[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019171604A1 - バルブ装置 - Google Patents

バルブ装置 Download PDF

Info

Publication number
WO2019171604A1
WO2019171604A1 PCT/JP2018/009357 JP2018009357W WO2019171604A1 WO 2019171604 A1 WO2019171604 A1 WO 2019171604A1 JP 2018009357 W JP2018009357 W JP 2018009357W WO 2019171604 A1 WO2019171604 A1 WO 2019171604A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
valve
valve device
flow path
adjustment
Prior art date
Application number
PCT/JP2018/009357
Other languages
English (en)
French (fr)
Inventor
俊英 吉田
篠原 努
中田 知宏
竜太郎 丹野
西野 功二
勝幸 杉田
昌彦 滝本
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to CN201880091000.3A priority Critical patent/CN111919053A/zh
Priority to PCT/JP2018/009357 priority patent/WO2019171604A1/ja
Priority to KR1020207026135A priority patent/KR102337975B1/ko
Priority to JP2020504645A priority patent/JPWO2019171604A1/ja
Priority to US16/971,375 priority patent/US20200386342A1/en
Priority to TW107110433A priority patent/TWI678429B/zh
Publication of WO2019171604A1 publication Critical patent/WO2019171604A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • F16K31/007Piezoelectric stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/52Means for additional adjustment of the rate of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/005Particular materials for seats or closure elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/1225Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston with a plurality of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/17Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being actuated by fluid pressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • G05D16/2022Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means actuated by a proportional solenoid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention relates to a valve device, a flow rate control method, a fluid control device, a semiconductor manufacturing method, and a semiconductor manufacturing device.
  • a fluid control device called an integrated gas system in which various fluid control devices such as an open / close valve, a regulator, and a mass flow controller are integrated is used to supply a precisely measured processing gas to a processing chamber. It has been.
  • the integrated gas system housed in a box is called a gas box. Normally, the processing gas output from the gas box is directly supplied to the processing chamber.
  • ALD atomic layer deposition method
  • the processing gas is stable.
  • the processing gas supplied from the gas box is temporarily stored in a tank serving as a buffer, and a valve provided in the immediate vicinity of the processing chamber is frequently opened and closed to remove the processing gas from the tank in a vacuum atmosphere. Supplying to the processing chamber is performed. Note that, for example, see Patent Documents 1 and 2 for valves provided in the immediate vicinity of the processing chamber.
  • the ALD method is one of chemical vapor deposition methods, and two or more kinds of processing gases are alternately flowed on the substrate surface one by one under film forming conditions such as temperature and time, and atoms on the substrate surface. It is a method of depositing a film by a single layer by reacting, and since it can be controlled by a single atomic layer, a uniform film thickness can be formed and a film can be grown very densely as a film quality. . In the semiconductor manufacturing process by the ALD method, it is necessary to precisely adjust the flow rate of the processing gas, and it is also necessary to secure the flow rate of the processing gas to some extent by increasing the diameter of the substrate.
  • the present invention has been made in view of the above circumstances, and provides a valve device, a flow rate control method and a fluid control device that can more easily adjust the opening amount when the valve is opened, and a process gas.
  • An object of the present invention is to provide a semiconductor manufacturing method and a semiconductor manufacturing apparatus capable of more easily adjusting the opening amount when the valve is opened in the processing step according to the above.
  • the valve device includes a valve body in which a first flow path and a second flow path are formed, and an opening of the first flow path to close the first flow path and the second flow path. And a valve body that opens the opening of the first flow path to connect the first flow path and the second flow path, and closes the opening to the valve body.
  • An operating member that moves between a closed position to be opened and an open position to open the opening; and an electric driving material that defines the open position of the operating member and is made of a compound that deforms in response to a change in electric field.
  • an adjusting actuator that changes the defined open position by deformation of the electric drive material.
  • the adjustment actuator may have a structure in which a plurality of elements including the electric drive material are stacked in the moving direction of the operation member.
  • the electric drive material may be a piezoelectric material or an electric drive type polymer material.
  • the electrically driven polymer material can be any one of electrical EAP, nonionic EAP, and ionic EAP.
  • the valve device further includes an elastic member that urges the operation member to the closed position, and a main actuator that urges the operation member to the open position against the elastic member. May be.
  • the main actuator may move the operation member to the open position by a driving fluid supplied with a side surface of the adjustment actuator as a part of a flow path.
  • the valve device further includes an annular actuator presser that holds the adjustment actuator, and a wiring that is connected to the adjustment actuator inside the actuator presser, and the actuator presser includes the actuator presser
  • An actuator presser flow passage that communicates the inside and outside of the presser may be provided.
  • the valve device further includes an adjustment body that is attached to the casing of the main actuator and connects the actuator presser, and the adjustment body opens to the inside of the actuator presser, and the drive While supplying a fluid, you may have an adjustment body flow path which lets the said wiring pass.
  • the flow rate control method of the present disclosure is a flow rate control method that adjusts the flow rate of a fluid using the valve device described in any of the above-described valve devices.
  • the fluid control device of the present disclosure is a fluid control device having a plurality of fluid devices, and includes the valve device described in any of the above-described valve devices.
  • valve device in a semiconductor device manufacturing process that requires a process step using a process gas in a sealed chamber, the valve device according to any one of the above-described valve devices is used to control the flow rate of the process gas.
  • the semiconductor manufacturing apparatus uses a valve device according to any one of the above-described valve devices for controlling the process gas in a manufacturing process of a semiconductor device that requires a process step using a process gas in a sealed chamber.
  • This is a semiconductor manufacturing apparatus characterized by the above.
  • the opening amount when the valve is opened can be adjusted more easily.
  • the opening amount when the valve is opened can be more easily adjusted in the process step using the process gas.
  • FIG. 2 is an enlarged cross-sectional view in the vicinity of an adjustment actuator of the valve device of FIG. 1 in a closed state.
  • FIG. 2 is an enlarged sectional view of the vicinity of a diaphragm of the valve device of FIG. 1 in a closed state.
  • FIG. 6 is an enlarged cross-sectional view of the vicinity of the adjustment actuator of the valve device of FIG. 5. The expanded sectional view of the diaphragm vicinity of the valve apparatus of FIG.
  • decrease) of the valve apparatus of FIG. The expanded sectional view of the diaphragm vicinity for demonstrating the state at the time of flow volume adjustment (at the time of flow volume reduction
  • the expanded sectional view of the diaphragm vicinity for demonstrating the state at the time of flow volume adjustment (at the time of flow volume increase) of the valve apparatus of FIG. Schematic which shows the example of application to the semiconductor manufacturing process of the valve apparatus which concerns on this embodiment.
  • the perspective view which shows an example of the fluid control apparatus using the valve apparatus of this embodiment.
  • Various fluid devices 991A to 991E are installed in each rail member 994 via a plurality of flow path blocks 992, and a flow path (not shown) through which fluid flows from the upstream side to the downstream side by the plurality of flow path blocks 992. Are formed respectively.
  • the “fluid device” is a device used in a fluid control apparatus that controls the flow of fluid, and includes at least two flow path openings that include a body that defines a fluid flow path and open on the surface of the body. It is a device having. Specific examples include an on-off valve (two-way valve) 991A, a regulator 991B, a pressure gauge 991C, an on-off valve (three-way valve) 991D, a mass flow controller 991E, and the like, but are not limited thereto.
  • the introduction pipe 993 is connected to a flow path port on the upstream side of the flow path (not shown).
  • a plurality of flow path blocks 992 are fixed to five rail members 994, so that five flow paths each flowing in the G2 direction are formed.
  • the lengths of the flow paths in the width direction W1, W2 can be 10 mm or less, that is, the width (dimension) of each fluid device can be 10 mm or less.
  • FIG. 1 is a diagram showing a configuration of a valve device according to an embodiment of the present invention, showing a state in which the valve is fully closed
  • FIG. 2 is an enlarged cross-sectional view in the vicinity of the adjustment actuator of FIG. 3 is an enlarged sectional view of the vicinity of the diaphragm of FIG.
  • the upward direction is defined as the opening direction A1
  • the downward direction is defined as the closing direction A2.
