WO2019155614A1 - 空気調和装置、空調システム及び熱交換ユニット - Google Patents
空気調和装置、空調システム及び熱交換ユニット Download PDFInfo
- Publication number
- WO2019155614A1 WO2019155614A1 PCT/JP2018/004650 JP2018004650W WO2019155614A1 WO 2019155614 A1 WO2019155614 A1 WO 2019155614A1 JP 2018004650 W JP2018004650 W JP 2018004650W WO 2019155614 A1 WO2019155614 A1 WO 2019155614A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- heat
- heat medium
- refrigerant
- temperature
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/153—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/04—Ventilation with ducting systems, e.g. by double walls; with natural circulation
- F24F7/06—Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
- F24F7/08—Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
- F25B27/02—Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
- Y02A30/274—Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
Definitions
- the present invention relates to an air conditioner, an air conditioning system, and a heat exchange unit that adjust air in an air-conditioned space.
- Patent Document 1 discloses an air conditioner provided with a refrigerant circuit through which refrigerant flows, a brine circuit through which brine flows, and a ventilation device.
- heat is exchanged between the return air discharged from the air-conditioned space and exhausted to the non-air-conditioned space, and the refrigerant is recovered.
- Patent Document 1 includes a heat exchanger that exchanges heat between the brine flowing in the brine circuit and the outside air supplied to the air-conditioned space and the return air.
- the air conditioner and the ventilator are separate devices and perform separate controls.
- the air conditioner disclosed in Patent Document 1 includes a heat exchanger that exchanges heat between the brine flowing in the brine circuit and the outside air supplied to the air-conditioned space and the return air.
- a heat exchanger that exchanges heat between the brine flowing in the brine circuit and the outside air supplied to the air-conditioned space and the return air.
- the present invention has been made to solve the above-described problems, and provides an air conditioner, an air conditioning system, and a heat exchange unit that recover exhaust heat of a heat medium flowing in a heat medium circuit.
- the air conditioner according to the present invention includes a pump, a cascade heat exchanger, and a heat medium circuit in which a heat exchanger pipe is connected to a use side heat exchanger that exchanges heat between the air flowing in the air-conditioned space and the heat medium.
- the heat medium after the heat medium bypass heat exchanger is heat-exchanged by the use side heat exchanger, and the conditioned space Heat exchange with the outside air supplied to the.
- the exhaust heat of the heat medium after heat exchange is performed by the use side heat exchanger can be recovered, and the recovered exhaust heat can be used for supplying air to the air-conditioned space.
- FIG. 1 is a schematic diagram showing an air conditioning system 1 according to Embodiment 1 of the present invention.
- the air conditioning system 1 includes an air conditioner 2 that adjusts air in an air conditioned space 8, a ventilator 6 that ventilates the air conditioned space 8, and a control unit that controls the air conditioner 2 and the ventilator 6. 50.
- the air conditioner 2 includes, for example, a heat source unit 4 provided in a non-air-conditioned space 9 that is outdoor, a heat exchange unit 3 provided in a ceiling space 10, and a use-side unit 5 that cools or heats the air-conditioned space 8. And.
- FIG. 2 is a circuit diagram showing the air conditioning system 1 according to Embodiment 1 of the present invention.
- the heat source unit 4 includes a compressor 21, a flow path switching device 20, a heat source heat exchanger 22, a heat source blower 22 a, and an outside air temperature detection unit 55, and the heat exchange unit 3 Supply the refrigerant.
- the compressor 21 sucks the refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant, and discharges it as a refrigerant in a high temperature and high pressure state.
- the flow path switching device 20 switches whether the refrigerant discharged from the compressor 21 flows into the heat source heat exchanger 22 (solid line in FIG.
- the heat source heat exchanger 22 exchanges heat, for example, between the outside air and the refrigerant.
- the heat source heat exchanger 22 acts as a condenser during the cooling operation, and acts as an evaporator during the heating operation.
- the heat source blower 22 a sends outdoor air to the heat source heat exchanger 22.
- the outside air temperature detection unit 55 detects the temperature of outside air.
- the use side unit 5 includes a use side heat exchanger 26 and a use side blower 26a, and adjusts the air in the air-conditioned space 8 by the heat medium supplied from the heat exchange unit 3.
- the use side heat exchanger 26 exchanges heat between, for example, room air and a heat medium.
- the use side heat exchanger 26 acts as an evaporator during the cooling operation, and acts as a condenser during the heating operation.
- the use side blower 26 a sends room air to the use side heat exchanger 26.
- the heat exchange unit 3 is connected to the heat source unit 4 at the refrigerant piping port 11a, and is connected to the use side unit 5 at the heat medium piping port 12a.
- the heat exchange unit 3 includes a pump 25, a cascade heat exchanger 24, an expansion unit 23, a heat medium bypass circuit 13, and a heat medium flow rate adjustment valve 32.
- the expansion unit 23 may be provided in the heat source unit 4.
- the pump 25 may be provided in a pump unit different from the heat exchange unit 3.
- the heat exchange unit 3 includes a refrigerant bypass circuit 14, a refrigerant flow rate adjustment valve 34, a heat medium temperature detection unit 51, and a refrigerant temperature detection unit 52.
- the pump 25 conveys the heat medium.
- the cascade heat exchanger 24 exchanges heat between the refrigerant and the heat medium.
- the expansion part 23 is a pressure reducing valve or an expansion valve that expands by depressurizing the refrigerant, and is composed of, for example, an electronic expansion valve whose opening degree is adjusted.
- the heat medium bypass circuit 13 bypasses the heat medium pipe between the cascade heat exchanger 24 and the pump 25, and a part of the heat medium conveyed from the pump 25 flows.
- the heat medium flow control valve 32 is provided in the heat medium circuit 12 and adjusts the flow rate of the heat medium flowing into the cascade heat exchanger 24.
- the heat medium temperature detection unit 51 is provided in the heat medium circuit 12 and detects the temperature of the heat medium conveyed from the pump 25.
- the refrigerant bypass circuit 14 bypasses the refrigerant pipe between the cascade heat exchanger 24 and the compressor 21, and a part of the refrigerant flowing out of the cascade heat exchanger 24 flows.
- the refrigerant flow rate adjustment valve 34 is provided in the refrigerant circuit 11 and adjusts the flow rate of the refrigerant flowing out of the cascade heat exchanger 24.
- the refrigerant temperature detector 52 is provided in the refrigerant circuit 11 and detects the temperature of the refrigerant flowing out of the cascade heat exchanger 24.
- the refrigerant temperature detection unit 52 includes a cooling sensor 52a and a heating sensor 52b.
- the cooling sensor 52a is provided between the heat source heat exchanger 22 and the refrigerant flow rate adjustment valve 34, and is used for control during cooling operation.
- the heating sensor 52b is provided between the expansion portion 23 and the refrigerant flow rate adjustment valve 34, and is used for control during heating operation.
- the refrigerant temperature detector 52 is provided upstream of the refrigerant bypass circuit 14 in each of the cooling operation and the heating operation.
- the refrigerant temperature detection part 52 is good also as one.
- the compressor 21, the heat source heat exchanger 22, the expansion unit 23, and the cascade heat exchanger 24 are connected by a refrigerant pipe to constitute the refrigerant circuit 11.
- the heat medium circuit 12 is configured by connecting the pump 25, the cascade heat exchanger 24, and the use side heat exchanger 26 through a heat medium pipe.
- the ventilation device 6 ventilates the air-conditioned space 8, and includes a casing 41, a total heat exchanger 42, an air supply fan 43, an exhaust fan 44, an air supply temperature detection unit 53, and an exhaust temperature detection unit. 54, a heat medium bypass heat exchanger 31, and a refrigerant bypass heat exchanger 33.
- the casing 41 includes an outside air port 45 for taking in outside air, an air supply port 46 for taking outside air taken in from the outside air port 45 into the air-conditioned space 8, a return air port 47 for discharging air from the air-conditioned space 8, and a return air port An exhaust port 48 for exhausting the air discharged from 47 to the air-conditioned space 8 is formed.
- the total heat exchanger 42 is provided in the casing 41 and exchanges heat between the return air and the outside air.
- the air supply fan 43 takes in outside air from the outside air port 45 and sends outside air from the air supply port 46 to the air-conditioned space 8.
- the exhaust fan 44 takes in air in the air-conditioned space 8 from the return air port 47 and discharges air from the exhaust port 48 to the non-air-conditioned space 9.
- the supply air temperature detector 53 detects the supply air temperature to the air-conditioned space 8.
- the exhaust temperature detector 54 detects the exhaust temperature from the air-conditioned space 8.
- the heat medium bypass heat exchanger 31 is provided in the heat medium bypass circuit 13 and exchanges heat between the outside air supplied to the conditioned space 8 and the heat medium.
- the refrigerant bypass heat exchanger 33 is provided in the refrigerant bypass circuit 14 and exchanges heat between the return air discharged from the air-conditioned space 8 and exhausted into the non-air-conditioned space 9 and the refrigerant.
- the heat medium flow control valve 32 When the heat medium flow control valve 32 is opened, the heat medium conveyed from the pump 25 passes through the heat medium circuit 12 and flows into the cascade heat exchanger 24, and the heat medium passes through the heat medium bypass circuit 13. Branches to the heat medium flowing into the bypass heat exchanger 31.
- the heat medium flow control valve 32 when the heat medium flow control valve 32 is closed, the heat medium conveyed from the pump 25 does not pass through the portion of the heat medium circuit 12 where the heat medium flow control valve 32 is provided, and passes through the heat medium bypass circuit 13. And flows into the heat medium bypass heat exchanger 31.
- the heat medium is configured to flow into the heat medium bypass circuit 13 regardless of whether the heat medium flow control valve 32 is opened or closed.
- the present invention is not limited to this.
- the heat medium may be water or brine.
- the refrigerant that has flowed out of the expansion unit 23 passes through the refrigerant circuit 11 and flows into the heat source heat exchanger 22, and passes through the refrigerant bypass circuit 14 to the refrigerant bypass heat exchanger 33. Branches to incoming refrigerant.
- the refrigerant flow rate adjustment valve 34 is closed, the refrigerant that has flowed out of the expansion portion 23 does not pass through the portion of the refrigerant circuit 11 where the refrigerant flow rate adjustment valve 34 is provided, but passes through the refrigerant bypass circuit 14 and passes through the refrigerant bypass heat. It flows into the exchanger 33.
- the refrigerant is configured to flow into the refrigerant bypass circuit 14 regardless of whether the refrigerant flow rate adjustment valve 34 is opened or closed.
- the present invention is not limited to this.
- the refrigerant flow rate adjustment valve 34 may be provided in either the refrigerant circuit 11 or the refrigerant bypass circuit 14, so that whether the refrigerant flows only in the refrigerant circuit 11 or only in the refrigerant bypass circuit 14 may be selected.
