[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019162985A1 - Mounting procedure determination device, mounting procedure determination method, mounting procedure determination program, recording medium, and component mounting system - Google Patents

Mounting procedure determination device, mounting procedure determination method, mounting procedure determination program, recording medium, and component mounting system Download PDF

Info

Publication number
WO2019162985A1
WO2019162985A1 PCT/JP2018/005864 JP2018005864W WO2019162985A1 WO 2019162985 A1 WO2019162985 A1 WO 2019162985A1 JP 2018005864 W JP2018005864 W JP 2018005864W WO 2019162985 A1 WO2019162985 A1 WO 2019162985A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
mode
component
production plan
board
Prior art date
Application number
PCT/JP2018/005864
Other languages
French (fr)
Japanese (ja)
Inventor
大介 春日
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2018/005864 priority Critical patent/WO2019162985A1/en
Priority to TW107135539A priority patent/TWI689233B/en
Publication of WO2019162985A1 publication Critical patent/WO2019162985A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Definitions

  • This invention is a component mounting system comprising a transport unit capable of transporting a plurality of substrates in the transport direction in sequence, and a plurality of mounting units arranged in the transport direction and capable of mounting the same type of components on the substrate, respectively.
  • the present invention relates to a technique for determining a procedure for mounting components on a board.
  • a component mounting system having a plurality of mounting portions arranged in the board conveyance direction.
  • mounting of components on a single board can be shared by a plurality of mounting units. That is, the board stops in order at a plurality of mounting sections while being transported in the transport direction, and each mounting section mounts a component in charge on the stopped board. Thereby, the efficiency of component mounting can be improved.
  • this method may not always be efficient.
  • the board that is first carried into the component mounting system stops at the most upstream mounting portion in the transport direction, and receives the mounting of the component at this mounting portion.
  • the mounting part on the downstream side in the transport direction from the most upstream mounting part does not operate, so the operation rate of the component mounting system is lower than that when the downstream mounting part operates.
  • the operating rate can be similarly reduced.
  • the mounting unit on the upstream side in the transport direction from the most downstream mounting unit does not operate, so the operation rate of the component mounting system is lower than when the upstream mounting unit operates.
  • Such a decrease in operating rate is particularly noticeable when there are few boards to be transferred to the component mounting system.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a technique for enabling efficient component mounting according to the situation in a component mounting system including a plurality of mounting units arranged in the board transfer direction.
  • a mounting procedure determining apparatus includes a transport unit capable of transporting a plurality of substrates having a plurality of mounting target points in order in the transport direction, and M mounting positions (M is an integer of 2 or more) arranged in the transport direction. J parts mounted on the mounting target point (J is M or more) by a component mounting system provided with M mounting parts that can be mounted on the mounting target point.
  • Integer Integer
  • Implementation that determines the mounting mode for mounting components at the mounting target points in the production plan based on the production plan acquisition unit that acquires the production plan to be produced and the evaluation result on the production time required to execute the production plan
  • a mounting mode determining unit that stops the substrate one by one at each of the M mounting positions, and a plurality of mounting target points on the substrate at the mounting position corresponding to each of the M mounting units. Parts for all Whether the first mounting mode is used for execution of the production plan based on the evaluation result regarding the production time when the production plan is executed using the first mounting mode for unloading the board from each of the M mounting positions. Decide whether or not.
  • the mounting procedure determining method includes a transport unit capable of transporting a plurality of substrates having a plurality of mounting target points in order in the transport direction, and M mounting positions (M is an integer of 2 or more) arranged in the transport direction.
  • Integer with a process for obtaining a production plan to be produced and a process for determining a mounting mode for mounting a component at a mounting target point in the production plan based on the result of evaluating the production time required to execute the production plan.
  • the mounting procedure determination program causes a computer to execute the mounting procedure determination method described above.
  • the recording medium according to the present invention records the above mounting procedure determination program so as to be readable by a computer.
  • a plurality of substrates having a plurality of mounting target points are sequentially transferred in the transport direction.
  • a component mounting procedure by the component mounting system provided is required. That is, a production plan for producing J parts mounted on the mounting target point is acquired, and an evaluation regarding the production time required to execute the production plan is performed.
  • the mounting mode determination unit stops the board in order at the M mounting positions when the production plan is executed using the first mounting mode, and mounts components on a plurality of mounting target points on the board. Based on the result of evaluating the difference in production time between the case where the production plan is executed using the second implementation mode assigned to the M mounting units, either the first implementation mode or the second implementation mode is used to execute the production plan.
  • the mounting procedure determining device may be configured to determine whether to use the function. In such a configuration, the first mounting mode and the second mounting mode can be used properly according to the situation. Therefore, efficient component mounting according to the situation can be executed.
  • the mounting mode determination unit T (N ⁇ ) where T (N ⁇ ) is the total number of mounting target points on each of the first to Nth substrates that are sequentially transported in the transport direction.
  • the mounting procedure determining apparatus may be configured to determine the execution mode of the first mode based on the number N of substrates satisfying ⁇ J ⁇ T (N).
  • the mounting mode determination unit executes the first mounting mode (N / M) times when determining that the first mounting mode is used for execution of the production plan.
  • the mounting procedure determining device may be configured to determine to execute the production plan.
  • the production plan can be completed by repeating the parallel mounting process of mounting components on M boards in parallel N times. Therefore, a high operating rate of the mounting unit can be ensured and efficient component mounting can be performed.
  • the mounting mode determination unit determines that the first mounting mode is used for execution of the production plan when N is a value obtained by adding K to a multiple of M (K is an integer greater than or equal to 1 and less than M)
  • K is an integer greater than or equal to 1 and less than M
  • the mounting mode is executed ((NK) / M) times, one board is stopped at each of the M mounting positions, and the board at the mounting position corresponding to each of the M mounting portions.
  • the mounting procedure determining device may be configured to determine to execute the production plan in the first modified mounting mode to be executed by the mounting unit.
  • T (NK) components among J components are subjected to parallel mounting processing ((NK) / M) times for mounting components in parallel on M boards.
  • parallel mounting processing ((NK) / M) times for mounting components in parallel on M boards.
  • JT (NK) parallel mounting processing
  • one board is stopped on each of the M mounting portions, and the mounting position corresponding to each of the M mounting portions is set.
  • a component is mounted on the board (first change mounting mode). In this way, a total of (JT (NK)) parts are mounted on the mounting target points on the M mounting parts, so that a high operating rate of the mounting part is secured and efficient component mounting is executed. It becomes possible.
  • the mounting mode determination unit determines that the first mounting mode is used for execution of the production plan when N is a value obtained by adding K to a multiple of M (K is an integer greater than or equal to 1 and less than M)
  • the board is stopped at K mounting positions among the M mounting positions, and K mountings corresponding to the K mounting positions are performed.
  • the mounting procedure determining device is configured to determine to execute the production plan in the second modified mounting mode in which when the component is mounted on all of the plurality of mounting target points on the board, the board is unloaded from the K mounting positions. It may be configured.
  • T (NK) components among J components are subjected to parallel mounting processing ((NK) / M) times for mounting components in parallel on M boards.
  • parallel mounting processing ((NK) / M) times for mounting components in parallel on M boards.
  • JT (NK) parallel mounting processing
  • the board is stopped at K mounting positions among the M mounting positions, and K mountings corresponding to the K mounting positions are performed.
  • the component is mounted on all of the plurality of mounting target points on the board (second modified mounting mode).
  • the production plan can be completed by mounting (JT (NK)) parts on the mounting target points using the K mounting parts.
  • the mounting mode determination unit may configure the mounting procedure determination device so as to determine to execute the production plan while completing the production plan early among the first changed mounting mode and the second changed mounting mode. good. This makes it possible to efficiently execute a production plan by using one of the first change mounting mode and the second change mounting mode that is more appropriate.
  • the mounting mode determination unit may configure the mounting procedure determination device so as to evaluate the production time based on the transport time required for transporting the substrate executed in the production plan. In such a configuration, it is possible to accurately evaluate the production time based on the conveyance time.
  • the mounting mode determination unit may configure the mounting procedure determination device so as to perform an evaluation on the production time based on the mounting time and the transport time required for mounting the component on the board executed in the production plan. In such a configuration, it is possible to accurately evaluate the production time based on the mounting time and the conveyance time.
  • the component mounting system includes a transport unit capable of transporting a plurality of boards having a plurality of mounting target points in the transport direction in order and M mounting positions (M is an integer of 2 or more) arranged in the transport direction.
  • M is an integer of 2 or more
  • a control unit that executes by controlling the transport unit and the M mounting units, and the control unit stops the substrate one by one at each of the M mounting positions, and each of the M mounting units
  • the production plan can be executed using the first mounting mode in which the board is unloaded from each of the M mounting positions.
  • a transport unit capable of transporting a plurality of substrates having a plurality of mounting target points in the transport direction in order, and M pieces (M is two or more) arranged in the transport direction.
  • M mounting portions that can be mounted on the mounting target points and are provided corresponding to mounting positions of (integer). Then, when one board is stopped in each of the M mounting parts and components are mounted on all of the plurality of mounting target points of the board at the mounting positions corresponding to each of the M mounting parts,
  • the production plan can be executed using the first mounting mode in which the board is unloaded from each mounting position. Therefore, in a situation where the first mounting mode is efficient, the production plan can be executed in the first mounting mode.
  • efficient component mounting according to the situation can be executed.
  • a standby position for waiting the substrate is provided between the first mounting position and the second mounting position counted from the upstream side in the transport direction.
  • the mounting mode when the mounting of the components to the plurality of mounting target points on the first board at the first mounting position is completed, the next board is moved to the standby position from the first mounting position.
  • the mounting mode can be changed to the third mounting mode in which the board is stopped at the first mounting position and components are mounted on a plurality of mounting target points on the next board at the first mounting position.
  • a component mounting system may be configured. That is, basically, component mounting at each mounting position in the first mounting mode should be completed almost simultaneously.
  • the progress of component mounting may differ at each mounting position. Therefore, for example, when the mounting of the component is completed at the first mounting position counted from the upstream side in the transport direction, the mounting of the component may continue at the second mounting position. On the other hand, while moving the first board from the first mounting position to the standby position, the next board of the first board is stopped at the first mounting position, and the next board at the first mounting position.
  • Such a case can be dealt with by enabling the mounting mode to be changed to the third mounting mode in which components are mounted on a plurality of mounting target points. In this way, efficient component mounting according to the situation can be executed.
  • the control unit mounts the component to the plurality of mounting target points out of the M mounting positions.
  • the component mounting system may be configured to determine whether to change to the third mounting mode or to continue the first mounting mode based on the number of components already mounted at the mounting position that is most delayed. Thereby, efficient component mounting according to the progress of component mounting at each mounting position can be executed.
  • a component mounting system including a plurality of mounting units arranged in the board conveyance direction, it is possible to execute efficient component mounting according to the situation.
  • the top view which shows typically an example of the component mounting system which concerns on this invention.
  • movement in 1st mounting mode typically.
  • movement in 2nd mounting mode typically.
  • movement in 2nd mounting mode typically.
  • the block diagram which shows the structure of the host computer which functions as an example of the mounting procedure determination apparatus which concerns on this invention.
  • the flowchart which shows an example of the mounting procedure determination method which a host computer performs.
  • FIG. 1 is a plan view schematically showing an example of a component mounting system according to the present invention.
  • XYZ orthogonal coordinate axes configured by a conveyance direction X, a width direction Y, and a vertical direction Z are appropriately used.
  • the transport direction X and the width direction Y are parallel to the horizontal direction and orthogonal to each other, and the vertical direction Z is orthogonal to the transport direction X and the width direction Y.
  • the component mounting system 1 includes a single component mounter 10 that mounts components on the board B carried in from the upstream side in the transport direction X and transports the components downstream in the transport direction X.
  • a plurality of mounting target points Bp are provided on the board B, and the control unit 100 provided in the component mounting machine 10 controls each part of the component mounting machine 10 so that the component Wp is assigned to each mounting target point Bp. Install one by one.
  • Each component Wp is a bare chip of a diced wafer W, and has the same configuration.
  • the substrate B is provided with 64 (8 ⁇ 8) target candidate points separated by a broken line in a matrix, and L determined as a non-defective product among the 64 target candidate points.
  • the component mounter 10 includes a transport unit 2 that transports the substrate B in the transport direction X.
  • the transport unit 2 includes a standby conveyor 21, a mounting conveyor 22, a standby conveyor 23, a mounting conveyor 24, and an unloading conveyor 25 that are arranged in this order in the transport direction X, and these conveyors 21 to 25 cooperate in the transport direction.
  • the substrate B can be transferred to X.
  • the standby conveyor 21 is provided with respect to the standby position P1, and waits for the board B carried in from the outside of the component mounting system 1 at the standby position P1 or transfers it to the mounting conveyor 22.
  • the mounting conveyor 22 is provided with respect to the mounting position P2 located downstream of the standby position P1 in the transport direction X, and the substrate B received from the standby conveyor 21 is fixed to the mounting position P2 or transferred to the standby conveyor 23.
  • the standby conveyor 23 is provided with respect to the standby position P3 located downstream of the mounting position P2 in the transport direction X, and waits for the substrate B received from the mounting conveyor 22 at the standby position P3 or transfers it to the mounting conveyor 24.
  • the mounting conveyor 24 is provided with respect to the mounting position P4 located downstream of the standby position P3 in the transport direction X, and the substrate B received from the standby conveyor 23 is fixed to the mounting position P4 or transferred to the carry-out conveyor 25.
  • the carry-out conveyor 25 is provided at a position downstream of the mounting position P4 in the transport direction X, and carries the board B received from the mounting conveyor 24 out of the component mounting system 1.
  • M mounting positions P2 and P4 are provided side by side in the transport direction X.
  • M is an integer greater than or equal to 2
  • M 2 in the example of FIG.
  • the component mounter 10 also includes a component supply mechanism 3 that supplies the component Wp.
  • the component supply mechanism 3 includes a wafer storage unit 31 that can store a plurality of wafers W, and a wafer extraction unit 33 that extracts the wafer W from the wafer storage unit 31 to the wafer supply position Pp.
  • the wafer storage unit 31 raises and lowers in a vertical direction Z a rack for storing a plurality of wafer holders Wh each holding a wafer W in the vertical direction Z so that the wafer extraction unit 33 can receive the wafer W.
  • the wafer holder Wh can be positioned, and the wafer holder Wh can be pushed out to the wafer extraction portion 33.
  • the wafer lead-out unit 33 is attached to the wafer support table 331 provided in the width direction Y, a wafer support table 331 that supports the wafer holder Wh, a fixed rail 332 that supports the wafer support table 331 so as to be movable in the width direction Y. And a Y-axis motor 334 that drives the ball screw 333. Therefore, by rotating the ball screw 333 by the Y-axis motor 334, the wafer support table 331 can be moved in the width direction Y along the fixed rail 332. As shown in FIG. 1, the wafer storage unit 31 and the wafer supply position Pp are arranged so as to sandwich the transfer unit 2 from the width direction Y, and the wafer support table 331 passes below the transfer unit 2.
  • the wafer support table 331 receives the wafer holder Wh from the wafer storage unit 31 at the reception position adjacent to the wafer storage unit 31 and moves from the reception position to the wafer supply position Pp away from the wafer storage unit 31 in the width direction Y. As a result, the wafer W is pulled out to the wafer supply position Pp.
  • the component supply mechanism 3 has a component take-out unit 35 that extracts the component Wp from the wafer supply position Pp.
  • the component take-out unit 35 has a take-out head 36 that takes out the component Wp from the wafer supply position Pp, and can drive the take-out head 36 in the XY directions.
  • the component extraction unit 35 includes a support member 351 that supports the extraction head 36 so as to be movable in the conveyance direction X, and an X-axis motor 352 that is provided in the conveyance direction X and drives a ball screw attached to the extraction head 36.
  • the take-out head 36 can be moved in the transport direction X by driving the ball screw by the X-axis motor 352.
  • the component take-out unit 35 includes a fixed rail 353 that supports the support member 351 so as to be movable in the width direction Y, a ball screw 354 that is provided in the width direction Y and attached to the fixed rail 353, and a Y that drives the ball screw 354.
  • the take-out head 36 has a bracket 361 extending in the transport direction X and two nozzles 362 rotatably supported by the bracket 361. Each nozzle 362 is positioned at either a suction position facing downward or a delivery position (position in FIG. 1) facing upward by rotating around a rotation axis parallel to the transport direction X.
  • the bracket 361 can be moved up and down with each nozzle 362.
  • the component supply mechanism 3 When the nozzle 362 positioned at the suction position is opposed to the component Wp on the wafer supply position Pp from above, the component supply mechanism 3 lowers the nozzle 362 to contact the component Wp. Further, the component supply mechanism 3 sucks the component Wp from the wafer supply position Pp by raising the nozzle 362 while applying a negative pressure to the nozzle 362. Then, the component supply mechanism 3 supplies the component Wp by positioning the nozzle 362 at the delivery position.
  • the component mounter 10 includes mounting units 4A and 4B that mount the component Wp supplied by the component supply mechanism 3 on the board B in this way.
  • the mounting portions 4A and 4B include a support member 41 movable along a fixed rail provided in the width direction Y on the ceiling of the component mounting machine 10, and a mounting head supported by the support member 41 so as to be movable in the transport direction X. 42, and the mounting head 42 can be moved in the XY directions.
  • the mounting head 42 has two nozzles 421 facing downward.
  • each of the mounting portions 4A and 4B moves above the take-out head 36 and makes the nozzle 421 face the component Wp held by the nozzle 362 located at the delivery position from above. Then, the nozzle 421 is lowered and brought into contact with the component Wp. Subsequently, the component supply mechanism 3 releases the negative pressure of the nozzle 362, and the mounting portions 4A and 4B raise the nozzle 421 while applying a negative pressure to the nozzle 421.
  • the mounting unit 4A mounts the component Wp on the mounting target point Bp of the substrate B fixed at the corresponding mounting position P2, and the mounting unit 4B is mounted on the corresponding mounting position P4. The component Wp is mounted on the mounting target point Bp of the fixed substrate B. As described above, the mounting portions 4A and 4B mount a single type of component Wp on the board B.
  • the control unit 100 can mount the component Wp on the mounting target point Bp of the board B using a plurality of mounting modes including the first and second mounting modes.
  • the transport unit 2 stops the substrate B one by one at each of the two mounting positions P2 and P4, and each of the two mounting units 4A and 4B is within the corresponding mounting positions P2 and P4.
  • the transport unit 2 carries the substrate B out of the component mounting system 1 from each of the two mounting positions P2 and P4.
  • the transport unit 2 stops one board B in order at the two mounting positions P2 and P4, and components to a plurality of (L) mounting target points Bp on one board B.
  • the two mounting parts 4A and 4B share the mounting of Wp.
  • FIG. 2 is a diagram schematically showing an example of the operation in the first mounting mode.
  • the transport unit 2 starts transporting the first board B1 to the mounting position P4 (step S101), and then starts transporting the second board B2 to the mounting position P2. (Step S102).
  • the transport unit 2 fixes the first board B1 to the mounting position P4 and fixes the second board B2 to the mounting position P2.
  • the mounting parts 4A and 4B start mounting the component Wp on the boards B2 and B1 fixed to the corresponding mounting positions P2 and P4.
  • the mounting unit 4A mounts the component Wp on all of the plurality of mounting target points Bp of the substrate B2 fixed at the mounting position P2
  • the mounting unit 4B mounts the plurality of mountings of the substrate B1 fixed at the mounting position P4.
  • the component Wp is mounted on all the target points Bp (step S104).
  • step S104 in parallel with the component mounting, the third board B3 is placed on standby at the standby position P1, and the fourth board B4 is adjacent to the standby position P1 on the upstream side in the transport direction X.
  • the transport unit 2 unloads the substrate B1 from the mounting position P4 to the outside of the component mounting system 1 and unloads the substrate B2 from the mounting position P2 to the outside of the component mounting system 1 ( Step S105).
  • the transport unit 2 transports the third substrate B3 to the mounting position P4 and transports the fourth substrate B4 to the mounting position P2. .
  • the transport unit 2 fixes the third board B3 to the mounting position P4 and fixes the fourth board B4 to the mounting position P2.
  • the mounting unit 4A mounts the component Wp on all of the plurality of mounting target points Bp of the substrate B4 fixed at the mounting position P2, and the mounting unit 4B mounts the plurality of substrates B3 fixed at the mounting position P4.
  • the component Wp is mounted on all the target points Bp (step S107).
  • the transport unit 2 unloads the board B3 from the mounting position P4 to the outside of the component mounting system 1 and mounts the mounting position.
  • the board B4 is unloaded from P2 to the outside of the component mounting system 1 (step S108).
  • each mounting unit 4A, 4B mounts the component Wp on all mounting target points Bp provided on the board B in charge, and one board B has M mountings.
  • the component Wp is received from only one of the parts 4A and 4B.
  • 3 and 4 are diagrams schematically showing an example of the operation in the second mounting mode.
  • the transport unit 2 starts transporting the first board B1 to the mounting position P2 (step S201), and fixes the first board B1 to the mounting position P2 (step S202).
  • the mounting unit 4A starts mounting the component Wp on the board B1 fixed at the corresponding mounting position P2. That is, the mounting unit 4A mounts the component Wp on 1 / M of the plurality of mounting target points Bp of the substrate B1 fixed at the mounting position P2, that is, (L / M) mounting target points Bp ( Step S203).
  • the transport unit 2 causes the second board B2 to wait at the standby position P1.
  • the transport unit 2 transports the first board B1 from the mounting position P2 to the mounting position P4, and transports the second board B2 from the standby position P1 to the mounting position P2.
  • the transport unit 2 fixes the first board B1 to the mounting position P4 and fixes the second board B2 to the mounting position P2 (step S205).
  • the mounting part 4A starts mounting the component Wp on the board B2 fixed to the corresponding mounting position P2, and the mounting part 4B
  • the mounting of the component Wp on the board B1 fixed at the mounting position P4 is started. That is, the mounting unit 4A mounts the component Wp on the mounting target point Bp of 1 / M among the plurality of mounting target points Bp of the substrate B2 fixed at the mounting position P2, and the mounting unit 4B is mounted on the mounting position P4.
  • the component Wp is mounted on the remaining 1 / M mounting target points Bp of the plurality of mounting target points Bp of the substrate B1 fixed to (step S206).
  • the remaining mounting target points Bp are mounting target points Bp in which the component Wp is not mounted at the mounting position P2 in step S203 among the plurality of mounting target points Bp on the substrate B1.
  • the second mounting mode in which the mounting units 4A and 4B share the mounting of the component Wp on the plurality of mounting target points Bp of one board B is completed for the first board B1.
  • the transport unit 2 causes the third board B3 to wait at the standby position P1.
  • step S207 the transport unit 2 transports the second board B2 from the mounting position P2 to the mounting position P4, and transports the third board B3 from the standby position P1 to the mounting position P2. Then, the transport unit 2 fixes the second board B2 to the mounting position P4 and fixes the third board B3 to the mounting position P2 (step S208).
  • the mounting unit 4A has a mounting target of 1 / M among the plurality of mounting target points Bp of the board B3 fixed to the corresponding mounting position P2.
  • the mounting unit 4B moves to the remaining 1 / M mounting target point Bp among the plurality of mounting target points Bp of the substrate B2 fixed at the corresponding mounting position P4.
  • the component Wp is mounted (step S209).
  • the transport unit 2 causes the fourth board B4 to wait at the standby position P1.
  • step S210 the transport unit 2 transports the third board B3 from the mounting position P2 to the mounting position P4, and transports the fourth board B4 from the standby position P1 to the mounting position P2. Then, the transport unit 2 fixes the third board B3 to the mounting position P4 and fixes the fourth board B4 to the mounting position P2 (step S211).
  • the mounting unit 4A has a mounting target of 1 / M among the plurality of mounting target points Bp of the board B4 fixed to the corresponding mounting position P2. While mounting the component Wp on the point Bp, the mounting unit 4B moves to the remaining 1 / M mounting target point Bp among the plurality of mounting target points Bp of the board B3 fixed at the corresponding mounting position P4. The component Wp is mounted (step S212). Thus, the second mounting mode is completed for the third board B2.
  • step S212 the transport unit 2 carries the board B3 out of the component mounting system 1 from the mounting position P4 (step S213).
  • step S213 the transport unit 2 transports the fourth board B4 from the mounting position P2 to the mounting position P4. Then, the transport unit 2 fixes the fourth board B4 to the mounting position P4 (step S214).
  • the mounting unit 4B is configured to mount the remaining 1 / M mounting target points Bp among the plurality of mounting target points Bp of the substrate B4 fixed at the corresponding mounting position P4.
  • the component Wp is mounted on (step S215).
  • the second mounting mode is completed for the fourth board B2.
  • the transport unit 2 carries the board B4 out of the component mounting system 1 from the mounting position P4 (step S216).
  • each mounting unit 4A, 4B mounts the component Wp on the mounting target point Bp shared by each of the plurality of mounting target points Bp of the substrate B, and one substrate B is
  • Each of the M mounting parts 4A and 4B receives mounting of the component Wp.
  • FIG. 5 is a block diagram showing a configuration of a host computer that functions as an example of a mounting procedure determination apparatus according to the present invention.
  • the host computer 7 includes a calculation unit 71, a storage unit 72, a UI (User Interface) 73, and a communication unit 74.
  • the arithmetic unit 71 is a processor composed of a CPU (Central Processing Unit) and a RAM (Random Access Memory).
  • the storage unit 72 is composed of, for example, an HDD (Hard Disk Disk Drive), and in the component mounting system 1, obtains a production plan 81 for producing J components Wp mounted on the mounting target point Bp (J is an integer greater than or equal to M). And remember.
  • HDD Hard Disk Disk Drive
  • the UI 73 includes an input device such as a mouse and a keyboard and an output device such as a display.
  • the UI 73 accepts a user input operation by the input device and displays information to the user by the output device.
  • the UI 73 may include an input device and an output device integrally, such as a touch panel display.
  • the communication unit 74 performs communication with the component mounter 10 of the component mounting system 1.
  • the computing unit 71 executes the mounting procedure determination program 82, thereby determining a mounting mode for mounting the component Wp on the mounting target point Bp in the production plan 81.
  • the mounting procedure determination program 82 may be provided in the form of being downloaded from an Internet server, or may be provided in a state stored in the recording medium 9 so as to be readable by the host computer 7.
  • the recording medium 9 for example, an optical disc, USB (Universal Serial Bus), or the like is applicable.
  • FIG. 6 is a flowchart showing an example of a mounting procedure determination method executed by the host computer.
  • the flowchart of FIG. 6 is executed by the calculation unit 71 according to the mounting procedure determination program 82.
  • step S ⁇ b> 301 for example, the storage unit 72 acquires and stores the production plan 81 input by a user operation on the UI 73.
  • step S302 the difference in production time between when the production plan 81 is executed in the component mounting system 1 using the first mounting mode and when the production plan 81 is executed in the component mounting system 1 using the second mounting mode. Is evaluated by the calculation unit 71.
  • the production plan 81 for producing the component Wp mounted on the mounting target point Bp with the substrate B as a lot unit will be described as an example. That is, the number J of components Wp already mounted on the mounting target point Bp produced by the production plan 81 is the number obtained by multiplying the number L of mounting target points Bp on the substrate B by the number of lots I (I is an integer). .
  • the production plan 81 is not limited to the example shown here. For example, even if the production plan 81 is to produce J mounted parts Wp with the wafer W as a lot, J pieces are determined regardless of the substrate B and the wafer W. The part Wp may be produced.
  • time Tt is required to transport the substrate B between two adjacent positions (for example, positions P1 and P2) among the positions P1 to P4, and the mounting positions P2 and P4
  • a mounting time Tm is required to mount the component Wp on the (L / M) mounting target points Bp, and the next substrate B is transported from the standby position P1 to the mounting position P4.
  • a replacement time Tc1 is required to transport B to the mounting position P2.
  • the time required to carry the substrate B1 to the mounting position P4 and the substrate B2 to the mounting position P2 in steps 101 to S103 is the time required to transfer the substrate B1 from the position of step S101 to the position of step S103. (4 ⁇ Tt).
  • step S104 the time required to mount the component Wp on the L mounting target points Bp on each of the substrates B1 and B2 is (2 ⁇ Tm). Therefore, the total time required for steps S101 to S104 is (4 ⁇ Tt + 2 ⁇ Tm).
  • the time required for carrying out the boards B1 and B2 from the component mounting system 1 and transporting the boards B3 and B4 to the mounting positions P4 and P2 through steps S105 to S106 is a replacement time Tc1. Therefore, the total time required for steps S101 to S106 is (4 ⁇ Tt + 2 ⁇ Tm + Tc1).
  • step S107 the time required to mount the component Wp on each of the L mounting target points Bp of the substrates B3 and B4 is (2 ⁇ Tm). Therefore, the total time required for steps S101 to S107 is (4 ⁇ Tt + 4 ⁇ Tm + Tc1).
  • the time required to carry out the boards B3 and B4 from the component mounting system 1 in step S108 is 4 ⁇ Tt corresponding to the time required to carry out the board B4 from the position of step S107 to the outside of the component mounting system 1.
  • the production time when the number N of boards B on which the component Wp is mounted is an even number
  • the production time when the number N is an odd number is 6 ⁇ Tt + (N + 1) ⁇ Tm + (N ⁇ 1) ⁇ Tc1 / 2 Formula 1b Can be calculated.
  • the time required to carry the substrate B1 to the mounting position P2 in steps 201 to S202 corresponds to the time required to transport the substrate B1 from the position of step S201 to the position of step S202 (2 ⁇ Tt). .
  • step S203 the time required to mount the component Wp on the (L / M) mounting target points Bp of the base B1 at the mounting position P2 is Tm. Therefore, the total time required for steps S201 to S203 is (2 ⁇ Tt + Tm).
  • steps S204 to S205 the time required to transfer the substrate B1 from the mounting position P2 to the mounting position P4 and to transfer the substrate B2 from the standby position P1 to the mounting position P2 is a replacement time Tc2. Therefore, the total time required for steps S201 to S205 is (2 ⁇ Tt + Tm + Tc2).
  • step S206 the time required to mount the component Wp on the (L / M) mounting target points Bp of the boards B1 and B2 is Tm. Therefore, the total time required for steps S201 to S206 is (2 ⁇ Tt + 2 ⁇ Tm + Tc2).
  • the board B1 is carried out of the component mounting system 1 from the mounting position P4, the board B2 is transferred from the mounting position P2 to the mounting position P4, and the board B3 is transferred from the standby position P1 to the mounting position P2.
  • the time required for this is the replacement time Tc2. Therefore, the total time required for steps S201 to S208 is (2 ⁇ Tt + 2 ⁇ Tm + 2 ⁇ Tc2).
  • step S209 the time required to mount the component Wp on the (L / M) mounting target points Bp of the boards B2 and B3 is Tm. Therefore, the total time required for steps S201 to S209 is (2 ⁇ Tt + 3 ⁇ Tm + 2 ⁇ Tc2).
  • the board B2 is carried out of the component mounting system 1 from the mounting position P4, the board B3 is transferred from the mounting position P2 to the mounting position P4, and the board B4 is transferred from the standby position P1 to the mounting position P2.
  • the time required for this is the replacement time Tc2. Therefore, the total time required for steps S201 to S211 is (2 ⁇ Tt + 3 ⁇ Tm + 3 ⁇ Tc2).
  • step S212 the time required to mount the component Wp on the (L / M) mounting target points Bp of the boards B3 and B4 is Tm. Therefore, the total time required for steps S201 to S212 is (2 ⁇ Tt + 4 ⁇ Tm + 3 ⁇ Tc2).
  • steps S213 to S214 the time required to carry the board B3 out of the component mounting system 1 from the mounting position P4 and to transport the board B4 from the mounting position P2 to the mounting position P4 is 2 ⁇ Tt. Therefore, the total time required for steps S201 to S214 is (4 ⁇ Tt + 4 ⁇ Tm + 3 ⁇ Tc2).
  • step S215 the time required to mount the component Wp on the (L / M) mounting target points Bp of the board B4 is Tm. Therefore, the total time required for steps S201 to S215 is (4 ⁇ Tt + 5 ⁇ Tm + 3 ⁇ Tc2).
  • step S216 the time required to carry the board B4 out of the component mounting system 1 from the mounting position P4 and to transport the board B4 from the mounting position P2 to the mounting position P4 is the replacement time 2 ⁇ Tt.
  • the time required for the production plan 81 for mounting the component Wp on the four substrates B using the second mounting mode is (6 ⁇ Tt + 5 ⁇ Tm + 3 ⁇ Tc2). Further, the time required for the production plan 81 increases by (Tc2 + Tm) every time the number of the boards B on which the component Wp is mounted increases by one. Therefore, the production time when the component Wp is mounted on the N boards B using the second mounting mode is as follows. 6 ⁇ Tt + (N + 1) ⁇ Tm + (N ⁇ 1) ⁇ Tc2 Equation 2 Can be calculated.
  • Formula 2 > Formula 1a, that is, 6 ⁇ Tt + (N + 1) ⁇ Tm + (N ⁇ 1) ⁇ Tc2> 8 ⁇ Tt + N ⁇ Tm + N ⁇ Tc1 / 2 Satisfy, that is, Tm> 2 ⁇ Tt + N ⁇ Tc1 / 2 ⁇ (N ⁇ 1) ⁇ Tc2 Conditional expression Ca If it is satisfied, it can be determined that the production time can be shortened by using the first mounting mode.
  • Formula 2 > Formula 1b, that is, 6 * Tt + (N + 1) * Tm + (N-1) * Tc2> 6 * Tt + (N + 1) * Tm + (N-1) * Tc1 / 2 That is, Tc2> Tc1 / 2 ...
  • Conditional expression Cb If it is satisfied, it can be determined that the production time can be shortened by using the first mounting mode.
  • step S302 in FIG. 6 the calculation unit 71 executes the production plan 81 in the component mounting system 1 using the first mounting mode, and the production plan 81 in the component mounting system 1 using the second mounting mode.
  • the difference in production time from the case of executing is evaluated using conditional expression Ca or conditional expression Cb.
  • conditional expression Ca conditional expression
  • Tt, Tm, Tc1, and Tc2 in the conditional expressions Ca and Cb are obtained in advance by simulation or experimentally and stored in the storage unit 72, and the calculation unit 71 performs evaluation using them.
  • step S303 the computing unit 71 determines a mounting mode used for execution of the production plan 81 based on the evaluation result in step S302. That is, when N is an even number, the calculation unit 71 determines to use the first implementation mode if the right side of the conditional expression Ca is less than the left side (that is, if the conditional expression Ca is satisfied), and the left side of the conditional expression Ca Is less than or equal to the right side (that is, if the conditional expression Ca is not satisfied), it is determined that the second mounting mode is used.
  • the calculation unit 71 determines to use the first implementation mode if the right side of the conditional expression Cb is less than the left side (that is, if the conditional expression Cb is satisfied), and the left side of the conditional expression Cb Is less than or equal to the right side (that is, if conditional expression Cb is not satisfied), it is determined to use the second mounting mode.
  • the calculating part 71 performs the procedure which performs the production plan 81 using the mounting mode determined by step S303 (namely, operation
  • the production time is evaluated when the production plan 81 is executed using the first mounting mode in which the board B is unloaded from each of the M mounting positions P2 and P4. (Step S302).
  • step S303 it is determined whether or not the first mounting mode is used for the execution of the production plan 81 (step S303).
  • the production plan 81 can be executed in the first mounting mode.
  • efficient component mounting according to the situation can be executed.
  • the first mounting mode is particularly suitable in a situation where the reduction in the operation rate at the time of component mounting on the first and last boards B in the second mounting mode is significant.
  • the calculation unit 71 stops the board B in order at the M mounting positions P2 and P4, and a plurality of mounting target points Bp of the board B A difference in production time is evaluated between the case where the production plan 81 is executed using the second mounting mode in which the mounting of the component Wp to the M mounting parts 4A, 4B is shared (step S302). Then, based on the evaluation result, the calculation unit 71 determines which of the first mounting mode and the second mounting mode is used for executing the production plan 81 (step S303). In such a configuration, the first mounting mode and the second mounting mode can be used properly according to the situation. Therefore, efficient component mounting according to the situation can be executed.
  • the production time is evaluated based on the transport times Tt, Tc1, and Tc2 required for transporting the substrate B executed in the calculation unit 71 and the production plan 81 (conditional expressions Ca and Cb). In such a configuration, it is possible to accurately evaluate the production time based on the transport times Tt, Tc1, and Tc2.
  • the calculation unit 71 performs an evaluation on the production time based on the mounting time Tm and the transport times Tt, Tc1, and Tc2 required for mounting the component Wp on the board B executed in the production plan 81 (conditional expression Ca).
  • the production time can be accurately evaluated based on the mounting time Tm and the transport times Tt, Tc1, and Tc2.
  • the transport unit 2 capable of transporting a plurality of substrates B having a plurality of mounting target points Bp in the transport direction X in order and a plurality of M pieces arranged in the transport direction X.
  • M mounting portions 4A and 4B are provided corresponding to the mounting positions P2 and P4, respectively, and can mount the same type of component on the mounting target point Bp. Then, one board B is stopped in each of the M mounting parts 4A and 4B, and a plurality of mounting target points of the board B at the mounting positions P2 and P4 corresponding to the M mounting parts 4A and 4B, respectively.
  • the production plan 81 can be executed using the first mounting mode in which the board B is unloaded from each of the M mounting positions P2 and P4. Therefore, in a situation where the first mounting mode is efficient, the production plan 81 can be executed in the first mounting mode. Thus, efficient component mounting according to the situation can be executed.
  • FIG. 7 is a diagram schematically showing the operation in the mounting mode that can be used in the modification example of the mounting procedure determination method.
  • J components are determined depending on whether N obtained from the above inequality is an even number or an odd number.
  • the mounting mode for mounting the last (JT (N-1)) parts Wp is changed.
  • J L ⁇ N
  • the first mounting mode is executed (N / 2) times so that L components are provided on each of the N boards B. Decide to implement Wp. Therefore, all of the last L components Wp are mounted on one board B.
  • the first mounting mode is executed ((N ⁇ 1) / 2) times to mount L components Wp on each of (N ⁇ 1) substrates B. Then, it is determined that the last L components Wp are mounted in the first modified mounting mode of FIG.
  • the transport unit 2 stops and fixes one substrate B at each of the mounting positions P2 and P4 (step S401). Then, each of the mounting portions 4A and 4B mounts (L / 2) components Wp on the substrate B at the corresponding mounting positions P2 and P4 (step S402).
  • the transport unit 2 carries the board B out of the component mounting system 1 from the mounting positions P2 and P4 (step S403). That is, in the first modified mounting mode, the last L components Wp are mounted separately on the two boards B.
  • the calculation unit 71 determines that the first mounting mode is to be used for the execution of the production plan 81 when N is a multiple of M (step S303), the first mounting mode is set to (N / M). It is determined that the production plan 81 is executed by executing it once. In such a configuration, the production plan 81 can be completed by repeating the parallel mounting process (steps S104, S107, etc. in FIG. 2) for mounting the component Wp in parallel on the M substrates B N times. Therefore, it is possible to secure a high operation rate of the mounting units 4A and 4B and to perform efficient component mounting.
  • the arithmetic unit 71 calculates the remaining number (K ⁇ L in this example) obtained by subtracting the number of components Wp mounted in the ((N ⁇ K) / M) times of the first mode from J. It is determined that the production plan 81 is executed by causing the M mounting units 4A and 4B to mount the component Wp on the mounting target point Bp.
  • the parallel mounting process for mounting the components Wp in parallel on the M boards B (step S104 in FIG.
  • the board B is stopped on each of the M mounting parts 4A and 4B, and the M mounting parts 4A and 4B are stopped.
  • the component Wp is mounted on the board B at the mounting positions P2 and P4 corresponding to each (first change mounting mode). In this way, by mounting a total of (JT (NK)) parts Wp on the mounting target point Bp on the M mounting parts 4A and 4B, a high operating rate of the mounting part is ensured and efficient. Component mounting is possible.
  • FIG. 8 is a diagram schematically showing another operation in the mounting mode that can be used in the modified example of the mounting procedure determination method.
  • the last of the J parts Wp is determined depending on whether N is an even number or an odd number.
  • the mounting mode for mounting (JT (N-1)) parts Wp is changed.
  • the first mounting mode is executed (N / 2) times to mount L components Wp on each of the N boards B. Then decide.
  • the first mounting mode is executed ((N ⁇ 1) / 2) times to mount L components Wp on each of (N ⁇ 1) substrates B. Thereafter, it is determined that the last (JT (N-1)), in this example, L components Wp are mounted in the second modified mounting mode of FIG.
  • the transport unit 2 stops and fixes one substrate B at the mounting position P4 (step S501). Then, the mounting unit 4B mounts L components Wp on the board B at the corresponding mounting position P4 (step S502).
  • the transport unit 2 carries the board B out of the component mounting system 1 from the mounting position P4 (step S503).
  • the last L components Wp are mounted on one board B.
  • the calculation unit 71 determines that the first mounting mode is used to execute the production plan 81 (step S303), and the first mounting mode is set to (N / M) It is determined that the production plan 81 is to be executed by executing it a number of times.
  • the production plan 81 can be completed by repeating the parallel mounting process (steps S104, S107, etc. in FIG. 2) for mounting the component Wp in parallel on the M substrates B N times. Therefore, it is possible to secure a high operation rate of the mounting units 4A and 4B and to perform efficient component mounting.
  • the parallel mounting process for mounting the components Wp in parallel on the M boards B (step S104 in FIG.
  • the parallel mounting process for mounting the components Wp in parallel on the M boards B (step S104 in FIG.
  • the parallel mounting process for mounting the components Wp in parallel on the M boards B (step S104 in FIG.
  • one board B is stopped at K mounting positions P4 out of M mounting positions P2 and P4, and K components
  • the components Wp are mounted on all of the plurality of mounting target points Bp of the substrate B on the K mounting portions 4B corresponding to the mounting position P4 (second change mounting mode).
  • the production plan 81 can be completed by mounting the (JT (NK)) parts Wp on the mounting target point Bp using the K mounting parts 4B.
  • the calculation unit 71 may select one of the first mounting change mode in FIG. 7 and the second mounting change mode in FIG. 8 and decide to use it for the mounting procedure. In this modification, the calculation unit 71 calculates the time required to execute the production plan 81 when using the first change mounting mode and when using the second change mounting mode. It is determined that the production plan 81 is executed in one modified mounting mode in which 81 is completed earlier. Thus, the production plan 81 can be efficiently executed by a more appropriate one of the first change mounting mode and the second change mounting mode.
  • FIG. 9 is a flowchart showing an example of the mounting mode change executed by the component mounting system.
  • the component mounting system 1 that executes the production plan 81 in the first mounting mode according to the determination by the mounting procedure determination method spontaneously changes the mounting mode according to the progress of the production plan 81.
  • Such a flowchart is executed under the control of the control unit 100 of the component mounting system 1.
  • the control unit 100 determines whether or not the mounting of the component Wp on the board B is completed at the most upstream mounting position P2 in the transport direction X among the M mounting positions P2 and P4. Is confirmed (step S601).
  • the control unit 100 confirms whether or not the mounting of the component Wp on the board B is continued at the mounting position P4 on the downstream side of the mounting position P2 (step S601). S602).
  • the transport unit 2 moves the board B from both the mounting positions P2 and P4 to the outside of the component mounting system 1. Unload (step S609).
  • the control unit 100 confirms whether the board B exists at the standby position P3 (step S603).
  • the presence / absence of the substrate B at the standby position P3 can be determined by, for example, a substrate detection sensor constituted by an optical sensor or the like.
  • the control unit 100 maintains the substrate B at the mounting position P2 (step S610) and moves to the substrate B at the mounting position P4. Wait until the mounting of the component Wp is completed (step S611).
  • step S611 When the completion of mounting at the mounting position P4 is confirmed (“YES” in step S611), the conveyance unit 2 moves from the mounting position P2, the standby position P3, and the mounting position P4 to the outside of the component mounting system 1 to the board B. Is carried out (step S609).
  • step S603 determines that the substrate B does not exist at the standby position P3 (“NO” in step S603), the control unit 100 proceeds to step S604, and a plurality (L pieces) of the substrate B at the mounting position P4.
  • the number of mounting target points Bp on which the component Wp is not mounted is less than a predetermined value (for example, (L / M)).
  • steps S610 and S611 are executed in the same manner as described above, and in step S609, the transport unit 2 moves the mounting position P2 and the mounting position.
  • the board B is carried out of the component mounting system 1 from each of the P4.
  • the transport unit 2 transports the substrate B from the mounting position P2 to the standby position P3 (step S605), and the next substrate B Is transported and fixed to the mounting position P2 (step S606). Then, the component Wp is mounted on the plurality of mounting target points Bp of the next board B, where the mounting portion 4A is fixed at the mounting position P2 (step S607).
  • the transport unit 2 moves from the mounting position P2, the standby position P3, and the mounting position P4 to the outside of the component mounting system 1. The substrate B is unloaded. After that.
  • the control unit 100 executes the flowchart of FIG. 9 while continuing to execute the first mounting mode.
  • a standby position for waiting the substrate B between the first mounting position P2 and the second mounting position P4 counted from the upstream side in the transport direction X. P3 is provided.
  • the control unit 100 changes the mounting mode from the first mounting mode to the third mounting mode.
  • the mounting mode (steps S605 to S609) can be changed as appropriate.
  • the third mounting mode the first board B is moved from the first mounting position P2 to the standby position P3, and the next board B of the first board B is stopped at the first mounting position P2.
  • the component Wp is mounted on the plurality of mounting target points Bp of the next board B at the mounting position P2. That is, basically, the mounting of the components Wp at the mounting positions P2 and P4 in the first mounting mode should be completed almost simultaneously.
  • the progress of the component mounting differs between the mounting positions P2 and P4 due to, for example, a component Wp suction error in the mounting units 4A and 4B.
  • the mounting of the component Wp is completed at the first mounting position P2
  • such a case can be dealt with by changing the mounting mode to the third mounting mode. In this way, efficient component mounting according to the situation can be executed.
  • control unit 100 mounts the component Wp on the plurality of mounting target points Bp when the mounting of the component Wp on the plurality of mounting target points Bp on the substrate B at the first mounting position P2 is completed. Based on the number of components Wp that have been mounted at the mounting position P4 that is the most delayed among the M mounting positions P2, P4, it is determined whether to change to the third mounting mode or to continue the first mounting mode (step). S604). This makes it possible to execute efficient component mounting according to the progress of component mounting at the mounting positions P2 and P4.
  • the host computer 7 corresponds to an example of the “mounting procedure determination device” and “computer” of the present invention
  • the storage unit 72 corresponds to an example of the “production plan acquisition unit” of the present invention
  • the calculation unit 71 corresponds to an example of the “mounting mode determination unit” of the present invention
  • the component mounting system 1 corresponds to an example of the “component mounting system” of the present invention
  • the transport unit 2 corresponds to the “transport unit” of the present invention.
  • the two mounting parts 4A, 4B correspond to an example of “M mounting parts” of the present invention
  • the two mounting positions P2, P4 correspond to “M mounting positions” of the present invention.
  • the standby position P3 corresponds to an example of the “standby position” of the present invention
  • the production plan 81 corresponds to an example of the “production plan” of the present invention
  • the substrate B corresponds to an example of the “substrate” of the present invention.
  • the mounting target point Bp corresponds to an example of the “mounting target point” of the present invention
  • the component Wp The example corresponds to an example of the “component” of the present invention
  • the transport direction X corresponds to an example of the “transport direction” of the present invention
  • the mounting procedure determination program 82 corresponds to an example of the “mounting procedure determination program” of the present invention
  • the recording medium 9 corresponds to an example of the “recording medium” of the present invention.
  • standby positions such as the standby position P1 and the standby position P3 are provided. However, it is not always necessary to provide such a standby position.
  • the component mounting system 1 described above is composed of one component mounter 10.
  • the component mounting system 1 may be configured by arranging a plurality of component mounting machines 10 each having a single mounting position in the transport direction X.
  • the transport unit 2 stops and fixes the board B at the mounting position in each component mounter 10 while sequentially transporting the board B to the plurality of component mounters 10.
  • the component Wp is mounted on the board B fixed at the mounting position.
  • the number of components Wp shared by the mounting units 4A and 4B need not be the same and may be different. In this case, in the second mounting mode, the difference between the number of components Wp shared by the mounting unit 4A and the number of components Wp shared by the mounting unit 4B is less than a predetermined value (eg, “1”). In addition, the mounting procedure may be determined.
  • a predetermined value eg, “1”.
  • the mounting unit 4A mounts the component Wp on the mounting target point Bp on the left half of the board B, and the mounting unit 4B mounts on the mounting target point Bp on the right half of the board B.
  • the component Wp was mounted.
  • the mounting target point Bp where each of the mounting parts 4A and 4B mounts the component Wp in the second mounting mode is not limited to this example.
  • the number of components Wp shared by the mounting units 4A and 4B is not necessarily the same, and may be different.
  • the difference between the number of components Wp shared by the mounting unit 4A and the number of components Wp shared by the mounting unit 4B is equal to or less than a predetermined value (eg, “1”).
  • the mounting procedure may be determined. That is, the mounting procedure may be determined so that the difference in the number of components Wp shared by the M mounting parts 4A and 4B is equal to or less than a predetermined value.
  • the specific method for evaluating the production time when the first mounting mode is used and the evaluation regarding the production time when using the second mounting mode are not limited to the above example. Therefore, based on the result of simulating the operation of the component mounting system 1 when the production plan 81 is executed using the first mounting mode, the production time when using the first mounting mode can be obtained.
  • the production time when the second mounting mode is used may be similarly obtained by simulation.
  • the board B is carried into the mounting position P4.
  • the board B may be carried into the mounting position P2 and the second mounting change mode may be executed.
  • the number of target candidate points determined to be defective may differ depending on the substrate B, and therefore the number of the plurality of mounting target points Bp may differ depending on the substrate B.
  • the production number J of the mounted parts Wp indicated by the production plan 81 is the total number of mounting target points Bp of the board B corresponding to the number of lots.
  • the production of the mounted component Wp does not require the board B to be a lot unit. Even in this case, as described above, based on the calculation result of the production time when the production plan 81 is executed using the first mounting mode, whether or not the first mounting mode is used, and the execution when it is used What is necessary is just to determine an aspect.
  • the production number J of the mounted parts Wp indicated by the production plan 81 is not related to the number of mounting target points Bp that the board B has, so that the last one that is carried into the transport unit 2 according to the production plan 81, that is, N
  • the number of components Wp to be mounted on the first board B may be less than the number of mounting target points Bp on the board B in some cases.
  • N is an even number of 4 or more, components are mounted in the first mounting mode on the first to (N ⁇ 2) th boards B, while the total on the last two boards B.
  • the mounting procedure may be determined so as to mount (JT (N-2)) parts Wp.
  • N is an odd number of 3 or more, components are mounted on the first to (N ⁇ 1) th boards B in the first mounting mode, while the last board B is (
  • the mounting procedure may be determined so as to mount JT (N-2)) parts Wp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

A production plan 81 to produce (N×L) number of components Wp that have been mounted to mounting target points Bp is acquired, and an evaluation regarding the production time needed to implement the production plan 81 is performed. Specifically, the evaluation is performed regarding the production time for a case when the production plan 81 is implemented using a first mounting mode, in which one substrate B is stopped at each of M number of mounting locations P2, P4 respectively corresponding to M number of mounting units 4A, 4B, and when components Wp are mounted to all of L number of mounting target points Bp of the substrates B at the mounting locations P2, P4, then the substrates B are conveyed out from each of the M number of mounting locations P2, P4. On the basis of the result of this evaluation, it is determined whether or not to use the first mounting mode to implement the production plan 81. Consequently, the production plan 81 can be implemented according to the first mounting mode in a situation in which the first mounting mode is efficient. It is thus possible to implement efficient component mounting in accordance with the situation.