  • 1, 1 is a valve device, 10 is a valve body, 20 is a diaphragm as a valve body, 38 is a diaphragm retainer, 30 is a bonnet, 40 is an operating member, 50 is a casing, 60 is a main actuator, 70 is an adjusting body, 80 is an actuator presser, 90 is a coil spring, 100 is an adjustment actuator, and OR is an O-ring as a seal member.
  • the valve body 10 is made of stainless steel, and includes a block-shaped valve body main body 10a and connecting portions 10b and 10c protruding from the side of the valve body main body 10a. Two flow paths 13 are defined. One end of each of the first flow path 12 and the second flow path 13 is opened at the end faces of the connection portions 10b and 10c, respectively, and the other end communicates with a concave valve chamber 14 whose upper side is open. Synthetic resin (PFA, PA, PI, PCTFE, etc.) is provided on the bottom surface of the valve chamber 14 in a mounting groove provided at the periphery of the opening on the other end side of the first flow path 12 (hereinafter simply referred to as “opening”). A valve seat 15 made of metal is fitted and fixed. In this embodiment, as is clear from FIG. 3, the valve seat 15 is fixed in the mounting groove by caulking, but may be arranged without caulking.
  • the diaphragm 20 closes the opening of the first flow path 12 of the valve body 10 to block the first flow path 12 and the second flow path 13 and opens the opening of the first flow path 12.
  • the valve body communicates the first flow path 12 and the second flow path 13.
  • the diaphragm 20 is disposed above the valve seat 15 and maintains the airtightness of the valve chamber 14, and the central portion thereof moves up and down to come into contact with and separate from the valve seat 15. 12 and the 2nd flow path 13 are interrupted
  • the diaphragm 20 is formed into a spherical shell shape in which a convex arc shape is in a natural state by causing the central portion of a metal thin plate such as special stainless steel and a nickel-cobalt alloy thin plate to bulge upward. ing.
  • the diaphragm 20 is configured by laminating the three special stainless steel thin plates and the one nickel / cobalt alloy thin plate. The diaphragm 20 is placed on the protruding portion of the inner peripheral surface of the valve chamber 14, and the lower end portion of the bonnet 30 inserted into the valve chamber 14 is screwed into the screw portion 16 of the valve body 10.
  • the valve body 10 It is pressed to the projecting portion side of the valve body 10 through an alloy presser adapter 25 and is clamped and fixed in an airtight state.
  • the nickel-cobalt alloy thin film is disposed on the gas contact side.
  • the thing of another structure can also be used as a diaphragm.
  • the operating member 40 moves between a closed position where the diaphragm 20 as a valve body closes the opening of the first flow path 12 and an open position where the opening is opened.
  • the operation member 40 is formed in a substantially cylindrical shape, is fitted to the inner peripheral surface of the bonnet 30 and the inner peripheral surface of the cylindrical portion 51 formed in the casing 50, and is supported so as to be movable in the vertical direction.
  • A1 and A2 shown in FIGS. 1 and 2 are movement directions of the operating member 40, A1 is a movement direction of the diaphragm 20 to the open state, and A2 is a movement direction of the diaphragm 20 to the closed state.
  • the upward direction with respect to the valve body 10 is the opening direction A1, and the downward direction is the closing direction A2, but the present invention is not limited to this.
  • a diaphragm presser 38 made of a synthetic resin such as polyimide that contacts the upper surface of the central portion of the diaphragm 20 is attached to the lower end surface of the operation member 40.
  • a coil spring 90 is provided between the upper surface of the flange 45 formed on the outer peripheral surface of the operation member 40 and the ceiling surface of the casing 50. The operation member 40 is always directed toward the closing direction A2 by the coil spring 90. It is energized. For this reason, as shown in FIG.
  • the flange 45 in a state where the main actuator 60 is not operated, the flange 45 is biased by the coil spring 90, and the distance between the flange 45 and the cylindrical portion 51 is D0. At this time, as shown in FIG. 3, the diaphragm 20 is pressed against the valve seat 15, and the space between the first flow path 12 and the second flow path 13 is closed.
  • the flange 45 may be integrated with the operation member 40 or may be a separate body.
  • the coil spring 90 is accommodated in a holding portion 52 formed between the inner peripheral surface of the casing 50 and the cylindrical portion 51.
  • the coil spring 90 is used, it is not necessarily limited to this, Other types of elastic members, such as a disk spring and a leaf
  • the casing 50 is fixed to the bonnet 30 by screwing the inner periphery of the lower end portion thereof into a screw portion 36 formed on the outer periphery of the upper end portion of the bonnet 30.
  • An annular bulkhead 63 is fixed between the upper end surface of the bonnet 30 and the casing 50.
  • Cylinder chambers C ⁇ b> 1 and C ⁇ b> 2 that are partitioned vertically by a bulkhead 63 are formed between the outer peripheral surface of the operation member 40 and the casing 50 and the bonnet 30.
  • An annular piston 61 is fitted and inserted into the upper cylinder chamber C1, and an annular piston 62 is fitted and inserted into the lower cylinder chamber C2.
  • the cylinder chambers C1 and C2 and the pistons 61 and 62 constitute a main actuator 60 that moves the operating member 40 to the open position against the coil spring 90 that is an elastic member.
  • the main actuator 60 can increase the force by the driving fluid G by using two pistons 61 and 62 to increase the pressure action area.
  • the space above the piston 61 in the cylinder chamber C ⁇ b> 1 is connected to the atmosphere by the air passage 53.
  • the space above the piston 62 in the cylinder chamber C2 is connected to the atmosphere by the ventilation path h1.
  • the region to which the driving fluid G is supplied is indicated by hatching.
  • the driving fluid G is, for example, compressed air, but is not limited thereto.
  • hatching and the like other than the region to which the driving fluid G is supplied are omitted. Since the high pressure driving fluid G is supplied to the space below the pistons 61 and 62 in the cylinder chambers C1 and C2, airtightness is maintained by the O-ring OR. These spaces communicate with operating member flow passages 41 and 42 formed in the operating member 40, respectively.
  • the operation member flow passages 41 and 42 communicate with a second pneumatic flow channel Ch2 formed inside the operation member 40, and the second pneumatic flow channel Ch 2 includes an inner peripheral surface of the operation member 40 and an outer peripheral surface of the adjustment actuator 100.
  • the first pneumatic channel Ch1 is formed between the upper end surface of the operating member 40, the cylindrical portion 51 of the casing 50, and the lower end surface of the adjustment body 70. It communicates with the space SP to be formed.
  • the annular actuator presser 80 that holds the adjustment actuator 100 has an actuator presser flow passage 81 that communicates the inside and the outside thereof.
  • the actuator presser flow passage 81 passes through the space SP and the central portion of the adjustment body 70.
  • the flow path 71 is connected.
  • the adjusted body flow passage 71 communicates with the pipe 160 through the pipe joint 150.
  • the valve device 1 can be further downsized.
  • the opening / closing directions A1, A2 of the first pneumatic channel Ch1 and the second pneumatic channel Ch2 are the lengths of the opening / closing directions A1, A2 of the main actuator 60 and the lengths of the adjusting actuator 100, A1 / A2.
  • the operation member flow passages 41 and 42 may be directly connected to the first pneumatic flow channel Ch1 without having the second pneumatic flow channel Ch2.
  • the adjustment actuator 100 has an electric drive material made of a compound that defines an open position of the operation member 40 and deforms in response to a change in electric field.
  • the open position of the operation member 40 may be defined by elastic deformation of the pressure received from the operation member 40 of the adjustment actuator 100.
  • the adjustment actuator 100 can change the shape and size of the electric drive material by the current or voltage, and change the opening position of the specified operation member 40.
  • Such an electric drive material may be a piezoelectric material or an electric drive material other than the piezoelectric material.
  • an electrically driven material other than the piezoelectric material
  • an electrically driven polymer material can be used.
  • An electrically driven polymer material is also called an electroactive polymer material (Electro Active Polymer: EAP).
  • an electric EAP driven by an external electric field or Coulomb force, and a solvent in which a polymer is swollen are flowed by an electric field.
  • There are nonionic EAP to be deformed, ionic EAP driven by movement of ions and molecules by an electric field, and any of these or a combination thereof can be used.
  • a piezoelectric polymer such as polyvinylidene fluoride (PVDF) may be used, or a dielectric elastomer such as acrylic rubber or silicon rubber may be used.
  • nonionic EAP nonionic gels, such as the gel which swollen polyvinyl alcohol gel (Polyvinyl alcohol: PVA) with the dimethyl sulfoxide (DMSO) which is a dielectric solvent, can be used, for example.
  • DMSO dimethyl sulfoxide
  • ionic EAP for example, a nonionic gel such as a PAN-platinum fiber obtained by electrolessly plating platinum on a polyacrylonitrile (PAN) fiber can be used.
  • an electron conductive polymer such as polypyrrole or polyaniline may be used, or a bucky gel actuator using a bucky gel in which carbon nanotubes and an ionic liquid are mixed may be used.
  • an ion conductive polymer-metal composite (Ionic Polymer-Metal Composite) having a structure in which a thin film electrode such as gold or platinum is bonded to both surfaces of an electrolyte film such as a fluorine ion exchange resin. IPMC) may be used.