- FIG. 3 is a circuit diagram showing an air conditioning system 1 according to a modification.
- the heat medium flow control valve 32 includes a three-way valve 32a and a three-way valve 32b.
- the three-way valve 32 a is provided at a connection location between the outlet side of the pump 25 and the heat medium bypass circuit 13 and switches whether the heat medium flows into the heat medium bypass circuit 13.
- the three-way valve 32 b is provided at a connection location between the heat medium bypass circuit 13 and the inlet side of the cascade heat exchanger 24.
- the refrigerant flow rate adjustment valve 34 includes a three-way valve 34a and a three-way valve 34b.
- the three-way valve 34 a is provided at a connection location between the expansion portion 23 and the refrigerant bypass circuit 14 and switches whether the refrigerant flows to the refrigerant bypass circuit 14.
- the three-way valve 34b is provided at a connection point between the refrigerant bypass circuit 14 and the outlet side of the heat source heat exchanger 22 during cooling.
- the air conditioner 2 performs a cooling operation.
- the flow of the refrigerant in the refrigerant circuit 11 will be described.
- the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 21 passes through the flow path switching device 20 and flows into the heat source heat exchanger 22 acting as a condenser, and in the heat source heat exchanger 22, the heat source blower 22a. Heat is exchanged with the outside air sent by the air to condense and liquefy.
- the condensed refrigerant in the liquid state flows into the expansion section 23 and is expanded and decompressed in the expansion section 23 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
- the gas-liquid two-phase refrigerant flows into the cascade heat exchanger 24 acting as an evaporator, and in the cascade heat exchanger 24, heat is exchanged with the heat medium to evaporate and gasify. At this time, the heat medium is cooled.
- the evaporated low-temperature and low-pressure gaseous refrigerant passes through the flow path switching device 20 and is sucked into the compressor 21.
- a part of the refrigerant flowing out of the heat source heat exchanger 22 flows into the refrigerant bypass circuit 14 and reaches the refrigerant bypass heat exchanger 33.
- the refrigerant exchanges heat with the exhaust gas in the refrigerant bypass heat exchanger 33 and returns to the refrigerant circuit 11 again.
- the refrigerant flow rate adjustment valve 34 includes a three-way valve 34 a and a three-way valve 34 b, the refrigerant can be controlled so as not to flow into the refrigerant bypass circuit 14.
- the heat medium transported to the pump 25 flows into the cascade heat exchanger 24, and is cooled by heat exchange with the refrigerant in the cascade heat exchanger 24.
- the heat medium flowing out from the cascade heat exchanger 24 flows into the use side heat exchanger 26, and heat is exchanged with the air in the air-conditioned space 8 sent by the use side blower 26a in the use side heat exchanger 26 and heated. .
- the air in the conditioned space 8 is cooled to perform cooling.
- the heat medium flowing out from the use side heat exchanger 26 is sucked into the pump 25.
- the heat medium flow control valve 32 includes a three-way valve 32 a and a three-way valve 32 b, the heat medium can be controlled so as not to flow into the heat medium bypass circuit 13.
- FIG. 4 is a block diagram showing the control unit 50 according to Embodiment 1 of the present invention.
- the control part 50 controls operation
- the control unit 50 performs control for interlocking the air conditioner 2 and the ventilator 6.
- the control unit 50 includes a determination unit 61 and a valve adjustment unit 62.
- FIG. 5 is a table showing control of the heat medium flow rate adjustment valve 32 and the refrigerant flow rate adjustment valve 34 of the air conditioning system 1 according to Embodiment 1 of the present invention.
- the determination unit 61 determines whether the heat medium temperature detected by the heat medium temperature detection unit 51 is lower than the supply air temperature detected by the supply air temperature detection unit 53 during the cooling operation. .
- the valve adjustment unit 62 closes the heat medium flow rate adjustment valve 32.
- the valve adjustment unit 62 is the heat medium flow rate adjustment valve 32. open. Thereby, a part of the heat medium flowing in the heat medium circuit 12 flows to the heat medium bypass circuit 13, and the remaining part does not flow to the heat medium bypass circuit 13. Accordingly, since the amount of heat transferred from the heat medium to the supply air is reduced, it is possible to prevent the temperature of the air supplied from the supply port 46 to the air-conditioned space 8 in the ventilation device 6 from increasing.
- the heat medium can be controlled so as not to flow into the heat medium bypass circuit 13, so that the heat medium moves from the supply air to the supply air.
- the amount of heat to be generated can be further reduced.
- the determination unit 61 determines whether the refrigerant temperature detected by the cooling sensor 52 a is higher than the exhaust temperature detected by the exhaust temperature detection unit 54 during the cooling operation.
- the valve adjustment unit 62 closes the refrigerant flow rate adjustment valve 34.
- all of the refrigerant flowing through the refrigerant circuit 11 flows through the refrigerant bypass circuit 14. Accordingly, the amount of warm heat that moves from the refrigerant to the exhaust increases, so that it can be supercooled.
- valve adjusting means 62 opens the refrigerant flow rate adjusting valve 34 when the refrigerant temperature detected by the cooling sensor 52a is equal to or lower than the exhaust temperature detected by the exhaust temperature detecting unit 54 during the cooling operation. Thereby, a part of the refrigerant flowing in the refrigerant circuit 11 flows into the refrigerant bypass circuit 14, and the remaining part does not flow into the refrigerant bypass circuit 14. Accordingly, since the amount of heat transferred from the exhaust to the refrigerant is reduced, the degree of supercooling can be maintained.
- control can be performed so that the refrigerant does not flow to the refrigerant bypass circuit 14, and thus the amount of heat transferred from the exhaust to the refrigerant can be reduced. Further reduction can be achieved.
- the heat medium bypass heat exchanger 31 after the heat medium bypass heat exchanger 31 is heat-exchanged by the use-side heat exchanger 26 in the heat medium bypass circuit 13 provided on the downstream side of the use-side heat exchanger 26.
- the heat medium is exchanged with the outside air supplied to the air-conditioned space 8.
- this Embodiment 1 collect
- the heat medium bypass heat exchanger 31 exchanges heat between the heat medium flowing into the cascade heat exchanger 24 and the outside air supplied to the air-conditioned space 8, so that cool air is supplied to the supply air during the cooling operation.
- the cooling operation of the refrigerant circuit 11 can be assisted.
- the comfort of the air-conditioned space 8 after the supply of air can be improved by exhaust heat recovery.
- the refrigerant bypass circuit 14 and the refrigerant bypass heat exchanger 33 are provided as in the first embodiment, the refrigerant bypass heat exchanger 33 is exhausted to the non-air-conditioned space 9. Heat exchange is performed between the return air and the refrigerant that has been heat-exchanged by the heat source heat exchanger 22.
- Embodiment 1 can recover the exhaust heat of the air exhausted into the non-air-conditioned space 9 and use the exhaust heat in the refrigeration cycle of the refrigerant circuit 11.
- the valve adjusting means 62 closes the heat medium flow rate adjusting valve 32 when it is determined that the heat medium temperature is lower than the supply air temperature during the cooling operation. Thereby, all of the heat medium flowing through the heat medium circuit 12 flows through the heat medium bypass circuit 13. Accordingly, since the amount of heat that moves from the supply air to the heat medium increases, the temperature of the air supplied from the supply port 46 to the air-conditioned space 8 in the ventilation device 6 can be lowered. Further, the valve adjustment means 62 closes the refrigerant flow rate adjustment valve 34 when it is determined that the refrigerant temperature is higher than the exhaust temperature during the cooling operation. As a result, all of the refrigerant flowing through the refrigerant circuit 11 flows through the refrigerant bypass circuit 14. Accordingly, the amount of warm heat that moves from the refrigerant to the exhaust increases, so that it can be supercooled.
- the exhaust heat of the exhaust after heat-exchange in the total heat exchanger 42 is utilized for an air conditioning.
- the space that is conditioned by the air conditioner 2 and the space that is supplied and exhausted by the ventilation device 6 are the same space, but may be different spaces. In the case of another space, the same effect as in the first embodiment is obtained when each of the spaces is warmed or cooled.
- FIG. FIG. 6 is a circuit diagram showing an air conditioning system 1 according to Embodiment 2 of the present invention.
- the second embodiment exemplifies the case where the heating operation is performed, and the circuit diagram of the second embodiment is the same as the circuit diagram of the first embodiment.
- the air conditioner 2 performs a heating operation.
- the flow of the refrigerant in the refrigerant circuit 11 will be described.
- the refrigerant sucked into the compressor 21 is compressed by the compressor 21 and discharged in a high-temperature and high-pressure gas state.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 passes through the flow path switching device 20 and flows into the cascade heat exchanger 24 that acts as a condenser. Heat exchanges to condense and liquefy.
- the condensed liquid refrigerant flows into the expansion section 23 and is expanded and decompressed in the expansion section 23 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
- the gas-liquid two-phase refrigerant flows into the heat source heat exchanger 22 acting as an evaporator, and in the heat source heat exchanger 22, heat is exchanged with the outside air sent by the heat source blower 22a to evaporate and gasify. .
- the evaporated low-temperature and low-pressure gaseous refrigerant passes through the flow path switching device 20 and is sucked into the compressor 21.
- a part of the refrigerant discharged from the compressor 21 flows into the refrigerant bypass circuit 14 and reaches the refrigerant bypass heat exchanger 33.
- the refrigerant exchanges heat with the exhaust gas in the refrigerant bypass heat exchanger 33 and returns to the refrigerant circuit 11 again.
- the refrigerant flow rate adjustment valve 34 includes a three-way valve 34 a and a three-way valve 34 b, the refrigerant can be controlled so as not to flow into the refrigerant bypass circuit 14.
- the heat medium conveyed to the pump 25 flows into the cascade heat exchanger 24, and heat is exchanged with the refrigerant in the cascade heat exchanger 24 to be heated.
- the heat medium that has flowed out of the cascade heat exchanger 24 flows into the use side heat exchanger 26, and in the use side heat exchanger 26, heat is exchanged with the air in the air-conditioned space 8 sent by the use side blower 26a to be cooled. .
- the air in the air-conditioned space 8 is heated to perform heating.
- the heat medium flowing out from the use side heat exchanger 26 is sucked into the pump 25.
- the heat medium flow control valve 32 includes a three-way valve 32 a and a three-way valve 32 b, the heat medium can be controlled so as not to flow into the heat medium bypass circuit 13.
- FIG. 7 is a table showing control of the heat medium flow rate adjustment valve 32 and the refrigerant flow rate adjustment valve 34 of the air conditioning system 1 according to Embodiment 2 of the present invention.
- the determination unit 61 determines whether the heat medium temperature detected by the heat medium temperature detection unit 51 is higher than the supply air temperature detected by the supply air temperature detection unit 53 during the heating operation. .
