WO2019172058A1 - Method for producing polyurethane containing cellulose nanofibers - Google Patents
Method for producing polyurethane containing cellulose nanofibers Download PDFInfo
- Publication number
- WO2019172058A1 WO2019172058A1 PCT/JP2019/007720 JP2019007720W WO2019172058A1 WO 2019172058 A1 WO2019172058 A1 WO 2019172058A1 JP 2019007720 W JP2019007720 W JP 2019007720W WO 2019172058 A1 WO2019172058 A1 WO 2019172058A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbonate
- cnf
- cellulose
- polyurethane
- dispersion
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/44—Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
Definitions
- the present invention relates to a method for producing cellulose nanofiber-containing polyurethane and cellulose nanofiber-containing polycarbonate diol dispersion.
- Polyurethane is widely used in the fields of highly durable artificial leather and synthetic leather, adhesives, paints, coating agents, films and optical materials.
- PCD polycarbonate diol
- a highly durable polyurethane excellent in hydrolysis resistance and chemical resistance can be obtained compared to polyester diol and polyether diol. It has been known.
- PCD when used for leather, paints and coatings, it has excellent moisture and heat resistance, wear resistance, and weather resistance in addition to the above characteristics, so as an automobile interior material, for example, artificial leather for seat seats or synthetic leather Used as a raw material for leather and exterior paints.
- adhesive applications it is used for automobiles, electronic devices, electrical devices, and the like as an adhesive having excellent durability and flexibility.
- CNF cellulose nanofiber
- aqueous medium using pulp or the like as a raw material. It is.
- CNF is lightweight but has 5 times the strength of iron, has a low coefficient of thermal expansion, and does not change its elastic modulus from low temperature to high temperature. Therefore, composite materials using CNF are lightweight, high strength, and low expansion. It is expected to be resistant to rate and temperature changes.
- the concentration of CNF dispersed in water is as low as 1 to 20% by mass, and a large amount of water needs to be removed when it is combined with a resin.
- the resin is generally high in viscosity and requires strong mechanical force.
- chemically defibrated CNF such as oxidation treatment has high hydrophilicity, so it can be refined and surface-treated.
- CNF is a material that is difficult to handle industrially because it requires treatment.
- Patent Document 1 A polyurethane resin composition containing a polyurethane resin is disclosed (Patent Document 1).
- Patent Document 1 a raw material in which cellulose is defibrated in a polyol is used.
- a polyol having a high molecular weight is used. Is required.
- the viscosity is 1000 to 15000 mPa ⁇ s.
- a strong mechanical force is applied while heating, defibration is promoted, but deterioration such as coloring of CNF or polyol tends to occur.
- the present invention eliminates the need for crushing cellulose in a polyol, and does not require the use of water or surface treatment of cellulose to enhance dispersibility in a resin, thereby providing artificial leather, synthetic leather, adhesive, and paint.
- Another object of the present invention is to provide a method for producing CNF-containing PCD and polyurethane suitable for raw materials such as coating agents.
- the present inventors have intensively studied, and as a result obtained by reacting an isocyanate compound with a CNF-containing PCD dispersion obtained by reacting a carbonate ester in which CNF is dispersed with a diol compound.
- the CNF-containing polyurethane obtained was found to be excellent in mechanical strength and chemical resistance, and the present invention was completed.
- the present invention is a method for producing a CNF-containing polyurethane comprising the following steps (a) to (c).
- (A) A step of obtaining CNF carbonate dispersion by dispersing CNF in carbonate.
- (B) A step of reacting the carbonate ester dispersion with a diol compound to obtain a CNF-containing PCD dispersion.
- (C) A step of obtaining a CNF-containing polyurethane by reacting the PCD dispersion with an isocyanate compound.
- this invention is a manufacturing method of the CNF containing PCD dispersion
- the polyurethane containing CNF obtained by the production method of the present invention is useful for artificial leather, synthetic leather, adhesives, paints, coating agents, etc. as a highly functional composite material excellent in properties such as mechanical strength and heat resistance. is there.
- the polyurethane in the present invention includes foamed polyurethane (urethane foam).
- the microscope picture of the CNF containing ethylene carbonate dispersion liquid obtained in Reference Example 1 is shown.
- the microscope picture of the CNF containing ethylene carbonate dispersion obtained in Reference Example 2 is shown.
- the microscope picture of the CNF containing PCD dispersion liquid obtained in Example 1 is shown.
- the microscope picture of the CNF containing PCD dispersion liquid obtained in Example 2 is shown.
- the microscope picture of the CNF containing polyurethane obtained in Example 4 is shown.
- the microscope picture of the CNF containing polyurethane obtained in Example 5 is shown.
- the relationship between the elongation of the polyurethane foam obtained in Example 6 and Comparative Example 2 and tensile stress is shown.
- the step (a) of the present invention is a step in which CNF is dispersed in a carbonate ester to obtain a CNF carbonate ester dispersion.
- Examples of the method for dispersing CNF in the carbonate ester include a method of obtaining a carbonate ester in which cellulose containing CNF is dispersed by pulverizing biomass, which is a raw material of CNF, in the carbonate ester.
- pulverizing biomass which is a raw material of CNF, in the carbonate ester.
- the biomass to be used may be any biological material, but it is particularly desirable to use woody, herbaceous, and cellulose plant biomass.
- a device for pulverizing biomass ball mills, bead mills, hammer mills, rod mills, disk mills, cutter mills, jet mills, high-pressure homogenizers and ultrasonic homogenizers can be used.
- CNF powdered in advance can also be used.
- the pulverized CNF is, for example, pulverized by freeze-drying or thermal decomposition of ammonium carbonate, and has a large specific surface area. CNF can be dispersed in the ester.
- Examples of the carbonic acid ester include cyclic carbonates and chain carbonates that can give PCD by reaction with a diol compound.
- Examples of the cyclic carbonates include alkylene carbonates having an alkylene group having 2 to 4 carbon atoms such as ethylene carbonate, propylene carbonate, and butylene carbonate. Among these, ethylene carbonate, propylene carbonate, and butylene carbonate are preferable. Is particularly preferred.
- dialkyl carbonate and diaryl carbonate are preferable.
- the alkyl group constituting the carbon group preferably has 1 to 5 carbon atoms, particularly preferably 1 to 4 carbon atoms.
- Specific examples include symmetric chain alkyl carbonates such as dimethyl carbonate, diethyl carbonate, and di-n-propyl carbonate, and asymmetric chain alkyl carbonates such as ethyl methyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate.
- dialkyl carbonates are Among these, dimethyl carbonate and diethyl carbonate are preferable.
- the diaryl carbonate include diphenyl carbonate and ditolyl carbonate, and diphenyl carbonate is preferable.
- ethylene carbonate is used as the carbonate ester
- hardwood pulp concentration 1 wt% is used as the woody biomass, and if it is crushed with an ultrasonic homogenizer, the thickness is about 200 nm and the length is about 50 ⁇ m. CNF is generated.
- the purification method of a cellulose raw material is not specifically limited, The purification method shown below is illustrated.
- Step (b) of the present invention is a step of obtaining a CNF-containing PCD dispersion by reacting the carbonate ester dispersion with a diol compound.
- CNF may contain cellulose before pulverization.
- a known method for producing PCD is applied. For example, JP-A-2015-044986 And the method described in JP-A-2017-025155.
- PCD can be obtained through a two-stage reaction consisting of a transesterification reaction and a polycondensation reaction. Carbonate ester and diol compound are mixed at a molar ratio of 20: 1 to 1:10 and reacted at a temperature of 100 to 300 ° C. under normal pressure or reduced pressure to distill ethylene glycol and unreacted ethylene carbonate as by-products. The low molecular weight PCD of 2 to 10 units is obtained, and then the unreacted raw diol compound and ethylene carbonate are distilled off at 100 to 300 ° C. under reduced pressure, and the low molecular weight PCD is polycondensed.
- a PCD having a predetermined molecular weight can be obtained by adjusting the distillate amount of the raw diol compound.
- the composition ratio of PCD can be calculated
- PCD having a 1,6-hexanediol (hereinafter referred to as HDO) skeleton and a molecular weight of 1000 can be obtained by the following method.
- a reactor equipped with a rectifying column is charged with 400 g of ethylene carbonate (hereinafter referred to as EC) containing 1% by mass of CNF, 450 g of HDO, and 0.8 g of tetrabutyl titanate as a catalyst, and the temperature is gradually raised at 50 torr. .
- the internal temperature is raised to 160 ° C to 170 ° C so that there is constant distillation, and the process ends when the distillation stops.
- a tertiary amine catalyst, an organometallic catalyst, or the like may be used for the reaction as necessary, but a step of deactivating the catalyst is unnecessary, and there is an advantage that coloring of the reaction solution is reduced. It is preferable to react without a catalyst.
- the step (c) of the present invention is a step of obtaining a CNF-containing polyurethane by reacting the CNF-containing PCD dispersion with an isocyanate compound.
- a CNF-containing foamed polyurethane can be obtained depending on the reaction conditions.
- the isocyanate compound include two or more isocyanate groups in the molecule, such as tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, water Added xylylene diisocyanate and hexamethylene diisocyanate can be used.
- the hydroxyl group of PCD that reacts with the isocyanate compound As the hydroxyl group of PCD that reacts with the isocyanate compound, the hydroxyl value determined in accordance with JIS K1557-1 (plastics—polyurethane raw material polyol test method—part 1: determination of hydroxyl value) may be used.
- the molar ratio of the hydroxyl group of PCD to the isocyanate group of the isocyanate compound ([NCO / OH]) is generally 1.0 or less. However, when a urethane prepolymer is produced, the molar ratio is more than 1.0. preferable.
- PCD and an isocyanate compound are mixed from room temperature to 70 ° C., vacuum defoamed, mixed with a catalyst if necessary, and then defoamed again into a mold. Cast and heat cure at 40 ° C. to 110 ° C. for 3 to 12 hours to produce a polyurethane sheet.
- step (c) the following chain extender, hardness adjusting agent, chain terminator, catalyst, polyol and solvent can be used.
- the chain extender used in producing the polyurethane of the present invention is a low molecular weight compound having at least two active hydrogens that react with an isocyanate group in the production of a prepolymer having an isocyanate group, which will be described later.
- polyamines include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, and 1,9-nonanediol.
- Linear diols such as 1,10-decanediol and 1,12-dodecanediol; 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl 1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2,4-heptanediol, 1,4-dimethylolhexane, 2-ethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-methyl-1,8-octanediol, 2-butyl-2-ethyl-1,3-propane Diols having branched chains such as all and dimer diols; Diols having ether groups such as diethylene glycol and propylene glycol; 1,4-cyclohexanediol, 1,4-cyclo
- Diols having an alicyclic structure diols having an aromatic group such as xylylene glycol, 1,4-dihydroxyethylbenzene, 4,4′-methylenebis (hydroxyethylbenzene); polyols such as glycerin, trimethylolpropane and pentaerythritol Hydroxyamines such as N-methylethanolamine and N-ethylethanolamine; ethylenediamine, 1,3-diaminopropane, hexatylenediamine, triethylenetetramine, diethylenetri Min, isophorone diamine, 4,4'-diaminodicyclohexylmethane, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, di-2-hydroxyethylpropylenediamine, 2-hydroxypropylethylenediamine, di-2-hydroxypropyl Polyamines such as ethylenediamine, 4,4′-diphenyl
- chain extenders may be used alone or in combination of two or more.
- 1,4-butanediol hereinafter sometimes referred to as 1,4BD
- 1,5 is preferable in that the balance of physical properties of the obtained polyurethane is preferable, and a large amount can be obtained industrially at low cost.
- a dihydroxy compound that is a raw material of polycarbonate diol may be used.
- the reason why the hardness adjusting agent is used will be described below. For example, when a polyurethane is produced using a polycarbonate diol having a large molecular weight, if the molar composition of the polyisocyanate and the chain extender is the same as that of the polycarbonate diol having a low molecular weight, the weight ratio of the polycarbonate diol in the entire polyurethane molecule increases. As a result, the elastic modulus and hardness are reduced.
- a dihydroxy compound which is a raw material of polycarbonate diol 1,3-propanediol, 2-methyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol 2-methyl-1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,13-tridecanediol, 1,14-tetradecanediol, 1, 16-hexadecanediol 1,18-octadecanediol
- a chain terminator having one active hydrogen group can be used as necessary for the purpose of controlling the molecular weight of the resulting polyurethane.
- chain terminators include aliphatic monools such as methanol, ethanol, propanol, butanol and hexanol having one hydroxyl group, diethylamine, dibutylamine, n-butylamine, monoethanolamine and diethanolamine having one amino group.
- aliphatic monoamines such as morpholine. These may be used alone or in combination of two or more.
- an amine catalyst such as triethylamine, N-ethylmorpholine, triethylenediamine or the like or tin such as trimethyltin laurate, dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin dineodecanate, etc.
- Known urethane polymerization catalysts typified by organic compounds such as organic metal salts such as titanium compounds and the like can also be used.
- a urethane polymerization catalyst may be used individually by 1 type, and may use 2 or more types together.
- the polycarbonate diol of the present invention may be used in combination with other polyols as necessary.
- the polyol other than the polycarbonate diol of the present invention is not particularly limited as long as it is used in normal polyurethane production, and examples thereof include polyether polyols, polyester polyols, and polycarbonate polyols other than the present invention.
- it is based on the combined weight of the polycarbonate diol of the present invention and other polyols.
- the weight ratio of the polycarbonate diol of the present invention is preferably 70% or more, more preferably 90% or more. If the weight ratio of the polycarbonate diol of the present invention is small, the balance of chemical resistance, low temperature characteristics and heat resistance, which are the characteristics of the present invention, may be lost.
- the above-mentioned polycarbonate diol of the present invention can be modified for use in the production of polyurethane.
- a modification method of polycarbonate diol a method of introducing an ether group by adding an epoxy compound such as ethylene oxide, propylene oxide, or butylene oxide to polycarbonate diol, a polycarbonate diol, a cyclic lactone such as ⁇ -caprolactone, adipic acid, or succinic acid is used.
- There is a method of introducing an ester group by reacting with dicarboxylic acid compounds such as sebacic acid and terephthalic acid and ester compounds thereof.
- the viscosity of the polycarbonate diol is lowered by modification with ethylene oxide, propylene oxide or the like, which is preferable for reasons such as handling.
- the polycarbonate diol of the present invention is modified with ethylene oxide or propylene oxide, so that the crystallinity of the polycarbonate diol is lowered and the flexibility at low temperature is improved. Since the water absorption and moisture permeability of the manufactured polyurethane are increased, the performance as artificial leather / synthetic leather may be improved.
- the addition amount of ethylene oxide or propylene oxide increases, the physical properties such as mechanical strength, heat resistance, chemical resistance and the like of the polyurethane produced using the modified polycarbonate diol decrease.
- -50 wt% is suitable, preferably 5-40 wt%, more preferably 5-30 wt%.
- the method of introducing an ester group is preferable for reasons such as handling because the viscosity of the polycarbonate diol is lowered by modification with ⁇ -caprolactone.
- the amount of ⁇ -caprolactone added to the polycarbonate diol is preferably 3 to 70% by weight, preferably 5 to 50% by weight, more preferably 10 to 40% by weight, still more preferably 15 to 30% by weight. is there.
- the addition amount of ⁇ -caprolactone exceeds 70% by weight, the hydrolysis resistance, chemical resistance, etc. of the polyurethane produced using the modified polycarbonate diol are lowered.
- it is less than 3% by weight the effect of reducing the viscosity is small, which is not preferable.
- a solvent may be used for the polyurethane formation reaction in producing the polyurethane of the present invention.
- Preferred solvents include amide solvents such as dimethylformamide, diethylformamide, dimethylacetamide and N-methylpyrrolidone; sulfoxide solvents such as dimethyl sulfoxide; ketone solvents such as methyl ethyl ketone, cyclohexanone and methyl isobutyl ketone; tetrahydrofuran, dioxane and the like.
- ether solvents examples include ether solvents; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; and aromatic hydrocarbon solvents such as toluene and xylene. These solvents may be used alone or as a mixed solvent of two or more.
- preferred organic solvents are methyl ethyl ketone, ethyl acetate, toluene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide and the like.
- the polyurethane of an aqueous dispersion can also be manufactured from the polyurethane composition with which the polycarbonate diol of this invention, polydiisocyanate, and the said chain extender were mix
- the CNF-containing foamed polyurethane is produced by reacting the CNF-containing PCD dispersion and the isocyanate compound, for example, if water is added during the reaction, the CNF-containing foamed polyurethane is obtained.
- the reaction temperature is preferably 100 ° C. or less so that the reaction temperature does not exceed the boiling point of water as the reaction condition when adding water. Moreover, in order to disperse
- examples of methods for producing foamed polyurethane include methods using chemical foaming agents, physical foaming agents, supercritical fluids, thermally expandable microcapsules, and the like.
- the chemical foaming agent is one that adds dinitrosopentamethylenetetramine, azodicarbonamide, p, p′-oxybisbenzenesulfonylhydrazine, sodium hydrocarbon or the like, and generates a gas by a thermal decomposition reaction.
- a physical foaming agent generates bubbles by dissolving a liquefied gas (fluorocarbon or hydrocarbon) or a supercritical fluid in a resin under high pressure and reducing the solubility by reducing the pressure or heating.
- the supercritical fluid is one that is foamed by using nitrogen or carbon dioxide as a supercritical fluid at high temperature and pressure.
- the thermally expandable microcapsules are obtained by wrapping hydrocarbons in thermoplastic resin capsules. The hydrocarbons are vaporized at a high temperature, and the softened capsules expand accordingly.
- the CNF-containing PCD dispersion obtained in the step (b) uses a dispersion obtained by pulverizing a cellulose raw material in a carbonate ester or a dispersion obtained by dispersing powdered CNF in a carbonate ester.
- cellulose raw material is crushed in a hydrophobic medium than water
- the produced CNF has a more hydrophobic surface than CNF crushed in water and is excellent in dispersibility in an organic medium. Yes. Therefore, CNF obtained by crushing in a carbonate ester that is more hydrophobic than water is also more hydrophobic than CNF that is crushed in water, so that it has good dispersibility in the carbonate ester and is produced using this as a raw material.
- the CNF in the PCD also has a good dispersibility
- the CNF in the CNF-containing polyurethane using the CNF-containing PCD dispersion as a raw material also has a good dispersibility.
- Hydrophilic CNF generally tends to cause problems such as aggregation and thickening in hydrophobic resins, and the expected characteristics may not be exhibited. However, according to the production method of the present invention, these problems are solved. Alternatively, it is possible to obtain a higher-performance polyurethane that can be reduced.
- EC which is one of carbonate esters, has almost the same dielectric constant as water and is considered to have a high affinity for hydrophilic CNF, and is a good dispersion medium for CNF.
- CNF-containing polyurethane can be produced by the following method. Powdered CNF is dispersed in EC at a concentration of 1 to 5% by mass with a rotating and rotating stirrer, and cellulose containing CNF obtained by the reaction of EC and 1,6-hexanediol (HDO) is dispersed.
- the CNF-containing polyurethane can be prepared by reacting the prepared PCD with dicyclohexylmethane diisocyanate (HMDI). Using dibutyltin dilaurate or the like as a catalyst for promoting urethanization, the composition is cured at an addition amount of 0.04 parts by mass with respect to 100 parts by mass of the composition comprising PCD and isocyanate.
- the pot life is about 20 minutes at room temperature, and the resulting polyurethane is thermoplastic.
- Cellulose containing CNF contains many hydroxyl groups in the molecule.
- curing is not extremely accelerated or delayed, and the curing time can be adjusted by adjusting the amount of the catalyst added.
- the polyurethane which gelatinized by the presence of the cellulose containing CNF does not arise.
- the cellulose powder was dispersed in 100 g of EC liquefied by heating to 60 ° C. so that the concentration was 0.1% by mass, and this cellulose dispersion was dispersed on a desktop wet high-pressure pulverizer (Nanovita L-ES, electric drive). And the fine pulverization was repeated to obtain a CNF-containing EC dispersion. The pressure was gradually increased while adjusting the discharge speed, and finally pulverized 10 times at 180 MPa. The CNF in the obtained EC dispersion was a branched aggregate, but fibers of about 200 nm to 1 ⁇ m existed separately, and the dispersibility was good. A length exceeding 100 ⁇ m was generated.
- FIG. 1 shows a photomicrograph (400 times).
- CNF-containing EC dispersion (2) A hardwood CNF-containing EC dispersion was obtained in the same manner as in Reference Example 1 except that hardwood (eucalyptus) bleached kraft pulp (NIST Standard Reference Material, 8496 Eucalyptus Hardwood (Bleached Kraft Pulp)) was used as the pulp.