Description

実装手順決定装置、実装手順決定方法、実装手順決定プログラム、記録媒体、部品実装システムMounting procedure determination device, mounting procedure determination method, mounting procedure determination program, recording medium, component mounting system
 この発明は、基板を複数枚順番に搬送方向に搬送可能な搬送部と、搬送方向に並んで、それぞれ同一種類の部品を基板に実装可能な複数の実装部とを備えた部品実装システムによって、基板に部品を実装する手順を決定する技術に関する。 This invention is a component mounting system comprising a transport unit capable of transporting a plurality of substrates in the transport direction in sequence, and a plurality of mounting units arranged in the transport direction and capable of mounting the same type of components on the substrate, respectively. The present invention relates to a technique for determining a procedure for mounting components on a board.
 従来、基板の搬送方向に並ぶ複数の実装部を備えた部品実装システムが知られている。また、特許文献1に示されるように、このような部品実装システムでは、1枚の基板に対する部品の実装を複数の実装部で分担することができる。つまり、基板は搬送方向に搬送されつつ複数の実装部に順番に停止し、各実装部は停止中の基板に対して担当する部品の実装を行う。これによって、部品実装の効率化を図ることができる。 Conventionally, a component mounting system having a plurality of mounting portions arranged in the board conveyance direction is known. Moreover, as shown in Patent Document 1, in such a component mounting system, mounting of components on a single board can be shared by a plurality of mounting units. That is, the board stops in order at a plurality of mounting sections while being transported in the transport direction, and each mounting section mounts a component in charge on the stopped board. Thereby, the efficiency of component mounting can be improved.
特開2017-37902号公報JP 2017-37902 A
 しかしながら、状況によっては、かかる手法が必ずしも効率的でない場合がある。例えば、部品実装システムに最初に搬入される基板は、搬送方向の最上流の実装部に停止して、この実装部において部品の実装を受ける。この間、最上流の実装部よりも搬送方向の下流側の実装部は稼動しないため、部品実装システムの稼働率は、下流側の実装部が稼動する場合と比較して低くなる。また、部品実装システムに最後に搬入される基板を、搬送方向の最下流の実装部で実装する際にも、同様に稼働率の低下が生じうる。つまり、この間、最下流の実装部よりも搬送方向の上流側の実装部は稼動しないため、部品実装システムの稼働率は、上流側の実装部が稼動する場合と比較して低くなる。そして、このような稼働率の低下は、部品実装システムに搬送する基板が少ない場合に特に顕著となる。 However, depending on the situation, this method may not always be efficient. For example, the board that is first carried into the component mounting system stops at the most upstream mounting portion in the transport direction, and receives the mounting of the component at this mounting portion. During this time, the mounting part on the downstream side in the transport direction from the most upstream mounting part does not operate, so the operation rate of the component mounting system is lower than that when the downstream mounting part operates. Further, when the board that is finally carried into the component mounting system is mounted at the mounting portion on the most downstream side in the transport direction, the operating rate can be similarly reduced. In other words, during this time, the mounting unit on the upstream side in the transport direction from the most downstream mounting unit does not operate, so the operation rate of the component mounting system is lower than when the upstream mounting unit operates. Such a decrease in operating rate is particularly noticeable when there are few boards to be transferred to the component mounting system.
 この発明は上記課題に鑑みなされたものであり、基板の搬送方向に並ぶ複数の実装部を備えた部品実装システムにおいて、状況に応じた効率的な部品実装を実行可能とする技術の提供を目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a technique for enabling efficient component mounting according to the situation in a component mounting system including a plurality of mounting units arranged in the board transfer direction. And
 本発明に係る実装手順決定装置は、複数の実装対象点を有する基板を複数枚順番に搬送方向に搬送可能な搬送部と、搬送方向に並ぶM個(Mは2以上の整数)の実装位置に対応して設けられ、それぞれ同一種類の部品を実装対象点に実装可能なM個の実装部とを備えた部品実装システムによって、実装対象点に実装済みの部品をJ個(JはM以上の整数)生産する生産計画を取得する生産計画取得部と、生産計画の実行に要する生産時間に関する評価を行った結果に基づき、生産計画において実装対象点に部品を実装する実装モードを決定する実装モード決定部とを備え、実装モード決定部は、M個の実装位置のそれぞれに1枚ずつ基板を停止させて、M個の実装部のそれぞれに対応する実装位置の基板の複数の実装対象点の全てに部品を実装させると、M個の実装位置それぞれから基板を搬出する第1実装モードを用いて生産計画を実行した場合の生産時間に関する評価の結果に基づき、生産計画の実行に第1実装モードを用いるか否かを決定する。 A mounting procedure determining apparatus according to the present invention includes a transport unit capable of transporting a plurality of substrates having a plurality of mounting target points in order in the transport direction, and M mounting positions (M is an integer of 2 or more) arranged in the transport direction. J parts mounted on the mounting target point (J is M or more) by a component mounting system provided with M mounting parts that can be mounted on the mounting target point. Integer) Implementation that determines the mounting mode for mounting components at the mounting target points in the production plan based on the production plan acquisition unit that acquires the production plan to be produced and the evaluation result on the production time required to execute the production plan A mounting mode determining unit that stops the substrate one by one at each of the M mounting positions, and a plurality of mounting target points on the substrate at the mounting position corresponding to each of the M mounting units. Parts for all Whether the first mounting mode is used for execution of the production plan based on the evaluation result regarding the production time when the production plan is executed using the first mounting mode for unloading the board from each of the M mounting positions. Decide whether or not.
 本発明に係る実装手順決定方法は、複数の実装対象点を有する基板を複数枚順番に搬送方向に搬送可能な搬送部と、搬送方向に並ぶM個(Mは2以上の整数)の実装位置に対応して設けられ、それぞれ同一種類の部品を実装対象点に実装可能なM個の実装部とを備えた部品実装システムによって、実装対象点に実装済みの部品をJ個(JはM以上の整数)生産する生産計画を取得する工程と、生産計画の実行に要する生産時間に関する評価を行った結果に基づき、生産計画において実装対象点に部品を実装する実装モードを決定する工程とを備え、M個の実装位置のそれぞれに1枚ずつ基板を停止させて、M個の実装部のそれぞれに対応する実装位置の基板の複数の実装対象点の全てに部品を実装させると、M個の実装位置それぞれから基板を搬出する第1実装モードを用いて生産計画を実行した場合の生産時間に関する評価の結果に基づき、生産計画の実行に第1実装モードを用いるか否かを決定する。 The mounting procedure determining method according to the present invention includes a transport unit capable of transporting a plurality of substrates having a plurality of mounting target points in order in the transport direction, and M mounting positions (M is an integer of 2 or more) arranged in the transport direction. J parts mounted on the mounting target point (J is M or more) by a component mounting system provided with M mounting parts that can be mounted on the mounting target point. Integer) with a process for obtaining a production plan to be produced and a process for determining a mounting mode for mounting a component at a mounting target point in the production plan based on the result of evaluating the production time required to execute the production plan. When one board is stopped at each of the M mounting positions and components are mounted on all of the plurality of mounting target points of the board at the mounting positions corresponding to each of the M mounting portions, From each mounting position Based on the results of the evaluation of the production time of executing the production plan with a first implementation mode of carrying out the, determines whether to use the first mounting mode for the execution of the production plan.
 本発明に係る実装手順決定プログラムは、上記の実装手順決定方法をコンピューターに実行させる。 The mounting procedure determination program according to the present invention causes a computer to execute the mounting procedure determination method described above.
 本発明に係る記録媒体は、上記の実装手順決定プログラムをコンピューターにより読み出し可能に記録する。 The recording medium according to the present invention records the above mounting procedure determination program so as to be readable by a computer.
 このように構成された本発明(実装手順決定装置、実装手順決定方法、実装手順決定プログラム、記録媒体、部品実装システム)では、複数の実装対象点を有する基板を複数枚順番に搬送方向に搬送可能な搬送部と、搬送方向に並ぶM個(Mは2以上の整数)の実装位置に対応して設けられ、それぞれ同一種類の部品を実装対象点に実装可能なM個の実装部とを備えた部品実装システムによる部品の実装手順が求められる。つまり、実装対象点に実装済みの部品をJ個生産する生産計画が取得され、生産計画の実行に要する生産時間に関する評価が行われる。具体的には、M個の実装位置のそれぞれに1枚ずつ基板を停止させて、M個の実装部のそれぞれに対応する実装位置の基板の複数の実装対象点の全てに部品を実装させると、M個の実装位置それぞれから基板を搬出する第1実装モードを用いて生産計画を実行した場合の生産時間に関する評価が行われる。そして、この評価結果に基づき、生産計画の実行に第1実装モードを用いるか否かが決定される。これによって、第1実装モードが効率的である状況では、第1実装モードにより生産計画を実行することができる。こうして、状況に応じた効率的な部品実装が実行可能となっている。 In the present invention thus configured (mounting procedure determining device, mounting procedure determining method, mounting procedure determining program, recording medium, component mounting system), a plurality of substrates having a plurality of mounting target points are sequentially transferred in the transport direction. A possible transport unit, and M mounting units that are provided corresponding to M mounting positions (M is an integer of 2 or more) arranged in the transport direction and that can mount the same type of component at a mounting target point. A component mounting procedure by the component mounting system provided is required. That is, a production plan for producing J parts mounted on the mounting target point is acquired, and an evaluation regarding the production time required to execute the production plan is performed. Specifically, when one board is stopped at each of the M mounting positions, and components are mounted on all of the plurality of mounting target points of the board at the mounting positions corresponding to each of the M mounting portions. Evaluation on the production time when the production plan is executed using the first mounting mode in which the board is unloaded from each of the M mounting positions is performed. Then, based on the evaluation result, it is determined whether to use the first mounting mode for execution of the production plan. Thus, in a situation where the first mounting mode is efficient, the production plan can be executed in the first mounting mode. Thus, efficient component mounting according to the situation can be executed.
 また、実装モード決定部は、第1実装モードを用いて生産計画を実行した場合と、M個の実装位置に順番に基板を停止させて、基板の複数の実装対象点への部品の実装をM個の実装部に分担させる第2実装モードを用いて生産計画を実行した場合とにおける生産時間の違いを評価した結果に基づき、生産計画の実行に第1実装モードおよび第2実装モードのいずれを用いるかを決定するように、実装手順決定装置を構成してもよい。かかる構成では、状況に応じて第1実装モードと第2実装モードとを使い分けられる。したがって、状況に応じた効率的な部品実装が実行可能となる。 In addition, the mounting mode determination unit stops the board in order at the M mounting positions when the production plan is executed using the first mounting mode, and mounts components on a plurality of mounting target points on the board. Based on the result of evaluating the difference in production time between the case where the production plan is executed using the second implementation mode assigned to the M mounting units, either the first implementation mode or the second implementation mode is used to execute the production plan. The mounting procedure determining device may be configured to determine whether to use the function. In such a configuration, the first mounting mode and the second mounting mode can be used properly according to the situation. Therefore, efficient component mounting according to the situation can be executed.
 また、実装モード決定部は、搬送方向に順番に搬送される1枚目からN枚目までの基板それぞれの複数の実装対象点の個数の合計をT(N)としたとき、T(N-1)<J≦T(N)を満たす基板の枚数Nに基づき、第1モードの実行態様を決定するように、実装手順決定装置を構成しても良い。 Further, the mounting mode determination unit T (N−) where T (N−) is the total number of mounting target points on each of the first to Nth substrates that are sequentially transported in the transport direction. 1) The mounting procedure determining apparatus may be configured to determine the execution mode of the first mode based on the number N of substrates satisfying <J ≦ T (N).
 具体的には、実装モード決定部は、NがMの倍数である場合に、生産計画の実行に第1実装モードを用いると決定すると、第1実装モードを(N/M)回実行することで、生産計画を実行すると決定するように、実装手順決定装置を構成してもよい。かかる構成では、M枚の基板に対して並行して部品を実装する並行実装処理をN回繰り返すことで、生産計画を完了することができる。したがって、実装部の高い稼働率を確保して、効率的な部品実装が実行可能となる。 Specifically, when N is a multiple of M, the mounting mode determination unit executes the first mounting mode (N / M) times when determining that the first mounting mode is used for execution of the production plan. Thus, the mounting procedure determining device may be configured to determine to execute the production plan. In such a configuration, the production plan can be completed by repeating the parallel mounting process of mounting components on M boards in parallel N times. Therefore, a high operating rate of the mounting unit can be ensured and efficient component mounting can be performed.
 また、実装モード決定部は、NがMの倍数にK(Kは1以上でM未満の整数)を加えた値である場合に、生産計画の実行に第1実装モードを用いると決定すると、第1実装モードを((N-K)/M)回実行してから、M個の実装位置のそれぞれに基板を1枚ずつ停止させてM個の実装部のそれぞれに対応する実装位置の基板へ部品を実装させることで、((N-K)/M)回の第1実装モードで実装された部品の個数をJ個から引いた個数の部品の実装対象点への実装をM個の実装部に実行させる第1変更実装モードで、生産計画を実行すると決定するように、実装手順決定装置を構成してもよい。かかる構成では、J個の部品のうちT(N-K)個の部品については、M枚の基板に対して並行して部品を実装する並行実装処理を((N-K)/M)回繰り返すことで、実装部の高い稼働率を確保して、効率的な部品実装が実行可能となる。また、最後の(J-T(N-K))個の部品については、M個の実装部のそれぞれに基板を1枚ずつ停止させて、M個の実装部のそれぞれに対応する実装位置の基板へ部品を実装させる(第1変更実装モード)。こうして、M個の実装部に合計(J-T(N-K))個の部品を実装対象点に実装させることで、実装部の高い稼働率を確保して、効率的な部品実装が実行可能となる。 Further, when the mounting mode determination unit determines that the first mounting mode is used for execution of the production plan when N is a value obtained by adding K to a multiple of M (K is an integer greater than or equal to 1 and less than M), After the first mounting mode is executed ((NK) / M) times, one board is stopped at each of the M mounting positions, and the board at the mounting position corresponding to each of the M mounting portions. By mounting the components on the M, the number of components mounted in the ((NK) / M) first mounting mode is subtracted from the number of components mounted in the first mounting mode (M). The mounting procedure determining device may be configured to determine to execute the production plan in the first modified mounting mode to be executed by the mounting unit. In such a configuration, T (NK) components among J components are subjected to parallel mounting processing ((NK) / M) times for mounting components in parallel on M boards. By repeating, it is possible to secure a high operating rate of the mounting unit and to execute efficient component mounting. In addition, for the last (JT (NK)) components, one board is stopped on each of the M mounting portions, and the mounting position corresponding to each of the M mounting portions is set. A component is mounted on the board (first change mounting mode). In this way, a total of (JT (NK)) parts are mounted on the mounting target points on the M mounting parts, so that a high operating rate of the mounting part is secured and efficient component mounting is executed. It becomes possible.
 また、実装モード決定部は、NがMの倍数にK(Kは1以上でM未満の整数)を加えた値である場合に、生産計画の実行に第1実装モードを用いると決定すると、第1実装モードを((N-K)/M)回実行してから、M個の実装位置のうちK個の実装位置に基板を停止させてK個の実装位置に対応するK個の実装部に基板の複数の実装対象点の全てに部品を実装させると、K個の実装位置から基板を搬出する第2変更実装モードで、生産計画を実行すると決定するように、実装手順決定装置を構成してもよい。かかる構成では、J個の部品のうちT(N-K)個の部品については、M枚の基板に対して並行して部品を実装する並行実装処理を((N-K)/M)回繰り返すことで、実装部の高い稼働率を確保して、効率的な部品実装が実行可能となる。また、最後の(J-T(N-K))個の部品については、M個の実装位置のうちK個の実装位置に基板を停止させてK個の実装位置に対応するK個の実装部に基板の複数の実装対象点の全てに部品を実装させる(第2変更実装モード)。こうして、K個の実装部を用いて、(J-T(N-K))個の部品を実装対象点に実装することで、生産計画を完了することができる。 Further, when the mounting mode determination unit determines that the first mounting mode is used for execution of the production plan when N is a value obtained by adding K to a multiple of M (K is an integer greater than or equal to 1 and less than M), After the first mounting mode is executed ((NK) / M) times, the board is stopped at K mounting positions among the M mounting positions, and K mountings corresponding to the K mounting positions are performed. The mounting procedure determining device is configured to determine to execute the production plan in the second modified mounting mode in which when the component is mounted on all of the plurality of mounting target points on the board, the board is unloaded from the K mounting positions. It may be configured. In such a configuration, T (NK) components among J components are subjected to parallel mounting processing ((NK) / M) times for mounting components in parallel on M boards. By repeating, it is possible to secure a high operating rate of the mounting unit and to execute efficient component mounting. For the last (JT (NK)) parts, the board is stopped at K mounting positions among the M mounting positions, and K mountings corresponding to the K mounting positions are performed. The component is mounted on all of the plurality of mounting target points on the board (second modified mounting mode). Thus, the production plan can be completed by mounting (JT (NK)) parts on the mounting target points using the K mounting parts.
 また、実装モード決定部は、第1変更実装モードおよび第2変更実装モードのうち、生産計画を早く完了する一方で、生産計画を実行すると決定するように、実装手順決定装置を構成しても良い。これによって、第1変更実装モードおよび第2変更実装モードのうちのより適切な一方により、効率的に生産計画を実行することが可能となる。 In addition, the mounting mode determination unit may configure the mounting procedure determination device so as to determine to execute the production plan while completing the production plan early among the first changed mounting mode and the second changed mounting mode. good. This makes it possible to efficiently execute a production plan by using one of the first change mounting mode and the second change mounting mode that is more appropriate.
 また、実装モード決定部は、生産計画において実行される基板の搬送に要する搬送時間に基づき、生産時間に関する評価を行うように、実装手順決定装置を構成してもよい。かかる構成では、搬送時間に基づき、生産時間に関する評価を的確に行うことができる。 Also, the mounting mode determination unit may configure the mounting procedure determination device so as to evaluate the production time based on the transport time required for transporting the substrate executed in the production plan. In such a configuration, it is possible to accurately evaluate the production time based on the conveyance time.
 また、実装モード決定部は、生産計画において実行される基板への部品の実装に要する実装時間および搬送時間に基づき、生産時間に関する評価を行うように、実装手順決定装置を構成してもよい。かかる構成では、実装時間および搬送時間に基づき、生産時間に関する評価を的確に行うことができる。 Further, the mounting mode determination unit may configure the mounting procedure determination device so as to perform an evaluation on the production time based on the mounting time and the transport time required for mounting the component on the board executed in the production plan. In such a configuration, it is possible to accurately evaluate the production time based on the mounting time and the conveyance time.
 本発明に係る部品実装システムは、複数の実装対象点を有する基板を複数枚順番に搬送方向に搬送可能な搬送部と、搬送方向に並ぶM個(Mは2以上の整数)の実装位置に対応して設けられ、それぞれ同一種類の部品を実装対象点に実装可能なM個の実装部と、実装対象点に実装済みの部品をJ個(JはM以上の整数)生産する生産計画を、搬送部およびM個の実装部を制御することで実行する制御部とを備え、制御部は、M個の実装位置のそれぞれに1枚ずつ基板を停止させて、M個の実装部のそれぞれに対応する実装位置の基板の複数の実装対象点の全てに部品を実装させると、M個の実装位置それぞれから基板を搬出する第1実装モードを用いて生産計画を実行可能である。 The component mounting system according to the present invention includes a transport unit capable of transporting a plurality of boards having a plurality of mounting target points in the transport direction in order and M mounting positions (M is an integer of 2 or more) arranged in the transport direction. A production plan that produces M mounting parts that can be mounted on the mounting target points and J parts that are mounted on the mounting target points (J is an integer greater than or equal to M). , A control unit that executes by controlling the transport unit and the M mounting units, and the control unit stops the substrate one by one at each of the M mounting positions, and each of the M mounting units When the components are mounted on all of the plurality of mounting target points of the board at the mounting position corresponding to, the production plan can be executed using the first mounting mode in which the board is unloaded from each of the M mounting positions.
 このように構成された本発明(部品実装システム)では、複数の実装対象点を有する基板を複数枚順番に搬送方向に搬送可能な搬送部と、搬送方向に並ぶM個(Mは2以上の整数)の実装位置に対応して設けられ、それぞれ同一種類の部品を実装対象点に実装可能なM個の実装部とを備える。そして、M個の実装部のそれぞれに1枚ずつ基板を停止させて、M個の実装部のそれぞれに対応する実装位置の基板の複数の実装対象点の全てに部品を実装させると、M個の実装位置それぞれから基板を搬出する第1実装モードを用いて生産計画を実行可能である。したがって、第1実装モードが効率的である状況では、第1実装モードにより生産計画を実行することができる。こうして、状況に応じた効率的な部品実装が実行可能となっている。 In the present invention (component mounting system) configured as described above, a transport unit capable of transporting a plurality of substrates having a plurality of mounting target points in the transport direction in order, and M pieces (M is two or more) arranged in the transport direction. M mounting portions that can be mounted on the mounting target points and are provided corresponding to mounting positions of (integer). Then, when one board is stopped in each of the M mounting parts and components are mounted on all of the plurality of mounting target points of the board at the mounting positions corresponding to each of the M mounting parts, The production plan can be executed using the first mounting mode in which the board is unloaded from each mounting position. Therefore, in a situation where the first mounting mode is efficient, the production plan can be executed in the first mounting mode. Thus, efficient component mounting according to the situation can be executed.
 また、M個の実装位置のうち、搬送方向の上流側から数えて1番目の実装位置と2番目の実装位置との間に、基板を待機させる待機位置が設けられ、制御部は、第1実装モードにおいて、1番目の実装位置の一の基板に対する複数の実装対象点への部品の実装が完了すると、一の基板を1番目の実装位置から待機位置へ移動させつつ、一の基板の次の基板を1番目の実装位置に停止させて、1番目の前記実装位置での次の基板に対する複数の実装対象点への部品の実装を実行する第3実装モードに実装モードを変更可能であるように、部品実装システムを構成してもよい。つまり、基本的には、第1実装モードにおける各実装位置での部品の実装は、ほぼ同時に完了するはずである。しかしながら、部品実装システムにおいて実際に部品の実装を開始すると、部品実装の進捗が各実装位置で異なる場合がある。そのため、例えば、搬送方向の上流側から数えて1番目の実装位置で部品の実装が完了した時点で、2番目の実装位置で部品の実装が継続している場合が生じうる。これに対して、一の基板を1番目の実装位置から待機位置へ移動させつつ、一の基板の次の基板を1番目の実装位置に停止させて、1番目の実装位置での次の基板に対する複数の実装対象点への部品の実装を実行する第3実装モードに実装モードを変更可能とすることで、かかる場合に対応することができる。こうして、状況に応じた効率的な部品実装が実行可能となる。 In addition, among the M mounting positions, a standby position for waiting the substrate is provided between the first mounting position and the second mounting position counted from the upstream side in the transport direction. In the mounting mode, when the mounting of the components to the plurality of mounting target points on the first board at the first mounting position is completed, the next board is moved to the standby position from the first mounting position. The mounting mode can be changed to the third mounting mode in which the board is stopped at the first mounting position and components are mounted on a plurality of mounting target points on the next board at the first mounting position. In this way, a component mounting system may be configured. That is, basically, component mounting at each mounting position in the first mounting mode should be completed almost simultaneously. However, when component mounting is actually started in the component mounting system, the progress of component mounting may differ at each mounting position. Therefore, for example, when the mounting of the component is completed at the first mounting position counted from the upstream side in the transport direction, the mounting of the component may continue at the second mounting position. On the other hand, while moving the first board from the first mounting position to the standby position, the next board of the first board is stopped at the first mounting position, and the next board at the first mounting position. Such a case can be dealt with by enabling the mounting mode to be changed to the third mounting mode in which components are mounted on a plurality of mounting target points. In this way, efficient component mounting according to the situation can be executed.