- the valve adjustment unit 62 closes the heat medium flow rate adjustment valve 32. Thereby, all of the heat medium flowing through the heat medium circuit 12 flows through the heat medium bypass circuit 13. Therefore, since the amount of heat that moves from the heat medium to the supply air increases, the temperature of the air supplied from the supply port 46 to the conditioned space 8 can be increased.
- the valve adjustment unit 62 heats the heat medium flow rate adjustment valve 32. open. Thereby, a part of the heat medium flowing in the heat medium circuit 12 flows to the heat medium bypass circuit 13, and the remaining part does not flow to the heat medium bypass circuit 13. Accordingly, since the amount of heat transferred from the supply air to the heat medium is reduced, the temperature of the air supplied from the supply port 46 to the air-conditioned space 8 in the ventilation device 6 can be suppressed.
- the determination unit 61 determines whether the refrigerant temperature detected by the heating sensor 52b is lower than the exhaust temperature detected by the exhaust temperature detection unit 54 during the heating operation. When the determination unit 61 determines that the refrigerant temperature is lower than the exhaust gas temperature, the valve adjustment unit 62 closes the refrigerant flow rate adjustment valve 34. As a result, all of the refrigerant flowing through the refrigerant circuit 11 flows through the refrigerant bypass circuit 14. Accordingly, since the amount of warm heat that moves from the exhaust to the refrigerant increases, evaporation can be assisted.
- the rotation speed of the heat source blower 22a can also be reduced.
- the valve adjusting means 62 opens the refrigerant flow rate adjusting valve 34 when the refrigerant temperature detected by the heating sensor 52b is equal to or higher than the exhaust temperature detected by the exhaust temperature detecting unit 54 during the heating operation. Thereby, a part of the refrigerant flowing in the refrigerant circuit 11 flows into the refrigerant bypass circuit 14, and the remaining part does not flow into the refrigerant bypass circuit 14. Therefore, the amount of warm heat moving from the refrigerant to the exhaust is reduced, so that the degree of superheat can be maintained.
- the heat medium bypass heat exchanger 31 exchanges heat between the heat medium flowing into the cascade heat exchanger 24 and the outside air supplied to the air-conditioned space 8, so that hot air is supplied to the supply air during the heating operation.
- the heating operation of the circuit 11 can be assisted.
- the comfort of the air-conditioned space 8 after the supply of air can be improved by exhaust heat recovery.
- the valve adjustment unit 62 closes the heating medium flow rate adjustment valve 32. Thereby, all of the heat medium flowing through the heat medium circuit 12 flows through the heat medium bypass circuit 13. Therefore, since the amount of heat that moves from the heat medium to the supply air increases, the temperature of the air supplied from the supply port 46 to the conditioned space 8 can be increased. Further, the valve adjustment means 62 closes the refrigerant flow rate adjustment valve 34 when it is determined that the refrigerant temperature is lower than the exhaust temperature during the heating operation. As a result, all of the refrigerant flowing through the refrigerant circuit 11 flows through the refrigerant bypass circuit 14. Accordingly, since the amount of warm heat that moves from the exhaust to the refrigerant increases, evaporation can be assisted.
- FIG. FIG. 8 is a table showing control of the air conditioning system 1 according to Embodiment 3 of the present invention.
- the third embodiment is control in the case of performing cooling mainly under low outside air, such as cooling of a computer room in winter, and is different from the first embodiment in that control is performed based on the outside air temperature.
- the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
- the control unit 50 stops the heat source unit 4 including the compressor 21 when the temperature of the outside air detected by the outside air temperature detection unit 55 is lower than the outside air temperature threshold. At that time, the control unit 50 continues the operation of the pump 25.
- the heat medium conveyed by the pump 25 is cooled by the heat medium bypass heat exchanger 31 because it is heat-exchanged with the low-temperature outside air. Therefore, the air-conditioned space 8 can be cooled without operating the heat source unit 4.
- the control unit 50 continues the operation of the heat source unit 4 including the compressor 21 when the temperature of the outside air detected by the outside air temperature detection unit 55 is equal to or higher than the outside air temperature threshold.
- FIG. 9 is a table showing control of the heat medium flow control valve 32 of the air conditioning system 1 according to Embodiment 3 of the present invention.
- the determination unit 61 determines whether the heat medium temperature detected by the heat medium temperature detection unit 51 is higher than the supply air temperature detected by the supply air temperature detection unit 53 during the cooling operation. .
- the valve adjustment unit 62 closes the heat medium flow rate adjustment valve 32. Thereby, all of the heat medium flowing through the heat medium circuit 12 flows through the heat medium bypass circuit 13.
- the heat medium can be cooled. Therefore, even if the compressor 21 is stopped and the cooling amount in the cascade heat exchanger 24 is reduced, the heat medium is cooled and the cooling operation can be performed. Thereby, an energy-saving driving
- FIG. 10 is a circuit diagram showing an air conditioning system 100 according to Embodiment 4 of the present invention.
- the fourth embodiment is different from the first embodiment in that an air supply side drain pan 161, an exhaust side drain pan 162, a hose 163, and a vaporization filter 164 are provided.
- the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
- the supply-side drain pan 161 is installed below the heat medium bypass heat exchanger 31 and receives condensed water adhering to the heat medium bypass heat exchanger 31.
- the exhaust side drain pan 162 is installed below the refrigerant bypass heat exchanger 33 and receives condensed water adhering to the refrigerant bypass heat exchanger 33.
- the hose 163 connects the exhaust side drain pan 162 and the vaporization filter 164.
- the vaporization filter 164 is provided between the total heat exchanger 42 and the intake fan, and vaporizes moisture.
- the refrigerant is cooled by exchanging heat with the refrigerant in the refrigerant bypass heat exchanger 33, and moisture contained in the exhaust is condensed.
- the condensed water flows down from the refrigerant bypass heat exchanger 33 to the exhaust side drain pan 162.
- the condensed water received by the exhaust side drain pan 162 reaches the vaporization filter 164 through the hose 163.
- Water is vaporized by the vaporization filter 164 and taken into the supply air that has passed through the vaporization filter 164.
- the air-conditioned space 8 can be humidified without requiring water supply during heating operation. For example, in a greenhouse where tropical plants and the like are cultivated, heating is performed even in summer. In such a heating application in summer, when the heat medium temperature is lower than the supply air temperature, the valve adjustment means 62 closes the heat medium flow rate adjustment valve 32 to stop the compressor 21 as in the third embodiment.
- the air-conditioned space 8 can be heated.
- FIG. 11 is a table showing control of the heat medium flow rate adjustment valve 32 and the refrigerant flow rate adjustment valve 34 of the air conditioning system 100 according to Embodiment 4 of the present invention.
- the determination unit 61 determines whether the refrigerant temperature detected by the heating sensor 52 b is lower than the exhaust temperature detected by the exhaust temperature detection unit 54 during the heating operation.
- the valve adjustment unit 62 closes the refrigerant flow rate adjustment valve 34.
- the amount of warm heat moving from the exhaust to the refrigerant increases, so that evaporation can be assisted.
- condensed water accumulates in the exhaust side drain pan 162, and the condensed water flows to the vaporization filter 164 through the hose 163. That is, moisture can be supplied to the vaporization filter 164.
- the determination unit 61 determines whether the heat medium temperature detected by the heat medium temperature detection unit 51 is higher than the supply air temperature detected by the supply air temperature detection unit 53 during the heating operation.
- the valve adjustment unit 62 closes the heat medium flow rate adjustment valve 32.
- the amount of heat transferred from the heat medium to the supply air increases, so that the temperature of the air supplied from the supply port 46 to the conditioned space 8 can be increased.
- the air supplied to the air-conditioned space 8 from the air supply port 46 receives water from the vaporization filter 164 supplied with the moisture condensed in the refrigerant bypass heat exchanger 33. Thereby, humidified warm air can be supplied to the air-conditioned space 8.
- the dew condensation accumulated in the exhaust side drain pan 162 increases, and the moisture content of the vaporization filter 164 increases, so that the humidification effect is further enhanced.
- the heat medium temperature is considerably higher than the supply air temperature
- the amount of water that the supply air receives from the vaporization filter 164 increases, so that the humidification effect is enhanced.
- the moisture contained in the outside air is transferred to the return air by the total heat exchanger 42 and the relative humidity of the exhaust gas is increased, the humidification effect is further enhanced.
- the outside air is warmed to return air by the total heat exchanger 42 and the relative humidity of the supply air is lowered, the humidification effect is further enhanced.
- the supply air is cooled by heat exchange with the heat medium in the heat medium bypass heat exchanger 31, and moisture contained in the supply air is condensed.
- the condensed water flows down from the heat medium bypass heat exchanger 31 to the supply side drain pan 161. Thereby, it can suppress that the humidity of the air-conditioning space 8 by supply air rises at the time of air_conditionaing
- FIG. 12 is a table showing control of the heat medium flow control valve 32 of the air conditioning system 100 according to Embodiment 4 of the present invention.
- the determination unit 61 determines whether the heat medium temperature detected by the heat medium temperature detection unit 51 is lower than the supply air temperature detected by the supply air temperature detection unit 53 during the cooling operation. .
- the valve adjustment unit 62 closes the heat medium flow rate adjustment valve 32. Thereby, all of the heat medium flowing through the heat medium circuit 12 flows through the heat medium bypass circuit 13.
- the temperature of the air supplied from the supply port 46 to the air-conditioned space 8 in the ventilation device 6 can be lowered.
- dehumidified cold air is sent to the air-conditioned space 8.
- the dehumidifying effect is enhanced.