- the CNF in the obtained EC dispersion was a branched aggregate, but fibers of about 200 nm to 1 ⁇ m existed separately, and the dispersibility was good. A length exceeding 100 ⁇ m was generated.
- FIG. 2 shows a photomicrograph (400 times).
- CNF-containing EC dispersion (3) A softwood pulp was used in the same manner as in Reference Example 1 to obtain a 1% by mass CNF-containing EC dispersion. However, the concentration of the initial cellulose powder is 0.2% by mass, pulverized five times at 150 MPa while gradually increasing the pressure, and then the pulverization is repeated by adding cellulose powder in increments of 0.2% by mass. Thus, the final concentration was set to 1% by mass, and pulverization was performed 10 times at 180 MPa to obtain a 1% by mass CNF-containing EC dispersion. The CNF in the obtained dispersion was the same size as in Reference Example 1 and the dispersibility was the same.
- Example 1 Production of CNF-containing PCD dispersion (1)
- a CNF-containing PCD having an HDO skeleton was prepared by reacting the 1% by mass CNF-containing EC dispersion obtained in Reference Example 3 with 1,6-hexanediol (HDO).
- HDO 1,6-hexanediol
- a 1 liter flask equipped with a stirrer and a Vigreux fractionation tube with a height of 20 cm is charged with 187 parts by mass of EC containing 1% by mass of CNF, 200 parts by mass of HDO, and 0.2 parts by mass of tetrabutyl titanate as a catalyst.
- the temperature was gradually raised at 50 torr.
- the internal temperature was raised to 160 ° C. to 170 ° C.
- FIG. 3 shows a photomicrograph (400 times). Since this CNF-dispersed PCD solidifies at room temperature, it is liquefied by heating to 100 ° C. or higher, and a clear filtrate is obtained by pressure filtration with a 0.5 ⁇ m membrane filter, and the hydroxyl value of the filtrate is determined. It was 2.15 meq / g when calculated. Therefore, the hydroxyl group of CNF did not affect the hydroxyl value of PCD.
- Example 2 Production of CNF-containing PCD dispersion (2) 2 parts by mass of powdered CNF obtained by thermal decomposition of ammonium carbonate was added to 150 parts by mass of EC melted at 60 ° C., and mixed with a rotating and rotating stirrer to obtain EC in which CNF was dispersed. .
- This 157 parts by mass of CNF-dispersed ECD and 191 parts by mass of HDO were reacted in the presence of 0.2 part by mass of tetra-n-butyl titanate in the same manner as in Example 1 to obtain 157 parts by mass of CNF-dispersed PCD. Obtained.
- the hydroxyl value was 4.02 meq / g, the molecular weight was 500, and the CNF concentration was 1.9% by mass.
- the CNF in the obtained PCD dispersion was a branched aggregate, but the fibers were present separately and the dispersibility was good.
- FIG. 4 shows a micrograph (400 times).
- Example 3 Production of CNF-containing PCD dispersion (3) ⁇ Purification of crystalline cellulose> A pressure vessel was charged with 50 g of crystalline cellulose (FD-101) and 1 liter of pure water, and the pressure vessel was heated and maintained at 128 ° C. and a pressure of 146 kPa (1.44 atm) for 2 hours. Next, after returning to normal pressure, the supernatant was removed, 1 liter of fresh pure water was added again, the mixture was heated again, and maintained at 128 ° C. and a pressure of 146 kPa (1.44 atm) for 2 hours. The removal of the supernatant and the heating / pressurizing operation with the addition of fresh pure water were performed once more, and the operation was repeated three times. Finally, the crystalline cellulose (FD-101) was filtered off, and the crystalline cellulose (FD-101) was washed with fresh pure water and then dried at 110 ° C. under reduced pressure.
- Example 4 Production of CNF-containing polyurethane (1)
- the CNF-containing PCD and dicyclohexylmethane diisocyanate (HMDI) obtained in Example 1 were cured in the presence of dibutyltin dilaurate to prepare a polyurethane sheet.
- the polyurethane sheet was prepared as follows, and the molar ratio of PCD hydroxyl group to HMDI isocyanate group ([NCO / OH]) was 1.0. To 100 parts by mass of PCD melted at 70 ° C., 0.06 part of dibutyltin dilaurate was added, mixed with a rotation / revolution stirrer, and vacuum degassed.
- FIG. 5 shows a photomicrograph (400 times).
- Example 5 Production of CNF-containing polyurethane (2) Regarding the PCD obtained in Example 2, a polyurethane sheet containing about 1.2% by mass of CNF was prepared in the same manner as in Example 4. The dispersion state of CNF was observed with a microscope in the same manner as in Example 4, and a micrograph (400 times) is shown in FIG. The dispersibility of CNF was good, and the obtained polyurethane sheet was punched out with dumbbell No. 3, and the tensile strength was measured. The results are shown in Table 1. As can be seen from Table 1, the polyurethane obtained in Example 5 was 2.1 times higher in tensile strength than the polyurethane containing no CNF (Comparative Example 1).
- ⁇ Comparative Example 1> For comparison, a polyurethane sheet was prepared using PCD not containing CNF, and the tensile strength was measured. As PCD not containing CNF, the PCD obtained in Example 1 was liquefied by heating to 100 ° C. or higher, and the filtrate was filtered under pressure using a 0.5 ⁇ m membrane filter. The filtrate was transparent. It was clear. Using this filtrate, a polyurethane sheet was prepared in the same manner as in Example 4, and the tensile strength was measured. The results are shown in Table 1.
- Example 6 Production of CNF-containing foamed polyurethane CNF-containing PCD, HMDI and water were cured in the presence of dibutyltin dilaurate to produce a CNF-containing foamed polyurethane.
- the CNF-containing PCD was produced in the same manner as in Example 1 except that the raw material diol was a mixture having a molar ratio of 1/1 of 1,6-hexanediol and 1,5-pentanediol. The average molecular weight was 500.
- the following reaction was performed with the molar ratio of PCD hydroxyl group, HMDI isocyanate group, and water (OH / NCO / H 2 O) being 1.0 / 1.2 / 0.2.
- Example 6 A sample obtained by punching the polyurethane foam obtained in Example 6 and Comparative Example 2 with a dumbbell mold and measuring the tensile stress (engineering stress) is shown in FIG. As can be seen from FIG. 7, the CNF-containing foamed polyurethane obtained in Example 6 showed higher engineering stress at break than the foamed polyurethane containing no CNF in Comparative Example 2.
- the CNF-containing PCD dispersion and CNF-containing polyurethane obtained by the production method of the present invention are excellent in mechanical strength such as tensile strength, and therefore can be used for higher-performance artificial / synthetic leather, paints / coating agents, adhesives, etc. It is.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
- Polyesters Or Polycarbonates (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
[Problem] The purpose of the present invention is to provide a method for producing a polyurethane containing cellulose nanofibers, which does not require crushing of cellulose in a polyol, use of water, and a surface treatment of cellulose for the purpose of enhancing the dispersibility in resins, and which is suitable as a starting material for artificial leathers, synthetic leathers, adhesives, painting materials, coating agents and the like.
[Solution] A method for producing a polyurethane containing cellulose nanofibers, which comprises the following steps (a)-(c).
(a) A step for obtaining a carbonic acid ester dispersion of cellulose nanofibers by dispersing cellulose nanofibers in a carbonic acid ester.
(b) A step for obtaining a cellulose nanofiber-containing polycarbonate diol dispersion by having the carbonic acid ester dispersion react with a diol compound.
(c) A step for obtaining a polyurethane containing cellulose nanofibers by having the polycarbonate diol dispersion react with an isocyanate compound.
Description
本発明は、セルロースナノファイバー含有ポリウレタンおよびセルロースナノファイバー含有ポリカーボネートジオール分散体の製造方法に関する。
The present invention relates to a method for producing cellulose nanofiber-containing polyurethane and cellulose nanofiber-containing polycarbonate diol dispersion.
ポリウレタンは、耐久性の高い人工皮革や合成皮革、接着剤、塗料、コーティング剤、フィルムおよび光学材料等の分野で広く使用されている。
特に、ポリカーボネートジオール(以下、PCDという)をポリウレタンの原料にする場合、ポリエステルジオールおよびポリエーテルジオールの場合と比べて、耐加水分解性や耐薬品性に優れた耐久性の高いポリウレタンが得られることが知られている。 Polyurethane is widely used in the fields of highly durable artificial leather and synthetic leather, adhesives, paints, coating agents, films and optical materials.
In particular, when polycarbonate diol (hereinafter referred to as PCD) is used as a raw material for polyurethane, a highly durable polyurethane excellent in hydrolysis resistance and chemical resistance can be obtained compared to polyester diol and polyether diol. It has been known.
特に、ポリカーボネートジオール(以下、PCDという)をポリウレタンの原料にする場合、ポリエステルジオールおよびポリエーテルジオールの場合と比べて、耐加水分解性や耐薬品性に優れた耐久性の高いポリウレタンが得られることが知られている。 Polyurethane is widely used in the fields of highly durable artificial leather and synthetic leather, adhesives, paints, coating agents, films and optical materials.
In particular, when polycarbonate diol (hereinafter referred to as PCD) is used as a raw material for polyurethane, a highly durable polyurethane excellent in hydrolysis resistance and chemical resistance can be obtained compared to polyester diol and polyether diol. It has been known.
また、PCDを皮革、塗料およびコーティング剤用途に使用した場合、前記の特性以外に耐湿熱性、耐摩耗性および耐候性に優れるため、自動車の内装材として、例えば、座席シート向けの人工皮革や合成皮革および外装用塗料の原料として用いられている。さらに、接着用途においても、耐久性や柔軟性に優れた接着剤として自動車、電子機器および電気機器等に使用されている。
In addition, when PCD is used for leather, paints and coatings, it has excellent moisture and heat resistance, wear resistance, and weather resistance in addition to the above characteristics, so as an automobile interior material, for example, artificial leather for seat seats or synthetic leather Used as a raw material for leather and exterior paints. Further, in adhesive applications, it is used for automobiles, electronic devices, electrical devices, and the like as an adhesive having excellent durability and flexibility.
しかしながら、カーボネート結合はエステル結合と比べると柔軟性に欠けるため、カーボネート結合だけを有するPCDから製造されるポリウレタンは、ポリエステルポリオールから製造されるポリウレタンより柔軟性が劣り、特に低温における柔軟性、伸び、曲げおよび弾性回復性が悪いため、可撓性に欠けもろいという問題がある。
However, since carbonate bonds are less flexible than ester bonds, polyurethanes made from PCD with only carbonate bonds are less flexible than polyurethanes made from polyester polyols, especially at low temperatures, Due to poor bending and elastic recovery, there is a problem that it is brittle.
一方、セルロースナノファイバー(以下、CNFという)は、パルプ等を原料にして水媒体中で機械的または化学的解繊処理によって得られる、太さがナノメートルオーダーであり、アスペクト比の高いセルロース繊維である。
CNFは軽量であるが鉄の5倍の強度を有し、熱膨張率が低く、低温から高温まで弾性率が変化しない特性を有するため、CNFを用いた複合材料は軽量、高強度、低膨張率および温度変化に強いことが期待される。 On the other hand, cellulose nanofiber (hereinafter referred to as CNF) is obtained by mechanical or chemical defibration in an aqueous medium using pulp or the like as a raw material. It is.
CNF is lightweight but has 5 times the strength of iron, has a low coefficient of thermal expansion, and does not change its elastic modulus from low temperature to high temperature. Therefore, composite materials using CNF are lightweight, high strength, and low expansion. It is expected to be resistant to rate and temperature changes.
CNFは軽量であるが鉄の5倍の強度を有し、熱膨張率が低く、低温から高温まで弾性率が変化しない特性を有するため、CNFを用いた複合材料は軽量、高強度、低膨張率および温度変化に強いことが期待される。 On the other hand, cellulose nanofiber (hereinafter referred to as CNF) is obtained by mechanical or chemical defibration in an aqueous medium using pulp or the like as a raw material. It is.
CNF is lightweight but has 5 times the strength of iron, has a low coefficient of thermal expansion, and does not change its elastic modulus from low temperature to high temperature. Therefore, composite materials using CNF are lightweight, high strength, and low expansion. It is expected to be resistant to rate and temperature changes.
しかしながら、水に分散させたCNF濃度は1~20質量%と低く、樹脂と複合化させる場合には大量の水の除去が必要となる。
一方、樹脂中でパルプを解繊する場合、樹脂は一般的に粘度が高いので強力な機械力が必要となり、また、酸化処理など化学的に解繊したCNFは親水性が高いため精製や表面処理が必要など、CNFは工業的に取り扱い難い材料である。 However, the concentration of CNF dispersed in water is as low as 1 to 20% by mass, and a large amount of water needs to be removed when it is combined with a resin.
On the other hand, when pulp is defibrated in resin, the resin is generally high in viscosity and requires strong mechanical force. Also, chemically defibrated CNF such as oxidation treatment has high hydrophilicity, so it can be refined and surface-treated. CNF is a material that is difficult to handle industrially because it requires treatment.
一方、樹脂中でパルプを解繊する場合、樹脂は一般的に粘度が高いので強力な機械力が必要となり、また、酸化処理など化学的に解繊したCNFは親水性が高いため精製や表面処理が必要など、CNFは工業的に取り扱い難い材料である。 However, the concentration of CNF dispersed in water is as low as 1 to 20% by mass, and a large amount of water needs to be removed when it is combined with a resin.
On the other hand, when pulp is defibrated in resin, the resin is generally high in viscosity and requires strong mechanical force. Also, chemically defibrated CNF such as oxidation treatment has high hydrophilicity, so it can be refined and surface-treated. CNF is a material that is difficult to handle industrially because it requires treatment.
近年、ポリウレタンにCNFを配合して物性を改善することが検討され、例えば、ポリオール中でセルロースを微細化して得られたCNFを含有するポリオール組成物と、ポリイソシアナートとを反応させて得られるポリウレタン樹脂を含有するポリウレタン樹脂組成物が開示されている(特許文献1)。
しかしながら、特許文献1に記載のポリウレタン樹脂組成物を得るために、ポリオール中でセルロースを解繊した原料を使用しているが、ポリウレタン樹脂に要求される物性を確保するには、分子量の高いポリオールが必要となる。
例えば、ポリエステルポリオールやポリエーテルポリオールに比べ、高機能なPCDは分子量が1000~2000のものが良く使われ、該ポリカーボネートポリオールの一部は常温で固体であり、50℃に加熱して、粘度は1000~15000mPa・sである。このような粘度の高いポリオール中での解繊では、必要なせん断力が得にくく、解繊が不充分となりやすい。
一方、加熱しながら強力な機械力を加えた場合、解繊は促進されるが、CNFやポリオールの着色等の劣化が生じやすくなる。 In recent years, it has been studied to improve physical properties by blending CNF with polyurethane. For example, it is obtained by reacting a polyol composition containing CNF obtained by refining cellulose in a polyol with polyisocyanate. A polyurethane resin composition containing a polyurethane resin is disclosed (Patent Document 1).
However, in order to obtain the polyurethane resin composition described in Patent Document 1, a raw material in which cellulose is defibrated in a polyol is used. In order to ensure the physical properties required for a polyurethane resin, a polyol having a high molecular weight is used. Is required.
For example, compared to polyester polyols and polyether polyols, high-performance PCDs with a molecular weight of 1000 to 2000 are often used, and some of the polycarbonate polyols are solid at room temperature and heated to 50 ° C., the viscosity is 1000 to 15000 mPa · s. In the defibration in the polyol having such a high viscosity, it is difficult to obtain a necessary shearing force, and the defibration tends to be insufficient.
On the other hand, when a strong mechanical force is applied while heating, defibration is promoted, but deterioration such as coloring of CNF or polyol tends to occur.
しかしながら、特許文献1に記載のポリウレタン樹脂組成物を得るために、ポリオール中でセルロースを解繊した原料を使用しているが、ポリウレタン樹脂に要求される物性を確保するには、分子量の高いポリオールが必要となる。
例えば、ポリエステルポリオールやポリエーテルポリオールに比べ、高機能なPCDは分子量が1000~2000のものが良く使われ、該ポリカーボネートポリオールの一部は常温で固体であり、50℃に加熱して、粘度は1000~15000mPa・sである。このような粘度の高いポリオール中での解繊では、必要なせん断力が得にくく、解繊が不充分となりやすい。
一方、加熱しながら強力な機械力を加えた場合、解繊は促進されるが、CNFやポリオールの着色等の劣化が生じやすくなる。 In recent years, it has been studied to improve physical properties by blending CNF with polyurethane. For example, it is obtained by reacting a polyol composition containing CNF obtained by refining cellulose in a polyol with polyisocyanate. A polyurethane resin composition containing a polyurethane resin is disclosed (Patent Document 1).
However, in order to obtain the polyurethane resin composition described in Patent Document 1, a raw material in which cellulose is defibrated in a polyol is used. In order to ensure the physical properties required for a polyurethane resin, a polyol having a high molecular weight is used. Is required.
For example, compared to polyester polyols and polyether polyols, high-performance PCDs with a molecular weight of 1000 to 2000 are often used, and some of the polycarbonate polyols are solid at room temperature and heated to 50 ° C., the viscosity is 1000 to 15000 mPa · s. In the defibration in the polyol having such a high viscosity, it is difficult to obtain a necessary shearing force, and the defibration tends to be insufficient.
On the other hand, when a strong mechanical force is applied while heating, defibration is promoted, but deterioration such as coloring of CNF or polyol tends to occur.
本発明は、ポリオール中でのセルロースの解砕の必要がなく、水の使用や樹脂への分散性を高めるためのセルロースの表面処理を必要とせずに、人工皮革、合成皮革、接着剤、塗料およびコーティング剤等の原料に適したCNF含有のPCDおよびポリウレタンの製造方法を提供することを目的とする。
The present invention eliminates the need for crushing cellulose in a polyol, and does not require the use of water or surface treatment of cellulose to enhance dispersibility in a resin, thereby providing artificial leather, synthetic leather, adhesive, and paint. Another object of the present invention is to provide a method for producing CNF-containing PCD and polyurethane suitable for raw materials such as coating agents.
上記課題を解決するために、本発明者らは、鋭意検討した結果、CNFを分散させた炭酸エステルとジオール化合物を反応させて得られるCNF含有PCD分散体に、イソシアナート化合物を反応させて得られるCNF含有ポリウレタンが、機械強度や耐薬品性に優れることを見出し、本発明を完成するに至った。
In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result obtained by reacting an isocyanate compound with a CNF-containing PCD dispersion obtained by reacting a carbonate ester in which CNF is dispersed with a diol compound. The CNF-containing polyurethane obtained was found to be excellent in mechanical strength and chemical resistance, and the present invention was completed.
すなわち、本発明は、下記(a)~(c)の工程を含むCNF含有ポリウレタンの製造方法である。
(a)炭酸エステルにCNFを分散させて、CNFの炭酸エステル分散体を得る工程。
(b)前記炭酸エステル分散体とジオール化合物を反応させて、CNF含有PCD分散体を得る工程。
(c)前記PCD分散体とイソシアナート化合物を反応させて、CNF含有ポリウレタンを得る工程。 That is, the present invention is a method for producing a CNF-containing polyurethane comprising the following steps (a) to (c).
(A) A step of obtaining CNF carbonate dispersion by dispersing CNF in carbonate.
(B) A step of reacting the carbonate ester dispersion with a diol compound to obtain a CNF-containing PCD dispersion.
(C) A step of obtaining a CNF-containing polyurethane by reacting the PCD dispersion with an isocyanate compound.
(a)炭酸エステルにCNFを分散させて、CNFの炭酸エステル分散体を得る工程。
(b)前記炭酸エステル分散体とジオール化合物を反応させて、CNF含有PCD分散体を得る工程。
(c)前記PCD分散体とイソシアナート化合物を反応させて、CNF含有ポリウレタンを得る工程。 That is, the present invention is a method for producing a CNF-containing polyurethane comprising the following steps (a) to (c).
(A) A step of obtaining CNF carbonate dispersion by dispersing CNF in carbonate.
(B) A step of reacting the carbonate ester dispersion with a diol compound to obtain a CNF-containing PCD dispersion.
(C) A step of obtaining a CNF-containing polyurethane by reacting the PCD dispersion with an isocyanate compound.
また、本発明は、下記(a)および(b)の工程を含むCNF含有PCD分散体の製造方法である。
(a)炭酸エステルにCNFを分散させて、CNFの炭酸エステル分散体を得る工程。
(b)前記炭酸エステル分散体とジオール化合物を反応させて、CNF含有PCD分散体を得る工程。 Moreover, this invention is a manufacturing method of the CNF containing PCD dispersion | distribution including the process of following (a) and (b).