 また、制御部は、1番目の実装位置の一の基板の複数の実装対象点への部品の実装が完了した時点において、複数の実装対象点への部品の実装がM個の実装位置のうち最も遅れている実装位置で実装済みの部品の個数に基づき、第3実装モードに変更するか、第1実装モードを継続するかを決定するように、部品実装システムを構成してもよい。これによって、各実装位置での部品実装の進捗に応じた効率的な部品実装が実行可能となる。 In addition, when the mounting of the component to the plurality of mounting target points on the substrate at the first mounting position is completed, the control unit mounts the component to the plurality of mounting target points out of the M mounting positions. The component mounting system may be configured to determine whether to change to the third mounting mode or to continue the first mounting mode based on the number of components already mounted at the mounting position that is most delayed. Thereby, efficient component mounting according to the progress of component mounting at each mounting position can be executed.
 本発明によれば、基板の搬送方向に並ぶ複数の実装部を備えた部品実装システムにおいて、状況に応じた効率的な部品実装を実行することが可能となる。 According to the present invention, in a component mounting system including a plurality of mounting units arranged in the board conveyance direction, it is possible to execute efficient component mounting according to the situation.
本発明に係る部品実装システムの一例を模式的に示す平面図。The top view which shows typically an example of the component mounting system which concerns on this invention. 第1実装モードでの動作の一例を模式的に示す図。The figure which shows an example of operation | movement in 1st mounting mode typically. 第2実装モードでの動作の一例を模式的に示す図。The figure which shows an example of operation | movement in 2nd mounting mode typically. 第2実装モードでの動作の一例を模式的に示す図。The figure which shows an example of operation | movement in 2nd mounting mode typically. 本発明に係る実装手順決定装置の一例として機能するホストコンピューターの構成を示すブロック図。The block diagram which shows the structure of the host computer which functions as an example of the mounting procedure determination apparatus which concerns on this invention. ホストコンピューターが実行する実装手順決定方法の一例を示すフローチャート。The flowchart which shows an example of the mounting procedure determination method which a host computer performs. 実装手順決定方法の変形例で使用可能な実装モードでの動作を模式的に示す図。The figure which shows typically operation | movement in the mounting mode which can be used in the modification of the mounting procedure determination method. 実装手順決定方法の変形例で使用可能な実装モードでの別の動作を模式的に示す図。The figure which shows typically another operation | movement in the mounting mode which can be used in the modification of the mounting procedure determination method. 部品実装システムが実行する実装モード変更の一例を示すフローチャート。The flowchart which shows an example of the mounting mode change which a component mounting system performs.
 図1は本発明に係る部品実装システムの一例を模式的に示す平面図である。図1に示すように、本明細書では、搬送方向X、幅方向Yおよび鉛直方向Zで構成されるXYZ直交座標軸を適宜用いる。搬送方向Xおよび幅方向Yは水平方向に平行であるとともに互いに直交し、鉛直方向Zは搬送方向Xおよび幅方向Yに直交する。 FIG. 1 is a plan view schematically showing an example of a component mounting system according to the present invention. As shown in FIG. 1, in this specification, XYZ orthogonal coordinate axes configured by a conveyance direction X, a width direction Y, and a vertical direction Z are appropriately used. The transport direction X and the width direction Y are parallel to the horizontal direction and orthogonal to each other, and the vertical direction Z is orthogonal to the transport direction X and the width direction Y.
 この部品実装システム1は、搬送方向Xの上流側から搬入された基板Bに対して部品を実装して搬送方向Xの下流側に搬出する1台の部品実装機10により構成される。基板Bには複数の実装対象点Bpが設けられており、部品実装機10に具備された制御部100は、部品実装機10の各部を制御することで、各実装対象点Bpに部品Wpを1個ずつ実装する。各部品WpはダイシングされたウェハーWのベアチップであり、互いに同一の構成を有する。 The component mounting system 1 includes a single component mounter 10 that mounts components on the board B carried in from the upstream side in the transport direction X and transports the components downstream in the transport direction X. A plurality of mounting target points Bp are provided on the board B, and the control unit 100 provided in the component mounting machine 10 controls each part of the component mounting machine 10 so that the component Wp is assigned to each mounting target point Bp. Install one by one. Each component Wp is a bare chip of a diced wafer W, and has the same configuration.
 図1の例では、基板Bには、破線で区切られた64個(8×8)の対象候補点がマトリックス状に設けられており、64個の対象候補点のうち良品と判定されたL個の対象候補点が「複数の実装対象点Bp」に該当する(Lは2以上の整数)。不良と判定される対象候補点の個数は基板Bによって異なり得るため、複数の実装対象点Bpの個数は基板Bによって異なり得る。ただし、以下に示す例では、特に断らない限り、各基板Bについて64個の対象候補点の全てが良品と判定され、L=64である場合を例示して説明を行う。 In the example of FIG. 1, the substrate B is provided with 64 (8 × 8) target candidate points separated by a broken line in a matrix, and L determined as a non-defective product among the 64 target candidate points. The target candidate points correspond to “a plurality of mounting target points Bp” (L is an integer of 2 or more). Since the number of target candidate points determined to be defective may differ depending on the substrate B, the number of mounting target points Bp may differ depending on the substrate B. However, in the example shown below, the case where all the 64 target candidate points are determined to be non-defective for each substrate B and L = 64 will be described as an example unless otherwise specified.
 この部品実装機10は搬送方向Xに基板Bを搬送する搬送部2を備える。搬送部2は、搬送方向Xにこの順番で並ぶ、待機コンベア21、実装コンベア22、待機コンベア23、実装コンベア24および搬出コンベア25を有し、これらのコンベア21~25が協働して搬送方向Xに基板Bを搬送することができる。待機コンベア21は待機位置P1に対して設けられ、部品実装システム1の外部から搬入した基板Bを待機位置P1に待機させ、あるいは実装コンベア22に受け渡す。実装コンベア22は待機位置P1の搬送方向Xの下流側に位置する実装位置P2に対して設けられ、待機コンベア21から受け取った基板Bを実装位置P2に固定し、あるいは待機コンベア23に受け渡す。待機コンベア23は実装位置P2の搬送方向Xの下流側に位置する待機位置P3に対して設けられ、実装コンベア22から受け取った基板Bを待機位置P3で待機させ、あるいは実装コンベア24に受け渡す。実装コンベア24は待機位置P3の搬送方向Xの下流側に位置する実装位置P4に対して設けられ、待機コンベア23から受け取った基板Bを実装位置P4に固定し、あるいは搬出コンベア25に受け渡す。搬出コンベア25は実装位置P4の搬送方向Xの下流側の位置に対して設けられ、実装コンベア24から受け取った基板Bを部品実装システム1の外部へ搬出する。このように、搬送部2では、M個の実装位置P2、P4が搬送方向Xに並んで設けられている。ここで、Mは2以上の整数で、図1の例ではM=2である。 The component mounter 10 includes a transport unit 2 that transports the substrate B in the transport direction X. The transport unit 2 includes a standby conveyor 21, a mounting conveyor 22, a standby conveyor 23, a mounting conveyor 24, and an unloading conveyor 25 that are arranged in this order in the transport direction X, and these conveyors 21 to 25 cooperate in the transport direction. The substrate B can be transferred to X. The standby conveyor 21 is provided with respect to the standby position P1, and waits for the board B carried in from the outside of the component mounting system 1 at the standby position P1 or transfers it to the mounting conveyor 22. The mounting conveyor 22 is provided with respect to the mounting position P2 located downstream of the standby position P1 in the transport direction X, and the substrate B received from the standby conveyor 21 is fixed to the mounting position P2 or transferred to the standby conveyor 23. The standby conveyor 23 is provided with respect to the standby position P3 located downstream of the mounting position P2 in the transport direction X, and waits for the substrate B received from the mounting conveyor 22 at the standby position P3 or transfers it to the mounting conveyor 24. The mounting conveyor 24 is provided with respect to the mounting position P4 located downstream of the standby position P3 in the transport direction X, and the substrate B received from the standby conveyor 23 is fixed to the mounting position P4 or transferred to the carry-out conveyor 25. The carry-out conveyor 25 is provided at a position downstream of the mounting position P4 in the transport direction X, and carries the board B received from the mounting conveyor 24 out of the component mounting system 1. Thus, in the transport unit 2, M mounting positions P2 and P4 are provided side by side in the transport direction X. Here, M is an integer greater than or equal to 2, and M = 2 in the example of FIG.
 また、部品実装機10は部品Wpを供給する部品供給機構3を備える。部品供給機構3は、複数のウェハーWを収納可能なウェハー収納部31と、ウェハー収納部31からウェハー供給位置PpまでウェハーWを引き出すウェハー引出部33とを有する。ウェハー収納部31は、それぞれウェハーWを保持する複数のウェハーホルダーWhを鉛直方向Zに並べて収納するラックを鉛直方向Zに昇降させることで、ウェハー引出部33がウェハーWを受取可能な高さにウェハーホルダーWhを位置させて、このウェハーホルダーWhをウェハー引出部33に押し出すことができる。 The component mounter 10 also includes a component supply mechanism 3 that supplies the component Wp. The component supply mechanism 3 includes a wafer storage unit 31 that can store a plurality of wafers W, and a wafer extraction unit 33 that extracts the wafer W from the wafer storage unit 31 to the wafer supply position Pp. The wafer storage unit 31 raises and lowers in a vertical direction Z a rack for storing a plurality of wafer holders Wh each holding a wafer W in the vertical direction Z so that the wafer extraction unit 33 can receive the wafer W. The wafer holder Wh can be positioned, and the wafer holder Wh can be pushed out to the wafer extraction portion 33.
 ウェハー引出部33は、ウェハーホルダーWhを支持するウェハー支持テーブル331と、ウェハー支持テーブル331を幅方向Yに移動可能に支持する固定レール332と、幅方向Yに設けられてウェハー支持テーブル331に取り付けられたボールネジ333と、ボールネジ333を駆動するY軸モーター334とを有する。したがって、Y軸モーター334によりボールネジ333を回転させることで、ウェハー支持テーブル331を固定レール332に沿って幅方向Yに移動させることができる。なお、図1に示すように、ウェハー収納部31とウェハー供給位置Ppとは搬送部2を幅方向Yから挟むように配置されており、ウェハー支持テーブル331は搬送部2の下方を通過する。かかるウェハー支持テーブル331は、ウェハー収納部31に隣接する受取位置でウェハー収納部31からウェハーホルダーWhを受け取って、受取位置よりウェハー収納部31から幅方向Yに離れたウェハー供給位置Ppへと移動することで、ウェハー供給位置PpにウェハーWを引き出す。 The wafer lead-out unit 33 is attached to the wafer support table 331 provided in the width direction Y, a wafer support table 331 that supports the wafer holder Wh, a fixed rail 332 that supports the wafer support table 331 so as to be movable in the width direction Y. And a Y-axis motor 334 that drives the ball screw 333. Therefore, by rotating the ball screw 333 by the Y-axis motor 334, the wafer support table 331 can be moved in the width direction Y along the fixed rail 332. As shown in FIG. 1, the wafer storage unit 31 and the wafer supply position Pp are arranged so as to sandwich the transfer unit 2 from the width direction Y, and the wafer support table 331 passes below the transfer unit 2. The wafer support table 331 receives the wafer holder Wh from the wafer storage unit 31 at the reception position adjacent to the wafer storage unit 31 and moves from the reception position to the wafer supply position Pp away from the wafer storage unit 31 in the width direction Y. As a result, the wafer W is pulled out to the wafer supply position Pp.
 さらに、部品供給機構3は、ウェハー供給位置Ppから部品Wpを取り出す部品取出部35を有する。部品取出部35は、ウェハー供給位置Ppから部品Wpを取り出す取出ヘッド36を有し、取出ヘッド36をXY方向に駆動可能である。つまり、部品取出部35は、取出ヘッド36を搬送方向Xに移動可能に支持する支持部材351と、搬送方向Xに設けられて取出ヘッド36に取り付けられたボールネジを駆動するX軸モーター352とを有し、X軸モーター352によりボールネジを駆動することで、取出ヘッド36を搬送方向Xに移動させることができる。また、部品取出部35は、支持部材351を幅方向Yに移動可能に支持する固定レール353と、幅方向Yに設けられて固定レール353に取り付けられたボールネジ354と、ボールネジ354を駆動するY軸モーター355とを有する。したがって、Y軸モーター355によりボールネジ354を駆動することで、支持部材351とともに取出ヘッド36を幅方向Yに移動させることができる。 Furthermore, the component supply mechanism 3 has a component take-out unit 35 that extracts the component Wp from the wafer supply position Pp. The component take-out unit 35 has a take-out head 36 that takes out the component Wp from the wafer supply position Pp, and can drive the take-out head 36 in the XY directions. That is, the component extraction unit 35 includes a support member 351 that supports the extraction head 36 so as to be movable in the conveyance direction X, and an X-axis motor 352 that is provided in the conveyance direction X and drives a ball screw attached to the extraction head 36. The take-out head 36 can be moved in the transport direction X by driving the ball screw by the X-axis motor 352. The component take-out unit 35 includes a fixed rail 353 that supports the support member 351 so as to be movable in the width direction Y, a ball screw 354 that is provided in the width direction Y and attached to the fixed rail 353, and a Y that drives the ball screw 354. A shaft motor 355. Therefore, by driving the ball screw 354 by the Y-axis motor 355, the takeout head 36 can be moved in the width direction Y together with the support member 351.
 取出ヘッド36は、搬送方向Xに延設されたブラケット361と、ブラケット361に回転可能に支持された2個のノズル362とを有する。各ノズル362は、搬送方向Xに平行な回転軸を中心に回転することで、下方を向く吸着位置および上方を向く受渡位置(図1の位置)のいずれかに位置する。また、ブラケット361は、各ノズル362を伴って昇降可能である。 The take-out head 36 has a bracket 361 extending in the transport direction X and two nozzles 362 rotatably supported by the bracket 361. Each nozzle 362 is positioned at either a suction position facing downward or a delivery position (position in FIG. 1) facing upward by rotating around a rotation axis parallel to the transport direction X. The bracket 361 can be moved up and down with each nozzle 362.
 かかる部品供給機構3は、吸着位置に位置させたノズル362を、ウェハー供給位置Pp上の部品Wpに上方から対向させると、ノズル362を下降させて部品Wpに接触させる。さらに、部品供給機構3はノズル362に負圧を与えつつノズル362を上昇させることで、ウェハー供給位置Ppから部品Wpを吸着する。そして、部品供給機構3は、ノズル362を受渡位置に位置させることで、部品Wpを供給する。 When the nozzle 362 positioned at the suction position is opposed to the component Wp on the wafer supply position Pp from above, the component supply mechanism 3 lowers the nozzle 362 to contact the component Wp. Further, the component supply mechanism 3 sucks the component Wp from the wafer supply position Pp by raising the nozzle 362 while applying a negative pressure to the nozzle 362. Then, the component supply mechanism 3 supplies the component Wp by positioning the nozzle 362 at the delivery position.
 部品実装機10は、こうして部品供給機構3によって供給された部品Wpを基板Bに実装する実装部4A、4Bを備える。特にM個の実装位置P2、P4に対して一対一の対応関係で、M個の実装部4A、4Bが設けられている(上述の通り、図1の例ではM=2である)。つまり、実装部4Aは、実装位置P2に対応して設けられ、実装部4Bは、実装位置P4に対応して設けられている。実装部4A、4Bは、部品実装機10の天井に幅方向Yに設けられた固定レールに沿って移動可能な支持部材41と、支持部材41によって搬送方向Xに移動可能に支持された実装ヘッド42とを有し、実装ヘッド42をXY方向に移動させることができる。実装ヘッド42は、下方を向く2個のノズル421を有する。 The component mounter 10 includes mounting units 4A and 4B that mount the component Wp supplied by the component supply mechanism 3 on the board B in this way. In particular, M mounting portions 4A and 4B are provided in a one-to-one correspondence with M mounting positions P2 and P4 (as described above, M = 2 in the example of FIG. 1). That is, the mounting portion 4A is provided corresponding to the mounting position P2, and the mounting portion 4B is provided corresponding to the mounting position P4. The mounting portions 4A and 4B include a support member 41 movable along a fixed rail provided in the width direction Y on the ceiling of the component mounting machine 10, and a mounting head supported by the support member 41 so as to be movable in the transport direction X. 42, and the mounting head 42 can be moved in the XY directions. The mounting head 42 has two nozzles 421 facing downward.
 部品Wpの吸着・実装に際しては、実装部4A、4Bそれぞれは、取出ヘッド36の上方に移動して、受渡位置に位置するノズル362に保持される部品Wpに対してノズル421を上方から対向させると、ノズル421を下降させて部品Wpに接触させる。続いて、部品供給機構3がノズル362の負圧を解除するとともに、実装部4A、4Bがノズル421に負圧を与えつつノズル421を上昇させる。こうして実装ヘッド42によって部品Wpを吸着すると、実装部4Aは、対応する実装位置P2に固定された基板Bの実装対象点Bpに部品Wpを実装し、実装部4Bは、対応する実装位置P4に固定された基板Bの実装対象点Bpに部品Wpを実装する。このように、実装部4A、4Bは、単一種類の部品Wpを基板Bに実装する。 When picking up and mounting the component Wp, each of the mounting portions 4A and 4B moves above the take-out head 36 and makes the nozzle 421 face the component Wp held by the nozzle 362 located at the delivery position from above. Then, the nozzle 421 is lowered and brought into contact with the component Wp. Subsequently, the component supply mechanism 3 releases the negative pressure of the nozzle 362, and the mounting portions 4A and 4B raise the nozzle 421 while applying a negative pressure to the nozzle 421. When the component Wp is sucked by the mounting head 42 in this manner, the mounting unit 4A mounts the component Wp on the mounting target point Bp of the substrate B fixed at the corresponding mounting position P2, and the mounting unit 4B is mounted on the corresponding mounting position P4. The component Wp is mounted on the mounting target point Bp of the fixed substrate B. As described above, the mounting portions 4A and 4B mount a single type of component Wp on the board B.
 かかる部品実装システム1では、制御部100は、第1および第2実装モードを含む複数の実装モードを用いて、基板Bの実装対象点Bpに部品Wpを実装することができる。第1実装モードでは、搬送部2が2個の実装位置P2、P4のそれぞれに1枚ずつ基板Bを停止させ、2個の実装部4A、4Bのそれぞれが、対応する実装位置P2、P4内の基板Bの複数(L個)の実装対象点Bpの全てに部品Wpを実装すると、搬送部2が2個の実装位置P2、P4のそれぞれから部品実装システム1外に基板Bを搬出する。第2実装モードでは、搬送部2が2個の実装位置P2、P4に順番に1枚の基板Bを停止させて、1枚の基板Bの複数(L個)の実装対象点Bpへの部品Wpの実装を2個の実装部4A、4Bが分担して行う。 In the component mounting system 1, the control unit 100 can mount the component Wp on the mounting target point Bp of the board B using a plurality of mounting modes including the first and second mounting modes. In the first mounting mode, the transport unit 2 stops the substrate B one by one at each of the two mounting positions P2 and P4, and each of the two mounting units 4A and 4B is within the corresponding mounting positions P2 and P4. When the component Wp is mounted on all of the plurality (L) of mounting target points Bp of the substrate B, the transport unit 2 carries the substrate B out of the component mounting system 1 from each of the two mounting positions P2 and P4. In the second mounting mode, the transport unit 2 stops one board B in order at the two mounting positions P2 and P4, and components to a plurality of (L) mounting target points Bp on one board B. The two mounting parts 4A and 4B share the mounting of Wp.
 図2は第1実装モードでの動作の一例を模式的に示す図である。同図では、4枚の基板Bに部品Wpを実装する場合が例示され、搬送部2による搬送順序(換言すれば、搬入順序)を示した数字(1~4)が基板Bに付されている。第1実装モードでは、搬送部2は、1枚目の基板B1の実装位置P4への搬送を開始し(ステップS101)、続いて2枚目の基板B2の実装位置P2への搬送を開始する(ステップS102)。ステップS103では、搬送部2は、1枚目の基板B1を実装位置P4に固定するとともに、2枚目の基板B2を実装位置P2に固定する。 FIG. 2 is a diagram schematically showing an example of the operation in the first mounting mode. In the figure, the case where the component Wp is mounted on four substrates B is illustrated, and numbers (1 to 4) indicating the transport order (in other words, the transport order) by the transport unit 2 are attached to the substrate B. Yes. In the first mounting mode, the transport unit 2 starts transporting the first board B1 to the mounting position P4 (step S101), and then starts transporting the second board B2 to the mounting position P2. (Step S102). In step S103, the transport unit 2 fixes the first board B1 to the mounting position P4 and fixes the second board B2 to the mounting position P2.
 こうして実装位置P2、P4のそれぞれに基板Bが固定されると、実装部4A、4Bのそれぞれは、対応する実装位置P2、P4に固定された基板B2、B1への部品Wpの実装を開始する。つまり、実装部4Aは、実装位置P2に固定された基板B2の複数の実装対象点Bpの全てに部品Wpを実装し、実装部4Bは、実装位置P4に固定された基板B1の複数の実装対象点Bpの全てに部品Wpを実装する(ステップS104)。なお、ステップS104では、部品実装と並行して、3枚目の基板B3を待機位置P1に待機させるとともに、4枚目の基板B4を待機位置P1に対して搬送方向Xの上流側で隣接する位置に待機させる。ステップS104での部品実装が完了すると、搬送部2は、実装位置P4から部品実装システム1の外部へ基板B1を搬出するとともに、実装位置P2から部品実装システム1の外部へ基板B2を搬出する(ステップS105)。 Thus, when the board B is fixed to the mounting positions P2 and P4, the mounting parts 4A and 4B start mounting the component Wp on the boards B2 and B1 fixed to the corresponding mounting positions P2 and P4. . That is, the mounting unit 4A mounts the component Wp on all of the plurality of mounting target points Bp of the substrate B2 fixed at the mounting position P2, and the mounting unit 4B mounts the plurality of mountings of the substrate B1 fixed at the mounting position P4. The component Wp is mounted on all the target points Bp (step S104). In step S104, in parallel with the component mounting, the third board B3 is placed on standby at the standby position P1, and the fourth board B4 is adjacent to the standby position P1 on the upstream side in the transport direction X. Wait in position. When the component mounting in step S104 is completed, the transport unit 2 unloads the substrate B1 from the mounting position P4 to the outside of the component mounting system 1 and unloads the substrate B2 from the mounting position P2 to the outside of the component mounting system 1 ( Step S105).
 こうして基板B1、B2に対する第1実装モードが完了すると、基板B3、B4に対する第1実装モードが開始される。つまり、ステップS105では、基板B1、B2の搬出と並行して、搬送部2は、3枚目の基板B3を実装位置P4へ搬送するとともに、4枚目の基板B4を実装位置P2へ搬送する。ステップS106では、搬送部2は、3枚目の基板B3を実装位置P4に固定するとともに、4枚目の基板B4を実装位置P2に固定する。こうして、実装位置P2、P4のそれぞれに基板Bが固定されると、実装部4A、4Bのそれぞれは、対応する実装位置P2、P4に固定された基板B4、B3への部品Wpの実装を開始する。つまり、実装部4Aは、実装位置P2に固定された基板B4の複数の実装対象点Bpの全てに部品Wpを実装し、実装部4Bは、実装位置P4に固定された基板B3の複数の実装対象点Bpの全てに部品Wpを実装する(ステップS107)ステップS107での部品実装が完了すると、搬送部2は、実装位置P4から部品実装システム1の外部へ基板B3を搬出するとともに、実装位置P2から部品実装システム1の外部へ基板B4を搬出する(ステップS108)。 Thus, when the first mounting mode for the substrates B1 and B2 is completed, the first mounting mode for the substrates B3 and B4 is started. That is, in step S105, in parallel with the unloading of the substrates B1 and B2, the transport unit 2 transports the third substrate B3 to the mounting position P4 and transports the fourth substrate B4 to the mounting position P2. . In step S106, the transport unit 2 fixes the third board B3 to the mounting position P4 and fixes the fourth board B4 to the mounting position P2. Thus, when the board B is fixed to the mounting positions P2 and P4, the mounting portions 4A and 4B start mounting the component Wp on the boards B4 and B3 fixed to the corresponding mounting positions P2 and P4. To do. That is, the mounting unit 4A mounts the component Wp on all of the plurality of mounting target points Bp of the substrate B4 fixed at the mounting position P2, and the mounting unit 4B mounts the plurality of substrates B3 fixed at the mounting position P4. The component Wp is mounted on all the target points Bp (step S107). When the component mounting in step S107 is completed, the transport unit 2 unloads the board B3 from the mounting position P4 to the outside of the component mounting system 1 and mounts the mounting position. The board B4 is unloaded from P2 to the outside of the component mounting system 1 (step S108).