- the supply air temperature is considerably higher than the heat medium temperature, the dehumidifying effect is enhanced.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air Conditioning Control Device (AREA)
- Central Air Conditioning (AREA)
- Air Humidification (AREA)
Abstract
空気調和装置は、ポンプ(25)、カスケード熱交換器(24)及び空調空間に流れる空気と熱媒体とを熱交換する利用側熱交換器(26)が熱媒体配管により接続され、熱媒体が流れる熱媒体回路(12)と、利用側熱交換器から流出する熱媒体が流れる熱媒体バイパス回路(13)と、熱媒体バイパス回路に設けられ、空調空間に給気される外気と熱媒体とを熱交換する熱媒体バイパス熱交換器(31)と、を備える。
Description
本発明は、空調空間の空気を調整する空気調和装置、空調システム及び熱交換ユニットに関する。
従来、空調空間の空気を調整する空気調和装置と、空調空間の換気を行う換気装置とを備える空調システムが知られている。特許文献1には、冷媒が流れる冷媒回路と、ブラインが流れるブライン回路と、換気装置とが設けられた空気調和機が開示されている。特許文献1は、空調空間から排出されて非空調空間に排気される還気と冷媒とを熱交換し、排気される排熱を回収している。また、特許文献1は、ブライン回路に流れるブラインと、空調空間に給気される外気と還気とを熱交換する熱交換器を備えている。従来の空調システムは、空気調和装置と換気装置とが、別々の装置であり且つ別々の制御を行っている。
特許文献1に開示された空気調和機は、ブライン回路に流れるブラインと、空調空間に給気される外気と還気とを熱交換する熱交換器を備えている。このように、換気に利用される空気調和機において、熱媒体回路に流れる熱媒体の排熱を回収且つ活用することが望まれている。
本発明は、上記のような課題を解決するためになされたもので、熱媒体回路に流れる熱媒体の排熱を回収する空気調和装置、空調システム及び熱交換ユニットを提供するものである。
本発明に係る空気調和装置は、ポンプ、カスケード熱交換器及び空調空間に流れる空気と熱媒体とを熱交換する利用側熱交換器が熱媒体配管により接続され、熱媒体が流れる熱媒体回路と、利用側熱交換器から流出する熱媒体が流れる熱媒体バイパス回路と、熱媒体バイパス回路に設けられ、空調空間に給気される外気と熱媒体とを熱交換する熱媒体バイパス熱交換器と、を備える。
本発明によれば、利用側熱交換器の下流側に設けられた熱媒体バイパス回路において、熱媒体バイパス熱交換器が、利用側熱交換器で熱交換された後の熱媒体と、空調空間に給気される外気とを熱交換する。このように、利用側熱交換器で熱交換された後の熱媒体の排熱を回収して、回収した排熱を空調空間への給気に利用することができる。
実施の形態1.
以下、本発明に係る空気調和装置、空調システム及び熱交換ユニットの実施の形態について、図面を参照しながら説明する。図1は、本発明の実施の形態1に係る空調システム1を示す模式図である。図1に示すように、空調システム1は、空調空間8の空気を調整する空気調和装置2と、空調空間8を換気する換気装置6と、空気調和装置2及び換気装置6を制御する制御部50とを備えている。空気調和装置2は、例えば室外である非空調空間9に設けられた熱源ユニット4と、例えば天井裏空間10に設けられた熱交換ユニット3と、空調空間8を冷房又は暖房する利用側ユニット5とを備えている。
以下、本発明に係る空気調和装置、空調システム及び熱交換ユニットの実施の形態について、図面を参照しながら説明する。図1は、本発明の実施の形態1に係る空調システム1を示す模式図である。図1に示すように、空調システム1は、空調空間8の空気を調整する空気調和装置2と、空調空間8を換気する換気装置6と、空気調和装置2及び換気装置6を制御する制御部50とを備えている。空気調和装置2は、例えば室外である非空調空間9に設けられた熱源ユニット4と、例えば天井裏空間10に設けられた熱交換ユニット3と、空調空間8を冷房又は暖房する利用側ユニット5とを備えている。
(空気調和装置2)
図2は、本発明の実施の形態1に係る空調システム1を示す回路図である。図2に示すように、熱源ユニット4は、圧縮機21と、流路切替装置20と、熱源熱交換器22と、熱源送風機22aと、外気温度検出部55とを有し、熱交換ユニット3に冷媒を供給する。圧縮機21は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出する。流路切替装置20は、圧縮機21から吐出された冷媒が熱源熱交換器22に流れる(図2の実線)かカスケード熱交換器24に流れる(図2の破線)かを切り替えるものであり、これにより、空気調和装置2において冷房運転及び暖房運転のいずれもが行われる。熱源熱交換器22は、例えば外気と冷媒との間で熱交換する。熱源熱交換器22は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。熱源送風機22aは、熱源熱交換器22に室外空気を送る。外気温度検出部55は、外気の温度を検出する。
図2は、本発明の実施の形態1に係る空調システム1を示す回路図である。図2に示すように、熱源ユニット4は、圧縮機21と、流路切替装置20と、熱源熱交換器22と、熱源送風機22aと、外気温度検出部55とを有し、熱交換ユニット3に冷媒を供給する。圧縮機21は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出する。流路切替装置20は、圧縮機21から吐出された冷媒が熱源熱交換器22に流れる(図2の実線)かカスケード熱交換器24に流れる(図2の破線)かを切り替えるものであり、これにより、空気調和装置2において冷房運転及び暖房運転のいずれもが行われる。熱源熱交換器22は、例えば外気と冷媒との間で熱交換する。熱源熱交換器22は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。熱源送風機22aは、熱源熱交換器22に室外空気を送る。外気温度検出部55は、外気の温度を検出する。
利用側ユニット5は、利用側熱交換器26と、利用側送風機26aとを有し、熱交換ユニット3から供給された熱媒体によって空調空間8の空気を調整する。利用側熱交換器26は、例えば室内空気と熱媒体との間で熱交換するものである。利用側熱交換器26は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。利用側送風機26aは、利用側熱交換器26に室内空気を送る。
熱交換ユニット3は、冷媒配管口11aにおいて熱源ユニット4に接続され、熱媒体配管口12aにおいて利用側ユニット5に接続される。熱交換ユニット3は、ポンプ25と、カスケード熱交換器24と、膨張部23と、熱媒体バイパス回路13と、熱媒体流量調整弁32とを有する。なお、膨張部23は、熱源ユニット4に設けられてもよい。また、ポンプ25は、熱交換ユニット3とは別のポンプユニットに設けられてもよい。また、熱交換ユニット3は、冷媒バイパス回路14と、冷媒流量調整弁34と、熱媒体温度検出部51と、冷媒温度検出部52とを有する。
ポンプ25は、熱媒体を搬送する。カスケード熱交換器24は、冷媒と熱媒体との間で熱交換する。膨張部23は、冷媒を減圧して膨張する減圧弁又は膨張弁であり、例えば開度が調整される電子式膨張弁からなる。熱媒体バイパス回路13は、カスケード熱交換器24とポンプ25との間の熱媒体配管をバイパスし、ポンプ25から搬送された熱媒体の一部が流れる。熱媒体流量調整弁32は、熱媒体回路12に設けられ、カスケード熱交換器24に流入する熱媒体の流量を調整する。熱媒体温度検出部51は、熱媒体回路12に設けられ、ポンプ25から搬送された熱媒体の温度を検出する。
冷媒バイパス回路14は、カスケード熱交換器24と圧縮機21との間の冷媒配管をバイパスし、カスケード熱交換器24から流出する冷媒の一部が流れる。冷媒流量調整弁34は、冷媒回路11に設けられ、カスケード熱交換器24から流出する冷媒の流量を調整する。冷媒温度検出部52は、冷媒回路11に設けられ、カスケード熱交換器24から流出する冷媒の温度を検出する。本実施の形態1では、冷媒温度検出部52は、冷房用センサ52a及び暖房用センサ52bからなる。冷房用センサ52aは、熱源熱交換器22と冷媒流量調整弁34との間に設けられ、冷房運転時における制御に用いられる。暖房用センサ52bは、膨張部23と冷媒流量調整弁34との間に設けられ、暖房運転時における制御に用いられる。このように、冷媒温度検出部52は、冷房運転及び暖房運転のそれぞれにおいて、冷媒バイパス回路14の上流に設けられていることが好ましい。なお、冷媒温度検出部52は、1個としてもよい。
ここで、圧縮機21、熱源熱交換器22、膨張部23及びカスケード熱交換器24が冷媒配管により接続されて冷媒回路11が構成されている。また、ポンプ25、カスケード熱交換器24及び利用側熱交換器26が熱媒体配管により接続されて熱媒体回路12が構成されている。
(換気装置6)
換気装置6は、空調空間8の換気を行うものであり、ケーシング41と、全熱交換器42と、給気ファン43と、排気ファン44と、給気温度検出部53と、排気温度検出部54と、熱媒体バイパス熱交換器31と、冷媒バイパス熱交換器33とを備えている。ケーシング41には、外気を取り込む外気口45と、外気口45から取り込まれた外気を空調空間8に取り込む給気口46と、空調空間8の空気を排出する還気口47と、還気口47から排出された空気を空調空間8に排気する排気口48とが形成されている。
換気装置6は、空調空間8の換気を行うものであり、ケーシング41と、全熱交換器42と、給気ファン43と、排気ファン44と、給気温度検出部53と、排気温度検出部54と、熱媒体バイパス熱交換器31と、冷媒バイパス熱交換器33とを備えている。ケーシング41には、外気を取り込む外気口45と、外気口45から取り込まれた外気を空調空間8に取り込む給気口46と、空調空間8の空気を排出する還気口47と、還気口47から排出された空気を空調空間8に排気する排気口48とが形成されている。
全熱交換器42は、ケーシング41内に設けられ、還気と外気との間で熱交換する。給気ファン43は、外気口45から外気を取り込み、外気を給気口46から空調空間8に送る。排気ファン44は、還気口47から空調空間8の空気を取り込み、空気を排気口48から非空調空間9に排出する。給気温度検出部53は、空調空間8への給気温度を検出する。排気温度検出部54は、空調空間8からの排気温度を検出する。熱媒体バイパス熱交換器31は、熱媒体バイパス回路13に設けられ、空調空間8に供給される外気と熱媒体との間で熱交換する。冷媒バイパス熱交換器33は、冷媒バイパス回路14に設けられ、空調空間8から排出されて非空調空間9に排気される還気と冷媒との間で熱交換する。
熱媒体流量調整弁32が開かれると、ポンプ25から搬送された熱媒体は、熱媒体回路12を通ってカスケード熱交換器24に流入する熱媒体と、熱媒体バイパス回路13を通って熱媒体バイパス熱交換器31に流入する熱媒体とに分岐する。一方、熱媒体流量調整弁32が閉じられると、ポンプ25から搬送された熱媒体は、熱媒体回路12における熱媒体流量調整弁32が設けられている部分を通らず、熱媒体バイパス回路13を通って熱媒体バイパス熱交換器31に流入する。
なお、本実施の形態1では、熱媒体流量調整弁32の開閉にかかわらず、熱媒体が熱媒体バイパス回路13に流入するように構成されているが、これに限らない。例えば、熱媒体流量調整弁32が熱媒体回路12及び熱媒体バイパス回路13のいずれにも設けられることによって、熱媒体が熱媒体回路12にのみ流れるか熱媒体バイパス回路13にのみ流れるかが選択されてもよい。熱媒体は、水でもよいしブラインでもよい。
冷媒流量調整弁34が開かれると、膨張部23から流出した冷媒は、冷媒回路11を通って熱源熱交換器22に流入する冷媒と、冷媒バイパス回路14を通って冷媒バイパス熱交換器33に流入する冷媒とに分岐する。一方、冷媒流量調整弁34が閉じられると、膨張部23から流出した冷媒は、冷媒回路11における冷媒流量調整弁34が設けられている部分を通らず、冷媒バイパス回路14を通って冷媒バイパス熱交換器33に流入する。
なお、本実施の形態1では、冷媒流量調整弁34の開閉にかかわらず、冷媒が冷媒バイパス回路14に流入するように構成されているが、これに限らない。例えば、冷媒流量調整弁34が冷媒回路11及び冷媒バイパス回路14のいずれにも設けられることによって、冷媒が冷媒回路11にのみ流れるか冷媒バイパス回路14にのみ流れるかが選択されてもよい。
図3は、変形例に係る空調システム1を示す回路図である。変形例では、図3に示すように、熱媒体流量調整弁32は、三方弁32a及び三方弁32bからなる。三方弁32aは、ポンプ25の出口側と熱媒体バイパス回路13との接続箇所に設けられており、熱媒体が熱媒体バイパス回路13に流れるか否かを切り替える。三方弁32bは、熱媒体バイパス回路13とカスケード熱交換器24の入口側との接続箇所に設けられている。三方弁32a及び三方弁32bが切り替えられることによって、熱媒体バイパス回路13に熱媒体が流れるか否かを一義的に決定することができる。