(A) A step of obtaining CNF carbonate dispersion by dispersing CNF in carbonate.
(B) A step of reacting the carbonate ester dispersion with a diol compound to obtain a CNF-containing PCD dispersion.
(a)炭酸エステルにCNFを分散させて、CNFの炭酸エステル分散体を得る工程。
(b)前記炭酸エステル分散体とジオール化合物を反応させて、CNF含有PCD分散体を得る工程。 Moreover, this invention is a manufacturing method of the CNF containing PCD dispersion | distribution including the process of following (a) and (b).
(A) A step of obtaining CNF carbonate dispersion by dispersing CNF in carbonate.
(B) A step of reacting the carbonate ester dispersion with a diol compound to obtain a CNF-containing PCD dispersion.
本発明の製造方法で得られるCNFを含有するポリウレタンは、機械強度や耐熱性等の特性に優れた高機能な複合材料として、人工皮革、合成皮革、接着剤、塗料およびコーティング剤等に有用である。なお、本発明におけるポリウレタンには発泡ポリウレタン(ウレタンフォーム)が含まれる。
The polyurethane containing CNF obtained by the production method of the present invention is useful for artificial leather, synthetic leather, adhesives, paints, coating agents, etc. as a highly functional composite material excellent in properties such as mechanical strength and heat resistance. is there. The polyurethane in the present invention includes foamed polyurethane (urethane foam).
以下、本発明について、製造方法に沿って詳細に説明する。
本発明の工程(a)は、炭酸エステルにCNFを分散させて、CNFの炭酸エステル分散体を得る工程である。 Hereinafter, the present invention will be described in detail along the manufacturing method.
The step (a) of the present invention is a step in which CNF is dispersed in a carbonate ester to obtain a CNF carbonate ester dispersion.
本発明の工程(a)は、炭酸エステルにCNFを分散させて、CNFの炭酸エステル分散体を得る工程である。 Hereinafter, the present invention will be described in detail along the manufacturing method.
The step (a) of the present invention is a step in which CNF is dispersed in a carbonate ester to obtain a CNF carbonate ester dispersion.
炭酸エステルにCNFを分散させる方法は、CNFの原料であるバイオマスを炭酸エステル中で粉砕することで、CNFを含むセルロースが分散した炭酸エステルを得る方法が挙げられ、例えば、特開2017-23921号公報に記載の方法を用いることができる。
使用するバイオマスとしては、生体素材のいずれでも構わないが、特に、木質系、草本系およびセルロース系の植物系バイオマスを用いることが望ましい。
また、バイオマスを粉砕する装置としては、ボールミル、ビーズミル、ハンマーミル、ロッドミル、ディスクミル、カッターミル、ジェットミル、高圧ホモジナイザーおよび超音波ホモジナイザー等いずれも使用可能であるが、特に湿式のジェットミルを使用することが望ましい。
また、予め粉体化したCNFも用いることができる。粉体化したCNFは、例えば、凍結乾燥や炭酸アンモニウムの熱分解を利用して粉体化したものであり、比表面積が大きいため、前記公報記載の解砕装置以外に自転公転攪拌機等でも炭酸エステル中にCNFを分散させることができる。 Examples of the method for dispersing CNF in the carbonate ester include a method of obtaining a carbonate ester in which cellulose containing CNF is dispersed by pulverizing biomass, which is a raw material of CNF, in the carbonate ester. For example, Japanese Patent Application Laid-Open No. 2017-23921. The method described in the publication can be used.
The biomass to be used may be any biological material, but it is particularly desirable to use woody, herbaceous, and cellulose plant biomass.
In addition, as a device for pulverizing biomass, ball mills, bead mills, hammer mills, rod mills, disk mills, cutter mills, jet mills, high-pressure homogenizers and ultrasonic homogenizers can be used. It is desirable to do.
Further, CNF powdered in advance can also be used. The pulverized CNF is, for example, pulverized by freeze-drying or thermal decomposition of ammonium carbonate, and has a large specific surface area. CNF can be dispersed in the ester.
使用するバイオマスとしては、生体素材のいずれでも構わないが、特に、木質系、草本系およびセルロース系の植物系バイオマスを用いることが望ましい。
また、バイオマスを粉砕する装置としては、ボールミル、ビーズミル、ハンマーミル、ロッドミル、ディスクミル、カッターミル、ジェットミル、高圧ホモジナイザーおよび超音波ホモジナイザー等いずれも使用可能であるが、特に湿式のジェットミルを使用することが望ましい。
また、予め粉体化したCNFも用いることができる。粉体化したCNFは、例えば、凍結乾燥や炭酸アンモニウムの熱分解を利用して粉体化したものであり、比表面積が大きいため、前記公報記載の解砕装置以外に自転公転攪拌機等でも炭酸エステル中にCNFを分散させることができる。 Examples of the method for dispersing CNF in the carbonate ester include a method of obtaining a carbonate ester in which cellulose containing CNF is dispersed by pulverizing biomass, which is a raw material of CNF, in the carbonate ester. For example, Japanese Patent Application Laid-Open No. 2017-23921. The method described in the publication can be used.
The biomass to be used may be any biological material, but it is particularly desirable to use woody, herbaceous, and cellulose plant biomass.
In addition, as a device for pulverizing biomass, ball mills, bead mills, hammer mills, rod mills, disk mills, cutter mills, jet mills, high-pressure homogenizers and ultrasonic homogenizers can be used. It is desirable to do.
Further, CNF powdered in advance can also be used. The pulverized CNF is, for example, pulverized by freeze-drying or thermal decomposition of ammonium carbonate, and has a large specific surface area. CNF can be dispersed in the ester.
前記炭酸エステルとしては、ジオール化合物との反応によってPCDを与えることができる環状カーボネート類および鎖状カーボネート類が挙げられる。
環状カーボネート類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の炭素数2~4のアルキレン基を有するアルキレンカーボネート類が挙げられ、これらの中でも、エチレンカーボネート、プロピレンカーボネートおよびブチレンカーボネートが好ましく、エチレンカーボネートが特に好ましい。 Examples of the carbonic acid ester include cyclic carbonates and chain carbonates that can give PCD by reaction with a diol compound.
Examples of the cyclic carbonates include alkylene carbonates having an alkylene group having 2 to 4 carbon atoms such as ethylene carbonate, propylene carbonate, and butylene carbonate. Among these, ethylene carbonate, propylene carbonate, and butylene carbonate are preferable. Is particularly preferred.
環状カーボネート類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の炭素数2~4のアルキレン基を有するアルキレンカーボネート類が挙げられ、これらの中でも、エチレンカーボネート、プロピレンカーボネートおよびブチレンカーボネートが好ましく、エチレンカーボネートが特に好ましい。 Examples of the carbonic acid ester include cyclic carbonates and chain carbonates that can give PCD by reaction with a diol compound.
Examples of the cyclic carbonates include alkylene carbonates having an alkylene group having 2 to 4 carbon atoms such as ethylene carbonate, propylene carbonate, and butylene carbonate. Among these, ethylene carbonate, propylene carbonate, and butylene carbonate are preferable. Is particularly preferred.
鎖状カーボネート類としては、ジアルキルカーボネートおよびジアリールカーボネートが好ましい。ジアルキルカーボネートとしては、構成するアルキル基の炭素数は1~5個であることが好ましく、特に好ましくは1~4個である。具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート等の対称鎖状アルキルカーボネート類、エチルメチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート等の非対称鎖状アルキルカーボネート類等のジアルキルカーボネートが挙げられる。これらの中でも、ジメチルカーボネートおよびジエチルカーボネートが好ましい。
ジアリールカーボネートとしてはジフェニルカーボネートおよびジトリルカーボネートが挙げられ、ジフェニルカーボネートが好ましい。 As the chain carbonates, dialkyl carbonate and diaryl carbonate are preferable. In the dialkyl carbonate, the alkyl group constituting the carbon group preferably has 1 to 5 carbon atoms, particularly preferably 1 to 4 carbon atoms. Specific examples include symmetric chain alkyl carbonates such as dimethyl carbonate, diethyl carbonate, and di-n-propyl carbonate, and asymmetric chain alkyl carbonates such as ethyl methyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate. And dialkyl carbonates. Among these, dimethyl carbonate and diethyl carbonate are preferable.
Examples of the diaryl carbonate include diphenyl carbonate and ditolyl carbonate, and diphenyl carbonate is preferable.
ジアリールカーボネートとしてはジフェニルカーボネートおよびジトリルカーボネートが挙げられ、ジフェニルカーボネートが好ましい。 As the chain carbonates, dialkyl carbonate and diaryl carbonate are preferable. In the dialkyl carbonate, the alkyl group constituting the carbon group preferably has 1 to 5 carbon atoms, particularly preferably 1 to 4 carbon atoms. Specific examples include symmetric chain alkyl carbonates such as dimethyl carbonate, diethyl carbonate, and di-n-propyl carbonate, and asymmetric chain alkyl carbonates such as ethyl methyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate. And dialkyl carbonates. Among these, dimethyl carbonate and diethyl carbonate are preferable.
Examples of the diaryl carbonate include diphenyl carbonate and ditolyl carbonate, and diphenyl carbonate is preferable.
例えば、炭酸エステルとしてエチレンカーボネートを用い、木質系バイオマスとして広葉樹パルプ(濃度1wt%)を用い、超音波ホモジナイザーで解砕処理すれば、顕微鏡観察によって、太さが約200nm、長さが約50μmのCNFが生成する。
For example, ethylene carbonate is used as the carbonate ester, hardwood pulp (concentration 1 wt%) is used as the woody biomass, and if it is crushed with an ultrasonic homogenizer, the thickness is about 200 nm and the length is about 50 μm. CNF is generated.
前記工程(a)において、次工程(b)での反応性に優れるため、セルロース原料を予め精製した後、精製セルロース原料を炭酸エステル中で解繊することが好ましい。予め精製しない場合、セルロース原料に含まれる不純物が、炭酸エステル中に溶けることで、ジオール化合物とのエステル交換反応を阻害する恐れがある。
セルロース原料の精製方法は特に限定されないが、以下に示す精製方法が例示される。圧力容器に原料セルロースと水を仕込んだ後、圧力容器を加熱および加圧し、上澄み液を除去しながら、水の添加と加熱および加圧操作を繰り返した後、ろ過および水洗をして、ケーキ状のセルロースを得た後、減圧乾燥させ、精製したセルロース原料を得る。 In the said process (a), since it is excellent in the reactivity in the following process (b), after refine | purifying a cellulose raw material previously, it is preferable to fibrillate the refined cellulose raw material in carbonate ester. If not purified in advance, the impurities contained in the cellulose raw material may dissolve in the carbonate ester, which may inhibit the transesterification reaction with the diol compound.
Although the purification method of a cellulose raw material is not specifically limited, The purification method shown below is illustrated. After charging the raw material cellulose and water into the pressure vessel, heating and pressurizing the pressure vessel, removing the supernatant liquid, repeating the addition of water, heating and pressurizing operations, followed by filtration and washing with water, cake-like After obtaining the cellulose, it was dried under reduced pressure to obtain a purified cellulose raw material.
セルロース原料の精製方法は特に限定されないが、以下に示す精製方法が例示される。圧力容器に原料セルロースと水を仕込んだ後、圧力容器を加熱および加圧し、上澄み液を除去しながら、水の添加と加熱および加圧操作を繰り返した後、ろ過および水洗をして、ケーキ状のセルロースを得た後、減圧乾燥させ、精製したセルロース原料を得る。 In the said process (a), since it is excellent in the reactivity in the following process (b), after refine | purifying a cellulose raw material previously, it is preferable to fibrillate the refined cellulose raw material in carbonate ester. If not purified in advance, the impurities contained in the cellulose raw material may dissolve in the carbonate ester, which may inhibit the transesterification reaction with the diol compound.
Although the purification method of a cellulose raw material is not specifically limited, The purification method shown below is illustrated. After charging the raw material cellulose and water into the pressure vessel, heating and pressurizing the pressure vessel, removing the supernatant liquid, repeating the addition of water, heating and pressurizing operations, followed by filtration and washing with water, cake-like After obtaining the cellulose, it was dried under reduced pressure to obtain a purified cellulose raw material.
本発明の工程(b)は、前記炭酸エステル分散体とジオール化合物を反応させて、CNF含有PCD分散体を得る工程である。本工程では、CNFには粉砕前のセルロースが含まれていても良い。
CNFが分散した炭酸エステルを用いて、ジオール化合物との反応により、CNFが分散したPCD分散体を得る方法としては、公知なPCDを製造する方法が適用され、例えば、特開2015-044986号公報および特開2017-025155号公報に記載の方法などが挙げられる。 Step (b) of the present invention is a step of obtaining a CNF-containing PCD dispersion by reacting the carbonate ester dispersion with a diol compound. In this step, CNF may contain cellulose before pulverization.
As a method of obtaining a PCD dispersion in which CNF is dispersed by reaction with a diol compound using a carbonate ester in which CNF is dispersed, a known method for producing PCD is applied. For example, JP-A-2015-044986 And the method described in JP-A-2017-025155.
CNFが分散した炭酸エステルを用いて、ジオール化合物との反応により、CNFが分散したPCD分散体を得る方法としては、公知なPCDを製造する方法が適用され、例えば、特開2015-044986号公報および特開2017-025155号公報に記載の方法などが挙げられる。 Step (b) of the present invention is a step of obtaining a CNF-containing PCD dispersion by reacting the carbonate ester dispersion with a diol compound. In this step, CNF may contain cellulose before pulverization.
As a method of obtaining a PCD dispersion in which CNF is dispersed by reaction with a diol compound using a carbonate ester in which CNF is dispersed, a known method for producing PCD is applied. For example, JP-A-2015-044986 And the method described in JP-A-2017-025155.
例えば、PCDはエステル交換反応と重縮合反応からなる2段階の反応を経て得ることができる。炭酸エステルとジオール化合物を20:1~1:10のモル比で混合し、常圧または減圧下で100~300℃の温度で反応させ、副生するエチレングリコールおよび未反応のエチレンカーボネートを留出させ、2~10単位の低分子量PCDを得、次いで減圧下で100~300℃で未反応の原料ジオール化合物とエチレンカーボネートを留出させるとともに、低分子量のPCDを重縮合させる。原料ジオール化合物の留出量を加減することによって、所定の分子量のPCDを得ることができる。
なお、2種類以上の原料ジオール化合物を用いてPCDを製造する場合は、留出する原料ジオール化合物の組成をガスクロマトグラフ等で分析することで、PCDの組成比を求めることができ、PCDの組成比は反応中に原料ジオール化合物を追加することで任意の組成比に調整できる。 For example, PCD can be obtained through a two-stage reaction consisting of a transesterification reaction and a polycondensation reaction. Carbonate ester and diol compound are mixed at a molar ratio of 20: 1 to 1:10 and reacted at a temperature of 100 to 300 ° C. under normal pressure or reduced pressure to distill ethylene glycol and unreacted ethylene carbonate as by-products. The low molecular weight PCD of 2 to 10 units is obtained, and then the unreacted raw diol compound and ethylene carbonate are distilled off at 100 to 300 ° C. under reduced pressure, and the low molecular weight PCD is polycondensed. A PCD having a predetermined molecular weight can be obtained by adjusting the distillate amount of the raw diol compound.
In addition, when manufacturing PCD using two or more types of raw material diol compounds, the composition ratio of PCD can be calculated | required by analyzing the composition of the raw material diol compound to distill with a gas chromatograph etc., and the composition of PCD The ratio can be adjusted to an arbitrary composition ratio by adding a raw material diol compound during the reaction.
なお、2種類以上の原料ジオール化合物を用いてPCDを製造する場合は、留出する原料ジオール化合物の組成をガスクロマトグラフ等で分析することで、PCDの組成比を求めることができ、PCDの組成比は反応中に原料ジオール化合物を追加することで任意の組成比に調整できる。 For example, PCD can be obtained through a two-stage reaction consisting of a transesterification reaction and a polycondensation reaction. Carbonate ester and diol compound are mixed at a molar ratio of 20: 1 to 1:10 and reacted at a temperature of 100 to 300 ° C. under normal pressure or reduced pressure to distill ethylene glycol and unreacted ethylene carbonate as by-products. The low molecular weight PCD of 2 to 10 units is obtained, and then the unreacted raw diol compound and ethylene carbonate are distilled off at 100 to 300 ° C. under reduced pressure, and the low molecular weight PCD is polycondensed. A PCD having a predetermined molecular weight can be obtained by adjusting the distillate amount of the raw diol compound.
In addition, when manufacturing PCD using two or more types of raw material diol compounds, the composition ratio of PCD can be calculated | required by analyzing the composition of the raw material diol compound to distill with a gas chromatograph etc., and the composition of PCD The ratio can be adjusted to an arbitrary composition ratio by adding a raw material diol compound during the reaction.
例えば、1,6-ヘキサンジオール(以下、HDOという)骨格を有し、分子量が1000のPCDは、以下に示す方法で得ることができる。
精留塔を取り付けた反応装置に、1質量%のCNFを含むエチレンカーボネート(以下、ECという)を400g、HDOを450g、触媒としてテトラブチルチタネートを0.8g仕込み、50torrで徐々に昇温する。絶えず留出があるように内温を160℃~170℃まで上げ、留出が止まった時点で終了する。この第一段の反応では、HDOへのECの付加やECとHDOの間でエステル交換反応が起こり、オリゴマーが生成し、留出物は主としてエチレングリコールである。
次いで、精留塔を取り外し、減圧度を5torr~0torrまで上げ、絶えず留出があるように内温を150℃~185℃へ上げる。留出が止まり、所定の水酸基価に達した時点で終了とする。第二段の反応では、未反応のECやエチレングリコールの留出および低分子量のカーボネートジオール同士の重縮合でHDOが留出し、分子量が増大する。留出物は主としてHDOとなる。 For example, PCD having a 1,6-hexanediol (hereinafter referred to as HDO) skeleton and a molecular weight of 1000 can be obtained by the following method.
A reactor equipped with a rectifying column is charged with 400 g of ethylene carbonate (hereinafter referred to as EC) containing 1% by mass of CNF, 450 g of HDO, and 0.8 g of tetrabutyl titanate as a catalyst, and the temperature is gradually raised at 50 torr. . The internal temperature is raised to 160 ° C to 170 ° C so that there is constant distillation, and the process ends when the distillation stops. In this first stage reaction, addition of EC to HDO or transesterification occurs between EC and HDO, an oligomer is formed, and the distillate is mainly ethylene glycol.
Next, the rectification column is removed, the degree of vacuum is increased to 5 torr to 0 torr, and the internal temperature is increased to 150 ° C. to 185 ° C. so that there is continuous distillation. When the distillation stops and reaches a predetermined hydroxyl value, the process is terminated. In the second-stage reaction, HDO is distilled by distillation of unreacted EC and ethylene glycol and polycondensation of low molecular weight carbonate diols, and the molecular weight increases. The distillate is mainly HDO.
精留塔を取り付けた反応装置に、1質量%のCNFを含むエチレンカーボネート(以下、ECという)を400g、HDOを450g、触媒としてテトラブチルチタネートを0.8g仕込み、50torrで徐々に昇温する。絶えず留出があるように内温を160℃~170℃まで上げ、留出が止まった時点で終了する。この第一段の反応では、HDOへのECの付加やECとHDOの間でエステル交換反応が起こり、オリゴマーが生成し、留出物は主としてエチレングリコールである。
次いで、精留塔を取り外し、減圧度を5torr~0torrまで上げ、絶えず留出があるように内温を150℃~185℃へ上げる。留出が止まり、所定の水酸基価に達した時点で終了とする。第二段の反応では、未反応のECやエチレングリコールの留出および低分子量のカーボネートジオール同士の重縮合でHDOが留出し、分子量が増大する。留出物は主としてHDOとなる。 For example, PCD having a 1,6-hexanediol (hereinafter referred to as HDO) skeleton and a molecular weight of 1000 can be obtained by the following method.
A reactor equipped with a rectifying column is charged with 400 g of ethylene carbonate (hereinafter referred to as EC) containing 1% by mass of CNF, 450 g of HDO, and 0.8 g of tetrabutyl titanate as a catalyst, and the temperature is gradually raised at 50 torr. . The internal temperature is raised to 160 ° C to 170 ° C so that there is constant distillation, and the process ends when the distillation stops. In this first stage reaction, addition of EC to HDO or transesterification occurs between EC and HDO, an oligomer is formed, and the distillate is mainly ethylene glycol.
Next, the rectification column is removed, the degree of vacuum is increased to 5 torr to 0 torr, and the internal temperature is increased to 150 ° C. to 185 ° C. so that there is continuous distillation. When the distillation stops and reaches a predetermined hydroxyl value, the process is terminated. In the second-stage reaction, HDO is distilled by distillation of unreacted EC and ethylene glycol and polycondensation of low molecular weight carbonate diols, and the molecular weight increases. The distillate is mainly HDO.
