WO2019151124A1 - フェライト系ステンレス鋼 - Google Patents
フェライト系ステンレス鋼 Download PDFInfo
- Publication number
- WO2019151124A1 WO2019151124A1 PCT/JP2019/002412 JP2019002412W WO2019151124A1 WO 2019151124 A1 WO2019151124 A1 WO 2019151124A1 JP 2019002412 W JP2019002412 W JP 2019002412W WO 2019151124 A1 WO2019151124 A1 WO 2019151124A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- content
- less
- steel
- thermal fatigue
- ferritic stainless
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
Definitions
- the present invention relates to ferritic stainless steel, and particularly, excellent repeated oxidation resistance suitable for use in exhaust system members used at high temperatures, such as exhaust pipes and converter cases of automobiles and motorcycles, and exhaust ducts of thermal power plants. And ferritic stainless steel having thermal fatigue properties.
- Excellent heat resistance is required for exhaust system members such as exhaust manifolds, exhaust pipes, converter cases, and mufflers of automobiles.
- heat resistance There are several types of heat resistance, including thermal fatigue properties, high temperature fatigue properties, high temperature strength (high temperature strength), oxidation resistance, creep properties, and high temperature salt corrosion properties.
- the thermal fatigue property is one of particularly important heat resistances.
- the exhaust system member repeatedly receives heating and cooling as the engine is started and stopped. At this time, since the exhaust system member is connected to peripheral components, thermal expansion and contraction are limited, and thermal distortion occurs in the material itself.
- the low-cycle fatigue phenomenon that results in fracture due to repeated thermal strain is called thermal fatigue.
- the oxidation resistance includes continuous oxidation resistance and repeated oxidation resistance.
- the continuous oxidation resistance evaluates the presence or absence of occurrence of abnormal oxidation that significantly increases the oxide scale when held at a high temperature for a long time.
- the repeated oxidation resistance evaluates the presence or absence of peeling of the oxide scale due to the difference in thermal expansion between the steel and the oxide scale when the temperature rise and fall are repeated as in the thermal fatigue described above.
- Ferritic stainless steel such as Type 429 (14% Cr-0.9% Si-0.4% Nb system) to which Nb and Si are added is currently used as a material for the above-described members that require thermal fatigue characteristics. Is often used. However, when the exhaust gas temperature rises to a temperature exceeding 900 ° C. as the engine performance is improved, Type 429 is unable to satisfy the thermal fatigue characteristics sufficiently.
- SUS444 (19% Cr-0.5% Nb-2%) defined in JIS G4305, which is a ferritic stainless steel in which high temperature proof stress is improved by adding Nb and Mo. Mo), or ferritic stainless steel to which Nb, Mo and W are added has been developed (see, for example, Patent Document 1).
- the exhaust gas temperature tends to increase, and even SUS444 and the like are insufficient in heat resistance.
- Ferritic stainless steel often has insufficient oxidation resistance, especially among heat resistance.
- SUS444 has the highest level of heat resistance among ferritic stainless steels, but it cannot always be said that the heat resistance is sufficient when the exhaust gas temperature rises with the recent tightening of exhaust gas regulations and improved fuel economy.
- the thermal expansion of the exhaust system member when the temperature rises increases, so that more severe thermal strain is added.
- ferritic stainless steel used for the exhaust system member is likely to be subject to thermal fatigue failure.
- ferritic stainless steel often lacks oxidation resistance. This is because the thermal expansion of the raw material increases due to the high temperature of the exhaust gas, thereby increasing the difference in thermal expansion from the oxide scale generated by being held at a high temperature, and therefore, the oxide scale is liable to peel off during cooling.
- the oxide scale When the oxide scale is peeled off, the thickness of the material becomes thin and it becomes easy to break down due to thermal fatigue. In addition, the peeled oxide scale may flow into the catalyst or the like in the exhaust pipe, thereby inhibiting the purification action. Therefore, it is required that the oxide scale has high peel resistance (repetitive oxidation resistance).
- the conventional techniques including SUS444 have not been able to obtain a ferritic stainless steel having sufficient thermal fatigue characteristics and repeated oxidation resistance even when the exhaust gas temperature is increased.
- an object of the present invention is to solve such problems and to provide a ferritic stainless steel excellent in both repeated oxidation resistance and thermal fatigue characteristics.
- excellent in resistance to repeated oxidation means repeated oxidation tests (heating rate: 5 ° C./sec, cooling) in which 400 cycles of holding at 1050 ° C. for 20 minutes and holding at 100 ° C. for 1 minute are performed in the air (Rate: 2 ° C./sec) after abnormal oxidation (oxidation increase of 50 g / m 2 or more) does not occur, and the oxide scale exfoliation amount is less than 1 g / m 2 .
- “excelling in thermal fatigue characteristics” means having characteristics superior to that of SUS444. Specifically, the thermal fatigue life when heating and cooling are repeated between 200 and 950 ° C. is superior to that of SUS444. It means that
- the present invention has been completed by containing an appropriate amount of Cr, Nb, Mo, Zr and Co and adjusting the content of other essential elements. If even one of the above elements is not contained in an appropriate amount, the excellent repeated oxidation resistance and thermal fatigue properties desired by the present invention cannot be obtained.
- the gist of the present invention is as follows.
- the component composition is in mass%, further Ti: 0.01 to 0.04%, Sb: 0.002 to 0.50%, B: 0.0002 to 0.0050%, V: 0 0.01 to 1.0%, W: 0.01 to 0.30%, Cu: 0.01 to 0.20%, Sn: 0.001 to 0.005%
- the component composition contains, by mass%, one or two selected from Ca: 0.0002 to 0.0050% and Mg: 0.0002 to 0.0050% [1] ] Or ferritic stainless steel according to [2].
- the ferritic stainless steel of the present invention can be suitably used for exhaust system members such as automobiles.
- the ferritic stainless steel of the present invention is, in mass%, C: 0.020% or less, Si: 0.25% or more and 1.0% or less, Mn: 0.05% or more and 0.50% or less, P: 0 0.050% or less, S: 0.008% or less, Ni: 0.02% to 0.60%, Al: 0.001% to 0.08%, Cr: 18.0% to 20.0%
- Nb 0.30% or more and 0.80% or less
- Mo 1.80% or more and 2.50% or less
- N 0.015% or less
- Zr 0.01% or more and 0.40% or less
- Co Ferritic stainless steel that contains 0.01% or more and 0.30% or less, satisfies the following formula (1), and the balance is composed of Fe and inevitable impurities.
- Zr + Co 0.03 to 0.50% (1) (Zr and Co in the formula (1) indicate the content (mass%) of each element.)
- the balance of the component composition is very important, and by using the combination of the component compositions as described above, it is possible to obtain a ferritic stainless steel superior in resistance to repeated oxidation and thermal fatigue than SUS444. . If the content of the essential elements (C, Si, Mn, Ni, Al, Cr, Nb, Mo, N, Zr, Co) in the above component composition is out of the range, the desired repeated oxidation resistance And thermal fatigue characteristics are not obtained.
- % which is a unit of content of components means mass% unless otherwise specified.
- C 0.020% or less C is an element effective for increasing the strength of steel.
- the C content is 0.020% or less.
- the C content is preferably set to 0.001% or more. More preferably, the C content is 0.003% or more. More preferably, the C content is 0.006% or more.
- Si 0.25 to 1.0% Si is an important element necessary for improving oxidation resistance. In order to ensure oxidation resistance in the exhaust gas heated to a high temperature, it is necessary to contain 0.25% or more of Si. When the Si content is less than 0.25%, the resistance to repeated oxidation is insufficient, and the thermal fatigue characteristics cannot be sufficiently obtained. On the other hand, the excessive Si content exceeding 1.0% lowers the workability at room temperature, so the upper limit of the Si content is 1.0%. On the other hand, when the Si content exceeds 1.0%, good repeated oxidation resistance and thermal fatigue life cannot be obtained.
- the Si content is 0.35% or more. More preferably, the Si content is 0.45% or more. More preferably, the Si content is 0.50% or more. Preferably, the Si content is 0.90% or less. More preferably, the Si content is 0.80% or less.
- Mn 0.05 to 0.50% Mn has the effect of increasing the resistance to repeated oxidation. In order to obtain these effects, it is necessary to contain 0.05% or more of Mn. On the other hand, when Mn is excessively contained in excess of 0.50%, a ⁇ phase is likely to be formed at a high temperature, and on the contrary, the repeated oxidation resistance and thermal fatigue characteristics are lowered. Therefore, the Mn content is 0.05% or more and 0.50% or less.
- the Mn content is 0.10% or more. More preferably, the Mn content is 0.20% or more.
- the Mn content is 0.40% or less. More preferably, the Mn content is 0.30% or less.
- P 0.050% or less
- P is a harmful element that lowers the toughness of steel, and is desirably reduced as much as possible. Therefore, the P content is 0.050% or less. Preferably, the P content is 0.040% or less. More preferably, the P content is 0.030% or less.
- S 0.008% or less
- S is a harmful element that lowers elongation and r value, adversely affects formability, and lowers corrosion resistance, which is a basic characteristic of stainless steel, so it is desirable to reduce it as much as possible. . Therefore, in the present invention, the S content is set to 0.008% or less. Preferably, the S content is 0.006% or less.
- Ni 0.02 to 0.60%
- Ni is an element that improves the toughness and oxidation resistance of steel. In order to obtain these effects, the Ni content is 0.02% or more. If the oxidation resistance is insufficient, thermal fatigue characteristics deteriorate due to a decrease in the cross-sectional area of the material due to an increase in the amount of oxide scale generated and peeling of the oxide scale.
- the upper limit of the Ni content is 0.60%.
- the Ni content is 0.10% or more. More preferably, the Ni content is 0.20% or more.
- the Ni content is 0.40% or less. More preferably, the Ni content is less than 0.25%.
- Al 0.001 to 0.08%
- Al is an element having an effect of improving oxidation resistance. In order to acquire the effect, Al needs to contain 0.001% or more.
- Al is also an element that increases the thermal expansion coefficient. When the thermal expansion coefficient is increased, the thermal fatigue characteristics are degraded. Furthermore, the steel becomes extremely hard and the workability is reduced. Therefore, the Al content is set to 0.08% or less.
- the Al content is 0.01% or more. More preferably, the Al content is 0.02% or more. More preferably, the Al content is more than 0.03%.
- the Al content is 0.05% or less. More preferably, the Al content is 0.04% or less.
- Cr 18.0-20.0% Cr is an important element effective in improving the corrosion resistance and oxidation resistance, which are the characteristics of stainless steel. However, if the Cr content is less than 18.0%, sufficient oxidation resistance in a high temperature range exceeding 900 ° C. Cannot be obtained. If the oxidation resistance is insufficient, the amount of oxide scale generated increases, and the thermal fatigue characteristics also decrease as the cross-sectional area of the material decreases.
- Cr is an element that solidifies and strengthens steel at room temperature, and hardens and lowers ductility. When the Cr content exceeds 20.0%, the above-described adverse effects become significant, and the thermal fatigue properties also deteriorate. Therefore, the upper limit of the Cr content is 20.0%.
- the Cr content is 18.5% or more.
- the Cr content is 19.5% or less.