冷媒流量調整弁34は、三方弁34a及び三方弁34bからなる。三方弁34aは、膨張部23と冷媒バイパス回路14との接続箇所に設けられており、冷媒が冷媒バイパス回路14に流れるか否かを切り替える。三方弁34bは、冷媒バイパス回路14と冷房時の熱源熱交換器22の出口側との接続箇所に設けられている。三方弁34a及び三方弁34bが切り替えられることによって、冷媒バイパス回路14に冷媒が流れるか否かを一義的に決定することができる。
(空気調和装置2の動作)
次に、空気調和装置2の動作について説明する。本実施の形態1では、空気調和装置2は、冷房運転を行う。先ず、冷媒回路11における冷媒の流れについて説明する。冷房運転において、圧縮機21に吸入された冷媒は、圧縮機21によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機21から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置20を通って、凝縮器として作用する熱源熱交換器22に流入し、熱源熱交換器22において、熱源送風機22aによって送られる外気と熱交換されて凝縮して液化する。凝縮された液状態の冷媒は、膨張部23に流入し、膨張部23において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。
次に、空気調和装置2の動作について説明する。本実施の形態1では、空気調和装置2は、冷房運転を行う。先ず、冷媒回路11における冷媒の流れについて説明する。冷房運転において、圧縮機21に吸入された冷媒は、圧縮機21によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機21から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置20を通って、凝縮器として作用する熱源熱交換器22に流入し、熱源熱交換器22において、熱源送風機22aによって送られる外気と熱交換されて凝縮して液化する。凝縮された液状態の冷媒は、膨張部23に流入し、膨張部23において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。
そして、気液二相状態の冷媒は、蒸発器として作用するカスケード熱交換器24に流入し、カスケード熱交換器24において、熱媒体と熱交換されて蒸発してガス化する。このとき、熱媒体が冷やされる。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置20を通って、圧縮機21に吸入される。ここで、熱源熱交換器22から流出した冷媒の一部は、冷媒バイパス回路14に流入し、冷媒バイパス熱交換器33に至る。冷媒は、冷媒バイパス熱交換器33において排気と熱交換され、再び冷媒回路11に戻る。なお、図3に示すように、冷媒流量調整弁34が、三方弁34a及び三方弁34bからなる場合、冷媒は、冷媒バイパス回路14に流れないように制御することが可能である。
次に、熱媒体回路12における熱媒体の流れについて説明する。ポンプ25に搬送される熱媒体は、カスケード熱交換器24に流入し、カスケード熱交換器24において、冷媒と熱交換されて冷却される。カスケード熱交換器24から流出した熱媒体は、利用側熱交換器26に流入し、利用側熱交換器26において、利用側送風機26aによって送られる空調空間8の空気と熱交換されて加熱される。このとき、空調空間8の空気が冷却されて冷房が行われる。利用側熱交換器26から流出した熱媒体は、ポンプ25に吸入される。ここで、ポンプ25に搬送される熱媒体の一部は、熱媒体バイパス回路13に流入し、熱媒体バイパス熱交換器31に至る。熱媒体は、熱媒体バイパス熱交換器31において給気と熱交換され、再び熱媒体回路12に戻る。なお、図3に示すように、熱媒体流量調整弁32が、三方弁32a及び三方弁32bからなる場合、熱媒体は、熱媒体バイパス回路13に流れないように制御することが可能である。
(換気装置6の動作)
次に、換気装置6の動作について説明する。給気ファン43が動作すると、外気口45から外気が取り込まれ、全熱交換器42と熱媒体バイパス熱交換器31とを介して給気口46から空調空間8に給気される。排気ファン44が動作すると、還気口47から空調空間8の空気が取り込まれ、全熱交換器42と冷媒バイパス熱交換器33とを介して排気口48から非空調空間9に排気される。外気と還気とは、全熱交換器42において熱交換されて、それぞれ給気及び排気される。
次に、換気装置6の動作について説明する。給気ファン43が動作すると、外気口45から外気が取り込まれ、全熱交換器42と熱媒体バイパス熱交換器31とを介して給気口46から空調空間8に給気される。排気ファン44が動作すると、還気口47から空調空間8の空気が取り込まれ、全熱交換器42と冷媒バイパス熱交換器33とを介して排気口48から非空調空間9に排気される。外気と還気とは、全熱交換器42において熱交換されて、それぞれ給気及び排気される。
(制御部50)
図4は、本発明の実施の形態1に係る制御部50を示すブロック図である。制御部50は、空調システム1の動作を制御するものであり、例えばマイコン等で構成されている。制御部50は、空気調和装置2と換気装置6とを連動する制御を行う。図2に示すように、制御部50は、判定手段61及び弁調整手段62を有している。
図4は、本発明の実施の形態1に係る制御部50を示すブロック図である。制御部50は、空調システム1の動作を制御するものであり、例えばマイコン等で構成されている。制御部50は、空気調和装置2と換気装置6とを連動する制御を行う。図2に示すように、制御部50は、判定手段61及び弁調整手段62を有している。
(熱媒体流量調整弁32の制御)
図5は、本発明の実施の形態1に係る空調システム1の熱媒体流量調整弁32及び冷媒流量調整弁34の制御を示す表である。先ず、空気調和装置2の熱媒体回路12と、換気装置6の給気側との連動制御について説明する。図5に示すように、判定手段61は、冷房運転時に、熱媒体温度検出部51によって検出された熱媒体温度が、給気温度検出部53によって検出された給気温度より低いかを判定する。弁調整手段62は、判定手段61によって熱媒体温度が給気温度より低いと判定された場合、熱媒体流量調整弁32を閉じる。これにより、熱媒体回路12に流れる熱媒体の全てが熱媒体バイパス回路13に流れる。従って、給気から熱媒体に移動する温熱の量が増えるため、換気装置6において給気口46から空調空間8に給気される空気の温度を下げることができる。
図5は、本発明の実施の形態1に係る空調システム1の熱媒体流量調整弁32及び冷媒流量調整弁34の制御を示す表である。先ず、空気調和装置2の熱媒体回路12と、換気装置6の給気側との連動制御について説明する。図5に示すように、判定手段61は、冷房運転時に、熱媒体温度検出部51によって検出された熱媒体温度が、給気温度検出部53によって検出された給気温度より低いかを判定する。弁調整手段62は、判定手段61によって熱媒体温度が給気温度より低いと判定された場合、熱媒体流量調整弁32を閉じる。これにより、熱媒体回路12に流れる熱媒体の全てが熱媒体バイパス回路13に流れる。従って、給気から熱媒体に移動する温熱の量が増えるため、換気装置6において給気口46から空調空間8に給気される空気の温度を下げることができる。
また、弁調整手段62は、冷房運転時に、熱媒体温度検出部51によって検出された熱媒体温度が、給気温度検出部53によって検出された給気温度以上の場合、熱媒体流量調整弁32を開く。これにより、熱媒体回路12に流れる熱媒体の一部が熱媒体バイパス回路13に流れ、残りの一部は熱媒体バイパス回路13に流れない。従って、熱媒体から給気に移動する温熱の量が減るため、換気装置6において給気口46から空調空間8に給気される空気の温度が上がることを抑制することができる。なお、熱媒体流量調整弁32の代わりに三方弁32a及び三方弁32bを用いた場合、熱媒体が熱媒体バイパス回路13に流れないように制御することができるため、熱媒体から給気に移動する温熱の量を更に低減することができる。
(冷媒流量調整弁34の制御)
空気調和装置2の冷媒回路11と、換気装置6の排気側との連動制御について説明する。図5に示すように、判定手段61は、冷房運転時に、冷房用センサ52aによって検出された冷媒温度が、排気温度検出部54によって検出された排気温度より高いかを判定する。弁調整手段62は、判定手段61によって冷媒温度が排気温度より高いと判定された場合、冷媒流量調整弁34を閉じる。これにより、冷媒回路11に流れる冷媒の全てが冷媒バイパス回路14に流れる。従って、冷媒から排気に移動する温熱の量が増えるため、過冷却することができる。また、弁調整手段62は、冷房運転時に、冷房用センサ52aによって検出された冷媒温度が、排気温度検出部54によって検出された排気温度以下の場合、冷媒流量調整弁34を開く。これにより、冷媒回路11に流れる冷媒の一部が冷媒バイパス回路14に流れ、残りの一部は冷媒バイパス回路14に流れない。従って、排気から冷媒に移動する温熱の量が減るため、過冷却度を維持することができる。なお、冷媒流量調整弁34の代わりに三方弁34a及び三方弁34bを用いた場合、冷媒が冷媒バイパス回路14に流れないように制御することができるため、排気から冷媒に移動する温熱の量を更に低減することができる。
空気調和装置2の冷媒回路11と、換気装置6の排気側との連動制御について説明する。図5に示すように、判定手段61は、冷房運転時に、冷房用センサ52aによって検出された冷媒温度が、排気温度検出部54によって検出された排気温度より高いかを判定する。弁調整手段62は、判定手段61によって冷媒温度が排気温度より高いと判定された場合、冷媒流量調整弁34を閉じる。これにより、冷媒回路11に流れる冷媒の全てが冷媒バイパス回路14に流れる。従って、冷媒から排気に移動する温熱の量が増えるため、過冷却することができる。また、弁調整手段62は、冷房運転時に、冷房用センサ52aによって検出された冷媒温度が、排気温度検出部54によって検出された排気温度以下の場合、冷媒流量調整弁34を開く。これにより、冷媒回路11に流れる冷媒の一部が冷媒バイパス回路14に流れ、残りの一部は冷媒バイパス回路14に流れない。従って、排気から冷媒に移動する温熱の量が減るため、過冷却度を維持することができる。なお、冷媒流量調整弁34の代わりに三方弁34a及び三方弁34bを用いた場合、冷媒が冷媒バイパス回路14に流れないように制御することができるため、排気から冷媒に移動する温熱の量を更に低減することができる。
本実施の形態1によれば、利用側熱交換器26の下流側に設けられた熱媒体バイパス回路13において、熱媒体バイパス熱交換器31が、利用側熱交換器26で熱交換された後の熱媒体と、空調空間8に給気される外気とを熱交換する。このように、本実施の形態1は、利用側熱交換器26で熱交換された後の熱媒体の排熱を回収して、回収した排熱を空調空間8への給気に利用することができる。また、熱媒体バイパス熱交換器31は、カスケード熱交換器24に流入する熱媒体と、空調空間8に給気される外気とを熱交換するため、冷房運転時には給気に冷風を供給して冷媒回路11の冷房運転の補助をすることができる。このように、排熱回収によって、給気後の空調空間8の快適性を向上させることができる。
また、本実施の形態1のように、冷媒回路11と冷媒バイパス回路14と冷媒バイパス熱交換器33とを有している場合、冷媒バイパス熱交換器33は、非空調空間9に排気される還気と、熱源熱交換器22で熱交換された後の冷媒とを熱交換する。このように、本実施の形態1は、非空調空間9に排気される空気の排熱を回収して、冷媒回路11の冷凍サイクルに排熱を利用することができる。
弁調整手段62は、冷房運転時に、熱媒体温度が給気温度より低いと判定された場合、熱媒体流量調整弁32を閉じる。これにより、熱媒体回路12に流れる熱媒体の全てが熱媒体バイパス回路13に流れる。従って、給気から熱媒体に移動する温熱の量が増えるため、換気装置6において給気口46から空調空間8に給気される空気の温度を下げることができる。また、弁調整手段62は、冷房運転時に、冷媒温度が排気温度より高いと判定された場合、冷媒流量調整弁34を閉じる。これにより、冷媒回路11に流れる冷媒の全てが冷媒バイパス回路14に流れる。従って、冷媒から排気に移動する温熱の量が増えるため、過冷却することができる。
従来、全熱交換器を有する換気装置において、全熱交換器において熱交換された後の排気の排熱を回収するものはない。これに対し、本実施の形態1では、全熱交換器42において熱交換された後の排気の排熱を空調に利用している。なお、本実施の形態1では、空気調和装置2で空気調和する空間と換気装置6で給気及び排気する空間とは、同一空間であるが、別の空間でもよい。別の空間である場合、それぞれの空間のいずれもが暖められるか冷やされるかされるときに、本実施の形態1と同様の効果を奏する。
実施の形態2.