また、前記反応には、必要に応じて三級アミン触媒や有機金属系触媒等を用いてもよいが、触媒を失活させる工程が不要となり、反応液の着色が低減する利点があることから、無触媒で反応することが好ましい。
In addition, a tertiary amine catalyst, an organometallic catalyst, or the like may be used for the reaction as necessary, but a step of deactivating the catalyst is unnecessary, and there is an advantage that coloring of the reaction solution is reduced. It is preferable to react without a catalyst.
本発明の工程(c)は、前記CNF含有PCD分散体とイソシアナート化合物を反応させて、CNF含有のポリウレタンを得る工程である。この工程(c)において、反応条件によりCNF含有の発泡ポリウレタンを得ることができる。
イソシアナート化合物としては、分子中にイソシアナート基を2個以上有する、例えば、トリレンジイソシアナート、ジフェニルメタンジイソシアナ-ト、キシリレンジイソシアナート、イソホロンジイソシアナート、水添ジフェニルメタンジイソシアナート、水添キシリレンジイソシアナートおよびヘキサメチレンジイソシアナート等を用いることができる。 The step (c) of the present invention is a step of obtaining a CNF-containing polyurethane by reacting the CNF-containing PCD dispersion with an isocyanate compound. In this step (c), a CNF-containing foamed polyurethane can be obtained depending on the reaction conditions.
Examples of the isocyanate compound include two or more isocyanate groups in the molecule, such as tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, water Added xylylene diisocyanate and hexamethylene diisocyanate can be used.
イソシアナート化合物としては、分子中にイソシアナート基を2個以上有する、例えば、トリレンジイソシアナート、ジフェニルメタンジイソシアナ-ト、キシリレンジイソシアナート、イソホロンジイソシアナート、水添ジフェニルメタンジイソシアナート、水添キシリレンジイソシアナートおよびヘキサメチレンジイソシアナート等を用いることができる。 The step (c) of the present invention is a step of obtaining a CNF-containing polyurethane by reacting the CNF-containing PCD dispersion with an isocyanate compound. In this step (c), a CNF-containing foamed polyurethane can be obtained depending on the reaction conditions.
Examples of the isocyanate compound include two or more isocyanate groups in the molecule, such as tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, water Added xylylene diisocyanate and hexamethylene diisocyanate can be used.
前記イソシアナート化合物と反応するPCDの水酸基としては、JIS K 1557-1(プラスチック?ポリウレタン原料ポリオール試験方法?第1部:水酸基価の求め方)に準じて求めた水酸基価を用いればよい。PCDの水酸基とイソシアネート化合物のイソシアネート基のモル比([NCO/OH])は一般的に1.0以下であるが、ウレタンプレポリマーを製造する場合は1.0を超えるモル比とするのが好ましい。
例えば、ポリウレタンシートを作製する場合は、PCDとイソシアナート化合物を常温から70℃で混合し、真空脱泡後、必要に応じて触媒を添加して混合後、再度真空脱泡して金型に注型し、40℃~110℃で3時間~12時間加熱硬化させて、ポリウレタンシートを作製する。 As the hydroxyl group of PCD that reacts with the isocyanate compound, the hydroxyl value determined in accordance with JIS K1557-1 (plastics—polyurethane raw material polyol test method—part 1: determination of hydroxyl value) may be used. The molar ratio of the hydroxyl group of PCD to the isocyanate group of the isocyanate compound ([NCO / OH]) is generally 1.0 or less. However, when a urethane prepolymer is produced, the molar ratio is more than 1.0. preferable.
For example, when producing a polyurethane sheet, PCD and an isocyanate compound are mixed from room temperature to 70 ° C., vacuum defoamed, mixed with a catalyst if necessary, and then defoamed again into a mold. Cast and heat cure at 40 ° C. to 110 ° C. for 3 to 12 hours to produce a polyurethane sheet.
例えば、ポリウレタンシートを作製する場合は、PCDとイソシアナート化合物を常温から70℃で混合し、真空脱泡後、必要に応じて触媒を添加して混合後、再度真空脱泡して金型に注型し、40℃~110℃で3時間~12時間加熱硬化させて、ポリウレタンシートを作製する。 As the hydroxyl group of PCD that reacts with the isocyanate compound, the hydroxyl value determined in accordance with JIS K1557-1 (plastics—polyurethane raw material polyol test method—part 1: determination of hydroxyl value) may be used. The molar ratio of the hydroxyl group of PCD to the isocyanate group of the isocyanate compound ([NCO / OH]) is generally 1.0 or less. However, when a urethane prepolymer is produced, the molar ratio is more than 1.0. preferable.
For example, when producing a polyurethane sheet, PCD and an isocyanate compound are mixed from room temperature to 70 ° C., vacuum defoamed, mixed with a catalyst if necessary, and then defoamed again into a mold. Cast and heat cure at 40 ° C. to 110 ° C. for 3 to 12 hours to produce a polyurethane sheet.
前記工程(c)において、下記の鎖延長剤、硬度調整剤、鎖停止剤、触媒、ポリオールおよび溶剤を使用することができる。
In the step (c), the following chain extender, hardness adjusting agent, chain terminator, catalyst, polyol and solvent can be used.
<鎖延長剤>
本発明のポリウレタンを製造する際に用いられる鎖延長剤は、後述するイソシアネート基を有するプレポリマーを製造する場合において、イソシアネート基と反応する活性水素を少なくとも2個有する低分子量化合物であり、通常ポリオールおよびポリアミン等を挙げることができる。
その具体例としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール等の直鎖ジオール類;2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-メチ ル-2-プロピル-1,3-プロパンジオール、2,4-ヘプタンジオール、1,4-ジ メチロールヘキサン、2-エチル-1,3-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、ダイマージオール等の分岐鎖を有するジオール類;ジエチレングリコール、プロピレングリコール等のエーテル基を有するジオール類;1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,4-ジヒドロキシエチルシクロヘキサン等の脂環構造を有するジオール類、キシリレングリコール、1,4-ジヒドロキシエチルベンゼン、4,4’-メチレンビス(ヒドロキシエチルベンゼン)等の芳香族基を有するジオール類;グリセリン、トリメチロールプロパン、ペンタエリスリトール等のポリオール類;N-メチルエタノールアミン、N-エチルエタノールアミン等のヒドロキシアミン類;エチレンジアミン、1,3-ジアミノプロパン、ヘキサチレンジアミン、トリエチレンテトラミン、ジエチレントリアミン、イソホロンジアミン、4,4’-ジアミノジシクロヘキシルメタン、2-ヒドロキシエチルプロピレンジアミン、ジ-2-ヒドロキシエチルエチレンジアミン、ジ-2-ヒドロキシエチルプロピレンジアミン、2-ヒドロキシプロピルエチレンジアミン、ジ-2-ヒドロキシプロピルエチレンジアミン、4,4’-ジフェニルメタンジアミン、メチレンビス(o-クロロアニリン)、キシリレンジアミン、ジフェニルジアミン、トリレンジアミン、ヒドラジン、ピペラジン、N,N’-ジアミノピペラジン等のポリアミン類;および水等を挙げることができる。 <Chain extender>
The chain extender used in producing the polyurethane of the present invention is a low molecular weight compound having at least two active hydrogens that react with an isocyanate group in the production of a prepolymer having an isocyanate group, which will be described later. And polyamines.
Specific examples thereof include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, and 1,9-nonanediol. Linear diols such as 1,10-decanediol and 1,12-dodecanediol; 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl 1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2,4-heptanediol, 1,4-dimethylolhexane, 2-ethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-methyl-1,8-octanediol, 2-butyl-2-ethyl-1,3-propane Diols having branched chains such as all and dimer diols; Diols having ether groups such as diethylene glycol and propylene glycol; 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,4-dihydroxyethylcyclohexane, etc. Diols having an alicyclic structure, diols having an aromatic group such as xylylene glycol, 1,4-dihydroxyethylbenzene, 4,4′-methylenebis (hydroxyethylbenzene); polyols such as glycerin, trimethylolpropane and pentaerythritol Hydroxyamines such as N-methylethanolamine and N-ethylethanolamine; ethylenediamine, 1,3-diaminopropane, hexatylenediamine, triethylenetetramine, diethylenetri Min, isophorone diamine, 4,4'-diaminodicyclohexylmethane, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, di-2-hydroxyethylpropylenediamine, 2-hydroxypropylethylenediamine, di-2-hydroxypropyl Polyamines such as ethylenediamine, 4,4′-diphenylmethanediamine, methylenebis (o-chloroaniline), xylylenediamine, diphenyldiamine, tolylenediamine, hydrazine, piperazine, N, N′-diaminopiperazine; and water be able to.
本発明のポリウレタンを製造する際に用いられる鎖延長剤は、後述するイソシアネート基を有するプレポリマーを製造する場合において、イソシアネート基と反応する活性水素を少なくとも2個有する低分子量化合物であり、通常ポリオールおよびポリアミン等を挙げることができる。
その具体例としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール等の直鎖ジオール類;2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-メチ ル-2-プロピル-1,3-プロパンジオール、2,4-ヘプタンジオール、1,4-ジ メチロールヘキサン、2-エチル-1,3-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、ダイマージオール等の分岐鎖を有するジオール類;ジエチレングリコール、プロピレングリコール等のエーテル基を有するジオール類;1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,4-ジヒドロキシエチルシクロヘキサン等の脂環構造を有するジオール類、キシリレングリコール、1,4-ジヒドロキシエチルベンゼン、4,4’-メチレンビス(ヒドロキシエチルベンゼン)等の芳香族基を有するジオール類;グリセリン、トリメチロールプロパン、ペンタエリスリトール等のポリオール類;N-メチルエタノールアミン、N-エチルエタノールアミン等のヒドロキシアミン類;エチレンジアミン、1,3-ジアミノプロパン、ヘキサチレンジアミン、トリエチレンテトラミン、ジエチレントリアミン、イソホロンジアミン、4,4’-ジアミノジシクロヘキシルメタン、2-ヒドロキシエチルプロピレンジアミン、ジ-2-ヒドロキシエチルエチレンジアミン、ジ-2-ヒドロキシエチルプロピレンジアミン、2-ヒドロキシプロピルエチレンジアミン、ジ-2-ヒドロキシプロピルエチレンジアミン、4,4’-ジフェニルメタンジアミン、メチレンビス(o-クロロアニリン)、キシリレンジアミン、ジフェニルジアミン、トリレンジアミン、ヒドラジン、ピペラジン、N,N’-ジアミノピペラジン等のポリアミン類;および水等を挙げることができる。 <Chain extender>
The chain extender used in producing the polyurethane of the present invention is a low molecular weight compound having at least two active hydrogens that react with an isocyanate group in the production of a prepolymer having an isocyanate group, which will be described later. And polyamines.
Specific examples thereof include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, and 1,9-nonanediol. Linear diols such as 1,10-decanediol and 1,12-dodecanediol; 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl 1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2,4-heptanediol, 1,4-dimethylolhexane, 2-ethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-methyl-1,8-octanediol, 2-butyl-2-ethyl-1,3-propane Diols having branched chains such as all and dimer diols; Diols having ether groups such as diethylene glycol and propylene glycol; 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,4-dihydroxyethylcyclohexane, etc. Diols having an alicyclic structure, diols having an aromatic group such as xylylene glycol, 1,4-dihydroxyethylbenzene, 4,4′-methylenebis (hydroxyethylbenzene); polyols such as glycerin, trimethylolpropane and pentaerythritol Hydroxyamines such as N-methylethanolamine and N-ethylethanolamine; ethylenediamine, 1,3-diaminopropane, hexatylenediamine, triethylenetetramine, diethylenetri Min, isophorone diamine, 4,4'-diaminodicyclohexylmethane, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, di-2-hydroxyethylpropylenediamine, 2-hydroxypropylethylenediamine, di-2-hydroxypropyl Polyamines such as ethylenediamine, 4,4′-diphenylmethanediamine, methylenebis (o-chloroaniline), xylylenediamine, diphenyldiamine, tolylenediamine, hydrazine, piperazine, N, N′-diaminopiperazine; and water be able to.
これらの鎖延長剤は単独で用いてもよく、2種以上を併用してもよい。
これらの中でも得られるポリウレタンの物性のバランスが好ましい点、工業的に安価に多量に入手が可能な点で、1,4-ブタンジオール(以下、1,4BDと称する場合がある)、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,4-シクロヘキサンジメタノール、1,4-ジヒドロキシエチルシクロヘキサン、エチレンジアミン、1,3-ジアミノプロパン、イソホロンジアミン、4,4’-ジアミノジシクロヘキシルメタンが好ましい。 These chain extenders may be used alone or in combination of two or more.
Among these, 1,4-butanediol (hereinafter sometimes referred to as 1,4BD), 1,5 is preferable in that the balance of physical properties of the obtained polyurethane is preferable, and a large amount can be obtained industrially at low cost. -Pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexanedimethanol, 1,4-dihydroxyethylcyclohexane, ethylenediamine, 1,3-diaminopropane, isophoronediamine, and 4,4′-diaminodicyclohexylmethane are preferred.
これらの中でも得られるポリウレタンの物性のバランスが好ましい点、工業的に安価に多量に入手が可能な点で、1,4-ブタンジオール(以下、1,4BDと称する場合がある)、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,4-シクロヘキサンジメタノール、1,4-ジヒドロキシエチルシクロヘキサン、エチレンジアミン、1,3-ジアミノプロパン、イソホロンジアミン、4,4’-ジアミノジシクロヘキシルメタンが好ましい。 These chain extenders may be used alone or in combination of two or more.
Among these, 1,4-butanediol (hereinafter sometimes referred to as 1,4BD), 1,5 is preferable in that the balance of physical properties of the obtained polyurethane is preferable, and a large amount can be obtained industrially at low cost. -Pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexanedimethanol, 1,4-dihydroxyethylcyclohexane, ethylenediamine, 1,3-diaminopropane, isophoronediamine, and 4,4′-diaminodicyclohexylmethane are preferred.
<硬度調整剤>
硬度調整剤としては、ポリカーボネートジオールの原料であるジヒドロキシ化合物などを使用すると良い。硬度調整剤を使用する理由を以下に説明する。例えば分子量の大きいポリカーボネートジオールを用いてポリウレタンを製造する場合、ポリイソシアネートや鎖延長剤の原料モル組成を分子量の低いポリカーボネートジオールと同一にすると、ポリウレタン分子全体に占めるポリカーボネートジオールの重量割合が大きくなることに起因し、弾性率や硬度が低下する。そのため、ポリカーボネートジオールの原料であるジヒドロキシ化合物などを硬度調整剤として加えることで、ポリウレタン全体に占めるポリカーボネートジオールの重量割合を同等に調整することが可能となり、分子量の異なるポリカーボネートジオールを用いた場合であっても、得られるポリウレタンの弾性率や硬度が低下することを防ぐことができる。この方法は一般的に広く用いられているものである。 <Hardness adjuster>
As the hardness adjusting agent, a dihydroxy compound that is a raw material of polycarbonate diol may be used. The reason why the hardness adjusting agent is used will be described below. For example, when a polyurethane is produced using a polycarbonate diol having a large molecular weight, if the molar composition of the polyisocyanate and the chain extender is the same as that of the polycarbonate diol having a low molecular weight, the weight ratio of the polycarbonate diol in the entire polyurethane molecule increases. As a result, the elastic modulus and hardness are reduced. Therefore, by adding a dihydroxy compound or the like, which is a raw material of polycarbonate diol, as a hardness adjuster, it becomes possible to adjust the weight ratio of polycarbonate diol in the entire polyurethane equally, which is the case when polycarbonate diols having different molecular weights are used. However, it can prevent that the elasticity modulus and hardness of the obtained polyurethane fall. This method is generally widely used.
硬度調整剤としては、ポリカーボネートジオールの原料であるジヒドロキシ化合物などを使用すると良い。硬度調整剤を使用する理由を以下に説明する。例えば分子量の大きいポリカーボネートジオールを用いてポリウレタンを製造する場合、ポリイソシアネートや鎖延長剤の原料モル組成を分子量の低いポリカーボネートジオールと同一にすると、ポリウレタン分子全体に占めるポリカーボネートジオールの重量割合が大きくなることに起因し、弾性率や硬度が低下する。そのため、ポリカーボネートジオールの原料であるジヒドロキシ化合物などを硬度調整剤として加えることで、ポリウレタン全体に占めるポリカーボネートジオールの重量割合を同等に調整することが可能となり、分子量の異なるポリカーボネートジオールを用いた場合であっても、得られるポリウレタンの弾性率や硬度が低下することを防ぐことができる。この方法は一般的に広く用いられているものである。 <Hardness adjuster>
As the hardness adjusting agent, a dihydroxy compound that is a raw material of polycarbonate diol may be used. The reason why the hardness adjusting agent is used will be described below. For example, when a polyurethane is produced using a polycarbonate diol having a large molecular weight, if the molar composition of the polyisocyanate and the chain extender is the same as that of the polycarbonate diol having a low molecular weight, the weight ratio of the polycarbonate diol in the entire polyurethane molecule increases. As a result, the elastic modulus and hardness are reduced. Therefore, by adding a dihydroxy compound or the like, which is a raw material of polycarbonate diol, as a hardness adjuster, it becomes possible to adjust the weight ratio of polycarbonate diol in the entire polyurethane equally, which is the case when polycarbonate diols having different molecular weights are used. However, it can prevent that the elasticity modulus and hardness of the obtained polyurethane fall. This method is generally widely used.
硬度調整剤としてはポリカーボネートジオールの原料であるジヒドロキシ化合物を用いることが好ましく、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、1,13-トリデカンジオール、1,14-テトラデカンジオール、1 ,16-ヘキサデカンジオール、1,18-オクタデカンジオール、1,20-エイコサンジオール等が挙げられる。
As the hardness adjusting agent, it is preferable to use a dihydroxy compound which is a raw material of polycarbonate diol. 1,3-propanediol, 2-methyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol 2-methyl-1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,13-tridecanediol, 1,14-tetradecanediol, 1, 16-hexadecanediol 1,18-octadecanediol, 1,20-eicosanediol, etc.
<鎖停止剤>
本発明のポリウレタンを製造する際には、得られるポリウレタンの分子量を制御する目的で、必要に応じて1個の活性水素基を持つ鎖停止剤を使用することができる。
これらの鎖停止剤としては、一個の水酸基を有するメタノール、エタノール、プロパノール、ブタノール、ヘキサノール等の脂肪族モノオール類、一個のアミノ基を有するジエチルアミン、ジブチルアミン、n-ブチルアミン、モノエタノールアミン、ジエタノールアミン、モルホリン等の脂肪族モノアミン類が例示される。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。 <Chain terminator>
In producing the polyurethane of the present invention, a chain terminator having one active hydrogen group can be used as necessary for the purpose of controlling the molecular weight of the resulting polyurethane.
These chain terminators include aliphatic monools such as methanol, ethanol, propanol, butanol and hexanol having one hydroxyl group, diethylamine, dibutylamine, n-butylamine, monoethanolamine and diethanolamine having one amino group. And aliphatic monoamines such as morpholine. These may be used alone or in combination of two or more.
本発明のポリウレタンを製造する際には、得られるポリウレタンの分子量を制御する目的で、必要に応じて1個の活性水素基を持つ鎖停止剤を使用することができる。
これらの鎖停止剤としては、一個の水酸基を有するメタノール、エタノール、プロパノール、ブタノール、ヘキサノール等の脂肪族モノオール類、一個のアミノ基を有するジエチルアミン、ジブチルアミン、n-ブチルアミン、モノエタノールアミン、ジエタノールアミン、モルホリン等の脂肪族モノアミン類が例示される。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。 <Chain terminator>
In producing the polyurethane of the present invention, a chain terminator having one active hydrogen group can be used as necessary for the purpose of controlling the molecular weight of the resulting polyurethane.
These chain terminators include aliphatic monools such as methanol, ethanol, propanol, butanol and hexanol having one hydroxyl group, diethylamine, dibutylamine, n-butylamine, monoethanolamine and diethanolamine having one amino group. And aliphatic monoamines such as morpholine. These may be used alone or in combination of two or more.
