material forming the outer region 7b.
  • the outer region 7b is formed of a sealing material having a stronger adhesive force than the sealing material forming the inner region 7a.
  • the inner region 7a that is in contact with the electrolyte layer 5 is formed of a highly solvent-resistant sealing material
  • the outer region 7b is formed of a sealing material having a strong adhesive force. High reliability and strong adhesion can be achieved at the same time.
  • FIG. 9 is a cross-sectional view schematically showing the electrochromic element 200. Below, it demonstrates centering on the point from which the electrochromic element 200 differs from the electrochromic element 100 of Embodiment 1.
  • FIG. 9 is a cross-sectional view schematically showing the electrochromic element 200. Below, it demonstrates centering on the point from which the electrochromic element 200 differs from the electrochromic element 100 of Embodiment 1.
  • the thickness t1 of the first nanocrystal layer 3 and the thickness t2 of the second nanocrystal layer 4 are different.
  • the thickness t1 of the first nanocrystal layer 3 and the thickness t2 of the second nanocrystal layer 4 are substantially the same.
  • the average particle diameter of the 1st metal oxide nanoparticle contained in the 1st nanocrystal layer 3, and the average particle diameter of the 2nd metal oxide nanoparticle contained in the 2nd nanocrystal layer 4 Is different.
  • the average particle diameter of the second metal oxide nanoparticles is larger than the average particle diameter of the first metal oxide nanoparticles.
  • the average particle diameter of the second metal oxide nanoparticles is 5 nm to 100 nm larger than the average particle diameter of the first metal oxide nanoparticles.
  • the electrochromic element 200 of the present embodiment is also the same as the electrochromic element 100 of the first embodiment, on one side and the other side of the pair of transparent electrodes (first transparent electrode 1 and second transparent electrode 2).
  • first transparent electrode 1 and second transparent electrode 2 are provided with a pair of nanocrystal layers (first nanocrystal layer 3 and second nanocrystal layer 4).
  • the total surface area of the metal oxide nanoparticles is increased as compared with the case where the nanocrystal layer is provided only on one side of the pair of transparent electrodes. Therefore, more charges can be stored in the nanocrystal layer when a voltage is applied, and a desired transmission spectrum can be maintained for a long time even when the circuit is shut off. That is, a suitable memory property can be realized.
  • the first metal oxide nanoparticles and the second metal oxide nanoparticles have the same constituent elements. Thereby, since electrochemical balance is taken, deterioration of the 1st transparent electrode 1, the 2nd transparent electrode 2, and the electrolyte layer 5 can be controlled. Further, the fact that the first metal oxide nanoparticles and the second metal oxide nanoparticles have the same constituent elements is advantageous in terms of manufacturing cost, simplification of the manufacturing process, and the like.
  • the average particle diameter of the first metal oxide nanoparticles is different from the average particle diameter of the second metal oxide nanoparticles.
  • an electrochromic element 800 shown in FIG. 2 was produced.
  • the nanocrystal layer 3 of the produced electrochromic device 800 includes ITO nanoparticles.
  • the firing temperature when forming the nanocrystal layer 3 is 200 ° C.
  • FIG. 10 shows transmission spectra of the light control cells D, E, and F when the potential of the second transparent electrode 2 is 0 V and DC voltages of ⁇ 3 V and +3 V are applied to the first transparent electrode 1.
  • Table 5 also shows the transmittance and operation shift range of light having a wavelength of 2000 nm when a DC voltage of ⁇ 3 V and +3 V is applied to the first transparent electrode 1 for the dimming cells D, E, and F. It is shown.
  • the dimming cell F has an operation shift range of 55.3% narrower than that of the dimming cell D.
  • the larger the average particle size of the metal oxide nanoparticles the narrower the operation shift range.
  • the larger the average particle size the smaller the specific surface area of the metal oxide nanoparticles and the presence of sufficient electrolyte ions around the nanoparticles. It is thought that it is because it becomes impossible.
  • the operation shift range can be varied by adjusting the average particle diameter of the metal oxide nanoparticles, a pair of nanocrystal layers having different average particle diameters of the metal oxide nanoparticles are used in combination.
  • the operation shift range of the transmission spectrum of the electrochromic device can be sufficiently widened.
  • the operation shift range of one nanocrystal layer less than or equal to half of the operation shift range of the other nanocrystal layer, the operation shift range of the entire electrochromic device can be sufficiently widened. .
  • the average particle diameter of the second metal oxide nanoparticles is set to It is preferable that the average particle diameter of one metal oxide nanoparticle be 5 nm or more and 100 nm or less.
  • FIG. 11 is a cross-sectional view schematically showing the electrochromic element 300.
  • the electrochromic element 300 will be described focusing on differences from the electrochromic element 100 of the first embodiment.
  • the thickness t1 of the first nanocrystal layer 3 and the thickness t2 of the second nanocrystal layer 4 are different.
  • the thickness t1 of the first nanocrystal layer 3 and the thickness t2 of the second nanocrystal layer 4 are substantially the same.
  • composition ratio of the first metal oxide nanoparticles is different from the composition ratio of the second metal oxide nanoparticles.
  • the electrochromic element 300 of the present embodiment is also a pair provided on one side and the other side of the pair of transparent electrodes (first transparent electrode 1 and second transparent electrode 2).
  • These nanocrystal layers (first nanocrystal layer 3 and second nanocrystal layer 4) are provided.
  • the total surface area of the metal oxide nanoparticles is increased as compared with the case where the nanocrystal layer is provided only on one side of the pair of transparent electrodes. Therefore, more charges can be stored in the nanocrystal layer when a voltage is applied, and a desired transmission spectrum can be maintained for a long time even when the circuit is shut off. That is, a suitable memory property can be realized.
  • the first metal oxide nanoparticles and the second metal oxide nanoparticles have the same constituent elements. Thereby, since electrochemical balance is taken, deterioration of the 1st transparent electrode 1, the 2nd transparent electrode 2, and the electrolyte layer 5 can be controlled. Further, the fact that the first metal oxide nanoparticles and the second metal oxide nanoparticles have the same constituent elements is advantageous in terms of manufacturing cost, simplification of the manufacturing process, and the like.
  • the composition ratio of the first metal oxide nanoparticles is different from the composition ratio of the second metal oxide nanoparticles. Therefore, the operation shift range of the transmission spectrum can be sufficiently widened.
  • the composition ratio of the first metal oxide nanoparticles is different from the composition ratio of the second metal oxide nanoparticles.
  • the operation shift range of the transmission spectrum can be widened. Specifically, the operation density of the first nanocrystal layer 3 is increased by relatively increasing the carrier density of the first metal oxide nanoparticles and relatively decreasing the carrier density of the second metal oxide nanoparticles. The range can be made wider than the operation shift range of the second nanocrystal layer 4, and the operation shift range of the transmission spectrum in the electrochromic device 300 can be widened.
  • the first metal oxide nanoparticles and the second metal oxide nanoparticles are ITO nanoparticles
  • the first metal oxide nanoparticles have an Sn content of 10 wt% to 20 wt%
  • the second metal oxide nanoparticles In the product nanoparticles the Sn content is preferably 1 wt% or more and 5 wt% or less.
  • the electrochromic elements 100, 200, and 300 of Embodiments 1, 2, and 3 have the following configurations (A), (B), and (C), respectively.
  • A The thickness t1 of the first nanocrystal layer 3 and the thickness t2 of the second nanocrystal layer 4 are different.
  • B The average particle diameter of the first metal oxide nanoparticles is different from the average particle diameter of the second metal oxide nanoparticles.
  • C The composition ratio of the first metal oxide nanoparticles is different from the composition ratio of the second metal oxide nanoparticles.
  • the configuration (A) is most preferable among the configurations (A), (B), and (C).
  • the electrochromic device of the embodiment of the present disclosure may have the configurations (A) and (B), may have the configurations (A) and (C), and (B ) And (C). Furthermore, the electrochromic device of the embodiment of the present disclosure may have all the configurations of (A), (B), and (C).
  • FIG. 12 is a cross-sectional view schematically showing the electrochromic element 400.
  • the description will be focused on the points where the electrochromic element 400 is different from the electrochromic element 100 of the first embodiment.
  • the thickness t1 of the first nanocrystal layer 3 and the thickness t2 of the second nanocrystal layer 4 are different from the electrochromic element 100 of the first embodiment.
  • each of the first substrate 11 ′ supporting the first transparent electrode 1 and the second substrate 12 ′ supporting the second transparent electrode 2 is a flexible resin substrate. It is. Since the first substrate 11 ′ and the second substrate 12 ′ are flexible resin substrates, the electrochromic element 400 can be flexible. Therefore, installation of the electrochromic element 400 on a window glass or the like can be performed more easily.
  • the electrochromic element 400 can be manufactured, for example, as follows.
  • a PET film having a thickness of 25 ⁇ m is prepared as the first substrate 11 ′ and the second substrate 12 ′.
  • ITO that becomes transparent in the near-infrared region was deposited by sputtering to form the first transparent electrode 1.
  • the second transparent electrode 2 is formed on the second substrate 12 '.
  • a dispersion of ITO nanoparticles is applied onto the first transparent electrode 1 by spin coating, dried on a hot plate at 140 ° C. for 1 minute, and then fired at 200 ° C. for 60 minutes, A first nanocrystal layer 3 is formed.
  • the used ITO nanoparticle dispersion contains ITO nanoparticles having an average particle size of 10 nm, and the dispersion medium is toluene.
  • a second nanocrystal layer 4 containing ITO nanoparticles is formed on the second transparent electrode 2.
  • the configuration (B) and / or (C) is included in addition to (or instead of) the configuration (A). May be.
  • Embodiment 5 The electrochromic elements 100 to 400 of Embodiments 1 to 4 can be suitably used for, for example, a smart window (light control window).
  • a smart window light control window
  • the transmission spectrum in the near infrared region from the outside can be switched while maintaining the transmittance in the visible light region.
  • the solar heat gain rate can be controlled.
  • FIG. 13 is a block diagram schematically showing the smart window 500.
  • the smart window 500 includes a light control unit 20, a control unit 30, a switch unit 32, a communication unit 34, and a power supply unit 36 as shown in FIG.
  • the light control unit 20 is a window-like portion including an electrochromic element, which is a main body of the smart window 500. A specific configuration of the light control unit 20 will be described in detail later.
  • the control unit 30 controls the operation of the light control unit 20 based on the signal transmitted from the switch unit 32 or the communication unit 34.
  • the control unit 30 is, for example, a circuit board including a calculation unit such as a CPU (Central Processing Unit) or a dedicated processor and a storage unit such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • a calculation unit such as a CPU (Central Processing Unit) or a dedicated processor
  • a storage unit such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • the power supply unit 36 is a power supply circuit that supplies power to the control unit 30 and the light control unit 20.
  • the power supply unit 36 may include a removable primary battery, a secondary battery, and the like.
  • the switch unit 32 accepts input from the user.
  • the switch unit 32 includes a changeover switch operated by a user, for example, and transmits a signal (operation input signal) corresponding to the operation of the changeover switch to the control unit 30.
  • the communication unit 34 includes a receiving unit that receives a signal from the external communication device 40.
  • the communication unit 34 is connected to the communication device 40 by, for example, wireless communication.
  • wireless communication infrared communication, Wi-Fi (registered trademark), Z-Wave (registered trademark), or the like can be used.
  • the communication device 40 is a terminal device such as a remote controller.
  • the communication between the communication unit 34 and the communication device 40 may be unidirectional communication in which a signal related to the control of the light control unit 20 is unilaterally transmitted from the communication device 40 to the communication unit 34, or bidirectional communication. It may be.
  • bidirectional communication for example, an error signal of the dimming unit 20 can be sent to the communication device 40 and the contents can be displayed on the communication device 40.
  • the communication unit 34 includes a transmission unit in addition to the reception unit.
  • Control of the light control unit 20 can be performed manually from the switch unit 32 or the communication device 40 as described above. Or you may switch the state of the light control part 20 automatically and / or regularly. For example, by providing a timer unit (for example, a clock) in the smart window 500, the state of the dimming unit can be switched periodically without providing the switch unit 32 and the communication unit 34. Moreover, you may control taking in of near infrared light indoors using the information on the internet regarding the weather and temperature of each area. Specifically, for example, weather and temperature information corresponding to the address where the smart window 400 is installed is distributed as a service, which is received by the communication device 40 or the direct communication unit 34 and used to control the light control unit 20. can do.
  • a timer unit for example, a clock
  • the communication device 40 or the communication unit 34 is connected to a HEMS (Home Energy Management System) to manage the indoor temperature, outdoor temperature, power consumption, etc. in combination with a temperature sensor or the like. Alternatively, it may be reflected in the operation of the light control unit 20.
  • HEMS Home Energy Management System
  • FIGS. 14 (a) and 14 (b) a specific configuration of the light control unit 20 will be described with reference to FIGS. 14 (a) and 14 (b).
  • the case where the light control part 20 contains the electrochromic element 100 of Embodiment 1 is illustrated.
  • FIG. 14A the laminated structure of the first transparent electrode 1, the first nanocrystal layer 3, the electrolyte layer 5, the second nanocrystal layer 4, and the second transparent electrode 2 is shown as one dimming layer 9. ing.
  • the light control unit 20 includes an electrochromic element 100, a glass plate (translucent plate) 21, and a glazing channel (sometimes referred to as “Grechan”) 22.
  • the glass plate 21 is typically rectangular as illustrated.
  • the glass plate 21 is illustrated here as a translucent plate, a translucent plate is not limited to this, What is necessary is just a plate-shaped member which has translucency.
  • an acrylic plate may be used as the translucent plate.
  • the electrochromic element 100 is bonded to the glass plate 21 via the adhesive layer 23.
  • the adhesive layer 23 is formed from a paste, a UV curable resin, or the like.
  • the electrochromic element 100 typically has substantially the same outer shape as the glass plate 21. In the illustrated example, the electrochromic element 100 is disposed on the indoor side of the glass plate 21. In other words, the glass plate 21 is disposed on the outdoor side of the electrochromic element 100.
  • the electrochromic element 100 is electrically connected to the power supply unit 36 described above via the wiring 24.
  • the glazing channel 22 is disposed so as to surround (pinch) the peripheral edge of the glass plate 21 and the peripheral edge of the electrochromic element 100.
  • FIGS. 15A and 15B show a state in which the collar 28 is disposed.
  • the ridge 28 is a frame-like support that supports the glass plate 21, the electrochromic element 100, and the glazing channel 22.
  • the glass plate, the electrochromic element 100, and the glazing channel 22 are integrally assembled to the flange 28.
  • the glazing channel 22 is located between the glass plate 21 and the electrochromic element 100 and the flange 28 and closes the gap between the glass plate 21 and the electrochromic element 100 and the flange 28 to ensure airtightness and watertightness. doing.
  • the solar heat gain rate can be controlled by adjusting the transmittance of near-infrared light incident on the indoor side through the glass plate 21 from the outside with the electrochromic element 100.
  • the seal portion 7 of the electrochromic element 100 When viewed from the normal direction of the glass plate (translucent plate) 21, the seal portion 7 of the electrochromic element 100 does not protrude from the glazing channel 22 as shown in FIGS. 14 (a) and 15 (a). (Ie, it overlaps the glazing channel 22). Thereby, since the seal
  • the transmission spectra of the first nanocrystal layer 3 and the second nanocrystal layer 4 of the electrochromic element 100 change according to the change of the applied voltage.
  • the nanocrystal layer here, the first nanocrystal layer 3 having a relatively large change in the transmission spectrum according to the change in the applied voltage is It is preferable that it is located between the relatively smaller nanocrystal layer (here, the second nanocrystal layer 4 and the glass plate (translucent plate) 21 (that is, the outdoor side). Since near-infrared light can be efficiently blocked before entering the electrolyte layer 5, the durability of the smart window 500 can be improved.
  • FIG. 16 is a cross-sectional view schematically showing the light control unit 20A.
  • the dimmer 20A will be described with a focus on differences from the dimmer 20 illustrated in FIG.
  • the light control unit 20 ⁇ / b> A is a first glass plate (first translucent plate) 21 ⁇ / b> A and a second glass plate disposed so as to face the first glass plate 21 ⁇ / b> A via a predetermined gap. (Second translucent plate) 21B.
  • first glass plate 21A is disposed on the outdoor side
  • second glass plate 21B is disposed on the indoor side.
  • the electrochromic element 100 is bonded to the second glass plate 21B side of the first glass plate 21A. That is, the electrochromic element 100 is located between the first glass plate 21A and the second glass plate 21B.
  • An intermediate layer 29 having a predetermined thickness is located between the electrochromic element 100 and the second glass plate 21B.
  • the intermediate layer 29 is, for example, an air layer or an argon layer.
  • the light control unit 20A further includes a spacer 25 provided between the electrochromic element 100 and the second glass plate 21B.
  • the spacer 25 defines the thickness of the intermediate layer 29.
  • various spacers for double-glazed glass can be used.
  • an aluminum spacer containing a desiccant or a resin spacer can be used.
  • the glazing channel 22 is disposed so as to surround the peripheral edge of the first glass plate 21A, the peripheral edge of the electrochromic element 100, and the peripheral edge of the second glass plate 21B.
  • the electrochromic element 100 is provided between the first glass plate 21A and the second glass plate 21B, the electrochromic element 100 is prevented from being damaged by an external impact. be able to. Moreover, since the electrochromic element 100 is bonded to the first glass plate 21A located on the outdoor side, near infrared light from the sun can be blocked before entering the intermediate layer 29. High heat shielding effect can be obtained.
  • the spacer 25 overlaps the glazing channel 22 and the seal portion 7 overlaps the spacer 25 and the glazing channel 22 when viewed from the normal direction of the first glass plate 21A.
  • the pressure of the spacer 25 and the glazing channel 22 can be applied to the region of the electrochromic element 100 where the high-strength seal portion 7 exists.
  • FIG. 17 is a cross-sectional view schematically showing the light control unit 20B. Below, it demonstrates centering on the point from which the light control part 20B differs from the light control part 20A shown in FIG.
  • the spacer 25 overlaps the glazing channel 22 when viewed from the normal direction of the first glass plate 21A. Further, when viewed from the normal direction of the first glass plate 21A, the seal portion 7 overlaps with the glazing channel 22 and is on the inner side than the spacer 25 (the inner side in the in-plane direction of the first glass plate 21). positioned.
  • the size of the second substrate 12 is slightly smaller than the size of the first substrate 11, and the end of the spacer 25 on the outdoor side is in contact with the first substrate 11.
  • the seal part 7 since the seal part 7 is disposed inside the spacer 25, the pressure of the spacer 25 and the glazing channel 22 can be prevented from being applied to the light control layer 9.
  • the wiring 24 and the flexible substrate for wiring may be located in the area
  • FIG. 18 is a cross-sectional view schematically showing the light control unit 20C.
  • the dimming unit 20C will be described with a focus on differences from the dimming unit 20A illustrated in FIG.
  • the light control unit 20C includes a first glass plate (first translucent plate) 21A and a second glass plate (second translucent plate) disposed so as to face the first glass plate 21A with a predetermined gap therebetween. 21B.
  • the electrochromic element 100 is disposed between the first glass plate 21A and the second glass plate 21B.
  • the electrochromic element 100 is not bonded to either the first glass plate 21A or the second glass plate 21B.
  • a first intermediate layer 29A is located between the first glass plate 21A and the electrochromic element 100
  • a second intermediate layer 29B is located between the electrochromic element 100 and the second glass plate 21B. ing. That is, in the light control unit 20C, the electrochromic element 100 is used in place of the central glass plate among the three glass plates constituting the double glass having a so-called triple glass structure.
  • the dimmer 20C includes a first spacer 25A provided between the first glass plate 21A and the electrochromic element 100, and a second spacer 25B provided between the electrochromic element 100 and the second glass plate 21B. And further.
  • the first spacer 25A defines the thickness of the first intermediate layer 29A
  • the second spacer 25B defines the thickness of the second intermediate layer 29B.
  • the electrochromic element 100 of the light control unit 20C includes a pair of antireflection films 13 and 14 located on the outermost surface on the first glass plate 21A side and the outermost surface on the second glass plate 21B side.
  • the electrochromic element 100 includes the pair of antireflection films 13 and 14 as described above, a decrease in transmittance can be suppressed.
  • an AR (Anti-Reflective) film, an LR (Low-Reflective) film, a moth-eye film, or the like can be used as the antireflection films 13 and 14.
  • the first spacer 25A and the second spacer 25B overlap the glazing channel 22, and the seal section 7 includes the first spacer 25A, It should overlap the second spacer 25B and the glazing channel 22.
  • the pressure of the first spacer 25 ⁇ / b> A, the second spacer 25 ⁇ / b> B, and the glazing channel 22 can be applied to the region of the electrochromic element 100 where the high-strength seal portion 7 exists.
  • FIG. 19 is a cross-sectional view schematically showing the light control unit 20D. Below, it demonstrates centering on the point from which the light control part 20D differs from the light control part 20C shown in FIG.
  • the first spacer 25A and the second spacer 25B overlap the glazing channel 22 when viewed from the normal direction of the first glass plate 21A. Further, when viewed from the normal direction of the first glass plate 21A, the seal portion 7 overlaps with the glazing channel 22 and is located on the inner side of the first spacer 25A and the second spacer 25B (of the first glass plate 21). It is located on the inner side in the in-plane direction.
  • the size of the second substrate 12 is slightly smaller than the size of the first substrate 11, and the end on the indoor side of the first spacer 25A and the end on the outdoor side of the second spacer 25B are the first It is in contact with the substrate 11.
  • the seal portion 7 is disposed on the inner side of the first spacer 25A and the second spacer 25B, the pressure of the first spacer 25A, the second spacer 25B, and the glazing channel 22 is applied to the light control layer 9. It can be avoided.
  • the wiring 24 and the flexible substrate for wiring may be located in the area
  • the electrochromic device according to the embodiment of the present disclosure may be installed on something other than the window glass, and may be installed in an agricultural greenhouse, for example.
  • an electrochromic device and a smart window that include two nanocrystal layers and can operate suitably.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