- Nb 0.30 to 0.80% Nb is an important element in the present invention that increases the high temperature strength and improves the thermal fatigue characteristics. Such an effect is recognized when the content of Nb is 0.30% or more. When the Nb content is less than 0.30%, the strength at high temperature is insufficient, and excellent thermal fatigue characteristics cannot be obtained. However, if the Nb content exceeds 0.80%, the Laves phase (Fe 2 Nb), which is an intermetallic compound, is likely to precipitate, the high-temperature strength decreases, and the thermal fatigue characteristics and creep characteristics only decrease. It promotes embrittlement. Therefore, the Nb content is 0.30% or more and 0.80% or less. Preferably, the Nb content is 0.40% or more. More preferably, the Nb content is 0.45% or more. More preferably, the Nb content is more than 0.50%. Preferably, the Nb content is 0.70% or less. More preferably, the Nb content is 0.60% or less.
- Mo 1.80 to 2.50% Mo is an effective element that improves thermal fatigue properties by dissolving in steel and improving the high-temperature strength of the steel. The effect appears when the Mo content is 1.80% or more. When the Mo content is less than 1.80%, the high temperature strength is insufficient, and excellent thermal fatigue characteristics cannot be obtained. On the other hand, the excessive Mo content not only hardens the steel and lowers the workability, but also precipitates as a Laves phase (Fe2Mo) in the same manner as Nb, and the amount of solute Mo in the steel is reduced. Thermal fatigue properties will be reduced. In addition, precipitation as a coarse ⁇ phase during the thermal fatigue test serves as a starting point for fracture, and the thermal fatigue characteristics deteriorate.
- Laves phase Fe2Mo
- the upper limit of the Mo content is 2.50%.
- the Mo content is 1.90% or more. More preferably, the Mo content is over 2.00%.
- the Mo content is 2.30% or less. More preferably, the Mo content is 2.10% or less.
- N 0.015% or less
- N is an element that lowers the toughness and formability of steel. When it exceeds 0.015%, not only does the decrease in toughness and formability become remarkable, but also resistance to repeated oxidation. And thermal fatigue properties are also insufficient. Therefore, the N content is set to 0.015% or less. N is preferably reduced as much as possible from the viewpoint of securing toughness and formability, and the N content is preferably less than 0.010%.
- Zr 0.01 to 0.40%
- Zr is an important element in the present invention that improves the resistance to repeated oxidation by thinning the oxide scale produced at high temperature, suppressing abnormal oxidation and suppressing exfoliation of the oxide scale.
- the oxide scale becomes thick, the oxide scale tends to peel off when a temperature change occurs, particularly during cooling.
- the oxide scale is peeled off, the material is thinned, so that excellent thermal fatigue characteristics cannot be obtained.
- the Zr content is set to 0.01% or more.
- the Zr content is set to 0.01 to 0.40%.
- the Zr content is 0.02% or more. More preferably, the Zr content is 0.03% or more.
- the Zr content is not more than 0.30%. More preferably, the Zr content is 0.10% or less.
- Co 0.01 to 0.30%
- Co is an important element in the present invention that improves the resistance to repeated oxidation by reducing the thermal expansion coefficient of steel and reducing the difference in thermal expansion between the oxide scale and steel.
- the Co content needs to be 0.01% or more.
- the upper limit of Co content is 0.30%.
- the Co content is 0.02% or more. More preferably, the Co content is 0.03% or more.
- the Co content is 0.10% or less. More preferably, the Co content is 0.05% or less.
- Zr + Co 0.03 to 0.50% (1)
- Zr suppresses abnormal oxidation by reducing the oxide scale and prevents exfoliation of the oxide scale
- Co suppresses exfoliation of the oxide scale by reducing the thermal expansion coefficient of the steel.
- Repeated oxidation resistance is greatly improved by containing both Zr and Co simultaneously.
- both elements are contained within a predetermined range, and at least the amount of Zr + Co (total content of Zr and Co) is 0.03% or more. It is necessary to.
- the amount of Zr + Co is less than 0.03%, the repeated oxidation resistance is insufficient, the oxide scale is peeled off, and the thermal fatigue characteristics are also lowered.
- the amount of Zr + Co is 0.05% or more.
- the upper limit of the amount of Zr + Co is 0.50%.
- the amount of Zr + Co is 0.30% or less.
- Zr and Co in said formula (1) show content (mass%) of each element.
- the balance consists of Fe and inevitable impurities.
- the ferritic stainless steel of the present invention further includes, as an optional component, one or more selected from Ti, Sb, B, V, W, Cu, and Sn. It can be contained in a range.
- Ti 0.01 to 0.04% Ti is an element that fixes C and N, improves corrosion resistance and formability, and prevents intergranular corrosion of the welded portion.
- Ti can be contained as necessary.
- Ti is preferentially combined with C and N over Nb, so that it is possible to secure a solid solution Nb amount in steel effective for high-temperature strength, which is effective in improving heat resistance. This effect is obtained when the Ti content is 0.01% or more.
- the Ti content exceeds 0.04%, it becomes easy to exfoliate the oxide scale, and not only the resistance to repeated oxidation decreases, but also the Nb carbonitride precipitates with the Ti carbonitride as the core.
- the Ti content is set to 0.01 to 0.04%.
- the Ti content is 0.02% or less.
- Sb 0.002 to 0.50%
- Sb is an element having an effect of improving creep resistance.
- Sb dissolves in the steel and suppresses creep deformation of the steel. Since Sb does not precipitate as a carbonitride or Laves phase even in a high temperature range and continues to dissolve in steel even after a long period of use, the creep resistance can be improved. Improvement of the creep resistance is effective for improving thermal fatigue characteristics particularly when the temperature is raised to 900 ° C. or higher. This effect is obtained when the Sb content is 0.002% or more.
- an excessive content of Sb reduces the toughness and hot workability of the steel, so that not only cracking is likely to occur during production, but also the thermal fatigue properties are reduced due to the decrease in hot ductility.
- the Sb content is set to 0.002 to 0.50%.
- the Sb content is 0.005% or more. More preferably, the Sb content is 0.020% or more.
- Sb content is 0.30% or less. More preferably, the Sb content is 0.10% or less.
- B 0.0002 to 0.0050%
- B is an element effective for improving the workability of steel, particularly the secondary workability. Such an effect can be obtained with a B content of 0.0002% or more.
- excessive B content generates BN and degrades workability. Therefore, when B is contained, the B content is set to 0.0002 to 0.0050%.
- the B content is 0.0005% or more. More preferably, the B content is 0.0008% or more.
- the B content is 0.0030% or less. More preferably, the B content is 0.0020% or less.
- V 0.01 to 1.0%
- V is an element effective for improving the workability of steel and an element effective for improving oxidation resistance. These effects become significant when the V content is 0.01% or more. However, the excessive V content exceeding 1.0% leads to the precipitation of coarse V (C, N), not only lowering the toughness but also lowering the surface properties. Therefore, when V is contained, the V content is set to 0.01 to 1.0%.
- the V content is 0.03% or more.
- the V content is 0.50% or less. More preferably, the V content is 0.10% or less. More preferably, the V content is less than 0.05%.
- W 0.01 to 0.30% W, like Mo, is an element that greatly improves high-temperature strength by solid solution strengthening. This effect is obtained with a W content of 0.01% or more. On the other hand, an excessive content not only makes the steel remarkably hard, but also produces a strong scale in the annealing process during production, so that descaling during pickling becomes difficult. Therefore, when W is contained, the W content is set to 0.01 to 0.30%. Preferably, the W content is 0.02% or more. Preferably, the W content is 0.20% or less. More preferably, the W content is less than 0.10%.
- Cu 0.01 to 0.20%
- Cu is an element having an effect of improving the corrosion resistance of steel, and is contained when corrosion resistance is required. The effect is obtained with a Cu content of 0.01% or more.
- the Cu content is set to 0.01 to 0.20%.
- the Cu content is 0.02% or more. More preferably, the Cu content is 0.03% or more.
- the Cu content is 0.10% or less. More preferably, the Cu content is 0.06% or less.
- Sn 0.001 to 0.005%
- Sn is an element effective for improving the high-temperature strength of steel. This effect is obtained when the Sn content is 0.001% or more. On the other hand, the excessive Sn content embrittles the steel and decreases the thermal fatigue properties. Therefore, when Sn is contained, the Sn content is set to 0.001 to 0.005%. Preferably, the Sn content is 0.001% or more and 0.003% or less.
- the ferritic stainless steel of the present invention can further contain one or two selected from Ca and Mg as optional components within the following range.
- Ca 0.0002 to 0.0050%
- Ca is an effective component for preventing nozzle clogging due to precipitation of Ti-based inclusions that are likely to occur during continuous casting. The effect is obtained with a Ca content of 0.0002% or more.
- the Ca content needs to be 0.0050% or less. Therefore, when Ca is contained, the Ca content is set to 0.0002 to 0.0050%.
- the Ca content is 0.0005% or more.
- the Ca content is 0.0030% or less. More preferably, the Ca content is 0.0020% or less.
- Mg is an element that improves the equiaxed crystal ratio of the slab and is effective in improving workability and toughness.
- Mg also has an effect of suppressing the coarsening of Nb and Ti carbonitrides. The effect is obtained when the Mg content is 0.0002% or more.
- the Ti carbonitride becomes coarse, it becomes a starting point for brittle cracking, so that the toughness is greatly reduced.
- Nb carbonitrides become coarse, the amount of Nb solid solution in steel decreases, leading to a decrease in thermal fatigue characteristics.
- the Mg content exceeds 0.0050%, the surface properties of the steel are deteriorated.
- the Mg content is set to 0.0002 to 0.0050%.
- the Mg content is 0.0003% or more. More preferably, the Mg content is 0.0004% or more.
- the Mg content is 0.0030% or less. More preferably, the Mg content is 0.0020% or less.
- the balance is Fe and inevitable impurities.
- the optional component contained below the lower limit the optional component contained at a content below the lower limit is included as an inevitable impurity.
- the manufacturing method of the ferritic stainless steel of the present invention can be suitably employed as long as it is a normal manufacturing method of ferritic stainless steel, and is not particularly limited.
- steel is produced in a known melting furnace such as a converter or an electric furnace, or further subjected to secondary refining such as ladle refining or vacuum refining, and the steel having the above-described component composition of the present invention. It is made into a steel slab (slab) by the ingot-bundling rolling method, and then made into a cold-rolled annealed plate through processes such as hot-rolling, hot-rolled sheet annealing, pickling, cold-rolling, finish annealing and pickling. It can be manufactured in a manufacturing process.
- the cold rolling may be performed once or two or more cold rolling sandwiching the intermediate annealing, and the steps of cold rolling, finish annealing, and pickling may be performed repeatedly. Furthermore, hot-rolled sheet annealing may be omitted, and skin pass rolling may be performed after cold rolling or after finish annealing when surface gloss or roughness adjustment of the steel sheet is required.
- the steelmaking process for melting steel includes secondary refining of steel melted in a converter or electric furnace by the VOD method, AOD method, etc., and steel containing the above essential components and optional components added as necessary. It is preferable to do.
- the molten steel can be made into a steel material by a known method, it is preferable to use a continuous casting method in terms of productivity and quality.
- the steel material is preferably heated to 1050 to 1250 ° C., and hot rolled into a desired thickness by hot rolling. In production, the thickness of the hot-rolled sheet is preferably 5 mm or less. Of course, hot working can be performed in addition to the plate material.