<触媒>
本発明のポリウレタンを製造する際のポリウレタン形成反応において、トリエチルアミン、N-エチルモルホリン、トリエチレンジアミンなどのアミン系触媒又はトリメチルチンラウレート、ジブチルチンジラウレート、ジオクチルチンジラウレート、ジオクチルチンジネオデカネートなどのスズ系の化合物、さらにはチタン系化合物などの有機金属塩などに代表される公知のウレタン重合触媒を用いる事もできる。ウレタン重合触媒は、1種を単独で用いてもよく、2種以上を併用してもよい。 <Catalyst>
In the polyurethane forming reaction in producing the polyurethane of the present invention, an amine catalyst such as triethylamine, N-ethylmorpholine, triethylenediamine or the like or tin such as trimethyltin laurate, dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin dineodecanate, etc. Known urethane polymerization catalysts typified by organic compounds such as organic metal salts such as titanium compounds and the like can also be used. A urethane polymerization catalyst may be used individually by 1 type, and may use 2 or more types together.
本発明のポリウレタンを製造する際のポリウレタン形成反応において、トリエチルアミン、N-エチルモルホリン、トリエチレンジアミンなどのアミン系触媒又はトリメチルチンラウレート、ジブチルチンジラウレート、ジオクチルチンジラウレート、ジオクチルチンジネオデカネートなどのスズ系の化合物、さらにはチタン系化合物などの有機金属塩などに代表される公知のウレタン重合触媒を用いる事もできる。ウレタン重合触媒は、1種を単独で用いてもよく、2種以上を併用してもよい。 <Catalyst>
In the polyurethane forming reaction in producing the polyurethane of the present invention, an amine catalyst such as triethylamine, N-ethylmorpholine, triethylenediamine or the like or tin such as trimethyltin laurate, dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin dineodecanate, etc. Known urethane polymerization catalysts typified by organic compounds such as organic metal salts such as titanium compounds and the like can also be used. A urethane polymerization catalyst may be used individually by 1 type, and may use 2 or more types together.
<本発明のポリカーボネートジオール以外のポリオール>
本発明のポリウレタンを製造する際のポリウレタン形成反応においては、本発明のポリカーボネートジオールと必要に応じてそれ以外のポリオールを併用しても良い。ここで、本発明のポリカーボネートジオール以外のポリオールとは、通常のポリウレタン製造の際に用いるものであれば特に限定されず、例えばポリエーテルポリオール、ポリエステルポリオール、本発明以外のポリカーボネートポリオールがあげられる。ここで、本発明のポリカーボネートジオールとそれ以外のポリオールを合わせた重量に対する。本発明のポリカーボネートジオールの重量割合は70%以上が好ましく、90%以上がさらに好ましい。本発明のポリカーボネートジオールの重量割合が少ないと、本発明の特徴である耐薬品性、低温特性、耐熱性のバランスが失われる可能性がある。 <Polyols other than the polycarbonate diol of the present invention>
In the polyurethane formation reaction in producing the polyurethane of the present invention, the polycarbonate diol of the present invention may be used in combination with other polyols as necessary. Here, the polyol other than the polycarbonate diol of the present invention is not particularly limited as long as it is used in normal polyurethane production, and examples thereof include polyether polyols, polyester polyols, and polycarbonate polyols other than the present invention. Here, it is based on the combined weight of the polycarbonate diol of the present invention and other polyols. The weight ratio of the polycarbonate diol of the present invention is preferably 70% or more, more preferably 90% or more. If the weight ratio of the polycarbonate diol of the present invention is small, the balance of chemical resistance, low temperature characteristics and heat resistance, which are the characteristics of the present invention, may be lost.
本発明のポリウレタンを製造する際のポリウレタン形成反応においては、本発明のポリカーボネートジオールと必要に応じてそれ以外のポリオールを併用しても良い。ここで、本発明のポリカーボネートジオール以外のポリオールとは、通常のポリウレタン製造の際に用いるものであれば特に限定されず、例えばポリエーテルポリオール、ポリエステルポリオール、本発明以外のポリカーボネートポリオールがあげられる。ここで、本発明のポリカーボネートジオールとそれ以外のポリオールを合わせた重量に対する。本発明のポリカーボネートジオールの重量割合は70%以上が好ましく、90%以上がさらに好ましい。本発明のポリカーボネートジオールの重量割合が少ないと、本発明の特徴である耐薬品性、低温特性、耐熱性のバランスが失われる可能性がある。 <Polyols other than the polycarbonate diol of the present invention>
In the polyurethane formation reaction in producing the polyurethane of the present invention, the polycarbonate diol of the present invention may be used in combination with other polyols as necessary. Here, the polyol other than the polycarbonate diol of the present invention is not particularly limited as long as it is used in normal polyurethane production, and examples thereof include polyether polyols, polyester polyols, and polycarbonate polyols other than the present invention. Here, it is based on the combined weight of the polycarbonate diol of the present invention and other polyols. The weight ratio of the polycarbonate diol of the present invention is preferably 70% or more, more preferably 90% or more. If the weight ratio of the polycarbonate diol of the present invention is small, the balance of chemical resistance, low temperature characteristics and heat resistance, which are the characteristics of the present invention, may be lost.
本発明において、ポリウレタンの製造には、上述の本発明のポリカーボネートジオールを変性して使用することも出来る。ポリカーボネートジオールの変性方法としては、ポリカーボネートジオールにエチレンオキシド、プロピレンオキシド、ブチレンオキシド等のエポキシ化合物を付加させてエーテル基を導入する方法や、ポリカーボネートジオールをε-カプロラクトン等の環状ラクトンやアジピン酸、コハク酸、セバシン酸、テレフタル酸等のジカルボン酸化合物並びにそれらのエステル化合物と反応させてエステル基を導入する方法がある。エーテル変性ではエチレンオキシド、プロピレンオキシド等による変性でポリカーボネートジオールの粘度が低下し、取扱い性等の理由で好ましい。特に、本発明のポリカーボネートジオールではエチレンオキシドやプロピレンオキシド変性することによって、ポリカーボネートジオールの結晶性が低下し、低温での柔軟性が改善すると共に、エレンオキシド変性の場合は、エチレンオキシド変性ポリカーボネートジオールを用いて製造されたポリウレタンの吸水性や透湿性が増加する為に人工皮革・合成皮革等としての性能が向上することがある。しかし、エチレンオキシドやプロピレンオキシドの付加量が多くなると、変性ポリカーボネートジオールを用いて製造されたポリウレタンの機械強度、耐熱性、耐薬品性等の諸物性が低下するので、ポリカーボネートジオールに対する付加量としては5~50重量%が好適であり、好ましくは5~40重量%、さらに好ましくは5~30重量%である。また、エステル基を導入する方法では、ε-カプロラクトンによる変性でポリカーボネートジオールの粘度が低下し、取扱い性等の理由で好ましい。ポリカーボネートジオールに対するε-カプロラクトンの付加量としては3~70重量%が好適であり、好ましくは5~50重量%であり、さらに好ましくは10~40重量%、よりさらに好ましくは15~30重量%である。ε-カプロラクトンの付加量が70重量%を超えると、変性ポリカーボネートジオールを用いて製造されたポリウレタンの耐加水分解性、耐薬品性等が低下する。また3重量%より少ないと粘度低減効果が小さいため好ましくない。
In the present invention, the above-mentioned polycarbonate diol of the present invention can be modified for use in the production of polyurethane. As a modification method of polycarbonate diol, a method of introducing an ether group by adding an epoxy compound such as ethylene oxide, propylene oxide, or butylene oxide to polycarbonate diol, a polycarbonate diol, a cyclic lactone such as ε-caprolactone, adipic acid, or succinic acid is used. There is a method of introducing an ester group by reacting with dicarboxylic acid compounds such as sebacic acid and terephthalic acid and ester compounds thereof. In the ether modification, the viscosity of the polycarbonate diol is lowered by modification with ethylene oxide, propylene oxide or the like, which is preferable for reasons such as handling. In particular, the polycarbonate diol of the present invention is modified with ethylene oxide or propylene oxide, so that the crystallinity of the polycarbonate diol is lowered and the flexibility at low temperature is improved. Since the water absorption and moisture permeability of the manufactured polyurethane are increased, the performance as artificial leather / synthetic leather may be improved. However, if the addition amount of ethylene oxide or propylene oxide increases, the physical properties such as mechanical strength, heat resistance, chemical resistance and the like of the polyurethane produced using the modified polycarbonate diol decrease. -50 wt% is suitable, preferably 5-40 wt%, more preferably 5-30 wt%. In addition, the method of introducing an ester group is preferable for reasons such as handling because the viscosity of the polycarbonate diol is lowered by modification with ε-caprolactone. The amount of ε-caprolactone added to the polycarbonate diol is preferably 3 to 70% by weight, preferably 5 to 50% by weight, more preferably 10 to 40% by weight, still more preferably 15 to 30% by weight. is there. When the addition amount of ε-caprolactone exceeds 70% by weight, the hydrolysis resistance, chemical resistance, etc. of the polyurethane produced using the modified polycarbonate diol are lowered. On the other hand, if it is less than 3% by weight, the effect of reducing the viscosity is small, which is not preferable.
<溶剤>
本発明のポリウレタンを製造する際のポリウレタン形成反応は溶剤を用いても良い。好ましい溶剤としては、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド,N-メチルピロリドンなどのアミド系溶剤;ジメチルスルホキシドなどのスルホキシド系溶剤、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶剤;テトラヒドロフラン、ジオキサン等のエーテル系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系溶剤;及びトルエン、キシレン等の芳香族炭化水素系溶剤等が挙げられる。これらの溶剤は、単独で用いてもよく、2種以上の混合溶媒として用いてもよい。 <Solvent>
A solvent may be used for the polyurethane formation reaction in producing the polyurethane of the present invention. Preferred solvents include amide solvents such as dimethylformamide, diethylformamide, dimethylacetamide and N-methylpyrrolidone; sulfoxide solvents such as dimethyl sulfoxide; ketone solvents such as methyl ethyl ketone, cyclohexanone and methyl isobutyl ketone; tetrahydrofuran, dioxane and the like. Examples include ether solvents; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; and aromatic hydrocarbon solvents such as toluene and xylene. These solvents may be used alone or as a mixed solvent of two or more.
本発明のポリウレタンを製造する際のポリウレタン形成反応は溶剤を用いても良い。好ましい溶剤としては、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド,N-メチルピロリドンなどのアミド系溶剤;ジメチルスルホキシドなどのスルホキシド系溶剤、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶剤;テトラヒドロフラン、ジオキサン等のエーテル系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系溶剤;及びトルエン、キシレン等の芳香族炭化水素系溶剤等が挙げられる。これらの溶剤は、単独で用いてもよく、2種以上の混合溶媒として用いてもよい。 <Solvent>
A solvent may be used for the polyurethane formation reaction in producing the polyurethane of the present invention. Preferred solvents include amide solvents such as dimethylformamide, diethylformamide, dimethylacetamide and N-methylpyrrolidone; sulfoxide solvents such as dimethyl sulfoxide; ketone solvents such as methyl ethyl ketone, cyclohexanone and methyl isobutyl ketone; tetrahydrofuran, dioxane and the like. Examples include ether solvents; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; and aromatic hydrocarbon solvents such as toluene and xylene. These solvents may be used alone or as a mixed solvent of two or more.
これらの中で好ましい有機溶剤は、メチルエチルケトン、酢酸エチル、トルエン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン及びジメチルスルホキシド等である。
また、本発明のポリカーボネートジオール、ポリジイソシアネート、及び前記の鎖延長剤が配合されたポリウレタン組成物から、水分散液のポリウレタンを製造することもできる。 Among these, preferred organic solvents are methyl ethyl ketone, ethyl acetate, toluene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide and the like.
Moreover, the polyurethane of an aqueous dispersion can also be manufactured from the polyurethane composition with which the polycarbonate diol of this invention, polydiisocyanate, and the said chain extender were mix | blended.
また、本発明のポリカーボネートジオール、ポリジイソシアネート、及び前記の鎖延長剤が配合されたポリウレタン組成物から、水分散液のポリウレタンを製造することもできる。 Among these, preferred organic solvents are methyl ethyl ketone, ethyl acetate, toluene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide and the like.
Moreover, the polyurethane of an aqueous dispersion can also be manufactured from the polyurethane composition with which the polycarbonate diol of this invention, polydiisocyanate, and the said chain extender were mix | blended.
工程(c)において、CNF含有PCD分散体とイソシアナート化合物を反応させて、CNF含有発泡ポリウレタンを製造する場合は、例えば、反応時に水を添加すれば、CNF含有発泡ポリウレタンが得られる。この場合、PCDの水酸基(A)、イソシアナート化合物のイソシアナート基(B)および水(C)の割合(モル比)は、A:B=0.95:1.20~1.05:1.20、かつ、A:C=0.95:0.20~1.05:0.20であることが好ましい。
さらに好ましくは、A:B=0.98:1.20~1.02:1.20、かつ、A:C=0.98:0.20~1.02:0.20である。 In the step (c), when the CNF-containing foamed polyurethane is produced by reacting the CNF-containing PCD dispersion and the isocyanate compound, for example, if water is added during the reaction, the CNF-containing foamed polyurethane is obtained. In this case, the ratio (molar ratio) of the hydroxyl group (A) of PCD, the isocyanate group (B) of the isocyanate compound and water (C) is A: B = 0.95: 1.20 to 1.05: 1. 20 and A: C = 0.95: 0.20 to 1.05: 0.20.
More preferably, A: B = 0.98: 1.20 to 1.02: 1.20 and A: C = 0.98: 0.20 to 1.02: 0.20.
さらに好ましくは、A:B=0.98:1.20~1.02:1.20、かつ、A:C=0.98:0.20~1.02:0.20である。 In the step (c), when the CNF-containing foamed polyurethane is produced by reacting the CNF-containing PCD dispersion and the isocyanate compound, for example, if water is added during the reaction, the CNF-containing foamed polyurethane is obtained. In this case, the ratio (molar ratio) of the hydroxyl group (A) of PCD, the isocyanate group (B) of the isocyanate compound and water (C) is A: B = 0.95: 1.20 to 1.05: 1. 20 and A: C = 0.95: 0.20 to 1.05: 0.20.
More preferably, A: B = 0.98: 1.20 to 1.02: 1.20 and A: C = 0.98: 0.20 to 1.02: 0.20.
発泡ポリウレタンを製造する場合、水を添加する時の反応条件として、反応温度は、水の沸点を超えないように100℃以下の温度で反応させることが好ましい。また、水を添加後、より分散させるため、高温でしばらく静置することが好ましい。
When producing foamed polyurethane, the reaction temperature is preferably 100 ° C. or less so that the reaction temperature does not exceed the boiling point of water as the reaction condition when adding water. Moreover, in order to disperse | distribute more after adding water, it is preferable to leave still for a while at high temperature.
水を添加する以外に、発泡ポリウレタンを製造する方法として、化学発泡剤、物理発泡剤、超臨界流体、熱膨張性マイクロカプセルなどを使用する方法が挙げられる。
化学発泡剤は、ジニトロソペンタメチレンテトラミン、アゾジカルボンアミド、p,p’-オキシビスベンゼンスルホニルヒドラジン、炭化水素ナトリウムなどを添加して、熱分解反応させてガスを発生させるものである。
物理発泡剤は、高圧下で樹脂に液化ガス(フロン、炭化水素)や超臨界流体を溶解させ、圧力低下あるいは加熱により溶解度を低下させることで気泡を発生させるものである。 In addition to adding water, examples of methods for producing foamed polyurethane include methods using chemical foaming agents, physical foaming agents, supercritical fluids, thermally expandable microcapsules, and the like.
The chemical foaming agent is one that adds dinitrosopentamethylenetetramine, azodicarbonamide, p, p′-oxybisbenzenesulfonylhydrazine, sodium hydrocarbon or the like, and generates a gas by a thermal decomposition reaction.
A physical foaming agent generates bubbles by dissolving a liquefied gas (fluorocarbon or hydrocarbon) or a supercritical fluid in a resin under high pressure and reducing the solubility by reducing the pressure or heating.
化学発泡剤は、ジニトロソペンタメチレンテトラミン、アゾジカルボンアミド、p,p’-オキシビスベンゼンスルホニルヒドラジン、炭化水素ナトリウムなどを添加して、熱分解反応させてガスを発生させるものである。
物理発泡剤は、高圧下で樹脂に液化ガス(フロン、炭化水素)や超臨界流体を溶解させ、圧力低下あるいは加熱により溶解度を低下させることで気泡を発生させるものである。 In addition to adding water, examples of methods for producing foamed polyurethane include methods using chemical foaming agents, physical foaming agents, supercritical fluids, thermally expandable microcapsules, and the like.
The chemical foaming agent is one that adds dinitrosopentamethylenetetramine, azodicarbonamide, p, p′-oxybisbenzenesulfonylhydrazine, sodium hydrocarbon or the like, and generates a gas by a thermal decomposition reaction.
A physical foaming agent generates bubbles by dissolving a liquefied gas (fluorocarbon or hydrocarbon) or a supercritical fluid in a resin under high pressure and reducing the solubility by reducing the pressure or heating.
超臨界流体は、窒素や二酸化炭素を高温高圧にして超臨界流体とすることで発泡させるものである。
熱膨張性マイクロカプセルは、炭化水素を熱可塑性樹脂のカプセルでくるんだものであり、高温により炭化水素が気化し、それに応じて軟化したカプセルが膨張するものである。 The supercritical fluid is one that is foamed by using nitrogen or carbon dioxide as a supercritical fluid at high temperature and pressure.
The thermally expandable microcapsules are obtained by wrapping hydrocarbons in thermoplastic resin capsules. The hydrocarbons are vaporized at a high temperature, and the softened capsules expand accordingly.
熱膨張性マイクロカプセルは、炭化水素を熱可塑性樹脂のカプセルでくるんだものであり、高温により炭化水素が気化し、それに応じて軟化したカプセルが膨張するものである。 The supercritical fluid is one that is foamed by using nitrogen or carbon dioxide as a supercritical fluid at high temperature and pressure.
The thermally expandable microcapsules are obtained by wrapping hydrocarbons in thermoplastic resin capsules. The hydrocarbons are vaporized at a high temperature, and the softened capsules expand accordingly.
前記工程(b)で得られるCNF含有PCD分散体は、炭酸エステル中でセルロース原料を解砕した分散体または粉体化したCNFを炭酸エステルに分散させた分散体を原料としている。
セルロース原料を水より疎水的な媒体中で解砕した場合、生成するCNFは水中で解砕したCNFよりも疎水的な表面を有し、有機媒体中での分散性に優れることが知られている。
したがって、水より疎水性の炭酸エステル中で解砕して得られたCNFも水中で解砕したCNFより疎水的で、そのため炭酸エステル中での分散性が良好であるとともに、これを原料として製造したPCD中のCNFも分散性が良好であり、更に、CNF含有PCD分散体を原料とするCNF含有ポリウレタン中のCNFの分散性も良好である。
親水的なCNFは一般的に疎水的な樹脂中では凝集や増粘等の課題が生じやすく、期待した特性が発揮されない場合があるが、本発明の製造方法によれば、これらの課題を解消または低減でき、より高機能なポリウレタンを得ることが可能となる。
また、炭酸エステルの一つであるECは、水とほぼ同じ誘電率を有し、親水的なCNFにも高い親和力を持つと考えられ、CNFに対し良好な分散媒体である。 The CNF-containing PCD dispersion obtained in the step (b) uses a dispersion obtained by pulverizing a cellulose raw material in a carbonate ester or a dispersion obtained by dispersing powdered CNF in a carbonate ester.
When cellulose raw material is crushed in a hydrophobic medium than water, it is known that the produced CNF has a more hydrophobic surface than CNF crushed in water and is excellent in dispersibility in an organic medium. Yes.
Therefore, CNF obtained by crushing in a carbonate ester that is more hydrophobic than water is also more hydrophobic than CNF that is crushed in water, so that it has good dispersibility in the carbonate ester and is produced using this as a raw material. The CNF in the PCD also has a good dispersibility, and further, the CNF in the CNF-containing polyurethane using the CNF-containing PCD dispersion as a raw material also has a good dispersibility.
Hydrophilic CNF generally tends to cause problems such as aggregation and thickening in hydrophobic resins, and the expected characteristics may not be exhibited. However, according to the production method of the present invention, these problems are solved. Alternatively, it is possible to obtain a higher-performance polyurethane that can be reduced.
EC, which is one of carbonate esters, has almost the same dielectric constant as water and is considered to have a high affinity for hydrophilic CNF, and is a good dispersion medium for CNF.