図6は、本発明の実施の形態2に係る空調システム1を示す回路図である。本実施の形態2は、暖房運転が行われる場合について例示するものであり、本実施の形態2の回路図は、実施の形態1の回路図と同様である。
図6は、本発明の実施の形態2に係る空調システム1を示す回路図である。本実施の形態2は、暖房運転が行われる場合について例示するものであり、本実施の形態2の回路図は、実施の形態1の回路図と同様である。
(空気調和装置2の動作)
次に、空気調和装置2の動作について説明する。本実施の形態2では、空気調和装置2は、暖房運転を行う。先ず、冷媒回路11における冷媒の流れについて説明する。圧縮機21に吸入された冷媒は、圧縮機21によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機21から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置20を通って、凝縮器として作用するカスケード熱交換器24に流入し、カスケード熱交換器24において、熱媒体と熱交換されて凝縮して液化する。
次に、空気調和装置2の動作について説明する。本実施の形態2では、空気調和装置2は、暖房運転を行う。先ず、冷媒回路11における冷媒の流れについて説明する。圧縮機21に吸入された冷媒は、圧縮機21によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機21から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置20を通って、凝縮器として作用するカスケード熱交換器24に流入し、カスケード熱交換器24において、熱媒体と熱交換されて凝縮して液化する。
凝縮された液状態の冷媒は、膨張部23に流入し、膨張部23において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する熱源熱交換器22に流入し、熱源熱交換器22において、熱源送風機22aによって送られる外気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置20を通って、圧縮機21に吸入される。ここで、圧縮機21から吐出された冷媒の一部は、冷媒バイパス回路14に流入し、冷媒バイパス熱交換器33に至る。冷媒は、冷媒バイパス熱交換器33において排気と熱交換され、再び冷媒回路11に戻る。なお、図3に示すように、冷媒流量調整弁34が、三方弁34a及び三方弁34bからなる場合、冷媒は、冷媒バイパス回路14に流れないように制御することが可能である。
次に、熱媒体回路12における熱媒体の流れについて説明する。ポンプ25に搬送される熱媒体は、カスケード熱交換器24に流入し、カスケード熱交換器24において、冷媒と熱交換されて加熱される。カスケード熱交換器24から流出した熱媒体は、利用側熱交換器26に流入し、利用側熱交換器26において、利用側送風機26aによって送られる空調空間8の空気と熱交換されて冷却される。このとき、空調空間8の空気が加熱されて暖房が行われる。利用側熱交換器26から流出した熱媒体は、ポンプ25に吸入される。ここで、ポンプ25に搬送される熱媒体の一部は、熱媒体バイパス回路13に流入し、熱媒体バイパス熱交換器31に至る。熱媒体は、熱媒体バイパス熱交換器31において給気と熱交換され、再び熱媒体回路12に戻る。なお、図3に示すように、熱媒体流量調整弁32が、三方弁32a及び三方弁32bからなる場合、熱媒体は、熱媒体バイパス回路13に流れないように制御することが可能である。
(熱媒体流量調整弁32の制御)
図7は、本発明の実施の形態2に係る空調システム1の熱媒体流量調整弁32及び冷媒流量調整弁34の制御を示す表である。次に、熱媒体流量調整弁32の制御について説明する。図7に示すように、判定手段61は、暖房運転時に、熱媒体温度検出部51によって検出された熱媒体温度が、給気温度検出部53によって検出された給気温度より高いかを判定する。弁調整手段62は、判定手段61によって熱媒体温度が給気温度より高いと判定された場合、熱媒体流量調整弁32を閉じる。これにより、熱媒体回路12に流れる熱媒体の全てが熱媒体バイパス回路13に流れる。従って、熱媒体から給気に移動する温熱の量が増えるため、給気口46から空調空間8に給気される空気の温度を上げることができる。
図7は、本発明の実施の形態2に係る空調システム1の熱媒体流量調整弁32及び冷媒流量調整弁34の制御を示す表である。次に、熱媒体流量調整弁32の制御について説明する。図7に示すように、判定手段61は、暖房運転時に、熱媒体温度検出部51によって検出された熱媒体温度が、給気温度検出部53によって検出された給気温度より高いかを判定する。弁調整手段62は、判定手段61によって熱媒体温度が給気温度より高いと判定された場合、熱媒体流量調整弁32を閉じる。これにより、熱媒体回路12に流れる熱媒体の全てが熱媒体バイパス回路13に流れる。従って、熱媒体から給気に移動する温熱の量が増えるため、給気口46から空調空間8に給気される空気の温度を上げることができる。
また、弁調整手段62は、暖房運転時に、熱媒体温度検出部51によって検出された熱媒体温度が、給気温度検出部53によって検出された給気温度以下の場合、熱媒体流量調整弁32を開く。これにより、熱媒体回路12に流れる熱媒体の一部が熱媒体バイパス回路13に流れ、残りの一部は熱媒体バイパス回路13に流れない。従って、給気から熱媒体に移動する温熱の量が減るため、換気装置6において給気口46から空調空間8に給気される空気の温度が下がることを抑制することができる。
(冷媒流量調整弁34の制御)
次に、冷媒流量調整弁34の制御について説明する。判定手段61は、暖房運転時に、暖房用センサ52bによって検出された冷媒温度が、排気温度検出部54によって検出された排気温度より低いかを判定する。弁調整手段62は、判定手段61によって冷媒温度が排気温度より低いと判定された場合、冷媒流量調整弁34を閉じる。これにより、冷媒回路11に流れる冷媒の全てが冷媒バイパス回路14に流れる。従って、排気から冷媒に移動する温熱の量が増えるため、蒸発を補助することができる。また、熱源送風機22aの回転数を低減させることもできる。更に、弁調整手段62は、暖房運転時に、暖房用センサ52bによって検出された冷媒温度が、排気温度検出部54によって検出された排気温度以上の場合、冷媒流量調整弁34を開く。これにより、冷媒回路11に流れる冷媒の一部が冷媒バイパス回路14に流れ、残りの一部は冷媒バイパス回路14に流れない。従って、冷媒から排気に移動する温熱の量が減るため、過熱度を維持することができる。
次に、冷媒流量調整弁34の制御について説明する。判定手段61は、暖房運転時に、暖房用センサ52bによって検出された冷媒温度が、排気温度検出部54によって検出された排気温度より低いかを判定する。弁調整手段62は、判定手段61によって冷媒温度が排気温度より低いと判定された場合、冷媒流量調整弁34を閉じる。これにより、冷媒回路11に流れる冷媒の全てが冷媒バイパス回路14に流れる。従って、排気から冷媒に移動する温熱の量が増えるため、蒸発を補助することができる。また、熱源送風機22aの回転数を低減させることもできる。更に、弁調整手段62は、暖房運転時に、暖房用センサ52bによって検出された冷媒温度が、排気温度検出部54によって検出された排気温度以上の場合、冷媒流量調整弁34を開く。これにより、冷媒回路11に流れる冷媒の一部が冷媒バイパス回路14に流れ、残りの一部は冷媒バイパス回路14に流れない。従って、冷媒から排気に移動する温熱の量が減るため、過熱度を維持することができる。
熱媒体バイパス熱交換器31は、カスケード熱交換器24に流入する熱媒体と、空調空間8に給気される外気とを熱交換するため、暖房運転時には給気に温風を供給して冷媒回路11の暖房運転の補助をすることができる。このように、排熱回収によって、給気後の空調空間8の快適性を向上させることができる。
弁調整手段62は、暖房運転時に、熱媒体温度が給気温度より高いと判定された場合、熱媒体流量調整弁32を閉じる。これにより、熱媒体回路12に流れる熱媒体の全てが熱媒体バイパス回路13に流れる。従って、熱媒体から給気に移動する温熱の量が増えるため、給気口46から空調空間8に給気される空気の温度を上げることができる。また、弁調整手段62は、暖房運転時に、冷媒温度が排気温度より低いと判定された場合、冷媒流量調整弁34を閉じる。これにより、冷媒回路11に流れる冷媒の全てが冷媒バイパス回路14に流れる。従って、排気から冷媒に移動する温熱の量が増えるため、蒸発を補助することができる。
実施の形態3.