- the hot-rolled sheet is then subjected to continuous annealing at a temperature of 900 to 1150 ° C. or batch annealing at a temperature of 700 to 900 ° C. as necessary, and then descaling by pickling or polishing, It is preferable to do. If necessary, the scale may be removed by shot blasting before pickling.
- the hot-rolled product may be a cold-rolled product through a process such as cold rolling.
- the cold rolling may be performed once, but may be performed twice or more with intermediate annealing in view of productivity and required quality.
- the total rolling reduction of one or more cold rollings is preferably 60% or more, more preferably 70% or more.
- the cold-rolled steel sheet is subsequently subjected to continuous annealing (finish annealing) at a temperature of preferably 900 to 1200 ° C., more preferably 1000 to 1150 ° C., pickling or polishing, and a cold-rolled product (cold-rolled annealing plate). It is preferable to do.
- Finish annealing may be performed in a reducing atmosphere, and in that case, pickling or polishing after finish annealing may be omitted. Further, depending on the application, after finish annealing, skin pass rolling or the like may be performed to adjust the shape, surface roughness, and material of the steel sheet.
- the crystal grain size after the finish annealing is desirably 100 ⁇ m or less from the viewpoint of surface properties at the time of component molding.
- the hot-rolled product or cold-rolled product obtained as described above is then subjected to processing such as cutting, bending processing, overhanging processing, drawing processing, etc. according to the respective use, and exhaust pipes and catalysts for automobiles and motorcycles. It is molded into an outer cylinder material, an exhaust duct of a thermal power plant or a fuel cell-related member, such as a separator, an interconnector or a reformer.
- the ferritic stainless steel of the present invention is preferably used for exhaust system members such as exhaust manifolds, exhaust pipes, converter cases, and mufflers.
- the method for welding these members is not particularly limited, and normal arc welding such as MIG (Metal Inert Gas), MAG (Metal Active Gas), TIG (Tungsten Inert Gas), spot welding, and seam welding.
- normal arc welding such as MIG (Metal Inert Gas), MAG (Metal Active Gas), TIG (Tungsten Inert Gas), spot welding, and seam welding.
- resistance welding such as high frequency resistance welding such as electric resistance welding, high frequency induction welding, and the like can be applied.
- the scale is removed by pickling or polishing to form a cold-rolled annealed plate having a thickness of 1.5 mm. And subjected to repeated oxidation tests.
- SUS444 (conventional example No. 24) was prepared in the same manner as above, and a cold-rolled annealed plate was prepared and subjected to an oxidation test. About annealing temperature, temperature was determined about each steel, confirming a structure within the said temperature range.
- ⁇ Repetitive oxidation test> The cold-rolled annealed plate was cut into a dimension of 20 mm width ⁇ 30 mm length, and all six surfaces were polished with # 320 emery paper and used for the test.
- the oxidation test conditions were 400 cycles of holding 20 minutes at 1050 ° C. and holding 1 minute at 100 ° C. in the atmosphere.
- the heating rate and the cooling rate were 5 ° C./sec and 2 ° C./sec, respectively.
- the test was performed by placing the test piece in an alumina crucible so that the oxide scale peeled off during the test could be recovered.
- the increase in oxidation was calculated from the change in the total weight of the crucible and test piece before and after the test.
- a test piece was prepared in the same manner as described above for a steel having a component composition of SUS444 (conventional example No. 24) and subjected to a thermal fatigue test.
- the thermal fatigue test was performed under the condition that the temperature rise / fall was repeated between 200 ° C. and 950 ° C. while restraining the test piece at a restraint rate of 0.5. At this time, the temperature rising rate was 5 ° C./second, and the temperature decreasing rate was 2 ° C./second. And the holding time in 200 degreeC and 950 degreeC was 30 seconds, respectively.
- the free thermal expansion strain amount is the strain amount when the temperature is raised without applying any mechanical stress, and the control strain amount indicates the absolute value of the strain amount generated during the test.
- the substantial restraint strain amount generated in the material by restraint is (free thermal expansion strain amount ⁇ control strain amount).
- the thermal fatigue life is calculated by dividing the load detected at 200 ° C. by the cross-sectional area of the test piece soaking parallel part (see FIG. 1), and calculating the stress. The number of cycles in which the stress value was reduced to 75% with respect to the stress value was evaluated as follows.
- Ferritic stainless steels 1 to 8, 10, 12 to 23, 45 and 46 are all SUS444 (conventional example No. 1) in repeated oxidation tests and thermal fatigue tests. 24 steel).
- No. Steel No. 25 had a Mo content of less than 1.80% by mass, and the thermal fatigue life was rejected.
- No. Steel No. 26 had a Zr content of less than 0.01% by mass, and both its resistance to repeated oxidation and thermal fatigue life were rejected.
- No. In Steel No. 27, the amount of Zr + Co was less than 0.03% by mass, and the repeated oxidation resistance and thermal fatigue life both failed.
- No. Steel No. 28 had a Co content of less than 0.01% by mass, and failed to undergo repeated oxidation resistance and thermal fatigue life.