エレクトロクロミック素子は、互いに対向する第1および第2透明電極と、第1透明電極の第2透明電極側の表面上に設けられ、複数の第1金属酸化物ナノ粒子を含む第1ナノ結晶層と、第2透明電極の第1透明電極側の表面上に設けられ、複数の第2金属酸化物ナノ粒子を含む第2ナノ結晶層と、第1および第2ナノ結晶層の間に設けられた電解質層と、を備える。第1金属酸化物ナノ粒子と第2金属酸化物ナノ粒子とは、構成元素が同じである。第1ナノ結晶層の厚さと第2ナノ結晶層の厚さとが異なっている。

Description

エレクトロクロミック素子およびスマートウィンドウ
 本開示は、エレクトロクロミック素子およびスマートウィンドウに関する。
 電圧の印加によりその光学的性質が可逆的に変化するエレクトロクロミック素子が知られている。エレクトロクロミック素子を用いた製品の1つとして、電気的に光透過率を制御することができるスマートウィンドウが挙げられる。
 スマートウィンドウの一種として、赤外光の透過率を制御可能なタイプ(以下では「赤外タイプ」と呼ぶこともある。)が提案されている。特許文献1は、赤外タイプのスマートウィンドウに用いられるエレクトロクロミック素子を開示している。
 特許文献1に開示されているエレクトロクロミック素子では、電圧の印加により光の透過スペクトルが変化するエレクトロクロミック層として、ナノ結晶層が設けられている。ここで、図20を参照しながら、特許文献1のエレクトロクロミック素子の構造を簡単に説明する。
 図20に示すエレクトロクロミック素子900は、第1基板911、第2基板912、第1透明電極901、第2透明電極902、ナノ結晶層903、電解液905、電源906、シール部907およびスペーサ908を備える。
 第1基板911および第2基板912は、互いに対向するように設けられている。第1基板911および第2基板912のそれぞれは、透明である。
 第1透明電極901は、第1基板911の第2基板912側の表面上に設けられている。第2透明電極902は、第2基板912の第1基板911側の表面上に設けられている。
 ナノ結晶層903は、第1透明電極901上に設けられている。ナノ結晶層903は、粒径が数nm~数十nmの金属酸化物ナノ粒子を含んでいる。
 電解液905は、シール部907によって包囲された領域に封入されており、ナノ結晶層903と第2透明電極902との間に位置している。電源906は、第1透明電極901および第2透明電極902に電気的に接続されており、第1透明電極901および第2透明電極902間に所定の電圧を印加し得る。
 スペーサ908は、ナノ結晶層903と第2透明電極902との間に設けられており、電解液905が封入されている領域の高さを規定する。
 エレクトロクロミック素子900のナノ結晶層903は、局在表面プラズモン共鳴(LSPR)を利用してエレクトロクロミズムを発現する。
 非特許文献1は、エレクトロクロミック材料として用いられる種々のナノ結晶を開示している。
国際公開第2017/141528号
Evan L. Runnerstrom et. al., 「Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals」, Chem.Commun., 2014, 50, 10555-10572
 上述したように、特許文献1のエレクトロクロミック素子900では、一対の透明電極の一方側(具体的には第1透明電極901上)にのみナノ結晶層903が設けられている。本願発明者は、一対の透明電極の他方側にさらなるナノ結晶層を設けることを検討した。両側にナノ結晶層を設けることにより、片側にのみナノ結晶層を設けた場合よりも金属酸化物ナノ粒子の表面積が増大する。そのため、電圧印加時により多くの電荷をナノ結晶層に蓄えることができ、回路を遮断した状態でも所望の透過スペクトルを長時間維持することができる(つまり好適なメモリ性を持たせられる)と考えられる。
 しかしながら、本願発明者がさらに検討を進めたところ、そのような構成を採用すると、後に詳述するような様々な問題が発生することがわかった。
 本開示は、上記問題に鑑みてなされたものであり、その目的は、2つのナノ結晶層を備え、且つ、好適に動作し得るエレクトロクロミック素子およびスマートウィンドウを提供することにある。
 本発明の実施形態によるエレクトロクロミック素子は、互いに対向する第1透明電極および第2透明電極と、前記第1透明電極の前記第2透明電極側の表面上に設けられ、複数の第1金属酸化物ナノ粒子を含む第1ナノ結晶層と、前記第2透明電極の前記第1透明電極側の表面上に設けられ、複数の第2金属酸化物ナノ粒子を含む第2ナノ結晶層と、前記第1ナノ結晶層および前記第2ナノ結晶層の間に設けられた電解質層と、を備え、前記複数の第1金属酸化物ナノ粒子と前記複数の第2金属酸化物ナノ粒子とは、構成元素が同じであり、前記第1ナノ結晶層の厚さと前記第2ナノ結晶層の厚さとが異なっている。
 ある実施形態において、前記第2ナノ結晶層の厚さは、前記第1ナノ結晶層の厚さの1%以上30%以下である。
 ある実施形態において、前記複数の第1金属酸化物ナノ粒子の平均粒径と前記複数の第2金属酸化物ナノ粒子の平均粒径とが異なっている。
 本発明の実施形態によるエレクトロクロミック素子は、互いに対向する第1透明電極および第2透明電極と、前記第1透明電極の前記第2透明電極側の表面上に設けられ、複数の第1金属酸化物ナノ粒子を含む第1ナノ結晶層と、前記第2透明電極の前記第1透明電極側の表面上に設けられ、複数の第2金属酸化物ナノ粒子を含む第2ナノ結晶層と、前記第1ナノ結晶層および前記第2ナノ結晶層の間に設けられた電解質層と、を備え、前記複数の第1金属酸化物ナノ粒子と前記複数の第2金属酸化物ナノ粒子とは、構成元素が同じであり、前記複数の第1金属酸化物ナノ粒子の平均粒径と前記複数の第2金属酸化物ナノ粒子の平均粒径とが異なっている。
 ある実施形態において、前記複数の第2金属酸化物ナノ粒子の平均粒径は、前記複数の第1金属酸化物ナノ粒子の平均粒径よりも5nm以上100nm以下大きい。
 ある実施形態において、前記複数の第1金属酸化物ナノ粒子の組成比と前記複数の第2金属酸化物ナノ粒子の組成比とが異なっている。
 本発明の実施形態によるエレクトロクロミック素子は、互いに対向する第1透明電極および第2透明電極と、前記第1透明電極の前記第2透明電極側の表面上に設けられ、複数の第1金属酸化物ナノ粒子を含む第1ナノ結晶層と、前記第2透明電極の前記第1透明電極側の表面上に設けられ、複数の第2金属酸化物ナノ粒子を含む第2ナノ結晶層と、前記第1ナノ結晶層および前記第2ナノ結晶層の間に設けられた電解質層と、を備え、前記複数の第1金属酸化物ナノ粒子と前記複数の第2金属酸化物ナノ粒子とは、構成元素が同じであり、前記複数の第1金属酸化物ナノ粒子の組成比と前記複数の第2金属酸化物ナノ粒子の組成比とが異なっている。
 ある実施形態において、前記複数の第1金属酸化物ナノ粒子および前記複数の第2金属酸化物ナノ粒子は、それぞれ複数のアンチモンドープ酸化錫ナノ粒子である。
 ある実施形態において、前記複数の第1金属酸化物ナノ粒子および前記複数の第2金属酸化物ナノ粒子は、それぞれ複数の錫ドープ酸化インジウムナノ粒子である。
 ある実施形態において、前記エレクトロクロミック素子は、前記第1透明電極を支持する第1基板と、前記第2透明電極を支持する第2基板と、をさらに備え、前記第1基板および前記第2基板のそれぞれは、可撓性を有する樹脂基板である。
 ある実施形態において、第1透明電極および第2透明電極のそれぞれは、電気的に独立した複数のサブ電極に分割されている。
 本発明の実施形態によるスマートウィンドウは、上述したいずれかの構成を有するエレクトロクロミック素子を備える。
 ある実施形態において、前記スマートウィンドウは、透光板をさらに備え、前記エレクトロクロミック素子は、前記透光板に貼り合わされている。
 ある実施形態において、前記第1ナノ結晶層および前記第2ナノ結晶層のそれぞれの透過スペクトルは、印加電圧の変化に応じて変化し、前記第1ナノ結晶層および前記第2ナノ結晶層のうちの、印加電圧の変化に応じた透過スペクトルの変化が相対的に大きい方のナノ結晶層が、相対的に小さい方のナノ結晶層と前記透光板との間に位置している。
 ある実施形態において、前記スマートウィンドウは、前記透光板の周縁部および前記エレクトロクロミック素子の周縁部を囲むように配置されたグレージングチャンネルをさらに備え、前記エレクトロクロミック素子は、前記電解質層を包囲するように設けられたシール部をさらに有し、前記透光板の法線方向から見たとき、前記シール部は前記グレージングチャンネルに重なっている。
 ある実施形態において、前記スマートウィンドウは、第1透光板と、前記第1透光板に所定の間隙を介して対向するように配置された第2透光板と、をさらに備え、前記エレクトロクロミック素子は、前記第1透光板の前記第2透光板側に貼り合わされており、前記エレクトロクロミック素子と前記第2透光板との間に、所定の厚さの中間層が位置する。
 ある実施形態において、前記スマートウィンドウは、前記エレクトロクロミック素子と前記第2透光板との間に設けられ、前記中間層の厚さを規定するスペーサと、前記第1透光板の周縁部、前記エレクトロクロミック素子の周縁部および前記第2透光板の周縁部を囲むように配置されたグレージングチャンネルと、をさらに備え、前記エレクトロクロミック素子は、前記電解質層を包囲するように設けられたシール部をさらに有し、前記第1透光板の法線方向から見たとき、前記スペーサは前記グレージングチャンネルに重なっており、前記シール部は前記スペーサおよび前記グレージングチャンネルに重なっている。
 ある実施形態において、前記スマートウィンドウは、前記エレクトロクロミック素子と前記第2透光板との間に設けられ、前記中間層の厚さを規定するスペーサと、前記第1透光板の周縁部、前記エレクトロクロミック素子の周縁部および前記第2透光板の周縁部を囲むように配置されたグレージングチャンネルと、をさらに備え、前記エレクトロクロミック素子は、前記電解質層を包囲するように設けられたシール部をさらに有し、前記第1透光板の法線方向から見たとき、前記スペーサは前記グレージングチャンネルに重なっており、前記シール部は前記グレージングチャンネルに重なっており、且つ、前記スペーサよりも内側に位置している。
 ある実施形態において、前記スマートウィンドウは、第1透光板と、前記第1透光板に所定の間隙を介して対向するように配置された第2透光板と、をさらに備え、前記エレクトロクロミック素子は、前記第1透光板と前記第2透光板との間に配置されており、前記第1透光板と前記エレクトロクロミック素子との間に所定の厚さの第1中間層が位置し、前記エレクトロクロミック素子と前記第2透光板との間に所定の厚さの第2中間層が位置する。
 ある実施形態において、前記エレクトロクロミック素子は、前記第1透光板側の最表面および前記第2透光板側の最表面に位置する一対の反射防止膜を含む。
 ある実施形態において、前記スマートウィンドウは、前記第1透光板と前記エレクトロクロミック素子との間に設けられ、前記第1中間層の厚さを規定する第1スペーサと、前記エレクトロクロミック素子と前記第2透光板との間に設けられ、前記第2中間層の厚さを規定する第2スペーサと、前記第1透光板の周縁部、前記エレクトロクロミック素子の周縁部および前記第2透光板の周縁部を囲むように配置されたグレージングチャンネルと、をさらに備え、前記エレクトロクロミック素子は、前記電解質層を包囲するように設けられたシール部をさらに有し、前記第1透光板の法線方向から見たとき、前記第1スペーサおよび前記第2スペーサは前記グレージングチャンネルに重なっており、前記シール部は前記第1スペーサ、第2スペーサおよび前記グレージングチャンネルに重なっている。
 ある実施形態において、前記スマートウィンドウは、前記第1透光板と前記エレクトロクロミック素子との間に設けられ、前記第1中間層の厚さを規定する第1スペーサと、前記エレクトロクロミック素子と前記第2透光板との間に設けられ、前記第2中間層の厚さを規定する第2スペーサと、前記第1透光板の周縁部、前記エレクトロクロミック素子の周縁部および前記第2透光板の周縁部を囲むように配置されたグレージングチャンネルと、をさらに備え、前記エレクトロクロミック素子は、前記電解質層を包囲するように設けられたシール部をさらに有し、前記第1透光板の法線方向から見たとき、前記第1スペーサおよび前記第2スペーサは前記グレージングチャンネルに重なっており、前記シール部は前記グレージングチャンネルに重なっており、且つ、前記第1スペーサおよび前記第2スペーサよりも内側に位置している。
 本開示の実施形態によると、2つのナノ結晶層を備え、且つ、好適に動作し得るエレクトロクロミック素子およびスマートウィンドウを提供することができる。