セルロース原料を水より疎水的な媒体中で解砕した場合、生成するCNFは水中で解砕したCNFよりも疎水的な表面を有し、有機媒体中での分散性に優れることが知られている。
したがって、水より疎水性の炭酸エステル中で解砕して得られたCNFも水中で解砕したCNFより疎水的で、そのため炭酸エステル中での分散性が良好であるとともに、これを原料として製造したPCD中のCNFも分散性が良好であり、更に、CNF含有PCD分散体を原料とするCNF含有ポリウレタン中のCNFの分散性も良好である。
親水的なCNFは一般的に疎水的な樹脂中では凝集や増粘等の課題が生じやすく、期待した特性が発揮されない場合があるが、本発明の製造方法によれば、これらの課題を解消または低減でき、より高機能なポリウレタンを得ることが可能となる。
また、炭酸エステルの一つであるECは、水とほぼ同じ誘電率を有し、親水的なCNFにも高い親和力を持つと考えられ、CNFに対し良好な分散媒体である。 The CNF-containing PCD dispersion obtained in the step (b) uses a dispersion obtained by pulverizing a cellulose raw material in a carbonate ester or a dispersion obtained by dispersing powdered CNF in a carbonate ester.
When cellulose raw material is crushed in a hydrophobic medium than water, it is known that the produced CNF has a more hydrophobic surface than CNF crushed in water and is excellent in dispersibility in an organic medium. Yes.
Therefore, CNF obtained by crushing in a carbonate ester that is more hydrophobic than water is also more hydrophobic than CNF that is crushed in water, so that it has good dispersibility in the carbonate ester and is produced using this as a raw material. The CNF in the PCD also has a good dispersibility, and further, the CNF in the CNF-containing polyurethane using the CNF-containing PCD dispersion as a raw material also has a good dispersibility.
Hydrophilic CNF generally tends to cause problems such as aggregation and thickening in hydrophobic resins, and the expected characteristics may not be exhibited. However, according to the production method of the present invention, these problems are solved. Alternatively, it is possible to obtain a higher-performance polyurethane that can be reduced.
EC, which is one of carbonate esters, has almost the same dielectric constant as water and is considered to have a high affinity for hydrophilic CNF, and is a good dispersion medium for CNF.
例えば、以下の方法でCNF含有のポリウレタンを製造することができる。
粉体化したCNFを1~5質量%の濃度で自転公転攪拌機によりEC中に分散させ、そのECと1,6-ヘキサンジオール(HDO)との反応から得られた、CNFを含むセルロースが分散したPCDとジシクロヘキシルメタンジイソシアナート(HMDI)を反応させることにより、CNF含有ポリウレタンが調製できる。
ウレタン化を促進する触媒としてジブチルスズジラウレートなどを用いて、PCDとイソシアナートからなる組成物100質量部に対し、0.04質量部の添加量で硬化する。常温で可使時間は約20分であり、得られたポリウレタンは熱可塑性である。CNFを含むセルロースは分子内に多くの水酸基を含んでいるが、硬化を極端に促進または遅延することはなく、触媒の添加量を加減することで硬化時間の調整は可能である。また、CNFを含むセルロースの存在によってゲル化したポリウレタンは生じない。 For example, CNF-containing polyurethane can be produced by the following method.
Powdered CNF is dispersed in EC at a concentration of 1 to 5% by mass with a rotating and rotating stirrer, and cellulose containing CNF obtained by the reaction of EC and 1,6-hexanediol (HDO) is dispersed. The CNF-containing polyurethane can be prepared by reacting the prepared PCD with dicyclohexylmethane diisocyanate (HMDI).
Using dibutyltin dilaurate or the like as a catalyst for promoting urethanization, the composition is cured at an addition amount of 0.04 parts by mass with respect to 100 parts by mass of the composition comprising PCD and isocyanate. The pot life is about 20 minutes at room temperature, and the resulting polyurethane is thermoplastic. Cellulose containing CNF contains many hydroxyl groups in the molecule. However, curing is not extremely accelerated or delayed, and the curing time can be adjusted by adjusting the amount of the catalyst added. Moreover, the polyurethane which gelatinized by the presence of the cellulose containing CNF does not arise.
粉体化したCNFを1~5質量%の濃度で自転公転攪拌機によりEC中に分散させ、そのECと1,6-ヘキサンジオール(HDO)との反応から得られた、CNFを含むセルロースが分散したPCDとジシクロヘキシルメタンジイソシアナート(HMDI)を反応させることにより、CNF含有ポリウレタンが調製できる。
ウレタン化を促進する触媒としてジブチルスズジラウレートなどを用いて、PCDとイソシアナートからなる組成物100質量部に対し、0.04質量部の添加量で硬化する。常温で可使時間は約20分であり、得られたポリウレタンは熱可塑性である。CNFを含むセルロースは分子内に多くの水酸基を含んでいるが、硬化を極端に促進または遅延することはなく、触媒の添加量を加減することで硬化時間の調整は可能である。また、CNFを含むセルロースの存在によってゲル化したポリウレタンは生じない。 For example, CNF-containing polyurethane can be produced by the following method.
Powdered CNF is dispersed in EC at a concentration of 1 to 5% by mass with a rotating and rotating stirrer, and cellulose containing CNF obtained by the reaction of EC and 1,6-hexanediol (HDO) is dispersed. The CNF-containing polyurethane can be prepared by reacting the prepared PCD with dicyclohexylmethane diisocyanate (HMDI).
Using dibutyltin dilaurate or the like as a catalyst for promoting urethanization, the composition is cured at an addition amount of 0.04 parts by mass with respect to 100 parts by mass of the composition comprising PCD and isocyanate. The pot life is about 20 minutes at room temperature, and the resulting polyurethane is thermoplastic. Cellulose containing CNF contains many hydroxyl groups in the molecule. However, curing is not extremely accelerated or delayed, and the curing time can be adjusted by adjusting the amount of the catalyst added. Moreover, the polyurethane which gelatinized by the presence of the cellulose containing CNF does not arise.
以下、参考例、実施例および比較例により本発明を詳しく説明する。
<参考例1> CNF含有EC分散液(1)
CNFの原料となるパルプとして北方針葉樹の漂白クラフトパルプ(NIST Standard Reference Material、8495 Northern Softwood(Bleached Kraft Pulp))を用いた。パルプのシートは約1cm四方に切断し、高速粉砕機ワンダーブレンダー(WB-1、大阪ケミカル社製)で綿状または粉末状のセルロースに予備解砕した。顕微鏡を用いてセルロースの繊維長を長いものから50本測長し、平均したところ約260μmであった。
このセルロース粉末が濃度0.1質量%となるように、60℃に加熱して液化した100gのEC中に分散させ、このセルロース分散液を卓上型湿式高圧粉砕機(ナノヴェイタL-ES、電動駆動式、吉田機械興業社製)に投入して微粉砕を繰返すことでCNF含有EC分散体を得た。
圧力は吐出速度を調整しながら徐々に昇圧し、最終的に180MPaで10回微粉砕した。得られたEC分散体中のCNFは枝分かれした集合体となっていたが、約200nm~1μmの繊維が個々に分離して存在しており、分散性は良好であった。長さは100μmを超えるものが生成していた。図1に顕微鏡写真(400倍)を示す。 Hereinafter, the present invention will be described in detail with reference examples, examples and comparative examples.
<Reference Example 1> CNF-containing EC dispersion (1)
Bleached kraft pulp (NIST Standard Reference Material, 8495 Northern Softwood (Bleached Kraft Pulp)) of northern policy leaves was used as the pulp used as the raw material for CNF. The pulp sheet was cut into a square of about 1 cm and pre-pulverized into cotton or powdery cellulose using a high-speed pulverizer wonder blender (WB-1, manufactured by Osaka Chemical Co., Ltd.). Using a microscope, 50 fiber lengths from long ones were measured and averaged to be about 260 μm.
The cellulose powder was dispersed in 100 g of EC liquefied by heating to 60 ° C. so that the concentration was 0.1% by mass, and this cellulose dispersion was dispersed on a desktop wet high-pressure pulverizer (Nanovita L-ES, electric drive). And the fine pulverization was repeated to obtain a CNF-containing EC dispersion.
The pressure was gradually increased while adjusting the discharge speed, and finally pulverized 10 times at 180 MPa. The CNF in the obtained EC dispersion was a branched aggregate, but fibers of about 200 nm to 1 μm existed separately, and the dispersibility was good. A length exceeding 100 μm was generated. FIG. 1 shows a photomicrograph (400 times).
<参考例1> CNF含有EC分散液(1)
CNFの原料となるパルプとして北方針葉樹の漂白クラフトパルプ(NIST Standard Reference Material、8495 Northern Softwood(Bleached Kraft Pulp))を用いた。パルプのシートは約1cm四方に切断し、高速粉砕機ワンダーブレンダー(WB-1、大阪ケミカル社製)で綿状または粉末状のセルロースに予備解砕した。顕微鏡を用いてセルロースの繊維長を長いものから50本測長し、平均したところ約260μmであった。
このセルロース粉末が濃度0.1質量%となるように、60℃に加熱して液化した100gのEC中に分散させ、このセルロース分散液を卓上型湿式高圧粉砕機(ナノヴェイタL-ES、電動駆動式、吉田機械興業社製)に投入して微粉砕を繰返すことでCNF含有EC分散体を得た。
圧力は吐出速度を調整しながら徐々に昇圧し、最終的に180MPaで10回微粉砕した。得られたEC分散体中のCNFは枝分かれした集合体となっていたが、約200nm~1μmの繊維が個々に分離して存在しており、分散性は良好であった。長さは100μmを超えるものが生成していた。図1に顕微鏡写真(400倍)を示す。 Hereinafter, the present invention will be described in detail with reference examples, examples and comparative examples.
<Reference Example 1> CNF-containing EC dispersion (1)
Bleached kraft pulp (NIST Standard Reference Material, 8495 Northern Softwood (Bleached Kraft Pulp)) of northern policy leaves was used as the pulp used as the raw material for CNF. The pulp sheet was cut into a square of about 1 cm and pre-pulverized into cotton or powdery cellulose using a high-speed pulverizer wonder blender (WB-1, manufactured by Osaka Chemical Co., Ltd.). Using a microscope, 50 fiber lengths from long ones were measured and averaged to be about 260 μm.
The cellulose powder was dispersed in 100 g of EC liquefied by heating to 60 ° C. so that the concentration was 0.1% by mass, and this cellulose dispersion was dispersed on a desktop wet high-pressure pulverizer (Nanovita L-ES, electric drive). And the fine pulverization was repeated to obtain a CNF-containing EC dispersion.
The pressure was gradually increased while adjusting the discharge speed, and finally pulverized 10 times at 180 MPa. The CNF in the obtained EC dispersion was a branched aggregate, but fibers of about 200 nm to 1 μm existed separately, and the dispersibility was good. A length exceeding 100 μm was generated. FIG. 1 shows a photomicrograph (400 times).
<参考例2> CNF含有EC分散液(2)
パルプとして広葉樹(ユーカリ)の漂白クラフトパルプ(NIST Standard Reference Material、8496 Eucalyptus Hardwood(Bleached Kraft Pulp))を用いた以外は、参考例1と同様の操作で広葉樹のCNF含有EC分散体を得た。
得られたEC分散体中のCNFは枝分かれした集合体となっていたが、約200nm~1μmの繊維が個々に分離して存在しており、分散性は良好であった。長さは100μmを超えるものが生成していた。図2に顕微鏡写真(400倍)を示す。 <Reference Example 2> CNF-containing EC dispersion (2)
A hardwood CNF-containing EC dispersion was obtained in the same manner as in Reference Example 1 except that hardwood (eucalyptus) bleached kraft pulp (NIST Standard Reference Material, 8496 Eucalyptus Hardwood (Bleached Kraft Pulp)) was used as the pulp.
The CNF in the obtained EC dispersion was a branched aggregate, but fibers of about 200 nm to 1 μm existed separately, and the dispersibility was good. A length exceeding 100 μm was generated. FIG. 2 shows a photomicrograph (400 times).
パルプとして広葉樹(ユーカリ)の漂白クラフトパルプ(NIST Standard Reference Material、8496 Eucalyptus Hardwood(Bleached Kraft Pulp))を用いた以外は、参考例1と同様の操作で広葉樹のCNF含有EC分散体を得た。
得られたEC分散体中のCNFは枝分かれした集合体となっていたが、約200nm~1μmの繊維が個々に分離して存在しており、分散性は良好であった。長さは100μmを超えるものが生成していた。図2に顕微鏡写真(400倍)を示す。 <Reference Example 2> CNF-containing EC dispersion (2)
A hardwood CNF-containing EC dispersion was obtained in the same manner as in Reference Example 1 except that hardwood (eucalyptus) bleached kraft pulp (NIST Standard Reference Material, 8496 Eucalyptus Hardwood (Bleached Kraft Pulp)) was used as the pulp.
The CNF in the obtained EC dispersion was a branched aggregate, but fibers of about 200 nm to 1 μm existed separately, and the dispersibility was good. A length exceeding 100 μm was generated. FIG. 2 shows a photomicrograph (400 times).
<参考例3> CNF含有EC分散液(3)
参考例1と同様の操作で針葉樹パルプを用い、1質量%のCNF含有EC分散体を得た。ただし、最初のセルロース粉末の濃度は0.2質量%とし、徐々に昇圧しながら150Mpaで5回微粉砕してから、0.2質量%の刻みでセルロース粉末を追加して微粉砕を繰返すことで、最終的に1質量%の濃度とし、180MPaで10回微粉砕することで1質量%のCNF含有EC分散体を得た。
得られた分散体中のCNFは、参考例1と同様の大きさで分散性も同等であった。 <Reference Example 3> CNF-containing EC dispersion (3)
A softwood pulp was used in the same manner as in Reference Example 1 to obtain a 1% by mass CNF-containing EC dispersion. However, the concentration of the initial cellulose powder is 0.2% by mass, pulverized five times at 150 MPa while gradually increasing the pressure, and then the pulverization is repeated by adding cellulose powder in increments of 0.2% by mass. Thus, the final concentration was set to 1% by mass, and pulverization was performed 10 times at 180 MPa to obtain a 1% by mass CNF-containing EC dispersion.
The CNF in the obtained dispersion was the same size as in Reference Example 1 and the dispersibility was the same.
参考例1と同様の操作で針葉樹パルプを用い、1質量%のCNF含有EC分散体を得た。ただし、最初のセルロース粉末の濃度は0.2質量%とし、徐々に昇圧しながら150Mpaで5回微粉砕してから、0.2質量%の刻みでセルロース粉末を追加して微粉砕を繰返すことで、最終的に1質量%の濃度とし、180MPaで10回微粉砕することで1質量%のCNF含有EC分散体を得た。
得られた分散体中のCNFは、参考例1と同様の大きさで分散性も同等であった。 <Reference Example 3> CNF-containing EC dispersion (3)
A softwood pulp was used in the same manner as in Reference Example 1 to obtain a 1% by mass CNF-containing EC dispersion. However, the concentration of the initial cellulose powder is 0.2% by mass, pulverized five times at 150 MPa while gradually increasing the pressure, and then the pulverization is repeated by adding cellulose powder in increments of 0.2% by mass. Thus, the final concentration was set to 1% by mass, and pulverization was performed 10 times at 180 MPa to obtain a 1% by mass CNF-containing EC dispersion.
The CNF in the obtained dispersion was the same size as in Reference Example 1 and the dispersibility was the same.
<実施例1> CNF含有PCD分散体の製造(1)
参考例3で得られた1質量%のCNF含有EC分散体と1,6-ヘキサンジオール(HDO)との反応によってHDO骨格を有するCNF含有PCDを調製した。
攪拌機および高さ20cmのヴィグリュー分留管を取り付けた1リットルのフラスコに、1質量%のCNFを含むECを187質量部、HDOを200質量部、触媒としてテトラブチルチタネートを0.2質量部仕込み、50torrで徐々に昇温した。絶えず留出があるように内温を160℃~170℃まで上げ、留出が止まった時点で終了した。
次いで、ヴィグリュー分留管を取り外し、減圧度を5torr~0torrまで上げ、絶えず留出があるように内温を150℃~185℃へ上げた。留出が止まったところで反応を止め、水酸基価が2.15meq/gの反応物を188質量部得た。PCDは分子内に2個の水酸基を有するので、水酸基価の逆数を2倍することで、得られたCNF分散PCDの分子量は930で、仕込み量からCNF濃度は1質量%と求められた。
得られたPCD中のCNFの分散性は原料として用いたEC分散体と同等であった。図3に顕微鏡写真(400倍)を示す。
なお、このCNF分散PCDは常温で固化するので、100℃以上に加熱して液化し、0.5μmのメンブレンフィルターで加圧ろ過することで清澄なろ液を得て、該ろ液の水酸基価を求めたところ2.15meq/gであった。従って、CNFが有する水酸基はPCDの水酸基価に影響を与えていなかった。 <Example 1> Production of CNF-containing PCD dispersion (1)
A CNF-containing PCD having an HDO skeleton was prepared by reacting the 1% by mass CNF-containing EC dispersion obtained in Reference Example 3 with 1,6-hexanediol (HDO).
A 1 liter flask equipped with a stirrer and a Vigreux fractionation tube with a height of 20 cm is charged with 187 parts by mass of EC containing 1% by mass of CNF, 200 parts by mass of HDO, and 0.2 parts by mass of tetrabutyl titanate as a catalyst. The temperature was gradually raised at 50 torr. The internal temperature was raised to 160 ° C. to 170 ° C. so that there was constant distillation, and the distillation was completed when the distillation stopped.
Next, the Vigreux fractionation tube was removed, the degree of vacuum was raised to 5 torr to 0 torr, and the internal temperature was raised to 150 ° C to 185 ° C so that there was continuous distillation. When the distillation stopped, the reaction was stopped to obtain 188 parts by mass of a reaction product having a hydroxyl value of 2.15 meq / g. Since PCD has two hydroxyl groups in the molecule, the molecular weight of the obtained CNF-dispersed PCD was 930 by doubling the reciprocal of the hydroxyl value, and the CNF concentration was determined to be 1% by mass from the charged amount.
The dispersibility of CNF in the obtained PCD was equivalent to the EC dispersion used as a raw material. FIG. 3 shows a photomicrograph (400 times).
Since this CNF-dispersed PCD solidifies at room temperature, it is liquefied by heating to 100 ° C. or higher, and a clear filtrate is obtained by pressure filtration with a 0.5 μm membrane filter, and the hydroxyl value of the filtrate is determined. It was 2.15 meq / g when calculated. Therefore, the hydroxyl group of CNF did not affect the hydroxyl value of PCD.
参考例3で得られた1質量%のCNF含有EC分散体と1,6-ヘキサンジオール(HDO)との反応によってHDO骨格を有するCNF含有PCDを調製した。
攪拌機および高さ20cmのヴィグリュー分留管を取り付けた1リットルのフラスコに、1質量%のCNFを含むECを187質量部、HDOを200質量部、触媒としてテトラブチルチタネートを0.2質量部仕込み、50torrで徐々に昇温した。絶えず留出があるように内温を160℃~170℃まで上げ、留出が止まった時点で終了した。
次いで、ヴィグリュー分留管を取り外し、減圧度を5torr~0torrまで上げ、絶えず留出があるように内温を150℃~185℃へ上げた。留出が止まったところで反応を止め、水酸基価が2.15meq/gの反応物を188質量部得た。PCDは分子内に2個の水酸基を有するので、水酸基価の逆数を2倍することで、得られたCNF分散PCDの分子量は930で、仕込み量からCNF濃度は1質量%と求められた。
得られたPCD中のCNFの分散性は原料として用いたEC分散体と同等であった。図3に顕微鏡写真(400倍)を示す。
なお、このCNF分散PCDは常温で固化するので、100℃以上に加熱して液化し、0.5μmのメンブレンフィルターで加圧ろ過することで清澄なろ液を得て、該ろ液の水酸基価を求めたところ2.15meq/gであった。従って、CNFが有する水酸基はPCDの水酸基価に影響を与えていなかった。 <Example 1> Production of CNF-containing PCD dispersion (1)
A CNF-containing PCD having an HDO skeleton was prepared by reacting the 1% by mass CNF-containing EC dispersion obtained in Reference Example 3 with 1,6-hexanediol (HDO).
A 1 liter flask equipped with a stirrer and a Vigreux fractionation tube with a height of 20 cm is charged with 187 parts by mass of EC containing 1% by mass of CNF, 200 parts by mass of HDO, and 0.2 parts by mass of tetrabutyl titanate as a catalyst. The temperature was gradually raised at 50 torr. The internal temperature was raised to 160 ° C. to 170 ° C. so that there was constant distillation, and the distillation was completed when the distillation stopped.
Next, the Vigreux fractionation tube was removed, the degree of vacuum was raised to 5 torr to 0 torr, and the internal temperature was raised to 150 ° C to 185 ° C so that there was continuous distillation. When the distillation stopped, the reaction was stopped to obtain 188 parts by mass of a reaction product having a hydroxyl value of 2.15 meq / g. Since PCD has two hydroxyl groups in the molecule, the molecular weight of the obtained CNF-dispersed PCD was 930 by doubling the reciprocal of the hydroxyl value, and the CNF concentration was determined to be 1% by mass from the charged amount.