- No. Steel No. 29 had a Ni content exceeding 0.60% by mass, and the repeated oxidation resistance and thermal fatigue life both failed.
- No. Steel No. 30 had an Nb content exceeding 0.80% by mass, and the thermal fatigue life was rejected.
- No. Steel No. 31 had a Ti content exceeding 0.04% by mass, and repeated oxidation and thermal fatigue life both failed.
- No. Steel No. 32 had a Mo content of more than 2.50 mass%, and the thermal fatigue life was rejected as the steel became brittle.
- No. Steel No. 33 had a Ni content of less than 0.02% by mass, and both its resistance to repeated oxidation and thermal fatigue life were rejected.
- No. Steel No. 35 had a Cr content of less than 18.0% by mass, and both its resistance to repeated oxidation and thermal fatigue life were rejected.
- the ferritic stainless steel of the present invention is not only suitable for exhaust system members such as automobiles, but also as exhaust system members for thermal power generation systems and solid oxide type fuel cell members that require similar characteristics. It can be used suitably.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
耐繰り返し酸化性と熱疲労特性の両方に優れるフェライト系ステンレス鋼 を提供する。質量%で、C:0.020%以下、Si:0.25~1.0%、Mn:0. 05~0.50%、P:0.050%以下、S:0.008%以下、Ni: 0.02~0.60%、Al:0.001~0.08%、Cr:18.0~ 20.0%、Nb:0.30~0.80%、Mo:1.80~2.50%、 N:0.015%以下、Zr:0.01~0.40%、Co:0.01~0. 30%を含有し、かつ、以下の式(1)を満たし、残部がFeおよび不可避的不純物からなる成分組成を有するフェライト系ステンレス鋼とする。 Zr+Co:0.03~0.50% ・・・(1)(式(1)中のZr、Coは、各元素の含有量(質量%)を示す。)
Description
本発明は、フェライト系ステンレス鋼に関し、とくに自動車やオートバイの排気管やコンバータケース、火力発電プラントの排気ダクト等の高温下で使用される排気系部材に用いて好適な、優れた耐繰り返し酸化性と熱疲労特性を有するフェライト系ステンレス鋼に関するものである。
自動車のエキゾーストマニホールドや排気パイプ、コンバータケース、およびマフラー等の排気系部材には、優れた耐熱性が要求されている。耐熱性にはいくつかの種類があり、熱疲労特性、高温疲労特性、高温強度(高温耐力)、耐酸化性、クリープ特性、高温塩害腐食特性などが挙げられる。中でも、熱疲労特性は特に重要な耐熱性の一つである。排気系部材は、エンジンの始動および停止に伴って加熱および冷却を繰り返し受ける。このとき、排気系部材は、周辺の部品と接続されているために熱膨張および収縮が制限されて、素材自体に熱ひずみが発生する。この熱ひずみを繰り返し受けることによって破壊に至る低サイクル疲労現象のことを熱疲労という。
また、耐酸化性には、耐連続酸化性と耐繰り返し酸化性が含まれる。耐連続酸化性は、高温で長時間保持された場合に、酸化スケールの増加が著しくなる異常酸化の発生の有無を評価するものである。一方、耐繰り返し酸化性は、上述した熱疲労のように、昇温と降温を繰り返した場合に、鋼と酸化スケールの熱膨張差に起因した酸化スケールの剥離の有無を評価するものである。自動車の排気系部材で酸化スケールの剥離が生じると、剥離した部分の素材が減肉することで熱疲労破壊しやすくなるのみならず、剥離した酸化スケールの排気管内部への流入が、排気管の浄化機能を阻害したり、排気管の詰まりを生じるなどのエンジントラブルに繋がるため、耐繰り返し酸化性は重要とされている。
上記の熱疲労特性が求められる部材に用いられる素材としては、現在、NbとSiを添加したType429(14%Cr-0.9%Si-0.4%Nb系)のようなフェライト系ステンレス鋼が多く使用されている。しかし、エンジン性能の向上に伴い、排ガス温度が900℃を超えるような温度まで上昇してくると、Type429では特に、熱疲労特性を十分に満たすことができなくなってきている。
この問題に対応できる素材として、例えば、NbとMoを添加して高温耐力を向上させたフェライト系ステンレス鋼である、JIS G4305に規定されるSUS444(19%Cr-0.5%Nb-2%Mo)、あるいはNb、MoおよびWを添加したフェライト系ステンレス鋼等が開発されている(例えば、特許文献1参照)。しかし、昨今における排ガス規制強化への対応や燃費の向上を目的として、排ガス温度は高温化する趨勢にあり、SUS444等でも耐熱性が不足する場合が出てきている。フェライト系ステンレス鋼では、耐熱性の中でも特に耐酸化性が不十分となることが多い。
SUS444はフェライト系ステンレス鋼において最高レベルの耐熱性を有しているが、近年の排ガス規制強化、燃費の向上に伴い排ガス温度が上昇した場合には、必ずしも耐熱性は十分とは言えない。排ガス温度の高温化に伴い、排気系部材の昇温時の熱膨張が大きくなるため、より厳しい熱ひずみが付加される。これにより、排気系部材に用いられるフェライト系ステンレス鋼は熱疲労破壊しやすくなってしまう。さらに、フェライト系ステンレス鋼では特に耐酸化性が不足する場合が多い。排ガス高温化によって素材の熱膨張が大きくなることで高温に保持されて生成した酸化スケールとの熱膨張差が大きくなるため、冷却時に酸化スケールの剥離が生じやすくなるためである。酸化スケールの剥離が生じると、素材の肉厚が薄くなって熱疲労破壊しやすくなるのみならず、剥離した酸化スケールが排気管内の触媒等に流れ込むことで浄化作用を阻害してしまうこともあるため、酸化スケールの耐剥離性(耐繰り返し酸化性)が高いことが必要とされる。
このように、SUS444を含む従来の技術では、排ガス温度が高温化した際にも熱疲労特性および耐繰り返し酸化性が十分であるフェライト系ステンレス鋼を得ることはできていなかった。
そこで、本発明はかかる課題を解決し、耐繰り返し酸化性と熱疲労特性の両方に優れるフェライト系ステンレス鋼を提供することを目的とする。
なお、本発明の「耐繰り返し酸化性に優れる」とは、大気中において、1050℃での20min保持と100℃での1min保持を400サイクル行う繰り返し酸化試験(加熱速度:5℃/sec、冷却速度:2℃/sec)後に、異常酸化(酸化増量50g/m2以上)を発生せず、かつ酸化スケールの剥離量が1g/m2未満であることを指す。
また、「熱疲労特性に優れる」とは、SUS444より優れた特性を有することであり、具体的には、200~950℃間で昇温と降温を繰り返したときの熱疲労寿命がSUS444より優れていることをいう。
本発明者らは、耐繰り返し酸化性と熱疲労特性がSUS444より優れたフェライト系ステンレス鋼を開発するべく、種々の元素の耐繰り返し酸化性および熱疲労特性への影響について鋭意検討を重ねた。
その結果、質量%で、Nbを0.30~0.80%、Moを1.80~2.50%の範囲で含有することによって、幅広い温度域で高温強度が上昇し、熱疲労特性が向上することを見出した。また、ZrとCoの両方を含有することで耐繰り返し酸化性が向上することを見出した。Zrは高温で生成する酸化スケールを薄くすることで酸化スケールの剥離を抑制し、Coは熱膨張を抑制することで生成した酸化スケールを剥離しにくくする効果を有しており、この両元素を同時に含有することで優れた耐繰り返し酸化性が得られる。
以上の知見を踏まえ、Cr、Nb、Mo、Zr、Coの全てを適量含有するとともに他の必須元素の含有量を調整することで本発明を完成するに至った。上記元素のうち1つでも適量含有しない場合には、本発明の所期する優れた耐繰り返し酸化性と熱疲労特性は得られない。
本発明は、以下を要旨とするものである。
[1]質量%で、C:0.020%以下、Si:0.25~1.0%、Mn:0.05~0.50%、P:0.050%以下、S:0.008%以下、Ni:0.02~0.60%、Al:0.001~0.08%、Cr:18.0~20.0%、Nb:0.30~0.80%、Mo:1.80~2.50%、N:0.015%以下、Zr:0.01~0.40%、Co:0.01~0.30%を含有し、かつ、以下の式(1)を満たし、残部がFeおよび不可避的不純物からなる成分組成を有するフェライト系ステンレス鋼。
Zr+Co:0.03~0.50% ・・・(1)
(式(1)中のZr、Coは、各元素の含有量(質量%)を示す。)
Zr+Co:0.03~0.50% ・・・(1)
(式(1)中のZr、Coは、各元素の含有量(質量%)を示す。)
[2]前記成分組成は、質量%で、さらに、Ti:0.01~0.04%、Sb:0.002~0.50%、B:0.0002~0.0050%、V:0.01~1.0%、W:0.01~0.30%、Cu:0.01~0.20%、Sn:0.001~0.005%のうちから選ばれる1種または2種以上を含有する[1]に記載のフェライト系ステンレス鋼。
[3]前記成分組成は、質量%で、さらに、Ca:0.0002~0.0050%、Mg:0.0002~0.0050%のうちから選ばれる1種または2種を含有する[1]または[2]に記載のフェライト系ステンレス鋼。
[4]エンジンからの排ガスによって700℃以上まで昇温するエキゾーストマニホールドに使用される[1]から[3]のいずれかに記載のフェライト系ステンレス鋼。
本発明によれば、SUS444(JIS G4305)より優れる耐繰り返し酸化性と熱疲労特性を有するフェライト系ステンレス鋼を提供することができる。したがって、本発明のフェライト系ステンレス鋼は、自動車等の排気系部材に好適に用いることができる。
以下、本発明を詳細に説明する。
本発明のフェライト系ステンレス鋼は、質量%で、C:0.020%以下、Si:0.25%以上1.0%以下、Mn:0.05%以上0.50%以下、P:0.050%以下、S:0.008%以下、Ni:0.02%以上0.60%以下、Al:0.001%以上0.08%以下、Cr:18.0%以上20.0%以下、Nb:0.30%以上0.80%以下、Mo:1.80%以上2.50%以下、N:0.015%以下、Zr:0.01%以上0.40%以下、Co:0.01%以上0.30%以下を含有し、かつ、以下の式(1)を満たし、残部がFeおよび不可避的不純物からなる成分組成を有するフェライト系ステンレス鋼である。
Zr+Co:0.03~0.50% ・・・(1)
(式(1)中のZr、Coは、各元素の含有量(質量%)を示す。)
Zr+Co:0.03~0.50% ・・・(1)
(式(1)中のZr、Coは、各元素の含有量(質量%)を示す。)
本発明では、成分組成のバランスが非常に重要であり、上記のような成分組成の組み合わせとすることで、耐繰り返し酸化性と熱疲労特性がSUS444より優れたフェライト系ステンレス鋼を得ることができる。上記成分組成における必須元素(C、Si、Mn、Ni、Al、Cr、Nb、Mo、N、Zr、Co)の含有量の範囲が1つでも外れた場合は、所期した耐繰り返し酸化性と熱疲労特性は得られない。
次に、本発明のフェライト系ステンレス鋼の成分組成について説明する。以下、成分の含有量の単位である%は、特に断らない限り質量%を意味する。
C:0.020%以下
Cは、鋼の強度を高めるのに有効な元素であるが、0.020%を超えてCを含有すると、靭性および成形性の低下が顕著となるのみならず、耐酸化性と熱疲労特性も十分に得られない。よって、C含有量は0.020%以下とする。なお、C含有量は、成形性を確保する観点からは0.010%以下とすることが好ましい。より好ましくは、C含有量は0.008%以下とする。また、排気系部材としての強度を確保する観点からは、C含有量は0.001%以上とすることが好ましい。より好ましくは、C含有量は0.003%以上とする。さらに好ましくは、C含有量は0.006%以上とする。