  • an ionic liquid that swells IPMC an ion exchanged solution in an aqueous solution of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) (for example, Nafion (registered trademark))
  • EMIBF4 1-ethyl-3-methylimidazolium tetrafluoroborate
  • ionic liquids such as 1-ethyl-3-methylimidazolium trifluoroacetate (EMITFA) and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ( Ion exchange using 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, EMITFSI), and sodium hydroxide (NaOH) containing alkali metal ions (for example, Nafion (registered trademark) NRE-211) Can be used.
  • EMIBF4 1-ethyl-3-methylimid
  • the adjustment actuator 100 can have a structure in which a plurality of elements including an electric drive material are stacked in the moving direction of the operation member 40.
  • the adjustment actuator 100 can be configured such that the stacked structure is accommodated in a container and deformed together with the container. In this case, each of the plurality of actuator elements is connected to the wiring 105 and the operation is controlled.
  • power supply to the adjustment actuator 100 is performed by the wiring 105.
  • the wiring 105 is connected to the adjusting actuator 100 inside the actuator presser 80, led from there to the pipe 160 through the adjusting body flow passage 71 and the pipe joint 150, and pulled out from the middle of the pipe 160 to the outside.
  • the wiring 105 drawn to the outside is connected to a control device (not shown), and the extension of the adjustment actuator 100 is controlled based on the current or voltage from the control device.
  • the position of the base end portion 103 of the adjustment actuator 100 in the opening / closing direction is defined by the lower end surface of the adjustment body 70 via the actuator presser 80.
  • the adjustment body 70 is attached to the casing 50 of the main actuator 60 by screwing a screw portion provided on the outer peripheral surface of the adjustment body 70 into a screw hole 56 formed in the upper portion of the casing 50. By adjusting the position of the adjustment body 70 in the opening / closing directions A1, A2, the position of the adjustment actuator 100 in the opening / closing directions A1, A2 can be adjusted.
  • the adjustment body 70 is opened to the inside of the actuator presser 80 and has an adjustment body flow passage 71 through which the wiring 105 is passed while supplying the driving fluid G.
  • valve device 1 configured as described above will be described with reference to FIGS. 5 to 9B.
  • a driving fluid G having a predetermined pressure is supplied into the valve device 1 through the pipe 160, a thrust force that pushes the piston 61, 62 from the pistons 61, 62 to the operating member 40 in the opening direction A1 acts.
  • the pressure of the driving fluid G is set to a value sufficient to move the operating member 40 in the opening direction A1 against the biasing force in the closing direction A2 acting on the operating member 40 from the coil spring 90.
  • the force in the opening direction A1 acting on the operating member 40 is received by the adjusting actuator 100, and the movement of the operating member 40 in the A1 direction is restricted at the open position elastically deformed by the pressure received from the operating member 40. That is, in FIG. 6, the distance between the flange portion 45 and the cylindrical portion 51 is a distance D ⁇ b> 1 that is smaller than the distance D ⁇ b> 0 when the operation member is in the closed position by the elastic deformation of the adjustment actuator 100. In this state, as shown in FIG. 7, the diaphragm 20 is separated from the valve seat 15 by the lift amount Lf according to the elastic deformation amount.
  • the open position of the operation member 40 can be regulated on the lower surface of the adjustment actuator 100.
  • the adjustment actuator 100 When the flow rate of the fluid output and supplied from the second flow path 13 of the valve device 1 in the state shown in FIG. 5 is to be adjusted, the adjustment actuator 100 is operated.
  • the left side of the center line Ct in FIGS. 8B and 9B shows the state shown in FIG. 5, and the right side of the center line Ct shows the state after adjusting the positions of the operating members 40 in the opening / closing directions A1 and A2. .
  • the adjustment actuator 100 is extended by applying a voltage via the wiring 105, and the lower end surface of the adjustment actuator 100 is closed in the closing direction A2. To move the open position of the operating member 40 in the closing direction A2.
  • the adjustment actuator 100 is shortened by applying a voltage through the wiring 105 or the like as shown in FIG. 9A, and the lower end surface of the adjustment actuator 100 is opened in the opening direction A1. The operating member 40 is moved in the opening direction A1.
  • the adjusted lift amount Lf + which is the distance between the diaphragm 20 and the valve seat 15, becomes larger than the unadjusted lift amount Lf.
  • the maximum lift amount of the diaphragm 20 is about 100 to 200 ⁇ m
  • the adjustment amount by the adjustment actuator 100 is about ⁇ 20 ⁇ m
  • the adjustment amount is the application of the valve device 1 and the material used for the adjustment actuator 100. It is determined appropriately based on the above. That is, the stroke of the adjustment actuator 100 cannot cover the lift amount of the diaphragm 20, but the main actuator 60 that operates with the driving fluid G and the adjustment actuator 100 are used together, so that the main actuator 60 with a relatively long stroke is used.
  • Adjustment man-hours are greatly reduced. According to the present embodiment, precise flow rate adjustment is possible only by changing the voltage applied to the adjustment actuator 100. Therefore, the flow rate adjustment can be performed immediately and the flow rate can be controlled in real time. According to the present embodiment, by appropriately selecting the main actuator and the adjustment actuator, the required valve opening can be obtained and precise flow rate control can be performed. According to the present embodiment, the opening amount when the valve is opened can be adjusted more easily.
  • a semiconductor manufacturing apparatus 980 shown in FIG. 10 is an apparatus for performing a semiconductor manufacturing process by the ALD method.
  • 981 is a process gas supply source
  • 982 is a gas box
  • 983 is a tank
  • 984 is a control unit
  • 985 is a processing chamber.
  • 986 indicates an exhaust pump.
  • it is necessary to precisely adjust the flow rate of the processing gas, and it is also necessary to secure the flow rate of the processing gas to some extent by increasing the diameter of the substrate.
  • the gas box 982 is an integrated gas system (fluid control) in which various fluid control devices such as an open / close valve, a regulator, and a mass flow controller are integrated and accommodated in the box in order to supply a precisely measured process gas to the processing chamber 985.
  • the tank 983 functions as a buffer that temporarily stores the processing gas supplied from the gas box 982.
  • the control unit 984 performs supply control of the driving fluid G to the valve device 1 and adjustment control of the opening amount when the valve in the adjustment actuator 100 is opened.
  • the processing chamber 985 provides a sealed processing space for forming a film on the substrate by the ALD method.
  • the exhaust pump 986 evacuates the processing chamber 985.
  • the processing gas can be initially adjusted if a command for adjusting the flow rate is sent from the control unit 984 to the valve device 1. Further, even during the film formation process in the processing chamber 985, the flow rate of the processing gas can be adjusted, and the processing gas flow rate can be optimized in real time. That is, according to the semiconductor manufacturing method by the semiconductor manufacturing apparatus 980 according to the present embodiment, the opening amount when the valve is opened can be adjusted more easily in the process step using the process gas.
  • valve device 1 is used in a semiconductor manufacturing process by the ALD method.
  • present invention is not limited to this, and the present invention is, for example, an atomic layer etching method (ALE: Atomic Layer Etching method) It can be applied to any object that requires precise flow rate adjustment.
  • ALE Atomic Layer Etching method
  • the piston built in the cylinder chamber operated by gas pressure is used as the main actuator.
  • the present invention is not limited to this, and various optimum actuators can be selected according to the object to be controlled. It is.
  • the adjustment actuator 100 is responsible for highly accurate control of the position of the operation member 40 thereafter.
  • the maximum stroke can be made as small as possible (the adjustment actuator can be miniaturized), and the position of the operation member 40 can be finely adjusted and the position control can be performed with high precision.
  • a so-called normally closed type valve has been described as an example, but the present invention is not limited to this, and can be applied to a normally open type valve.
  • the opening degree of the valve body may be adjusted by an adjustment actuator.
  • the adjustment actuator 100 supports (accepts) the force acting on the operation member 40.
  • the present invention is not limited to this, and the positioning of the operation member 40 in the open position is mechanical.
  • the adjustment actuator can be used to adjust the position of the operation member 40 in the opening / closing direction without supporting the force acting on the operation member 40.
  • valve body the diaphragm is exemplified as the valve body, but the present invention is not limited to this, and other types of valve bodies may be employed.
  • valve device 1 is arranged outside the gas box 983 as a fluid control device.
  • the fluid control in which various fluid devices such as open / close valves, regulators, and mass flow controllers are integrated and accommodated in the box. It is also possible to include the valve device 1 of the above embodiment in the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Fluid-Driven Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