 このように、第1実装モードでは、各実装部4A、4Bは、担当する基板Bに設けられた全ての実装対象点Bpへ部品Wpを実装し、1枚の基板Bは、M個の実装部4A、4Bのうちのいずれか一方のみから部品Wpの実装を受ける。 Thus, in the first mounting mode, each mounting unit 4A, 4B mounts the component Wp on all mounting target points Bp provided on the board B in charge, and one board B has M mountings. The component Wp is received from only one of the parts 4A and 4B.
 図3および図4は第2実装モードでの動作の一例を模式的に示す図である。両図では、4枚の基板Bに部品Wpを実装する場合が例示され、搬送部2による搬送順序(換言すれば、搬入順序)を示した数字(1~4)が基板Bに付されている。第2実装モードでは、搬送部2は、1枚目の基板B1の実装位置P2への搬送を開始し(ステップS201)、1枚目の基板B1を実装位置P2に固定する(ステップS202)。 3 and 4 are diagrams schematically showing an example of the operation in the second mounting mode. In both figures, the case where the component Wp is mounted on four boards B is illustrated, and numbers (1 to 4) indicating the order of transport by the transport unit 2 (in other words, the order of carry-in) are attached to the board B. Yes. In the second mounting mode, the transport unit 2 starts transporting the first board B1 to the mounting position P2 (step S201), and fixes the first board B1 to the mounting position P2 (step S202).
 こうして、実装位置P2に基板B1が固定されると、実装部4Aは、対応する実装位置P2に固定された基板B1への部品Wpの実装を開始する。つまり、実装部4Aは、実装位置P2に固定された基板B1の複数の実装対象点BpのうちのM分の1、すなわち(L/M)個の実装対象点Bpに部品Wpを実装する(ステップS203)。また、ステップS203では、部品実装と並行して、搬送部2は2枚目の基板B2を待機位置P1に待機させる。ステップS203での部品実装が完了すると、搬送部2は、実装位置P2から実装位置P4へ1枚目の基板B1を搬送するとともに、待機位置P1から実装位置P2へ2枚目の基板B2を搬送する(ステップS204)。そして、搬送部2は、1枚目の基板B1を実装位置P4に固定するとともに、2枚目の基板B2を実装位置P2に固定する(ステップS205)。 Thus, when the board B1 is fixed at the mounting position P2, the mounting unit 4A starts mounting the component Wp on the board B1 fixed at the corresponding mounting position P2. That is, the mounting unit 4A mounts the component Wp on 1 / M of the plurality of mounting target points Bp of the substrate B1 fixed at the mounting position P2, that is, (L / M) mounting target points Bp ( Step S203). In step S203, in parallel with the component mounting, the transport unit 2 causes the second board B2 to wait at the standby position P1. When the component mounting in step S203 is completed, the transport unit 2 transports the first board B1 from the mounting position P2 to the mounting position P4, and transports the second board B2 from the standby position P1 to the mounting position P2. (Step S204). Then, the transport unit 2 fixes the first board B1 to the mounting position P4 and fixes the second board B2 to the mounting position P2 (step S205).
 こうして実装位置P2、P4に基板B2、B1が固定されると、実装部4Aは、対応する実装位置P2に固定された基板B2への部品Wpの実装を開始するとともに、実装部4Bは、対応する実装位置P4に固定された基板B1への部品Wpの実装を開始する。つまり、実装部4Aは、実装位置P2に固定された基板B2の複数の実装対象点BpのうちのM分の1の実装対象点Bpに部品Wpを実装し、実装部4Bは、実装位置P4に固定された基板B1の複数の実装対象点Bpのうちの残りのM分の1の実装対象点Bpに部品Wpを実装する(ステップS206)。ここで、残りの実装対象点Bpとは、基板B1の複数の実装対象点Bpのうち、ステップS203において実装位置P2で部品Wpが実装されなかった実装対象点Bpである。こうして、実装部4A、4Bが1枚の基板Bの複数の実装対象点Bpに対する部品Wpの実装を分担する第2実装モードが、1枚目の基板B1に対して完了する。また、ステップS206では、部品実装と並行して、搬送部2は3枚目の基板B3を待機位置P1に待機させる。 When the boards B2 and B1 are thus fixed to the mounting positions P2 and P4, the mounting part 4A starts mounting the component Wp on the board B2 fixed to the corresponding mounting position P2, and the mounting part 4B The mounting of the component Wp on the board B1 fixed at the mounting position P4 is started. That is, the mounting unit 4A mounts the component Wp on the mounting target point Bp of 1 / M among the plurality of mounting target points Bp of the substrate B2 fixed at the mounting position P2, and the mounting unit 4B is mounted on the mounting position P4. The component Wp is mounted on the remaining 1 / M mounting target points Bp of the plurality of mounting target points Bp of the substrate B1 fixed to (step S206). Here, the remaining mounting target points Bp are mounting target points Bp in which the component Wp is not mounted at the mounting position P2 in step S203 among the plurality of mounting target points Bp on the substrate B1. In this way, the second mounting mode in which the mounting units 4A and 4B share the mounting of the component Wp on the plurality of mounting target points Bp of one board B is completed for the first board B1. In step S206, in parallel with component mounting, the transport unit 2 causes the third board B3 to wait at the standby position P1.
 ステップS206での部品実装が完了すると、搬送部2は、実装位置P4から部品実装システム1の外部へ基板B1を搬出する(ステップS207)。また、ステップS207では、搬送部2は、2枚目の基板B2を実装位置P2から実装位置P4へ搬送するとともに、3枚目の基板B3を待機位置P1から実装位置P2へ搬送する。そして、搬送部2は、2枚目の基板B2を実装位置P4に固定するとともに、3枚目の基板B3を実装位置P2に固定する(ステップS208)。 When the component mounting in step S206 is completed, the transport unit 2 carries the board B1 out of the component mounting system 1 from the mounting position P4 (step S207). In step S207, the transport unit 2 transports the second board B2 from the mounting position P2 to the mounting position P4, and transports the third board B3 from the standby position P1 to the mounting position P2. Then, the transport unit 2 fixes the second board B2 to the mounting position P4 and fixes the third board B3 to the mounting position P2 (step S208).
 こうして実装位置P2、P4に基板B3、B2が固定されると、実装部4Aは、対応する実装位置P2に固定された基板B3の複数の実装対象点BpのうちのM分の1の実装対象点Bpへの部品Wpの実装を行うとともに、実装部4Bは、対応する実装位置P4に固定された基板B2の複数の実装対象点Bpのうちの残りのM分の1の実装対象点Bpへの部品Wpの実装を行う(ステップS209)。こうして、第2実装モードが2枚目の基板B2に対して完了する。また、ステップS209では、部品実装と並行して、搬送部2は、4枚目の基板B4を待機位置P1に待機させる。 When the boards B3 and B2 are fixed to the mounting positions P2 and P4 in this way, the mounting unit 4A has a mounting target of 1 / M among the plurality of mounting target points Bp of the board B3 fixed to the corresponding mounting position P2. While mounting the component Wp on the point Bp, the mounting unit 4B moves to the remaining 1 / M mounting target point Bp among the plurality of mounting target points Bp of the substrate B2 fixed at the corresponding mounting position P4. The component Wp is mounted (step S209). Thus, the second mounting mode is completed for the second board B2. In step S209, in parallel with the component mounting, the transport unit 2 causes the fourth board B4 to wait at the standby position P1.
 ステップS209での部品実装が完了すると、搬送部2は、実装位置P4から部品実装システム1の外部へ基板B2を搬出する(ステップS210)。また、ステップS210では、搬送部2は、3枚目の基板B3を実装位置P2から実装位置P4へ搬送するとともに、4枚目の基板B4を待機位置P1から実装位置P2へ搬送する。そして、搬送部2は、3枚目の基板B3を実装位置P4に固定するとともに、4枚目の基板B4を実装位置P2に固定する(ステップS211)。 When the component mounting in step S209 is completed, the transport unit 2 carries the board B2 out of the component mounting system 1 from the mounting position P4 (step S210). In step S210, the transport unit 2 transports the third board B3 from the mounting position P2 to the mounting position P4, and transports the fourth board B4 from the standby position P1 to the mounting position P2. Then, the transport unit 2 fixes the third board B3 to the mounting position P4 and fixes the fourth board B4 to the mounting position P2 (step S211).
 こうして実装位置P2、P4に基板B4、B3が固定されると、実装部4Aは、対応する実装位置P2に固定された基板B4の複数の実装対象点BpのうちのM分の1の実装対象点Bpへの部品Wpの実装を行うとともに、実装部4Bは、対応する実装位置P4に固定された基板B3の複数の実装対象点Bpのうちの残りのM分の1の実装対象点Bpへの部品Wpの実装を行う(ステップS212)。こうして、第2実装モードが3枚目の基板B2に対して完了する。 When the boards B4 and B3 are fixed to the mounting positions P2 and P4 in this way, the mounting unit 4A has a mounting target of 1 / M among the plurality of mounting target points Bp of the board B4 fixed to the corresponding mounting position P2. While mounting the component Wp on the point Bp, the mounting unit 4B moves to the remaining 1 / M mounting target point Bp among the plurality of mounting target points Bp of the board B3 fixed at the corresponding mounting position P4. The component Wp is mounted (step S212). Thus, the second mounting mode is completed for the third board B2.
 ステップS212での部品実装が完了すると、搬送部2は、実装位置P4から部品実装システム1の外部へ基板B3を搬出する(ステップS213)。また、ステップS213では、搬送部2は、4枚目の基板B4を実装位置P2から実装位置P4へ搬送する。そして、搬送部2は、4枚目の基板B4を実装位置P4に固定する(ステップS214)。 When the component mounting in step S212 is completed, the transport unit 2 carries the board B3 out of the component mounting system 1 from the mounting position P4 (step S213). In step S213, the transport unit 2 transports the fourth board B4 from the mounting position P2 to the mounting position P4. Then, the transport unit 2 fixes the fourth board B4 to the mounting position P4 (step S214).
 こうして実装位置P4に基板B4が固定されると、実装部4Bは、対応する実装位置P4に固定された基板B4の複数の実装対象点Bpのうちの残りのM分の1の実装対象点Bpへの部品Wpの実装を行う(ステップS215)。こうして、第2実装モードが4枚目の基板B2に対して完了する。ステップS215での部品実装が完了すると、搬送部2は、実装位置P4から部品実装システム1の外部へ基板B4を搬出する(ステップS216)。 When the substrate B4 is thus fixed at the mounting position P4, the mounting unit 4B is configured to mount the remaining 1 / M mounting target points Bp among the plurality of mounting target points Bp of the substrate B4 fixed at the corresponding mounting position P4. The component Wp is mounted on (step S215). Thus, the second mounting mode is completed for the fourth board B2. When the component mounting in step S215 is completed, the transport unit 2 carries the board B4 out of the component mounting system 1 from the mounting position P4 (step S216).
 このように第2実装モードでは、各実装部4A、4Bは、基板Bの複数の実装対象点Bpのうちそれぞれが分担する実装対象点Bpへ部品Wpを実装し、1枚の基板Bは、M個の実装部4A、4Bのそれぞれが部品Wpの実装を受ける。 In this way, in the second mounting mode, each mounting unit 4A, 4B mounts the component Wp on the mounting target point Bp shared by each of the plurality of mounting target points Bp of the substrate B, and one substrate B is Each of the M mounting parts 4A and 4B receives mounting of the component Wp.
 図5は本発明に係る実装手順決定装置の一例として機能するホストコンピューターの構成を示すブロック図である。ホストコンピューター7は、演算部71、記憶部72、UI(User Interface)73および通信部74を備える。演算部71はCPU(Central Processing Unit)およびRAM(Random Access Memory)等で構成されたプロセッサーである。記憶部72は例えばHDD(Hard Disk Drive)で構成され、部品実装システム1において、実装対象点Bpに実装済みの部品WpをJ個(JはM以上の整数)生産する生産計画81を取得して記憶する。UI73は、マウスやキーボードといった入力機器と、ディスプレイといった出力機器とを有し、入力機器によってユーザーの入力操作を受け付けたり、出力機器によってユーザーへ情報を表示したりする。なお、UI73は、例えばタッチパネルディスプレイのように、入力機器と出力機器とを一体的に具備するものでも構わない。また、通信部74は、部品実装システム1の部品実装機10との間で通信を行う。 FIG. 5 is a block diagram showing a configuration of a host computer that functions as an example of a mounting procedure determination apparatus according to the present invention. The host computer 7 includes a calculation unit 71, a storage unit 72, a UI (User Interface) 73, and a communication unit 74. The arithmetic unit 71 is a processor composed of a CPU (Central Processing Unit) and a RAM (Random Access Memory). The storage unit 72 is composed of, for example, an HDD (Hard Disk Disk Drive), and in the component mounting system 1, obtains a production plan 81 for producing J components Wp mounted on the mounting target point Bp (J is an integer greater than or equal to M). And remember. The UI 73 includes an input device such as a mouse and a keyboard and an output device such as a display. The UI 73 accepts a user input operation by the input device and displays information to the user by the output device. Note that the UI 73 may include an input device and an output device integrally, such as a touch panel display. In addition, the communication unit 74 performs communication with the component mounter 10 of the component mounting system 1.
 かかるホストコンピューター7では、演算部71が実装手順決定プログラム82を実行することで、生産計画81において実装対象点Bpに部品Wpを実装する実装モードを決定する。なお、実装手順決定プログラム82は、インターネットサーバーからダウンロードする形態で提供されてもよいし、ホストコンピューター7により読み出し可能に記録媒体9に記憶された状態で提供されても良い。記録媒体9としては、例えば光ディスクやUSB(Universal Serial Bus)等が該当する。 In the host computer 7, the computing unit 71 executes the mounting procedure determination program 82, thereby determining a mounting mode for mounting the component Wp on the mounting target point Bp in the production plan 81. The mounting procedure determination program 82 may be provided in the form of being downloaded from an Internet server, or may be provided in a state stored in the recording medium 9 so as to be readable by the host computer 7. As the recording medium 9, for example, an optical disc, USB (Universal Serial Bus), or the like is applicable.
 図6はホストコンピューターが実行する実装手順決定方法の一例を示すフローチャートである。図6のフローチャートは、実装手順決定プログラム82に従って演算部71により実行される。ステップS301では、例えばユーザーのUI73への操作によって入力された生産計画81を、記憶部72が取得して記憶する。ステップS302では、第1実装モードを用いて部品実装システム1で生産計画81を実行した場合と、第2実装モードを用いて部品実装システム1で生産計画81を実行した場合との生産時間の差を演算部71が評価する。 FIG. 6 is a flowchart showing an example of a mounting procedure determination method executed by the host computer. The flowchart of FIG. 6 is executed by the calculation unit 71 according to the mounting procedure determination program 82. In step S <b> 301, for example, the storage unit 72 acquires and stores the production plan 81 input by a user operation on the UI 73. In step S302, the difference in production time between when the production plan 81 is executed in the component mounting system 1 using the first mounting mode and when the production plan 81 is executed in the component mounting system 1 using the second mounting mode. Is evaluated by the calculation unit 71.
 なお、ここでは、基板Bをロット単位として実装対象点Bpに実装済みの部品Wpを生産する生産計画81を例示して説明する。つまり、生産計画81によりにより生産される実装対象点Bpに実装済みの部品Wpの個数Jは、基板Bの実装対象点Bpの個数Lにロット数I(Iは整数)を乗じた個数となる。したがって、搬送方向Xに順番に搬送される1枚目からN枚目までの基板Bそれぞれの複数の実装対象点Bpの個数の合計をT(N)としたとき、次の不等式
 T(N-1)<J≦T(N)
を満たす基板Bの枚数N(換言すれば、J個の実装済み部品Wpの生産に要する基板Bの枚数N)は、ロット数Iに一致する。よって、N枚の基板BのそれぞれにL個の部品Wpを実装することで、実装対象点Bpに実装済みの部品Wpが(N×L)個生産される。ただし、生産計画81は、ここで示す例に限られず、例えばウェハーWをロット単位とするJ個の実装済み部品Wpを生産するものでも、基板BおよびウェハーWとは無関係に決定されたJ個の部品Wpを生産するものでも構わない。
Here, the production plan 81 for producing the component Wp mounted on the mounting target point Bp with the substrate B as a lot unit will be described as an example. That is, the number J of components Wp already mounted on the mounting target point Bp produced by the production plan 81 is the number obtained by multiplying the number L of mounting target points Bp on the substrate B by the number of lots I (I is an integer). . Accordingly, when the total number of the plurality of mounting target points Bp of the first to Nth substrates B sequentially conveyed in the conveyance direction X is T (N), the following inequality T (N− 1) <J ≦ T (N)
The number N of substrates B that satisfy the above condition (in other words, the number N of substrates B required to produce J mounted components Wp) matches the number of lots I. Therefore, by mounting L components Wp on each of the N substrates B, (N × L) components Wp that have been mounted at the mounting target point Bp are produced. However, the production plan 81 is not limited to the example shown here. For example, even if the production plan 81 is to produce J mounted parts Wp with the wafer W as a lot, J pieces are determined regardless of the substrate B and the wafer W. The part Wp may be produced.
 図2を用いて第1実装モードを用いた生産時間の評価方法の一例について説明する。なお、説明に先立って、位置P1~P4のうち、隣接する2個の位置(例えば、位置P1、P2)の間で基板Bを搬送するのに時間Ttを要するとし、実装位置P2、P4のそれぞれで、(L/M)個の実装対象点Bpに部品Wpを実装するのに実装時間Tmを要するとし、先の基板Bを待機位置P1から実装位置P4に搬送しつつ次の基板Bを実装位置P2に搬送するのに入換時間Tc1を要するものとする。 An example of a production time evaluation method using the first mounting mode will be described with reference to FIG. Prior to the description, it is assumed that time Tt is required to transport the substrate B between two adjacent positions (for example, positions P1 and P2) among the positions P1 to P4, and the mounting positions P2 and P4 It is assumed that a mounting time Tm is required to mount the component Wp on the (L / M) mounting target points Bp, and the next substrate B is transported from the standby position P1 to the mounting position P4. It is assumed that a replacement time Tc1 is required to transport B to the mounting position P2.
 ステップ101~S103によって基板B1を実装位置P4に搬入し、基板B2を実装位置P2に搬入するのに要する時間は、基板B1をステップS101の位置からステップS103の位置にまで搬送するのに要する時間に相当する(4×Tt)となる。 The time required to carry the substrate B1 to the mounting position P4 and the substrate B2 to the mounting position P2 in steps 101 to S103 is the time required to transfer the substrate B1 from the position of step S101 to the position of step S103. (4 × Tt).
 ステップS104で基板B1、B2それぞれのL個の実装対象点Bpへ部品Wpを実装するのに要する時間は(2×Tm)となる。そのため、ステップS101~S104に要する合計時間は、(4×Tt+2×Tm)となる。 In step S104, the time required to mount the component Wp on the L mounting target points Bp on each of the substrates B1 and B2 is (2 × Tm). Therefore, the total time required for steps S101 to S104 is (4 × Tt + 2 × Tm).
 ステップS105~S106によって、基板B1、B2を部品実装システム1から搬出して基板B3、B4を実装位置P4、P2に搬送するのに要する時間は、入換時間Tc1となる。そのため、ステップS101~S106に要する合計時間は、(4×Tt+2×Tm+Tc1)となる。 The time required for carrying out the boards B1 and B2 from the component mounting system 1 and transporting the boards B3 and B4 to the mounting positions P4 and P2 through steps S105 to S106 is a replacement time Tc1. Therefore, the total time required for steps S101 to S106 is (4 × Tt + 2 × Tm + Tc1).
 ステップS107で基板B3、B4のそれぞれのL個の実装対象点Bpへ部品Wpを実装するのに要する時間は(2×Tm)となる。そのため、ステップS101~S107に要する合計時間は、(4×Tt+4×Tm+Tc1)となる。 In step S107, the time required to mount the component Wp on each of the L mounting target points Bp of the substrates B3 and B4 is (2 × Tm). Therefore, the total time required for steps S101 to S107 is (4 × Tt + 4 × Tm + Tc1).
 ステップS108によって、基板B3、B4を部品実装システム1から搬出するのに要する時間は、基板B4をステップS107の位置から部品実装システム1の外部に搬出するのに要する時間に相当する4×Ttとなる。 The time required to carry out the boards B3 and B4 from the component mounting system 1 in step S108 is 4 × Tt corresponding to the time required to carry out the board B4 from the position of step S107 to the outside of the component mounting system 1. Become.
 したがって、第1実装モードを用いて4枚の基板Bに部品Wpを実装する生産計画81に要する時間は、(8×Tt+4×Tm+Tc1)となる。また、部品Wpを実装する基板Bの枚数が2枚増える毎に、生産計画81に要する時間は(Tc1+2×Tm)ずつ増える。したがって、第1実装モードを用いてN=(2×I)枚(Iは正の整数)の基板Bに部品Wpを実装した場合の生産時間は、
 8×Tt+2×I×Tm+I×Tc1
と計算できる。また、第1実装モードを用いてN=(2×I-1)枚の基板Bに部品Wpを実装した場合の生産時間は簡易的に、
 8×Tt+2×I×Tm+M×Tc1-2×Tt=6×Tt+2×I×Tm+I×Tc1
と計算できる。
Therefore, the time required for the production plan 81 for mounting the component Wp on the four boards B using the first mounting mode is (8 × Tt + 4 × Tm + Tc1). Further, every time the number of substrates B on which the component Wp is mounted increases by two, the time required for the production plan 81 increases by (Tc1 + 2 × Tm). Therefore, the production time when the component Wp is mounted on N = (2 × I) (I is a positive integer) board B using the first mounting mode is
8 × Tt + 2 × I × Tm + I × Tc1
Can be calculated. In addition, the production time when the component Wp is mounted on N = (2 × I−1) boards B using the first mounting mode is simplified.
8 × Tt + 2 × I × Tm + M × Tc1-2 × Tt = 6 × Tt + 2 × I × Tm + I × Tc1
Can be calculated.
 換言すると、部品Wpを実装する基板Bの枚数Nが偶数の場合の生産時間は、
 8×Tt+N×Tm+N×Tc1/2 …式1a
と計算でき、枚数Nが奇数の場合の生産時間は、
 6×Tt+(N+1)×Tm+(N-1)×Tc1/2 …式1b
と計算できる。
In other words, the production time when the number N of boards B on which the component Wp is mounted is an even number,
8 × Tt + N × Tm + N × Tc1 / 2 Formula 1a
The production time when the number N is an odd number is
6 × Tt + (N + 1) × Tm + (N−1) × Tc1 / 2 Formula 1b
Can be calculated.
 次に、図3および図4を用いて第2実装モードを用いた生産時間の評価方法の一例について説明する。なお、説明に先立って、先の基板Bを実装位置P2から実装位置P4へ搬送しつつ、次の基板Bを待機位置P1から実装位置P2に搬送するのに入換時間Tc2を要するものとする。 Next, an example of a production time evaluation method using the second mounting mode will be described with reference to FIGS. Prior to the description, it is assumed that a replacement time Tc2 is required to transfer the next board B from the standby position P1 to the mounting position P2 while transferring the previous board B from the mounting position P2 to the mounting position P4. .
 ステップ201~S202によって基板B1を実装位置P2に搬入するのに要する時間は、基板B1をステップS201の位置からステップS202の位置にまで搬送するのに要する時間に相当する(2×Tt)となる。 The time required to carry the substrate B1 to the mounting position P2 in steps 201 to S202 corresponds to the time required to transport the substrate B1 from the position of step S201 to the position of step S202 (2 × Tt). .
 ステップS203によって、実装位置P2の基B1の(L/M)個の実装対象点Bpへ部品Wpを実装するのに要する時間はTmとなる。そのため、ステップS201~S203に要する合計時間は、(2×Tt+Tm)となる。 In step S203, the time required to mount the component Wp on the (L / M) mounting target points Bp of the base B1 at the mounting position P2 is Tm. Therefore, the total time required for steps S201 to S203 is (2 × Tt + Tm).
 ステップS204~S205によって、基板B1を実装位置P2から実装位置P4へ搬送するとともに、基板B2を待機位置P1から実装位置P2へ搬送するのに要する時間は、入換時間Tc2となる。そのため、ステップS201~S205に要する合計時間は、(2×Tt+Tm+Tc2)となる。 In steps S204 to S205, the time required to transfer the substrate B1 from the mounting position P2 to the mounting position P4 and to transfer the substrate B2 from the standby position P1 to the mounting position P2 is a replacement time Tc2. Therefore, the total time required for steps S201 to S205 is (2 × Tt + Tm + Tc2).
 ステップS206で、基板B1、B2それぞれの(L/M)個の実装対象点Bpに部品Wpを実装するのに要する時間はTmとなる。そのため、ステップS201~S206に要する合計時間は、(2×Tt+2×Tm+Tc2)となる。 In step S206, the time required to mount the component Wp on the (L / M) mounting target points Bp of the boards B1 and B2 is Tm. Therefore, the total time required for steps S201 to S206 is (2 × Tt + 2 × Tm + Tc2).
 ステップS207~S208によって、基板B1を実装位置P4から部品実装システム1の外へ搬出するとともに、基板B2を実装位置P2から実装位置P4に搬送し、基板B3を待機位置P1から実装位置P2へ搬送するのに要する時間は、入換時間Tc2となる。そのため、ステップS201~S208に要する合計時間は、(2×Tt+2×Tm+2×Tc2)となる。 Through steps S207 to S208, the board B1 is carried out of the component mounting system 1 from the mounting position P4, the board B2 is transferred from the mounting position P2 to the mounting position P4, and the board B3 is transferred from the standby position P1 to the mounting position P2. The time required for this is the replacement time Tc2. Therefore, the total time required for steps S201 to S208 is (2 × Tt + 2 × Tm + 2 × Tc2).
 ステップS209で、基板B2、B3それぞれの(L/M)個の実装対象点Bpに部品Wpを実装するのに要する時間はTmとなる。そのため、ステップS201~S209に要する合計時間は、(2×Tt+3×Tm+2×Tc2)となる。 In step S209, the time required to mount the component Wp on the (L / M) mounting target points Bp of the boards B2 and B3 is Tm. Therefore, the total time required for steps S201 to S209 is (2 × Tt + 3 × Tm + 2 × Tc2).
 ステップS210~S211によって、基板B2を実装位置P4から部品実装システム1の外へ搬出するとともに、基板B3を実装位置P2から実装位置P4に搬送し、基板B4を待機位置P1から実装位置P2へ搬送するのに要する時間は、入換時間Tc2となる。そのため、ステップS201~S211に要する合計時間は、(2×Tt+3×Tm+3×Tc2)となる。 Through steps S210 to S211, the board B2 is carried out of the component mounting system 1 from the mounting position P4, the board B3 is transferred from the mounting position P2 to the mounting position P4, and the board B4 is transferred from the standby position P1 to the mounting position P2. The time required for this is the replacement time Tc2. Therefore, the total time required for steps S201 to S211 is (2 × Tt + 3 × Tm + 3 × Tc2).