本開示の実施形態におけるエレクトロクロミック素子100を模式的に示す断面図である。 ナノ結晶層の厚さや金属酸化物ナノ粒子の平均粒径による透過スペクトルの違いを検証するために作製したエレクトロクロミック素子800を示す断面図である。 調光セルA、BおよびCの透過スペクトルを示すグラフである。 実施例1および比較例1の透過スペクトルを示すグラフである。 比較例2および3の透過スペクトルを示すグラフである。 (a)および(b)は、第1透明電極1が複数のサブ電極1aに分割された構成の例を示す図である。 スペーサ8を備えるエレクトロクロミック素子100を模式的に示す断面図である。 シール部7の他の構成の例を示す図である。 本開示の実施形態におけるエレクトロクロミック素子200を模式的に示す断面図である。 調光セルD、EおよびFの透過スペクトルを示すグラフである。 本開示の実施形態におけるエレクトロクロミック素子300を模式的に示す断面図である。 本開示の実施形態におけるエレクトロクロミック素子400を模式的に示す断面図である。 本開示の実施形態におけるスマートウィンドウ500を模式的に示すブロック図である。 (a)および(b)は、スマートウィンドウ500の調光部20を模式的に示す断面図および平面図である。 (a)および(b)は、スマートウィンドウ500の調光部20を模式的に示す断面図および平面図である。 スマートウィンドウ500に用いられる他の調光部20Aを模式的に示す断面図である。 スマートウィンドウ500に用いられるさらに他の調光部20Bを模式的に示す断面図である。 スマートウィンドウ500に用いられるさらに他の調光部20Cを模式的に示す断面図である。 スマートウィンドウ500に用いられるさらに他の調光部20Dを模式的に示す断面図である。 特許文献1のエレクトロクロミック素子900を模式的に示す断面図である。
 実施形態の説明に先立ち、本願発明者が見出した知見を説明する。
 まず、本願発明者は、一対の透明電極の一方上にのみナノ結晶層が設けられている構成において、透明電極や電解液の劣化が発生し得ることを見出した。また、一対の透明電極の一方側にだけでなく、他方側にもナノ結晶層を設ける構成においても、同様の問題が発生し得ることがわかった。
 本願発明者は、さらに詳細な検討を行い、2つのナノ結晶層の材料として、構成元素が同じ金属酸化物ナノ粒子を用いることにより、電気化学的なバランスがとれ、透明電極や電解液の劣化を抑制し得ることを見出した。また、構成元素が同じ金属酸化物ナノ粒子を用いることは、製造コストや製造工程の簡略化等の点でも有利である。
 しかしながら、ナノ結晶層を両側に配置すると、一方側のみに配置する場合に比べ、透過スペクトルの動作シフト範囲が狭まってしまうという新たな問題が発生する。同じエレクトミック材料を両側に配置した場合、電圧印可時に両側のエレクトロクロミック材料の透過スペクトルがお互い逆の方向にシフトするためである。
 以下、図面を参照しながら本開示の実施形態を説明する。なお、本開示の実施形態は、以下に例示する構成に限定されるものではない。
 (実施形態1)
 図1を参照しながら、本実施形態におけるエレクトロクロミック素子100を説明する。図1は、エレクトロクロミック素子100を模式的に示す断面図である。
 エレクトロクロミック素子100は、図1に示すように、第1透明電極1および第2透明電極2と、第1ナノ結晶層3および第2ナノ結晶層4と、電解質層5とを備える。
 第1透明電極1および第2透明電極2は、互いに対向するように配置されている。第1透明電極1および第2透明電極2は、それぞれ透明であり、実質的に無色である。第1透明電極1および第2透明電極2は、電源6に電気的に接続されている。第1透明電極1は、第1基板11に支持されている。第2透明電極2は、第2基板12に支持されている。第1基板11および第2基板12は、それぞれ透明であり、実質的に無色である。
 第1ナノ結晶層3は、第1透明電極1の第2透明電極2側の表面上に設けられている。第1ナノ結晶層3は、複数の金属酸化物ナノ粒子(以下では「第1金属酸化物ナノ粒子」と呼ぶ)を含む。
 第2ナノ結晶層4は、第2透明電極2の第1透明電極1側の表面上に設けられている。第2ナノ結晶層4は、複数の金属酸化物ナノ粒子(以下では「第2金属酸化物ナノ粒子」と呼ぶ)を含む。
 第1金属酸化物ナノ粒子および第2金属酸化物ナノ粒子は、それぞれ数nm~数十nmの粒径を有する粒子状の結晶体(ナノ結晶)である。
 電解質層5は、第1ナノ結晶層3と第2ナノ結晶層4との間に設けられている。電界質層5は、シール部7によって包囲されている。
 第1ナノ結晶層3に含まれる第1金属酸化物ナノ粒子および第2ナノ結晶層4に含まれる第2金属酸化物ナノ粒子は、エレクトロクロミック材料である。そのため、第1ナノ結晶層3および第2ナノ結晶層4のそれぞれの透過スペクトルは、第1透明電極1と第2透明電極2との間に印加された電圧に応じて変化する。この透過スペクトルの変化は、近赤外領域における透過率変化を伴っている。従って、本実施形態のエレクトロクロミック素子100は、近赤外光の透過率を制御することができる。本願明細書において、近赤外領域は、波長が約800nm以上約2500nm以下の範囲を指す。太陽から放射される赤外光の大部分は近赤外光であるので、近赤外光の透過率を制御することにより、太陽光による日射熱の取得率を制御することができる。例えば、夏期には近赤外光の室内への入射を防ぐことができ、冬期には近赤外光を室内に取り込むことができる。
 第1金属酸化物ナノ粒子および第2金属酸化物ナノ粒子としては、例えば、アンチモンドープ酸化錫(Antimony-doped Tin Oxide:ATO)ナノ粒子や、錫ドープ酸化インジウム(Tin doped Indium Oxide)ナノ粒子を好適に用いることができる。第1ナノ結晶層3および第2ナノ結晶層4がエレクトロクロミズムを示す原理については後述する。
 なお、第1ナノ結晶層3および第2ナノ結晶層4の透過スペクトルの変化は、近赤外領域における透過率変化だけでなく、可視領域(約400nm以上約800nm以下の範囲)における透過率変化を伴っていてもよい。
 本実施形態では、第1金属酸化物ナノ粒子と第2金属酸化物ナノ粒子とは、構成元素が同じである(つまり同じ元素を含んでいる)。また、本実施形態では、第1ナノ結晶層3の厚さt1と、第2ナノ結晶層4の厚さt2とが異なっている。具体的には、第2ナノ結晶層4の厚さt2が、第1ナノ結晶層3の厚さt1よりも小さい。好ましくは、第2ナノ結晶層4の厚さt2は、第1ナノ結晶層3の厚さt1の1%以上30%以下である。
 上述したように、本実施形態のエレクトロクロミック素子100は、一対の透明電極(第1透明電極1および第2透明電極2)の一方側および他方側に設けられた一対のナノ結晶層(第1ナノ結晶層3および第2ナノ結晶層4)を備える。これにより、一対の透明電極の一方側にのみナノ結晶層を設けた場合よりも金属酸化物ナノ粒子の総表面積が増大する。そのため、電圧印加時により多くの電荷をナノ結晶層に蓄えることができ、回路を遮断した状態(電源6からの電力供給が停止した状態)でも所望の透過スペクトルを長時間維持することができる。つまり、好適なメモリ性を実現することができる。
 また、本実施形態では、第1金属酸化物ナノ粒子と第2金属酸化物ナノ粒子とは、構成元素が同じである。これにより、電解質層5の両側で電気化学的なバランスが取れるので、第1透明電極1、第2透明電極2および電解質層5の劣化を抑制することができる。さらに、第1金属酸化物ナノ粒子と第2金属酸化物ナノ粒子とで構成元素が同じであることは、製造コストや製造工程の簡略化等の点でも有利である。
 また、本実施形態では、第1ナノ結晶層3の厚さt1と、第2ナノ結晶層4の厚さt2とが異なっている。これにより、後に検証結果を交えて詳述するように、透過スペクトルの動作シフト範囲を十分に広くすることができる。
 [ナノ結晶層の動作原理]
 ここで、ナノ結晶層(第1ナノ結晶層3および第2ナノ結晶層4)がエレクトロクロミズムを示す原理を説明する。
 非特許文献1に記載されているように、ITO(Tin doped Indium Oxide)ナノ結晶層などの透明導電性酸化物(Transparent Conducting Oxide:TCO)ナノ構造体に電子を注入することによって、近赤外領域の透過スペクトルを変化させ得ることが知られている。その原理は、端的に言えば、TCOナノ構造体の局在表面プラズモン共鳴(LSPR)による吸収波長を、電圧印加によってシフトさせることである。以下、より詳細に説明する。
 LSPRの共鳴周波数は、プラズマ周波数ωpに比例する。プラズマ周波数ωpは、下記式で表わされる。
 ωp =N・e/(m・ε
 ここで、Nは電子密度、eは電子の電荷、mは電子の有効質量、εは真空の誘電率である。従って、TCOナノ構造体に負電圧を印加して電子密度を高くすると、プラズマ周波数ωpが大きくなるので、LSPRの共鳴周波数も大きくなる。そのため、LSPRの共鳴波長は短くなる(つまり短波長側にシフトする)。TCOナノ構造体のキャリア密度を調整することにより、LSPRの共鳴波長を近赤外領域に設定できるので、近赤外領域における透過スペクトルを変化させることが可能となる。
 なお、このように透過スペクトルを変化させる機能は、ITOナノ粒子を含むITOナノ結晶層だけに特有のものではない。ナノ粒子が、LSPRが生じるようなサイズ(例えば100nm以下)であり、且つ、ナノ結晶層が透明電極からの電子を注入され得るような構成であれば、原理的には上述した機能を奏し得る。ナノ粒子としては、ATO、PTO(リンドープ酸化錫)、AZO(アルミニウムドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)等の種々の金属酸化物のナノ粒子を用いることができる。
 [ナノ結晶層の厚さによる透過スペクトルの違い]
 ナノ結晶層の厚さによる透過スペクトルの違いを検証した結果を説明する。
 検証のため、図2に示すエレクトロクロミック素子800を作製した。図2に示すエレクトロクロミック素子800は、第2ナノ結晶層4が省略されている点において、図1に示したエレクトロクロミック素子100と異なる。
 エレクトロクロミック素子800のナノ結晶層3は、平均粒径が20nmのATOナノ粒子を含む。ナノ結晶層3を形成する際の焼成温度は、200℃である。ナノ結晶層3の厚さt1がそれぞれ840Å、4650Å、7620Åである3つのエレクトロクロミック素子800を作製した(それぞれ「調光セルA」、「調光セルB」、「調光セルC」と呼ぶ)。なお、ナノ結晶層3の厚さt1は、第1透明電極1上に形成されたナノ結晶層3の中心から外周部にかけての3か所の厚さを触針式段差計で測定した平均値である。また、ナノ粒子の平均粒径は、透過型電子顕微鏡(TEM)を用いて観察したナノ粒子100個の2軸平均計である。
 図3に、調光セルA、BおよびCについて、第2透明電極2の電位を0Vとし、第1透明電極1に-3Vおよび+3VのDC電圧を印加したときの透過スペクトルを示す。また、表1に、調光セルA、BおよびCについて、第1透明電極1に-3Vおよび+3VのDC電圧を印加したときの、波長2000nmの光の透過率を示す。表1には、動作シフト範囲が併せて示されている。ここで、「動作シフト範囲」は、+3V印加時の波長2000nmの光の透過率と、-3V印加時の波長2000nmの光の透過率との差である。
Figure JPOXMLDOC01-appb-T000001
 図3および表1からわかるように、ナノ結晶層3の厚さt1が小さくなるほど、印加電圧を切り換えたときの透過スペクトルの変化が小さくなる。具体的には、調光セルC(ナノ結晶層3の厚さが7620Å)の動作シフト範囲が56.6%であるのに対し、調光セルB(ナノ結晶層3の厚さが4650Å)および調光セルA(ナノ結晶層3の厚さが840Å)の動作シフト範囲はそれぞれ45.5%および15.6%である。つまり、調光セルAは、調光セルCに比べ、動作シフト範囲が41.0%も狭い。ナノ結晶層3の厚さt1が小さいほど動作シフト範囲が狭くなるのは、ナノ結晶層3の厚さt1が小さくなるほどナノ結晶層3内を透過する光の光路長が短くなるためであると考えられる。
 このように、ナノ結晶層の厚さを調整することにより動作シフト範囲を異ならせることができるので、厚さが互いに異なる一対のナノ結晶層を組み合わせて用いることにより、エレクトロクロミック素子の透過スペクトルの動作シフト範囲を十分に広くすることができる。具体的には、一方のナノ結晶層の動作シフト範囲を、他方のナノ結晶層の動作シフト範囲の半分以下にすることにより、エレクトロクロミック素子全体としての動作シフト範囲を十分に広くすることができる。
 [エレクトロクロミック素子の光学特性の検証結果]
 エレクトロクロミック素子100の試作例(実施例1)を以下のようにして作製し、その光学特性を検証した。
 まず、第1基板11および第2基板12としてそれぞれガラス基板を用意した。次に、第1基板11上に、近赤外領域において透明となるようなチタンドープ酸化インジウム(Titanium-doped Indium Oxide:InTiO)をスパッタ法により堆積し、第1透明電極1を形成した。同様にして、第2基板12上に第2透明電極2を形成した。
 続いて、第1透明電極1上に、ATOナノ粒子の分散液をスピンコート法により塗布し、ホットプレート上で140℃で1分間乾燥させた後、200℃で60分間焼成を行うことにより、厚さ7620Åの第1ナノ結晶層3を形成した。使用したATOナノ粒子分散液は、平均粒径が20nmのATOナノ粒子を含んでおり、分散媒は、メチルイソブチルケトンとイソブタノールとの2:1混合液である。
 次に、第2透明電極2上に、ATOナノ粒子の分散液をスピンコート法により塗布し、ホットプレート上で140℃で1分間乾燥させた後、200℃で60分間焼成を行うことにより、厚さ840Åの第2ナノ結晶層4を形成した。使用したATOナノ粒子分散液は、平均粒径が20nmのATOナノ粒子を含んでおり、分散媒は、メチルイソブチルケトンとイソブタノールとの2:1混合液である。
 その後、粒径が30μmの樹脂スペーサを3wt%含むUV硬化型樹脂材料を、第1ナノ結晶層3の外周上に、部分的に注入口が存在するように塗布する。続いて、両基板を重ね合せ、紫外線を照射することによってシール部7を形成した。次に、注入口から電解液として、1mol/LのLiBFを含むEC(Ethylene carbonate)・DEC(Diethyl Carbonate)混合液(EC:DEC=1:2)を注入し、その後、UV硬化型樹脂材料で封止を行って電解質層5を形成した。このようにして、実施例1のエレクトロクロミック素子100が得られた。