【課題】バルブを開いた時の流量をより簡易に調整することのできるバルブ装置を提供する。 【解決手段】バルブ装置1は、第1の流路12及び第2の流路13が内部に形成されたバルブボディ10と、第1の流路の開口を閉鎖して第1の流路と第2の流路とを遮断すると共に、第1の流路の開口を開放して第1の流路と第2の流路とを連通させる弁体20と、弁体に開口を閉鎖させる閉位置と、開口を開放させる開位置との間で移動する操作部材40と、操作部材の開位置を規定すると共に、電界の変化に応じて変形する化合物からなる電気駆動材料を有し、電気駆動材料の変形により、規定される開位置を変化させる調整アクチュエータ100と、を備える。

Description

バルブ装置
 本発明は、バルブ装置、流量制御方法、流体制御装置、半導体製造方法および半導体製造装置に関する。
 半導体製造プロセスにおいては、正確に計量した処理ガスを処理チャンバに供給するために、開閉バルブ、レギュレータ、マスフローコントローラ等の各種の流体制御機器を集積化した集積化ガスシステムと呼ばれる流体制御装置が用いられている。この集積化ガスシステムをボックスに収容したものがガスボックスと呼ばれている。
 通常、上記のガスボックスから出力される処理ガスを処理チャンバに直接供給するが、原子層堆積法(ALD:Atomic Layer Deposition 法)により基板に膜を堆積させる処理プロセスにおいては、処理ガスを安定的に供給するためにガスボックスから供給される処理ガスをバッファとしてのタンクに一時的に貯留し、処理チャンバの直近に設けられたバルブを高頻度で開閉させてタンクからの処理ガスを真空雰囲気の処理チャンバへ供給することが行われている。なお、処理チャンバの直近に設けられるバルブとしては、例えば、特許文献1,2を参照。
 ALD法は、化学気相成長法の1つであり、温度や時間等の成膜条件の下で、2種類以上の処理ガスを1種類ずつ基板表面上に交互に流し、基板表面上原子と反応させて単層ずつ膜を堆積させる方法であり、単原子層ずつ制御が可能である為、均一な膜厚を形成させることができ、膜質としても非常に緻密に膜を成長させることができる。
 ALD法による半導体製造プロセスでは、処理ガスの流量を精密に調整する必要があるとともに、基板の大口径化等により、処理ガスの流量をある程度確保する必要もある。
特開2007-64333号公報 特開2016-121776号公報
 しかしながら、エア駆動式のバルブにおいて、空圧調整や機械的調整により流量を精密に調整するのは容易ではない。また、ALD法による半導体製造プロセスでは、処理チャンバ周辺が高温となるため、バルブが温度の影響を受けやすい。さらに、高頻度でバルブを開閉するので、バルブの経時、経年変化が発生しやすく、精密な流量を維持するための流量調整作業に膨大な工数を要する。
 本発明は上述の事情に鑑みてされたものであり、バルブを開いた時の開き量をより簡易に調整することのできるバルブ装置、流量制御方法及び流体制御装置提供すること、並びに、プロセスガスによる処理工程において、バルブを開いた時の開き量をより簡易に調整することのできる半導体製造方法および半導体製造装置を提供することを目的とする。
 本開示のバルブ装置は、第1の流路及び第2の流路が内部に形成されたバルブボディと、前記第1の流路の開口を閉鎖して前記第1の流路と前記第2の流路とを遮断すると共に、前記第1の流路の開口を開放して前記第1の流路と前記第2の流路とを連通させる弁体と、前記弁体に前記開口を閉鎖させる閉位置と、前記開口を開放させる開位置との間で移動する操作部材と、前記操作部材の前記開位置を規定すると共に、電界の変化に応じて変形する化合物からなる電気駆動材料を有し、前記電気駆動材料の変形により、規定される前記開位置を変化させる調整アクチュエータと、を備えるバルブ装置である。
 また、本開示のバルブ装置においては、前記調整アクチュエータは、前記電気駆動材料を含む複数の素子が、前記操作部材の移動方向に積層された構造とすることができる。
 また、本開示のバルブ装置においては、前記電気駆動材料は、圧電材料又は電気駆動型高分子材料であってもよい。また、この場合には、前記電気駆動型高分子材料は、電気性EAP、非イオン性EAP及びイオン性EAPのいずれかとすることができる。
 また、本開示のバルブ装置においては、前記操作部材を前記閉位置へ付勢する弾性部材と、前記操作部材を前記弾性部材に抗して前記開位置に付勢する主アクチュエータとを更に備えていてもよい。
 また、本開示のバルブ装置においては、前記主アクチュエータは、前記調整アクチュエータの側面を流路の一部として供給される駆動流体により、前記操作部材を前記開位置に移動することとしてもよい。
 また、本開示のバルブ装置においては、前記調整アクチュエータを把持する、環状のアクチュエータ押えと、前記アクチュエータ押えの内側で前記調整アクチュエータに接続される配線と、を更に備え、前記アクチュエータ押えは、前記アクチュエータ押えの内側と外側を連通させるアクチュエータ押え流通路を有してもよい。
 また、本開示のバルブ装置においては、前記主アクチュエータのケーシングに対して取り付けられると共に、前記アクチュエータ押えを接続する調整ボディを更に備え、前記調整ボディは、前記アクチュエータ押えの内側に開口し、前記駆動流体を供給すると共に、前記配線を通す調整ボディ流通路を有してもよい。
 本開示の流量制御方法は、上述のバルブ装置のうちいずれかに記載のバルブ装置を用いて、流体の流量を調整する流量制御方法である。
 本開示の流体制御装置は、複数の流体機器を有する流体制御装置であって、上述のバルブ装置のうちいずれかに記載のバルブ装置が含まれる流体制御装置である。
 本開示の半導体製造方法は、密閉されたチャンバ内においてプロセスガスによる処理工程を要する半導体装置の製造プロセスにおいて、前記プロセスガスの流量制御に、上述のバルブ装置のうちいずれかに記載のバルブ装置を用いたことを特徴とする半導体製造方法である。
 本開示の半導体製造装置は、密閉されたチャンバ内においてプロセスガスによる処理工程を要する半導体装置の製造プロセスにおいて、前記プロセスガスの制御に、上述のバルブ装置のうちいずれかに記載のバルブ装置を用いたことを特徴とする半導体製造装置である。
 本発明のバルブ装置、流量制御方法及び流体制御装置によれば、バルブを開いた時の開き量をより簡易に調整することができる。また本発明の半導体製造方法および半導体製造装置によれば、プロセスガスによる処理工程において、バルブを開いた時の開き量をより簡易に調整することができる。
本発明の一実施形態に係るバルブ装置の縦断面図。 閉状態にある図1のバルブ装置の調整アクチュエータ付近の拡大断面図。 閉状態にある図1のバルブ装置のダイヤフラム付近の拡大断面図。 駆動流体の供給によるバルブ装置の動作について説明するための図。 開状態にある図1のバルブ装置の縦断面図。 図5のバルブ装置の調整アクチュエータ付近の拡大断面図。 図5のバルブ装置のダイヤフラム付近の拡大断面図。 図5のバルブ装置の流量調整時(流量減少時)の状態を説明するためのアクチュエータ付近の拡大断面図。 図5のバルブ装置の流量調整時(流量減少時)の状態を説明するためのダイヤフラム付近の拡大断面図。 図5のバルブ装置の流量調整時(流量増加時)の状態を説明するためのアクチュエータ付近の拡大断面図。 図5のバルブ装置の流量調整時(流量増加時)の状態を説明するためのダイヤフラム付近の拡大断面図。 本実施形態に係るバルブ装置の半導体製造プロセスへの適用例を示す概略図。 本実施形態のバルブ装置を用いる流体制御装置の一例を示す斜視図。