図8は、本発明の実施の形態3に係る空調システム1の制御を示す表である。本実施の形態3は、例えば冬季における電算室の冷房等、主に低外気下において冷房を行う場合の制御であり、外気温度による制御を行う点で、実施の形態1と相違する。本実施の形態3では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
図8は、本発明の実施の形態3に係る空調システム1の制御を示す表である。本実施の形態3は、例えば冬季における電算室の冷房等、主に低外気下において冷房を行う場合の制御であり、外気温度による制御を行う点で、実施の形態1と相違する。本実施の形態3では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
図8に示すように、制御部50は、外気温度検出部55によって検出された外気の温度が外気温度閾値より低い場合、圧縮機21を含む熱源ユニット4を停止する。その際、制御部50は、ポンプ25の運転を継続させる。ポンプ25によって搬送される熱媒体は、熱媒体バイパス熱交換器31によって、低温の外気と熱交換されるため、冷却される。従って、熱源ユニット4を動作させることなく、空調空間8の冷房を行うことができる。なお、制御部50は、外気温度検出部55によって検出された外気の温度が外気温度閾値以上の場合、圧縮機21を含む熱源ユニット4の運転を継続させる。
図9は、本発明の実施の形態3に係る空調システム1の熱媒体流量調整弁32の制御を示す表である。次に、本実施の形態3のように低外気における冷房運転時の制御について説明する。図9に示すように、判定手段61は、冷房運転時に、熱媒体温度検出部51によって検出された熱媒体温度が、給気温度検出部53によって検出された給気温度より高いかを判定する。弁調整手段62は、判定手段61によって熱媒体温度が給気温度より高いと判定された場合、熱媒体流量調整弁32を閉じる。これにより、熱媒体回路12に流れる熱媒体の全てが熱媒体バイパス回路13に流れる。従って、熱媒体から給気に移動する温熱の量が増えるため、熱媒体を冷却することができる。よって、圧縮機21が停止されて、カスケード熱交換器24における冷却量が減っても、熱媒体が冷却されて冷房運転を行うことができる。これにより、省エネ運転を実現することができる。なお、圧縮機21が停止した状態で冷房運転が可能か否かは、外気温度に依存するだけではなく、利用側ユニット5の設定温度及び還気の温度等にも依存する。
実施の形態4.
図10は、本発明の実施の形態4に係る空調システム100を示す回路図である。本実施の形態4は、給気側ドレンパン161、排気側ドレンパン162、ホース163及び気化フィルタ164を備えている点で、実施の形態1と相違する。本実施の形態4では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
図10は、本発明の実施の形態4に係る空調システム100を示す回路図である。本実施の形態4は、給気側ドレンパン161、排気側ドレンパン162、ホース163及び気化フィルタ164を備えている点で、実施の形態1と相違する。本実施の形態4では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
図10に示すように、給気側ドレンパン161は、熱媒体バイパス熱交換器31の下方に設置され、熱媒体バイパス熱交換器31に付着する結露水を受ける。排気側ドレンパン162は、冷媒バイパス熱交換器33の下方に設置され、冷媒バイパス熱交換器33に付着する結露水を受ける。ホース163は、排気側ドレンパン162と気化フィルタ164とを接続する。気化フィルタ164は、全熱交換器42と吸気ファンとの間に設けられ、水分を気化する。
暖房運転時、冷媒バイパス熱交換器33において排気が冷媒と熱交換されて冷却され、排気に含まれる水分が結露する。結露水は、冷媒バイパス熱交換器33から排気側ドレンパン162に流れ落ちる。排気側ドレンパン162が受けた結露水は、ホース163を通って気化フィルタ164に至る。水は、気化フィルタ164によって気化され、気化フィルタ164を通った給気に取り込まれる。これにより、暖房運転時に、給水を必要とすることなく、空調空間8を加湿することができる。なお、例えば熱帯植物等を栽培する温室では、夏季でも暖房している。このような夏季の暖房用途において、熱媒体温度が給気温度より低い場合、弁調整手段62が熱媒体流量調整弁32を閉じることによって、実施の形態3と同様に、圧縮機21を停止しても空調空間8を暖房することができる。
図11は、本発明の実施の形態4に係る空調システム100の熱媒体流量調整弁32及び冷媒流量調整弁34の制御を示す表である。ここで、上記の加湿暖房運転時の制御について説明する。図11に示すように、判定手段61は、暖房運転時に、暖房用センサ52bによって検出された冷媒温度が、排気温度検出部54によって検出された排気温度より低いかを判定する。弁調整手段62は、判定手段61によって冷媒温度が排気温度より低いと判定された場合、冷媒流量調整弁34を閉じる。これにより、排気から冷媒に移動する温熱の量が増えるため蒸発を補助することができる。また、排気側ドレンパン162に結露水が溜まり、その結露水はホース163を通って気化フィルタ164に流れる。即ち、気化フィルタ164に水分を供給することができる。
更に、判定手段61は、暖房運転時に、熱媒体温度検出部51によって検出された熱媒体温度が、給気温度検出部53によって検出された給気温度より高いかを判定する。弁調整手段62は、判定手段61によって熱媒体温度が給気温度より高いと判定された場合、熱媒体流量調整弁32を閉じる。これにより、熱媒体から給気に移動する温熱の量が増えるため、給気口46から空調空間8に給気される空気の温度を上げることができる。その際、給気口46から空調空間8に給気される空気は、冷媒バイパス熱交換器33で結露した水分が供給された気化フィルタ164から水を受け取る。これにより、空調空間8に加湿温風を供給することができる。
なお、排気温度が冷媒温度よりもかなり高い場合、排気側ドレンパン162に溜まる結露水が増加し、気化フィルタ164の水分量が増加するため、加湿効果がさらに高まる。また、熱媒体温度が給気温度よりもかなり高い場合、給気が気化フィルタ164から受け取る水が増えるため、加湿効果が高まる。また、全熱交換器42によって、外気に含まれる水分が還気に移り、排気の相対湿度が高くなった場合、加湿効果がさらに高まる。更に、全熱交換器42によって、外気が還気に暖められ、給気の相対湿度が低くなった場合、加湿効果がさらに高まる。
冷房運転時、熱媒体バイパス熱交換器31において給気が熱媒体と熱交換されて冷却され、給気に含まれる水分が結露する。結露水は、熱媒体バイパス熱交換器31から給気側ドレンパン161に流れ落ちる。これにより、冷房運転時に、給気による空調空間8の湿度が上昇することを抑制することができる。
図12は、本発明の実施の形態4に係る空調システム100の熱媒体流量調整弁32の制御を示す表である。ここで、上記の除湿冷房運転時の制御について説明する。図12に示すように、判定手段61は、冷房運転時に、熱媒体温度検出部51によって検出された熱媒体温度が、給気温度検出部53によって検出された給気温度より低いかを判定する。弁調整手段62は、判定手段61によって熱媒体温度が給気温度より低いと判定された場合、熱媒体流量調整弁32を閉じる。これにより、熱媒体回路12に流れる熱媒体の全てが熱媒体バイパス回路13に流れる。従って、給気から熱媒体に移動する温熱の量が増えるため、換気装置6において給気口46から空調空間8に給気される空気の温度を下げることができる。ここで、熱媒体バイパス熱交換器31で結露した水が給気側ドレンパン161に流れるため、空調空間8に除湿冷風が送られる。なお、全熱交換器42によって、外気が還気によって冷却されて、給気の相対湿度が高くなったとき、除湿効果が高まる。また、給気温度が熱媒体温度よりもかなり高い場合、除湿効果が高まる。
1 空調システム、2 空気調和装置、3 熱交換ユニット、4 熱源ユニット、5 利用側ユニット、6 換気装置、8 空調空間、9 非空調空間、10 天井裏空間、11 冷媒回路、11a 冷媒配管口、12 熱媒体回路、12a 熱媒体配管口、13 熱媒体バイパス回路、14 冷媒バイパス回路、20 流路切替装置、21 圧縮機、22 熱源熱交換器、22a 熱源送風機、23 膨張部、24 カスケード熱交換器、25 ポンプ、26 利用側熱交換器、26a 利用側送風機、31 熱媒体バイパス熱交換器、32 熱媒体流量調整弁、32a 三方弁、32b 三方弁、33 冷媒バイパス熱交換器、34 冷媒流量調整弁、34a 三方弁、34b 三方弁、41 ケーシング、42 全熱交換器、43 給気ファン、44 排気ファン、45 外気口、46 給気口、47 還気口、48 排気口、50 制御部、51 熱媒体温度検出部、52 冷媒温度検出部、52a 冷房用センサ、52b 暖房用センサ、53 給気温度検出部、54 排気温度検出部、55 外気温度検出部、61 判定手段、62 弁調整手段、100 空調システム、161 給気側ドレンパン、162 排気側ドレンパン、163 ホース、164 気化フィルタ。
Claims (18)
- ポンプ、カスケード熱交換器及び空調空間に流れる空気と熱媒体とを熱交換する利用側熱交換器が熱媒体配管により接続され、熱媒体が流れる熱媒体回路と、
前記利用側熱交換器から流出する熱媒体が流れる熱媒体バイパス回路と、
前記熱媒体バイパス回路に設けられ、前記空調空間に給気される外気と熱媒体とを熱交換する熱媒体バイパス熱交換器と、
を備える空気調和装置。 - 前記熱媒体回路に設けられ、前記カスケード熱交換器に流入する熱媒体の流量を調整する熱媒体流量調整弁を更に備える
請求項1記載の空気調和装置。 - 前記カスケード熱交換器に流入する熱媒体温度を検出する熱媒体温度検出部と、
前記空調空間への給気温度を検出する給気温度検出部と、
前記熱媒体流量調整弁の動作を制御する制御部を更に備える
請求項2記載の空気調和装置。 - 前記制御部は、
冷房運転時に、前記熱媒体温度検出部によって検出された熱媒体温度が、前記給気温度検出部によって検出された給気温度より低いかを判定する判定手段と、
前記判定手段によって前記熱媒体温度が前記給気温度より低いと判定された場合、前記熱媒体流量調整弁を閉じる弁調整手段と、を有する
請求項3記載の空気調和装置。 - 前記制御部は、
暖房運転時に、前記熱媒体温度検出部によって検出された熱媒体温度が、前記給気温度検出部によって検出された給気温度より高いかを判定する判定手段と、
前記判定手段によって前記熱媒体温度が前記給気温度より高いと判定された場合、前記熱媒体流量調整弁を閉じる弁調整手段と、を有する
請求項3又は4記載の空気調和装置。 - 前記熱媒体バイパス熱交換器に付着する結露水を受ける給気側ドレンパンを更に備える
請求項1~5のいずれか1項に記載の空気調和装置。 - 圧縮機、熱源熱交換器、膨張部及び冷媒と熱媒体との間で熱交換する前記カスケード熱交換器が冷媒配管により接続され、冷媒が流れる冷媒回路と、
前記膨張部と前記熱源熱交換器との間に流れる冷媒をバイパスする冷媒バイパス回路と、
前記冷媒バイパス回路に設けられ、前記空調空間から排出されて非空調空間に排気される還気と冷媒とを熱交換する冷媒バイパス熱交換器と、を更に備える
請求項1~6のいずれか1項に記載の空気調和装置。 - 前記冷媒回路に設けられ、前記カスケード熱交換器から流出する冷媒の流量を調整する冷媒流量調整弁を更に備える
請求項7記載の空気調和装置。 - 前記カスケード熱交換器から流出する冷媒温度を検出する冷媒温度検出部と、
前記空調空間からの排気温度を検出する排気温度検出部と、
前記冷媒流量調整弁の動作を制御する制御部と、を更に備える
請求項8記載の空気調和装置。 - 前記制御部は、
冷房運転時に、前記冷媒温度検出部によって検出された冷媒温度が、前記排気温度検出部によって検出された排気温度より高いかを判定する判定手段と、
前記判定手段によって前記冷媒温度が前記排気温度より高いと判定された場合、前記冷媒流量調整弁を閉じる弁調整手段と、を有する
請求項9記載の空気調和装置。 - 前記制御部は、
暖房運転時に、前記冷媒温度検出部によって検出された冷媒温度が、前記排気温度検出部によって検出された排気温度より低いかを判定する判定手段と、
前記判定手段によって前記冷媒温度が前記排気温度より低いと判定された場合、前記冷媒流量調整弁を閉じる弁調整手段と、を有する
請求項9又は10記載の空気調和装置。 - 前記冷媒バイパス熱交換器に付着する結露水を受ける排気側ドレンパンと、
前記排気側ドレンパンに溜まった結露水を気化して給気を加湿する気化フィルタと、を更に備える