The dispersibility of CNF in the obtained PCD was equivalent to the EC dispersion used as a raw material. FIG. 3 shows a photomicrograph (400 times).
Since this CNF-dispersed PCD solidifies at room temperature, it is liquefied by heating to 100 ° C. or higher, and a clear filtrate is obtained by pressure filtration with a 0.5 μm membrane filter, and the hydroxyl value of the filtrate is determined. It was 2.15 meq / g when calculated. Therefore, the hydroxyl group of CNF did not affect the hydroxyl value of PCD.
<実施例2> CNF含有PCD分散体の製造(2)
炭酸アンモニウムの熱分解によって得られた2質量部の粉体化したCNFを、150質量部の60℃で融解したECに加え、自転公転攪拌機で混合することにより、CNFが分散したECを得た。
この152質量部のCNF分散ECと191質量部のHDOを、0.2質量部のテトラn-ブチルチタネート存在下、実施例1と同様の操作で反応させることで157質量部のCNF分散PCDを得た。水酸基価は4.02meq/g、分子量は500、CNF濃度は1.9質量%であった。
得られたPCD分散体中のCNFは枝分かれした集合体となっていたが、繊維が個々に分離して存在しており、分散性は良好であった。図4に顕微鏡写真(400倍)を示す。 <Example 2> Production of CNF-containing PCD dispersion (2)
2 parts by mass of powdered CNF obtained by thermal decomposition of ammonium carbonate was added to 150 parts by mass of EC melted at 60 ° C., and mixed with a rotating and rotating stirrer to obtain EC in which CNF was dispersed. .
This 157 parts by mass of CNF-dispersed ECD and 191 parts by mass of HDO were reacted in the presence of 0.2 part by mass of tetra-n-butyl titanate in the same manner as in Example 1 to obtain 157 parts by mass of CNF-dispersed PCD. Obtained. The hydroxyl value was 4.02 meq / g, the molecular weight was 500, and the CNF concentration was 1.9% by mass.
The CNF in the obtained PCD dispersion was a branched aggregate, but the fibers were present separately and the dispersibility was good. FIG. 4 shows a micrograph (400 times).
炭酸アンモニウムの熱分解によって得られた2質量部の粉体化したCNFを、150質量部の60℃で融解したECに加え、自転公転攪拌機で混合することにより、CNFが分散したECを得た。
この152質量部のCNF分散ECと191質量部のHDOを、0.2質量部のテトラn-ブチルチタネート存在下、実施例1と同様の操作で反応させることで157質量部のCNF分散PCDを得た。水酸基価は4.02meq/g、分子量は500、CNF濃度は1.9質量%であった。
得られたPCD分散体中のCNFは枝分かれした集合体となっていたが、繊維が個々に分離して存在しており、分散性は良好であった。図4に顕微鏡写真(400倍)を示す。 <Example 2> Production of CNF-containing PCD dispersion (2)
2 parts by mass of powdered CNF obtained by thermal decomposition of ammonium carbonate was added to 150 parts by mass of EC melted at 60 ° C., and mixed with a rotating and rotating stirrer to obtain EC in which CNF was dispersed. .
This 157 parts by mass of CNF-dispersed ECD and 191 parts by mass of HDO were reacted in the presence of 0.2 part by mass of tetra-n-butyl titanate in the same manner as in Example 1 to obtain 157 parts by mass of CNF-dispersed PCD. Obtained. The hydroxyl value was 4.02 meq / g, the molecular weight was 500, and the CNF concentration was 1.9% by mass.
The CNF in the obtained PCD dispersion was a branched aggregate, but the fibers were present separately and the dispersibility was good. FIG. 4 shows a micrograph (400 times).
<実施例3> CNF含有PCD分散体の製造(3)
<結晶セルロースの精製>
圧力容器に50gの結晶セルロース(FD-101)と1リットルの純水を仕込み、圧力容器を加熱して、128℃,圧力146kPa(1.44atm)で2時間保持した。次に、常圧に戻した後、上澄み液を除去し、再び1リットルの新鮮な純水を加え、再度加熱して、128℃,圧力146kPa(1.44atm)で2時間保持した。上澄みの除去および新鮮な純水を加えた加熱・加圧操作をもう1回行ない、計3回繰返した。最後に結晶セルロース(FD-101)をろ別し、新鮮な純水で結晶セルロース(FD-101)を水洗後、110℃で減圧乾燥させた。 <Example 3> Production of CNF-containing PCD dispersion (3)
<Purification of crystalline cellulose>
A pressure vessel was charged with 50 g of crystalline cellulose (FD-101) and 1 liter of pure water, and the pressure vessel was heated and maintained at 128 ° C. and a pressure of 146 kPa (1.44 atm) for 2 hours. Next, after returning to normal pressure, the supernatant was removed, 1 liter of fresh pure water was added again, the mixture was heated again, and maintained at 128 ° C. and a pressure of 146 kPa (1.44 atm) for 2 hours. The removal of the supernatant and the heating / pressurizing operation with the addition of fresh pure water were performed once more, and the operation was repeated three times. Finally, the crystalline cellulose (FD-101) was filtered off, and the crystalline cellulose (FD-101) was washed with fresh pure water and then dried at 110 ° C. under reduced pressure.
<結晶セルロースの精製>
圧力容器に50gの結晶セルロース(FD-101)と1リットルの純水を仕込み、圧力容器を加熱して、128℃,圧力146kPa(1.44atm)で2時間保持した。次に、常圧に戻した後、上澄み液を除去し、再び1リットルの新鮮な純水を加え、再度加熱して、128℃,圧力146kPa(1.44atm)で2時間保持した。上澄みの除去および新鮮な純水を加えた加熱・加圧操作をもう1回行ない、計3回繰返した。最後に結晶セルロース(FD-101)をろ別し、新鮮な純水で結晶セルロース(FD-101)を水洗後、110℃で減圧乾燥させた。 <Example 3> Production of CNF-containing PCD dispersion (3)
<Purification of crystalline cellulose>
A pressure vessel was charged with 50 g of crystalline cellulose (FD-101) and 1 liter of pure water, and the pressure vessel was heated and maintained at 128 ° C. and a pressure of 146 kPa (1.44 atm) for 2 hours. Next, after returning to normal pressure, the supernatant was removed, 1 liter of fresh pure water was added again, the mixture was heated again, and maintained at 128 ° C. and a pressure of 146 kPa (1.44 atm) for 2 hours. The removal of the supernatant and the heating / pressurizing operation with the addition of fresh pure water were performed once more, and the operation was repeated three times. Finally, the crystalline cellulose (FD-101) was filtered off, and the crystalline cellulose (FD-101) was washed with fresh pure water and then dried at 110 ° C. under reduced pressure.
<精製FD-101の解砕>
前記で得られた1.5質量部の精製FD-101を148.5質量部のECに加え、ヒールッシャー社製超音波ホモジナイザーUP400Sを用いて105℃で8時間解砕することで、セルロースが1μm以下の太さに解砕されたEC分散物を得た。
<PCD合成>
前記で得られたEC分散物と1,6-ヘキサンジオール(HDO)を用い、無触媒とした以外は、実施例2と同様に反応を行ない、解砕されたセルロースを0.9質量%含む160質量部のPCDを得た。 <Disintegration of purified FD-101>
1.5 parts by mass of purified FD-101 obtained above was added to 148.5 parts by mass of EC, and pulverized at 105 ° C. for 8 hours using an ultrasonic homogenizer UP400S manufactured by Heelscher Co. An EC dispersion crushed to the following thickness was obtained.
<PCD synthesis>
The reaction was performed in the same manner as in Example 2 except that the EC dispersion obtained above and 1,6-hexanediol (HDO) were used and no catalyst was used, and 0.9 mass% of crushed cellulose was contained. 160 parts by mass of PCD was obtained.
前記で得られた1.5質量部の精製FD-101を148.5質量部のECに加え、ヒールッシャー社製超音波ホモジナイザーUP400Sを用いて105℃で8時間解砕することで、セルロースが1μm以下の太さに解砕されたEC分散物を得た。
<PCD合成>
前記で得られたEC分散物と1,6-ヘキサンジオール(HDO)を用い、無触媒とした以外は、実施例2と同様に反応を行ない、解砕されたセルロースを0.9質量%含む160質量部のPCDを得た。 <Disintegration of purified FD-101>
1.5 parts by mass of purified FD-101 obtained above was added to 148.5 parts by mass of EC, and pulverized at 105 ° C. for 8 hours using an ultrasonic homogenizer UP400S manufactured by Heelscher Co. An EC dispersion crushed to the following thickness was obtained.
<PCD synthesis>
The reaction was performed in the same manner as in Example 2 except that the EC dispersion obtained above and 1,6-hexanediol (HDO) were used and no catalyst was used, and 0.9 mass% of crushed cellulose was contained. 160 parts by mass of PCD was obtained.
<実施例4> CNF含有ポリウレタンの製造(1)
実施例1で得られたCNF含有PCDとジシクロヘキシルメタンジイソシアナート(HMDI)を、ジブチルスズジラウレートの存在下で硬化させ、ポウレタンシートを作製した。
ポリウレタンシートの調製は以下の通りで、PCDの水酸基とHMDIのイソシアネート基のモル比([NCO/OH])は1.0とした。
70℃で融解させた100質量部のPCDに、0.06部のジブチルスズジラウレートを加え、自転公転攪拌機で混合し、真空脱泡した。この混合物に28質量部のHMDIを加え、自転公転攪拌機で混合、真空脱泡後、厚みが1mmとなるようにテフロン(登録商標)製の型に流し込み、窒素雰囲気下、常温で一晩放置した。
次に40℃から徐々に昇温しながら最終的に70℃で3時間加熱することでCNFが約0.8質量%分散したポリウレタンシートを作製した。
得られたポリウレタンシートの一部をスライドガラスとカバーガラスの間に挟み、ヒートガンで加熱しながらカバーガラスを圧迫することで薄膜状のポリウレタンとして、顕微鏡でCNFの分散状態を観察した。
得られたポリウレタン中のCNFの分散性は原料として用いたPCD分散体と同等であった。図5に顕微鏡写真(400倍)を示す。 Example 4 Production of CNF-containing polyurethane (1)
The CNF-containing PCD and dicyclohexylmethane diisocyanate (HMDI) obtained in Example 1 were cured in the presence of dibutyltin dilaurate to prepare a polyurethane sheet.
The polyurethane sheet was prepared as follows, and the molar ratio of PCD hydroxyl group to HMDI isocyanate group ([NCO / OH]) was 1.0.
To 100 parts by mass of PCD melted at 70 ° C., 0.06 part of dibutyltin dilaurate was added, mixed with a rotation / revolution stirrer, and vacuum degassed. 28 parts by mass of HMDI was added to this mixture, mixed with a rotating and rotating stirrer, vacuum degassed, poured into a Teflon (registered trademark) mold so as to have a thickness of 1 mm, and left overnight at room temperature in a nitrogen atmosphere. .
Next, a polyurethane sheet in which about 0.8% by mass of CNF was dispersed was produced by gradually heating from 40 ° C. while finally heating at 70 ° C. for 3 hours.
A part of the obtained polyurethane sheet was sandwiched between a slide glass and a cover glass, and the cover glass was pressed while being heated with a heat gun, and the dispersion state of CNF was observed with a microscope as a thin-film polyurethane.
The dispersibility of CNF in the obtained polyurethane was equivalent to the PCD dispersion used as a raw material. FIG. 5 shows a photomicrograph (400 times).
実施例1で得られたCNF含有PCDとジシクロヘキシルメタンジイソシアナート(HMDI)を、ジブチルスズジラウレートの存在下で硬化させ、ポウレタンシートを作製した。
ポリウレタンシートの調製は以下の通りで、PCDの水酸基とHMDIのイソシアネート基のモル比([NCO/OH])は1.0とした。
70℃で融解させた100質量部のPCDに、0.06部のジブチルスズジラウレートを加え、自転公転攪拌機で混合し、真空脱泡した。この混合物に28質量部のHMDIを加え、自転公転攪拌機で混合、真空脱泡後、厚みが1mmとなるようにテフロン(登録商標)製の型に流し込み、窒素雰囲気下、常温で一晩放置した。
次に40℃から徐々に昇温しながら最終的に70℃で3時間加熱することでCNFが約0.8質量%分散したポリウレタンシートを作製した。
得られたポリウレタンシートの一部をスライドガラスとカバーガラスの間に挟み、ヒートガンで加熱しながらカバーガラスを圧迫することで薄膜状のポリウレタンとして、顕微鏡でCNFの分散状態を観察した。
得られたポリウレタン中のCNFの分散性は原料として用いたPCD分散体と同等であった。図5に顕微鏡写真(400倍)を示す。 Example 4 Production of CNF-containing polyurethane (1)
The CNF-containing PCD and dicyclohexylmethane diisocyanate (HMDI) obtained in Example 1 were cured in the presence of dibutyltin dilaurate to prepare a polyurethane sheet.
The polyurethane sheet was prepared as follows, and the molar ratio of PCD hydroxyl group to HMDI isocyanate group ([NCO / OH]) was 1.0.
To 100 parts by mass of PCD melted at 70 ° C., 0.06 part of dibutyltin dilaurate was added, mixed with a rotation / revolution stirrer, and vacuum degassed. 28 parts by mass of HMDI was added to this mixture, mixed with a rotating and rotating stirrer, vacuum degassed, poured into a Teflon (registered trademark) mold so as to have a thickness of 1 mm, and left overnight at room temperature in a nitrogen atmosphere. .
Next, a polyurethane sheet in which about 0.8% by mass of CNF was dispersed was produced by gradually heating from 40 ° C. while finally heating at 70 ° C. for 3 hours.
A part of the obtained polyurethane sheet was sandwiched between a slide glass and a cover glass, and the cover glass was pressed while being heated with a heat gun, and the dispersion state of CNF was observed with a microscope as a thin-film polyurethane.
The dispersibility of CNF in the obtained polyurethane was equivalent to the PCD dispersion used as a raw material. FIG. 5 shows a photomicrograph (400 times).
<実施例5> CNF含有ポリウレタンの製造(2)
実施例2で得られたPCDに関しても、実施例4と同様の操作でCNFを約1.2質量%含むポリウレタンシートを作製した。
実施例4と同様に顕微鏡でCNFの分散状態を観察し、図6に顕微鏡写真(400倍)を示す。
CNFの分散性は良好で、得られたポリウレタンシートをダンベル3号で打ち抜き、引張強度を測定した。結果を表1に示す。
表1からわかるように、実施例5で得られたポリウレタンは、CNFを含まないポリウレタン(比較例1)に比べて、引張強度は2.1倍高かった。 <Example 5> Production of CNF-containing polyurethane (2)
Regarding the PCD obtained in Example 2, a polyurethane sheet containing about 1.2% by mass of CNF was prepared in the same manner as in Example 4.
The dispersion state of CNF was observed with a microscope in the same manner as in Example 4, and a micrograph (400 times) is shown in FIG.
The dispersibility of CNF was good, and the obtained polyurethane sheet was punched out with dumbbell No. 3, and the tensile strength was measured. The results are shown in Table 1.
As can be seen from Table 1, the polyurethane obtained in Example 5 was 2.1 times higher in tensile strength than the polyurethane containing no CNF (Comparative Example 1).
実施例2で得られたPCDに関しても、実施例4と同様の操作でCNFを約1.2質量%含むポリウレタンシートを作製した。
実施例4と同様に顕微鏡でCNFの分散状態を観察し、図6に顕微鏡写真(400倍)を示す。
CNFの分散性は良好で、得られたポリウレタンシートをダンベル3号で打ち抜き、引張強度を測定した。結果を表1に示す。
表1からわかるように、実施例5で得られたポリウレタンは、CNFを含まないポリウレタン(比較例1)に比べて、引張強度は2.1倍高かった。 <Example 5> Production of CNF-containing polyurethane (2)
Regarding the PCD obtained in Example 2, a polyurethane sheet containing about 1.2% by mass of CNF was prepared in the same manner as in Example 4.
The dispersion state of CNF was observed with a microscope in the same manner as in Example 4, and a micrograph (400 times) is shown in FIG.
The dispersibility of CNF was good, and the obtained polyurethane sheet was punched out with dumbbell No. 3, and the tensile strength was measured. The results are shown in Table 1.
As can be seen from Table 1, the polyurethane obtained in Example 5 was 2.1 times higher in tensile strength than the polyurethane containing no CNF (Comparative Example 1).
<比較例1>
比較のため、CNFを含まないPCDを用いてポリウレタンシートを作製し、引張強度を測定した。
CNFを含まないPCDとしては、実施例1で得られたPCDを100℃以上に加温して液化させ、0.5μmのメンブレンフィルターを用いて加圧ろ過したろ液を用い、ろ液は透明で清澄であった。このろ液を用いて、実施例4と同様の操作でポリウレタンシートを作製し、引張強度を測定した。結果を表1に示す。 <Comparative Example 1>
For comparison, a polyurethane sheet was prepared using PCD not containing CNF, and the tensile strength was measured.
As PCD not containing CNF, the PCD obtained in Example 1 was liquefied by heating to 100 ° C. or higher, and the filtrate was filtered under pressure using a 0.5 μm membrane filter. The filtrate was transparent. It was clear. Using this filtrate, a polyurethane sheet was prepared in the same manner as in Example 4, and the tensile strength was measured. The results are shown in Table 1.
比較のため、CNFを含まないPCDを用いてポリウレタンシートを作製し、引張強度を測定した。
CNFを含まないPCDとしては、実施例1で得られたPCDを100℃以上に加温して液化させ、0.5μmのメンブレンフィルターを用いて加圧ろ過したろ液を用い、ろ液は透明で清澄であった。このろ液を用いて、実施例4と同様の操作でポリウレタンシートを作製し、引張強度を測定した。結果を表1に示す。 <Comparative Example 1>
For comparison, a polyurethane sheet was prepared using PCD not containing CNF, and the tensile strength was measured.
As PCD not containing CNF, the PCD obtained in Example 1 was liquefied by heating to 100 ° C. or higher, and the filtrate was filtered under pressure using a 0.5 μm membrane filter. The filtrate was transparent. It was clear. Using this filtrate, a polyurethane sheet was prepared in the same manner as in Example 4, and the tensile strength was measured. The results are shown in Table 1.
<実施例6>CNF含有発泡ポリウレタンの製造
CNF含有PCD、HMDIおよび水を、ジブチルスズジラウレートの存在下で硬化させ、CNF含有発泡ポリウレタンを製造した。
CNF含有PCDは、原料ジオールを1,6-ヘキサンジオールと1,5-ペンタンジオールの1/1のモル比の混合物を使用した以外は、実施例1と同様な方法で製造したもので、重量平均分子量は500であった。
PCDの水酸基、HMDIのイソシアナート基、水のモル比(OH/NCO/H2O)を1.0/1.2/0.2として、次の反応を行った。
PCD100質量部に水0.72質量部を加え、自転公転撹拌機で3分間混合して、この混合物にポリラップ(商品名)を被せて、90℃で3分間加熱した後、HMDI63質量部を加え、自転公転撹拌機で3分間混合した。
さらに、ジブチルスズジラウレート0.13質量部を加え、自転公転撹拌機で30秒間混合した後、5cm角の樹脂製容器に流し込み、90℃で2時間加熱して、CNF含有発泡ポリウレタンシートを作製した。 <Example 6> Production of CNF-containing foamed polyurethane CNF-containing PCD, HMDI and water were cured in the presence of dibutyltin dilaurate to produce a CNF-containing foamed polyurethane.
The CNF-containing PCD was produced in the same manner as in Example 1 except that the raw material diol was a mixture having a molar ratio of 1/1 of 1,6-hexanediol and 1,5-pentanediol. The average molecular weight was 500.
The following reaction was performed with the molar ratio of PCD hydroxyl group, HMDI isocyanate group, and water (OH / NCO / H 2 O) being 1.0 / 1.2 / 0.2.
Add 0.72 parts by weight of water to 100 parts by weight of PCD, mix for 3 minutes with a rotating and rotating stirrer, cover the mixture with polywrap (trade name), heat at 90 ° C. for 3 minutes, and then add 63 parts by weight of HMDI. The mixture was mixed for 3 minutes with a rotating and rotating stirrer.
Furthermore, 0.13 parts by mass of dibutyltin dilaurate was added, mixed for 30 seconds with a rotation and revolution stirrer, poured into a 5 cm square resin container, and heated at 90 ° C. for 2 hours to prepare a CNF-containing foamed polyurethane sheet.
