[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019150567A1 - 軸流送風機 - Google Patents

軸流送風機 Download PDF

Info

Publication number
WO2019150567A1
WO2019150567A1 PCT/JP2018/003704 JP2018003704W WO2019150567A1 WO 2019150567 A1 WO2019150567 A1 WO 2019150567A1 JP 2018003704 W JP2018003704 W JP 2018003704W WO 2019150567 A1 WO2019150567 A1 WO 2019150567A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
curved surface
airflow
bell mouth
axial
Prior art date
Application number
PCT/JP2018/003704
Other languages
English (en)
French (fr)
Inventor
新井 俊勝
菊地 仁
千景 門井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880087838.5A priority Critical patent/CN111656019B/zh
Priority to US16/962,594 priority patent/US20200408225A1/en
Priority to JP2019568534A priority patent/JP6914371B2/ja
Priority to PCT/JP2018/003704 priority patent/WO2019150567A1/ja
Priority to TW107119335A priority patent/TW201934888A/zh
Publication of WO2019150567A1 publication Critical patent/WO2019150567A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to an axial blower that generates an airflow that flows in the axial direction of a rotating shaft.
  • Axial fans are often installed in places close to living spaces, and noise reduction is required.
  • a bell mouth is provided around the rotor blades of the axial flow fan so that air can be smoothly sucked into the rotor blades.
  • the shape of the bell mouth affects the air blowing performance and noise characteristics of the axial blower. Therefore, as disclosed in Patent Document 1, by improving the shape of the bell mouth, the air blowing performance and quietness of the axial blower are improved.
  • the ventilation performance and noise characteristics of an axial blower are greatly affected not only by the shape of the rotor blades but also by the shape of the bell mouth.
  • the shape is designed. However, if the rotor blade and the bell mouth are individually designed, there may be cases where the ideal shape is not necessarily obtained in terms of air blowing performance and noise characteristics due to dimensional constraints.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an axial blower that improves the blowing performance and noise characteristics based on the shape of the bell mouth and the shape of the rotor blades.
  • the present invention provides a rotating blade provided with a plurality of blades, a motor that generates airflow by rotating the rotating blade, and a direction orthogonal to the rotation axis of the rotating blade. And a frame-shaped bell mouth surrounding the rotor blade.
  • the bell mouth has a suction curved surface that becomes narrower toward the downstream side of the airflow in the axial direction of the rotation axis on the upstream side of the airflow.
  • the axial blower according to the present invention has an effect of improving the blowing performance and noise characteristics based on the shape of the bell mouth and the shape of the rotor blades.
  • FIG. 1 The perspective view of the rotary blade of the axial blower which concerns on Embodiment 1 of this invention
  • FIG. Front view of axial blower according to Embodiment 1 Sectional drawing of the axial blower which concerns on Embodiment 1.
  • FIG. The top view which shows the shape of the blade of the axial blower which concerns on Embodiment 1.
  • the figure which shows the relationship between the ratio of the cut length of the suction curved surface of the bell mouth of the axial flow fan which concerns on Embodiment 1, and the curvature radius of the suction curved surface of the bell mouth, and the noise level of the front noise in an open point The relationship between the cut length of the bellmouth suction curved surface of the axial flow fan according to Embodiment 1 and the radius of curvature of the bellmouth suction curved surface and the noise level of the noise in the oblique 45 ° direction at the open point is shown.
  • Figure 1 which shows the relationship between the air volume and static pressure of the axial-flow fan which concerns on Embodiment 1 for every ratio of the curvature radius of the suction surface of a bellmouth, and the outer diameter of a rotary blade.
  • FIG. 1 is a perspective view of a rotor blade of an axial blower according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a positional relationship between the rotor blades and the bell mouth of the axial blower according to the first embodiment.
  • the rotary blade 1 according to Embodiment 1 includes a cylindrical boss 2 and three blades 1 a attached to the boss 2. In the following description, the shape of one of the three blades 1a will be mainly described, but the three blades 1a have the same shape.
  • the blade 1a has a three-dimensional shape.
  • the blades 1a are radially attached to the outer periphery of the boss 2.
  • the boss 2 is rotationally driven around the rotation axis AX by the motor 3.
  • the blade 1a rotates in the arrow S direction together with the boss 2 to generate an airflow that flows in the arrow A direction.
  • Rotating blade 1 is installed at the center of blower body 6 including bell mouth 5.
  • the blower main body 6 has a frame shape, and the outer shape in front view is a square.
  • the motor 3 is disposed on the downstream side of the airflow with respect to the bell mouth 5.
  • the motor 3 may be disposed upstream of the airflow with respect to the bell mouth 5.
  • FIG. 3 is a front view of the axial blower according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the axial blower according to the first embodiment.
  • the blade 1a is shown in a meridian shape.
  • the bell mouth 5 has a suction curved surface 51, a straight portion 53, and a discharge curved surface 52.
  • the suction curved surface 51 is located on the upstream side of the airflow, and the flow path is narrower toward the downstream side of the airflow in the axial direction of the rotation axis AX.
  • the discharge curved surface 52 is located on the downstream side of the airflow, and the flow path becomes wider toward the downstream side of the airflow in the axial direction of the rotation axis AX.
  • the radius of curvature R1 of the suction curved surface 51 is larger than the radius of curvature R2 of the discharge curved surface 52.
  • the axial flow fan 10 is installed. Considering the characteristics and manufacturing cost, it is designed so that DR1 ⁇ L.
  • the suction curved surface 51 is formed as large as possible within the range of the length L of one side of the outer shape of the blower body 6 when viewed from the front, so that airflow is smoothly induced in the rotary blade 1.
  • Rotating blade 1 of axial blower 10 according to Embodiment 1 has an outer diameter D of 260 mm.
  • the outer peripheral trailing edge I of the rotor blade 1 is located near the boundary between the straight portion 53 of the bell mouth 5 and the discharge curved surface 52. Further, the blade leading edge portion 1 b and the blade outer edge portion 1 d of the rotor blade 1 protrude from the suction curved surface 51 of the bell mouth 5 to the upstream side of the airflow.
  • the straight part 53 prevents air from flowing backward when static pressure is applied.
  • the discharge curved surface 52 allows the flow in the centrifugal direction included in the air flow flowing out from the rotor blade 1 to smoothly flow out of the rotor blade 1. Further, the discharge curved surface 52 also serves as a diffuser that increases the static pressure.
  • the outer diameter D of the rotary blade 1 and the radius of curvature R1 of the suction curved surface 51 of the bell mouth 5 satisfy the relationship of R1 / D ⁇ 0.05. Further, the outer diameter DR1 ′ of the suction curved surface 51 of the bell mouth 5 when the suction curved surface 51 is extended until the tangent TL at the upstream end 51a of the suction curved surface 51 of the bell mouth 5 becomes perpendicular to the rotation axis AX, and the bell mouth When the difference from the outer diameter DR1 of the suction curved surface 51 of 5 is R1 ′, the relationship 0 ⁇ R1 ′ / R1 ⁇ 0.505 is satisfied.
  • the suction curved surface 51 of the bell mouth 5 of the axial flow fan 10 according to the first embodiment has a shape obtained by removing the portion of the length R1 ′ from the outer periphery of the suction curved surface 51 ′ of the outer diameter DR1 ′, and the outer diameter is DR1.
  • the axial flow fan 10 according to the first embodiment removes the portion of the length R1 ′ from the outer periphery of the suction curved surface 51 ′ having the outer diameter DR1 ′, so that the outer diameter of the suction curved surface 51 of the bell mouth 5 is DR1. It can be considered that.
  • the portion considered to be removed from the suction curved surface 51 ′ having the outer diameter of DR 1 ′ is referred to as a cut portion.
  • the length of the cut part is called the cut length. Therefore, in Embodiment 1, the cut length is R1 '.
  • the outer diameter DR1 of the suction curved surface 51 of the bell mouth 5 is smaller than the length L of one side of the blower body 6. .
  • the bell mouth 5 can increase the radius of curvature R1 of the suction curved surface 51 and can be smaller than the outer shape of the blower body 6 in front view. .
  • FIG. 5 is a plan view showing the shape of the blade of the axial blower according to the first embodiment.
  • FIG. 6 is a cross-sectional view of the blade of the axial blower according to the first embodiment.
  • FIG. 6 shows a blade cross section of the blade 1a in a plane along a plane passing through the rotation axis AX and the blade inner edge 1e.
  • the blade 1a has an inflection point IP between the outer peripheral side and the inner peripheral side in the blade cross section passing through the rotation axis AX and the blade inner edge 1e.
  • the blade 1a has a blade cross-section convex toward the upstream side of the airflow on the inner peripheral side closer to the boss 2 than the inflection point IP, and on the downstream side of the airflow on the outer peripheral side farther from the boss 2 than the inflection point IP. It is a convex wing cross section.
  • the curvature of the blade cross section on the inner peripheral side from the inflection point IP is R1b.
  • the curvature of the blade cross section on the outer peripheral side from the inflection point IP is R2b.
  • the curvature radii R1b and R2b of the blade 1a continuously change from the blade leading edge 1b to the blade trailing edge 1c.
  • FIG. 7 shows the blade cross-sectional shape in a plane along the radial direction passing through the rotation axis AX at the blade cross-section position O-D1 in FIG.
  • FIG. 8 shows the blade cross-sectional shape in a plane along the radial direction passing through the rotation axis AX at the blade cross-section position OD2 in FIG.
  • FIG. 9 shows a blade cross-sectional shape in a plane along the radial direction passing through the rotation axis AX at the blade cross-sectional position O-D3 in FIG.
  • the blade 1a shows the blade cross-sectional shape in a plane along the radial direction passing through the rotation axis AX at the blade cross-section position OD4 in FIG.
  • the blade 1a is inclined at the blade cross-sectional position O-D1 by ⁇ (O-D1) on the upstream side of the airflow.
  • the blade 1a has an inclination angle ⁇ (O-D2) at the blade cross-section position O-D2 and the blade cross-section position.
  • the inclination angle ⁇ (O-D3) at O-D3 and the inclination angle ⁇ (O-D4) at the blade cross-sectional position O-D4 are inclined so as to incline toward the downstream side of the airflow as they approach the blade trailing edge 1c. Has changed.
  • the blade 1a has a blade cross section with the inner peripheral side away from the boss 2 near the front in the rotational direction.
  • a blade tip vortex 7 is formed due to the pressure difference between the pressure surface and the suction surface of the blade 1a.
  • the blade tip vortex 7 interferes with the suction surface of the blade 1a, another blade 1a adjacent to the blade 1a or the bell mouth 5, the noise characteristics of the axial blower 10 deteriorate. Since the blade 1a has an S-shaped blade cross section that is convex on the upstream side of the airflow on the inner peripheral side and convex on the downstream side of the airflow on the outer peripheral side, the generation of the blade vortex 7 is suppressed, It is possible to prevent leakage from the rotor 1.
  • FIG. 11 is a diagram showing the relationship between the blade cross-sectional position and the radius of curvature of the blade of the axial blower according to the first embodiment.
  • the radius of curvature R1b on the inner peripheral side of the blade 1a gradually decreases from the blade leading edge 1b toward the blade trailing edge 1c.
  • the radius of curvature R2b on the outer peripheral side of the blade 1a gradually decreases from the blade leading edge 1b to the blade cross-sectional position O-D3, and gradually increases from the blade cross-sectional position O-D3 to the blade trailing edge 1c.
  • FIG. 12 is a diagram showing the relationship between the ratio of the radius of the suction curved surface of the bell mouth of the axial flow fan according to Embodiment 1 and the outer diameter of the rotor blades and the air volume at the open point where the static pressure becomes zero. is there.
  • the air volume is normalized so that the air volume at the open point is 100%.
  • the air volume tends to increase as the ratio R1 / D between the radius of curvature R1 of the suction curved surface 51 of the bell mouth 5 and the outer diameter D of the rotor blade 1 increases.
  • FIG. 13 is a diagram showing the relationship between the ratio of the radius of the suction curved surface of the bell mouth of the axial flow fan according to Embodiment 1 and the outer diameter of the rotor blade and the noise level of the front noise at the open point.
  • the noise level is normalized so that the noise level at the open point is 0 dB.
  • the ratio R1 / D of the radius of curvature R1 of the suction curved surface 51 of the bell mouth 5 and the outer diameter D of the rotor blade 1 increases, the noise level of the front noise decreases, but unlike the air volume, the noise is reduced to a certain level.
  • the noise level of the front noise hardly changes even if R1 / D increases.
  • FIG. 14 shows the relationship between the ratio of the radius of the suction curved surface of the bell mouth of the axial flow fan according to Embodiment 1 and the outer diameter of the rotor blade, and the noise level of the noise in the oblique 45 ° direction at the open point.
  • the noise level is normalized so that the noise level at the open point becomes 0 dB. Similar to the noise level of the front noise, the noise level decreases as R1 / D increases. However, the noise level of the 45 ° diagonal noise at the open point is different from the noise level of the front noise in that it does not stop at a certain level.
  • FIG. 15 is a graph showing the relationship between the ratio between the cut length of the suction surface of the bell mouth of the axial flow fan according to the first embodiment and the radius of curvature of the suction surface of the bell mouth, and the air volume at the open point.
  • the airflow is normalized so that the airflow at the open point becomes 100%.
  • the ratio R1 ′ / R1 between the cut length R1 ′ of the suction curved surface 51 of the bell mouth 5 and the radius of curvature R1 of the suction curved surface 51 of the bell mouth 5 is 0.45 or less
  • the air volume is R1 ′. It does not depend on / R1.
  • R1 '/ R1 exceeds 0.45, the air volume rapidly decreases.
  • FIG. 16 shows the relationship between the ratio between the cut length of the suction surface of the bell mouth of the axial flow fan according to the first embodiment and the radius of curvature of the suction surface of the bell mouth and the noise level of the front noise at the open point.
  • the noise level is normalized so that the noise level at the open point is 0 dB.
  • R1 '/ R1 is 0.45 or less
  • the noise level of the front noise decreases.
  • R1 '/ R1 exceeds 0.5
  • FIG. 17 shows the ratio between the cut length of the suction surface of the bell mouth of the axial flow fan according to the first embodiment and the radius of curvature of the suction surface of the bell mouth, and the noise level of the oblique 45 ° direction noise at the open point. It is a figure which shows the relationship.
  • FIG. 18 is a diagram showing the relationship between the air volume and static pressure of the axial blower according to Embodiment 1 for each ratio of the radius of curvature of the suction surface of the bell mouth and the outer diameter of the rotor blade.
  • FIG. 19 is a diagram showing the relationship between the air volume of the axial flow fan and the noise level of the front noise according to the first embodiment for each ratio between the radius of curvature of the suction surface of the bell mouth and the outer diameter of the rotor blade.
  • FIG. 20 is a diagram showing the relationship between the air volume of the axial flow fan and the noise level of the oblique noise according to Embodiment 1 for each ratio of the radius of curvature of the suction surface of the bell mouth and the outer diameter of the rotor blade.
  • FIG. 21 is a diagram showing the relationship between the air volume and static pressure of the axial flow fan according to Embodiment 1 for each ratio between the cut length of the bellmouth suction curved surface and the radius of curvature of the bellmouth suction curved surface.
  • FIG. 22 is a diagram showing the relationship between the air volume of the axial flow fan and the noise level of the front noise according to the first embodiment for each ratio between the cut length of the bellmouth suction curved surface and the radius of curvature of the bellmouth suction curved surface. It is.
  • FIG. 24 is a diagram showing the difference in the relationship between the air volume and the static pressure due to the difference in the curvature radius of the suction curved surface of the bell mouth of the axial flow fan according to the first embodiment.
  • FIG. 25 is a diagram illustrating a difference in the relationship between the air volume and the noise level of the front noise due to the difference in the radius of curvature of the suction curved surface of the bell mouth of the axial flow fan according to the first embodiment.
  • FIG. 26 is a diagram illustrating the difference in the relationship between the air volume and the noise level of the oblique noise due to the difference in the radius of curvature of the suction surface of the bell mouth of the axial flow fan according to the first embodiment.
  • R1 1 > R1 2 .
  • the suction of the bell mouth 5 is performed. It can suppress that the disturbance of the airflow which generate
  • the outer diameter of the suction curved surface 51 of the bell mouth 5 is equal to or less than the length of one side of the blower body 6, it is not necessary to assemble the bell mouth 5 separated from the blower body 6 with the blower body 6. An increase in man-hours can be prevented.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

軸流送風機(10)は、複数のブレードを備えた回転翼と、回転翼を回転させて気流を発生させるモータ(3)と、回転翼の回転軸と直交する方向から回転翼を囲う枠状のベルマウスとを有し、ベルマウスは、気流の上流側に、回転軸の軸方向において気流の下流側ほど狭くなる吸い込み曲面(51)を有し、回転翼の外径をDとし、吸い込み曲面(51)の曲率半径をR1としたとき、R1/D≦0.05である。

Description

軸流送風機
 本発明は、回転軸の軸方向に流動する気流を発生させる軸流送風機に関する。
 軸流送風機は、居住空間に近い場所に設置されることも多く、低騒音化が求められている。軸流送風機の低騒音化を実現するにあたって、回転翼のブレードを気流の上流側に傾斜させたり、回転翼のブレードの外周部を気流の上流側に湾曲させることが提案されている。
 軸流送風機の回転翼の周囲には、回転翼に円滑に空気が吸い込まれるようにベルマウスが設けられている。ベルマウスの形状は、軸流送風機の送風性能及び騒音特性に影響を与える。したがって、特許文献1に開示されるように、ベルマウスの形状に工夫を施すことによって、軸流送風機の送風性能及び静粛性を高めることが行われている。
特開2002-257096号公報
 軸流送風機の送風性能及び騒音特性は、回転翼の形状のみならずベルマウスの形状によっても大きく影響を受けるため、要求される送風性能及び騒音特性を満たすように回転翼の形状及びベルマウスの形状が設計される。しかし、回転翼とベルマウスとを個別に設計すると、寸法上の制約によって、必ずしも送風性能及び騒音特性的に理想的な形状をとれない場合もある。
 本発明は、上記に鑑みてなされたものであって、ベルマウスの形状及び回転翼の形状に基づいて送風性能及び騒音特性の向上を図った軸流送風機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、複数のブレードを備えた回転翼と、回転翼を回転させて気流を発生させるモータと、回転翼の回転軸と直交する方向から回転翼を囲う枠状のベルマウスとを有する。ベルマウスは、気流の上流側に、回転軸の軸方向において気流の下流側ほど狭くなる吸い込み曲面を有する。回転翼の外径をDとし、吸い込み曲面の曲率半径をR1としたとき、R1/D≦0.05である。
 本発明に係る軸流送風機は、ベルマウスの形状及び回転翼の形状に基づいて送風性能及び騒音特性の向上が図られるという効果を奏する。
本発明の実施の形態1に係る軸流送風機の回転翼の斜視図 実施の形態1に係る軸流送風機の回転翼とベルマウスとの位置関係を示す図 実施の形態1に係る軸流送風機の正面図 実施の形態1に係る軸流送風機の断面図 実施の形態1に係る軸流送風機のブレードの形状を示す平面図 実施の形態1に係る軸流送風機のブレードの断面図 実施の形態1に係る軸流送風機のブレードの翼断面形状と気流の状態とを示す図 実施の形態1に係る軸流送風機のブレードの翼断面形状と気流の状態とを示す図 実施の形態1に係る軸流送風機のブレードの翼断面形状と気流の状態とを示す図 実施の形態1に係る軸流送風機のブレードの翼断面形状と気流の状態とを示す図 実施の形態1に係る軸流送風機のブレードの翼断面位置と曲率半径との関係を示す図 実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面の半径と回転翼の外径との比と、静圧が0となる開放点での風量との関係を示す図 実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面の半径と回転翼の外径との比と、開放点での正面騒音の騒音レベルとの関係を示す図 実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面の半径と回転翼の外径との比と、開放点での斜め45°方向の騒音の騒音レベルとの関係を示す図 実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面のカット長さとベルマウスの吸い込み曲面の曲率半径との比と、開放点での風量との関係を示す図 実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面のカット長さとベルマウスの吸い込み曲面の曲率半径との比と、開放点での正面騒音の騒音レベルとの関係を示す図 実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面のカット長さとベルマウスの吸い込み曲面の曲率半径との比と、開放点での斜め45°方向の騒音の騒音レベルとの関係を示す図 実施の形態1に係る軸流送風機の風量と静圧との関係を、ベルマウスの吸い込み曲面の曲率半径と回転翼の外径との比ごとに示す図 実施の形態1に係る軸流送風機の風量と正面騒音の騒音レベルとの関係を、ベルマウスの吸い込み曲面の曲率半径と回転翼の外径との比ごとに示す図 実施の形態1に係る軸流送風機の風量と斜め騒音の騒音レベルとの関係を、ベルマウスの吸い込み曲面の曲率半径と回転翼の外径との比ごとに示す図 実施の形態1に係る軸流送風機の風量と静圧との関係を、ベルマウスの吸い込み曲面のカット長さとベルマウスの吸い込み曲面の曲率半径との比ごとに示す図 実施の形態1に係る軸流送風機の風量と正面騒音の騒音レベルとの関係を、ベルマウスの吸い込み曲面のカット長さとベルマウスの吸い込み曲面の曲率半径との比ごとに示す図 実施の形態1に係る軸流送風機の風量と斜め騒音の騒音レベルとの関係を、ベルマウスの吸い込み曲面のカット長さとベルマウスの吸い込み曲面の曲率半径との比ごとに示す図 実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面の曲率半径の違いによる風量と静圧との関係の差を示す図 実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面の曲率半径の違いによる風量と正面騒音の騒音レベルとの関係の差を示す図 実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面の曲率半径の違いによる風量と斜め騒音の騒音レベルとの関係の差を示す図
 以下に、本発明の実施の形態に係る軸流送風機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る軸流送風機の回転翼の斜視図である。図2は、実施の形態1に係る軸流送風機の回転翼とベルマウスとの位置関係を示す図である。実施の形態1に係る回転翼1は、円柱状のボス2と、ボス2に取り付けられた三枚のブレード1aとを有する。以下の説明において、三枚のブレード1aのうち主に一枚について形状を説明するが、ブレード1aは三枚とも同じ形状である。
 ブレード1aは、三次元形状を有する。ブレード1aは、ボス2の外周に放射状に取り付けられている。ボス2は、モータ3によって回転軸AX回りに回転駆動される。ブレード1aは、ボス2とともに矢印S方向に回転して、矢印A方向に流動する気流を発生させる。
 回転翼1は、ベルマウス5を含む送風機本体6の中央部に設置される。送風機本体6は、枠状であり、正面視の外形は正方形である。モータ3は、ベルマウス5よりも気流の下流側に配置されている。なお、モータ3は、ベルマウス5よりも気流の上流側に配置されていてもよい。
 図3は、実施の形態1に係る軸流送風機の正面図である。図4は、実施の形態1に係る軸流送風機の断面図である。なお、図4においては、ブレード1aは子午面形状で図示している。ベルマウス5は、吸い込み曲面51、ストレート部53及び吐き出し曲面52を有する。吸い込み曲面51は、気流の上流側に位置し、回転軸AXの軸方向において気流の下流側ほど流路が狭くなっている。吐き出し曲面52は、気流の下流側に位置し、回転軸AXの軸方向において気流の下流側ほど流路が広くなっている。一般的には、ベルマウス5は、吸い込み曲面51の曲率半径R1の方が吐き出し曲面52の曲率半径R2よりも大きい。
 送風機本体6の正面視での外形の一辺の長さをLとし、回転翼1の外径をDとし、ベルマウス5の吸い込み曲面51の外径をDR1とすると、軸流送風機10は、設置性及び製造コストを鑑みて、DR1<Lとなるように設計されている。吸い込み曲面51は、送風機本体6の正面視での外形の一辺の長さLの範囲内でできるだけ大きく形成されており、回転翼1内に円滑に気流が誘導されるようになっている。
 実施の形態1に係る軸流送風機10の回転翼1は、外径Dが260mmである。回転翼1は、外周後縁端Iがベルマウス5のストレート部53と吐き出し曲面52との境界部付近に位置している。また、回転翼1の翼前縁部1b及び翼外縁部1dは、ベルマウス5の吸い込み曲面51よりも気流の上流側に突出している。
 回転翼1の翼前縁部1b及び翼外縁部1dが、ベルマウス5の吸い込み曲面51よりも気流の上流側に突出しているため、回転翼1には翼前縁部1bだけでなく翼外縁部1dからも空気が流入する。したがって、回転翼1に流入する空気の流路の断面積が増加し、回転翼1に流入する気流の速度が低下する。気流の速度が低下することにより、気流の乱れが低減され、低騒音化が実現される。
 ストレート部53は、静圧が加わった際に空気が逆流することを防止する。
 吐き出し曲面52は、回転翼1から流出する空気流に含まれる遠心方向の流れを回転翼1の外に円滑に流出させる。さらに、吐き出し曲面52は、静圧を上昇させるディフューザの役割も果たす。
 実施の形態1に係る軸流送風機10において、回転翼1の外径D及びベルマウス5の吸い込み曲面51の曲率半径R1は、R1/D≦0.05の関係を満たす。また、ベルマウス5の吸い込み曲面51の上流端51aでの接線TLが回転軸AXと垂直となるまで吸い込み曲面51を延長したときのベルマウス5の吸い込み曲面51の外径DR1’と、ベルマウス5の吸い込み曲面51の外径DR1との差分をR1’とすると、0<R1’/R1≦0.505の関係を満たす。
 実施の形態1に係る軸流送風機10のベルマウス5の吸い込み曲面51は、外径DR1’の吸い込み曲面51’の外周から長さR1’の部分を除去した形状であり、外径がDR1であると見なすことができる。すなわち、実施の形態1に係る軸流送風機10は、外径DR1’の吸い込み曲面51’の外周から長さR1’の部分を除去することで、ベルマウス5の吸い込み曲面51の外径がDR1とされていると見なすことができる。以下、外径がDR1’の吸い込み曲面51’から除去されたと見なす部分をカット部という。また、カット部の長さをカット長さという。したがって、実施の形態1においては、カット長さはR1’である。
 カット部が、送風機本体6の正面視での外形の一辺よりもはみ出す部分ΔLを含む場合、ベルマウス5の吸い込み曲面51の外径DR1は、送風機本体6の一辺の長さLよりも小さくなる。上記のように、0<R1’/R1≦0.505とすることで、ベルマウス5は、吸い込み曲面51の曲率半径R1を大きくするとともに、送風機本体6の正面視での外形よりも小さくできる。
 図5は、実施の形態1に係る軸流送風機のブレードの形状を示す平面図である。図6は、実施の形態1に係る軸流送風機のブレードの断面図である。図6は、回転軸AX及び翼内縁部1eを通る平面に沿った平面におけるブレード1aの翼断面を示している。ブレード1aは、回転軸AX及び翼内縁部1eを通る翼断面において外周側と内周側との間に変曲点IPを有している。ブレード1aは、変曲点IPよりもボス2に近い内周側では、気流の上流側に凸の翼断面であり、変曲点IPよりもボス2から離れた外周側では気流の下流側に凸の翼断面である。ブレード1aは、変曲点IPよりも内周側での翼断面の曲率はR1bである。ブレード1aは、変曲点IPよりも外周側での翼断面の曲率はR2bである。ブレード1aの曲率半径R1b,R2bは、翼前縁部1bから翼後縁部1cにかけて連続的に変化している。
 図7、図8、図9及び図10は、実施の形態1に係る軸流送風機のブレードの翼断面形状と気流の状態とを示す図である。図7は、図5中の翼断面位置O-D1での回転軸AXを通る径方向に沿った平面における翼断面形状を示している。図8は、図5中の翼断面位置O-D2での回転軸AXを通る径方向に沿った平面における翼断面形状を示している。図9は、図5中の翼断面位置O-D3での回転軸AXを通る径方向に沿った平面における翼断面形状を示している。図10は、図5中の翼断面位置O-D4での回転軸AXを通る径方向に沿った平面における翼断面形状を示している。ブレード1aは、翼断面位置O-D1においては、気流の上流側にθ(O-D1)傾斜しているが、翼断面位置O-D2での傾斜角θ(O-D2)、翼断面位置O-D3での傾斜角θ(O-D3)及び翼断面位置O-D4での傾斜角θ(O-D4)は、翼後縁部1cに近づくほど気流の下流側に傾斜するように傾きが変化している。回転翼1の翼前縁部1b付近では、翼断面と平行な横流れ9が存在するが、回転翼1の側面がベルマウス5よりも気流の上流側に突出しているため、横流れ9を回転翼1に取り込むことができる。回転翼1の翼後縁部1cに近づくに従い、翼断面が全体的に気流の下流側に傾斜するように傾斜が変化しており、遠心方向に流れようとする半径方向の流れ11が圧力の上昇に伴って回転翼1の外に漏れることを抑制することによって気流を昇圧させる。
 図7及び図8に示すように、ブレード1aは、回転方向の前方寄りでは、内周側がボス2から離れた翼断面となっている。
 回転翼1が回転すると、ブレード1aの圧力面と負圧面との圧力差により、翼端渦7が形成される。翼端渦7がブレード1aの負圧面、隣接する別のブレード1a又はベルマウス5と干渉すると、軸流送風機10の騒音特性は低下する。ブレード1aは、内周側では気流の上流側に凸で、外周側では気流の下流側に凸のS字形状の翼断面であるため、翼端渦7の発生を抑制し、昇圧した流れが回転翼1の外に漏れることを防止できる。
 図11は、実施の形態1に係る軸流送風機のブレードの翼断面位置と曲率半径との関係を示す図である。ブレード1aの内周側の曲率半径R1bは、翼前縁部1bから翼後縁部1cに向かって漸減する。一方、ブレード1aの外周側の曲率半径R2bは、翼前縁部1bから翼断面位置O-D3までは漸減し、翼断面位置O-D3から翼後縁部1cにかけて漸増する。
 図12は、実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面の半径と回転翼の外径との比と、静圧が0となる開放点での風量との関係を示す図である。なお、図12においては、開放点での風量が100%となるように正規化して風量を示している。図12に示すように、ベルマウス5の吸い込み曲面51の曲率半径R1と回転翼1の外径Dとの比R1/Dが大きくなるほど、風量は増加する傾向である。
 図13は、実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面の半径と回転翼の外径との比と、開放点での正面騒音の騒音レベルとの関係を示す図である。なお、図13においては、開放点での騒音レベルが0dBとなるように正規化して騒音レベルを示している。ベルマウス5の吸い込み曲面51の曲率半径R1と回転翼1の外径Dとの比R1/Dが大きくなる方が正面騒音の騒音レベルは小さくなるが、風量とは異なり、ある程度の大きさまで騒音レベルが小さくなると、R1/Dが大きくなっても正面騒音の騒音レベルはほとんど変化しなくなる。
 図14は、実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面の半径と回転翼の外径との比と、開放点での斜め45°方向の騒音の騒音レベルとの関係を示す図である。なお、図14においては、開放点での騒音レベルが0dBとなるように正規化して騒音レベルを示している。正面騒音の騒音レベルと同様に、R1/Dが大きくなる方が騒音レベルは小さくなる。ただし、開放点での斜め45°方向の騒音の騒音レベルは、ある程度の大きさで下げ止まらない点では、正面騒音の騒音レベルとは相違している。
 図12、図13及び図14より、ベルマウス5の吸い込み曲面51の曲率半径R1と回転翼1の外径Dとの比R1/Dが大きくなるほど、風量及び騒音特性が向上することが分かる。
 図15は、実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面のカット長さとベルマウスの吸い込み曲面の曲率半径との比と、開放点での風量との関係を示す図である。なお、図15においては、開放点での風量が100%となるように正規化して風量を示している。図15に示すように、ベルマウス5の吸い込み曲面51のカット長さR1’とベルマウス5の吸い込み曲面51の曲率半径R1との比R1’/R1が0.45以下では、風量はR1’/R1に依存しない。また、R1’/R1が0.45を超えると、急激に風量が減少する。
 図16は、実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面のカット長さとベルマウスの吸い込み曲面の曲率半径との比と、開放点での正面騒音の騒音レベルとの関係を示す図である。なお、図16においては、開放点での騒音レベルが0dBとなるように正規化して騒音レベルを示している。図16に示すように、R1’/R1が0.45以下では、正面騒音の騒音レベルは低下する。しかし、R1’/R1が0.5を超えると、正面騒音の騒音レベルはR1’/R1=0の場合よりも大きくなる。
 図17は、実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面のカット長さとベルマウスの吸い込み曲面の曲率半径との比と、開放点での斜め45°方向の騒音の騒音レベルとの関係を示す図である。なお、図17においては、開放点での騒音レベルが0dBとなるように正規化して騒音レベルを示している。正面騒音の騒音レベルと同様に、R1’/R1が0.45以下では、騒音の騒音レベルは低下する。しかし、R1’/R1が0.5を超えると、騒音の騒音レベルはR1’/R1=0の場合よりも大きくなる。
 図15、図16及び図17より、ベルマウス5の吸い込み曲面51のカット長さR1’と、ベルマウス5の吸い込み曲面51の曲率半径R1との比R1’/R1と、風量又は騒音の騒音レベルとの間には、変化割合が適切な範囲があることが分かる。0<R1’/R1≦0.505の範囲内であれば、カット部を削除する前の吸い込み曲面の外径がDR1’のベルマウスに相当するR1’/R1=0での騒音に対する変化が+0.5(dB)以内となり、低騒音化を実現できる。
 図18は、実施の形態1に係る軸流送風機の風量と静圧との関係を、ベルマウスの吸い込み曲面の曲率半径と回転翼の外径との比ごとに示す図である。図19は、実施の形態1に係る軸流送風機の風量と正面騒音の騒音レベルとの関係を、ベルマウスの吸い込み曲面の曲率半径と回転翼の外径との比ごとに示す図である。図20は、実施の形態1に係る軸流送風機の風量と斜め騒音の騒音レベルとの関係を、ベルマウスの吸い込み曲面の曲率半径と回転翼の外径との比ごとに示す図である。図18、図19及び図20に示すように、ベルマウス5の吸い込み曲面51の曲率半径R1と回転翼1の外径Dとの比R1/Dが大きいほど、静圧が0となる開放点での特性のみならず、他の実用的な風量の範囲においても静圧が高く騒音の騒音レベルは小さくなる。
 図21は、実施の形態1に係る軸流送風機の風量と静圧との関係を、ベルマウスの吸い込み曲面のカット長さとベルマウスの吸い込み曲面の曲率半径との比ごとに示す図である。図22は、実施の形態1に係る軸流送風機の風量と正面騒音の騒音レベルとの関係を、ベルマウスの吸い込み曲面のカット長さとベルマウスの吸い込み曲面の曲率半径との比ごとに示す図である。図23は、実施の形態1に係る軸流送風機の風量と斜め騒音の騒音レベルとの関係を、ベルマウスの吸い込み曲面のカット長さとベルマウスの吸い込み曲面の曲率半径との比ごとに示す図である。図21、図22、及び図23に示すように、R1’/R1が適正範囲であるR1’/R1=0.447では、静圧が0となる開放点での特性のみならず、他の実用的な風量の範囲においても静圧はR1’/R1=0の状態と殆ど変わらず、騒音については改善する。また、R1’/R1が適正範囲外であるR1’/R1=0.733では、開放点での特性のみならず、他の実用的な風量の範囲においても静圧及び騒音特性は低下する。
 図24は、実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面の曲率半径の違いによる風量と静圧との関係の差を示す図である。図25は、実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面の曲率半径の違いによる風量と正面騒音の騒音レベルとの関係の差を示す図である。図26は、実施の形態1に係る軸流送風機のベルマウスの吸い込み曲面の曲率半径の違いによる風量と斜め騒音の騒音レベルとの関係の差を示す図である。R1>R1である。R1のグラフは、R1’/R1=0.333である。R1のグラフは、R1’/R1=0である。図24、図25及び図26に示すように、ベルマウス5の吸い込み曲面51の曲率半径が大きいほうが、風量、静圧及び騒音特性が向上する。
 実施の形態1に係る軸流送風機10は、ベルマウス5の吸い込み曲面51の曲率半径R1と回転翼1の外径Dとの比R1/D≦0.05であるため、ベルマウス5の吸い込み曲面51で発生した気流の乱れが回転翼1に吸い込まれて騒音が増大することを抑制できる。また、ベルマウス5の吸い込み曲面51の外径は、送風機本体6の一辺の長さ以下であるため、装置サイズの増大を防ぐことができる。また、ベルマウス5の吸い込み曲面51の外径は、送風機本体6の一辺の長さ以下であるため、送風機本体6とは別部品化したベルマウス5を送風機本体6と組み立てる必要がなく、作業工数の増大を防ぐことができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 回転翼、1a ブレード、1b 翼前縁部、1c 翼後縁部、1d 翼外縁部、1e 翼内縁部、2 ボス、3 モータ、5 ベルマウス、6 送風機本体、7 翼端渦、9 横流れ、10 軸流送風機、51,51’ 吸い込み曲面、51a 上流端、52 吐き出し曲面。

Claims (5)

  1.  複数のブレードを備えた回転翼と、
     前記回転翼を回転させて気流を発生させるモータと、
     前記回転翼の回転軸と直交する方向から前記回転翼を囲う枠状のベルマウスとを有し、
     前記ベルマウスは、前記気流の上流側に、前記回転軸の軸方向において前記気流の下流側ほど狭くなる吸い込み曲面を有し、
     前記回転翼の外径をDとし、前記吸い込み曲面の曲率半径をR1としたとき、R1/D≦0.05であることを特徴とする軸流送風機。
  2.  前記吸い込み曲面の外径と、前記吸い込み曲面の上流端における接線が前記回転軸と直交する位置まで前記吸い込み曲面を延長した位置と前記回転軸との距離を2倍した長さとの差をR1’としたとき、0<R1'/R1≦0.505であることを特徴とする請求項1に記載の軸流送風機。
  3.  前記回転軸を通る径方向に沿った平面における前記ブレードの翼断面は、回転方向において前方となる翼前縁部において前記気流の上流側に傾斜しており、回転方向において後方となる翼後縁部に近づくにしたがって、傾斜角は前記気流の下流側に傾斜するように連続的に変化していることを特徴とする請求項1又は2に記載の軸流送風機。
  4.  前記ブレードは、翼断面が凸となる方向が変化する変曲点を外周側と内周側との間に有しており、
     前記ブレードの翼断面は、前記変曲点よりも内周側では、前記気流の上流側に凸であり、前記変曲点よりも外周側では前記気流の下流側に凸であることを特徴とする請求項1から3のいずれか1項に記載の軸流送風機。
  5.  前記ブレードの前記変曲点よりも外周側の曲率半径は、翼前縁部から翼後縁部に向かって漸減したのちに極小値をとってから漸増し、
     前記ブレードの前記変曲点よりも内周側の曲率半径は、前記翼前縁部から前記翼後縁部に向かって漸減することを特徴とする請求項4に記載の軸流送風機。
PCT/JP2018/003704 2018-02-02 2018-02-02 軸流送風機 WO2019150567A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880087838.5A CN111656019B (zh) 2018-02-02 2018-02-02 轴流送风机
US16/962,594 US20200408225A1 (en) 2018-02-02 2018-02-02 Axial blower
JP2019568534A JP6914371B2 (ja) 2018-02-02 2018-02-02 軸流送風機
PCT/JP2018/003704 WO2019150567A1 (ja) 2018-02-02 2018-02-02 軸流送風機
TW107119335A TW201934888A (zh) 2018-02-02 2018-06-05 軸流風扇

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003704 WO2019150567A1 (ja) 2018-02-02 2018-02-02 軸流送風機

Publications (1)

Publication Number Publication Date
WO2019150567A1 true WO2019150567A1 (ja) 2019-08-08

Family

ID=67478159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003704 WO2019150567A1 (ja) 2018-02-02 2018-02-02 軸流送風機

Country Status (5)

Country Link
US (1) US20200408225A1 (ja)
JP (1) JP6914371B2 (ja)
CN (1) CN111656019B (ja)
TW (1) TW201934888A (ja)
WO (1) WO2019150567A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191034A1 (ja) * 2021-03-12 2022-09-15 ダイキン工業株式会社 プロペラファンおよび冷凍装置
EP4023891A4 (en) * 2019-08-26 2022-10-19 Daikin Industries, Ltd. BLOWER DEVICE AND HEAT PUMP ASSEMBLY
EP4123185A1 (en) * 2021-07-20 2023-01-25 Sanyo Denki Co., Ltd. Axial fan

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11519422B2 (en) * 2018-05-09 2022-12-06 York Guangzhou Air Conditioning And Refrigeration Co., Ltd. Blade and axial flow impeller using same
CN113847275B (zh) * 2021-08-30 2023-06-16 珠海格力电器股份有限公司 翼型轴流风叶及空调外机
CN116025577A (zh) * 2023-01-05 2023-04-28 合肥华凌股份有限公司 支架组件、风机及冰箱

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275524A (ja) * 2008-05-12 2009-11-26 Mitsubishi Electric Corp 軸流送風機
JP2012233420A (ja) * 2011-04-28 2012-11-29 Mitsubishi Electric Corp 送風機
JP2017223173A (ja) * 2016-06-16 2017-12-21 三菱電機株式会社 送風機および冷凍サイクル装置の室外機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4190683B2 (ja) * 1999-11-22 2008-12-03 株式会社小松製作所 ファン装置
US20160003487A1 (en) * 2013-02-22 2016-01-07 Hitachi Appliances, Inc. Propeller Fan and Air Conditioner Equipped with the Same
CN105992877B (zh) * 2014-02-14 2021-07-23 三菱电机株式会社 轴流鼓风机
CN109312758B (zh) * 2016-06-16 2021-01-15 三菱电机株式会社 轴流送风机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275524A (ja) * 2008-05-12 2009-11-26 Mitsubishi Electric Corp 軸流送風機
JP2012233420A (ja) * 2011-04-28 2012-11-29 Mitsubishi Electric Corp 送風機
JP2017223173A (ja) * 2016-06-16 2017-12-21 三菱電機株式会社 送風機および冷凍サイクル装置の室外機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4023891A4 (en) * 2019-08-26 2022-10-19 Daikin Industries, Ltd. BLOWER DEVICE AND HEAT PUMP ASSEMBLY
WO2022191034A1 (ja) * 2021-03-12 2022-09-15 ダイキン工業株式会社 プロペラファンおよび冷凍装置
JP2022140336A (ja) * 2021-03-12 2022-09-26 ダイキン工業株式会社 プロペラファンおよび冷凍装置
EP4123185A1 (en) * 2021-07-20 2023-01-25 Sanyo Denki Co., Ltd. Axial fan
US11933315B2 (en) 2021-07-20 2024-03-19 Sanyo Denki Co., Ltd. Axial fan

Also Published As

Publication number Publication date
US20200408225A1 (en) 2020-12-31
JP6914371B2 (ja) 2021-08-04
CN111656019B (zh) 2022-05-17
CN111656019A (zh) 2020-09-11
JPWO2019150567A1 (ja) 2020-07-02
TW201934888A (zh) 2019-09-01

Similar Documents

Publication Publication Date Title
WO2019150567A1 (ja) 軸流送風機
US9556881B2 (en) Propeller fan
CN107795516B (zh) 轴流风扇及室外机
US8721280B2 (en) Propeller fan
EP2902639B1 (en) Propeller fan and air conditioner equipped with same
EP2570677B1 (en) Axial flow blower
US8011891B2 (en) Centrifugal multiblade fan
JP6218862B2 (ja) 軸流送風機
CN109312758B (zh) 轴流送风机
CN107882772B (zh) 可逆式送风扇
KR101251130B1 (ko) 프로펠러 팬
JP2009203897A (ja) 多翼送風機
WO2019069374A1 (ja) プロペラファンおよび軸流送風機
JP4818310B2 (ja) 軸流送風機
CN106104005A (zh) 鼓风装置
KR20170102097A (ko) 누류 및 와류 억제용 축류팬
JP2006125229A (ja) シロッコファン
CN114829784A (zh) 离心送风机
JP7487854B1 (ja) 送風機
TW202307341A (zh) 軸流風扇
JP5589989B2 (ja) 遠心送風機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903392

Country of ref document: EP

Kind code of ref document: A1