 また、第2ナノ結晶層4を形成しない点以外は実施例1と同様にして、比較例1のエレクトロクロミック素子を作製した。
 図4に、実施例1および比較例1について、第2透明電極2の電位を0Vとし、第1透明電極1に-3Vおよび+3VのDC電圧を印加したときの透過スペクトルを示す。また、表2に、実施例1および比較例1について、第1透明電極1に-3Vおよび+3VのDC電圧を印加したときの波長2000nmの光の透過率および動作シフト範囲を示す。
Figure JPOXMLDOC01-appb-T000002
 図4および表2に示すように、比較例1の動作シフト範囲が56.6%であるのに対し、実施例1の動作シフト範囲は49.6%であり、動作シフト範囲の低下が7.0%に抑えられている。
 比較例2として、第1ナノ結晶層3および第2ナノ結晶層4の両方の厚さを9780Åとする点以外は実施例1と同様にしてエレクトロクロミック素子を作製した。また、比較例3として、第2ナノ結晶層4を形成しない点以外は比較例2と同様にしてエレクトロクロミック素子を作製した。
 図5に、比較例2および比較例3について、第2透明電極2の電位を0Vとし、第1透明電極1に-3Vおよび+3VのDC電圧を印加したときの透過スペクトルを示す。また、表3に、比較例2および比較例3について、第1透明電極1に-3Vおよび+3VのDC電圧を印加したときの波長2000nmの光の透過率および動作シフト範囲を示す。
Figure JPOXMLDOC01-appb-T000003
 図5および表3に示すように、比較例3の動作シフト範囲が56.8%であるのに対し、比較例2の動作シフト範囲は0.3%であり、比較例2は、比較例3に対して動作シフト範囲が55.5%(実施例1に対しては49.3%)も狭くなっている。これは、第1ナノ結晶層3および第2ナノ結晶層4の透過スペクトルのシフトが互いに逆方向であるためである。
 上述した検証結果からわかるように、厚さが互いに異なる一対のナノ結晶層(第1ナノ結晶層3および第2ナノ結晶層4)を組み合わせて用いることによって、動作シフト範囲が狭くなることを抑制できる。
 なお、動作シフト範囲が狭くなることを防止するために、一方のナノ結晶層を遮蔽物により覆うことが考えられる。ただし、その場合、当然ながら、エレクトロクロミック素子が全体として透明ではなくなるので、スマートウィンドウのような用途には用いることができなくなる。
 表4に、実施例1、比較例1、2および3について、目視により電解質層5中の気泡の発生の有無を観察した結果を示す。表4に示すように、比較例1および3では、気泡が発生しており、電解液の劣化が発生していることがわかる。これに対し、実施例1(および比較例2)では、気泡が発生しておらず、電解液の劣化が抑制されていることがわかる。
Figure JPOXMLDOC01-appb-T000004
 上述したように、本開示の実施形態によれば、2つのナノ結晶層を備え、且つ、好適に動作し得るエレクトロクロミック素子100が得られる。
 十分に動作シフト範囲を広くする観点からは、第2ナノ結晶層4の透過スペクトルの波長2000nmの光に対する動作シフト範囲が、第1ナノ結晶層3の透過スぺクトルの波長2000nmの光に対する動作シフト範囲の半分以下であることが好ましい。具体的には、第2ナノ結晶層4の厚さt2が、第1ナノ結晶層3の厚さt1の1%以上30%以下であることが好ましい。実施例1では、第2ナノ結晶層4の厚さt2は、第1ナノ結晶層3の厚さt1の約11%である。
 続いて、エレクトロクロミック素子100の各構成要素の具体例や好ましい構成を説明する。
 [ナノ結晶層]
 金属酸化物ナノ粒子の材料として用いられる金属酸化物は、例示したATOおよびITOに限定されるものではない。例えば、AZO(Aluminum-doped Zinc Oxide:アルミニウムドープ酸化亜鉛)やGZO(Gallium-doped Zinc Oxide:ガリウムドープ酸化亜鉛)等の可視領域においてほぼ透明な材料を用いることができる。また、CsxWyO(x、yは組成比を示す)で表されるような複合タングステン酸化物や六ホウ化ランタンなどのような、可視領域の光を吸収する材料を用いることもできる。
 金属酸化物ナノ粒子の平均粒径は、典型的には、0.1nm以上1000nm以下である。ただし、金属酸化物ナノ粒子の平均粒径が大きすぎると、動作しにくくなるおそれがあるので、動作のしやすさの観点からは、金属酸化物ナノ粒子の平均粒径は、30nm以下であることが好ましい。
 第1ナノ結晶層3および第2ナノ結晶層4のそれぞれの厚さは、典型的には、100Å以上50000Å以下である。可視光の透明性と透過スペクトルの動作シフト範囲の観点からは、第1ナノ結晶層3および第2ナノ結晶層4のそれぞれの厚さは、1000Å以上15000Å以下であることが好ましい。
 第1ナノ結晶層3および第2ナノ結晶層4の形成方法に特に限定はない。金属酸化物ナノ粒子が分散された液体または半固体を第1基板11または第2基板12上に塗布し、焼成を行うことによって、第1ナノ結晶層3および第2ナノ結晶層4を形成することができる。金属酸化物ナノ粒子の分散液をスピンコート法により塗布してもよいし、ビヒクルを適度に添加されたペーストを用いた印刷法により塗布してもよい。また、バーコート法、スリットコート法、グラビアコート法またはダイコート法により塗布を行ってもよい。焼成温度が、ナノ結晶表面にある有機成分が除去されて焼結が好適に生じる温度であれば、十分な耐溶剤性が得られる。ただし、焼成温度が高すぎ、焼結が過度に進むと、所望の波長のLSPRが得られないおそれがある。ITOナノ粒子を含むナノ結晶層をスピンコート法により形成する場合、焼成は、例えば、200℃以上300℃以下の温度で60分間行われる。
 また、第1ナノ結晶層3および第2ナノ結晶層4は、第1基板11および第2基板12との結着性を向上させるために、バインダーとして、ポリフッ化ビニリデン(PVDF)等の溶剤系バインダーやスチレン・ブタジエンゴム等の水系バインダー、光硬化樹脂、熱硬化樹脂等を含んでもよい。
 [基板]
 第1基板11および第2基板12としては、例えばガラス基板を用いることができる。また、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)、ポリイミドなどの樹脂材料から形成されたプラスチック基板であってもよい。例示したこれらの基板に、無機材料または有機材料から形成されたガスバリア層が設けられたものを用いてもよい。ナノ結晶層を形成する工程が焼成工程を含む場合、プラスチック基板としては、耐熱性が高いポリイミド基板を用いることが好ましい。また、ガラス基板を用いる場合、両基板を貼り合わせた後にエッチング処理により薄型化してもよい。
 [透明電極]
 第1透明電極1および第2透明電極2の材料としては、InTiOの他、アナターゼ型二酸化チタンをシード層としたタンタル置換酸化スズやキャリア密度を調整したITO等の近赤外光を透過する材料を用いることができる。これらの材料を、スパッタ法や蒸着法、塗布法などにより第1基板1および第2基板2上に堆積することによって、第1透明電極1および第2透明電極2を形成することができる。
 また、第1透明電極1および第2透明電極2の材料は、遠赤外光を反射する特性を有することが好ましい。冬期に室内の温度を高く保つためには、室内から屋外に赤外光が出ることを防ぐ必要がある。室内から輻射される赤外光は、波長が10μm程度の、遠赤外光に分類されるものである。そのため、第1透明電極1および第2透明電極2が遠赤外光を反射する特性を有していると、近赤外光の透過率が高くなるようにナノ結晶層の状態を制御しても、室内の熱は輻射熱として屋外に逃げない、理想的な状態を実現することができる。また、夏期に近赤外光の透過率が低くなるように制御したときも、屋外からの遠赤外光が室内に入ることを防止できるので、やはり理想的な状態を実現できる。
 エレクトロクロミック素子100が表示を目的としないものである場合、第1透明電極1の電極取り出し(外部配線への接続)は、1箇所で行われてもよいし、複数箇所で行われてもよい。1箇所の場合、エレクトロクロミック素子100の組み立て工程が簡略化されるとともに配線の引き回しを簡素にすることができる。複数箇所の場合、第1透明電極1と第2透明電極2との間に抵抗成分がある、すなわち電流が流れるような場合にも部分的な応答速度の遅延を防ぐことができる。
 第1透明電極1は、電気的に独立した複数のサブ電極に分割されていてもよい。第1透明電極1が複数のサブ電極に分割されていると、サブ電極に対応する領域ごとに透過スペクトルを変化させることができる。図6(a)および(b)に、第1透明電極1が複数のサブ電極1aに分割された構成の例を示す。
 図6(a)に示す例では、複数のサブ電極1aの引き回しによって、電極取り出し部EPが1箇所に集約されている。サブ電極1aの引き回し部分を、シール部7の外側やシール部7の下など、エレクトロクロミック素子100の動作部から外して配置することによって、不要な電圧降下を防止することができる。
 図6(b)に示す例では、複数のサブ電極1aが引き回されることなく、直接配線に接続される。つまり、電極取り出し部EPは、複数箇所に分散されている。
 第2透明電極2は、第1透明電極1と同様、電気的に独立した複数のサブ電極に分割されていてもよいし、分割されていなくてもよい。
 [電解質層]
 電解質層5は、例えば電解液で構成される。電解液の電解質としては、ヘキサフルオロリン酸リチウム(LiPF)やヘキサフルオロリン酸ナトリウム(NaPF)、ホウフッ化リチウム(LiBF)等のイオン化しやすい材料を用いることができる。電解液の溶媒としては、炭酸エチレン(EC)、炭酸ジエチル(DEC)、ECとDCとの混合物、炭酸プロピレン等を用いることができる。また、これらにポリビニルブチラール等を溶解させたゲルを用いてもよい。さらに、例えば環状四級アンモニウムカチオンとイミドアニオンからなるイオン液体を用いてもよい。
 電解質層5は、固体電界質から構成されてもよい。例えば、リチウム塩を含むポリエチレンオキサイドのような固体電解質を用いてもよいし、柔粘性結晶を用いてもよい。
 [スペーサ]
 電解質層5が、電解液等の低粘度材料から構成される場合、エレクトロクロミック素子100は、図7に示すように、第1基板11と第2基板12との距離(セル厚)を規定するためのスペーサ8を備えることが好ましい。図7に例示する構成では、スペーサ8は、第1ナノ結晶層3と第2ナノ結晶層4との間に設けられている。スペーサ8は、感光性樹脂材料を用いてフォトリソ工程により形成することができる。スペーサ8は、例えば10μm角で10μmの高さを有する。スペーサ8の形成方法は、フォトリソ工程に限定されず、例えばスクリーン印刷法であってもよい。
 電解質層5が固体電解質から構成される場合、固体電解質が適度な弾性を有していれば、スペーサ8を設ける必要はない。
 [シール部]
 シール部7の材料としては、例えばUV硬化型の樹脂材料を用いることができる。
 図8に、シール部7の他の構成の例を示す。図8に示す例では、シール部7は、異なる材料(シール材)から形成された2つの領域7aおよび7bを有する。以下では、相対的に内側に位置する領域7aを「内側領域」と呼び、相対的に外側に位置する領域7bを「外側領域」と呼ぶ。
 内側領域7aは、外側領域7bを形成するシール材よりも耐溶剤性の高いシール材から形成されている。これに対し、外側領域7bは、内側領域7aを形成するシール材よりも接着力の強いシール材から形成されている。
 このように、電解質層5(電解液)に接触する内側領域7aを耐溶剤性の高いシール材で形成するとともに、外側領域7bを接着力の強いシール材で形成することにより、シール部7の高い信頼性および強い接着力を両立させることができる。
 [製造方法]
 エレクトロクロミック素子100を製造する際、液晶パネルや色素増感型太陽電池等の製造に用いられる種々の方法・工程を用いることができる。第1基板11および第2基板12としてプラスチック基板(樹脂基板)を用いる場合には、ロール・ツー・ロール法によって貼り合せ工程を連続的に行うことができるので、製造コストを低減することが可能である。また、一連の工程を脱酸素乾燥雰囲気下で行うことにより、エレクトロクロミック素子100の信頼性を向上させることができる。
 (実施形態2)
 図9を参照しながら、本実施形態におけるエレクトロクロミック素子200を説明する。図9は、エレクトロクロミック素子200を模式的に示す断面図である。以下では、エレクトロクロミック素子200が実施形態1のエレクトロクロミック素子100と異なる点を中心に説明を行う。
 実施形態1のエレクトロクロミック素子100では、第1ナノ結晶層3の厚さt1と第2ナノ結晶層4の厚さt2とが異なっている。これに対し、本実施形態のエレクトロクロミック素子200では、第1ナノ結晶層3の厚さt1と第2ナノ結晶層4の厚さt2とは、実質的に同じである。
 また、本実施形態では、第1ナノ結晶層3に含まれる第1金属酸化物ナノ粒子の平均粒径と、第2ナノ結晶層4に含まれる第2金属酸化物ナノ粒子の平均粒径とが異なっている。具体的には、第2金属酸化物ナノ粒子の平均粒径が、第1金属酸化物ナノ粒子の平均粒径よりも大きい。好ましくは、第2金属酸化物ナノ粒子の平均粒径は、第1金属酸化物ナノ粒子の平均粒径よりも5nm以上100nm以下大きい。