CNF含有PCD、HMDIおよび水を、ジブチルスズジラウレートの存在下で硬化させ、CNF含有発泡ポリウレタンを製造した。
CNF含有PCDは、原料ジオールを1,6-ヘキサンジオールと1,5-ペンタンジオールの1/1のモル比の混合物を使用した以外は、実施例1と同様な方法で製造したもので、重量平均分子量は500であった。
PCDの水酸基、HMDIのイソシアナート基、水のモル比(OH/NCO/H2O)を1.0/1.2/0.2として、次の反応を行った。
PCD100質量部に水0.72質量部を加え、自転公転撹拌機で3分間混合して、この混合物にポリラップ(商品名)を被せて、90℃で3分間加熱した後、HMDI63質量部を加え、自転公転撹拌機で3分間混合した。
さらに、ジブチルスズジラウレート0.13質量部を加え、自転公転撹拌機で30秒間混合した後、5cm角の樹脂製容器に流し込み、90℃で2時間加熱して、CNF含有発泡ポリウレタンシートを作製した。 <Example 6> Production of CNF-containing foamed polyurethane CNF-containing PCD, HMDI and water were cured in the presence of dibutyltin dilaurate to produce a CNF-containing foamed polyurethane.
The CNF-containing PCD was produced in the same manner as in Example 1 except that the raw material diol was a mixture having a molar ratio of 1/1 of 1,6-hexanediol and 1,5-pentanediol. The average molecular weight was 500.
The following reaction was performed with the molar ratio of PCD hydroxyl group, HMDI isocyanate group, and water (OH / NCO / H 2 O) being 1.0 / 1.2 / 0.2.
Add 0.72 parts by weight of water to 100 parts by weight of PCD, mix for 3 minutes with a rotating and rotating stirrer, cover the mixture with polywrap (trade name), heat at 90 ° C. for 3 minutes, and then add 63 parts by weight of HMDI. The mixture was mixed for 3 minutes with a rotating and rotating stirrer.
Furthermore, 0.13 parts by mass of dibutyltin dilaurate was added, mixed for 30 seconds with a rotation and revolution stirrer, poured into a 5 cm square resin container, and heated at 90 ° C. for 2 hours to prepare a CNF-containing foamed polyurethane sheet.
<比較例2>CNFを含まない発泡ポリウレタンの製造
比較のため、CNFを含まないPCDを用いて、実施例6と同様の操作でCNFを含まない発泡ポリウレタンシートを作製した。 <Comparative Example 2> Production of foamed polyurethane not containing CNF For comparison, a foamed polyurethane sheet containing no CNF was prepared by the same operation as in Example 6 using PCD not containing CNF.
比較のため、CNFを含まないPCDを用いて、実施例6と同様の操作でCNFを含まない発泡ポリウレタンシートを作製した。 <Comparative Example 2> Production of foamed polyurethane not containing CNF For comparison, a foamed polyurethane sheet containing no CNF was prepared by the same operation as in Example 6 using PCD not containing CNF.
実施例6および比較例2で得られた発泡ポリウレタンをダンベル型で打ち抜いたサンプルを作製し、引張応力(工学応力)を測定した結果を図7に示す。
図7から分かる様に、実施例6で得られたCNF含有発泡ポリウレタンは、比較例2のCNFを含まない発泡ポリウレタンに比べて、破断時に高い工学応力を示した。 A sample obtained by punching the polyurethane foam obtained in Example 6 and Comparative Example 2 with a dumbbell mold and measuring the tensile stress (engineering stress) is shown in FIG.
As can be seen from FIG. 7, the CNF-containing foamed polyurethane obtained in Example 6 showed higher engineering stress at break than the foamed polyurethane containing no CNF in Comparative Example 2.
図7から分かる様に、実施例6で得られたCNF含有発泡ポリウレタンは、比較例2のCNFを含まない発泡ポリウレタンに比べて、破断時に高い工学応力を示した。 A sample obtained by punching the polyurethane foam obtained in Example 6 and Comparative Example 2 with a dumbbell mold and measuring the tensile stress (engineering stress) is shown in FIG.
As can be seen from FIG. 7, the CNF-containing foamed polyurethane obtained in Example 6 showed higher engineering stress at break than the foamed polyurethane containing no CNF in Comparative Example 2.
本発明の製造方法で得られたCNF含有PCD分散体およびCNF含有ポリウレタンは、引張強度など機械強度等に優れるため、より高機能な人工・合成皮革、塗料・コーティング剤および接着剤等に利用可能である。
The CNF-containing PCD dispersion and CNF-containing polyurethane obtained by the production method of the present invention are excellent in mechanical strength such as tensile strength, and therefore can be used for higher-performance artificial / synthetic leather, paints / coating agents, adhesives, etc. It is.
Claims (10)
- 下記(a)~(c)の工程を含むセルロースナノファイバー含有ポリウレタンの製造方法。
(a)炭酸エステルにセルロースナノファイバーを分散させて、セルロースナノファイバーの炭酸エステル分散体を得る工程。
(b)前記炭酸エステル分散体とジオール化合物を反応させて、セルロースナノファイバー含有ポリカーボネートジオール分散体を得る工程。
(c)前記ポリカーボネートジオール分散体とイソシアナート化合物を反応させて、セルロースナノファイバー含有ポリウレタンを得る工程。 A method for producing a cellulose nanofiber-containing polyurethane comprising the following steps (a) to (c):
(A) A step of dispersing cellulose nanofibers in a carbonate to obtain a carbonate dispersion of cellulose nanofibers.
(B) A step of reacting the carbonate ester dispersion with a diol compound to obtain a cellulose nanofiber-containing polycarbonate diol dispersion.
(C) A step of reacting the polycarbonate diol dispersion with an isocyanate compound to obtain a cellulose nanofiber-containing polyurethane. - 前記工程(a)において、セルロース原料を精製した後、該セルロース原料を炭酸エステル中で解繊して得られるセルロースナノファイバーの炭酸エステル分散体である請求項1に記載のセルロースナノファイバー含有ポリウレタンの製造方法。 The cellulose nanofiber-containing polyurethane according to claim 1, which is a cellulose nanofiber carbonate dispersion obtained by refining the cellulose raw material in the step (a) and then defibrating the cellulose raw material in a carbonate ester. Production method.
- 前記工程(b)において、無触媒で反応を行う、請求項1または請求項2に記載のセルロースナノファイバー含有ポリウレタンの製造方法。 The method for producing a cellulose nanofiber-containing polyurethane according to claim 1 or 2, wherein the reaction is performed without a catalyst in the step (b).
- 前記セルロースナノファイバー含有ポリウレタンがセルロースナノファイバー含有発泡ポリウレタンである請求項1~3のいずれかに記載のセルロースナノファイバー含有ポリウレタンの製造方法。 The method for producing a cellulose nanofiber-containing polyurethane according to any one of claims 1 to 3, wherein the cellulose nanofiber-containing polyurethane is a cellulose nanofiber-containing foamed polyurethane.
- 炭酸エステルが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートおよびジフェニルカーボネートからなる群から選ばれる少なくとも1種である請求項1~4のいずれか1項に記載のセルロースナノファイバー含有ポリウレタンの製造方法。 The cellulose nanofiber-containing polyurethane according to any one of claims 1 to 4, wherein the carbonate is at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and diphenyl carbonate. Manufacturing method.
- 炭酸エステルが、エチレンカーボネートである請求項5に記載のセルロースナノファイバー含有ポリウレタンの製造方法。 The method for producing a polyurethane containing cellulose nanofibers according to claim 5, wherein the carbonate ester is ethylene carbonate.
- 下記(a)および(b)の工程を含むセルロースナノファイバー含有ポリカーボネートジオールの製造方法。
(a)炭酸エステルにセルロースナノファイバーを分散させて、セルロースナノファイバーの炭酸エステル分散体を得る工程。
(b)前記炭酸エステル分散体とジオール化合物を反応させて、セルロースナノファイバー含有ポリカーボネートジオールを得る工程。 The manufacturing method of the cellulose nanofiber containing polycarbonate diol including the process of following (a) and (b).
(A) A step of dispersing cellulose nanofibers in a carbonate to obtain a carbonate dispersion of cellulose nanofibers.
(B) A step of reacting the carbonate dispersion and a diol compound to obtain a cellulose nanofiber-containing polycarbonate diol. - 前記工程(a)において、セルロース原料を精製した後、該セルロース原料を炭酸エステル中で解繊して得られるセルロースナノファイバーの炭酸エステル分散体である請求項7に記載のセルロースナノファイバー含有ポリカーボネートジオールの製造方法。 The cellulose nanofiber-containing polycarbonate diol according to claim 7, which is a carbonate dispersion of cellulose nanofibers obtained by refining the cellulose raw material in the step (a) and then defibrating the cellulose raw material in a carbonate ester. Manufacturing method.
- 請求項1~8のいずれか1項に記載のセルロースナノファイバー含有ポリカーボネートジオールを含むポリウレタンの製造方法。 A method for producing a polyurethane containing the cellulose nanofiber-containing polycarbonate diol according to any one of claims 1 to 8.
- 請求項1~9のいずれか1項に記載のセルロースナノファイバー含有ポリカーボネートジオールを含むポリウレタン。
A polyurethane comprising the cellulose nanofiber-containing polycarbonate diol according to any one of claims 1 to 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020504960A JP7302590B2 (en) | 2018-03-05 | 2019-02-28 | METHOD FOR MANUFACTURING POLYURETHANE CONTAINING CELLULOSE NANOFIBER |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018038154 | 2018-03-05 | ||
JP2018-038154 | 2018-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019172058A1 true WO2019172058A1 (en) | 2019-09-12 |
Family
ID=67846085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/007720 WO2019172058A1 (en) | 2018-03-05 | 2019-02-28 | Method for producing polyurethane containing cellulose nanofibers |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7302590B2 (en) |
WO (1) | WO2019172058A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021130790A (en) * | 2020-02-21 | 2021-09-09 | 東亞合成株式会社 | Method for producing cellulose nanofibers-containing carbonate ester dispersion and cellulose nanofibers-containing polyurethane |
JP2021161349A (en) * | 2020-04-02 | 2021-10-11 | 国立大学法人九州工業大学 | Urethane resin composition and method for producing the same |
JP2021165350A (en) * | 2020-04-08 | 2021-10-14 | 東亞合成株式会社 | Cellulose nanofiber-containing urethane (meth)acrylate composition, method for producing the same, and cellulose nanofiber-containing urethane (meth)acrylate cured product |
JPWO2021241409A1 (en) * | 2020-05-25 | 2021-12-02 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007146143A (en) * | 2005-10-26 | 2007-06-14 | Kyoto Univ | Fiber-reinforced composite resin composition, adhesive and sealant |
JP2008274200A (en) * | 2007-04-29 | 2008-11-13 | Sachiko Yoshida | Method for producing cellulose fiber-reinforced composite, cellulose fiber-reinforced composite and material for producing cellulose fiber-reinforced composite |
JP2010143992A (en) * | 2008-12-17 | 2010-07-01 | Konica Minolta Holdings Inc | Fiber composite material and method for producing the same |
JP2012167202A (en) * | 2011-02-15 | 2012-09-06 | Olympus Corp | Composite resin composition and molding |
JP2013194162A (en) * | 2012-03-21 | 2013-09-30 | Dic Corp | Polyurethane resin composition |
JP2013199526A (en) * | 2012-03-23 | 2013-10-03 | Dic Corp | Moisture-curing type polyurethane hot melt composition |
JP2014080510A (en) * | 2012-10-16 | 2014-05-08 | Sumitomo Seika Chem Co Ltd | Production method of cellulose fiber inclusion resin |
JP2014105217A (en) * | 2012-11-22 | 2014-06-09 | Sekisui Chem Co Ltd | Composite resin composition and method for manufacturing a composite resin composition |
JP2015086308A (en) * | 2013-10-31 | 2015-05-07 | Dic株式会社 | Urethane elastomer article |
JP2016153470A (en) * | 2015-02-12 | 2016-08-25 | 国立大学法人京都大学 | Dispersion containing polysaccharide nanofibers, dispersion medium, and monomer; and resin composition obtained from said dispersion |
JP2016188353A (en) * | 2015-03-27 | 2016-11-04 | 三洋化成工業株式会社 | Method for producing cellulose nanofiber, and method for producing cellulose nanofiber-containing resin or resin precursor |
JP2017043648A (en) * | 2015-08-24 | 2017-03-02 | 第一工業製薬株式会社 | Cellulose ester aqueous dispersion |
JP2017043647A (en) * | 2015-08-24 | 2017-03-02 | 第一工業製薬株式会社 | Cellulose ester aqueous dispersion |
JP2017128664A (en) * | 2016-01-20 | 2017-07-27 | 日本製紙株式会社 | Polyurethane resin composition, and method for producing the same |
CN107353400A (en) * | 2017-07-13 | 2017-11-17 | 华中科技大学 | A kind of preparation method of polypropylene carbonate/Cellulose nanocrystal composite |
WO2018008500A1 (en) * | 2016-07-07 | 2018-01-11 | リンテック株式会社 | Solid electrolyte and battery |
JP2018070851A (en) * | 2016-11-04 | 2018-05-10 | 株式会社服部商店 | Non-aqueous viscosity modifier |
JP2019038970A (en) * | 2017-08-29 | 2019-03-14 | 東亞合成株式会社 | Method for producing cellulose nanofiber powder |
-
2019
- 2019-02-28 WO PCT/JP2019/007720 patent/WO2019172058A1/en active Application Filing
- 2019-02-28 JP JP2020504960A patent/JP7302590B2/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007146143A (en) * | 2005-10-26 | 2007-06-14 | Kyoto Univ | Fiber-reinforced composite resin composition, adhesive and sealant |
JP2008274200A (en) * | 2007-04-29 | 2008-11-13 | Sachiko Yoshida | Method for producing cellulose fiber-reinforced composite, cellulose fiber-reinforced composite and material for producing cellulose fiber-reinforced composite |
JP2010143992A (en) * | 2008-12-17 | 2010-07-01 | Konica Minolta Holdings Inc | Fiber composite material and method for producing the same |
JP2012167202A (en) * | 2011-02-15 | 2012-09-06 | Olympus Corp | Composite resin composition and molding |
JP2013194162A (en) * | 2012-03-21 | 2013-09-30 | Dic Corp | Polyurethane resin composition |
JP2013199526A (en) * | 2012-03-23 | 2013-10-03 | Dic Corp | Moisture-curing type polyurethane hot melt composition |
JP2014080510A (en) * | 2012-10-16 | 2014-05-08 | Sumitomo Seika Chem Co Ltd | Production method of cellulose fiber inclusion resin |
JP2014105217A (en) * | 2012-11-22 | 2014-06-09 | Sekisui Chem Co Ltd | Composite resin composition and method for manufacturing a composite resin composition |
JP2015086308A (en) * | 2013-10-31 | 2015-05-07 | Dic株式会社 | Urethane elastomer article |
JP2016153470A (en) * | 2015-02-12 | 2016-08-25 | 国立大学法人京都大学 | Dispersion containing polysaccharide nanofibers, dispersion medium, and monomer; and resin composition obtained from said dispersion |
JP2016188353A (en) * | 2015-03-27 | 2016-11-04 | 三洋化成工業株式会社 | Method for producing cellulose nanofiber, and method for producing cellulose nanofiber-containing resin or resin precursor |
JP2017043648A (en) * | 2015-08-24 | 2017-03-02 | 第一工業製薬株式会社 | Cellulose ester aqueous dispersion |
JP2017043647A (en) * | 2015-08-24 | 2017-03-02 | 第一工業製薬株式会社 | Cellulose ester aqueous dispersion |
JP2017128664A (en) * | 2016-01-20 | 2017-07-27 | 日本製紙株式会社 | Polyurethane resin composition, and method for producing the same |
WO2018008500A1 (en) * | 2016-07-07 | 2018-01-11 | リンテック株式会社 | Solid electrolyte and battery |
JP2018070851A (en) * | 2016-11-04 | 2018-05-10 | 株式会社服部商店 | Non-aqueous viscosity modifier |
CN107353400A (en) * | 2017-07-13 | 2017-11-17 | 华中科技大学 | A kind of preparation method of polypropylene carbonate/Cellulose nanocrystal composite |
JP2019038970A (en) * | 2017-08-29 | 2019-03-14 | 東亞合成株式会社 | Method for producing cellulose nanofiber powder |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021130790A (en) * | 2020-02-21 | 2021-09-09 | 東亞合成株式会社 | Method for producing cellulose nanofibers-containing carbonate ester dispersion and cellulose nanofibers-containing polyurethane |
JP7452081B2 (en) | 2020-02-21 | 2024-03-19 | 東亞合成株式会社 | Method for producing cellulose nanofiber-containing carbonate ester dispersion and cellulose nanofiber-containing polyurethane |
JP2021161349A (en) * | 2020-04-02 | 2021-10-11 | 国立大学法人九州工業大学 | Urethane resin composition and method for producing the same |
JP7429370B2 (en) | 2020-04-02 | 2024-02-08 | 国立大学法人九州工業大学 | Method for producing urethane resin composition |
JP2021165350A (en) * | 2020-04-08 | 2021-10-14 | 東亞合成株式会社 | Cellulose nanofiber-containing urethane (meth)acrylate composition, method for producing the same, and cellulose nanofiber-containing urethane (meth)acrylate cured product |
JP7452209B2 (en) | 2020-04-08 | 2024-03-19 | 東亞合成株式会社 | Cellulose nanofiber-containing urethane (meth)acrylate composition and manufacturing method, and cellulose nanofiber-containing urethane (meth)acrylate cured product |
JPWO2021241409A1 (en) * | 2020-05-25 | 2021-12-02 | ||
WO2021241409A1 (en) * | 2020-05-25 | 2021-12-02 | 富士フイルム株式会社 | Composition, sheet-shaped molded body, artificial leather, and sheet-shaped molded body production method |
CN115698422A (en) * | 2020-05-25 | 2023-02-03 | 富士胶片株式会社 | Composition, sheet-like molded article, artificial leather, and method for producing sheet-like molded article |
JP7524319B2 (en) | 2020-05-25 | 2024-07-29 | 富士フイルム株式会社 | Composition, sheet-like molded product, artificial leather, and method for producing sheet-like molded product |
Also Published As
Publication number | Publication date |
---|---|
JP7302590B2 (en) | 2023-07-04 |
JPWO2019172058A1 (en) | 2021-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019172058A1 (en) | Method for producing polyurethane containing cellulose nanofibers | |
EP0850260B1 (en) | Method of preparing cellular polyurethane elastomers and isocyanate prepolymers suitable therefor | |
EP3183282B1 (en) | Polyester modified polybutadienols for the production of polyurethane elastomers and thermoplastic polyurethanes | |
EP3545025B1 (en) | Method for producing an at least partially coated object | |
WO2018092744A1 (en) | Thermoplastic polyurethane resin for foaming and production method thereof, and molded article | |
WO2011000586A1 (en) | Use of isocyanates based on renewable raw materials | |
JP5565645B1 (en) | Bump cushion | |
WO2008071622A1 (en) | Highly elastic flexible polyurethane foams | |
DE102009027392A1 (en) | Composition based on diisocyanates from renewable raw materials | |
WO2017030065A1 (en) | Polyurethane foam material, molded article, and method for producing polyurethane foam material | |
EP3265495B1 (en) | Polybutadienols for producing vitreous polyurethanes | |
TWI313693B (en) | Two-component curable polyol composition for foamed grindstone, two-component curable composition for foamed grindstone, foamed grindstone, and method for producing foamed grindstone | |
WO2021023750A1 (en) | Method for producing thermoplastically processable polyurethane polymers | |
JPS5959718A (en) | Thermoplastically processable polyurethane elastomer, manuf-acture and elastomer fiber therefrom | |
EP1860132A2 (en) | Thermoplastic polyurethane and use thereof | |
Diao et al. | Preparation of waterborne polyurethane with high solid content: the crystallinity control of soft segment and the organosilicon modification | |
JP7452081B2 (en) | Method for producing cellulose nanofiber-containing carbonate ester dispersion and cellulose nanofiber-containing polyurethane | |
Behera et al. | Advances in thermoplastic polyurethane elastomers: Design, applications and their circularity | |
JPH07149883A (en) | Production of lactone-based polyester polyether polyol and polyurethane resin produced by using the polymer | |
JP4736378B2 (en) | Artificial leather or synthetic leather | |
JP4932727B2 (en) | Method for producing PIPA polyol | |
KR101737764B1 (en) | Polyurethane resin composition for a microporous foam sheet used bio-polyol | |
JP4959120B2 (en) | Liquid blocked urethane prepolymer | |
JP7290044B2 (en) | Resin composition and article formed from said resin composition | |
JP2007186617A (en) | Thermoplastic polyurethane elastomer composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19764021 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020504960 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19764021 Country of ref document: EP Kind code of ref document: A1 |