 ステップS212で、基板B3、B4それぞれの(L/M)個の実装対象点Bpに部品Wpを実装するのに要する時間はTmとなる。そのため、ステップS201~S212に要する合計時間は、(2×Tt+4×Tm+3×Tc2)となる。 In step S212, the time required to mount the component Wp on the (L / M) mounting target points Bp of the boards B3 and B4 is Tm. Therefore, the total time required for steps S201 to S212 is (2 × Tt + 4 × Tm + 3 × Tc2).
 ステップS213~S214によって、基板B3を実装位置P4から部品実装システム1の外へ搬出するとともに、基板B4を実装位置P2から実装位置P4に搬送するのに要する時間は、2×Ttとなる。そのため、ステップS201~S214に要する合計時間は、(4×Tt+4×Tm+3×Tc2)となる。 In steps S213 to S214, the time required to carry the board B3 out of the component mounting system 1 from the mounting position P4 and to transport the board B4 from the mounting position P2 to the mounting position P4 is 2 × Tt. Therefore, the total time required for steps S201 to S214 is (4 × Tt + 4 × Tm + 3 × Tc2).
 ステップS215で、基板B4の(L/M)個の実装対象点Bpに部品Wpを実装するのに要する時間はTmとなる。そのため、ステップS201~S215に要する合計時間は、(4×Tt+5×Tm+3×Tc2)となる。 In step S215, the time required to mount the component Wp on the (L / M) mounting target points Bp of the board B4 is Tm. Therefore, the total time required for steps S201 to S215 is (4 × Tt + 5 × Tm + 3 × Tc2).
 ステップS216によって、基板B4を実装位置P4から部品実装システム1の外へ搬出するとともに、基板B4を実装位置P2から実装位置P4に搬送するのに要する時間は、入換時間2×Ttとなる。 In step S216, the time required to carry the board B4 out of the component mounting system 1 from the mounting position P4 and to transport the board B4 from the mounting position P2 to the mounting position P4 is the replacement time 2 × Tt.
 したがって、第2実装モードを用いて4枚の基板Bに部品Wpを実装する生産計画81に要する時間は、(6×Tt+5×Tm+3×Tc2)となる。また、部品Wpを実装する基板Bの枚数が1枚増える毎に、生産計画81に要する時間は(Tc2+Tm)ずつ増える。したがて、第2実装モードを用いてN枚の基板Bに部品Wpを実装した場合の生産時間は、
 6×Tt+(N+1)×Tm+(N-1)×Tc2 …式2
と計算できる。
Therefore, the time required for the production plan 81 for mounting the component Wp on the four substrates B using the second mounting mode is (6 × Tt + 5 × Tm + 3 × Tc2). Further, the time required for the production plan 81 increases by (Tc2 + Tm) every time the number of the boards B on which the component Wp is mounted increases by one. Therefore, the production time when the component Wp is mounted on the N boards B using the second mounting mode is as follows.
6 × Tt + (N + 1) × Tm + (N−1) × Tc2 Equation 2
Can be calculated.
 したがって、Nが偶数の場合には、式2>式1a、すなわち
 6×Tt+(N+1)×Tm+(N-1)×Tc2>8×Tt+N×Tm+N×Tc1/2
を満たす、すなわち、
 Tm>2×Tt+N×Tc1/2-(N-1)×Tc2 …条件式Ca
を満たせば、第1実装モードを用いることで生産時間を短縮可能と判断できる。
Therefore, when N is an even number, Formula 2> Formula 1a, that is, 6 × Tt + (N + 1) × Tm + (N−1) × Tc2> 8 × Tt + N × Tm + N × Tc1 / 2
Satisfy, that is,
Tm> 2 × Tt + N × Tc1 / 2− (N−1) × Tc2 Conditional expression Ca
If it is satisfied, it can be determined that the production time can be shortened by using the first mounting mode.
 また、Nが奇数の場合には、式2>式1b、すなわち、
 6×Tt+(N+1)×Tm+(N-1)×Tc2>6×Tt+(N+1)×Tm+(N-1)×Tc1/2
を満たす、すなわち
 Tc2>Tc1/2 …条件式Cb
を満たせば、第1実装モードを用いることで生産時間を短縮可能と判断できる。
When N is an odd number, Formula 2> Formula 1b, that is,
6 * Tt + (N + 1) * Tm + (N-1) * Tc2> 6 * Tt + (N + 1) * Tm + (N-1) * Tc1 / 2
That is, Tc2> Tc1 / 2 ... Conditional expression Cb
If it is satisfied, it can be determined that the production time can be shortened by using the first mounting mode.
 そこで、図6のステップS302では、演算部71は、第1実装モードを用いて部品実装システム1で生産計画81を実行した場合と、第2実装モードを用いて部品実装システム1で生産計画81を実行した場合との生産時間の差を条件式Caあるいは条件式Cbを用いて評価する。なお、条件式Ca、Cbにおける各種時間Tt、Tm、Tc1、Tc2はシミュレーションによって、あるいは実験的に予め求められて記憶部72に記憶されており、演算部71はこれを用いて評価を行う。 Therefore, in step S302 in FIG. 6, the calculation unit 71 executes the production plan 81 in the component mounting system 1 using the first mounting mode, and the production plan 81 in the component mounting system 1 using the second mounting mode. The difference in production time from the case of executing is evaluated using conditional expression Ca or conditional expression Cb. Note that the various times Tt, Tm, Tc1, and Tc2 in the conditional expressions Ca and Cb are obtained in advance by simulation or experimentally and stored in the storage unit 72, and the calculation unit 71 performs evaluation using them.
 ステップS303では、演算部71はステップS302での評価結果に基づき生産計画81の実行に用いる実装モードを決定する。つまり、演算部71は、Nが偶数である場合、条件式Caの右辺が左辺未満であれば(すなわち条件式Caが満たされれば)第1実装モードを用いると決定し、条件式Caの左辺が右辺以下であれば(すなわち条件式Caが満たされなければ)第2実装モードを用いると決定する。また、演算部71は、Nが奇数である場合、条件式Cbの右辺が左辺未満であれば(すなわち条件式Cbが満たされれば)第1実装モードを用いると決定し、条件式Cbの左辺が右辺以下であれば(すなわち条件式Cbが満たされなければ)第2実装モードを用いると決定する。 In step S303, the computing unit 71 determines a mounting mode used for execution of the production plan 81 based on the evaluation result in step S302. That is, when N is an even number, the calculation unit 71 determines to use the first implementation mode if the right side of the conditional expression Ca is less than the left side (that is, if the conditional expression Ca is satisfied), and the left side of the conditional expression Ca Is less than or equal to the right side (that is, if the conditional expression Ca is not satisfied), it is determined that the second mounting mode is used. In addition, when N is an odd number, the calculation unit 71 determines to use the first implementation mode if the right side of the conditional expression Cb is less than the left side (that is, if the conditional expression Cb is satisfied), and the left side of the conditional expression Cb Is less than or equal to the right side (that is, if conditional expression Cb is not satisfied), it is determined to use the second mounting mode.
 そして、演算部71は、ステップS303で決定した実装モードを用いて生産計画81を実行する手順(すなわち、部品実装システム1における搬送部2、部品供給機構3、実装部4A、4Bの動作手順)を規定する実装プログラムを作成し(ステップS304)、通信部74がこの実装プログラムを部品実装システム1に送信する(ステップS305)。これによって、部品実装システム1は、受信した実装プログラムが示す手順に従って、生産計画81を実行する。 And the calculating part 71 performs the procedure which performs the production plan 81 using the mounting mode determined by step S303 (namely, operation | movement procedure of the conveyance part 2, the component supply mechanism 3, and mounting part 4A, 4B in the component mounting system 1). Is created (step S304), and the communication unit 74 transmits the mounting program to the component mounting system 1 (step S305). Thereby, the component mounting system 1 executes the production plan 81 according to the procedure indicated by the received mounting program.
 以上のように構成された実施形態では、実装対象点Bpに実装済みの部品WpをJ(上記の例ではJ=N×L)個生産する生産計画81が取得され、生産計画81の実行に要する生産時間に関する評価が行われる(ステップS302)。具体的には、M個の実装位置P2、P4のそれぞれに1枚ずつ基板Bを停止させて、M個の実装部4A、4Bのそれぞれに対応する実装位置P2、P4の基板Bの複数の実装対象点Bpの全てに部品Wpを実装させると、M個の実装位置P2、P4それぞれから基板Bを搬出する第1実装モードを用いて生産計画81を実行した場合の生産時間に関する評価が行われる(ステップS302)。そして、この評価結果に基づき、生産計画81の実行に第1実装モードを用いるか否かが決定される(ステップS303)。これによって、第1実装モードが効率的である状況では、第1実装モードにより生産計画81を実行することができる。こうして、状況に応じた効率的な部品実装が実行可能となっている。 In the embodiment configured as described above, a production plan 81 for producing J (J = N × L in the above example) parts Wp mounted on the mounting target point Bp is acquired, and the production plan 81 is executed. Evaluation regarding the required production time is performed (step S302). Specifically, one substrate B is stopped at each of the M mounting positions P2 and P4, and a plurality of substrates B at the mounting positions P2 and P4 corresponding to the M mounting portions 4A and 4B, respectively. When the component Wp is mounted on all of the mounting target points Bp, the production time is evaluated when the production plan 81 is executed using the first mounting mode in which the board B is unloaded from each of the M mounting positions P2 and P4. (Step S302). Then, based on the evaluation result, it is determined whether or not the first mounting mode is used for the execution of the production plan 81 (step S303). Thus, in a situation where the first mounting mode is efficient, the production plan 81 can be executed in the first mounting mode. Thus, efficient component mounting according to the situation can be executed.
 特に、図3および図4に示した第2実装モードでは、最初の基板B1に部品Wpを実装している期間(ステップS203)や、最後の基板B4に部品Wpを実装している期間(ステップS215)では、2個の実装部4A、4Bのうちの一方が稼動しておらず、部品実装システム1全体での稼働率が低い。これに対して、図2に示した第1実装モードでは、最初の基板B1に部品Wpを実装している期間(ステップS104)および最後の基板B4に部品Wpを実装している期間(ステップS107)のいずれにおいても、実装部4A,4Bの両方が稼動しており、部品実装システム1全体での稼働率が維持されている。そこで、第2実装モードによる最初および最後の基板Bへの部品実装時の稼働率の低下が顕著となる状況では、第1実装モードが特に好適となる。 In particular, in the second mounting mode shown in FIGS. 3 and 4, a period in which the component Wp is mounted on the first board B1 (step S203) and a period in which the component Wp is mounted on the last board B4 (step S203). In S215), one of the two mounting parts 4A, 4B is not operating, and the operating rate of the entire component mounting system 1 is low. On the other hand, in the first mounting mode shown in FIG. 2, the period in which the component Wp is mounted on the first board B1 (step S104) and the period in which the component Wp is mounted on the last board B4 (step S107). In both cases, both the mounting parts 4A and 4B are operating, and the operating rate of the entire component mounting system 1 is maintained. Therefore, the first mounting mode is particularly suitable in a situation where the reduction in the operation rate at the time of component mounting on the first and last boards B in the second mounting mode is significant.
 また、演算部71は、第1実装モードを用いて生産計画81を実行した場合と、M個の実装位置P2、P4に順番に基板Bを停止させて、基板Bの複数の実装対象点Bpへの部品Wpの実装をM個の実装部4A、4Bに分担させる第2実装モードを用いて生産計画81を実行した場合とにおける生産時間の違いを評価する(ステップS302)。そして、演算部71は、この評価結果に基づき、生産計画81の実行に第1実装モードおよび第2実装モードのいずれを用いるかを決定する(ステップS303)。かかる構成では、状況に応じて第1実装モードと第2実装モードとを使い分けられる。したがって、状況に応じた効率的な部品実装が実行可能となる。 In addition, when the production plan 81 is executed using the first mounting mode, the calculation unit 71 stops the board B in order at the M mounting positions P2 and P4, and a plurality of mounting target points Bp of the board B A difference in production time is evaluated between the case where the production plan 81 is executed using the second mounting mode in which the mounting of the component Wp to the M mounting parts 4A, 4B is shared (step S302). Then, based on the evaluation result, the calculation unit 71 determines which of the first mounting mode and the second mounting mode is used for executing the production plan 81 (step S303). In such a configuration, the first mounting mode and the second mounting mode can be used properly according to the situation. Therefore, efficient component mounting according to the situation can be executed.
 また、演算部71、生産計画81において実行される基板Bの搬送に要する搬送時間Tt、Tc1、Tc2に基づき、生産時間に関する評価を行う(条件式Ca、Cb)。かかる構成では、搬送時間Tt、Tc1、Tc2に基づき、生産時間に関する評価を的確に行うことができる。 Also, the production time is evaluated based on the transport times Tt, Tc1, and Tc2 required for transporting the substrate B executed in the calculation unit 71 and the production plan 81 (conditional expressions Ca and Cb). In such a configuration, it is possible to accurately evaluate the production time based on the transport times Tt, Tc1, and Tc2.
 また、演算部71は、生産計画81において実行される基板Bへの部品Wpの実装に要する実装時間Tmおよび搬送時間Tt、Tc1、Tc2に基づき、生産時間に関する評価を行う(条件式Ca)。かかる構成では、実装時間Tmおよび搬送時間Tt、Tc1、Tc2に基づき、生産時間に関する評価を的確に行うことができる。 In addition, the calculation unit 71 performs an evaluation on the production time based on the mounting time Tm and the transport times Tt, Tc1, and Tc2 required for mounting the component Wp on the board B executed in the production plan 81 (conditional expression Ca). In such a configuration, the production time can be accurately evaluated based on the mounting time Tm and the transport times Tt, Tc1, and Tc2.
 また、上記のように構成された部品実装システム1では、複数の実装対象点Bpを有する基板Bを複数枚順番に搬送方向Xに搬送可能な搬送部2と、搬送方向Xに並ぶM個の実装位置P2、P4に対応して設けられ、それぞれ同一種類の部品を実装対象点Bpに実装可能なM個の実装部4A、4Bとを備える。そして、M個の実装部4A,4Bのそれぞれに1枚ずつ基板Bを停止させて、M個の実装部4A,4Bのそれぞれに対応する実装位置P2、P4の基板Bの複数の実装対象点Bpの全てに部品Wpを実装させると、M個の実装位置P2、P4それぞれから基板Bを搬出する第1実装モードを用いて生産計画81を実行可能である。したがって、第1実装モードが効率的である状況では、第1実装モードにより生産計画81を実行することができる。こうして、状況に応じた効率的な部品実装が実行可能となっている。 Further, in the component mounting system 1 configured as described above, the transport unit 2 capable of transporting a plurality of substrates B having a plurality of mounting target points Bp in the transport direction X in order and a plurality of M pieces arranged in the transport direction X. M mounting portions 4A and 4B are provided corresponding to the mounting positions P2 and P4, respectively, and can mount the same type of component on the mounting target point Bp. Then, one board B is stopped in each of the M mounting parts 4A and 4B, and a plurality of mounting target points of the board B at the mounting positions P2 and P4 corresponding to the M mounting parts 4A and 4B, respectively. When the component Wp is mounted on all of Bp, the production plan 81 can be executed using the first mounting mode in which the board B is unloaded from each of the M mounting positions P2 and P4. Therefore, in a situation where the first mounting mode is efficient, the production plan 81 can be executed in the first mounting mode. Thus, efficient component mounting according to the situation can be executed.
 図7は実装手順決定方法の変形例で使用可能な実装モードでの動作を模式的に示す図である。実装手順決定方法の変形例では、演算部71は、ステップS303で第1実装モードを用いると決定した場合であっても、上記の不等式から求められるNが偶数か奇数かによって、J個の部品Wpのうち、最後の(J-T(N-1))個の部品Wpを実装する実装モードを変更する。なお、ここの例では、上述の通りJ=L×Nであり、各基板BはL個の部品Wpを有するため、(J-T(N-1))=Lとなる。この変形例では、Nが偶数である場合には、図2で例示したように、第1実装モードを(N/2)回実行することで、N枚の基板BのそれぞれにL個の部品Wpを実装すると決定する。したがって、最後のL個の部品Wpの全ては、1枚の基板Bに実装される。 FIG. 7 is a diagram schematically showing the operation in the mounting mode that can be used in the modification example of the mounting procedure determination method. In a variation of the mounting procedure determination method, even when the calculation unit 71 determines that the first mounting mode is used in step S303, J components are determined depending on whether N obtained from the above inequality is an even number or an odd number. Of Wp, the mounting mode for mounting the last (JT (N-1)) parts Wp is changed. In this example, as described above, J = L × N, and each board B has L components Wp, so (JT (N−1)) = L. In this modification, when N is an even number, as illustrated in FIG. 2, the first mounting mode is executed (N / 2) times so that L components are provided on each of the N boards B. Decide to implement Wp. Therefore, all of the last L components Wp are mounted on one board B.
 一方、Nが奇数である場合には、第1実装モードを((N-1)/2)回実行して、(N-1)枚の基板BのそれぞれにL個の部品Wpを実装してから、最後のL個の部品Wpを図7の第1変更実装モードで実装すると決定する。この第1変更実装モードでは、搬送部2は、実装位置P2、P4のそれぞれに1枚ずつ基板Bを停止・固定させる(ステップS401)。そして、実装部4A、4Bのぞれぞれは、対応する実装位置P2、P4の基板Bに対して、(L/2)個の部品Wpを実装する(ステップS402)。そして、ステップS402の部品実装が完了すると、搬送部2は、実装位置P2、P4から基板Bを部品実装システム1の外部に搬出する(ステップS403)。つまり、第1変更実装モードでは、最後のL個の部品Wpは、2枚の基板Bに分けて実装される。 On the other hand, if N is an odd number, the first mounting mode is executed ((N−1) / 2) times to mount L components Wp on each of (N−1) substrates B. Then, it is determined that the last L components Wp are mounted in the first modified mounting mode of FIG. In the first change mounting mode, the transport unit 2 stops and fixes one substrate B at each of the mounting positions P2 and P4 (step S401). Then, each of the mounting portions 4A and 4B mounts (L / 2) components Wp on the substrate B at the corresponding mounting positions P2 and P4 (step S402). When the component mounting in step S402 is completed, the transport unit 2 carries the board B out of the component mounting system 1 from the mounting positions P2 and P4 (step S403). That is, in the first modified mounting mode, the last L components Wp are mounted separately on the two boards B.
 かかる変形例では、演算部71は、NがMの倍数である場合に、生産計画81の実行に第1実装モードを用いると決定すると(ステップS303)、第1実装モードを(N/M)回実行することで、生産計画81を実行すると決定する。かかる構成では、M枚の基板Bに対して並行して部品Wpを実装する並行実装処理(図2のステップS104、S107等)をN回繰り返すことで、生産計画81を完了することができる。したがって、実装部4A、4Bの高い稼働率を確保して、効率的な部品実装が実行可能となる。 In such a modification, when the calculation unit 71 determines that the first mounting mode is to be used for the execution of the production plan 81 when N is a multiple of M (step S303), the first mounting mode is set to (N / M). It is determined that the production plan 81 is executed by executing it once. In such a configuration, the production plan 81 can be completed by repeating the parallel mounting process (steps S104, S107, etc. in FIG. 2) for mounting the component Wp in parallel on the M substrates B N times. Therefore, it is possible to secure a high operation rate of the mounting units 4A and 4B and to perform efficient component mounting.
 また、演算部71は、NがMの倍数にK(Kは1以上でM未満の整数であり、ここの例ではK=1)を加えた値である場合に、生産計画81の実行に第1実装モードを用いると決定すると(ステップS303)、第1実装モードを((N-K)/M)回実行してから、図7の第1変更実装モードを実行する。この第1変更実装モードでは、M個の実装位置P2、P4のそれぞれに基板Bを1枚ずつ停止させて(ステップS401)、M個の実装部4A、4Bのそれぞれに対応する実装位置P2、P4の基板Bへの部品Wpの実装を分担させる(ステップS402)。つまり、演算部71は、((N-K)/M)回の第1モードで実装された部品Wpの個数をJ個から引いた残りの個数(ここの例では、K×L個)の部品Wpの実装対象点Bpへの実装をM個の実装部4A、4Bに実行させて、生産計画81を実行すると決定する。 In addition, the calculation unit 71 executes the production plan 81 when N is a multiple of M and K (K is an integer greater than or equal to 1 and less than M, and in this example, K = 1). If it is determined that the first mounting mode is to be used (step S303), the first mounting mode is executed ((NK) / M) times, and then the first modified mounting mode in FIG. 7 is executed. In the first modified mounting mode, the substrate B is stopped one by one at each of the M mounting positions P2 and P4 (step S401), and the mounting positions P2 and P2 corresponding to the M mounting parts 4A and 4B, respectively. The mounting of the component Wp on the substrate B of P4 is shared (step S402). That is, the arithmetic unit 71 calculates the remaining number (K × L in this example) obtained by subtracting the number of components Wp mounted in the ((N−K) / M) times of the first mode from J. It is determined that the production plan 81 is executed by causing the M mounting units 4A and 4B to mount the component Wp on the mounting target point Bp.
 かかる構成では、J個の部品WpのうちT(N-K)個の部品Wpについては、M枚の基板Bに対して並行して部品Wpを実装する並行実装処理(図2のステップS104、S107等)を((N-K)/M)回繰り返すことで、実装部4A、4Bの高い稼働率を確保して、効率的な部品実装が実行可能となる。また、最後の(J-T(N-K))個の部品Wpについては、M個の実装部4A、4Bのそれぞれに基板Bを1枚ずつ停止させて、M個の実装部4A、4Bのそれぞれに対応する実装位置P2、P4の基板Bへ部品Wpを実装させる(第1変更実装モード)。こうして、M個の実装部4A、4Bに合計(J-T(N-K))個の部品Wpを実装対象点Bpに実装させることで、実装部の高い稼働率を確保して、効率的な部品実装が実行可能となる。 In such a configuration, for the T (NK) components Wp among the J components Wp, the parallel mounting process for mounting the components Wp in parallel on the M boards B (step S104 in FIG. By repeating (S107 etc.) ((N−K) / M) times, it is possible to secure a high operating rate of the mounting units 4A and 4B and to perform efficient component mounting. For the last (JT (NK)) parts Wp, the board B is stopped on each of the M mounting parts 4A and 4B, and the M mounting parts 4A and 4B are stopped. The component Wp is mounted on the board B at the mounting positions P2 and P4 corresponding to each (first change mounting mode). In this way, by mounting a total of (JT (NK)) parts Wp on the mounting target point Bp on the M mounting parts 4A and 4B, a high operating rate of the mounting part is ensured and efficient. Component mounting is possible.
 図8は実装手順決定方法の変形例で使用可能な実装モードでの別の動作を模式的に示す図である。実装手順決定方法の変形例では、演算部71は、ステップS303で第1実装モードを用いると決定した場合であっても、Nが偶数か奇数かによって、J個の部品Wpのうち、最後の(J-T(N-1))個の部品Wpを実装する実装モードを変更する。つまり、Nが偶数である場合には、図2で例示したように、第1実装モードを(N/2)回実行することで、N枚の基板BのそれぞれにL個の部品Wpを実装すると決定する。 FIG. 8 is a diagram schematically showing another operation in the mounting mode that can be used in the modified example of the mounting procedure determination method. In the modified example of the mounting procedure determination method, even when the calculation unit 71 determines that the first mounting mode is used in step S303, the last of the J parts Wp is determined depending on whether N is an even number or an odd number. The mounting mode for mounting (JT (N-1)) parts Wp is changed. In other words, when N is an even number, as illustrated in FIG. 2, the first mounting mode is executed (N / 2) times to mount L components Wp on each of the N boards B. Then decide.
 一方、Nが奇数である場合には、第1実装モードを((N-1)/2)回実行して、(N-1)枚の基板BのそれぞれにL個の部品Wpを実装してから、最後の(J-T(N-1))個、ここの例ではL個の部品Wpを図8の第2変更実装モードで実装すると決定する。この第2変更実装モードでは、搬送部2は、実装位置P4に1枚の基板Bを停止・固定させる(ステップS501)。そして、実装部4Bは、対応する実装位置P4の基板Bに対して、L個の部品Wpを実装する(ステップS502)。ステップS502の部品実装が完了すると、搬送部2は、実装位置P4から基板Bを部品実装システム1の外部に搬出する(ステップS503)。このように、第2変更実装モードでは、第1変更実装モードと異なり、最後のL個の部品Wpは、1枚の基板Bに実装される。 On the other hand, if N is an odd number, the first mounting mode is executed ((N−1) / 2) times to mount L components Wp on each of (N−1) substrates B. Thereafter, it is determined that the last (JT (N-1)), in this example, L components Wp are mounted in the second modified mounting mode of FIG. In the second change mounting mode, the transport unit 2 stops and fixes one substrate B at the mounting position P4 (step S501). Then, the mounting unit 4B mounts L components Wp on the board B at the corresponding mounting position P4 (step S502). When the component mounting in step S502 is completed, the transport unit 2 carries the board B out of the component mounting system 1 from the mounting position P4 (step S503). Thus, in the second change mounting mode, unlike the first change mounting mode, the last L components Wp are mounted on one board B.
 つまり、この変形例では、演算部71は、NがMの倍数である場合に、生産計画81の実行に第1実装モードを用いると決定すると(ステップS303)、第1実装モードを(N/M)回実行することで、生産計画81を実行すると決定する。かかる構成では、M枚の基板Bに対して並行して部品Wpを実装する並行実装処理(図2のステップS104、S107等)をN回繰り返すことで、生産計画81を完了することができる。したがって、実装部4A、4Bの高い稼働率を確保して、効率的な部品実装が実行可能となる。 In other words, in this modified example, when N is a multiple of M, the calculation unit 71 determines that the first mounting mode is used to execute the production plan 81 (step S303), and the first mounting mode is set to (N / M) It is determined that the production plan 81 is to be executed by executing it a number of times. In such a configuration, the production plan 81 can be completed by repeating the parallel mounting process (steps S104, S107, etc. in FIG. 2) for mounting the component Wp in parallel on the M substrates B N times. Therefore, it is possible to secure a high operation rate of the mounting units 4A and 4B and to perform efficient component mounting.