 以下、本発明の実施形態について図面を参照して説明する。なお、本明細書および図面においては、機能が実質的に同様の構成要素には、同様の符号を使用することにより重複した説明を省略する。
 先ず、図11を参照して、本発明が適用される流体制御装置の一例を説明する。
 図11に示す流体制御装置は、金属製のベースプレートBS上には、幅方向W1,W2に沿って配列され長手方向G1,G2に延びる5本のレール部材994が設けられている。なお、W1は正面側、W2は背面側,G1は上流側、G2は下流側の方向を示している。各レール部材994には、複数の流路ブロック992を介して各種流体機器991A~991Eが設置され、複数の流路ブロック992によって、上流側から下流側に向かって流体が流通する図示しない流路がそれぞれ形成されている。
 ここで、「流体機器」とは、流体の流れを制御する流体制御装置に使用される機器であって、流体流路を画定するボディを備え、このボディの表面で開口する少なくとも2つの流路口を有する機器である。具体的には、開閉弁(2方弁)991A、レギュレータ991B、プレッシャーゲージ991C、開閉弁(3方弁)991D、マスフローコントローラ991E等が含まれるが、これらに限定されるわけではない。なお、導入管993は、上記した図示しない流路の上流側の流路口に接続されている。この流体制御装置は、5本のレール部材994に複数の流路ブロック992が固定されることでそれぞれG2方向に流れる5つの流路が形成されており、小型化・集積化のために、それぞれの流路の幅方向W1,W2の長さを10mm以下、すなわち、各流体機器の幅(寸法)を10mm以下とすることができる。
 本発明は、上記した開閉弁991A、991D、レギュレータ991B等の種々のバルブ装置に適用可能であるが、本実施形態では、開閉弁(バルブ装置)に適用する場合を例に挙げて説明する。
 図1は、本発明の一実施形態に係るバルブ装置の構成を示す図であって、バルブが全閉時の状態を示しており、図2は図1の調整アクチュエータ付近の拡大断面図、図3は図1のダイヤフラム付近の拡大断面図である。なお、以下の説明において上方向を開方向A1、下方向を閉方向A2とする。
 図1において、1はバルブ装置、10はバルブボディ、20は弁体としてのダイヤフラム、38はダイヤフラム押え、30はボンネット、40は操作部材、50はケーシング、60は主アクチュエータ、70は調整ボディ、80はアクチュエータ押え、90はコイルばね、100は調整アクチュエータ、ORはシール部材としてのOリングを示している。
 バルブボディ10は、ステンレス鋼により形成されており、ブロック状のバルブボディ本体10aと、バルブボディ本体10aの側方からそれぞれ突出する接続部10b,10cを有し、第1の流路12及び第2の流路13を画定している。第1の流路12及び第2の流路13の一端は、それぞれ接続部10b,10cの端面でそれぞれ開口し、他端は上方が開放された凹状の弁室14に連通している。弁室14の底面には、第1の流路12の他端側の開口(以下、単に「開口」という。)周縁に設けられた装着溝に合成樹脂(PFA、PA、PI、PCTFE等)製の弁座15が嵌合固定されている。尚、本実施形態では、図3から明らかなように、加締め加工により弁座15が装着溝内に固定されているが、加締めによらずに配置されていてもよい。
 ダイヤフラム20は、バルブボディ10の第1の流路12の開口を閉鎖して第1の流路12と第2の流路13とを遮断すると共に、第1の流路12の開口を開放して第1の流路12と第2の流路13とを連通させる弁体である。ダイヤフラム20は、弁座15の上方に配設されており、弁室14の気密を保持すると共に、その中央部が上下動して弁座15に当離座することにより、第1の流路12及び第2の流路13を遮断又は連通する。本実施形態では、ダイヤフラム20は、特殊ステンレス鋼等の金属製薄板及びニッケル・コバルト合金薄板の中央部を上方へ膨出させることにより、上に凸の円弧状が自然状態の球殻状とされている。本実施形態においては、この特殊ステンレス鋼薄板3枚とニッケル・コバルト合金薄板1枚とが積層されて、ダイヤフラム20が構成される。
 ダイヤフラム20は、その周縁部が弁室14の内周面の突出部上に載置され、弁室14内へ挿入したボンネット30の下端部をバルブボディ10のネジ部16へねじ込むことにより、ステンレス合金製の押えアダプタ25を介してバルブボディ10の前記突出部側へ押圧され、気密状態で挾持固定されている。尚、ニッケル・コバルト合金薄膜は、接ガス側に配置されている。
 なお、ダイヤフラムとしては、他の構成のものも使用可能である。
 操作部材40は、弁体であるダイヤフラム20に第1の流路12の開口を閉鎖させる閉位置と、開口を開放させる開位置との間で移動する。操作部材40は、略円筒状に形成され、ボンネット30の内周面とケーシング50内に形成された筒状部51の内周面に嵌合し、上下方向に移動自在に支持されている。なお、図1および図2に示すA1,A2は操作部材40の移動方向であり、A1はダイヤフラム20の開状態への移動方向、A2は閉状態への移動方向を示している。本実施形態では、バルブボディ10に対して上方向が開方向A1であり、下方向が閉方向A2であるが、本発明はこれに限定されるわけではない。
 操作部材40の下端面にはダイヤフラム20の中央部上面に当接するポリイミド等の合成樹脂製のダイヤフラム押え38が装着されている。
 操作部材40の外周面に形成された鍔部45の上面と、ケーシング50の天井面との間には、コイルばね90が設けられ、操作部材40はコイルばね90により閉方向A2に向けて常時付勢されている。このため、図2に示すように、主アクチュエータ60が作動していない状態では、鍔部45はコイルばね90により付勢され、鍔部45と筒状部51との距離はD0となる。この際、図3に示すように、ダイヤフラム20は弁座15に押し付けられ、第1の流路12と第2の流路13との間は閉じられた状態となっている。
 なお、鍔部45は、操作部材40と一体であっても、別体であってもよい。
 コイルばね90は、ケーシング50の内周面と筒状部51との間に形成された保持部52に収容されている。本実施形態では、コイルばね90を使用しているが、これに限定されるわけではなく、皿ばねや板バネ等の他の種類の弾性部材を使用できる。
 ケーシング50は、その下端部内周がボンネット30の上端部外周に形成されたネジ部36にねじ込まれることで、ボンネット30に固定されている。なお、ボンネット30上端面とケーシング50との間には、環状のバルクヘッド63が固定されている。
 操作部材40の外周面と、ケーシング50およびボンネット30との間には、バルクヘッド63によって上下に区画されたシリンダ室C1,C2が形成されている。
 上側のシリンダ室C1には、環状に形成されたピストン61が嵌合挿入され、下側のシリンダ室C2には、環状に形成されたピストン62が嵌合挿入されている。これらシリンダ室C1,C2およびピストン61,62は、操作部材40を弾性部材であるコイルばね90に抗して開位置に移動させる主アクチュエータ60を構成している。主アクチュエータ60は、2つのピストン61,62を用いて圧力の作用面積を増加させることにより、駆動流体Gによる力を増力できるようになっている。
 シリンダ室C1のピストン61の上側の空間は、通気路53により大気につながっている。シリンダ室C2のピストン62の上側の空間は、通気路h1により大気につながっている。