 上述したように、本実施形態のエレクトロクロミック素子200も、実施形態1のエレクトロクロミック素子100と同様に、一対の透明電極(第1透明電極1および第2透明電極2)の一方側および他方側に設けられた一対のナノ結晶層(第1ナノ結晶層3および第2ナノ結晶層4)を備える。これにより、一対の透明電極の一方側にのみナノ結晶層を設けた場合よりも金属酸化物ナノ粒子の総表面積が増大する。そのため、電圧印加時により多くの電荷をナノ結晶層に蓄えることができ、回路を遮断した状態でも所望の透過スペクトルを長時間維持することができる。つまり、好適なメモリ性を実現することができる。
 また、本実施形態では、第1金属酸化物ナノ粒子と第2金属酸化物ナノ粒子とは、構成元素が同じである。これにより、電気化学的なバランスが取れるので、第1透明電極1、第2透明電極2および電解質層5の劣化を抑制することができる。さらに、第1金属酸化物ナノ粒子と第2金属酸化物ナノ粒子とで構成元素が同じであることは、製造コストや製造工程の簡略化等の点でも有利である。
 また、本実施形態では、第1金属酸化物ナノ粒子の平均粒径と、第2金属酸化物ナノ粒子の平均粒径とが異なっている。これにより、後に検証結果を交えて詳述するように、透過スペクトルの動作シフト範囲を十分に広くすることができる。
 [金属酸化物ナノ粒子の平均粒径による透過スペクトルの違い]
 金属酸化物ナノ粒子の平均粒径による透過スペクトルの違いを検証した結果を説明する。
 検証のため、図2に示したエレクトロクロミック素子800を作製した。作製したエレクトロクロミック素子800のナノ結晶層3は、ITOナノ粒子を含む。ナノ結晶層3を形成する際の焼成温度は、200℃である。ここでは、ITOナノ粒子の平均粒径がそれぞれ13nm、17nm、24nmである3つのエレクトロクロミック素子800を作製した(それぞれ「調光セルD」、「調光セルE」、「調光セルF」と呼ぶ)。
 図10に、調光セルD、EおよびFについて、第2透明電極2の電位を0Vとし、第1透明電極1に-3Vおよび+3VのDC電圧を印加したときの透過スペクトルを示す。また、表5には、調光セルD、EおよびFについて、第1透明電極1に-3Vおよび+3VのDC電圧を印加したときの、波長2000nmの光の透過率および動作シフト範囲が併せて示されている。
Figure JPOXMLDOC01-appb-T000005
 図10および表5からわかるように、金属酸化物ナノ粒子の平均粒径が大きくなるほど、印加電圧を切り換えたときの透過スペクトルの変化が小さくなる。具体的には、調光セルD(金属酸化物ナノ粒子の平均粒径が13nm)の動作シフト範囲が60.4%であるのに対し、調光セルE(金属酸化物ナノ粒子の平均粒径が17nm)および調光セルF(金属酸化物ナノ粒子の平均粒径が24nm)の動作シフト範囲はそれぞれ17.0%、5.1%である。つまり、調光セルFは、調光セルDに比べ、動作シフト範囲が55.3%も狭い。金属酸化物ナノ粒子の平均粒径が大きくなるほど動作シフト範囲が狭くなるのは、平均粒径が大きくなるほど金属酸化物ナノ粒子の比表面積が小さくなってナノ粒子の周囲に十分な電解質イオンが存在できなくなるためであると考えられる。
 このように、金属酸化物ナノ粒子の平均粒径を調整することにより動作シフト範囲を異ならせることができるので、金属酸化物ナノ粒子の平均粒径が互いに異なる一対のナノ結晶層を組み合わせて用いることにより、エレクトロクロミック素子の透過スペクトルの動作シフト範囲を十分に広くすることができる。具体的には、一方のナノ結晶層の動作シフト範囲を、他方のナノ結晶層の動作シフト範囲の半分以下にすることにより、エレクトロクロミック素子全体としての動作シフト範囲を十分に広くすることができる。
 第2ナノ結晶層4の動作シフト範囲を、第1ナノ結晶層3の動作シフト範囲の半分以下にするためには、具体的には、第2金属酸化物ナノ粒子の平均粒径を、第1金属酸化物ナノ粒子の平均粒径よりも5nm以上100nm以下大きくすることが好ましい。
 (実施形態3)
 図11を参照しながら、本実施形態におけるエレクトロクロミック素子300を説明する。図11は、エレクトロクロミック素子300を模式的に示す断面図である。以下では、エレクトロクロミック素子300が実施形態1のエレクトロクロミック素子100と異なる点を中心に説明を行う。
 実施形態1のエレクトロクロミック素子100では、第1ナノ結晶層3の厚さt1と第2ナノ結晶層4の厚さt2とが異なっている。これに対し、本実施形態のエレクトロクロミック素子300では、第1ナノ結晶層3の厚さt1と第2ナノ結晶層4の厚さt2とは、実質的に同じである。
 また、本実施形態では、第1金属酸化物ナノ粒子の組成比と、第2金属酸化物ナノ粒子の組成比とが異なっている。
 本実施形態のエレクトロクロミック素子300も、実施形態1のエレクトロクロミック素子100と同様に、一対の透明電極(第1透明電極1および第2透明電極2)の一方側および他方側に設けられた一対のナノ結晶層(第1ナノ結晶層3および第2ナノ結晶層4)を備える。これにより、一対の透明電極の一方側にのみナノ結晶層を設けた場合よりも金属酸化物ナノ粒子の総表面積が増大する。そのため、電圧印加時により多くの電荷をナノ結晶層に蓄えることができ、回路を遮断した状態でも所望の透過スペクトルを長時間維持することができる。つまり、好適なメモリ性を実現することができる。
 また、本実施形態では、第1金属酸化物ナノ粒子と第2金属酸化物ナノ粒子とは、構成元素が同じである。これにより、電気化学的なバランスが取れるので、第1透明電極1、第2透明電極2および電解質層5の劣化を抑制することができる。さらに、第1金属酸化物ナノ粒子と第2金属酸化物ナノ粒子とで構成元素が同じであることは、製造コストや製造工程の簡略化等の点でも有利である。
 また、本実施形態では、第1金属酸化物ナノ粒子の組成比と、第2金属酸化物ナノ粒子の組成比とが異なっている。これにより、透過スペクトルの動作シフト範囲を十分に広くすることができる。
 例えば、ITOナノ粒子では、キャリア密度が増加すると吸収波長が短波長側にシフトし、且つ、動作シフト範囲が増加する傾向がある。そのため、第1金属酸化物ナノ粒子および第2金属酸化物ナノ粒子がITOナノ粒子である場合、第1金属酸化物ナノ粒子の組成比と第2金属酸化物ナノ粒子の組成比とを異ならせて第1金属酸化物ナノ粒子のキャリア密度と第2金属酸化物ナノ粒子のキャリア密度とを異ならせることにより、透過スペクトルの動作シフト範囲を広くすることができる。具体的には、第1金属酸化物ナノ粒子のキャリア密度を相対的に高くし、第2金属酸化物ナノ粒子のキャリア密度を相対的に低くすることにより、第1ナノ結晶層3の動作シフト範囲を、第2ナノ結晶層4の動作シフト範囲よりも広くすることができ、エレクトロクロミック素子300における透過スペクトルの動作シフト範囲を広くすることができる。
 第1金属酸化物ナノ粒子および第2金属酸化物ナノ粒子がITOナノ粒子である場合、例えば、第1金属酸化物ナノ粒子ではSn含有量が10wt%以上20wt%以下であり、第2金属酸化物ナノ粒子ではSn含有量が1wt%以上5wt%以下であることが好ましい。
 [実施形態1~3の組み合わせ]
 実施形態1、2、3のエレクトロクロミック素子100、200、300は、それぞれ下記(A)、(B)、(C)の構成を有する。
 (A)第1ナノ結晶層3の厚さt1と第2ナノ結晶層4の厚さt2とが異なる。
 (B)第1金属酸化物ナノ粒子の平均粒径と第2金属酸化物ナノ粒子の平均粒径とが異なる。
 (C)第1金属酸化物ナノ粒子の組成比と第2金属酸化物ナノ粒子の組成比とが異なる。
 製造コストや製造工程の簡略化の観点からは、構成(A)、(B)および(C)のうち、構成(A)がもっとも好ましい。
 また、これら(A)、(B)および(C)の構成は、任意に組み合わされてもよい。つまり、本開示の実施形態のエレクトロクロミック素子は、(A)および(B)の構成を有してもよいし、(A)および(C)の構成を有してもよく、また、(B)および(C)の構成を有してもよい。さらに、本開示の実施形態のエレクトロクロミック素子は、(A)、(B)および(C)の構成をすべて有してもよい。
 (実施形態4)
 図12を参照しながら、本実施形態におけるエレクトロクロミック素子400を説明する。図12は、エレクトロクロミック素子400を模式的に示す断面図である。以下では、エレクトロクロミック素子400が実施形態1のエレクトロクロミック素子100と異なる点を中心に説明を行う。
 エレクトロクロミック素子400では、実施形態1のエレクトロクロミック素子100と同様、第1ナノ結晶層3の厚さt1と、第2ナノ結晶層4の厚さt2とが異なっている。
 また、本実施形態のエレクトロクロミック素子400では、第1透明電極1を支持する第1基板11’および第2透明電極2を支持する第2基板12’のそれぞれが、可撓性を有する樹脂基板である。第1基板11’および第2基板12’が可撓性を有する樹脂基板であることにより、エレクトロクロミック素子400に可撓性を与えることができる。そのため、エレクトロクロミック素子400の窓ガラス等への設置をより容易に行うことができる。
 エレクトロクロミック素子400は、例えば以下のようにして作製することができる。
 まず、第1基板11’および第2基板12’としてそれぞれ厚さ25μmのPETフィルムを用意する。次に、第1基板11’上に、近赤外領域において透明となるようなITOをスパッタ法により堆積し、第1透明電極1を形成した。同様にして、第2基板12’上に第2透明電極2を形成する。
 続いて、第1透明電極1上に、ITOナノ粒子の分散液をスピンコート法により塗布し、ホットプレート上で140℃で1分間乾燥させた後、200℃で60分間焼成を行うことにより、第1ナノ結晶層3を形成する。使用したITOナノ粒子分散液は、平均粒径が10nmのITOナノ粒子を含んでおり、分散媒は、トルエンである。同様にして、第2透明電極2上に、ITOナノ粒子を含む第2ナノ結晶層4を形成する。
 その後、粒径が30μmの樹脂スペーサを3wt%含むUV硬化型樹脂材料を、第1ナノ結晶層3の外周上に、部分的に注入口が存在するように塗布する。続いて、両基板を重ね合せ、紫外線を照射することによってシール部7を形成する。次に、注入口から電解液として、1mol/LのLiBFを含むEC(Ethylene carbonate)・DEC(Diethyl Carbonate)混合液(EC:DEC=1:2)を注入し、その後、UV硬化型樹脂材料で封止を行って電解質層5を形成する。このようにして、エレクトロクロミック素子400が得られる。
 なお、ここではエレクトロクロミック素子400が上述した構成(A)を有する場合を例示したが、構成(A)に加えて(あるいは代えて)、構成(B)および/または(C)を有していてもよい。
 (実施形態5)
 実施形態1~4のエレクトロクロミック素子100~400は、例えばスマートウィンドウ(調光窓)に好適に用いることができる。エレクトロクロミック素子100~400を、窓の透光板(ガラス板やアクリル板)に重ねて設置することにより、可視光域の透過率を保持したまま、室外からの近赤外域の透過スペクトルを切り替えて日射熱取得率を制御することができる。
 以下、図13を参照しながら、本実施形態におけるスマートウィンドウ500を説明する。図13は、スマートウィンドウ500を模式的に示すブロック図である。
 スマートウィンドウ500は、図13に示すように、調光部20、制御部30、スイッチ部32、通信部34および電源部36を備える。
 調光部20は、エレクトロクロミック素子を含む窓状の部分であり、いわばスマートウィンドウ500の本体部である。調光部20の具体的な構成については後に詳述する。
 制御部30は、スイッチ部32または通信部34から送信された信号に基づいて、調光部20の動作を制御する。制御部30は、例えば、CPU(Central Processing Unit)や専用プロセッサ等の演算部と、RAM(Random Access Memory)、ROM(Read Only Memory)等の記憶部とを備えた回路基板である。
 電源部36は、制御部30および調光部20に電力を供給する電源回路である。電源部36は、脱着可能な一次電池、二次電池等を含み得る。
 スイッチ部32は、ユーザによる入力を受け付ける。スイッチ部32は、例えばユーザによって操作される切替えスイッチを含み、切替えスイッチの操作に応じた信号(操作入力信号)を制御部30に送信する。
 通信部34は、外部の通信装置40からの信号を受信する受信部を含んでいる。通信部34は、通信装置40と例えば無線通信により接続されている。無線通信としては、赤外線通信や、Wi-Fi(登録商標)、Z―Wave(登録商標)などを用いることができる。通信装置40は、リモートコントローラ等の端末装置である。通信部34と通信装置40との間の通信は、通信装置40から通信部34に、調光部20の制御に関する信号が一方的に送られる片方向通信であってもよいし、双方向通信であってもよい。双方向通信の場合、例えば、調光部20のエラー信号を通信装置40に送り、その内容を通信装置40で表示可能とすることができる。双方向通信を行う場合、通信部34は、受信部に加えて送信部を含む。