 また、演算部71は、NがMの倍数にK(Kは1以上でM未満の整数であり、ここの例ではK=1)を加えた値である場合に、生産計画81の実行に第1実装モードを用いると決定すると(ステップS303)、第1実装モードを((N-K)/M)回実行してから、図8の第2変更実装モードを実行する。この第2変更実装モードでは、K個の実装位置P4に1枚の基板Bを停止させて(ステップS501)、K個の実装部4Bに対応する実装位置P4の基板Bへの部品Wpの実装を実行させる(ステップS502)。 In addition, the calculation unit 71 executes the production plan 81 when N is a multiple of M and K (K is an integer greater than or equal to 1 and less than M, and in this example, K = 1). If it is determined that the first mounting mode is to be used (step S303), the first mounting mode is executed ((NK) / M) times, and then the second modified mounting mode in FIG. 8 is executed. In the second modified mounting mode, one board B is stopped at the K mounting positions P4 (step S501), and the component Wp is mounted on the board B at the mounting position P4 corresponding to the K mounting portions 4B. Is executed (step S502).
 かかる構成では、J個の部品WpのうちT(N-K)個の部品Wpについては、M枚の基板Bに対して並行して部品Wpを実装する並行実装処理(図2のステップS104、S107等)を((N-K)/M)回繰り返すことで、実装部4A、4Bの高い稼働率を確保して、効率的な部品実装が実行可能となる。また、最後の(J-T(N-K))個の部品Wpについては、M個の実装位置P2、P4のうちK個の実装位置P4に1枚の基板Bを停止させてK個の実装位置P4に対応するK個の実装部4Bに基板Bの複数の実装対象点Bpの全てに部品Wpを実装させる(第2変更実装モード)。こうして、K個の実装部4Bを用いて、(J-T(N-K))個の部品Wpを実装対象点Bpに実装することで、生産計画81を完了することができる。 In such a configuration, for the T (NK) components Wp among the J components Wp, the parallel mounting process for mounting the components Wp in parallel on the M boards B (step S104 in FIG. By repeating (S107 etc.) ((N−K) / M) times, it is possible to secure a high operating rate of the mounting units 4A and 4B and to perform efficient component mounting. For the last (JT (NK)) parts Wp, one board B is stopped at K mounting positions P4 out of M mounting positions P2 and P4, and K components The components Wp are mounted on all of the plurality of mounting target points Bp of the substrate B on the K mounting portions 4B corresponding to the mounting position P4 (second change mounting mode). Thus, the production plan 81 can be completed by mounting the (JT (NK)) parts Wp on the mounting target point Bp using the K mounting parts 4B.
 この際、演算部71が図7の第1実装変更モードおよび図8の第2実装変更モードの一方を選択して、実装手順に用いると決定しても良い。この変形例では、演算部71は、第1変更実装モードを用いた場合および第2変更実装モードを用いた場合のそれぞれで生産計画81の実行に要する時間を計算し、これらのうち、生産計画81を早く完了する一方の変更実装モードで、生産計画81を実行すると決定する。これによって、第1変更実装モードおよび第2変更実装モードのうちのより適切な一方により、効率的に生産計画81を実行することが可能となる。 At this time, the calculation unit 71 may select one of the first mounting change mode in FIG. 7 and the second mounting change mode in FIG. 8 and decide to use it for the mounting procedure. In this modification, the calculation unit 71 calculates the time required to execute the production plan 81 when using the first change mounting mode and when using the second change mounting mode. It is determined that the production plan 81 is executed in one modified mounting mode in which 81 is completed earlier. Thus, the production plan 81 can be efficiently executed by a more appropriate one of the first change mounting mode and the second change mounting mode.
 図9は部品実装システムが実行する実装モード変更の一例を示すフローチャートである。このフローチャートによると、実装手順決定方法での決定に従って第1実装モードで生産計画81を実行する部品実装システム1が、生産計画81の進捗に応じて自発的に実装モードを変更する。かかるフローチャートは、部品実装システム1の制御部100の制御によって実行される。 FIG. 9 is a flowchart showing an example of the mounting mode change executed by the component mounting system. According to this flowchart, the component mounting system 1 that executes the production plan 81 in the first mounting mode according to the determination by the mounting procedure determination method spontaneously changes the mounting mode according to the progress of the production plan 81. Such a flowchart is executed under the control of the control unit 100 of the component mounting system 1.
 第1実装モードの実行中において、制御部100は、M個の実装位置P2、P4のうち搬送方向Xの最上流の実装位置P2において、基板Bへの部品Wpの実装が完了したか否かを確認する(ステップS601)。部品Wpの実装完了を確認すると(ステップS601で「YES」)、制御部100は、実装位置P2の下流側の実装位置P4で基板Bへの部品Wpの実装が継続中かを確認する(ステップS602)。実装位置P4での部品Wpの実装が完了している場合(ステップS602で「NO」の場合)には、搬送部2が実装位置P2、P4の両方から基板Bを部品実装システム1の外部に搬出する(ステップS609)。 During execution of the first mounting mode, the control unit 100 determines whether or not the mounting of the component Wp on the board B is completed at the most upstream mounting position P2 in the transport direction X among the M mounting positions P2 and P4. Is confirmed (step S601). When the completion of mounting of the component Wp is confirmed (“YES” in step S601), the control unit 100 confirms whether or not the mounting of the component Wp on the board B is continued at the mounting position P4 on the downstream side of the mounting position P2 (step S601). S602). When the mounting of the component Wp at the mounting position P4 is completed (in the case of “NO” in step S602), the transport unit 2 moves the board B from both the mounting positions P2 and P4 to the outside of the component mounting system 1. Unload (step S609).
 実装位置P4での部品Wpの実装が継続している場合(ステップS602で「YES」の場合)には、制御部100は、待機位置P3に基板Bが存在するかを確認する(ステップS603)。なお、待機位置P3での基板Bの有無は、例えば光学センサー等で構成された基板検知センサーにより判断できる。待機位置P3に基板Bが存在する場合(ステップS603で「YES」の場合)には、制御部100は、実装位置P2に基板Bを維持しつつ(ステップS610)、実装位置P4で基板Bへの部品Wpの実装が完了するのを待つ(ステップS611)。そして、実装位置P4での実装完了が確認されると(ステップS611で「YES」)、搬送部2が実装位置P2、待機位置P3および実装位置P4のそれぞれから部品実装システム1の外部へ基板Bを搬出する(ステップS609)。 When the mounting of the component Wp at the mounting position P4 is continued (in the case of “YES” in step S602), the control unit 100 confirms whether the board B exists at the standby position P3 (step S603). . The presence / absence of the substrate B at the standby position P3 can be determined by, for example, a substrate detection sensor constituted by an optical sensor or the like. When the substrate B exists at the standby position P3 (in the case of “YES” in step S603), the control unit 100 maintains the substrate B at the mounting position P2 (step S610) and moves to the substrate B at the mounting position P4. Wait until the mounting of the component Wp is completed (step S611). When the completion of mounting at the mounting position P4 is confirmed (“YES” in step S611), the conveyance unit 2 moves from the mounting position P2, the standby position P3, and the mounting position P4 to the outside of the component mounting system 1 to the board B. Is carried out (step S609).
 一方、制御部100が待機位置P3に基板Bが存在しない(ステップS603で「NO」)と判断すると、制御部100は、ステップS604に進んで、実装位置P4の基板Bの複数個(L個)の実装対象点Bpのうち、部品Wpが実装されていない実装対象点Bpの個数(未実装点数)が所定値(例えば(L/M)個)未満であるかを判断する。未実装点数が所定値未満である場合(ステップS604で「YES」の場合)には、上述と同様に、ステップS610、S611が実行され、ステップS609において、搬送部2が実装位置P2および実装位置P4のそれぞれから部品実装システム1の外部へ基板Bを搬出する。 On the other hand, if the control unit 100 determines that the substrate B does not exist at the standby position P3 (“NO” in step S603), the control unit 100 proceeds to step S604, and a plurality (L pieces) of the substrate B at the mounting position P4. ), The number of mounting target points Bp on which the component Wp is not mounted (the number of unmounted points) is less than a predetermined value (for example, (L / M)). When the number of unmounted points is less than the predetermined value (in the case of “YES” in step S604), steps S610 and S611 are executed in the same manner as described above, and in step S609, the transport unit 2 moves the mounting position P2 and the mounting position. The board B is carried out of the component mounting system 1 from each of the P4.
 未実装点数が所定値以上である場合(ステップS604で「NO」の場合)には、搬送部2が実装位置P2から待機位置P3へ基板Bを搬送するとともに(ステップS605)、次の基板Bを実装位置P2に搬送・固定する(ステップS606)。そして、実装部4Aが実装位置P2に固定された次の基板Bの複数の実装対象点Bpに部品Wpを実装する(ステップS607)。実装位置P2での次の基板Bへの部品実装が完了すると(ステップS608で「YES」)、搬送部2が実装位置P2、待機位置P3および実装位置P4のそれぞれから部品実装システム1の外部へ基板Bを搬出する。その後は。制御部100は、引き続き第1実装モードを実行しつつ、図9のフローチャートを実行する。 If the number of unmounted points is equal to or greater than the predetermined value (“NO” in step S604), the transport unit 2 transports the substrate B from the mounting position P2 to the standby position P3 (step S605), and the next substrate B Is transported and fixed to the mounting position P2 (step S606). Then, the component Wp is mounted on the plurality of mounting target points Bp of the next board B, where the mounting portion 4A is fixed at the mounting position P2 (step S607). When the component mounting on the next board B at the mounting position P2 is completed (“YES” in step S608), the transport unit 2 moves from the mounting position P2, the standby position P3, and the mounting position P4 to the outside of the component mounting system 1. The substrate B is unloaded. After that. The control unit 100 executes the flowchart of FIG. 9 while continuing to execute the first mounting mode.
 かかる変形例では、M個の実装位置P2、P4のうち、搬送方向Xの上流側から数えて1番目の実装位置P2と2番目の実装位置P4との間に、基板Bを待機させる待機位置P3が設けられている。そして、第1実装モードにおいて、1番目の実装位置P2の一の基板Bの複数の実装対象点Bpに対する部品Wpの実装が完了すると、制御部100は、実装モードを第1実装モードから第3実装モード(ステップS605~S609)に適宜変更できる。この第3実装モードでは、一の基板Bを1番目の実装位置P2から待機位置P3へ移動させつつ、一の基板Bの次の基板Bを1番目の実装位置P2に停止させて、1番目の実装位置P2での次の基板Bの複数の実装対象点Bpへの部品Wpの実装を実行する。つまり、基本的には、第1実装モードにおける各実装位置P2、P4での部品Wpの実装は、ほぼ同時に完了するはずである。しかしながら、部品実装システム1において実際に部品Wpの実装を開始すると、例えば実装部4A、4Bでの部品Wpの吸着ミス等に起因して、部品実装の進捗が各実装位置P2、P4で異なる場合がある。そのため、例えば、1番目の実装位置P2で部品Wpの実装が完了した時点で、2番目の実装位置P4で部品Wpの実装が継続している場合が生じうる。これに対して、第3実装モードに実装モードを変更することで、かかる場合に対応することができる。こうして、状況に応じた効率的な部品実装が実行可能となる。 In such a modified example, of the M mounting positions P2 and P4, a standby position for waiting the substrate B between the first mounting position P2 and the second mounting position P4 counted from the upstream side in the transport direction X. P3 is provided. Then, in the first mounting mode, when the mounting of the component Wp on the plurality of mounting target points Bp on the substrate B at the first mounting position P2 is completed, the control unit 100 changes the mounting mode from the first mounting mode to the third mounting mode. The mounting mode (steps S605 to S609) can be changed as appropriate. In the third mounting mode, the first board B is moved from the first mounting position P2 to the standby position P3, and the next board B of the first board B is stopped at the first mounting position P2. The component Wp is mounted on the plurality of mounting target points Bp of the next board B at the mounting position P2. That is, basically, the mounting of the components Wp at the mounting positions P2 and P4 in the first mounting mode should be completed almost simultaneously. However, when the mounting of the component Wp is actually started in the component mounting system 1, the progress of the component mounting differs between the mounting positions P2 and P4 due to, for example, a component Wp suction error in the mounting units 4A and 4B. There is. Therefore, for example, when the mounting of the component Wp is completed at the first mounting position P2, there may be a case where the mounting of the component Wp is continued at the second mounting position P4. On the other hand, such a case can be dealt with by changing the mounting mode to the third mounting mode. In this way, efficient component mounting according to the situation can be executed.
 また、制御部100は、1番目の実装位置P2の一の基板Bの複数の実装対象点Bpへの部品Wpの実装が完了した時点において、複数の実装対象点Bpへの部品Wpの実装がM個の実装位置P2、P4のうち最も遅れている実装位置P4で実装済みの部品Wpの個数に基づき、第3実装モードに変更するか、第1実装モードを継続するかを決定する(ステップS604)。これによって、各実装位置P2、P4での部品実装の進捗に応じた効率的な部品実装が実行可能となる。 In addition, the control unit 100 mounts the component Wp on the plurality of mounting target points Bp when the mounting of the component Wp on the plurality of mounting target points Bp on the substrate B at the first mounting position P2 is completed. Based on the number of components Wp that have been mounted at the mounting position P4 that is the most delayed among the M mounting positions P2, P4, it is determined whether to change to the third mounting mode or to continue the first mounting mode (step). S604). This makes it possible to execute efficient component mounting according to the progress of component mounting at the mounting positions P2 and P4.
 このように本実施形態では、ホストコンピューター7が本発明の「実装手順決定装置」および「コンピューター」の一例に相当し、記憶部72が本発明の「生産計画取得部」の一例に相当し、演算部71が本発明の「実装モード決定部」の一例に相当し、部品実装システム1が本発明の「部品実装システム」の一例に相当し、搬送部2が本発明の「搬送部」の一例に相当し、2個の実装部4A、4Bが本発明の「M個の実装部」の一例に相当し、2個の実装位置P2、P4が本発明の「M個の実装位置」に相当し、待機位置P3が本発明の「待機位置」の一例に相当し、生産計画81が本発明の「生産計画」の一例に相当し、基板Bが本発明の「基板」の一例に相当し、実装対象点Bpが本発明の「実装対象点」の一例に相当し、部品Wpが本発明の「部品」の一例に相当し、搬送方向Xが本発明の「搬送方向」の一例に相当し、実装手順決定プログラム82が本発明の「実装手順決定プログラム」の一例に相当し、記録媒体9が本発明の「記録媒体」の一例に相当する。 Thus, in this embodiment, the host computer 7 corresponds to an example of the “mounting procedure determination device” and “computer” of the present invention, and the storage unit 72 corresponds to an example of the “production plan acquisition unit” of the present invention. The calculation unit 71 corresponds to an example of the “mounting mode determination unit” of the present invention, the component mounting system 1 corresponds to an example of the “component mounting system” of the present invention, and the transport unit 2 corresponds to the “transport unit” of the present invention. It corresponds to an example, the two mounting parts 4A, 4B correspond to an example of “M mounting parts” of the present invention, and the two mounting positions P2, P4 correspond to “M mounting positions” of the present invention. The standby position P3 corresponds to an example of the “standby position” of the present invention, the production plan 81 corresponds to an example of the “production plan” of the present invention, and the substrate B corresponds to an example of the “substrate” of the present invention. The mounting target point Bp corresponds to an example of the “mounting target point” of the present invention, and the component Wp The example corresponds to an example of the “component” of the present invention, the transport direction X corresponds to an example of the “transport direction” of the present invention, the mounting procedure determination program 82 corresponds to an example of the “mounting procedure determination program” of the present invention, The recording medium 9 corresponds to an example of the “recording medium” of the present invention.
 なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば、上記実施形態では、2個の実装位置P2、P4と2個の実装部4A、4Bが設けられており、Mは「2」であった。しかしながら、実装位置や実装部の個数はこの例に限られず、Mが「3」以上でも構わない。 The present invention is not limited to the above embodiment, and various modifications can be made to the above without departing from the spirit of the present invention. For example, in the above embodiment, two mounting positions P2 and P4 and two mounting portions 4A and 4B are provided, and M is “2”. However, the mounting position and the number of mounting parts are not limited to this example, and M may be “3” or more.
 また、部品実装システム1では、待機位置P1および待機位置P3といった待機位置が設けられていた。しかしながら、このような待機位置を設ける必要は必ずしもない。 In the component mounting system 1, standby positions such as the standby position P1 and the standby position P3 are provided. However, it is not always necessary to provide such a standby position.
 また、上記の部品実装システム1は、1台の部品実装機10で構成されていた。しかしながら、例えば、それぞれ単一の実装位置を具備する複数の部品実装機10を搬送方向Xに並べて部品実装システム1を構成しても良い。かかる構成では、搬送部2は、複数の部品実装機10に順に基板Bを搬送しつつ、各部品実装機10での実装位置に当該基板Bを停止・固定し、各部品実装機10は、その実装位置に固定された基板Bに部品Wpを実装する。 Further, the component mounting system 1 described above is composed of one component mounter 10. However, for example, the component mounting system 1 may be configured by arranging a plurality of component mounting machines 10 each having a single mounting position in the transport direction X. In such a configuration, the transport unit 2 stops and fixes the board B at the mounting position in each component mounter 10 while sequentially transporting the board B to the plurality of component mounters 10. The component Wp is mounted on the board B fixed at the mounting position.
 また、第2実装モードで、実装部4A、4Bが実装を分担する部品Wpの個数は同じである必要はなく、異なっていても良い。この場合、第2実装モードで、実装部4Aが実装を分担する部品Wpの個数と、実装部4Bが実装を分担する部品Wpの個数の差が所定値(例えば「1」)未満となるように、実装手順を決定しても良い。 In the second mounting mode, the number of components Wp shared by the mounting units 4A and 4B need not be the same and may be different. In this case, in the second mounting mode, the difference between the number of components Wp shared by the mounting unit 4A and the number of components Wp shared by the mounting unit 4B is less than a predetermined value (eg, “1”). In addition, the mounting procedure may be determined.
 また、上記の実施形態では、第2実装モードにおいて、実装部4Aは基板Bの左半分の実装対象点Bpに部品Wpを実装し、実装部4Bは基板Bの右半分の実装対象点Bpに部品Wpを実装していた。しかしながら、第2実装モードで実装部4A、4Bのそれぞれが部品Wpを実装する実装対象点Bpはこの例に限られない。 In the above embodiment, in the second mounting mode, the mounting unit 4A mounts the component Wp on the mounting target point Bp on the left half of the board B, and the mounting unit 4B mounts on the mounting target point Bp on the right half of the board B. The component Wp was mounted. However, the mounting target point Bp where each of the mounting parts 4A and 4B mounts the component Wp in the second mounting mode is not limited to this example.
 また、図7の変更実装モードで、実装部4A、4Bが実装を分担する部品Wpの個数は同じである必要はなく、異なっていても良い。この場合、変更実装モードで、実装部4Aが実装を分担する部品Wpの個数と、実装部4Bが実装を分担する部品Wpの個数の差が所定値(例えば「1」)以下となるように、実装手順を決定しても良い。すなわち、M個の実装部4A、4Bそれぞれが実装を分担する部品Wpの個数の差が所定値以下となるように、実装手順を決定すれば良い。 Further, in the modified mounting mode of FIG. 7, the number of components Wp shared by the mounting units 4A and 4B is not necessarily the same, and may be different. In this case, in the modified mounting mode, the difference between the number of components Wp shared by the mounting unit 4A and the number of components Wp shared by the mounting unit 4B is equal to or less than a predetermined value (eg, “1”). The mounting procedure may be determined. That is, the mounting procedure may be determined so that the difference in the number of components Wp shared by the M mounting parts 4A and 4B is equal to or less than a predetermined value.
 また、第1実装モードを用いた場合の生産時間に関する評価や、第2実装モードを用いた場合の生産時間に関する評価の具体的手法は、上記の例に限られない。したがって、第1実装モードを用いて生産計画81を実行した場合の部品実装システム1の動作をシミュレーションした結果に基づき、第1実装モードを用いた場合の生産時間を求めることができる。第2実装モードを用いた場合の生産時間も、同様にシミュレーションによって求めても良い。 Further, the specific method for evaluating the production time when the first mounting mode is used and the evaluation regarding the production time when using the second mounting mode are not limited to the above example. Therefore, based on the result of simulating the operation of the component mounting system 1 when the production plan 81 is executed using the first mounting mode, the production time when using the first mounting mode can be obtained. The production time when the second mounting mode is used may be similarly obtained by simulation.
 また、図8の例では、基板Bを実装位置P4に搬入している。しかしながら、基板Bを実装位置P2に搬入して、第2実装変更モードを実行しても構わない。 Further, in the example of FIG. 8, the board B is carried into the mounting position P4. However, the board B may be carried into the mounting position P2 and the second mounting change mode may be executed.
 また、上述の通り、不良と判定される対象候補点の個数名基板Bによって異なりうるため、複数の実装対象点Bpの個数は基板Bによって異なりうる。この場合であっても、上述と同様に、第1実装モードを用いて生産計画81を実行した場合の生産時間の算出結果に基づき、第1実装モードの使用の有無や、使用する場合の実行態様を決定すれば良い。なお、この際、基板Bをロット単位とする場合には、生産計画81が示す実装済み部品Wpの生産数Jは、ロット数分の基板Bの実装対象点Bpの総数となる。 Further, as described above, the number of target candidate points determined to be defective may differ depending on the substrate B, and therefore the number of the plurality of mounting target points Bp may differ depending on the substrate B. Even in this case, as described above, based on the calculation result of the production time when the production plan 81 is executed using the first mounting mode, whether or not the first mounting mode is used, and the execution when it is used What is necessary is just to determine an aspect. At this time, when the board B is in lot units, the production number J of the mounted parts Wp indicated by the production plan 81 is the total number of mounting target points Bp of the board B corresponding to the number of lots.
 また、上述の通り、実装済みの部品Wpの生産は、基板Bをロット単位とする必要はない。この場合であっても、上述と同様に、第1実装モードを用いて生産計画81を実行した場合の生産時間の算出結果に基づき、第1実装モードの使用の有無や、使用する場合の実行態様を決定すれば良い。なお、生産計画81が示す実装済み部品Wpの生産数Jは基板Bが有する実装対象点Bpの個数に関係が無いため、生産計画81に従って搬送部2に搬入される最後の1枚、すなわちN枚目の基板Bに対して実装すべき部品Wpの個数は、当該基板Bの実装対象点Bpの個数未満となる場合がある。したがって、Nが4以上の偶数であれば、1~(N-2)枚目までの基板Bに対して第1実装モードで部品を実装する一方、最後の2枚の基板Bに対して合計(J-T(N-2))個の部品Wpを実装するように実装手順を決定しても良い。あるいは、Nが3以上の奇数であれば、1~(N-1)枚目までの基板Bに対して第1実装モードで部品を実装する一方、最後の1枚の基板Bに対して(J-T(N-2))個の部品Wpを実装するように実装手順を決定しても良い。 In addition, as described above, the production of the mounted component Wp does not require the board B to be a lot unit. Even in this case, as described above, based on the calculation result of the production time when the production plan 81 is executed using the first mounting mode, whether or not the first mounting mode is used, and the execution when it is used What is necessary is just to determine an aspect. The production number J of the mounted parts Wp indicated by the production plan 81 is not related to the number of mounting target points Bp that the board B has, so that the last one that is carried into the transport unit 2 according to the production plan 81, that is, N The number of components Wp to be mounted on the first board B may be less than the number of mounting target points Bp on the board B in some cases. Therefore, if N is an even number of 4 or more, components are mounted in the first mounting mode on the first to (N−2) th boards B, while the total on the last two boards B. The mounting procedure may be determined so as to mount (JT (N-2)) parts Wp. Alternatively, if N is an odd number of 3 or more, components are mounted on the first to (N−1) th boards B in the first mounting mode, while the last board B is ( The mounting procedure may be determined so as to mount JT (N-2)) parts Wp.
 1…部品実装システム
 2…搬送部
 4A、4B…実装部
 7…ホストコンピューター(実装手順決定装置、コンピューター)
 71…演算部(実装モード決定部)
 72…記憶部(生産計画取得部)
 81…生産計画
 82…実装手順決定プログラム
 9…記録媒体
 B…基板
 Bp…実装対象点
 P2、P4…実装位置
 Wp…部品
 X…搬送方向
DESCRIPTION OF SYMBOLS 1 ... Component mounting system 2 ... Conveyance part 4A, 4B ... Mounting part 7 ... Host computer (Mounting procedure determination apparatus, computer)
71 ... Calculation unit (mounting mode determination unit)
72. Storage unit (production plan acquisition unit)
DESCRIPTION OF SYMBOLS 81 ... Production plan 82 ... Mounting procedure determination program 9 ... Recording medium B ... Substrate Bp ... Mounting object point P2, P4 ... Mounting position Wp ... Component X ... Conveyance direction