 図4では、駆動流体Gが供給される領域がハッチングで示されている。駆動流体Gは、例えば圧縮エアであるが、これに限定されるわけではない。この図においては、説明を分かりやすくするため、駆動流体Gが供給される領域以外のハッチング等の記載を省略している。シリンダ室C1,C2のピストン61,62の下側の空間は高圧の駆動流体Gが供給されるため、OリングORにより気密が保たれている。これらの空間は、操作部材40に形成された操作部材流通路41,42とそれぞれ連通している。操作部材流通路41,42は、操作部材40の内側に形成された第2空圧流路Ch2に連通し、第2空圧流路Ch2は、操作部材40の内周面と調整アクチュエータ100の外周面との間に形成された第1空圧流路Ch1に連通し、この第1空圧流路Ch1は、操作部材40の上端面と、ケーシング50の筒状部51と調整ボディ70の下端面とで形成される空間SPと連通している。調整アクチュエータ100を把持する環状のアクチュエータ押え80は、その内側と外側を連通させるアクチュエータ押え流通路81を有し、アクチュエータ押え流通路81は、空間SPと調整ボディ70の中心部を貫通する調整ボディ流通路71とを接続している。調整ボディ流通路71は、管継手150を介して管160と連通している。これにより管160から供給される駆動流体Gは、シリンダ室C1及びC2に供給され、ピストン61及び62を方向A1に押し上げる。このように、調整アクチュエータ100の側面を流路の一部として駆動流体Gを供給することにより、バルブ装置1をより小型化することができる。ここで、第1空圧流路Ch1及び第2空圧流路Ch2の開閉方向A1,A2長さは、主アクチュエータ60の開閉方向A1,A2長さ、及び調整アクチュエータ100の開閉方向A1,A2長さに応じて適宜定めることができ、この場合において第2空圧流路Ch2を有さずに、操作部材流通路41,42が直接第1空圧流路Ch1に接続される構成であってもよい。
 調整アクチュエータ100は、操作部材40の開位置を規定すると共に、電界の変化に応じて変形する化合物からなる電気駆動材料を有している。操作部材40の開位置は、調整アクチュエータ100の操作部材40から受ける圧力の弾性変形により規定されるものとしてもよい。つまり調整アクチュエータ100は、電流又は電圧により電気駆動材料の形状や大きさを変化させ、規定される操作部材40の開位置を変化させることができる。このような電気駆動材料は、圧電材料であってもよいし、圧電材料以外の電気駆動材料であってもよい。圧電材料以外の電気駆動材料とする場合には電気駆動型高分子材料とすることができる。
 電気駆動型高分子材料は、電気活性高分子材料(Electro Active Polymer:EAP)ともよばれ、例えば外部電場やクーロン力により駆動する電気性EAP、およびポリマーを膨潤させている溶媒を電場により流動させて変形させる非イオン性EAP、電場によるイオンや分子の移動により駆動するイオン性EAP等があり、これらのいずれか又は組合せを用いることができる。
 電気性EAPとしては、例えばポリフッ化ビニリデン(PolyVinylidene DiFluoride: PVDF)等の圧電性高分子を用いてもよいし、アクリルゴムやシリコンゴム等の誘電体エラストマーを用いることとしてもよい。非イオン性EAPとしては、例えばポリビニルアルコールゲル(Polyvinyl alcohol: PVA)を誘電性溶媒であるジメチルスルホキシド(Dimethyl sulfoxide: DMSO)で膨潤させたゲル等の非イオン性ゲルを用いることができる。
 イオン性EAPとしては、例えばポリアクリロニトリル(Polyacrylonitrile: PAN)ファイバに白金を無電解めっきしたPAN-白金ファイバ等の非イオン性ゲルを用いることができる。また、ポリピロールやポリアニリン等の電子導電性高分子を用いてもよいし、カーボンナノチューブとイオン液体を混ぜ合わたバッキーゲルを利用したバッキーゲルアクチュエータを利用してもよい。
 また別のイオン性EAPとして、例えばフッ素系イオン交換樹脂等の電解質膜の両面に、金あるいは白金等の薄膜電極を接合した構造等のイオン導電性高分子金属接合体(Ionic Polymer-Metal Composite: IPMC)を用いることとしてもよい。特に、IPMCを膨潤するイオン液体としては、1-エチル-3-メチルイミダゾリウムテトラフルオロボラート(1-ethyl-3-methylimidazolium tetrafluoroborate: EMIBF4)水溶液中でイオン交換したもの(例えば、Nafion(登録商標))や、イオン液体である1-エチル-3-メチルイミダゾリウムトリフルオロアセタート(1-ethyl-3-methylimidazoliumtrifluoroacetate、 EMITFA) と1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide、 EMITFSI)、およびアルカリ金属イオンを含んだ水酸化ナトリウム(NaOH)を用いてイオン交換したもの(例えば、Nafion(登録商標)NRE-211)等を用いることができる。
 調整アクチュエータ100は、電気駆動材料を含む複数の素子が、操作部材40の移動方向に積層された構造とすることができる。また調整アクチュエータ100は、この積層された構造が容器に収められ、容器と共に変形する構成とすることができる。またこの場合には複数のアクチュエータ素子のそれぞれは、配線105に接続されて動作が制御される。
 図1に示すように、調整アクチュエータ100への給電は、配線105により行われる。配線105は、アクチュエータ押え80の内側で調整アクチュエータ100に接続され、そこから調整ボディ流通路71および管継手150を通じて管160に導かれており、管160の途中から外部に引き出されている。外部に引き出された配線105は不図示の制御装置に接続され、制御装置からの電流又は電圧に基づいて調整アクチュエータ100の伸長が制御される。
 調整アクチュエータ100の基端部103の開閉方向の位置は、アクチュエータ押え80を介して調整ボディ70の下端面により規定されている。調整ボディ70は、ケーシング50の上部に形成されたネジ孔56に調整ボディ70の外周面に設けられたネジ部がねじ込まれることにより、主アクチュエータ60のケーシング50に対して取り付けられる。調整ボディ70の開閉方向A1,A2の位置を調整することで、調整アクチュエータ100の開閉方向A1,A2の位置を調整できる。調整ボディ70は、アクチュエータ押え80の内側に開口し、駆動流体Gを供給すると共に、配線105を通す調整ボディ流通路71を有している。
 次に、上記構成のバルブ装置1の動作について図5~図9Bを参照して説明する。
 図5に示すように、管160を通じて所定圧力の駆動流体Gをバルブ装置1内に供給すると、ピストン61,62から操作部材40へ開方向A1に押し上げる推力が作用する。駆動流体Gの圧力は、操作部材40にコイルばね90から作用する閉方向A2の付勢力に抗して操作部材40を開方向A1に移動させるのに十分な値に設定されている。操作部材40に作用する開方向A1の力は、調整アクチュエータ100で受け止められ、操作部材40のA1方向の移動は、操作部材40から受ける圧力により弾性変形した開位置において規制される。つまり図6において、鍔部45と筒状部51との距離は、操作部材が閉位置の距離D0より、調整アクチュエータ100が弾性変形した分だけ小さい距離D1となる。この状態において、図7に示すように、ダイヤフラム20は、弾性変形量に応じて弁座15からリフト量Lfだけ離隔する。ここで調整アクチュエータ100の弾性変形量が無視できる程度の場合には、例えば調整アクチュエータ100の下面を、操作部材40の開位置を規制するものとすることができる。
 図5に示す状態におけるバルブ装置1の第2の流路13から出力し供給される流体の流量を調整したい場合には、調整アクチュエータ100を作動させる。