請求項7~11のいずれか1項に記載の空気調和装置。 - 外気の温度を検出する外気温度検出部と、
前記外気温度検出部によって検出された外気の温度が外気温度閾値より低い場合、前記圧縮機を停止する制御部と、を更に備える
請求項7~12のいずれか1項に記載の空気調和装置。 - 前記カスケード熱交換器に流入する熱媒体温度を検出する熱媒体温度検出部と、
前記空調空間への給気温度を検出する給気温度検出部と、を更に備え、
前記制御部は、
前記熱媒体温度検出部によって検出された熱媒体温度が、前記給気温度検出部によって検出された給気温度より高いかを判定する判定手段と、
前記判定手段によって前記熱媒体温度が前記給気温度より高いと判定された場合、前記熱媒体流量調整弁を閉じる弁調整手段と、を有する
請求項2に従属する請求項7に従属する請求項13記載の空気調和装置。 - 請求項1~14のいずれか1項に記載の空気調和装置と、
外気を取り込む外気口と、前記外気口から取り込まれた外気を前記空調空間に給気する給気口と、前記空調空間の空気を排出する還気口と、前記還気口から排出された空気を非空調空間に排気する排気口と、が形成され前記空調空間の換気を行う換気装置と、
を備える空調システム。 - 前記換気装置は、
前記外気口から取り込まれた外気と前記還気口から排出された還気とを熱交換する全熱交換器を有する
請求項15記載の空調システム。 - 利用側熱交換器を有し、空調空間の空気を調整する利用側ユニットを備える空気調和装置であって、
圧縮機と、熱源熱交換器と、を有する熱源ユニットと、
前記熱源ユニットから供給される冷媒と、前記利用側ユニットに供給される熱媒体との間で熱交換するカスケード熱交換器と、膨張部と、前記熱媒体を搬送するポンプと、前記利用側熱交換器から流出する熱媒体が流れ、空調空間に給気される外気と熱媒体とを熱交換する熱媒体バイパス熱交換器が設けられる熱媒体バイパス回路と、を有する熱交換ユニットと、
を備える空気調和装置。 - 圧縮機と熱源熱交換器とを有する熱源ユニットと、利用側熱交換器を有し空調空間の空気を調整する利用側ユニットとに接続される熱交換ユニットであって、
前記熱源ユニットから供給される冷媒と、前記利用側ユニットに供給される熱媒体との間で熱交換するカスケード熱交換器と、膨張部と、前記熱媒体を搬送するポンプと、前記利用側熱交換器から流出する熱媒体が流れ、空調空間に給気される外気と熱媒体とを熱交換する熱媒体バイパス熱交換器が設けられる熱媒体バイパス回路と、を有する
熱交換ユニット。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/004650 WO2019155614A1 (ja) | 2018-02-09 | 2018-02-09 | 空気調和装置、空調システム及び熱交換ユニット |
JP2019570248A JP6903173B2 (ja) | 2018-02-09 | 2018-02-09 | 空気調和装置及び空調システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/004650 WO2019155614A1 (ja) | 2018-02-09 | 2018-02-09 | 空気調和装置、空調システム及び熱交換ユニット |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019155614A1 true WO2019155614A1 (ja) | 2019-08-15 |
Family
ID=67548624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004650 WO2019155614A1 (ja) | 2018-02-09 | 2018-02-09 | 空気調和装置、空調システム及び熱交換ユニット |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6903173B2 (ja) |
WO (1) | WO2019155614A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023042268A1 (ja) * | 2021-09-14 | 2023-03-23 | 三菱電機株式会社 | 空気調和装置 |
WO2023126992A1 (ja) * | 2021-12-27 | 2023-07-06 | 三菱電機株式会社 | 外気調和装置 |
WO2024190774A1 (ja) * | 2023-03-13 | 2024-09-19 | ダイキン工業株式会社 | 空調システム及び換気装置 |
JP7586346B2 (ja) | 2021-12-27 | 2024-11-19 | 三菱電機株式会社 | 外気調和装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58148330A (ja) * | 1982-02-24 | 1983-09-03 | コズポンテイ・ベルト−エス・ヒテルバンク・ア−ルテイ−・ブタペスト・イノベシオス・アラツプ | 多数の動物の飼育用の室における空気調和用の熱変換方法及び装置 |
JPH08152226A (ja) * | 1994-11-30 | 1996-06-11 | Kajima Corp | 空気調和装置 |
JPH09243110A (ja) * | 1996-03-13 | 1997-09-16 | Takasago Thermal Eng Co Ltd | 空気調和機 |
WO2011016264A1 (ja) * | 2009-08-07 | 2011-02-10 | 三菱重工業株式会社 | 車両用空調システム |
JP2014152985A (ja) * | 2013-02-08 | 2014-08-25 | Denso Corp | 暖房システム |
JP2015194304A (ja) * | 2014-03-31 | 2015-11-05 | 高砂熱学工業株式会社 | 外気処理装置 |
JP2015215158A (ja) * | 2015-07-23 | 2015-12-03 | ダイダン株式会社 | 加湿および殺菌可能な空調システムと加湿および殺菌可能な空調方法 |
CN106705334A (zh) * | 2016-11-18 | 2017-05-24 | 仲恺农业工程学院 | 能量回收型双冷源大焓差蓄能新风机组及其控制方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11287475A (ja) * | 1998-04-03 | 1999-10-19 | Daikin Ind Ltd | 空気調和装置 |
JP2010181072A (ja) * | 2009-02-04 | 2010-08-19 | Osaka Gas Co Ltd | 空調システム |
-
2018
- 2018-02-09 WO PCT/JP2018/004650 patent/WO2019155614A1/ja active Application Filing
- 2018-02-09 JP JP2019570248A patent/JP6903173B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58148330A (ja) * | 1982-02-24 | 1983-09-03 | コズポンテイ・ベルト−エス・ヒテルバンク・ア−ルテイ−・ブタペスト・イノベシオス・アラツプ | 多数の動物の飼育用の室における空気調和用の熱変換方法及び装置 |
JPH08152226A (ja) * | 1994-11-30 | 1996-06-11 | Kajima Corp | 空気調和装置 |
JPH09243110A (ja) * | 1996-03-13 | 1997-09-16 | Takasago Thermal Eng Co Ltd | 空気調和機 |
WO2011016264A1 (ja) * | 2009-08-07 | 2011-02-10 | 三菱重工業株式会社 | 車両用空調システム |
JP2014152985A (ja) * | 2013-02-08 | 2014-08-25 | Denso Corp | 暖房システム |
JP2015194304A (ja) * | 2014-03-31 | 2015-11-05 | 高砂熱学工業株式会社 | 外気処理装置 |
JP2015215158A (ja) * | 2015-07-23 | 2015-12-03 | ダイダン株式会社 | 加湿および殺菌可能な空調システムと加湿および殺菌可能な空調方法 |
CN106705334A (zh) * | 2016-11-18 | 2017-05-24 | 仲恺农业工程学院 | 能量回收型双冷源大焓差蓄能新风机组及其控制方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023042268A1 (ja) * | 2021-09-14 | 2023-03-23 | 三菱電機株式会社 | 空気調和装置 |
WO2023126992A1 (ja) * | 2021-12-27 | 2023-07-06 | 三菱電機株式会社 | 外気調和装置 |
JP7586346B2 (ja) | 2021-12-27 | 2024-11-19 | 三菱電機株式会社 | 外気調和装置 |
WO2024190774A1 (ja) * | 2023-03-13 | 2024-09-19 | ダイキン工業株式会社 | 空調システム及び換気装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019155614A1 (ja) | 2020-12-03 |
JP6903173B2 (ja) | 2021-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6494765B2 (ja) | 空気調和システム | |
JPH04295568A (ja) | 空気調和機 | |
JP4892305B2 (ja) | 外気調整空調機 | |
US9920963B1 (en) | System for conditioning air with temperature and humidity control and heat utilization | |
JP2019178805A (ja) | 空気調和装置及び空気調和システム、並びに空気調和設備 | |
EP3611439B1 (en) | Air conditioner | |
JP5868416B2 (ja) | 冷凍空調装置及び調湿装置 | |
JP4147556B2 (ja) | 空気調和装置およびその制御方法 | |
JP2006207856A (ja) | 外気調整用空調装置 | |
KR102232441B1 (ko) | 육구 공조기 | |
JP2002081688A (ja) | 換気装置 | |
WO2019155614A1 (ja) | 空気調和装置、空調システム及び熱交換ユニット | |
JP2009180492A (ja) | 除湿用ユニット及び空気調和装置 | |
KR102436706B1 (ko) | 멀티형 공기조화기 | |
JPWO2012085965A1 (ja) | 空気調和機 | |
JPWO2019064335A1 (ja) | 冷凍サイクル装置 | |
JP2022052743A (ja) | 冷暖房換気マルチ空気調和機 | |
JP2002213780A (ja) | 空気調和機 | |
JP2005291553A (ja) | マルチ型空気調和装置 | |
JP2007225159A (ja) | 除湿空調システム及びデシカント空調機 | |
KR102418488B1 (ko) | 멀티형 공기조화기 | |
CN216790561U (zh) | 一种热泵系统及其控制装置 | |
KR100655382B1 (ko) | 냉동사이클을 이용한 폐열 회수형 공기조화시스템 | |
JP4647399B2 (ja) | 換気空調装置 | |
JP2010243005A (ja) | 除湿システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18905853 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019570248 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18905853 Country of ref document: EP Kind code of ref document: A1 |