Cは、鋼の強度を高めるのに有効な元素であるが、0.020%を超えてCを含有すると、靭性および成形性の低下が顕著となるのみならず、耐酸化性と熱疲労特性も十分に得られない。よって、C含有量は0.020%以下とする。なお、C含有量は、成形性を確保する観点からは0.010%以下とすることが好ましい。より好ましくは、C含有量は0.008%以下とする。また、排気系部材としての強度を確保する観点からは、C含有量は0.001%以上とすることが好ましい。より好ましくは、C含有量は0.003%以上とする。さらに好ましくは、C含有量は0.006%以上とする。
Si:0.25~1.0%
Siは、耐酸化性向上のために必要な重要元素である。高温化した排ガス中での耐酸化性を確保するためには0.25%以上のSiの含有が必要である。Si含有量が0.25%未満の場合、耐繰り返し酸化性が不足し、熱疲労特性も十分に得られなくなる。一方、1.0%を超える過剰のSiの含有は、室温における加工性を低下させるため、Si含有量の上限は1.0%とする。また、Si含有量が1.0%を超えると良好な耐繰り返し酸化性、熱疲労寿命が得られない。好ましくは、Si含有量は0.35%以上とする。より好ましくは、Si含有量は0.45%以上とする。さらに好ましくは、Si含有量は0.50%以上とする。また、好ましくは、Si含有量は0.90%以下とする。より好ましくは、Si含有量は0.80%以下とする。
Siは、耐酸化性向上のために必要な重要元素である。高温化した排ガス中での耐酸化性を確保するためには0.25%以上のSiの含有が必要である。Si含有量が0.25%未満の場合、耐繰り返し酸化性が不足し、熱疲労特性も十分に得られなくなる。一方、1.0%を超える過剰のSiの含有は、室温における加工性を低下させるため、Si含有量の上限は1.0%とする。また、Si含有量が1.0%を超えると良好な耐繰り返し酸化性、熱疲労寿命が得られない。好ましくは、Si含有量は0.35%以上とする。より好ましくは、Si含有量は0.45%以上とする。さらに好ましくは、Si含有量は0.50%以上とする。また、好ましくは、Si含有量は0.90%以下とする。より好ましくは、Si含有量は0.80%以下とする。
Mn:0.05~0.50%
Mnは、耐繰り返し酸化性を高める効果を有する。これらの効果を得るためには、0.05%以上のMnの含有が必要である。一方、Mnの0.50%を超える過剰な含有は、高温でγ相が生成しやすくなり、却って耐繰り返し酸化性、熱疲労特性を低下させる。よって、Mn含有量は0.05%以上0.50%以下とする。好ましくは、Mn含有量は0.10%以上とする。より好ましくは、Mn含有量は0.20%以上とする。また、好ましくは、Mn含有量は0.40%以下とする。より好ましくは、Mn含有量は0.30%以下とする。
Mnは、耐繰り返し酸化性を高める効果を有する。これらの効果を得るためには、0.05%以上のMnの含有が必要である。一方、Mnの0.50%を超える過剰な含有は、高温でγ相が生成しやすくなり、却って耐繰り返し酸化性、熱疲労特性を低下させる。よって、Mn含有量は0.05%以上0.50%以下とする。好ましくは、Mn含有量は0.10%以上とする。より好ましくは、Mn含有量は0.20%以上とする。また、好ましくは、Mn含有量は0.40%以下とする。より好ましくは、Mn含有量は0.30%以下とする。
P:0.050%以下
Pは、鋼の靭性を低下させる有害な元素であり、可能な限り低減することが望ましい。よって、P含有量は0.050%以下とする。好ましくは、P含有量は0.040%以下である。より好ましくは、P含有量は0.030%以下である。
Pは、鋼の靭性を低下させる有害な元素であり、可能な限り低減することが望ましい。よって、P含有量は0.050%以下とする。好ましくは、P含有量は0.040%以下である。より好ましくは、P含有量は0.030%以下である。
S:0.008%以下
Sは、伸びやr値を低下させ、成形性に悪影響を及ぼすとともに、ステンレス鋼の基本特性である耐食性を低下させる有害元素でもあるため、できる限り低減することが望ましい。よって、本発明では、S含有量は0.008%以下とする。好ましくは、S含有量は0.006%以下である。
Sは、伸びやr値を低下させ、成形性に悪影響を及ぼすとともに、ステンレス鋼の基本特性である耐食性を低下させる有害元素でもあるため、できる限り低減することが望ましい。よって、本発明では、S含有量は0.008%以下とする。好ましくは、S含有量は0.006%以下である。
Ni:0.02~0.60%
Niは、鋼の靭性および耐酸化性を向上させる元素である。これらの効果を得るためには、Ni含有量は0.02%以上とする。耐酸化性が不十分であると、酸化スケールの生成量が多くなることによる素材断面積の減少や、酸化スケールの剥離により、熱疲労特性が低下する。一方、Niは、強力なγ相形成元素であるため、高温でγ相を生成し、耐酸化性を低下させるのみならず、熱膨張係数が大きくなり熱疲労特性が低下する。よって、Ni含有量の上限は0.60%とする。好ましくは、Ni含有量は0.10%以上である。より好ましくは、Ni含有量は0.20%以上である。また、好ましくは、Ni含有量は0.40%以下である。より好ましくは、Ni含有量は0.25%未満である。
Niは、鋼の靭性および耐酸化性を向上させる元素である。これらの効果を得るためには、Ni含有量は0.02%以上とする。耐酸化性が不十分であると、酸化スケールの生成量が多くなることによる素材断面積の減少や、酸化スケールの剥離により、熱疲労特性が低下する。一方、Niは、強力なγ相形成元素であるため、高温でγ相を生成し、耐酸化性を低下させるのみならず、熱膨張係数が大きくなり熱疲労特性が低下する。よって、Ni含有量の上限は0.60%とする。好ましくは、Ni含有量は0.10%以上である。より好ましくは、Ni含有量は0.20%以上である。また、好ましくは、Ni含有量は0.40%以下である。より好ましくは、Ni含有量は0.25%未満である。
Al:0.001~0.08%
Alは、耐酸化性を向上させる効果を有する元素である。その効果を得るためにAlは0.001%以上の含有が必要である。一方、Alは熱膨張係数を高める元素でもある。熱膨張係数が大きくなると熱疲労特性が低下してしまう。さらに、鋼が著しく硬質化して加工性が低下してしまう。よって、Al含有量は0.08%以下とする。好ましくは、Al含有量は0.01%以上である。より好ましくは、Al含有量は0.02%以上である。さらに好ましくは、Al含有量は0.03%超えである。また、好ましくは、Al含有量は0.05%以下である。より好ましくは、Al含有量は0.04%以下である。
Alは、耐酸化性を向上させる効果を有する元素である。その効果を得るためにAlは0.001%以上の含有が必要である。一方、Alは熱膨張係数を高める元素でもある。熱膨張係数が大きくなると熱疲労特性が低下してしまう。さらに、鋼が著しく硬質化して加工性が低下してしまう。よって、Al含有量は0.08%以下とする。好ましくは、Al含有量は0.01%以上である。より好ましくは、Al含有量は0.02%以上である。さらに好ましくは、Al含有量は0.03%超えである。また、好ましくは、Al含有量は0.05%以下である。より好ましくは、Al含有量は0.04%以下である。
Cr:18.0~20.0%
Crは、ステンレス鋼の特徴である耐食性、耐酸化性を向上させるのに有効な重要元素であるが、Cr含有量が18.0%未満では、900℃を超える高温域で十分な耐酸化性が得られない。耐酸化性が不十分であると、酸化スケール生成量が多くなり、素材の断面積の減少に伴い熱疲労特性も低下する。一方、Crは、室温において鋼を固溶強化し、硬質化および低延性化する元素であり、Cr含有量が20.0%を超えると、上記弊害が顕著となり、熱疲労特性も却って低下するため、Cr含有量の上限は20.0%とする。好ましくは、Cr含有量は18.5%以上である。また、好ましくは、Cr含有量は19.5%以下である。
Crは、ステンレス鋼の特徴である耐食性、耐酸化性を向上させるのに有効な重要元素であるが、Cr含有量が18.0%未満では、900℃を超える高温域で十分な耐酸化性が得られない。耐酸化性が不十分であると、酸化スケール生成量が多くなり、素材の断面積の減少に伴い熱疲労特性も低下する。一方、Crは、室温において鋼を固溶強化し、硬質化および低延性化する元素であり、Cr含有量が20.0%を超えると、上記弊害が顕著となり、熱疲労特性も却って低下するため、Cr含有量の上限は20.0%とする。好ましくは、Cr含有量は18.5%以上である。また、好ましくは、Cr含有量は19.5%以下である。
Nb:0.30~0.80%
Nbは、高温強度を上昇させて熱疲労特性を向上させる本発明に重要な元素である。このような効果は、0.30%以上のNbの含有で認められる。Nb含有量が0.30%未満の場合は、高温における強度が不足し、優れた熱疲労特性が得られない。しかし、0.80%を超えるNbの含有は、金属間化合物であるLaves相(Fe2Nb)等が析出しやすくなり、高温強度が低下し、熱疲労特性とクリープ特性はかえって低下するのみならず、脆化を促進する。よって、Nb含有量は0.30%以上0.80%以下とする。好ましくは、Nb含有量は0.40%以上である。より好ましくは、Nb含有量は0.45%以上である。さらに好ましくは、Nb含有量は0.50%超えである。また、好ましくは、Nb含有量は0.70%以下である。より好ましくは、Nb含有量は0.60%以下である。
Nbは、高温強度を上昇させて熱疲労特性を向上させる本発明に重要な元素である。このような効果は、0.30%以上のNbの含有で認められる。Nb含有量が0.30%未満の場合は、高温における強度が不足し、優れた熱疲労特性が得られない。しかし、0.80%を超えるNbの含有は、金属間化合物であるLaves相(Fe2Nb)等が析出しやすくなり、高温強度が低下し、熱疲労特性とクリープ特性はかえって低下するのみならず、脆化を促進する。よって、Nb含有量は0.30%以上0.80%以下とする。好ましくは、Nb含有量は0.40%以上である。より好ましくは、Nb含有量は0.45%以上である。さらに好ましくは、Nb含有量は0.50%超えである。また、好ましくは、Nb含有量は0.70%以下である。より好ましくは、Nb含有量は0.60%以下である。
Mo:1.80~2.50%
Moは、鋼中に固溶し鋼の高温強度を向上させることで熱疲労特性を向上させる有効な元素である。その効果は1.80%以上のMoの含有で現れる。Mo含有量が1.80%未満の場合は高温強度が不十分となり、優れた熱疲労特性は得られない。一方、過剰なMoの含有は、鋼を硬質化させて加工性を低下させてしまうのみならず、Nbと同様にLaves相(Fe2Mo)として析出し、鋼中固溶Mo量は低減するため却って熱疲労特性は低下してしまう。また、熱疲労試験中に粗大なσ相として析出することで破壊の起点となり熱疲労特性が低下してしまう。よって、Mo含有量の上限は2.50%とする。好ましくは、Mo含有量は1.90%以上である。より好ましくは、Mo含有量は2.00%超えである。また、好ましくは、Mo含有量は2.30%以下である。より好ましくは、Mo含有量は2.10%以下である。
Moは、鋼中に固溶し鋼の高温強度を向上させることで熱疲労特性を向上させる有効な元素である。その効果は1.80%以上のMoの含有で現れる。Mo含有量が1.80%未満の場合は高温強度が不十分となり、優れた熱疲労特性は得られない。一方、過剰なMoの含有は、鋼を硬質化させて加工性を低下させてしまうのみならず、Nbと同様にLaves相(Fe2Mo)として析出し、鋼中固溶Mo量は低減するため却って熱疲労特性は低下してしまう。また、熱疲労試験中に粗大なσ相として析出することで破壊の起点となり熱疲労特性が低下してしまう。よって、Mo含有量の上限は2.50%とする。好ましくは、Mo含有量は1.90%以上である。より好ましくは、Mo含有量は2.00%超えである。また、好ましくは、Mo含有量は2.30%以下である。より好ましくは、Mo含有量は2.10%以下である。
N:0.015%以下
Nは、鋼の靭性および成形性を低下させる元素であり、0.015%を超えて含有すると、靭性および成形性の低下が顕著となるのみならず、耐繰り返し酸化性と熱疲労特性も不十分となる。よって、N含有量は0.015%以下とする。なお、Nは、靭性、成形性を確保する観点からは、できるだけ低減することが好ましく、N含有量は0.010%未満とすることが望ましい。
Nは、鋼の靭性および成形性を低下させる元素であり、0.015%を超えて含有すると、靭性および成形性の低下が顕著となるのみならず、耐繰り返し酸化性と熱疲労特性も不十分となる。よって、N含有量は0.015%以下とする。なお、Nは、靭性、成形性を確保する観点からは、できるだけ低減することが好ましく、N含有量は0.010%未満とすることが望ましい。
Zr:0.01~0.40%