 図8Bおよび図9Bの中心線Ctの左側は、図5に示す状態を示しており、中心線Ctの右側は操作部材40の開閉方向A1,A2の位置を調整した後の状態を示している。
 流体の流量を減少させる方向に調整する場合には、配線105を介した電圧の印加等により、図8Aに示すように、調整アクチュエータ100を伸長させて、調整アクチュエータ100の下端面を閉方向A2に移動させることにより、操作部材40の開位置を閉方向A2に移動させる。これにより開状態における操作部材40の閉位置からの移動量は減少し、鍔部45と筒状部51との距離D2は通常の閉位置における距離D1より大きくなる。これにより、図8Bに示すように、ダイヤフラム20と弁座15との距離である調整後のリフト量Lf-は、調整前のリフト量Lfよりも小さくなる。
 流体の流量を増加させる方向に調整する場合には、配線105を介した電圧の印加等により、図9Aに示すように、調整アクチュエータ100を短縮させて、調整アクチュエータ100の下端面を開方向A1に移動させることにより、操作部材40を開方向A1に移動させる。これにより開状態における操作部材40の閉位置からの移動量は増加し、鍔部45と筒状部51との距離D3は通常時の閉位置における距離D1より小さくなる。これにより、図9Bに示すように、ダイヤフラム20と弁座15との距離である調整後のリフト量Lf+は、調整前のリフト量Lfよりも大きくなる。
 本実施形態では、ダイヤフラム20のリフト量の最大値は100~200μm程度で、調整アクチュエータ100による調整量は±20μm程度としているが、調整量はバルブ装置1の用途や、調整アクチュエータ100に用いる材料等に基づいて適宜定められる。
 すなわち、調整アクチュエータ100のストロークでは、ダイヤフラム20のリフト量をカバーすることができないが、駆動流体Gで動作する主アクチュエータ60と調整アクチュエータ100を併用することで、相対的にストロークの長い主アクチュエータ60でバルブ装置1の供給する流量を確保しつつ、相対的にストロークの短い調整アクチュエータ100で精密に流量調整することができ、調整ボディ70等により手動で流量調整をする場合と比較して、流量調整工数が大幅に削減される。
 本実施形態によれば、調整アクチュエータ100に印可する電圧を変化させるだけで精密な流量調整が可能であるので、流量調整を即座に実行できるとともに、リアルタイムに流量制御をすることも可能となる。
 本実施形態によれば、主アクチュエータおよび調整アクチュエータを適宜選択することにより、必要なバルブ開度を得られるとともに精密な流量制御が可能となる。
 本実施形態によれば、バルブを開いた時の開き量をより簡易に調整することができる。
 次に、図10を参照して、上記したバルブ装置1の適用例について説明する。
 図10に示す半導体製造装置980は、ALD法による半導体製造プロセスを実行するための装置であり、981はプロセスガス供給源、982はガスボックス、983はタンク、984は制御部、985は処理チャンバ、986は排気ポンプを示している。
 ALD法による半導体製造プロセスでは、処理ガスの流量を精密に調整する必要があるとともに、基板の大口径化により、処理ガスの流量をある程度確保する必要もある。
 ガスボックス982は、正確に計量したプロセスガスを処理チャンバ985に供給するために、開閉バルブ、レギュレータ、マスフローコントローラ等の各種の流体制御機器を集積化してボックスに収容した集積化ガスシステム(流体制御装置)である。
 タンク983は、ガスボックス982から供給される処理ガスを一時的に貯留するバッファとして機能する。
 制御部984は、バルブ装置1への駆動流体Gの供給制御や調整アクチュエータ100におけるバルブを開いた時の開き量の調整制御を実行する。
 処理チャンバ985は、ALD法による基板への膜形成のための密閉処理空間を提供する。
 排気ポンプ986は、処理チャンバ985内を真空引きする。
 上記のようなシステム構成によれば、制御部984からバルブ装置1に流量調整のための指令を送れば、処理ガスの初期調整が可能になる。また、処理チャンバ985内で成膜プロセスを実行途中であっても、処理ガスの流量調整が可能であり、リアルタイムに処理ガス流量の最適化ができる。つまり、本実施形態に係る半導体製造装置980による半導体製造方法によれば、プロセスガスによる処理工程において、バルブを開いた時の開き量をより簡易に調整することができる。
 上記適用例では、バルブ装置1をALD法による半導体製造プロセスに用いる場合について例示したが、これに限定されるわけではなく、本発明は、例えば原子層エッチング法(ALE:Atomic Layer Etching 法)等、精密な流量調整が必要なあらゆる対象に適用可能である。
 上記実施形態では、主アクチュエータとして、ガス圧で作動するシリンダ室に内蔵されたピストンを用いたが、本発明はこれに限定されるわけではなく、制御対象に応じて最適なアクチュエータを種々選択可能である。
 なお、調整ボディ70により、操作部材40の開位置を予め精度良く機械的に調整すれば、その後の操作部材40の位置の高精度な制御を調整アクチュエータ100に担わせることで、調整アクチュエータ100の最大ストロークを可能な限り小さくできるとともに(調整アクチュエータの小型化が可能になるとともに)、操作部材40の位置の高精度な微調整および高精度な位置制御が可能となる。
 上記実施形態では、いわゆるノーマリクローズタイプのバルブを例に挙げたが、本発明はこれに限定されるわけではなく、ノーマリオープンタイプのバルブにも適用可能である。この場合には、例えば、弁体の開度調整を調整用アクチュエータで行うようにすればよい。
 上記実施形態では、調整アクチュエータ100で操作部材40に作用する力を支える(受け止める)構成としたが、本発明はこれに限定されるわけではなく、操作部材40の開位置での位置決めを機械的に行い、操作部材40に作用する力を支持することなく操作部材40の開閉方向の位置調整のみを調整用アクチュエータで実行する構成も可能である。
 上記実施形態では、弁体としてダイヤフラムを例示したが、本発明はこれに限定されるわけではなく、他の種類の弁体を採用することも可能である。
 上記実施形態では、バルブ装置1を流体制御装置としてのガスボックス983の外部に配置する構成としたが、開閉バルブ、レギュレータ、マスフローコントローラ等の各種の流体機器を集積化してボックスに収容した流体制御装置に上記実施形態のバルブ装置1を含ませることも可能である。
1 バルブ装置
10 バルブボディ
12 第1の流路
13 第2の流路
15 弁座
20 ダイヤフラム
25 押えアダプタ
30 ボンネット
38 ダイヤフラム押え
40 操作部材
45 鍔部
50 ケーシング
60 主アクチュエータ
61,62 ピストン
63 バルクヘッド
70,70A 調整ボディ
71 調整ボディ流通路
80 アクチュエータ押え
81 アクチュエータ押え流通路
90 コイルばね
100 調整アクチュエータ
103 基端部
105 配線
150 管継手
160 管
981 プロセスガス供給源
982 ガスボックス
983 タンク
984 制御部
985 処理チャンバ
986 排気ポンプ
980 半導体製造装置
991A 開閉弁(2方弁)
991B レギュレータ
991C プレッシャーゲージ
991D 開閉弁(3方弁)
991E マスフローコントローラ
992 流路ブロック
993 導入管
994 レール部材
A1 開方向
A2 閉方向
C1,C2 シリンダ室
Ch1,Ch2 第1空圧流路、第2空圧流路
SP 空間
OR Oリング
G 駆動流体
Lf 調整前のリフト量
Lf+,Lf- 調整後のリフト量
 