 調光部20の制御は、上述したように、スイッチ部32や通信装置40から手動で行うことができる。あるいは、調光部20の状態を自動的および/または定期的に切り替えてもよい。例えば、スマートウィンドウ500内にタイマ部(例えば時計)を設けることによって、スイッチ部32や通信部34を設けずに、調光部の状態を定期的に切り換えることができる。また、各地域の天気や気温に関するインターネット上の情報を利用して、近赤外光の室内への取り込みを制御してもよい。具体的には、例えば、スマートウィンドウ400を設置する住所に対応する天気や気温の情報をサービスとして配信し、これを通信装置40または直接通信部34で受信して調光部20の制御に利用することができる。また、インターネット上の情報を用いる代わりに、通信装置40または通信部34をHEMS(Home Energy Management System)に接続し、温度センサ等との組み合わせで室内温度や屋外温度、消費電力等を管理して、調光部20の動作に反映させてもよい。
 続いて、図14(a)および(b)を参照しながら、調光部20の具体的な構成を説明する。以下では、調光部20が実施形態1のエレクトロクロミック素子100を含む場合を例示する。また、図14(a)では、第1透明電極1、第1ナノ結晶層3、電解質層5、第2ナノ結晶層4および第2透明電極2の積層構造を1つの調光層9として示している。
 調光部20は、図14(a)および(b)に示すように、エレクトロクロミック素子100と、ガラス板(透光板)21と、グレージングチャンネル(「グレチャン」と呼ばれることもある)22とを有する。
 ガラス板21は、例示しているように典型的には矩形状である。なお、ここでは透光板としてガラス板21を例示しているが、透光板はこれに限定されるものでなく、透光性を有する板状の部材であればよい。例えば、透光板としてアクリル板を用いてもよい。
 エレクトロクロミック素子100は、接着層23を介してガラス板21に貼り合わされている。接着層23は、糊剤、UV硬化樹脂等から形成される。エレクトロクロミック素子100は、典型的には、ガラス板21と略同じ外形を有している。図示している例では、エレクトロクロミック素子100は、ガラス板21の屋内側に配置されている。言い換えると、ガラス板21はエレクトロクロミック素子100の屋外側に配置されている。エレクトロクロミック素子100は、上述した電源部36に配線24を介して電気的に接続されている。
 グレージングチャンネル22は、ガラス板21の周縁部およびエレクトロクロミック素子100の周縁部を囲む(挟む)ように配置されている。
 ガラス板21、エレクトロクロミック素子100およびグレージングチャンネル22は、框(図14(a)および(b)では不図示)によって支持される。図15(a)および(b)に、框28が配置された状態を示す。
 図15(a)および(b)に示すように、框28は、ガラス板21、エレクトロクロミック素子100およびグレージングチャンネル22を支持する枠状の支持体である。ガラス板、エレクトロクロミック素子100およびグレージングチャンネル22は、一体的に框28に組み付けられている。グレージングチャンネル22は、ガラス板21およびエレクトロクロミック素子100と、框28との間に位置しており、ガラス板21およびエレクトロクロミック素子100と框28との隙間を塞いで気密性および水密性を確保している。
 スマートウィンドウ500では、屋外からガラス板21を介して屋内に入射する近赤外光の透過率をエレクトロクロミック素子100で調節することにより、日射熱取得率を制御することができる。
 ガラス板(透光板)21の法線方向から見たとき、エレクトロクロミック素子100のシール部7は、図14(a)および図15(a)に示すように、グレージングチャンネル22からはみ出ないように配置される(つまりグレージングチャンネル22に重なっている)ことが好ましい。これにより、シール部7が外部から見えなくなるので、スマートウィンドウ500の意匠性を高くすることができる。
 既に説明したように、エレクトロクロミック素子100の第1ナノ結晶層3および第2ナノ結晶層4のそれぞれの透過スペクトルは、印加電圧の変化に応じて変化する。第1ナノ結晶層3および第2ナノ結晶層4のうちの、印加電圧の変化に応じた透過スペクトルの変化が相対的に大きい方のナノ結晶層(ここでは第1ナノ結晶層3)が、相対的に小さい方のナノ結晶層(ここでは第2ナノ結晶層4とガラス板(透光板)21との間(つまり屋外側)に位置していることが好ましい。これにより、太陽からの近赤外光を、電解質層5に入射する前に効率よく遮断することができるので、スマートウィンドウ500の耐久性を向上させることができる。
 [調光部の他の構成]
 図16を参照しながら、スマートウィンドウ500に用いられる他の調光部20Aを説明する。図16は、調光部20Aを模式的に示す断面図である。以下では、調光部20Aが、図14(a)等に示した調光部20と異なる点を中心に説明を行う。
 調光部20Aは、図16に示すように、第1ガラス板(第1透光板)21Aと、第1ガラス板21Aに所定の間隙を介して対向するように配置された第2ガラス板(第2透光板)21Bとを有する。図示している例では、第1ガラス板21Aが屋外側に配置され、第2ガラス板21Bが屋内側に配置されている。
 エレクトロクロミック素子100は、第1ガラス板21Aの第2ガラス板21B側に貼り合わされている。つまり、エレクトロクロミック素子100は、第1ガラス板21Aと第2ガラス板21Bとの間に位置している。エレクトロクロミック素子100と第2ガラス板21Bとの間には、所定の厚さの中間層29が位置している。中間層29は、例えば空気層やアルゴン層である。
 調光部20Aは、エレクトロクロミック素子100と第2ガラス板21Bとの間に設けられたスペーサ25をさらに有する。スペーサ25は、中間層29の厚さを規定する。スペーサ25としては、複層ガラス用の種々のスペーサを用いることができ、例えば、乾燥剤入りのアルミスペーサや樹脂スペーサを用いることができる。
 グレージングチャンネル22は、第1ガラス板21Aの周縁部、エレクトロクロミック素子100の周縁部および第2ガラス板21Bの周縁部を囲むように配置されている。
 図16に示す調光部20Aでは、エレクトロクロミック素子100が第1ガラス板21Aと第2ガラス板21Bとの間に設けられているので、外部からの衝撃によるエレクトロクロミック素子100の破損を防止することができる。また、エレクトロクロミック素子100が、屋外側に位置する第1ガラス板21Aに貼り合わされていることにより、太陽からの近赤外光を中間層29に入射する前に遮断することができるので、夏季に高い遮熱効果を得ることができる。
 また、調光部20Aでは、第1ガラス板21Aの法線方向から見たとき、スペーサ25はグレージングチャンネル22に重なっており、シール部7は、スペーサ25およびグレージングチャンネル22に重なっている。これにより、エレクトロクロミック素子100のうち、強度の高いシール部7が存在している領域に、スペーサ25およびグレージングチャンネル22の圧力がかかるようにすることができる。
 図17を参照しながら、スマートウィンドウ500に用いられるさらに他の調光部20Bを説明する。図17は、調光部20Bを模式的に示す断面図である。以下では、調光部20Bが、図16に示した調光部20Aと異なる点を中心に説明を行う。
 調光部20Bでは、図17に示すように、スペーサ25は、第1ガラス板21Aの法線方向から見たとき、グレージングチャンネル22に重なっている。また、シール部7は、第1ガラス板21Aの法線方向から見たとき、グレージングチャンネル22に重なっており、且つ、スペーサ25よりも内側(第1ガラス板21の面内方向における内側)に位置している。図示している例では、第2基板12のサイズが第1基板11のサイズよりもやや小さく、スペーサ25の屋外側の端部は、第1基板11に接している。
 調光部20Bでは、シール部7がスペーサ25よりも内側に配置されているので、調光層9にスペーサ25やグレージングチャンネル22の圧力がかからないようにすることができる。なお、スペーサ25やグレージングチャンネル22の圧力がかかる領域に、配線24や配線用のフレキシブル基板が位置してもよい。
 図18を参照しながら、スマートウィンドウ500に用いられるさらに他の調光部20Cを説明する。図18は、調光部20Cを模式的に示す断面図である。以下では、調光部20Cが、図16に示した調光部20Aと異なる点を中心に説明を行う。
 調光部20Cは、第1ガラス板(第1透光板)21Aと、第1ガラス板21Aに所定の間隙を介して対向するように配置された第2ガラス板(第2透光板)21Bとを有する。エレクトロクロミック素子100は、第1ガラス板21Aと第2ガラス板21Bとの間に配置されている。
 エレクトロクロミック素子100は、第1ガラス板21Aおよび第2ガラス板21Bのいずれにも貼り合わされていない。第1ガラス板21Aとエレクトロクロミック素子100との間には、第1中間層29Aが位置しており、エレクトロクロミック素子100と第2ガラス板21Bとの間には第2中間層29Bが位置している。つまり、調光部20Cでは、いわゆるトリプルガラス構造の複層ガラスを構成する3つのガラス板のうちの中央のガラス板の代わりに、エレクトロクロミック素子100が用いられている。
 調光部20Cは、第1ガラス板21Aとエレクトロクロミック素子100との間に設けられた第1スペーサ25Aと、エレクトロクロミック素子100と第2ガラス板21Bとの間に設けられた第2スペーサ25Bとをさらに有する。第1スペーサ25Aは、第1中間層29Aの厚さを規定し、第2スペーサ25Bは、第2中間層29Bの厚さを規定する。第1スペーサ25Aおよび第2スペーサ25Bでエレクトロクロミック素子100を支持することにより、接着層等を用いることなくエレクトロクロミック素子100を調光部20C内に配置することができる。
 また、調光部20Cのエレクトロクロミック素子100は、第1ガラス板21A側の最表面および第2ガラス板21B側の最表面に位置する一対の反射防止膜13および14を含む。トリプルガラス構造では、ガラスのような固体と空気のような気体との界面が少なくとも6つ形成され、これらの界面においては、界面反射が起こるので、可視光線を含む光の透過率が低くなる。エレクトロクロミック素子100が上述したような一対の反射防止膜13および14を含むことにより、透過率の低下を抑制できる。反射防止膜13および14としては、AR(Anti Reflective)フィルムやLR(Low Reflective)フィルム、モスアイフィルム等を用いることができる。
 また、調光部20Cでは、第1ガラス板21Aの法線方向から見たとき、第1スペーサ25Aおよび第2スペーサ25Bはグレージングチャンネル22に重なっており、シール部7は、第1スペーサ25A、第2スペーサ25Bおよびグレージングチャンネル22に重なっている 。これにより、エレクトロクロミック素子100のうち、強度の高いシール部7が存在している領域に、第1スペーサ25A、第2スペーサ25Bおよびグレージングチャンネル22の圧力がかかるようにすることができる。
 図19を参照しながら、スマートウィンドウ500に用いられるさらに他の調光部20Dを説明する。図19は、調光部20Dを模式的に示す断面図である。以下では、調光部20Dが、図18に示した調光部20Cと異なる点を中心に説明を行う。
 調光部20Dでは、図19に示すように、第1スペーサ25Aおよび第2スペーサ25Bは、第1ガラス板21Aの法線方向から見たとき、グレージングチャンネル22に重なっている。また、シール部7は、第1ガラス板21Aの法線方向から見たとき、グレージングチャンネル22に重なっており、且つ、第1スペーサ25Aおよび第2スペーサ25Bよりも内側(第1ガラス板21の面内方向における内側)に位置している。図示している例では、第2基板12のサイズが第1基板11のサイズよりもやや小さく、第1スペーサ25Aの屋内側の端部および第2スペーサ25Bの屋外側の端部は、第1基板11に接している。
 調光部20Dでは、シール部7が第1スペーサ25Aおよび第2スペーサ25Bよりも内側に配置されているので、調光層9に第1スペーサ25A、第2スペーサ25Bおよびグレージングチャンネル22の圧力がかからないようにすることができる。なお、第1スペーサ25Aや第2スペーサ25B、グレージングチャンネル22の圧力がかかる領域に、配線24や配線用のフレキシブル基板が位置してもよい。
 なお、本開示の実施形態によるエレクトロクロミック素子は、窓ガラス以外のものに設置されてもよく、例えば、農業用のビニールハウスに設置されてもよい。
 本開示の実施形態によると、2つのナノ結晶層を備え、且つ、好適に動作し得るエレクトロクロミック素子およびスマートウィンドウを提供することができる。
 [援用の記載]
 本国際出願は、2018年3月5日に日本国特許庁に出願された特願2018-38747号に基づく優先権を主張するものであり、特願2018-38747号の開示内容の全てを参照により本国際出願に援用する。 
 1  第1透明電極
 1a  サブ電極
 2  第2透明電極
 3  第1ナノ結晶層
 4  第2ナノ結晶層
 5  電解質層
 6  電源
 7  シール部
 7a  内側領域
 7b  外側領域
 8  スペーサ
 11、11’  第1基板
 12、12’  第2基板
 13、14  反射防止膜
 20、20A、20B、20C、20D  調光部
 21  透光板(ガラス板)
 21A  第1透光板(第1ガラス板)
 21B  第2透光板(第2ガラス板)
 22  グレージングチャンネル
 23  接着層
 24  配線
 25  スペーサ
 25A  第1スペーサ
 25B  第2スペーサ
 28  框
 29  中間層
 30  制御部
 32  スイッチ部
 34  通信部
 36  電源部
 40  通信装置
 100、200、300、400  エレクトロクロミック素子
 500  スマートウィンドウ