Claims (15)

  1.  複数の実装対象点を有する基板を複数枚順番に搬送方向に搬送可能な搬送部と、前記搬送方向に並ぶM個(Mは2以上の整数)の実装位置に対応して設けられ、それぞれ同一種類の部品を前記実装対象点に実装可能なM個の実装部とを備えた部品実装システムによって、前記実装対象点に実装済みの部品をJ個(JはM以上の整数)生産する生産計画を取得する生産計画取得部と、
     前記生産計画の実行に要する生産時間に関する評価を行った結果に基づき、前記生産計画において前記実装対象点に部品を実装する実装モードを決定する実装モード決定部と
    を備え、
     前記実装モード決定部は、前記M個の実装位置のそれぞれに1枚ずつ前記基板を停止させて、前記M個の実装部のそれぞれに対応する前記実装位置の前記基板の前記複数の実装対象点の全てに部品を実装させると、前記M個の実装位置それぞれから前記基板を搬出する第1実装モードを用いて前記生産計画を実行した場合の前記生産時間に関する評価の結果に基づき、前記生産計画の実行に前記第1実装モードを用いるか否かを決定する実装手順決定装置。
    It is provided corresponding to a transport unit capable of transporting a plurality of substrates having a plurality of mounting target points in order in the transport direction and M mounting positions (M is an integer of 2 or more) arranged in the transport direction. Production plan for producing J parts (J is an integer greater than or equal to M) mounted on the mounting target point by a component mounting system having M mounting parts capable of mounting various types of parts on the mounting target point A production plan acquisition unit to acquire
    A mounting mode determining unit that determines a mounting mode for mounting a component on the mounting target point in the production plan, based on a result of an evaluation on a production time required to execute the production plan;
    The mounting mode determination unit stops the substrate one by one at each of the M mounting positions, and the plurality of mounting target points of the substrate at the mounting position corresponding to each of the M mounting portions. If the parts are mounted on all of the M mounting positions, the production plan is based on the result of evaluation on the production time when the production plan is executed using the first mounting mode in which the board is unloaded from each of the M mounting positions. A mounting procedure determining device that determines whether or not to use the first mounting mode for the execution of.
  2.  前記実装モード決定部は、前記第1実装モードを用いて前記生産計画を実行した場合と、前記M個の実装位置に順番に前記基板を停止させて、前記基板の前記複数の実装対象点への部品の実装を前記M個の実装部に分担させる第2実装モードを用いて前記生産計画を実行した場合とにおける前記生産時間の違いを評価した結果に基づき、前記生産計画の実行に前記第1実装モードおよび前記第2実装モードのいずれを用いるかを決定する請求項1に記載の実装手順決定装置。 The mounting mode determination unit stops the board in order at the M mounting positions when the production plan is executed using the first mounting mode, and moves to the plurality of mounting target points on the board. The execution of the production plan is performed based on the result of evaluating the difference in the production time with the case where the production plan is executed using the second mounting mode in which the mounting of the parts is shared by the M mounting parts. The mounting procedure determining apparatus according to claim 1, wherein the mounting procedure determining unit determines which one of the first mounting mode and the second mounting mode is used.
  3.  前記実装モード決定部は、前記搬送方向に順番に搬送される1枚目からN枚目までの前記基板それぞれの前記複数の実装対象点の個数の合計をT(N)としたとき、T(N-1)<J≦T(N)を満たす前記基板の枚数Nに基づき、前記第1モードの実行態様を決定する請求項1または2に記載の実装手順決定装置。 When the total number of the plurality of mounting target points of each of the substrates from the first sheet to the Nth sheet transported in order in the transport direction is defined as T (N), The mounting procedure determination device according to claim 1 or 2, wherein an execution mode of the first mode is determined based on a number N of the substrates satisfying N-1) <J≤T (N).
  4.  前記実装モード決定部は、NがMの倍数である場合に、前記生産計画の実行に前記第1実装モードを用いると決定すると、前記第1実装モードを(N/M)回実行することで、前記生産計画を実行すると決定する請求項3に記載の実装手順決定装置。 When the mounting mode determination unit determines that the first mounting mode is used for execution of the production plan when N is a multiple of M, the mounting mode determination unit executes the first mounting mode (N / M) times. The mounting procedure determining device according to claim 3, wherein it is determined to execute the production plan.
  5.  前記実装モード決定部は、NがMの倍数にK(Kは1以上でM未満の整数)を加えた値である場合に、前記生産計画の実行に前記第1実装モードを用いると決定すると、前記第1実装モードを((N-K)/M)回実行してから、前記M個の実装位置のそれぞれに前記基板を1枚ずつ停止させて前記M個の実装部のそれぞれに対応する前記実装位置の前記基板へ部品を実装させることで、前記((N-K)/M)回の第1実装モードで実装された部品の個数をJ個から引いた個数の部品の前記実装対象点への実装を前記M個の実装部に実行させる第1変更実装モードで、前記生産計画を実行すると決定する請求項3または4に記載の実装手順決定装置。 The mounting mode determination unit determines that the first mounting mode is used for execution of the production plan when N is a value obtained by adding K to a multiple of M (K is an integer greater than or equal to 1 and less than M). The first mounting mode is executed ((NK) / M) times, and then the substrate is stopped one by one at each of the M mounting positions to correspond to each of the M mounting portions. Mounting the number of components obtained by subtracting the number of components mounted in the ((NK) / M) first mounting mode from J by mounting the components on the substrate at the mounting position. 5. The mounting procedure determination device according to claim 3, wherein it is determined that the production plan is to be executed in a first modified mounting mode in which the mounting on a target point is executed by the M mounting units.
  6.  前記実装モード決定部は、NがMの倍数にK(Kは1以上でM未満の整数)を加えた値である場合に、前記生産計画の実行に前記第1実装モードを用いると決定すると、前記第1実装モードを((N-K)/M)回実行してから、前記M個の実装位置のうちK個の実装位置に前記基板を停止させて前記K個の実装位置に対応するK個の実装部に前記基板の前記複数の実装対象点の全てに部品を実装させると、前記K個の実装位置から前記基板を搬出する第2変更実装モードで、前記生産計画を実行すると決定する請求項1ないし3のいずれか一項に記載の実装手順決定装置。 The mounting mode determination unit determines that the first mounting mode is used for execution of the production plan when N is a value obtained by adding K to a multiple of M (K is an integer greater than or equal to 1 and less than M). After the first mounting mode is executed ((NK) / M) times, the board is stopped at K mounting positions out of the M mounting positions to correspond to the K mounting positions. When the parts are mounted on all of the plurality of mounting target points of the board on the K mounting parts to be executed, the production plan is executed in the second modified mounting mode in which the board is unloaded from the K mounting positions. The mounting procedure determining apparatus according to claim 1, wherein the mounting procedure determining apparatus determines the mounting procedure.
  7.  前記実装モード決定部は、NがMの倍数にK(Kは1以上でM未満の整数)を加えた値である場合に、前記生産計画の実行に前記第1実装モードを用いると決定すると、前記第1実装モードを((N-K)/M)回実行してから、前記M個の実装位置のそれぞれに前記基板を1枚ずつ停止させて前記M個の実装部のそれぞれに対応する前記実装位置の前記基板へ部品を実装させることで、前記((N-K)/M)回の第1実装モードで実装された部品の個数をJ個から引いた個数の部品の前記実装対象点への実装を前記M個の実装部に実行させる第1変更実装モードおよび前記第2変更実装モードのうち、前記生産計画を早く完了する一方で、前記生産計画を実行すると決定する請求項6に記載の実装手順決定装置。 The mounting mode determination unit determines that the first mounting mode is used for execution of the production plan when N is a value obtained by adding K to a multiple of M (K is an integer greater than or equal to 1 and less than M). The first mounting mode is executed ((NK) / M) times, and then the substrate is stopped one by one at each of the M mounting positions to correspond to each of the M mounting portions. Mounting the number of components obtained by subtracting the number of components mounted in the ((NK) / M) first mounting mode from J by mounting the components on the substrate at the mounting position. The first change mounting mode and the second change mounting mode for causing the M mounting units to execute mounting on a target point are determined to execute the production plan while completing the production plan early. 6. The mounting procedure determination device according to 6.
  8.  前記実装モード決定部は、前記生産計画において実行される前記基板の搬送に要する搬送時間に基づき、前記生産時間に関する評価を行う請求項1ないし7のいずれか一項に記載の実装手順決定装置。 The mounting procedure determining device according to any one of claims 1 to 7, wherein the mounting mode determining unit performs an evaluation on the production time based on a transport time required for transporting the substrate executed in the production plan.
  9.  前記実装モード決定部は、前記生産計画において実行される前記基板への部品の実装に要する実装時間および前記搬送時間に基づき、前記生産時間に関する評価を行う請求項8に記載の実装手順決定装置。 9. The mounting procedure determining apparatus according to claim 8, wherein the mounting mode determining unit performs an evaluation on the production time based on a mounting time and a transport time required for mounting a component on the board to be executed in the production plan.
  10.  複数の実装対象点を有する基板を複数枚順番に搬送方向に搬送可能な搬送部と、前記搬送方向に並ぶM個(Mは2以上の整数)の実装位置に対応して設けられ、それぞれ同一種類の部品を前記実装対象点に実装可能なM個の実装部とを備えた部品実装システムによって、前記実装対象点に実装済みの部品をJ個(JはM以上の整数)生産する生産計画を取得する工程と、
     前記生産計画の実行に要する生産時間に関する評価を行った結果に基づき、前記生産計画において前記実装対象点に部品を実装する実装モードを決定する工程と
    を備え、
     前記M個の実装位置のそれぞれに1枚ずつ前記基板を停止させて、前記M個の実装部のそれぞれに対応する前記実装位置の前記基板の前記複数の実装対象点の全てに部品を実装させると、前記M個の実装位置それぞれから前記基板を搬出する第1実装モードを用いて前記生産計画を実行した場合の前記生産時間に関する評価の結果に基づき、前記生産計画の実行に前記第1実装モードを用いるか否かを決定する実装手順決定方法。
    It is provided corresponding to a transport unit capable of transporting a plurality of substrates having a plurality of mounting target points in order in the transport direction and M mounting positions (M is an integer of 2 or more) arranged in the transport direction. Production plan for producing J parts (J is an integer greater than or equal to M) mounted on the mounting target point by a component mounting system having M mounting parts capable of mounting various types of parts on the mounting target point A process of obtaining
    A step of determining a mounting mode for mounting a component on the mounting target point in the production plan, based on a result of an evaluation on a production time required for execution of the production plan,
    One board is stopped at each of the M mounting positions, and components are mounted on all of the plurality of mounting target points of the board at the mounting positions corresponding to the M mounting portions, respectively. And the first mounting in the execution of the production plan based on the result of the evaluation regarding the production time when the production plan is executed using the first mounting mode for unloading the substrate from each of the M mounting positions. Implementation procedure determination method for determining whether to use a mode.
  11.  請求項10に記載の実装手順決定方法をコンピューターに実行させる実装手順決定プログラム。 An implementation procedure determination program for causing a computer to execute the implementation procedure determination method according to claim 10.
  12.  請求項11に記載の実装手順決定プログラムをコンピューターにより読み出し可能に記録した記録媒体。 A recording medium in which the mounting procedure determination program according to claim 11 is recorded so as to be readable by a computer.
  13.  複数の実装対象点を有する基板を複数枚順番に搬送方向に搬送可能な搬送部と、
     前記搬送方向に並ぶM個(Mは2以上の整数)の実装位置に対応して設けられ、それぞれ同一種類の部品を前記実装対象点に実装可能なM個の実装部と、
     前記実装対象点に実装済みの部品をJ個(JはM以上の整数)生産する生産計画を、前記搬送部および前記M個の実装部を制御することで実行する制御部と
    を備え、
     前記制御部は、前記M個の実装位置のそれぞれに1枚ずつ前記基板を停止させて、前記M個の実装部のそれぞれに対応する前記実装位置の前記基板の前記複数の実装対象点の全てに部品を実装させると、前記M個の実装位置それぞれから前記基板を搬出する第1実装モードを用いて前記生産計画を実行可能である部品実装システム。
    A transport unit capable of transporting a plurality of substrates having a plurality of mounting target points in the transport direction in order, and
    M mounting portions that are provided corresponding to M mounting positions (M is an integer of 2 or more) arranged in the transport direction, each of which can mount the same type of component at the mounting target point;
    A control unit that executes a production plan for producing J parts (J is an integer greater than or equal to M) mounted on the mounting target point by controlling the transport unit and the M mounting units;
    The control unit stops the board one by one at each of the M mounting positions, and all of the plurality of mounting target points of the board at the mounting position corresponding to each of the M mounting parts. When a component is mounted on the component mounting system, the production plan can be executed using a first mounting mode in which the board is unloaded from each of the M mounting positions.
  14.  前記M個の実装位置のうち、前記搬送方向の上流側から数えて1番目の実装位置と2番目の実装位置との間に、前記基板を待機させる待機位置が設けられ、
     前記制御部は、前記第1実装モードにおいて、前記1番目の実装位置の一の基板に対する前記複数の実装対象点への部品の実装が完了すると、前記一の基板を前記1番目の実装位置から前記待機位置へ移動させつつ、前記一の基板の次の基板を前記1番目の前記実装位置に停止させて、前記1番目の前記実装位置での前記次の基板に対する前記複数の実装対象点への部品の実装を実行する第3実装モードに実装モードを変更可能である請求項13に記載の部品実装システム。
    Among the M mounting positions, a standby position for waiting the substrate is provided between the first mounting position and the second mounting position counted from the upstream side in the transport direction,
    In the first mounting mode, when the mounting of the component to the plurality of mounting target points on the substrate at the first mounting position is completed in the first mounting mode, the control unit moves the one substrate from the first mounting position. While moving to the standby position, the next board of the one board is stopped at the first mounting position to the plurality of mounting target points for the next board at the first mounting position. The component mounting system according to claim 13, wherein the mounting mode can be changed to a third mounting mode for executing mounting of the component.
  15.  前記制御部は、前記1番目の実装位置の前記一の基板の前記複数の実装対象点への部品の実装が完了した時点において、前記複数の実装対象点への部品の実装が前記M個の実装位置のうち最も遅れている実装位置で実装済みの部品の個数に基づき、前記第3実装モードに変更するか、前記第1実装モードを継続するかを決定する請求項14に記載の部品実装システム。 The control unit is configured to mount the M components on the plurality of mounting target points when the mounting of the components on the plurality of mounting target points of the one substrate at the first mounting position is completed. The component mounting according to claim 14, wherein it is determined whether to change to the third mounting mode or to continue the first mounting mode based on the number of components that have been mounted at the mounting position that is most delayed among the mounting positions. system.
PCT/JP2018/005864 2018-02-20 2018-02-20 Mounting procedure determination device, mounting procedure determination method, mounting procedure determination program, recording medium, and component mounting system WO2019162985A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/005864 WO2019162985A1 (en) 2018-02-20 2018-02-20 Mounting procedure determination device, mounting procedure determination method, mounting procedure determination program, recording medium, and component mounting system
TW107135539A TWI689233B (en) 2018-02-20 2018-10-09 Installation order determination device, installation order determination method, installation order determination program, recording medium, parts installation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005864 WO2019162985A1 (en) 2018-02-20 2018-02-20 Mounting procedure determination device, mounting procedure determination method, mounting procedure determination program, recording medium, and component mounting system