Claims (12)

  1.  第1の流路及び第2の流路が内部に形成されたバルブボディと、
     前記第1の流路の開口を閉鎖して前記第1の流路と前記第2の流路とを遮断すると共に、前記第1の流路の開口を開放して前記第1の流路と前記第2の流路とを連通させる弁体と、
     前記弁体に前記開口を閉鎖させる閉位置と、前記開口を開放させる開位置との間で移動する操作部材と、
     前記操作部材の前記開位置を規定すると共に、電界の変化に応じて変形する化合物からなる電気駆動材料を有し、前記電気駆動材料の変形により、規定される前記開位置を変化させる調整アクチュエータと、を備えるバルブ装置。
  2.  前記調整アクチュエータは、前記電気駆動材料を含む複数の素子が、前記操作部材の移動方向に積層された構造である、請求項1に記載のバルブ装置。
  3.  前記電気駆動材料は、圧電材料又は電気駆動型高分子材料である、請求項1又は2に記載のバルブ装置。
  4.  前記電気駆動型高分子材料は、電気性EAP、非イオン性EAP及びイオン性EAPのいずれかである、請求項3に記載のバルブ装置。
  5.  前記操作部材を前記閉位置へ付勢する弾性部材と、
     前記操作部材を前記弾性部材に抗して前記開位置に付勢する主アクチュエータとを更に備える、請求項1乃至4のいずれか一項に記載のバルブ装置。
  6.  前記主アクチュエータは、前記調整アクチュエータの側面を流路の一部として供給される駆動流体により、前記操作部材を前記開位置に移動する、請求項5に記載のバルブ装置。
  7.  前記調整アクチュエータを把持する、環状のアクチュエータ押えと、
     前記アクチュエータ押えの内側で前記調整アクチュエータに接続される配線と、を更に備え、
     前記アクチュエータ押えは、前記アクチュエータ押えの内側と外側を連通させるアクチュエータ押え流通路を有する、請求項1乃至6のいずれか一項に記載のバルブ装置。
  8.  前記主アクチュエータのケーシングに対して取り付けられると共に、前記アクチュエータ押えを接続する調整ボディを更に備え、
     前記調整ボディは、前記アクチュエータ押えの内側に開口し、駆動流体を供給すると共に、前記配線を通す調整ボディ流通路を有する、請求項7に記載のバルブ装置。
  9.  請求項1乃至8のいずれか一項に記載のバルブ装置を用いて、流体の流量を調整する流量制御方法。
  10.  複数の流体機器を有する流体制御装置であって、
     前記流体機器に請求項1乃至8のいずれか一項に記載のバルブ装置が含まれる、ことを特徴とする流体制御装置。
  11.  密閉されたチャンバ内においてプロセスガスによる処理工程を要する半導体装置の製造プロセスにおいて、前記プロセスガスの流量制御に請求項1乃至8のいずれかに記載のバルブ装置を用いたことを特徴とする半導体製造方法。
  12.  密閉されたチャンバ内においてプロセスガスによる処理工程を要する半導体装置の製造プロセスにおいて、前記プロセスガスの制御に請求項1乃至8のいずれかいずれか一項に記載のバルブ装置を用いたことを特徴とする半導体製造装置。

     
PCT/JP2018/009357 2018-03-09 2018-03-09 バルブ装置 WO2019171604A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880091000.3A CN111919053A (zh) 2018-03-09 2018-03-09 阀装置
PCT/JP2018/009357 WO2019171604A1 (ja) 2018-03-09 2018-03-09 バルブ装置
KR1020207026135A KR102337975B1 (ko) 2018-03-09 2018-03-09 밸브 장치
JP2020504645A JPWO2019171604A1 (ja) 2018-03-09 2018-03-09 バルブ装置
US16/971,375 US20200386342A1 (en) 2018-03-09 2018-03-09 Valve device
TW107110433A TWI678429B (zh) 2018-03-09 2018-03-27 閥裝置、流量控制方法、流體控制裝置、半導體製造方法及半導體製造裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009357 WO2019171604A1 (ja) 2018-03-09 2018-03-09 バルブ装置

Publications (1)

Publication Number Publication Date
WO2019171604A1 true WO2019171604A1 (ja) 2019-09-12

Family

ID=67845997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009357 WO2019171604A1 (ja) 2018-03-09 2018-03-09 バルブ装置

Country Status (6)

Country Link
US (1) US20200386342A1 (ja)
JP (1) JPWO2019171604A1 (ja)
KR (1) KR102337975B1 (ja)
CN (1) CN111919053A (ja)
TW (1) TWI678429B (ja)
WO (1) WO2019171604A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019171593A1 (ja) * 2018-03-09 2021-02-18 株式会社フジキン バルブ装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102614981B1 (ko) * 2019-12-06 2023-12-19 주식회사 유니락 퀵 오픈 밸브

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008356A (ja) * 2006-06-28 2008-01-17 Noiberuku Kk 圧電駆動装置、バルブおよびブレーキ装置
JP2008536527A (ja) * 2005-01-24 2008-09-11 キネティキュア リミテッド 関節に振動をかける器具及び方法
JP2012508556A (ja) * 2008-11-05 2012-04-05 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 表面変形電気活性ポリマー変換器
JP2014190387A (ja) * 2013-03-26 2014-10-06 Fujikin Inc 流量制御装置用の流量制御弁

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217767A (ja) * 1994-01-28 1995-08-15 Ckd Corp 3ポジション開閉弁
US5762086A (en) * 1995-12-19 1998-06-09 Veriflo Corporation Apparatus for delivering process gas for making semiconductors and method of using same
JP2001317646A (ja) * 2000-05-08 2001-11-16 Smc Corp 圧電式流体制御弁
JP4378878B2 (ja) * 2000-12-28 2009-12-09 株式会社デンソー 油圧制御弁および燃料噴射弁
US6499471B2 (en) * 2001-06-01 2002-12-31 Siemens Automotive Corporation Hydraulic compensator for a piezoelectrical fuel injector
US6941963B2 (en) * 2003-06-26 2005-09-13 Planar Systems, Inc. High-speed diaphragm valve for atomic layer deposition
JP5054904B2 (ja) * 2005-08-30 2012-10-24 株式会社フジキン ダイレクトタッチ型メタルダイヤフラム弁
CN103994232B (zh) * 2014-05-12 2016-04-06 东北大学 一种宽量程精密真空漏气阀
US10573801B2 (en) * 2015-08-21 2020-02-25 Fujikin Incorporated Piezoelectric linear actuator, piezoelectrically driven valve, and flow rate control device
US10480670B2 (en) * 2016-04-07 2019-11-19 Horiba Stec, Co., Ltd. Valve element and fluid control valve
JP6714468B2 (ja) * 2016-08-24 2020-06-24 Ckd株式会社 ダイアフラム弁

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536527A (ja) * 2005-01-24 2008-09-11 キネティキュア リミテッド 関節に振動をかける器具及び方法
JP2008008356A (ja) * 2006-06-28 2008-01-17 Noiberuku Kk 圧電駆動装置、バルブおよびブレーキ装置
JP2012508556A (ja) * 2008-11-05 2012-04-05 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 表面変形電気活性ポリマー変換器
JP2014190387A (ja) * 2013-03-26 2014-10-06 Fujikin Inc 流量制御装置用の流量制御弁

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019171593A1 (ja) * 2018-03-09 2021-02-18 株式会社フジキン バルブ装置
JP7030359B2 (ja) 2018-03-09 2022-03-07 株式会社フジキン バルブ装置

Also Published As

Publication number Publication date
KR102337975B1 (ko) 2021-12-10
JPWO2019171604A1 (ja) 2021-02-18
TWI678429B (zh) 2019-12-01
TW201938840A (zh) 2019-10-01
KR20200116518A (ko) 2020-10-12
US20200386342A1 (en) 2020-12-10
CN111919053A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
CN109952459B (zh) 阀装置、使用该阀装置的流量控制方法和半导体制造方法
US11506290B2 (en) Valve apparatus, flow rate adjusting method, fluid control apparatus, flow rate control method, semiconductor manufacturing apparatus, and semiconductor manufacturing method
JP7174430B2 (ja) バルブ装置、調整情報生成方法、流量調整方法、流体制御装置、流量制御方法、半導体製造装置および半導体製造方法
US11242934B2 (en) Valve device
TW201833461A (zh) 閥裝置、使用此閥裝置的流量控制方法及半導體製造方法
JP7270990B2 (ja) バルブ装置、流体制御装置、流体制御方法、半導体製造装置及び半導体製造方法
WO2019171604A1 (ja) バルブ装置
WO2020158573A1 (ja) バルブ装置、流量制御方法、流体制御装置、半導体製造方法、および半導体製造装置
US11598430B2 (en) Valve device, flow rate control method, fluid control device, semiconductor manufacturing method, and semiconductor manufacturing apparatus using the valve device
JP2020051447A (ja) バルブ
JP2020122539A (ja) バルブ装置、このバルブ装置を用いた流量制御方法、半導体製造方法、および半導体製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504645

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207026135

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908748

Country of ref document: EP

Kind code of ref document: A1