Claims (22)

  1.  互いに対向する第1透明電極および第2透明電極と、
     前記第1透明電極の前記第2透明電極側の表面上に設けられ、複数の第1金属酸化物ナノ粒子を含む第1ナノ結晶層と、
     前記第2透明電極の前記第1透明電極側の表面上に設けられ、複数の第2金属酸化物ナノ粒子を含む第2ナノ結晶層と、
     前記第1ナノ結晶層および前記第2ナノ結晶層の間に設けられた電解質層と、
    を備え、
     前記複数の第1金属酸化物ナノ粒子と前記複数の第2金属酸化物ナノ粒子とは、構成元素が同じであり、
     前記第1ナノ結晶層の厚さと前記第2ナノ結晶層の厚さとが異なっている、エレクトロクロミック素子。
  2.  前記第2ナノ結晶層の厚さは、前記第1ナノ結晶層の厚さの1%以上30%以下である、請求項1に記載のエレクトロクロミック素子。
  3.  前記複数の第1金属酸化物ナノ粒子の平均粒径と前記複数の第2金属酸化物ナノ粒子の平均粒径とが異なっている、請求項1または2に記載のエレクトロクロミック素子。
  4.  互いに対向する第1透明電極および第2透明電極と、
     前記第1透明電極の前記第2透明電極側の表面上に設けられ、複数の第1金属酸化物ナノ粒子を含む第1ナノ結晶層と、
     前記第2透明電極の前記第1透明電極側の表面上に設けられ、複数の第2金属酸化物ナノ粒子を含む第2ナノ結晶層と、
     前記第1ナノ結晶層および前記第2ナノ結晶層の間に設けられた電解質層と、
    を備え、
     前記複数の第1金属酸化物ナノ粒子と前記複数の第2金属酸化物ナノ粒子とは、構成元素が同じであり、
     前記複数の第1金属酸化物ナノ粒子の平均粒径と前記複数の第2金属酸化物ナノ粒子の平均粒径とが異なっている、エレクトロクロミック素子。
  5.  前記複数の第2金属酸化物ナノ粒子の平均粒径は、前記複数の第1金属酸化物ナノ粒子の平均粒径よりも5nm以上100nm以下大きい、請求項3または4に記載のエレクトロクロミック素子。
  6.  前記複数の第1金属酸化物ナノ粒子の組成比と前記複数の第2金属酸化物ナノ粒子の組成比とが異なっている、請求項1から5のいずれかに記載のエレクトロクロミック素子。
  7.  互いに対向する第1透明電極および第2透明電極と、
     前記第1透明電極の前記第2透明電極側の表面上に設けられ、複数の第1金属酸化物ナノ粒子を含む第1ナノ結晶層と、
     前記第2透明電極の前記第1透明電極側の表面上に設けられ、複数の第2金属酸化物ナノ粒子を含む第2ナノ結晶層と、
     前記第1ナノ結晶層および前記第2ナノ結晶層の間に設けられた電解質層と、
    を備え、
     前記複数の第1金属酸化物ナノ粒子と前記複数の第2金属酸化物ナノ粒子とは、構成元素が同じであり、
     前記複数の第1金属酸化物ナノ粒子の組成比と前記複数の第2金属酸化物ナノ粒子の組成比とが異なっている、エレクトロクロミック素子。
  8.  前記複数の第1金属酸化物ナノ粒子および前記複数の第2金属酸化物ナノ粒子は、それぞれ複数のアンチモンドープ酸化錫ナノ粒子である、請求項1から7のいずれかに記載のエレクトロクロミック素子。
  9.  前記複数の第1金属酸化物ナノ粒子および前記複数の第2金属酸化物ナノ粒子は、それぞれ複数の錫ドープ酸化インジウムナノ粒子である、請求項1から7のいずれかに記載のエレクトロクロミック素子。
  10.  前記第1透明電極を支持する第1基板と、
     前記第2透明電極を支持する第2基板と、
    をさらに備え、
     前記第1基板および前記第2基板のそれぞれは、可撓性を有する樹脂基板である、請求項1から9のいずれかに記載のエレクトロクロミック素子。
  11.  第1透明電極および第2透明電極のそれぞれは、電気的に独立した複数のサブ電極に分割されている、請求項1から10のいずれかに記載のエレクトロクロミック素子。
  12.  請求項1から11のいずれかに記載のエレクトロクロミック素子を備えたスマートウィンドウ。
  13.  透光板をさらに備え、
     前記エレクトロクロミック素子は、前記透光板に貼り合わされている、請求項12に記載のスマートウィンドウ。
  14.  前記第1ナノ結晶層および前記第2ナノ結晶層のそれぞれの透過スペクトルは、印加電圧の変化に応じて変化し、
     前記第1ナノ結晶層および前記第2ナノ結晶層のうちの、印加電圧の変化に応じた透過スペクトルの変化が相対的に大きい方のナノ結晶層が、相対的に小さい方のナノ結晶層と前記透光板との間に位置している、請求項13に記載のスマートウィンドウ。
  15.  前記透光板の周縁部および前記エレクトロクロミック素子の周縁部を囲むように配置されたグレージングチャンネルをさらに備え、
     前記エレクトロクロミック素子は、前記電解質層を包囲するように設けられたシール部をさらに有し、
     前記透光板の法線方向から見たとき、前記シール部は前記グレージングチャンネルに重なっている、請求項13または14に記載のスマートウィンドウ。
  16.  第1透光板と、
     前記第1透光板に所定の間隙を介して対向するように配置された第2透光板と、
    をさらに備え、
     前記エレクトロクロミック素子は、前記第1透光板の前記第2透光板側に貼り合わされており、
     前記エレクトロクロミック素子と前記第2透光板との間に、所定の厚さの中間層が位置する、請求項12に記載のスマートウィンドウ。
  17.  前記エレクトロクロミック素子と前記第2透光板との間に設けられ、前記中間層の厚さを規定するスペーサと、
     前記第1透光板の周縁部、前記エレクトロクロミック素子の周縁部および前記第2透光板の周縁部を囲むように配置されたグレージングチャンネルと、
    をさらに備え、
     前記エレクトロクロミック素子は、前記電解質層を包囲するように設けられたシール部をさらに有し、
     前記第1透光板の法線方向から見たとき、前記スペーサは前記グレージングチャンネルに重なっており、前記シール部は前記スペーサおよび前記グレージングチャンネルに重なっている、請求項16に記載のスマートウィンドウ。
  18.  前記エレクトロクロミック素子と前記第2透光板との間に設けられ、前記中間層の厚さを規定するスペーサと、
     前記第1透光板の周縁部、前記エレクトロクロミック素子の周縁部および前記第2透光板の周縁部を囲むように配置されたグレージングチャンネルと、
    をさらに備え、
     前記エレクトロクロミック素子は、前記電解質層を包囲するように設けられたシール部をさらに有し、
     前記第1透光板の法線方向から見たとき、前記スペーサは前記グレージングチャンネルに重なっており、前記シール部は前記グレージングチャンネルに重なっており、且つ、前記スペーサよりも内側に位置している、請求項16に記載のスマートウィンドウ。
  19.  第1透光板と、
     前記第1透光板に所定の間隙を介して対向するように配置された第2透光板と、
    をさらに備え、
     前記エレクトロクロミック素子は、前記第1透光板と前記第2透光板との間に配置されており、
     前記第1透光板と前記エレクトロクロミック素子との間に所定の厚さの第1中間層が位置し、前記エレクトロクロミック素子と前記第2透光板との間に所定の厚さの第2中間層が位置する、請求項12に記載のスマートウィンドウ。
  20.  前記エレクトロクロミック素子は、前記第1透光板側の最表面および前記第2透光板側の最表面に位置する一対の反射防止膜を含む、請求項19に記載のスマートウィンドウ。
  21.  前記第1透光板と前記エレクトロクロミック素子との間に設けられ、前記第1中間層の厚さを規定する第1スペーサと、
     前記エレクトロクロミック素子と前記第2透光板との間に設けられ、前記第2中間層の厚さを規定する第2スペーサと、
     前記第1透光板の周縁部、前記エレクトロクロミック素子の周縁部および前記第2透光板の周縁部を囲むように配置されたグレージングチャンネルと、
    をさらに備え、
     前記エレクトロクロミック素子は、前記電解質層を包囲するように設けられたシール部をさらに有し、
     前記第1透光板の法線方向から見たとき、前記第1スペーサおよび前記第2スペーサは前記グレージングチャンネルに重なっており、前記シール部は前記第1スペーサ、第2スペーサおよび前記グレージングチャンネルに重なっている、請求項19または20に記載のスマートウィンドウ。
  22.  前記第1透光板と前記エレクトロクロミック素子との間に設けられ、前記第1中間層の厚さを規定する第1スペーサと、
     前記エレクトロクロミック素子と前記第2透光板との間に設けられ、前記第2中間層の厚さを規定する第2スペーサと、
     前記第1透光板の周縁部、前記エレクトロクロミック素子の周縁部および前記第2透光板の周縁部を囲むように配置されたグレージングチャンネルと、
    をさらに備え、
     前記エレクトロクロミック素子は、前記電解質層を包囲するように設けられたシール部をさらに有し、
     前記第1透光板の法線方向から見たとき、前記第1スペーサおよび前記第2スペーサは前記グレージングチャンネルに重なっており、前記シール部は前記グレージングチャンネルに重なっており、且つ、前記第1スペーサおよび前記第2スペーサよりも内側に位置している、請求項19または20に記載のスマートウィンドウ。
PCT/JP2019/008157 2018-03-05 2019-03-01 エレクトロクロミック素子およびスマートウィンドウ WO2019172133A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020504988A JPWO2019172133A1 (ja) 2018-03-05 2019-03-01 エレクトロクロミック素子およびスマートウィンドウ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-038747 2018-03-05
JP2018038747 2018-03-05

Publications (1)

Publication Number Publication Date
WO2019172133A1 true WO2019172133A1 (ja) 2019-09-12

Family

ID=67847173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008157 WO2019172133A1 (ja) 2018-03-05 2019-03-01 エレクトロクロミック素子およびスマートウィンドウ

Country Status (2)

Country Link
JP (1) JPWO2019172133A1 (ja)
WO (1) WO2019172133A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066006A1 (ja) * 2019-09-30 2021-04-08 パナソニック液晶ディスプレイ株式会社 エレクトロクロミック装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525607A (ja) * 2011-08-26 2014-09-29 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ナノ構造を持つ透明な導電性酸化物のエレクトロクロミックデバイス
US20170219906A1 (en) * 2016-02-01 2017-08-03 Heliotrope Technologies, Inc. Electrochromic system containing a bragg reflector and method for controlling photochromic darkening
JP2017187766A (ja) * 2016-04-01 2017-10-12 日東電工株式会社 エレクトロクロミック調光部材、光透過性導電フィルムおよびエレクトロクロミック調光素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525607A (ja) * 2011-08-26 2014-09-29 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ナノ構造を持つ透明な導電性酸化物のエレクトロクロミックデバイス
US20170219906A1 (en) * 2016-02-01 2017-08-03 Heliotrope Technologies, Inc. Electrochromic system containing a bragg reflector and method for controlling photochromic darkening
JP2017187766A (ja) * 2016-04-01 2017-10-12 日東電工株式会社 エレクトロクロミック調光部材、光透過性導電フィルムおよびエレクトロクロミック調光素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066006A1 (ja) * 2019-09-30 2021-04-08 パナソニック液晶ディスプレイ株式会社 エレクトロクロミック装置

Also Published As

Publication number Publication date
JPWO2019172133A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
US10564506B2 (en) Electrochromic device and method for making electrochromic device
KR101535100B1 (ko) 전기변색 스마트 윈도우 및 그 제조 방법
Granqvist et al. Progress in chromogenics: New results for electrochromic and thermochromic materials and devices
US5604626A (en) Photochromic devices
US7372610B2 (en) Electrochromic devices and methods
CN111624829B (zh) 多彩电致变色结构、其制备方法及应用
KR101862200B1 (ko) 전기변색 기판 시스템, 전기변색 기판 시스템이 이용되는 스마트 윈도우 기판 시스템 및 스마트 윈도우 기판 시스템의 제작 방법
US20180017836A1 (en) Integrated photovoltaic and electrochromic windows
US9904142B2 (en) Light-modulating element and smart glass
JP6665210B2 (ja) エレクトロクロミックデバイス、およびエレクトロクロミックデバイスを備えるスマートウインドウ
US20140175281A1 (en) Mulitple controlled electrochromic devices for visible and ir modulation
KR20090031915A (ko) 가변적인 광학적 및/또는 활동적 특성을 갖는 유리 타입 전기화학적/전기적으로 제어 가능한 디바이스
CN114600247A (zh) 非发光可变透射器件和发光器件组件及其使用方法
EP3004980B1 (en) An electrophoretic solar control device
EP3260914B1 (en) Smart window
WO2019172133A1 (ja) エレクトロクロミック素子およびスマートウィンドウ
JP2017509813A (ja) アクティブ建物窓
KR102470079B1 (ko) 변색 나노 입자, 이를 포함하는 변색 장치 및 이를 포함하는 표시 장치
JP2018155796A (ja) エレクトロクロミックデバイスおよび調光窓
JP2020201339A (ja) エレクトロクロミック素子およびスマートウィンドウ
JP2021001994A (ja) エレクトロクロミック素子およびスマートウィンドウ
JP2020197650A (ja) エレクトロクロミック素子およびスマートウィンドウ
Granqvist Switchable glazing technology: electrochromic fenestration for energy-efficient buildings
WO2019189194A1 (ja) エレクトロクロミック素子、スマートウィンドウおよびエレクトロクロミック素子の駆動方法
KR20160127849A (ko) 자가전원 감전 발색소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763772

Country of ref document: EP

Kind code of ref document: A1