Zrは高温において生成する酸化スケールを薄くし、異常酸化を抑制するとともに酸化スケールの剥離を抑制することで耐繰り返し酸化性を向上させる本発明に重要な元素である。酸化スケールが厚くなると、温度変化が生じた時、特に冷却時に酸化スケールが剥離しやすくなる。酸化スケールが剥離すると、素材が減肉するため優れた熱疲労特性は得られない。この効果を得るためには、Zr含有量を0.01%以上とする。しかし、Zr含有量が0.40%を超えると、Zr金属間化合物が析出して、鋼を脆化して熱疲労特性が低下してしまう。よって、Zr含有量は0.01~0.40%とする。好ましくは、Zr含有量は0.02%以上である。より好ましくは、Zr含有量は0.03%以上である。また、好ましくは、Zr含有量は0.30%以下である。より好ましくは、Zr含有量は0.10%以下である。
Zrは高温において生成する酸化スケールを薄くし、異常酸化を抑制するとともに酸化スケールの剥離を抑制することで耐繰り返し酸化性を向上させる本発明に重要な元素である。酸化スケールが厚くなると、温度変化が生じた時、特に冷却時に酸化スケールが剥離しやすくなる。酸化スケールが剥離すると、素材が減肉するため優れた熱疲労特性は得られない。この効果を得るためには、Zr含有量を0.01%以上とする。しかし、Zr含有量が0.40%を超えると、Zr金属間化合物が析出して、鋼を脆化して熱疲労特性が低下してしまう。よって、Zr含有量は0.01~0.40%とする。好ましくは、Zr含有量は0.02%以上である。より好ましくは、Zr含有量は0.03%以上である。また、好ましくは、Zr含有量は0.30%以下である。より好ましくは、Zr含有量は0.10%以下である。
Co:0.01~0.30%
Coは、鋼の熱膨張係数を低減し、酸化スケールと鋼の熱膨張差を低減することで耐繰り返し酸化性を向上させる本発明において重要な元素である。この効果を得るためには、Co含有量は0.01%以上が必要である。一方、過剰なCoの含有は鋼の靭性を却って低下させるため、Co含有量の上限は0.30%とする。好ましくは、Co含有量は0.02%以上である。より好ましくは、Co含有量は0.03%以上である。また、好ましくは、Co含有量は0.10%以下である。さらに好ましくは、Co含有量は0.05%以下である。
Coは、鋼の熱膨張係数を低減し、酸化スケールと鋼の熱膨張差を低減することで耐繰り返し酸化性を向上させる本発明において重要な元素である。この効果を得るためには、Co含有量は0.01%以上が必要である。一方、過剰なCoの含有は鋼の靭性を却って低下させるため、Co含有量の上限は0.30%とする。好ましくは、Co含有量は0.02%以上である。より好ましくは、Co含有量は0.03%以上である。また、好ましくは、Co含有量は0.10%以下である。さらに好ましくは、Co含有量は0.05%以下である。
Zr+Co:0.03~0.50% ・・・(1)
上述したように、Zrは酸化スケールを薄くすることで異常酸化を抑制しかつ酸化スケールの剥離を防止し、Coは鋼の熱膨張係数を低減することで酸化スケールの剥離を抑制する。ZrとCoを両方同時に含有することで耐繰り返し酸化性は大きく向上する。900℃を超える高温域においてに優れた耐繰り返し酸化性を得るためには、両元素を所定の範囲で含有した上で、少なくともZr+Co量(ZrとCoの合計含有量)は0.03%以上とする必要がある。Zr+Co量が0.03%未満の場合、耐繰り返し酸化性が不十分で酸化スケールが剥離し、熱疲労特性も低下する。好ましくは、Zr+Co量は0.05%以上である。一方、Zr+Co量が過剰になると鋼が脆化し、熱疲労特性が却って低下する。そのため、Zr+Co量は0.50%を上限とする。好ましくは、Zr+Co量は0.30%以下である。
上述したように、Zrは酸化スケールを薄くすることで異常酸化を抑制しかつ酸化スケールの剥離を防止し、Coは鋼の熱膨張係数を低減することで酸化スケールの剥離を抑制する。ZrとCoを両方同時に含有することで耐繰り返し酸化性は大きく向上する。900℃を超える高温域においてに優れた耐繰り返し酸化性を得るためには、両元素を所定の範囲で含有した上で、少なくともZr+Co量(ZrとCoの合計含有量)は0.03%以上とする必要がある。Zr+Co量が0.03%未満の場合、耐繰り返し酸化性が不十分で酸化スケールが剥離し、熱疲労特性も低下する。好ましくは、Zr+Co量は0.05%以上である。一方、Zr+Co量が過剰になると鋼が脆化し、熱疲労特性が却って低下する。そのため、Zr+Co量は0.50%を上限とする。好ましくは、Zr+Co量は0.30%以下である。
なお、上記の式(1)中のZrおよびCoは、各元素の含有量(質量%)を示す。
本発明のフェライト系ステンレス鋼では、残部はFeおよび不可避的不純物からなる。
本発明のフェライト系ステンレス鋼は、上記必須成分に加えて、任意成分として、さらに、Ti、Sb、B、V、W、Cu、Snのうちから選ばれる1種または2種以上を、下記の範囲で含有することができる。
Ti:0.01~0.04%
Tiは、CおよびNを固定して、耐食性や成形性を向上し、溶接部の粒界腐食を防止する元素であり、本発明では、必要に応じて含有することができる。Tiを含有することにより、TiがNbよりも優先的にCおよびNと結びつくため、高温強度に有効な鋼中固溶Nb量を確保することができ、耐熱性向上に有効である。この効果は0.01%以上のTiの含有で得られる。一方、0.04%を超える過剰なTiの含有は、酸化スケールを剥離させやすくなり、耐繰り返し酸化性が低下するのみならず、Tiの炭窒化物を核としてNbの炭窒化物が析出しやすくなるため、高温強度に有効な鋼中固溶Nb量を却って低減させてしまい、熱疲労特性、クリープ特性も低下する。よって、Tiを含有する場合、Ti含有量は0.01~0.04%とする。好ましくは、Ti含有量は0.02%以下である。
Tiは、CおよびNを固定して、耐食性や成形性を向上し、溶接部の粒界腐食を防止する元素であり、本発明では、必要に応じて含有することができる。Tiを含有することにより、TiがNbよりも優先的にCおよびNと結びつくため、高温強度に有効な鋼中固溶Nb量を確保することができ、耐熱性向上に有効である。この効果は0.01%以上のTiの含有で得られる。一方、0.04%を超える過剰なTiの含有は、酸化スケールを剥離させやすくなり、耐繰り返し酸化性が低下するのみならず、Tiの炭窒化物を核としてNbの炭窒化物が析出しやすくなるため、高温強度に有効な鋼中固溶Nb量を却って低減させてしまい、熱疲労特性、クリープ特性も低下する。よって、Tiを含有する場合、Ti含有量は0.01~0.04%とする。好ましくは、Ti含有量は0.02%以下である。
Sb:0.002~0.50%
Sbは耐クリープ特性を向上させる効果を有する元素である。Sbは鋼中に固溶し鋼のクリープ変形を抑制する。Sbは高温域においても炭窒化物やLaves相として析出せず、長期間の使用後にも鋼中に固溶し続けるため、耐クリープ特性を向上させることができる。耐クリープ特性の向上は、特に900℃以上まで昇温する場合の熱疲労特性の向上に有効である。この効果は0.002%以上のSbの含有で得られる。一方、Sbの過剰な含有は鋼の靭性、熱間加工性を低下させるため、製造時に割れが発生しやすくなるのみならず、熱間延性が低下することで熱疲労特性も低下する。したがって、Sbを含有する場合、Sb含有量は0.002~0.50%とする。好ましくは、Sb含有量は0.005%以上である。より好ましくはSb含有量は0.020%以上である。また、好ましくはSb含有量は0.30%以下である。より好ましくはSb含有量は0.10%以下である。
Sbは耐クリープ特性を向上させる効果を有する元素である。Sbは鋼中に固溶し鋼のクリープ変形を抑制する。Sbは高温域においても炭窒化物やLaves相として析出せず、長期間の使用後にも鋼中に固溶し続けるため、耐クリープ特性を向上させることができる。耐クリープ特性の向上は、特に900℃以上まで昇温する場合の熱疲労特性の向上に有効である。この効果は0.002%以上のSbの含有で得られる。一方、Sbの過剰な含有は鋼の靭性、熱間加工性を低下させるため、製造時に割れが発生しやすくなるのみならず、熱間延性が低下することで熱疲労特性も低下する。したがって、Sbを含有する場合、Sb含有量は0.002~0.50%とする。好ましくは、Sb含有量は0.005%以上である。より好ましくはSb含有量は0.020%以上である。また、好ましくはSb含有量は0.30%以下である。より好ましくはSb含有量は0.10%以下である。
B:0.0002~0.0050%
Bは、鋼の加工性、特に二次加工性を向上させるために有効な元素である。このような効果は、0.0002%以上のBの含有で得ることができる。一方、過剰なBの含有は、BNを生成して加工性を低下させる。よって、Bを含有する場合は、B含有量は0.0002~0.0050%とする。好ましくは、B含有量は0.0005%以上である。より好ましくは、B含有量は0.0008%以上である。また、好ましくは、B含有量は0.0030%以下である。より好ましくは、B含有量は0.0020%以下である。
Bは、鋼の加工性、特に二次加工性を向上させるために有効な元素である。このような効果は、0.0002%以上のBの含有で得ることができる。一方、過剰なBの含有は、BNを生成して加工性を低下させる。よって、Bを含有する場合は、B含有量は0.0002~0.0050%とする。好ましくは、B含有量は0.0005%以上である。より好ましくは、B含有量は0.0008%以上である。また、好ましくは、B含有量は0.0030%以下である。より好ましくは、B含有量は0.0020%以下である。
V:0.01~1.0%
Vは、鋼の加工性向上に有効な元素であるとともに、耐酸化性の向上にも有効な元素である。これらの効果は、V含有量が0.01%以上で顕著となる。しかし、1.0%を超える過剰なVの含有は、粗大なV(C、N)の析出を招き、靭性を低下させるのみならず、表面性状を低下させる。よって、Vを含有する場合は、V含有量は0.01~1.0%とする。好ましくは、V含有量は0.03%以上である。また、好ましくは、V含有量は0.50%以下である。より好ましくは、V含有量は0.10%以下である。さらに好ましくは、V含有量は0.05%未満である。
Vは、鋼の加工性向上に有効な元素であるとともに、耐酸化性の向上にも有効な元素である。これらの効果は、V含有量が0.01%以上で顕著となる。しかし、1.0%を超える過剰なVの含有は、粗大なV(C、N)の析出を招き、靭性を低下させるのみならず、表面性状を低下させる。よって、Vを含有する場合は、V含有量は0.01~1.0%とする。好ましくは、V含有量は0.03%以上である。また、好ましくは、V含有量は0.50%以下である。より好ましくは、V含有量は0.10%以下である。さらに好ましくは、V含有量は0.05%未満である。
W:0.01~0.30%
Wは、Moと同様に固溶強化により高温強度を大きく向上させる元素である。この効果は0.01%以上のWの含有で得られる。一方、過剰な含有は鋼を著しく硬質化するのみならず、製造時の焼鈍工程において強固なスケールが生成するため、酸洗時の脱スケールが困難になる。よって、Wを含有する場合は、W含有量は0.01~0.30%とする。好ましくは、W含有量は0.02%以上である。また、好ましくは、W含有量は0.20%以下である。より好ましくは、W含有量は0.10%未満である。
Wは、Moと同様に固溶強化により高温強度を大きく向上させる元素である。この効果は0.01%以上のWの含有で得られる。一方、過剰な含有は鋼を著しく硬質化するのみならず、製造時の焼鈍工程において強固なスケールが生成するため、酸洗時の脱スケールが困難になる。よって、Wを含有する場合は、W含有量は0.01~0.30%とする。好ましくは、W含有量は0.02%以上である。また、好ましくは、W含有量は0.20%以下である。より好ましくは、W含有量は0.10%未満である。
Cu:0.01~0.20%
Cuは鋼の耐食性を向上させる効果を有する元素であり、耐食性が必要な場合に含有する。その効果は0.01%以上のCuの含有で得られる。一方で0.20%を超えてCuを含有すると、酸化スケールが剥離しやすくなり、耐繰り返し酸化特性が低下する。耐繰り返し酸化性が不足すると、酸化スケールが剥離しやすく、剥離した部分を起点に熱疲労破壊しやすくなるため熱疲労特性も低下する。そのため、Cuを含有する場合は、Cu含有量は0.01~0.20%とする。好ましくは、Cu含有量は0.02%以上である。より好ましくは、Cu含有量は0.03%以上である。また、好ましくは、Cu含有量は0.10%以下である。より好ましくは、Cu含有量は0.06%以下である。
Cuは鋼の耐食性を向上させる効果を有する元素であり、耐食性が必要な場合に含有する。その効果は0.01%以上のCuの含有で得られる。一方で0.20%を超えてCuを含有すると、酸化スケールが剥離しやすくなり、耐繰り返し酸化特性が低下する。耐繰り返し酸化性が不足すると、酸化スケールが剥離しやすく、剥離した部分を起点に熱疲労破壊しやすくなるため熱疲労特性も低下する。そのため、Cuを含有する場合は、Cu含有量は0.01~0.20%とする。好ましくは、Cu含有量は0.02%以上である。より好ましくは、Cu含有量は0.03%以上である。また、好ましくは、Cu含有量は0.10%以下である。より好ましくは、Cu含有量は0.06%以下である。
Sn:0.001~0.005%
Snは、鋼の高温強度向上に有効な元素である。この効果は0.001%以上のSnの含有で得られる。一方、過剰なSnの含有は鋼を脆化させ、熱疲労特性を却って低下させる。よって、Snを含有する場合、Sn含有量は0.001~0.005%とする。好ましくは、Sn含有量は0.001%以上0.003%以下である。
Snは、鋼の高温強度向上に有効な元素である。この効果は0.001%以上のSnの含有で得られる。一方、過剰なSnの含有は鋼を脆化させ、熱疲労特性を却って低下させる。よって、Snを含有する場合、Sn含有量は0.001~0.005%とする。好ましくは、Sn含有量は0.001%以上0.003%以下である。
本発明のフェライト系ステンレス鋼は、任意成分として、さらに、Ca、Mgのうちから選ばれる1種または2種を、下記の範囲で含有することができる。
Ca:0.0002~0.0050%
Caは、連続鋳造の際に発生しやすいTi系介在物析出によるノズルの閉塞を防止するのに有効な成分である。その効果は0.0002%以上のCaの含有で得られる。一方、表面欠陥を発生させず良好な表面性状を得るためには、Ca含有量は0.0050%以下とする必要がある。従って、Caを含有する場合は、Ca含有量は0.0002~0.0050%とする。好ましくは、Ca含有量は0.0005%以上である。また、好ましくは、Ca含有量は0.0030%以下である。より好ましくは、Ca含有量は0.0020%以下である。
Caは、連続鋳造の際に発生しやすいTi系介在物析出によるノズルの閉塞を防止するのに有効な成分である。その効果は0.0002%以上のCaの含有で得られる。一方、表面欠陥を発生させず良好な表面性状を得るためには、Ca含有量は0.0050%以下とする必要がある。従って、Caを含有する場合は、Ca含有量は0.0002~0.0050%とする。好ましくは、Ca含有量は0.0005%以上である。また、好ましくは、Ca含有量は0.0030%以下である。より好ましくは、Ca含有量は0.0020%以下である。
Mg:0.0002~0.0050%
Mgは、スラブの等軸晶率を向上させ、加工性や靭性の向上に有効な元素である。本発明のようにNbやTiを含有する鋼においては、MgはNbやTiの炭窒化物の粗大化を抑制する効果も有する。その効果は0.0002%以上のMgの含有で得られる。Ti炭窒化物が粗大化すると、脆性割れの起点となるため靭性が大きく低下する。Nb炭窒化物が粗大化すると、Nbの鋼中固溶量が低下するため、熱疲労特性の低下に繋がる。一方、Mg含有量が0.0050%超えとなると、鋼の表面性状を悪化させてしまう。よって、Mgを含有する場合は、Mg含有量は0.0002~0.0050%とする。好ましくは、Mg含有量は0.0003%以上である。より好ましくは、Mg含有量は0.0004%以上である。また、好ましくは、Mg含有量は0.0030%以下である。より好ましくは、Mg含有量は0.0020%以下である。
Mgは、スラブの等軸晶率を向上させ、加工性や靭性の向上に有効な元素である。本発明のようにNbやTiを含有する鋼においては、MgはNbやTiの炭窒化物の粗大化を抑制する効果も有する。その効果は0.0002%以上のMgの含有で得られる。Ti炭窒化物が粗大化すると、脆性割れの起点となるため靭性が大きく低下する。Nb炭窒化物が粗大化すると、Nbの鋼中固溶量が低下するため、熱疲労特性の低下に繋がる。一方、Mg含有量が0.0050%超えとなると、鋼の表面性状を悪化させてしまう。よって、Mgを含有する場合は、Mg含有量は0.0002~0.0050%とする。好ましくは、Mg含有量は0.0003%以上である。より好ましくは、Mg含有量は0.0004%以上である。また、好ましくは、Mg含有量は0.0030%以下である。より好ましくは、Mg含有量は0.0020%以下である。
残部は、Feおよび不可避的不純物である。上記任意成分を上記下限値未満で含む場合、下限値未満の含有量で含まれる任意成分は、不可避的不純物として含まれるものとする。
次に、本発明のフェライト系ステンレス鋼の製造方法について説明する。
本発明のフェライト系ステンレス鋼の製造方法は、フェライト系ステンレス鋼の通常の製造方法であれば好適に採用することができ、特に限定されるものではない。例えば、転炉または電気炉等公知の溶解炉で鋼を溶製し、あるいはさらに取鍋精錬または真空精錬等の二次精錬を経て上述した本発明の成分組成を有する鋼とし、連続鋳造法あるいは造塊-分塊圧延法で鋼片(スラブ)とし、その後、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上げ焼鈍および酸洗等の各工程を経て冷延焼鈍板とする製造工程で製造することができる。上記冷間圧延は、1回または中間焼鈍を挟む2回以上の冷間圧延としてもよく、また、冷間圧延、仕上げ焼鈍および酸洗の各工程は、繰り返して行ってもよい。さらに、熱延板焼鈍は省略してもよく、鋼板の表面光沢や粗度調整が要求される場合には、冷間圧延後あるいは仕上げ焼鈍後、スキンパス圧延を施してもよい。
上記製造方法における、好ましい製造条件について説明する。
鋼を溶製する製鋼工程は、転炉あるいは電気炉等で溶解した鋼をVOD法やAOD法等により二次精錬し、上記必須成分および必要に応じて添加される任意成分を含有する鋼とすることが好ましい。溶製した溶鋼は、公知の方法で鋼素材とすることができるが、生産性および品質面からは、連続鋳造法によることが好ましい。鋼素材は、その後、好ましくは1050~1250℃に加熱され、熱間圧延により所望の板厚の熱延板とされる。製造上、熱延板の板厚は5mm以下が望ましい。もちろん、板材以外に熱間加工することもできる。上記熱延板は、その後必要に応じて900~1150℃の温度で連続焼鈍、または700~900℃の温度でバッチ焼鈍を施した後、酸洗や研磨等により脱スケールし、熱延製品とすることが好ましい。なお、必要に応じて、酸洗前にショットブラストによりスケール除去してもよい。
さらに、上記熱延製品(熱延焼鈍板)を、冷間圧延等の工程を経て冷延製品としてもよい。この場合の冷間圧延は、1回でもよいが、生産性や要求品質上の観点から中間焼鈍を挟む2回以上の冷間圧延としてもよい。1回または2回以上の冷間圧延の総圧下率は60%以上が好ましく、より好ましくは70%以上である。冷間圧延した鋼板は、その後、好ましくは900~1200℃、さらに好ましくは1000~1150℃の温度で連続焼鈍(仕上げ焼鈍)し、酸洗または研磨し、冷延製品(冷延焼鈍板)とすることが好ましい。仕上げ焼鈍は還元性雰囲気中で行っても良く、その場合、仕上げ焼鈍後の酸洗または研磨は省略しても良い。さらに用途によっては、仕上げ焼鈍後、スキンパス圧延等を施して、鋼板の形状、表面粗度および材質の調整を行ってもよい。仕上げ焼鈍後の結晶粒径は、部品成形時の表面性状の観点から、100μm以下であることが望ましい。
上記のようにして得た熱延製品あるいは冷延製品は、その後、それぞれの用途に応じて、切断や曲げ加工、張出し加工および絞り加工等の加工を施して、自動車やオートバイの排気管、触媒外筒材、火力発電プラントの排気ダクトあるいは燃料電池関連部材、例えばセパレータ、インタコネクターあるいは改質器等に成形される。本発明のフェライト系ステンレス鋼は、これらの中でも、エキゾーストマニホールドや排気パイプ、コンバータケース、およびマフラー等の排気系部材用に好適に用いられる。特に、使用時にエンジンからの排ガスによって700℃以上まで昇温する場合であっても、耐久性に優れたエキゾーストマニホールドを得ることができる点が特徴の一つである。
これらの部材を溶接する方法は、特に限定されるものではなく、MIG(Metal Inert Gas)、MAG(Metal Active Gas)、TIG(Tungsten Inert Gas)等の通常のアーク溶接や、スポット溶接、シーム溶接等の抵抗溶接、および電縫溶接などの高周波抵抗溶接、高周波誘導溶接等を適用することができる。
以下、本発明を実施例により詳細に説明する。
表1に示したNo.1~8、10、12~46の成分組成を有する鋼を真空溶解炉で溶製し、鋳造して50kg鋼塊とし、1170℃で加熱した後、熱間圧延により35mm厚のシートバーとした。シートバーを2分割し、うち1つの鋼塊を1100℃に加熱し、次いで、熱間圧延して板厚5mmの熱延板とし、1000~1150℃の範囲の温度で焼鈍後、研削し熱延焼鈍板とした。続いて、圧下率70%の冷間圧延を行い、1000~1150℃の温度で仕上げ焼鈍を行った後、酸洗または研磨によりスケールを除去し、板厚が1.5mmの冷延焼鈍板として、繰り返し酸化試験に供した。なお、参考として、SUS444(従来例No.24)についても、上記と同様にして冷延焼鈍板を作製し、酸化試験に供した。焼鈍温度については、上記温度範囲内で組織を確認しながら各鋼について温度を決定した。
<繰り返し酸化試験>
上記の冷延焼鈍板から20mm幅×30mm長さの寸法に切り出し、全6面を#320エメリー紙で研磨して試験に供した。酸化試験条件は、大気中において、1050℃で20min保持と100℃で1min保持を400サイクル繰り返した。加熱速度および冷却速度は、それぞれ5℃/sec、2℃/secで行った。試験中に剥離した酸化スケールを回収できるよう、試験片をアルミナるつぼに入れて試験を行った。試験前後のるつぼと試験片の総重量変化から酸化増量を算出し、酸化増量が50g/m2以上の場合は異常酸化が発生しているものと判断した。さらに、るつぼと試験片の総重量変化から算出した酸化増量から、試験片のみの重量変化から得られた酸化増量を引き算した値、すなわち酸化スケール剥離量が1g/m2以上の場合を酸化スケールが剥離したものと判断した。耐繰り返し酸化性を、以下のように評価した。SUS444(従来例No.24)については、異常酸化の発生と酸化スケールの剥離の両方が見られた。
上記の冷延焼鈍板から20mm幅×30mm長さの寸法に切り出し、全6面を#320エメリー紙で研磨して試験に供した。酸化試験条件は、大気中において、1050℃で20min保持と100℃で1min保持を400サイクル繰り返した。加熱速度および冷却速度は、それぞれ5℃/sec、2℃/secで行った。試験中に剥離した酸化スケールを回収できるよう、試験片をアルミナるつぼに入れて試験を行った。試験前後のるつぼと試験片の総重量変化から酸化増量を算出し、酸化増量が50g/m2以上の場合は異常酸化が発生しているものと判断した。さらに、るつぼと試験片の総重量変化から算出した酸化増量から、試験片のみの重量変化から得られた酸化増量を引き算した値、すなわち酸化スケール剥離量が1g/m2以上の場合を酸化スケールが剥離したものと判断した。耐繰り返し酸化性を、以下のように評価した。SUS444(従来例No.24)については、異常酸化の発生と酸化スケールの剥離の両方が見られた。
◎:異常酸化無しかつ酸化スケール剥離量0.1g/m2以下
○:異常酸化無しかつ酸化スケール剥離量0.1g/m2超え1g/m2未満
×:異常酸化発生または酸化スケール剥離量1g/m2以上
上記評価で、◎と○を合格、×を不合格とした。得られた結果を表1に示す(表1中の繰り返し酸化1050℃参照)。
○:異常酸化無しかつ酸化スケール剥離量0.1g/m2超え1g/m2未満
×:異常酸化発生または酸化スケール剥離量1g/m2以上
上記評価で、◎と○を合格、×を不合格とした。得られた結果を表1に示す(表1中の繰り返し酸化1050℃参照)。
次に、上記において2分割したシートバーの残りのうち1つを用い、1100℃に加熱した後、熱間鍛造し、30mm角の各棒とした。次いで、1000~1150℃の温度で焼鈍後、機械加工し、図1に示す形状、寸法の熱疲労試験片に加工し、下記の熱疲労試験に供した。焼鈍温度は、成分毎に組織を確認し再結晶が完了した温度とした。なお、参考として、SUS444の成分組成を有する鋼(従来例No.24)についても、上記と同様にして試験片を作製し、熱疲労試験に供した。
<熱疲労試験>
熱疲労試験は、図2に示すように、上記試験片を拘束率0.5で拘束しながら、200℃と950℃の間で昇温・降温を繰り返す条件で行った。このとき、昇温速度は5℃/秒とし、降温速度は2℃/秒とした。そして、200℃、950℃での保持時間はそれぞれ30秒とした。なお、上記の拘束率については、図2に示すように、拘束率η=a/(a+b)として表すことができ、aは(自由熱膨張ひずみ量-制御ひずみ量)/2であり、bは制御ひずみ量/2である。また、自由熱膨張ひずみ量とは機械的な応力を一切与えずに昇温した場合のひずみ量であり、制御ひずみ量とは試験中に生じているひずみ量の絶対値を示す。拘束により材料に生じる実質的な拘束ひずみ量は、(自由熱膨張ひずみ量-制御ひずみ量)である。
熱疲労試験は、図2に示すように、上記試験片を拘束率0.5で拘束しながら、200℃と950℃の間で昇温・降温を繰り返す条件で行った。このとき、昇温速度は5℃/秒とし、降温速度は2℃/秒とした。そして、200℃、950℃での保持時間はそれぞれ30秒とした。なお、上記の拘束率については、図2に示すように、拘束率η=a/(a+b)として表すことができ、aは(自由熱膨張ひずみ量-制御ひずみ量)/2であり、bは制御ひずみ量/2である。また、自由熱膨張ひずみ量とは機械的な応力を一切与えずに昇温した場合のひずみ量であり、制御ひずみ量とは試験中に生じているひずみ量の絶対値を示す。拘束により材料に生じる実質的な拘束ひずみ量は、(自由熱膨張ひずみ量-制御ひずみ量)である。
また、熱疲労寿命は、200℃において検出された荷重を試験片均熱平行部(図1参照)の断面積で割って応力を算出し、初期のサイクル(試験が安定する5サイクル目)の応力値に対して応力値が75%まで低下したサイクル数とし、以下のように評価した。
◎:1000サイクル以上(合格)
○:800サイクル以上1000サイクル未満(合格)
×:800サイクル未満(不合格)
上記評価で、◎、○を合格、×を不合格とした。得られた結果を表1に示す(表1中の熱疲労寿命950℃参照)。
○:800サイクル以上1000サイクル未満(合格)
×:800サイクル未満(不合格)
上記評価で、◎、○を合格、×を不合格とした。得られた結果を表1に示す(表1中の熱疲労寿命950℃参照)。
表1より、本発明例のNo.1~8、10、12~23、45、46のフェライト系ステンレス鋼(以下、フェライト系ステンレス鋼を、単に鋼と記す)は、いずれも繰り返し酸化試験および熱疲労試験においてSUS444(従来例No.24の鋼)より優れた特性を示している。
No.25の鋼は、Mo含有量が1.80質量%未満であり、熱疲労寿命が不合格となった。No.26の鋼は、Zr含有量が0.01質量%未満であり、耐繰り返し酸化性、熱疲労寿命がともに不合格となった。No.27の鋼は、Zr+Co量が0.03質量%未満であり、耐繰り返し酸化性、熱疲労寿命がいずれも不合格となった。No.28の鋼は、Co含有量が0.01質量%未満であり、耐繰り返し酸化性、熱疲労寿命がいずれも不合格となった。No.29の鋼は、Ni含有量が0.60質量%超えであり、耐繰り返し酸化性、熱疲労寿命がいずれも不合格となった。No.30の鋼は、Nb含有量が0.80質量%超えであり、熱疲労寿命が不合格となった。No.31の鋼は、Ti含有量が0.04質量%超えであり、繰り返し酸化性、熱疲労寿命がいずれも不合格となった。No.32の鋼は、Mo含有量が2.50質量%超えであり、鋼の脆化に伴い熱疲労寿命が不合格となった。No.33の鋼は、Ni含有量が0.02質量%未満であり、耐繰り返し酸化性、熱疲労寿命がいずれも不合格となった。No.34の鋼は、Si含有量が1.0質量%超えであり、耐繰り返し酸化性、熱疲労寿命がいずれも不合格となった。No.35の鋼は、Cr含有量が18.0質量%未満であり、耐繰り返し酸化性、熱疲労寿命がともに不合格となった。No.36の鋼はNb含有量が0.30質量%未満であり、熱疲労寿命が不合格となった。No.37の鋼は、Sn含有量が0.005質量%を超えており、熱疲労寿命が不合格となった。No.38の鋼はCr含有量が20.0質量%を超えており、鋼の脆化に伴い熱疲労寿命が不合格となった。No.39の鋼は、Al含有量が0.08質量%を超えており、熱疲労寿命が不合格となった。No.40の鋼は、Si含有量が0.25質量%未満であり、耐繰り返し酸化性、熱疲労寿命ともに不合格となった。No.41の鋼は、Mn含有量が0.50質量%超えであり、耐繰り返し酸化性、熱疲労寿命がともに不合格となった。No.42の鋼は、C含有量が0.020質量%超えであり、耐繰り返し酸化性、熱疲労寿命がともに不合格となった。No.43の鋼は、N含有量が0.015質量%超えであり、耐繰り返し酸化性、熱疲労寿命がともに不合格となった。No.44の鋼は、Cu含有量が0.20質量%超えであり、耐繰り返し酸化性、熱疲労寿命がいずれも不合格となった。
本発明のフェライト系ステンレス鋼は、自動車等の排気系部材用として好適であるだけでなく、同様の特性が要求される火力発電システムの排気系部材や固体酸化物タイプの燃料電池用部材としても好適に用いることができる。
Claims (4)
- 質量%で、
C:0.020%以下、
Si:0.25~1.0%、
Mn:0.05~0.50%、
P:0.050%以下、
S:0.008%以下、
Ni:0.02~0.60%、
Al:0.001~0.08%、
Cr:18.0~20.0%、
Nb:0.30~0.80%、
Mo:1.80~2.50%、
N:0.015%以下、
Zr:0.01~0.40%、
Co:0.01~0.30%
を含有し、かつ、以下の式(1)を満たし、残部がFeおよび不可避的不純物からなる成分組成を有するフェライト系ステンレス鋼。
Zr+Co:0.03~0.50% ・・・(1)
(式(1)中のZr、Coは、各元素の含有量(質量%)を示す。) - 前記成分組成は、質量%で、さらに、
Ti:0.01~0.04%、
Sb:0.002~0.50%、
B:0.0002~0.0050%、
V:0.01~1.0%、
W:0.01~0.30%、
Cu:0.01~0.20%、
Sn:0.001~0.005%
のうちから選ばれる1種または2種以上を含有する請求項1に記載のフェライト系ステンレス鋼。 - 前記成分組成は、質量%で、さらに、
Ca:0.0002~0.0050%、
Mg:0.0002~0.0050%
のうちから選ばれる1種または2種を含有する請求項1または2に記載のフェライト系ステンレス鋼。 - エンジンからの排ガスによって700℃以上まで昇温するエキゾーストマニホールドに使用される請求項1から3のいずれかに記載のフェライト系ステンレス鋼。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019524294A JP6624345B1 (ja) | 2018-01-31 | 2019-01-25 | フェライト系ステンレス鋼 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018015831 | 2018-01-31 | ||
JP2018-015831 | 2018-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151124A1 true WO2019151124A1 (ja) | 2019-08-08 |
Family
ID=67479220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/002412 WO2019151124A1 (ja) | 2018-01-31 | 2019-01-25 | フェライト系ステンレス鋼 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6624345B1 (ja) |
WO (1) | WO2019151124A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115354239A (zh) * | 2022-08-17 | 2022-11-18 | 常熟市港城不锈钢装饰有限责任公司 | 一种耐热合金钢材及其制备方法 |
WO2024157580A1 (ja) * | 2023-01-23 | 2024-08-02 | Jfeスチール株式会社 | フェライト系ステンレス鋼およびその製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08218154A (ja) * | 1995-02-14 | 1996-08-27 | Nippon Steel Corp | 耐金属間化合物析出脆化特性の優れた高強度フェライト系耐熱鋼 |
JP2004018921A (ja) * | 2002-06-14 | 2004-01-22 | Jfe Steel Kk | 室温で軟質かつ耐高温酸化性に優れたフェライト系ステンレス鋼 |
WO2005064030A1 (ja) * | 2003-12-26 | 2005-07-14 | Jfe Steel Corporation | フェライト系Cr含有鋼材 |
JP2017179398A (ja) * | 2016-03-28 | 2017-10-05 | 新日鐵住金ステンレス株式会社 | 排気マニホールド用フェライト系ステンレス鋼板および排気マニホールド |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3491235B1 (en) * | 2016-07-28 | 2022-02-16 | Bardex Corporation | Wave energy converter with a depth adjustable paravane |
CN109563597A (zh) * | 2016-09-02 | 2019-04-02 | 杰富意钢铁株式会社 | 铁素体系不锈钢 |
-
2019
- 2019-01-25 WO PCT/JP2019/002412 patent/WO2019151124A1/ja active Application Filing
- 2019-01-25 JP JP2019524294A patent/JP6624345B1/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08218154A (ja) * | 1995-02-14 | 1996-08-27 | Nippon Steel Corp | 耐金属間化合物析出脆化特性の優れた高強度フェライト系耐熱鋼 |
JP2004018921A (ja) * | 2002-06-14 | 2004-01-22 | Jfe Steel Kk | 室温で軟質かつ耐高温酸化性に優れたフェライト系ステンレス鋼 |
WO2005064030A1 (ja) * | 2003-12-26 | 2005-07-14 | Jfe Steel Corporation | フェライト系Cr含有鋼材 |
JP2017179398A (ja) * | 2016-03-28 | 2017-10-05 | 新日鐵住金ステンレス株式会社 | 排気マニホールド用フェライト系ステンレス鋼板および排気マニホールド |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115354239A (zh) * | 2022-08-17 | 2022-11-18 | 常熟市港城不锈钢装饰有限责任公司 | 一种耐热合金钢材及其制备方法 |
WO2024157580A1 (ja) * | 2023-01-23 | 2024-08-02 | Jfeスチール株式会社 | フェライト系ステンレス鋼およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6624345B1 (ja) | 2019-12-25 |
JPWO2019151124A1 (ja) | 2020-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6075349B2 (ja) | フェライト系ステンレス鋼 | |
JP5700175B2 (ja) | フェライト系ステンレス鋼 | |
JP4702493B1 (ja) | 耐熱性に優れるフェライト系ステンレス鋼 | |
JP5234214B2 (ja) | フェライト系ステンレス鋼 | |
JP6123964B1 (ja) | フェライト系ステンレス鋼 | |
JP5904306B2 (ja) | フェライト系ステンレス熱延焼鈍鋼板、その製造方法およびフェライト系ステンレス冷延焼鈍鋼板 | |
CN104364404B (zh) | 铁素体系不锈钢 | |
JP6908179B2 (ja) | フェライト系ステンレス鋼 | |
WO2015174079A1 (ja) | フェライト系ステンレス鋼 | |
WO2019151124A1 (ja) | フェライト系ステンレス鋼 | |
WO2019151125A1 (ja) | フェライト系ステンレス鋼 | |
JP6665936B2 (ja) | フェライト系ステンレス鋼 | |
JP7528894B2 (ja) | フェライト系ステンレス鋼 | |
JP2024030778A (ja) | フェライト系ステンレス冷延焼鈍鋼板、その素材となる冷延鋼板および前記冷延焼鈍鋼板の製造方法 | |
JP2024129726A (ja) | フェライト系ステンレス鋼およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019524294 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19747937 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19747937 Country of ref document: EP Kind code of ref document: A1 |