Publications (1)

Publication Number Publication Date
WO2019162985A1 true WO2019162985A1 (en) 2019-08-29

Family

ID=67687098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005864 WO2019162985A1 (en) 2018-02-20 2018-02-20 Mounting procedure determination device, mounting procedure determination method, mounting procedure determination program, recording medium, and component mounting system

Country Status (2)

Country Link
TW (1) TWI689233B (en)
WO (1) WO2019162985A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383400A (en) * 1989-08-28 1991-04-09 Matsushita Electric Works Ltd Automatic component mounting apparatus
JP2001237599A (en) * 2000-02-24 2001-08-31 Matsushita Electric Ind Co Ltd Electronic part mounting method
JP2007110003A (en) * 2005-10-17 2007-04-26 Yamaha Motor Co Ltd Surface mounting machine and mounting method
JP2010073828A (en) * 2008-09-17 2010-04-02 Hitachi High-Tech Instruments Co Ltd Mounting method of electronic part
JP2011054711A (en) * 2009-09-01 2011-03-17 Panasonic Corp Electronic component-packaging device
JP2012064613A (en) * 2010-09-14 2012-03-29 Panasonic Corp Electronic component mounting device and electronic component mounting method
JP2013214781A (en) * 2013-07-23 2013-10-17 Panasonic Corp Electronic component mounting method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2073620A1 (en) * 2007-12-18 2009-06-24 Siemens Aktiengesellschaft Substrate transport device for a filling machine
JP4883071B2 (en) * 2008-10-03 2012-02-22 パナソニック株式会社 Electronic component mounting system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383400A (en) * 1989-08-28 1991-04-09 Matsushita Electric Works Ltd Automatic component mounting apparatus
JP2001237599A (en) * 2000-02-24 2001-08-31 Matsushita Electric Ind Co Ltd Electronic part mounting method
JP2007110003A (en) * 2005-10-17 2007-04-26 Yamaha Motor Co Ltd Surface mounting machine and mounting method
JP2010073828A (en) * 2008-09-17 2010-04-02 Hitachi High-Tech Instruments Co Ltd Mounting method of electronic part
JP2011054711A (en) * 2009-09-01 2011-03-17 Panasonic Corp Electronic component-packaging device
JP2012064613A (en) * 2010-09-14 2012-03-29 Panasonic Corp Electronic component mounting device and electronic component mounting method
JP2013214781A (en) * 2013-07-23 2013-10-17 Panasonic Corp Electronic component mounting method

Also Published As

Publication number Publication date
TW201936043A (en) 2019-09-01
TWI689233B (en) 2020-03-21

Similar Documents

Publication Publication Date Title
WO2006132282A1 (en) Production management method, production management device, and parts mounting device
JP4996634B2 (en) Mounting condition determining method and mounting condition determining apparatus
JP2009200475A (en) Method of determining mounting condition
JP2009099776A (en) Data creation device and line controller of electronic component mounting apparatus
JP4995845B2 (en) Mounting condition determination method
JP4955313B2 (en) Production control method
JP5009939B2 (en) Mounting condition determination method
WO2019162985A1 (en) Mounting procedure determination device, mounting procedure determination method, mounting procedure determination program, recording medium, and component mounting system
JP5038970B2 (en) Mounting condition determining method, mounting condition determining apparatus, component mounting method, component mounter, and program
JP4995848B2 (en) Mounting condition determination method
JP4887328B2 (en) Mounting condition determination method
JP2020047301A (en) Facility configuration creation support system and facility configuration creation support method
JP5279666B2 (en) Component mounter
JP4504240B2 (en) Electronic component mounting method and electronic component mounting apparatus
JP5675487B2 (en) Component mounting system, component mounting method, program, recording medium
JP6837198B2 (en) Equipment configuration creation support system and equipment configuration creation support method
JP2009043947A (en) Mounting facility, mounting machine, mounting line, mounting work optimizing equipment, and mounting work optimizing method
JP2007053340A (en) Method of simulating stock quantity of substrate
JP2006261647A (en) Mounting condition determining method, mounting condition determining device, and component mounting machine
WO2024023926A1 (en) Surface mounter and surface mounting method
WO2022249332A1 (en) Component storage support device, component storage support method, component storage support program, and recording medium
JP7266944B2 (en) COMPONENT MOUNTING CONTROL DEVICE, COMPONENT MOUNTING CONTROL METHOD
JP7123479B2 (en) Feeder number management device, feeder number management method
JP4834525B2 (en) Mounting condition determination method
JP2010021531A (en) Method of determining mounting condition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP