WO2019150443A1 - 直列多重インバータ - Google Patents
直列多重インバータ Download PDFInfo
- Publication number
- WO2019150443A1 WO2019150443A1 PCT/JP2018/003019 JP2018003019W WO2019150443A1 WO 2019150443 A1 WO2019150443 A1 WO 2019150443A1 JP 2018003019 W JP2018003019 W JP 2018003019W WO 2019150443 A1 WO2019150443 A1 WO 2019150443A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase difference
- phase
- output
- voltage
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0043—Converters switched with a phase shift, i.e. interleaved
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/06—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
- H02M7/08—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/493—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/497—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode sinusoidal output voltages being obtained by combination of several voltages being out of phase
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0077—Plural converter units whose outputs are connected in series
Definitions
- the present invention relates to a serial multiple inverter in which output terminals of a plurality of single-phase inverters are connected in series.
- Patent Document 1 discloses that the phase angle of a rectangular wave voltage output from each single-phase inverter is such that the harmonics of each order included in the output voltage of the series multiple inverter are less than a desired value.
- a technique is disclosed in which each rectangular wave voltage is output from a single-phase inverter at the calculated phase angle.
- the conventional serial multiple inverter can control the harmonic voltage of each order included in the output voltage of the serial multiple inverter to be a desired value or less, but the harmonic flowing through the load connected to the serial multiple inverter.
- the current is not considered. Even if the harmonic voltage of each order included in the output voltage of the series multiple inverter is suppressed, the load of the harmonic current of each order varies depending on the characteristics of the load connected to the series multiple inverter. The magnitude of the harmonic current of each order varies depending on the characteristics. Therefore, if an attempt is made to suppress the harmonic current of each order from the series multiple inverter to the load regardless of the characteristics of the load, a large harmonic filter with a high harmonic reduction effect is required, and the series multiple inverter becomes large.
- the present invention has been made in view of the above, and an object of the present invention is to obtain a series multiple inverter that can suppress harmonic current flowing through a load by controlling each single-phase inverter even when the characteristics of the load are different. .
- the serial multiple inverter of the present invention includes a power conversion unit, a phase difference selection unit, a drive signal generation unit, and a drive signal output unit.
- the power conversion unit has a plurality of single-phase inverters, and output terminals of the plurality of single-phase inverters are connected in series.
- the phase difference selection unit selects the phase difference of the rectangular wave voltage between the plurality of single phase inverters from the plurality of phase difference candidates.
- the drive signal generation unit generates a plurality of drive signals for outputting a plurality of rectangular wave voltages whose phases are sequentially shifted by the phase difference selected by the phase difference selection unit from different single-phase inverters.
- the drive signal output unit outputs the plurality of drive signals generated by the drive signal generation unit to the plurality of single-phase inverters.
- the present invention it is possible to suppress the harmonic current flowing through the load by controlling each single-phase inverter even when the characteristics of the load are different.
- FIG. 3 is a diagram illustrating a configuration example of a drive signal generation unit according to the first embodiment.
- the figure which shows the example of the output voltage of the several single phase inverter concerning Embodiment 1 The figure which shows the example of the output voltage of the several single phase inverter concerning Embodiment 1
- the figure which shows the example of the output voltage of the several single phase inverter concerning Embodiment 1 The figure which shows an example of the harmonic voltage of each order concerning Embodiment 1 Partial enlarged view of FIG.
- the figure which shows the relationship between the 1st phase difference about the 1st load concerning Embodiment 1, and a harmonic current The figure which shows the relationship between the 1st phase difference about the 2nd load concerning Embodiment 1, and a harmonic current.
- FIG. 10 is a flowchart illustrating an example of processing of a control unit according to the second embodiment.
- FIG. 1 is a diagram illustrating a configuration example of a serial multiple inverter according to the first embodiment of the present invention.
- the serial multiple inverter 1 controls the power conversion unit 10, the voltage detection unit 20, the current detection unit 30, and the power conversion unit 10 to control the power conversion unit 10.
- the control part 40 which outputs the output voltage Vo, the operation part 50, and the harmonic filter 70 are provided.
- the power conversion unit 10 can convert AC power output from the single-phase AC power source 2 into AC power having an arbitrary frequency and amplitude.
- the power conversion unit 10 can convert AC power output from the single-phase AC power supply 2 into high-frequency AC power having a fundamental frequency of 1 kHz or more.
- the power conversion unit 10 can also convert AC power output from the single-phase AC power supply 2 into AC power having a frequency with a fundamental wave frequency less than 1 kHz.
- the power conversion unit 10 includes n power conversion blocks 11 1 to 11 n .
- “N” is an integer of 2 or more.
- Power conversion block 11 1 is provided with a transformer 12 1, the rectifier circuit 13 1, the capacitors 14 1, and single-phase inverter 15 1.
- Power conversion block 11 2 is provided with a transformer 12 2, rectifier circuit 13 2, capacitors 14 2, and single-phase inverter 15 2.
- each of the power conversion blocks 11 3 to 11 n also has one of transformers 12 3 to 12 n , one of rectifier circuits 13 3 to 13 n , and capacitors 14 3 to 14. n and one of the single-phase inverters 15 3 to 15 n .
- power conversion block 11 1 ⁇ 11 n is because it has a similar configuration to one another, in the following, a detailed description of the construction of the power conversion block 11 1.
- the primary winding of the transformer 12 1 is connected to the single-phase AC power source 2 and converts the AC voltage Vac output from the single-phase AC power source 2 into an AC voltage having an amplitude determined by the winding ratio of the transformer 12 1 . Output.
- Rectifier circuit 13 1 is connected to the secondary winding of the transformer 12 1, rectifies the AC voltage outputted from the transformer 12 1.
- Rectifier circuit 13 for example, a full-wave rectifier circuit, a half-wave rectifier circuit or a full bridge circuit. Note that the rectifier circuit 13 1, as long as it can rectify the AC voltage output from the transformer 12 1, a full-wave rectifier circuit is not limited to half-wave rectifier circuit, and a full-bridge circuit.
- Capacitor 14 1 smoothes the output voltage of the rectifier circuit 13 1. By the rectifier circuit 13 1 and the capacitor 14 1, AC voltage output from the transformer 12 1 is converted into a DC voltage Vdc.
- Single-phase inverter 15 1 is controlled by the control unit 40, the DC voltage Vdc generated by the rectifier circuit 13 1 and the capacitor 14 1 can be output by converting the square wave voltage.
- Power conversion block 11 2 ⁇ 11 n similarly to the power conversion block 11 1 generates and outputs a rectangular wave voltage.
- the AC voltages output from the single-phase inverters 15 1 to 15 n are represented as output voltages V INV1 to V INVn , respectively.
- V INV1 to V INVn When each of the output voltages V INV1 to V INVn is shown without distinction, it is called an output voltage V INV .
- the output terminals 16 1 , 17 1 , 16 2 , 17 2 ,..., 16 n ⁇ 1 , 17 n ⁇ 1 , 16 n , and 17 n of the single-phase inverters 15 1 to 15 n are connected to each other in series. As a result, the output voltages V INV1 to V INVn of the single-phase inverters 15 1 to 15 n are combined, and the combined result is output as the output voltage Vo of the power converter 10.
- the output voltage Vo of the power converter 10 is supplied to the load 3 via the harmonic filter 70.
- the harmonic filter 70 is an LC filter, for example, but may be an LCL filter.
- transformer 12 when each of the transformers 12 1 to 12 n is shown without being distinguished, it is called a transformer 12, and when each of the rectifier circuits 13 1 to 13 n is shown without being distinguished, it is called a rectifier circuit 13. Further, when each of the capacitors 14 1 to 14 n is shown without being distinguished, it is called a capacitor 14, and when each of the single-phase inverters 15 1 to 15 n is shown without being distinguished, it is called a single-phase inverter 15.
- each of the power conversion blocks 11 1 to 11 n has a configuration including a transformer 12, a rectifier circuit 13, and a capacitor 14.
- a DC voltage is used instead of the transformer 12, the rectifier circuit 13, and the capacitor 14.
- a configuration in which a DC power supply for outputting Vdc may be provided.
- FIG. 2 is a diagram illustrating a configuration example of the single-phase inverter according to the first embodiment.
- single-phase inverter 15 1 includes a full-bridge-connected four switching elements Q1 ⁇ Q4, and diodes D1 ⁇ D4 connected in antiparallel to each of the switching elements Q1 ⁇ Q4, gate driver 18.
- the gate driver 18 generates gate signals Sg1 to Sg4 based on drive signals to be described later output from the control unit 40, and outputs the generated gate signals Sg1 to Sg4 to the gates of the switching elements Q1 to Q4, respectively.
- the switching elements Q1 ⁇ Q4 is the output voltage V INV1 is on-off controlled by single-phase inverter 15 1 is generated and output.
- the switching elements Q1 to Q4 are semiconductor switching elements represented by MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) and IGBT (Insulated Gate Bipolar Transistor).
- FIG. 3 is a diagram illustrating a relationship between the gate signal output from the gate driver according to the first embodiment and the waveform of the output voltage of the single-phase inverter.
- the output voltage V INV1 comprising a rectangular wave voltage by the gate signals Sg1 ⁇ Sg4 are generated.
- “To” is an output voltage cycle indicating the fundamental wave cycle of the output voltage Vo of the serial multiple inverter 1.
- “+ Va” is a voltage value of the positive square wave voltage single-phase inverter 15 1 outputs
- - Va is a voltage value of the negative rectangular wave voltage single-phase inverter 15 1 outputs .
- the drive signal output from the control unit 40 to the single-phase inverter 15 is composed of four pulse width modulation (PWM) signals having the same waveform as each of the gate signals Sg1 to Sg4, and is amplified by the gate driver 18. Are output to switching elements Q1-Q4. Note that it is only necessary that the gate driver 18 can generate the gate signals Sg1 to Sg4 based on the drive signal from the control unit 40, and the drive signal is not limited to the above-described example.
- the drive signal output from the control unit 40 to each single-phase inverter 15 may be composed of one or two PWM signals. That is, the gate driver 18 may be configured to generate and output the gate signals Sg1 to Sg4 from the drive signal composed of one or two PWM signals.
- Single-phase inverter 15 2 ⁇ 15 n have the same configuration as the single-phase inverter 15 1. Note that the single-phase inverters 15 1 to 15 n are not limited to the configuration shown in FIG. That is, the single-phase inverters 15 1 to 15 n may be configured to output output voltages V INV1 to V INVn described later, and may not be the configuration illustrated in FIG.
- the voltage detection unit 20 of the serial multiple inverter 1 repeatedly detects the instantaneous value of the output voltage Vo of the power conversion unit 10 and outputs a detected voltage value Vdet that is an instantaneous value of the detected output voltage Vo.
- the current detection unit 30 of the serial multiple inverter 1 repeatedly detects the instantaneous value of the output current Io of the power conversion unit 10 and outputs a detected current value Idet that is the instantaneous value of the detected output current Io.
- Controller of the multi-series inverter 1 40 includes a drive signal generator 41 for generating n driving signals Sp 1 Sp n, n driving signals Sp 1 Sp n n number of single-phase inverters 15 1 - Drive signal output unit 42 for outputting to 15 n and a phase difference selection unit 43.
- a drive signal Sp when each of the drive signals Sp 1 to Sp n is shown without distinction, it will be referred to as a drive signal Sp.
- the drive signal generation unit 41 generates n drive signals Sp by the output current constant control based on the detected current value Idet.
- Each drive signal Sp is composed of a plurality of PWM signals as described above, for example.
- the drive signal generation unit 41 can also generate n drive signals Sp by output voltage constant control or output power constant control.
- the drive signal generation unit 41 can generate n drive signals Sp based on the detection voltage value Vdet by the constant output voltage control.
- the drive signal generation unit 41 can generate n drive signals Sp by output power constant control based on the detected voltage value Vdet and the detected current value Idet.
- the drive signal generation part 41 performs only output current constant control, the structure which does not provide the voltage detection part 20 may be sufficient.
- the drive signals Sp 1 to Sp n output n rectangular wave voltages whose phases are sequentially shifted by a first phase difference ⁇ 1, which will be described later, from n single-phase inverters 15 which are different from each other. Signal.
- a configuration example of the drive signal generation unit 41 will be described.
- FIG. 4 is a diagram illustrating a configuration example of the drive signal generation unit according to the first embodiment.
- the drive signal generation unit 41 includes an effective value calculation unit 60, a current command output unit 61, a subtracter 62, a current control unit 63, a carrier wave output unit 64, a comparator 65, The signal generation unit 66 is provided.
- the effective value calculator 60 calculates an output current effective value IoM that is an effective value of the output current Io based on the detected current value Idet output from the current detector 30. For example, the effective value calculation unit 60 calculates the output current effective value IoM every half time of the output voltage period To.
- “Fo” is the frequency of the output voltage Vo, and is hereinafter referred to as the output voltage frequency fo.
- the current command output unit 61 outputs a current command Iref.
- the value of the current command Iref is generated by the current command output unit 61 based on information supplied to the current command output unit 61 from the outside, for example.
- the subtractor 62 subtracts the output current effective value IoM from the current command Iref, and outputs a current difference value ⁇ I that is a result of the subtraction.
- the current control unit 63 generates a voltage command Vref based on the current difference value ⁇ I output from the subtractor 62.
- the current control unit 63 can generate the voltage command Vref by, for example, proportional integral control or proportional integral derivative control.
- the carrier wave output unit 64 generates a carrier wave Vcs and outputs the generated carrier wave Vcs.
- the carrier wave Vcs is, for example, a triangular waveform voltage or a sawtooth waveform voltage.
- the output voltage period To is the same as the period of the carrier wave Vcs, and the output voltage period To changes when the period of the carrier wave Vcs changes.
- the comparator 65 compares the voltage command Vref and the carrier wave Vcs, and outputs the comparison result. Specifically, the comparator 65 outputs the first voltage V1 when the voltage command Vref is larger than the carrier wave Vcs, and the first voltage V1 when the voltage command Vref is smaller than the carrier wave Vcs. A different second voltage V2 is output.
- the signal generator 66 generates n drive signals Sp 1 to Sp n based on the voltage output from the comparator 65.
- the signal generator 66 has information indicating the first phase difference ⁇ 1 input from the phase difference selector 43. Further, the signal generation unit 66 determines the second phase difference ⁇ 2 based on the duty ratio of the voltage output from the comparator 65. For example, the signal generation unit 66 sets the second phase difference so that the second phase difference ⁇ 2 becomes smaller as the time during which the second voltage V2 is output from the comparator 65 is shorter in the half cycle of the carrier wave Vcs. Determine ⁇ 2.
- the signal generator 66 generates n drive signals Sp 1 to Sp n based on the first phase difference ⁇ 1 and the second phase difference ⁇ 2.
- the signal generator 66 outputs the generated n drive signals Sp 1 to Sp n to the drive signal output unit 42 shown in FIG.
- the single-phase inverters 15 1 to 15 n are output terminals 16 1 , 17 1 , 16 2 , 17 2 ,..., 16 n based on the drive signals Sp 1 to Sp n output from the drive signal output unit 42.
- the output voltages V INV1 to V INVn are output from ⁇ 1 , 17 n ⁇ 1 , 16 n and 17 n .
- the output voltages V INV1 to V INVn of the single-phase inverters 15 1 to 15 n are combined, and the combined result is output as the output voltage Vo of the power conversion unit 10.
- FIGS. 5 to 7 are diagrams illustrating examples of output voltages of a plurality of single-phase inverters according to the first embodiment.
- n 8 that is, the number of single-phase inverters 15 is eight , and the single-phase inverters 15 1 to 15 8 are in a one-to-one combination in the order of the drive signals Sp 1 to Sp 8 .
- An example in which the drive signals Sp 1 to Sp 8 are input to the single-phase inverters 15 1 to 15 8 is shown.
- the drive signal Sp 1 single-phase inverters 15 1, the drive signal Sp 2 to single-phase inverter 15 2, the drive signal Sp 3 single-phase inverters 15 3, the drive signal Sp 4 single-phase inverters 15 4 are each Entered. Further, the drive signal Sp 5 to single-phase inverter 15 5, the drive signal Sp 6 to single-phase inverter 15 6, the drive signal Sp 7 in the single-phase inverters 15 7, the drive signal Sp 8 to single-phase inverter 15 8 are respectively input .
- “1” means the above-mentioned “+ Va” which is the voltage value of the positive rectangular wave voltage output from the single-phase inverter 15, and “ ⁇ 1” means the single-phase inverter 15.
- “2” to “7” mean multiples of “+ Va”, and “ ⁇ 2” to “ ⁇ 7” mean multiples of “ ⁇ Va”.
- the vertical axis indicates the instantaneous value of the output voltage Vo
- the horizontal axis indicates the phase of the output voltage Vo.
- the interval between the vertical broken lines is 18 °.
- the phase of the output voltage Vo is referred to as an output voltage phase ⁇ o.
- a positive square wave voltage at the output voltage V INV2 has a positive square wave voltage and the first phase difference ⁇ 1 minutes only phase deviates in the output voltage V INV1.
- a positive square wave voltage at the output voltage V INV3 has a positive square wave voltage and the first phase difference ⁇ 1 minutes only phase deviates in the output voltage V INV2.
- a negative rectangular wave voltage at the output voltage V INV2 a negative rectangular wave voltage and the first phase difference ⁇ 1 minutes only phase with the output voltage V INV1.
- the single-phase inverter 15 outputs a negative rectangular wave voltage whose phase is shifted by the second phase difference ⁇ 2 from the end of the output of the positive rectangular wave voltage based on the drive signal Sp.
- ⁇ 2 54 °.
- the output voltage V INV1 from the single-phase inverters 15 1, 0 ° ⁇ period .theta.o ⁇ 126 ° is a period in which a positive square wave voltage is output, the rectangular period is negative 180 ° ⁇ ⁇ o ⁇ 306 ° This is a period during which wave voltage is output. Therefore, in the output voltage VINV1 , the negative rectangular wave voltage period starts at the timing when the phase is shifted by 54 ° which is the second phase difference ⁇ 2 from the end of the positive rectangular wave voltage period. ing.
- the output voltages V INV2 to V INV8 of the single-phase inverters 15 2 to 15 8 are also negative when the phase is shifted by the second phase difference ⁇ 2 from the end of the positive rectangular wave voltage period. The period of the rectangular wave voltage begins.
- the drive signal Sp is generated so that the second phase difference ⁇ 2 is generated in the output voltage VINV from the single-phase inverter 15.
- the output terminals 16 1 , 17 1 , 16 2 , 17 2 ,..., 16 n ⁇ 1 , 17 n ⁇ 1 , 16 n , and 17 n of the single phase inverters 15 1 to 15 8 are connected in series with each other. Therefore, the output voltages V INV1 to V INV8 of the single-phase inverters 15 1 to 15 8 are synthesized. Therefore, as shown in FIG. 5, the waveform of the output voltage Vo of the power conversion unit 10 is a combined waveform of the output voltages V INV1 to V INV8 .
- the output voltage V INV1 is + Va
- the output voltages V INV2 to V INV4 are 0V
- the output voltages V INV5 to V INV8 are ⁇ Va.
- the output voltage Vo is ⁇ 3 ⁇ Va.
- the output voltages V INV1 and V INV2 are + Va
- the output voltages V INV3 to V INV5 are 0 V
- the output voltages V INV6 to V INV8 are ⁇ Va. Therefore, the output voltage Vo is ⁇ Va.
- the output voltages V INV1 to V INV3 are + Va
- the output voltages V INV4 to V INV6 are 0V
- the output voltages V INV7 and V INV8 are ⁇ Va. Therefore, the output voltage Vo is + Va.
- the rectangular wave voltages of the single-phase inverters 15 1 to 15 n are output at different timings and synthesized. Therefore, the waveform of the output voltage Vo of the power conversion unit 10 becomes a pseudo sine wave waveform that changes in a stepped manner, and the harmonic voltage can be suppressed.
- the output voltage Vo changes stepwise in the range from 7 ⁇ Va to ⁇ 7 ⁇ Va.
- the waveform control of the output voltage Vo is performed by increasing or decreasing the time during which the single-phase inverter 15 outputs the rectangular wave voltage by changing the magnitude of the second phase difference ⁇ 2.
- the second phase difference ⁇ 2 shown in FIG. 6 is set larger than the second phase difference ⁇ 2 shown in FIG. Specifically, the second phase difference ⁇ 2 shown in FIG. 6 is larger by 36 ° than the second phase difference ⁇ 2 shown in FIG. Therefore, in the example shown in FIG. 6, the output voltage Vo changes stepwise in the range from 6 ⁇ Va to ⁇ 6 ⁇ Va, and the amplitude is smaller than the output voltage Vo shown in FIG.
- the second phase difference ⁇ 2 shown in FIG. 7 is set larger than the second phase difference ⁇ 2 shown in FIG. Specifically, the second phase difference ⁇ 2 shown in FIG. 7 is larger by 36 ° than the second phase difference ⁇ 2 shown in FIG. Therefore, in the example shown in FIG. 7, the output voltage Vo changes stepwise in the range from 3 ⁇ Va to ⁇ 3 ⁇ Va, and the amplitude is smaller than the output voltage Vo shown in FIG.
- the serial multiple inverter 1 can suppress the harmonic voltage by providing the first phase difference ⁇ 1, and can change the amplitude of the output voltage Vo by changing the second phase difference ⁇ 2. Can do.
- a load 3 that can be represented by a resonance circuit equivalently composed of L, C, and R is connected to the series multiple inverter 1, and the power conversion unit 10 by the control unit 40.
- the control is constant output current control.
- the load 3 is configured by a series resonant circuit in which L, C, and R are connected in series, but the load 3 is not limited to the configuration illustrated in FIG. 1.
- the output voltage Vo of the serial multiple inverter 1 can be expressed as shown in the following formula (1).
- “m” represents the order
- m> 1 is the harmonic frequency.
- harmonic refers to the ninth and lower harmonics for convenience of explanation, but the harmonics are not limited to the ninth and lower harmonics.
- the high frequency may include eleventh or higher harmonics. Since the output voltage Vo is a symmetrical wave voltage as shown in FIGS. 5 to 7, even-order harmonics can be ignored in the output voltage Vo.
- the harmonic voltage of each order is the maximum. Accordingly, in order to calculate the maximum value of the harmonic voltage of each order, assuming that the following formula (2) is satisfied, the harmonic voltage of each order with respect to the first phase difference ⁇ 1 is expressed by the following formula (3). Can be represented.
- FIG. 8 is a diagram illustrating an example of the harmonic voltages of the respective orders according to the first embodiment.
- the harmonic voltages of the respective orders with respect to the first phase difference ⁇ 1 when Vdc 100 V in the above formula (3).
- the calculation result of is shown.
- FIG. 9 is a partially enlarged view of FIG. 8 and 9, the horizontal axis indicates the magnitude of the first phase difference ⁇ 1, and the vertical axis indicates the magnitude of the harmonic voltage of each order.
- each order harmonic voltage periodically increases and decreases with respect to the magnitude of the first phase difference ⁇ 1. Therefore, the harmonic voltage of each order can be suppressed by selecting and controlling the first phase difference ⁇ 1 so that the harmonic voltage of each order becomes a desired value or less using such characteristics.
- the harmonic voltage of each order when the harmonic voltage of each order is to be 50 [Vrms] or less, 12.4 ° ⁇ ⁇ 1 ⁇ 19.5 ° or 23.7 ° ⁇ ⁇ 1 ⁇ 37.4 ° By doing so, the harmonic voltage of each order can be made 50 [Vrms] or less.
- the harmonic voltage of each order can be made to be a desired value or less. Therefore, when the load 3 is a pure resistance whose characteristics do not change depending on the frequency of the output voltage Vo, the harmonic current of each order can be suppressed. Further, even when the characteristics of the load 3 change depending on the frequency of the output voltage Vo, an effect of suppressing the harmonic current can be obtained.
- the harmonic current of each order In order to set the harmonic current of each order below the desired value, It is necessary to consider the ease of flow of harmonic currents of each order of 3. Thus, it may not be sufficient to determine the first phase difference ⁇ 1 with reference to the calculation result shown in FIG.
- the serial multiple inverter 1 is configured to be able to switch the first phase difference ⁇ 1 in consideration of the ease of flow of each order harmonic current of the load 3.
- the first to third loads 3A to 3C having different frequency characteristics are considered.
- FIG. 10 is a diagram illustrating frequency characteristics of a plurality of loads according to the first embodiment. In FIG. 10, the horizontal axis indicates the frequency, and the vertical axis indicates the magnitude of the impedance Z.
- the magnitude of the ninth-order impedance is small in the first load 3A, and the ninth-order harmonic current flows easily. It has become.
- the 7th harmonic current easily flows in the second load 3B, and the 5th harmonic current easily flows in the third load 3C.
- the first to third loads 3A to 3C are different from each other in the order of the harmonic current that easily flows.
- FIG. 11 is a diagram illustrating a relationship between the first phase difference and the harmonic current for the first load according to the first embodiment.
- FIG. 12 is a diagram illustrating a relationship between the first phase difference and the harmonic current for the second load according to the first embodiment.
- FIG. 13 is a diagram illustrating a relationship between the first phase difference and the harmonic current for the third load according to the first embodiment.
- the ninth-order harmonic current in the case of the second load 3B, the seventh-order harmonic current, and in the case of the third load 3C, the fifth-order harmonic current.
- the higher harmonic currents are dominant, and the other harmonic currents hardly flow.
- the first phase difference ⁇ 1 5.0, 10.0, 15.0, 20 in which the ninth harmonic current is close to 0 [A].
- the harmonic filter 70 can be simplified or omitted. Thereby, size reduction and cost reduction of the serial multiple inverter 1 can be achieved.
- the harmonic current can be significantly reduced.
- the first phase difference ⁇ 1 9.0, 18.0 [deg] in which the fifth harmonic current is close to 0 [A].
- the phase difference selection unit 43 of the control unit 40 acquires information input to the operation unit 50 and inputs information of the first phase difference ⁇ 1 corresponding to the input content to the operation unit 50 to the drive signal output unit 42. To do.
- the drive signal generator 41 generates n drive signals Sp based on the first phase difference ⁇ 1 input from the phase difference selector 43 and the second phase difference ⁇ 2 described above.
- the operation unit 50 is a dip switch, for example, but may be a detachable operation device.
- the operation unit 50 is configured to be able to input the value of the first phase difference ⁇ 1 itself.
- the operation unit 50 can be, for example, a dip switch including a plurality of switches that can select and input a plurality of digits of the first phase difference ⁇ 1.
- the operation unit 50 can input indirect information for setting the first phase difference ⁇ 1 instead of the value of the first phase difference ⁇ 1 itself.
- the operation unit 50 can input information indicating whether the load 3 is the first to third loads 3A to 3C. In this case, the input to the operation unit 50 can be facilitated by using the operation unit 50 as a dip switch that can be switched in three stages.
- the first phase difference ⁇ 1 can be set to a relatively small value.
- the phase difference selection unit 43 is 5.0 [deg], 10.0 [deg], 15.0 [deg], 20. Among 0 [deg], 5.0 [deg] is selected as the first phase difference ⁇ 1.
- 1st phase difference (phi) 1 is made into another value, it can suppress that the maximum value of the output voltage Vo which can be output from the power converter 10 reduces.
- the phase difference selection unit 43 when information indicating the second load 3B is input to the operation unit 50, the phase difference selection unit 43 includes 6.4 [deg], 12.8 [deg], and 19.2 [deg]. , 6.4 [deg] is selected as the first phase difference ⁇ 1. Further, when information indicating the third load 3C is input to the operation unit 50, the phase difference selection unit 43 sets 9.0 [deg] out of 9.0 [deg] and 18.0 [deg]. The first phase difference ⁇ 1 is selected. Thereby, compared with the case where 1st phase difference (phi) 1 is made into another value, it can suppress that the maximum value of the output voltage Vo which can be output from the power converter 10 reduces.
- 1st phase difference (phi) 1 is made into another value
- the operation unit 50 When suppressing the harmonic currents of a plurality of orders, by inputting the first phase difference ⁇ 1 having a value at which the values of the harmonic currents of the plurality of orders are equal to or less than a threshold value to the operation unit 50, a plurality of harmonics of the orders. Current can be suppressed. Also in this case, by setting the smallest possible value to the first phase difference ⁇ 1, it is possible to suppress a reduction in the maximum value of the output voltage Vo that can be output from the power conversion unit 10.
- the threshold value can be the same for a plurality of orders of harmonic currents, or can be a different value for each order of harmonic currents.
- the phase difference selection unit 43 can select the first phase difference ⁇ 1 from a plurality of phase difference candidates based on the input to the operation unit 50.
- the plurality of phase difference candidates are values that can be selected by input to the operation unit 50.
- a plurality of phase differences Candidates are, for example, 5.0 [deg], 6.4 [deg], and 9.0 [deg].
- the plurality of orders of harmonic currents flowing through the load 3 are suppressed below the threshold by the selection of the first phase difference ⁇ 1 and the harmonic filter 70.
- the harmonic filter 70 can be simplified or omitted. Therefore, the cost reduction and size reduction of the serial multiple inverter 1 can be achieved by reducing the cost and size of the harmonic filter 70.
- the harmonic filter 70 may not be provided in the serial multiple inverter 1 when the harmonic currents of a plurality of orders flowing through the load 3 can be suppressed to a threshold value or less simply by selecting the first phase difference ⁇ 1. By not providing the harmonic filter 70, the increase in cost and size of the serial multiple inverter 1 can be suppressed.
- the phase difference selection unit 43 selects the first phase difference ⁇ 1 from a plurality of phase difference candidates based on the input to the operation unit 50. Based on an external signal, the first phase difference ⁇ 1 can be selected from a plurality of phase difference candidates. For example, the phase difference selection unit 43 can select different phase difference candidates as the first phase difference ⁇ 1 when the first information is acquired from the outside and when the second information is acquired.
- the first information is, for example, information output from the outside when the state of the load 3 is switched to the characteristics of the first load 3A
- the second information is, for example, the state of the load 3 is the second This is information input from the outside when the characteristics of the load 3B are switched. Note that the information input from the outside may be the value of the first phase difference ⁇ 1 itself.
- FIG. 14 is a flowchart of an example of processing of the control unit according to the first embodiment.
- the control unit 40 generates n drive signals Sp based on the first phase difference ⁇ 1 selected by the input to the operation unit 50 (step S11).
- the control unit 40 outputs the n drive signals Sp generated in step S11 to the n single-phase inverters 15 (step S12).
- the control unit 40 repeatedly performs the process shown in FIG.
- FIG. 15 is a diagram of a hardware configuration example of a control unit of the serial multiple inverter according to the first embodiment.
- the control unit 40 of the serial multiple inverter 1 includes a processor 101, a memory 102, and an input / output circuit 103.
- the processor 101, the memory 102, and the input / output circuit 103 can transmit / receive data to / from each other via the bus 104.
- the memory 102 includes a recording medium on which a computer readable program is recorded.
- the processor 101 reads out and executes the program stored in the memory 102, thereby executing the functions of the drive signal generation unit 41, the drive signal output unit 42, and the phase difference selection unit 43 described above.
- the processor 101 is an example of a processing circuit, and includes, for example, one or more of a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a system LSI (Large Scale Integration).
- the memory 102 is a nonvolatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory), for example. Or volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk or DVD (Digital Versatile Disc).
- control unit 40 described above may be realized by dedicated hardware that realizes the same functions as the processor 101 and the memory 102 shown in FIG.
- the dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a processing circuit that combines these. is there.
- a part of the control unit 40 may be realized by dedicated hardware, and the rest of the control unit 40 may be realized by the processor 101 and the memory 102 shown in FIG.
- the serial multiple inverter 1 includes the power conversion unit 10, the phase difference selection unit 43, the drive signal generation unit 41, and the drive signal output unit 42.
- the power conversion unit 10 includes a plurality of single-phase inverters 15 1 to 15 n , and output terminals 16 1 , 17 1 , 16 2 , 17 2 ,..., 16 of the plurality of single-phase inverters 15 1 to 15 n. n ⁇ 1 , 17 n ⁇ 1 , 16 n , and 17 n are connected in series.
- the phase difference selection unit 43 selects the first phase difference ⁇ 1 that is the phase difference of the rectangular wave voltage between the plurality of single-phase inverters 15 1 to 15 n from the plurality of phase difference candidates.
- the drive signal generator 41 outputs a plurality of rectangular wave voltages whose phases are sequentially shifted by the first phase difference ⁇ 1 selected by the phase difference selector 43 from the different single-phase inverters 15 1 to 15 n. Signals Sp 1 to Sp n are generated.
- the drive signal output unit 42 outputs the plurality of drive signals Sp 1 to Sp n generated by the drive signal generation unit 41 to the plurality of single-phase inverters 15. Therefore, the serial multiple inverter 1 selects the first phase difference ⁇ 1 that can suppress the harmonic current flowing through the load 3 from the plurality of phase difference candidates, so that each single phase can be obtained even when the characteristics of the load 3 are different. By controlling the inverter 15, the harmonic current flowing through the load 3 can be easily suppressed.
- a harmonic filter 70 can be used. Thereby, since the harmonic filter 70 can be reduced in size or omitted, the increase in cost and size of the serial multiple inverter 1 can be suppressed.
- the serial multiple inverter 1 includes an operation unit 50 that receives an input from the outside.
- the phase difference selection unit 43 selects the first phase difference ⁇ 1 from a plurality of phase difference candidates based on the input to the operation unit 50.
- the first phase difference ⁇ 1 suitable for the characteristics of the load 3 connected to the serial multiple inverter 1 can be easily selected. it can.
- FIG. The second embodiment is different from the first embodiment in that the impedance of the load 3 is detected, and the first phase difference ⁇ 1 can be selected from a plurality of phase difference candidates based on the detected impedance.
- constituent elements having the same functions as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the serial multiple inverter 1 in the first embodiment are mainly described.
- FIG. 16 is a diagram illustrating a configuration example of a serial multiple inverter according to the second embodiment.
- the serial multiple inverter 1A according to the second embodiment includes a power conversion unit 10, a voltage detection unit 20, a current detection unit 30, and a control unit 40A.
- the control unit 40A includes a drive signal generation unit 41, a drive signal output unit 42, a phase difference selection unit 43A, an impedance detection unit 44, and a harmonic current calculation unit 45.
- the impedance detection unit 44 is a harmonic of each order of the load 3 connected to the power conversion unit 10.
- the impedance Z m is not limited to the impedance of the harmonic of the ninth order below, it may comprise an impedance of 11 or higher order harmonics. That is, the impedance detection unit 44 can calculate the impedances of a plurality of harmonics set in advance.
- the impedance detection unit 44 acquires a detection voltage value Vdet that is repeatedly output from the voltage detection unit 20 and a detection current value Idet that is repeatedly output from the current detection unit 30. Then, the impedance detection unit 44 performs a discrete Fourier transform on the detection voltage value Vdet and the detection current value Idet using a sampling period that is an integral multiple of the output voltage frequency fo. The impedance detection unit 44 extracts harmonic components of each order included in the output current Io and harmonic components of each order included in the output voltage Vo by such discrete Fourier transform.
- the m-th order harmonic components included in the output voltage Vo described harmonic voltage Vo m the m-th order harmonic components contained in the output current Io to as harmonic current Io m.
- “M” is a positive odd number and is a value of 3 or more.
- the impedance detection unit 44 replaces the discrete Fourier transform with each of the harmonic components of each order of the output current Io and the output voltage Vo by a method and algorithm for extracting a plurality of higher-order frequency components included in the output current Io. It is also possible to extract harmonic components of the order.
- Impedance detection unit 44 the following equation (6) it is possible to find the impedance Z m by the calculation of (7).
- Re (Z m ) represents the real part of the impedance Z m
- Re (Z m ) represents the real part of the impedance Z m .
- Z m Vo m / Io m ⁇ (6)
- ⁇ (Re (Z m ) 2 + Im (Z m ) 2 ) (7)
- the impedance detection unit 44 can also cause the drive signal generation unit 41 to generate the drive signals Sp 1 to Sp n for sweeping the output voltage frequency fo.
- the drive signal output unit 42 outputs the drive signals Sp 1 to Sp n output from the drive signal generation unit 41 to the single-phase inverters 15 1 to 15 n , so that the output voltage frequency fo Is output to the load 3 from the serial multiple inverter 1A.
- Impedance detection unit 44 can also output voltage frequency fo is based on the detected current value Idet and the detected voltage value Vdet when the frequency of the harmonic of each order to calculate the impedance Z m of the harmonic of each order .
- Harmonic current calculation unit 45 based on the theoretical formula of the harmonic voltage shown in the impedance Z m and the formula of the load 3 that is detected by the impedance detecting section 44 (3), the harmonic of each order flowing in the load 3 Calculate the current.
- the harmonic current calculation unit 45 changes the value of the first phase difference ⁇ 1 in the above formula (3), for example, so that the harmonic for each value of the first phase difference ⁇ 1 is based on the above formula (3). it can be obtained voltage Vo m.
- Phase difference selecting section 43A selects the first phase difference ⁇ 1 to the harmonic current Io m of each order detected by the harmonic current calculation unit 45 below a threshold Ith from a plurality of phase difference candidates.
- Threshold value Ith may be common for harmonic current Io m of each order, also, the threshold Ith may also be a different value in the harmonic current Io m of each order.
- FIG. 17 is a flowchart of an example of processing of the control unit according to the second embodiment. As shown in FIG. 17, the control unit 40A detects the impedance Z m of the harmonic of each order (step S21).
- control unit 40A based on the impedance Z m of the load 3, and calculates the higher harmonic current Io m of each order (step S22).
- Control unit 40A selects the first phase difference ⁇ 1 of harmonic current Io m of each order it is below the threshold value Ith (step S23).
- the process shown in FIG. 17 is started by the control unit 40A when, for example, a button (not shown) provided in the serial multiple inverter 1A is operated. Further, the control unit 40A can execute the process shown in FIG. 17 at a preset timing.
- the preset timing is a timing that can be arbitrarily set, and may be, for example, a timing that occurs in a preset cycle such as a one-day cycle timing and a one-month cycle timing.
- control unit 40A of the serial multiple inverter 1A is the same as the hardware configuration example shown in FIG.
- the processor 101 reads out and executes the program stored in the memory 102, whereby the drive signal generation unit 41, the drive signal output unit 42, the phase difference selection unit 43 ⁇ / b> A, the impedance detection unit 44, and the harmonic current calculation unit 45. The function can be executed.
- the series multiple inverter 1 ⁇ / b> A includes the voltage detection unit 20, the current detection unit 30, the impedance detection unit 44, and the harmonic current calculation unit 45.
- the voltage detection unit 20 detects the output voltage Vo of the power conversion unit 10.
- the current detection unit 30 detects the output current Io of the power conversion unit 10.
- Impedance detection unit 44 based on the output current Io detected by the output voltage Vo and the current detector 30 detected by the voltage detection unit 20, detects the impedance Z m of the load 3 connected to the power conversion unit 10 To do.
- Harmonic current calculation unit 45 based on the impedance Z m of the detected load 3 by the impedance detecting unit 44 calculates the harmonic current Io m of the plurality of orders flowing in the load 3.
- Phase difference selecting section 43A selects the first phase difference ⁇ 1 to a plurality of harmonic current Io m orders detected by harmonic current calculation unit 45 below a threshold Ith from a plurality of phase difference candidates.
- the phase difference selection unit 43A has a plurality of cases where the phase difference candidate plurality of harmonic currents Io m orders below the threshold Ith of the phase difference candidate there are multiple threshold harmonic current Io m of the plurality of orders
- the smallest phase difference candidate is selected as the first phase difference ⁇ 1 among the plurality of phase difference candidates that are equal to or less than Ith.
- serial multiple inverters 1, 1 ⁇ / b> A described above have a configuration having n transformers 12, but may be configured to have one multi-output transformer instead of the n transformers 12. In this case, an AC voltage is output from the n secondary sides of the multi-output transformer whose primary side is connected to the single-phase AC power supply 2 to the n rectifier circuits 13.
- the single-phase AC power supply 2 converts the single-phase AC voltage Vac into the DC voltage Vdc.
- the power supply is not limited to the single-phase AC power supply 2.
- the serial multiple inverters 1, 1 ⁇ / b> A may have a configuration that converts a three-phase AC voltage to a DC voltage Vdc from a three-phase AC power source instead of the single-phase AC power source 2.
- the transformer 12 is a three-phase transformer and the rectifier circuit 13 is a three-phase rectifier circuit, whereby a three-phase AC voltage can be converted into a DC voltage Vdc.
- the DC voltage Vdc is input from each independent DC power source including the transformer 12, the rectifier circuit 13, and the capacitor 14 for each single-phase inverter 15.
- the DC voltage Vdc may be input to the single-phase inverter 15.
- the output voltage V INV of each single-phase inverter 15 is input to the primary side of n transformers provided for each single-phase inverter 15.
- the secondary sides of the n transformers are connected in series, whereby the output voltage V INV of each single-phase inverter 15 is synthesized and output to the load 3.
- the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
直列多重インバータ(1)は、電力変換部(10)と、位相差選択部(43)と、駆動信号生成部(41)と、駆動信号出力部(42)とを備える。位相差選択部(43)は、複数の単相インバータ(151~15n)間の矩形波電圧の位相差を複数の位相差候補の中から選択する。駆動信号生成部(41)は、位相差選択部(43)で選択された位相差ずつ位相が順次ずれた複数の矩形波電圧を各々異なる単相インバータ(151~15n)から出力させる複数の駆動信号(Sp1~Spn)を生成する。駆動信号出力部(42)は、駆動信号生成部(41)によって生成された複数の駆動信号(Sp1~Spn)を複数の単相インバータ(151~15n)へ出力する。
Description
本発明は、複数の単相インバータの出力端子が直列に接続された直列多重インバータに関する。
従来、複数の単相インバータのそれぞれから出力させた互いに位相が異なる矩形波電圧を合成し、合成した電圧を出力する直列多重インバータが知られている。この種の直列多重インバータに関し、特許文献1には、各単相インバータから出力させる矩形波電圧の位相角を、直列多重インバータの出力電圧に含まれる各次数の高調波が所望の値以下になるように算出し、算出した位相角で各矩形波電圧を単相インバータから出力させる技術が開示されている。
従来の直列多重インバータは、直列多重インバータの出力電圧に含まれる各次数の高調波電圧が所望の値以下となるように制御することができるが、直列多重インバータに接続された負荷を流れる高調波電流について考慮されていない。直列多重インバータに接続される負荷の特性によって各次数の高調波電流の流れ易さが異なることから、直列多重インバータの出力電圧に含まれる各次数の高調波電圧を抑えた場合であっても負荷の特性によって各次数の高調波電流の大きさが異なる。そのため、負荷の特性と無関係に直列多重インバータから負荷への各次数の高調波電流を抑えようとすると、高調波低減効果の高い大きな高調波フィルタが必要となり、直列多重インバータが大型化してしまう。
本発明は、上記に鑑みてなされたものであって、負荷の特性が異なる場合においても各単相インバータへの制御によって負荷を流れる高調波電流を抑制できる直列多重インバータを得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明の直列多重インバータは、電力変換部と、位相差選択部と、駆動信号生成部と、駆動信号出力部とを備える。電力変換部は、複数の単相インバータを有し、複数の単相インバータの出力端子が直列に接続される。位相差選択部は、複数の単相インバータ間の矩形波電圧の位相差を複数の位相差候補の中から選択する。駆動信号生成部は、位相差選択部で選択された位相差ずつ位相が順次ずれた複数の矩形波電圧を各々異なる単相インバータから出力させる複数の駆動信号を生成する。駆動信号出力部は、駆動信号生成部によって生成された複数の駆動信号を複数の単相インバータへ出力する。
本発明によれば、負荷の特性が異なる場合においても各単相インバータへの制御によって負荷を流れる高調波電流を抑制できる、という効果を奏する。
以下に、本発明の実施の形態にかかる直列多重インバータを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1にかかる直列多重インバータの構成例を示す図である。図1に示すように、実施の形態1にかかる直列多重インバータ1は、電力変換部10と、電圧検出部20と、電流検出部30と、電力変換部10を制御して電力変換部10から出力電圧Voを出力させる制御部40と、操作部50と、高調波フィルタ70とを備える。
図1は、本発明の実施の形態1にかかる直列多重インバータの構成例を示す図である。図1に示すように、実施の形態1にかかる直列多重インバータ1は、電力変換部10と、電圧検出部20と、電流検出部30と、電力変換部10を制御して電力変換部10から出力電圧Voを出力させる制御部40と、操作部50と、高調波フィルタ70とを備える。
電力変換部10は、単相交流電源2から出力される交流電力を任意の周波数および振幅の交流電力に変換することができる。例えば、電力変換部10は、単相交流電源2から出力される交流電力を基本波の周波数が1kHz以上の高周波の交流電力へ変換することができる。なお、電力変換部10は、単相交流電源2から出力される交流電力を基本波の周波数が1kHz未満の周波数の交流電力へ変換することもできる。
電力変換部10は、n個の電力変換ブロック111~11nを備える。「n」は、2以上の整数である。電力変換ブロック111は、トランス121、整流回路131、コンデンサ141、および単相インバータ151を備える。電力変換ブロック112は、トランス122、整流回路132、コンデンサ142、および単相インバータ152を備える。
電力変換ブロック113~11nの各々も、電力変換ブロック111,112と同様に、トランス123~12nの一つと、整流回路133~13nの一つと、コンデンサ143~14nの一つと、単相インバータ153~15nの一つとを備える。このように、電力変換ブロック111~11nは、互いに同様の構成を有しているため、以下においては、電力変換ブロック111の構成について詳細に説明する。
トランス121の一次巻線は、単相交流電源2に接続されており、単相交流電源2から出力される交流電圧Vacをトランス121の巻線比で決まる振幅の交流電圧へ変換して出力する。
整流回路131は、トランス121の二次巻線に接続されており、トランス121から出力される交流電圧を整流する。整流回路131は、例えば、全波整流回路、半波整流回路、またはフルブリッジ回路である。なお、整流回路131は、トランス121から出力される交流電圧を整流することができればよく、全波整流回路、半波整流回路、およびフルブリッジ回路に限定されない。
コンデンサ141は、整流回路131の出力電圧を平滑する。整流回路131およびコンデンサ141によって、トランス121から出力される交流電圧が直流電圧Vdcに変換される。
単相インバータ151は、制御部40により制御され、整流回路131およびコンデンサ141によって生成される直流電圧Vdcを矩形波電圧へ変換して出力することができる。
電力変換ブロック112~11nは、電力変換ブロック111と同様に、矩形波電圧を生成して出力する。以下、説明を分かりやすくするために、単相インバータ151~15nが各々出力する交流電圧を出力電圧VINV1~VINVnと表す。なお、出力電圧VINV1~VINVnの各々を区別せずに示すときには、出力電圧VINVと呼ぶ。
単相インバータ151~15nの出力端子161,171,162,172,・・・,16n-1,17n-1,16n,17nは互いに直列に接続される。これにより、単相インバータ151~15nの出力電圧VINV1~VINVnが合成され、合成結果が電力変換部10の出力電圧Voとして出力される。
電力変換部10の出力電圧Voは、高調波フィルタ70を介して負荷3に供給される。高調波フィルタ70は、例えば、LCフィルタであるが、LCLフィルタであってもよい。
なお、以下、トランス121~12nの各々を区別せずに示すときには、トランス12と呼び、整流回路131~13nの各々を区別せずに示すときには、整流回路13と呼ぶ。また、コンデンサ141~14nの各々を区別せずに示すときには、コンデンサ14と呼び、単相インバータ151~15nの各々を区別せずに示すときには、単相インバータ15と呼ぶ。
図1に示す例では、各電力変換ブロック111~11nは、トランス12、整流回路13、およびコンデンサ14を有する構成であるが、トランス12、整流回路13、およびコンデンサ14に代えて直流電圧Vdcを出力する直流電源を設けた構成であってもよい。
図2は、実施の形態1にかかる単相インバータの構成例を示す図である。図2に示すように、単相インバータ151は、フルブリッジ接続された4つのスイッチング素子Q1~Q4と、スイッチング素子Q1~Q4の各々に逆並列に接続されたダイオードD1~D4と、ゲートドライバ18とを備える。
ゲートドライバ18は、制御部40から出力される後述する駆動信号に基づいて、ゲート信号Sg1~Sg4を生成し、生成したゲート信号Sg1~Sg4を各々スイッチング素子Q1~Q4のゲートへ出力する。これにより、スイッチング素子Q1~Q4がオンオフ制御されて単相インバータ151から出力電圧VINV1が生成され出力される。スイッチング素子Q1~Q4は、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)およびIGBT(Insulated Gate Bipolar Transistor)に代表される半導体スイッチング素子である。
図3は、実施の形態1にかかるゲートドライバから出力されるゲート信号と単相インバータの出力電圧の波形との関係を示す図である。図3に示すように、ゲート信号Sg1~Sg4によって矩形波電圧を含む出力電圧VINV1が生成される。なお、図3において、「To」は、直列多重インバータ1の出力電圧Voの基本波周期を示す出力電圧周期である。また、「+Va」は、単相インバータ151が出力する正の矩形波電圧の電圧値であり、「-Va」は、単相インバータ151が出力する負の矩形波電圧の電圧値である。
制御部40から単相インバータ15へ出力される駆動信号は、ゲート信号Sg1~Sg4の各々と同一波形の4つのパルス幅変調(Pulse Width Modulation,PWM)信号から構成され、ゲートドライバ18に増幅されてスイッチング素子Q1~Q4へ出力される。なお、制御部40からの駆動信号に基づいてゲートドライバ18がゲート信号Sg1~Sg4を生成することができればよく、駆動信号は上述した例に限定されない。例えば、制御部40から各単相インバータ15へ出力される駆動信号は、1つまたは2つのPWM信号から構成されていてもよい。すなわち、ゲートドライバ18は、1つまたは2つのPWM信号から構成される駆動信号から、ゲート信号Sg1~Sg4を生成して出力する構成であってもよい。
単相インバータ152~15nも、単相インバータ151と同様の構成である。なお、単相インバータ151~15nは、図2に示す構成に限定されない。すなわち、単相インバータ151~15nは、後述する出力電圧VINV1~VINVnを出力することができる構成であればよく、図2に示す構成でなくてもよい。
図1に戻って、直列多重インバータ1の説明を続ける。直列多重インバータ1の電圧検出部20は、電力変換部10の出力電圧Voの瞬時値を繰り返し検出し、検出した出力電圧Voの瞬時値である検出電圧値Vdetを出力する。直列多重インバータ1の電流検出部30は、電力変換部10の出力電流Ioの瞬時値を繰り返し検出し、検出した出力電流Ioの瞬時値である検出電流値Idetを出力する。
直列多重インバータ1の制御部40は、n個の駆動信号Sp1~Spnを生成する駆動信号生成部41と、n個の駆動信号Sp1~Spnをn個の単相インバータ151~15nに出力する駆動信号出力部42と、位相差選択部43とを備える。なお、以下、駆動信号Sp1~Spnの各々を区別せずに示すときには、駆動信号Spと呼ぶ。
駆動信号生成部41は、検出電流値Idetに基づいて、出力電流一定制御によって、n個の駆動信号Spを生成する。各駆動信号Spは、例えば、上述したように複数のPWM信号から構成される。なお、駆動信号生成部41は、出力電圧一定制御または出力電力一定制御によって、n個の駆動信号Spを生成することもできる。例えば、駆動信号生成部41は、検出電圧値Vdetに基づいて、出力電圧一定制御によって、n個の駆動信号Spを生成することができる。
また、駆動信号生成部41は、検出電圧値Vdetと検出電流値Idetとに基づいて、出力電力一定制御によって、n個の駆動信号Spを生成することができる。なお、駆動信号生成部41が出力電流一定制御のみを行う場合、電圧検出部20を設けない構成であってもよい。
駆動信号Sp1~Spnは、後述する第1の位相差φ1ずつ位相が順次ずれたn個の矩形波電圧の各々をn台の単相インバータ15のうち互いに異なる単相インバータ15から出力させる信号である。以下、駆動信号生成部41の構成例について説明する。
図4は、実施の形態1にかかる駆動信号生成部の構成例を示す図である。図4に示すように、駆動信号生成部41は、実効値演算部60と、電流指令出力部61と、減算器62と、電流制御部63と、キャリア波出力部64と、比較器65と、信号生成部66とを備える。
実効値演算部60は、電流検出部30から出力される検出電流値Idetに基づき、出力電流Ioの実効値である出力電流実効値IoMを演算する。実効値演算部60は、例えば、出力電圧周期Toの半分の時間毎に、出力電流実効値IoMを演算する。出力電圧周期Toは、上述したように出力電圧Voの基本波周期であり、To=1/foである。なお、「fo」は、出力電圧Voの周波数であり、以下、出力電圧周波数foと呼ぶ。
電流指令出力部61は、電流指令Irefを出力する。電流指令Irefの値は、例えば、外部から電流指令出力部61へ供給される情報に基づいて電流指令出力部61によって生成される。
減算器62は、電流指令Irefから出力電流実効値IoMを減算し、減算した結果である電流差分値ΔIを出力する。電流制御部63は、減算器62から出力される電流差分値ΔIに基づいて、電圧指令Vrefを生成する。電流制御部63は、例えば、比例積分制御、または比例積分微分制御によって、電圧指令Vrefを生成することができる。
キャリア波出力部64は、キャリア波Vcsを生成し、生成したキャリア波Vcsを出力する。キャリア波Vcsは、例えば、三角波状の波形の電圧またはノコギリ波状の波形の電圧である。出力電圧周期Toは、キャリア波Vcsの周期と同一であり、キャリア波Vcsの周期が変わると、出力電圧周期Toが変わる。
比較器65は、電圧指令Vrefとキャリア波Vcsとを比較し、比較した結果を出力する。具体的には、比較器65は、電圧指令Vrefがキャリア波Vcsよりも大きい場合、第1の電圧V1を出力し、電圧指令Vrefがキャリア波Vcsよりも小さい場合、第1の電圧V1とは異なる第2の電圧V2を出力する。
信号生成部66は、比較器65から出力される電圧に基づいて、n個の駆動信号Sp1~Spnを生成する。信号生成部66は、位相差選択部43から入力された第1の位相差φ1を示す情報を有している。また、信号生成部66は、比較器65から出力される電圧のデューティ比に基づいて、第2の位相差φ2を決定する。例えば、信号生成部66は、キャリア波Vcsの半周期において、比較器65から第2の電圧V2が出力される時間が短いほど第2の位相差φ2が小さくなるように、第2の位相差φ2を決定する。
信号生成部66は、第1の位相差φ1および第2の位相差φ2に基づいて、n個の駆動信号Sp1~Spnを生成する。信号生成部66は、生成したn個の駆動信号Sp1~Spnを図1に示す駆動信号出力部42へ出力する。
単相インバータ151~15nは、駆動信号出力部42から出力される駆動信号Sp1~Spnに基づいて、出力端子161,171,162,172,・・・,16n-1,17n-1,16n,17nから出力電圧VINV1~VINVnを出力する。単相インバータ151~15nの出力電圧VINV1~VINVnは合成され、合成結果が電力変換部10の出力電圧Voとして出力される。
ここで、単相インバータ151~15nの出力電圧VINV1~VINVnについて、図5~図7を参照して具体的に説明する。図5~図7は、実施の形態1にかかる複数の単相インバータの出力電圧の例を示す図である。なお、図5~図7では、n=8、すなわち単相インバータ15の数を8台とし、駆動信号Sp1~Sp8の順で単相インバータ151~158まで一対一の組み合わせで、駆動信号Sp1~Sp8が単相インバータ151~158へ入力される例を示す。
具体的には、単相インバータ151に駆動信号Sp1、単相インバータ152に駆動信号Sp2、単相インバータ153に駆動信号Sp3、単相インバータ154に駆動信号Sp4が各々入力される。また、単相インバータ155に駆動信号Sp5、単相インバータ156に駆動信号Sp6、単相インバータ157に駆動信号Sp7、単相インバータ158に駆動信号Sp8が各々入力される。
また、図5~図7において、「1」は、単相インバータ15が出力する正の矩形波電圧の電圧値である上述した「+Va」を意味し、「-1」は、単相インバータ15が出力する負の矩形波電圧の電圧値である上述した「-Va」を意味する。また、「2」~「7」は、「+Va」の倍数を意味し、「-2」~「-7」は、「-Va」の倍数を意味する。また、図5~図7において、縦軸は出力電圧Voの瞬時値を示し、横軸は出力電圧Voの位相を示す。縦の破線間の間隔は、18°である。なお、以下、出力電圧Voの位相を出力電圧位相θoと記載する。
図5に示すように、出力電圧VINV1~VINV8は、位相が第1の位相差φ1ずつ順次ずれている。具体的には、出力電圧VINV1~VINVn8は、正の矩形波電圧になるタイミングが第1の位相差φ1ずつ順次ずれており、負の矩形波電圧になるタイミングが第1の位相差φ1ずつ順次ずれている。図5に示す例では、φ1=18°である。
例えば、出力電圧VINV2における正の矩形波電圧は、出力電圧VINV1における正の矩形波電圧と第1の位相差φ1分だけ位相がずれている。また、出力電圧VINV3における正の矩形波電圧は、出力電圧VINV2における正の矩形波電圧と第1の位相差φ1分だけ位相がずれている。同様に、出力電圧VINV2における負の矩形波電圧は、出力電圧VINV1における負の矩形波電圧と第1の位相差φ1分だけ位相がずれている。また、出力電圧VINV3における負の矩形波電圧は、出力電圧VINV2における負の矩形波電圧と第1の位相差φ1分だけ位相がずれている。
また、単相インバータ15は、駆動信号Spに基づいて、正の矩形波電圧の出力が終了したときから、第2の位相差φ2分だけ位相がずれた負の矩形波電圧を出力する。図5に示す例では、φ2=54°である。また、単相インバータ151から出力電圧VINV1において、0°≦θo≦126°の期間が正の矩形波電圧が出力される期間であり、180°≦θo≦306°の期間が負の矩形波電圧が出力される期間である。したがって、出力電圧VINV1において、正の矩形波電圧の期間が終了したときから、第2の位相差φ2分である54°だけ位相がずれたタイミングで、負の矩形波電圧の期間が開始している。
同様に、単相インバータ152~158の出力電圧VINV2~VINV8も、正の矩形波電圧の期間が終了したときから、第2の位相差φ2分だけ位相がずれたタイミングで、負の矩形波電圧の期間が開始する。このように、駆動信号Spは、単相インバータ15からの出力電圧VINVに第2の位相差φ2が生じるように生成される。
上述したように単相インバータ151~158の出力端子161,171,162,172,・・・,16n-1,17n-1,16n,17nは互いに直列接続されているため、単相インバータ151~158の出力電圧VINV1~VINV8は合成される。そのため、図5に示すように、電力変換部10の出力電圧Voの波形は、出力電圧VINV1~VINV8の合成波形になる。
例えば、0°≦θo<18°である場合、出力電圧VINV1が+Vaの電圧、出力電圧VINV2~VINV4の電圧が0V、および出力電圧VINV5~VINV8の電圧が-Vaであるため、出力電圧Voは、-3×Vaである。また、18°≦θo<36°である場合、出力電圧VINV1,VINV2が+Vaの電圧、出力電圧VINV3~VINV5の電圧が0V、および出力電圧VINV6~VINV8の電圧が-Vaであるため、出力電圧Voは、-Vaである。また、36°≦θo<54°である場合、出力電圧VINV1~VINV3が+Vaの電圧、出力電圧VINV4~VINV6の電圧が0V、および出力電圧VINV7,VINV8の電圧が-Vaであるため、出力電圧Voは、+Vaである。
このように、単相インバータ151~15nの矩形波電圧は、互いにタイミングがずれて出力されて合成される。そのため、電力変換部10の出力電圧Voの波形は、階段状に変化する擬似的な正弦波状の波形になり、高調波電圧を抑制することができる。図5に示す例では、出力電圧Voは、7×Vaから-7×Vaまでの範囲で段階的に電圧が変化する。出力電圧Voの波形制御は、第2の位相差φ2の大きさの変更により単相インバータ15が矩形波電圧を出力する時間を増減することによって行われる。
図6に示す第2の位相差φ2は、図5に示す第2の位相差φ2よりも大きく設定されている。具体的には、図6に示す第2の位相差φ2は、図5に示す第2の位相差φ2よりも36°分の時間だけ大きい。そのため、図6に示す例では、出力電圧Voは、6×Vaから-6×Vaまでの範囲で段階的に電圧が変化し、図5に示す出力電圧Voよりも振幅が小さい。
また、図7に示す第2の位相差φ2は、図6に示す第2の位相差φ2よりも大きく設定されている。具体的には、図7に示す第2の位相差φ2は、図6に示す第2の位相差φ2よりも36°分の時間だけ大きい。そのため、図7に示す例では、出力電圧Voは、3×Vaから-3×Vaまでの範囲で段階的に電圧が変化し、図6に示す出力電圧Voよりも振幅が小さい。
このように、直列多重インバータ1は、第1の位相差φ1を設けることによって高調波電圧を抑制することができ、第2の位相差φ2を変更することによって出力電圧Voの振幅を変更することができる。
ここで、図1に示すように、等価的にL,C,Rから構成される共振回路で表すことができる負荷3が直列多重インバータ1に接続され、かつ、制御部40による電力変換部10の制御が出力電流一定制御である場合を一例として考える。なお、図1に示す例では、L,C,Rを各々1つずつ直列に接続した直列共振回路で負荷3が構成されるが、負荷3は図1に示す構成に限定されない。
直列多重インバータ1の出力電圧Voは、下記式(1)に示すように表すことができる。なお、下記式(1)において、「m」は次数を表し、m=1は基本波の周波数であり、m>1が高調波の周波数である。以下において、高調波という場合には、説明の便宜上、9次以下の高調波とするが、高調波は、9次以下の高調波に限定されない。例えば、高周波は、11次以上の高調波を含んでもよい。なお、出力電圧Voは図5~図7に示すように対称波の電圧であるため、出力電圧Voには偶数次数の高調波は無視することができる。
また、出力電流一定制御で電力変換部10を制御する場合、出力電圧Voは負荷3のインピーダンスに依存して変化するため、出力電圧Voを調整するための第2の位相差φ2は0°≦φ2≦180°の範囲で変化する。第2の位相差φ2が最大である場合に、各次数の高調波電圧が最大になる。したがって、各次数の高調波電圧の最大値を算出するため、下記式(2)を満たすことを条件とすると、第1の位相差φ1に対する各次数の高調波電圧は、下記式(3)で表すことができる。
図8は、実施の形態1にかかる各次数の高調波電圧の一例を示す図であり、上記式(3)においてVdc=100Vとした場合の第1の位相差φ1に対する各次数の高調波電圧の演算結果を示す。図9は、図8の一部拡大図である。図8および図9において、横軸は、第1の位相差φ1の大きさを示し、縦軸は、各次数の高調波電圧の大きさを示す。
図8に示すように、第1の位相差φ1の大きさに対して各次数高調波電圧が周期的に増減している。そこで、かかる特性を利用して各次数の高調波電圧が所望の値以下となるように第1の位相差φ1を選択して制御することで、各次数の高調波電圧を抑制することができる。例えば、図9に示すように、各次数の高調波電圧を50[Vrms]以下としたい場合、12.4°≦φ1≦19.5°または、23.7°≦φ1≦37.4°とすることで、各次数の高調波電圧を50[Vrms]以下にすることができる。
このように、図8に示す演算結果を参照して第1の位相差φ1を決定することで、各次数の高調波電圧を所望の値以下にできる。したがって、負荷3が出力電圧Voの周波数によって特性が変化しない純抵抗である場合には、各次数の高調波電流を抑制できる。また、負荷3が出力電圧Voの周波数によって特性が変化する場合にも、高調波電流を抑制する効果を得ることができるが、各次数の高調波電流を所望の以下とするためには、負荷3の各次数の高調波電流の流れ易さを考慮する必要がある。このように、図8に示す演算結果を参照して第1の位相差φ1を決定するだけでは十分ではない場合がある。
そこで、直列多重インバータ1は、負荷3の各次数高調波電流の流れ易さを考慮して、第1の位相差φ1を切り替えることができる構成としている。ここで、周波数特性が異なる第1~第3の負荷3A~3Cを考える。図10は、実施の形態1にかかる複数の負荷の周波数特性を示す図である。図10において、横軸は、周波数を示し、縦軸は、インピーダンスZの大きさを示す。
図10に示すように、直列多重インバータ1の出力電圧周波数をf0とした場合、第1の負荷3Aでは9次のインピーダンスの大きさが小さくなっており、9次の高調波電流が流れ易くなっている。また、第2の負荷3Bでは7次の高調波電流が流れ易くなっており、第3の負荷3Cでは5次の高調波電流が流れ易くなっている。このように、第1~第3の負荷3A~3Cは、流れやすくなる高調波電流の次数が互いに異なっている。
図11は、実施の形態1にかかる第1の負荷についての第1の位相差と高調波電流との関係を示す図である。図12は、実施の形態1にかかる第2の負荷についての第1の位相差と高調波電流との関係を示す図である。図13は、実施の形態1にかかる第3の負荷についての第1の位相差と高調波電流との関係を示す図である。図11から図13に示すように、第1の負荷3Aの場合は9次の高調波電流、第2の負荷3Bの場合は7次の高調波電流、第3の負荷3Cの場合は5次の高調波電流がそれぞれ支配的であり、他の次数の高調波電流はほとんど流れない。
そして、第1の負荷3Aの場合、図11に示すように、9次の高調波電流が0[A]に近い第1の位相差φ1=5.0,10.0,15.0,20.0[deg]のいずれかを選択して駆動信号を生成することで、高調波電流を大幅に低減することができる。そのため、高調波フィルタ70を簡素化したり、省いたりできる。これにより、直列多重インバータ1の小型化および低コスト化を図ることができる。
同様に、第2の負荷3Bの場合、図12に示すように、7次の高調波電流が0[A]に近い第1の位相差φ1=6.4,12.8,19.2[deg]のいずれかを選択して駆動信号を生成することで、高調波電流を大幅に低減することができる。また、第3の負荷3Cの場合、図13に示すように、5次の高調波電流が0[A]に近い第1の位相差φ1=9.0,18.0[deg]のいずれかを選択して駆動信号を生成することで、高調波電流を大幅に低減することができる。
図1に戻って、直列多重インバータ1の制御部40の説明を続ける。制御部40の位相差選択部43は、操作部50への入力された情報を取得し、操作部50への入力内容に該当する第1の位相差φ1の情報を駆動信号出力部42に入力する。
駆動信号生成部41は、位相差選択部43から入力された第1の位相差φ1と上述した第2の位相差φ2とに基づいて、n個の駆動信号Spを生成する。なお、操作部50は、例えば、ディップスイッチであるが、着脱可能な操作機器であってもよい。
操作部50は、第1の位相差φ1の値そのものを入力することができる構成である。この場合、操作部50は、例えば、第1の位相差φ1の複数桁の数を選択して入力することができる複数のスイッチを備えるディップスイッチとすることができる。また、操作部50は、第1の位相差φ1の値そのものではなく、第1の位相差φ1を設定するための間接的な情報を入力することができる。例えば、操作部50は、負荷3が第1~第3の負荷3A~3Cのいずれであるかを示す情報を入力することができる。この場合、操作部50を3段階に切り換えられるディップスイッチとすることで、操作部50への入力を容易にすることができる。
第1の位相差φ1を大きな値とするほど、電力変換部10から出力可能な出力電圧Voの最大値が小さくなるため、第1の位相差φ1は、相対的に小さな値を設定することが望ましい。例えば、位相差選択部43は、第1の負荷3Aを示す情報が操作部50に入力された場合、5.0[deg],10.0[deg],15.0[deg],20.0[deg]のうち、5.0[deg]を第1の位相差φ1として選択する。これにより、第1の位相差φ1を他の値にする場合に比べ、電力変換部10から出力可能な出力電圧Voの最大値が低減することを抑制することができる。
同様に、位相差選択部43は、第2の負荷3Bを示す情報が操作部50に入力された場合、6.4[deg],12.8[deg],19.2[deg]のうち、6.4[deg]を第1の位相差φ1として選択する。また、位相差選択部43は、第3の負荷3Cを示す情報が操作部50に入力された場合、9.0[deg],18.0[deg]のうち、9.0[deg]を第1の位相差φ1として選択する。これにより、第1の位相差φ1を他の値にする場合に比べ、電力変換部10から出力可能な出力電圧Voの最大値が低減することを抑制することができる。
また、上述した例では、1つの次数の高調波電流が支配的で、他の次数の高調波電流がほとんど流れない場合について説明したが、直列多重インバータ1は、複数の次数の高調波電流を抑制することができる。
複数の次数の高調波電流を抑制する場合、複数の次数の高調波電流の値が閾値以下になる値の第1の位相差φ1を操作部50に入力することで、複数の次数の高調波電流を抑制することができる。この場合も、できるだけ小さな値を第1の位相差φ1にすることで、電力変換部10から出力可能な出力電圧Voの最大値が低減することを抑制することができる。なお、閾値は、複数の次数の高調波電流で同一にしたり、高調波電流の次数毎に異なる値にしたりすることができる。
このように、位相差選択部43は、操作部50への入力に基づいて、第1の位相差φ1を複数の位相差候補の中から選択することができる。複数の位相差候補は、操作部50への入力で選択することができる値である。また、操作部50への入力によって位相差選択部43へ通知される情報が、負荷3が第1~第3の負荷3A~3Cのいずれであるかを示す情報である場合、複数の位相差候補は、例えば、5.0[deg],6.4[deg],9.0[deg]である。
図1に示す例では、第1の位相差φ1の選択と高調波フィルタ70とで負荷3を流れる複数の次数の高調波電流を閾値以下に抑制している。複数の次数の高調波電流を閾値以下に抑制することで、例えば、直列多重インバータ1からの電磁放射による他の電子機器への影響を抑制することができる。また、第1の位相差φ1の選択により負荷3を流れる高調波電流を抑制できるため、高調波フィルタ70を簡素化したり、省いたりできる。そのため、高調波フィルタ70の低コスト化および小型化を図ることで、直列多重インバータ1の低コスト化および小型化を図ることができる。
なお、第1の位相差φ1の選択だけで負荷3を流れる複数の次数の高調波電流を閾値以下に抑制できる場合、高調波フィルタ70を直列多重インバータ1に設けなくてもよい。高調波フィルタ70を設けないことで、直列多重インバータ1の高コスト化および大型化を抑制することができる。
また、上述した例では、位相差選択部43は、操作部50への入力に基づいて、第1の位相差φ1を複数の位相差候補の中から選択するが、位相差選択部43は、外部からの信号に基づいて、第1の位相差φ1を複数の位相差候補の中から選択することもできる。例えば、位相差選択部43は、外部から第1の情報を取得した場合と第2の情報を取得した場合とで異なる位相差候補を第1の位相差φ1として選択することができる。第1の情報は、例えば、負荷3の状態が第1の負荷3Aの特性に切り替わった場合に外部から出力される情報であり、第2の情報は、例えば、負荷3の状態が第2の負荷3Bの特性に切り替わった場合に外部から入力される情報である。なお、外部から入力される情報は、第1の位相差φ1の値そのものであってもよい。
つづいて、制御部40の動作を、フローチャートを用いて説明する。図14は、実施の形態1にかかる制御部の処理の一例を示すフローチャートである。図14に示すように、制御部40は、操作部50への入力で選択される第1の位相差φ1に基づき、n個の駆動信号Spを生成する(ステップS11)。次に、制御部40は、ステップS11で生成されたn個の駆動信号Spをn個の単相インバータ15へ出力する(ステップS12)。制御部40は、図14に示す処理を繰り返し行う。
ここで、実施の形態1にかかる直列多重インバータ1の制御部40のハードウェア構成について説明する。図15は、実施の形態1にかかる直列多重インバータの制御部のハードウェア構成例を示す図である。図15に示すように、直列多重インバータ1の制御部40は、プロセッサ101と、メモリ102と、入出力回路103とを備える。プロセッサ101、メモリ102、および入出力回路103は、バス104によって互いにデータの送受信が可能である。メモリ102は、コンピュータが読み取り可能なプログラムが記録された記録媒体を含む。
プロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、上述した駆動信号生成部41、駆動信号出力部42、および位相差選択部43の機能を実行する。プロセッサ101は、処理回路の一例であり、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processer)、およびシステムLSI(Large Scale Integration)のうち一つ以上を含む。メモリ102は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVD(Digital Versatile Disc)などである。
なお、上述した制御部40を図15に示したプロセッサ101およびメモリ102と同様の機能を実現する専用のハードウェアで実現してもよい。専用のハードウェアは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせた処理回路である。制御部40の一部を専用のハードウェアで実現し、制御部40の残りを図15に示したプロセッサ101およびメモリ102で実現するようにしてもよい。
以上のように、実施の形態1にかかる直列多重インバータ1は、電力変換部10と、位相差選択部43と、駆動信号生成部41と、駆動信号出力部42とを備える。電力変換部10は、複数の単相インバータ151~15nを有し、複数の単相インバータ151~15nの出力端子161,171,162,172,・・・,16n-1,17n-1,16n,17nが直列に接続される。位相差選択部43は、複数の単相インバータ151~15n間の矩形波電圧の位相差である第1の位相差φ1を複数の位相差候補の中から選択する。駆動信号生成部41は、位相差選択部43で選択された第1の位相差φ1ずつ位相が順次ずれた複数の矩形波電圧を各々異なる単相インバータ151~15nから出力させる複数の駆動信号Sp1~Spnを生成する。駆動信号出力部42は、駆動信号生成部41によって生成された複数の駆動信号Sp1~Spnを複数の単相インバータ15へ出力する。したがって、直列多重インバータ1は、複数の位相差候補の中から負荷3を流れる高調波電流を抑制できる第1の位相差φ1を選択することで、負荷3の特性が異なる場合においても各単相インバータ15への制御によって負荷3を流れる高調波電流を容易に抑制することができる。また、第1の位相差φ1の選択だけでは負荷3を流れる高調波電流を十分に抑制できない場合であっても、第1の位相差φ1が選択できない場合に比べて、高調波低減効果が小さい高調波フィルタ70を用いることができる。これにより、高調波フィルタ70を小型化または省略できることから、直列多重インバータ1の高コスト化および大型化を抑制することができる。
また、直列多重インバータ1は、外部からの入力を受け付ける操作部50を備える。位相差選択部43は、操作部50への入力に基づいて、第1の位相差φ1を複数の位相差候補の中から選択する。これにより、例えば、直列多重インバータ1の設置者が操作部50を操作することで、直列多重インバータ1に接続される負荷3の特性に適した第1の位相差φ1を容易に選択することができる。
実施の形態2.
実施の形態2では、負荷3のインピーダンスを検出し、検出したインピーダンスに基づいて第1の位相差φ1を複数の位相差候補の中から選択することができる点で、実施の形態1と異なる。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1の直列多重インバータ1と異なる点を中心に説明する。
実施の形態2では、負荷3のインピーダンスを検出し、検出したインピーダンスに基づいて第1の位相差φ1を複数の位相差候補の中から選択することができる点で、実施の形態1と異なる。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1の直列多重インバータ1と異なる点を中心に説明する。
図16は、実施の形態2にかかる直列多重インバータの構成例を示す図である。図16に示すように、実施の形態2にかかる直列多重インバータ1Aは、電力変換部10と、電圧検出部20と、電流検出部30と、制御部40Aとを備える。
制御部40Aは、駆動信号生成部41と、駆動信号出力部42と、位相差選択部43Aと、インピーダンス検出部44と、高調波電流演算部45とを備える。
インピーダンス検出部44は、電圧検出部20によって検出された出力電圧Voと電流検出部30によって検出された出力電流Ioとに基づいて、電力変換部10に接続された負荷3の各次数の高調波に対するインピーダンスZm(m=3,5,7,9)を検出する。なお、インピーダンスZmは、9次以下の高調波のインピーダンスに限定されず、11次以上の高調波のインピーダンスを含んでもよい。すなわち、インピーダンス検出部44は、予め設定された複数の次数の高調波のインピーダンスを演算することができる。
例えば、インピーダンス検出部44は、電圧検出部20から繰り返し出力される検出電圧値Vdetと電流検出部30から繰り返し出力される検出電流値Idetとを取得する。そして、インピーダンス検出部44は、検出電圧値Vdetと検出電流値Idetとを出力電圧周波数foの整数倍のサンプリング周期を用いて離散フーリエ変換を行う。インピーダンス検出部44は、かかる離散フーリエ変換によって、出力電流Ioに含まれる各次数の高調波成分および出力電圧Voに含まれる各次数の高調波成分を抽出する。以下、出力電圧Voに含まれるm次の高調波成分を高調波電圧Vomと記載し、出力電流Ioに含まれるm次の高調波成分を高調波電流Iomと記載する。「m」は、正の奇数であり、3以上の値である。
なお、インピーダンス検出部44は、離散フーリエ変換に代えて、出力電流Ioに含まれる複数の高次周波数成分を抽出する手法およびアルゴリズムにより出力電流Ioの各次数の高調波成分および出力電圧Voの各次数の高調波成分を抽出することもできる。
インピーダンス検出部44によってフーリエ変換が行われた場合、出力電圧Voに含まれるm次の高調波電圧Vomおよび出力電流Ioに含まれるm次の高調波電流Iomは、下記式(4),(5)に示すように複素表示される。なお、下記式(4),(5)において、「VomRe」はVomの実部、「IomRe」はIomの実部、「VomIm」はVomの虚部、「IomIm」はIomの虚部、および「j」は虚数単位を各々示す。
Vom=VomRe+j×VomIm ・・・(4)
Iom=IomRe+j×IomIm ・・・(5)
Vom=VomRe+j×VomIm ・・・(4)
Iom=IomRe+j×IomIm ・・・(5)
インピーダンス検出部44は、下記式(6),(7)の演算によってインピーダンスZmを求めることができる。下記式(7)において、Re(Zm)は、インピーダンスZmの実部を示し、Re(Zm)は、インピーダンスZmの実部を示す。
Zm=Vom/Iom ・・・(6)
|Zm|=√(Re(Zm)2+Im(Zm)2) ・・・(7)
Zm=Vom/Iom ・・・(6)
|Zm|=√(Re(Zm)2+Im(Zm)2) ・・・(7)
なお、インピーダンス検出部44は、出力電圧周波数foをスイープさせる駆動信号Sp1~Spnを駆動信号生成部41に生成させることもできる。この場合、駆動信号出力部42は、駆動信号生成部41から出力される駆動信号Sp1~Spnを単相インバータ151~15nへ出力することで、電力変換部10から出力電圧周波数foがスイープする出力電圧Voが直列多重インバータ1Aから負荷3へ出力される。インピーダンス検出部44は、出力電圧周波数foが各次数の高調波の周波数である場合の検出電圧値Vdetと検出電流値Idetとに基づき、各次数の高調波のインピーダンスZmを演算することもできる。
高調波電流演算部45は、インピーダンス検出部44によって検出された負荷3のインピーダンスZmと上記式(3)に示す高調波電圧の理論式とに基づいて、負荷3に流れる各次数の高調波電流を演算する。高調波電流演算部45は、例えば、上記式(3)における第1の位相差φ1の値を変更することで、上記式(3)に基づき、第1の位相差φ1の値毎の高調波電圧Vomを求めることができる。
位相差選択部43Aは、高調波電流演算部45によって検出された各次数の高調波電流Iomを閾値Ith以下にする第1の位相差φ1を複数の位相差候補の中から選択する。閾値Ithは、各次数の高調波電流Iomについて共通にすることができ、また、閾値Ithは、各次数の高調波電流Iomで異なる値にすることもできる。
つづいて、制御部40Aによる処理を、フローチャートを用いて説明する。図17は、実施の形態2にかかる制御部の処理の一例を示すフローチャートである。図17に示すように、制御部40Aは、各次数の高調波のインピーダンスZmを検出する(ステップS21)。
次に、制御部40Aは、負荷3のインピーダンスZmに基づいて、各次数の高調波電流Iomを演算する(ステップS22)。制御部40Aは、各次数の高調波電流Iomが閾値Ith以下になる第1の位相差φ1を選択する(ステップS23)。図17に示す処理は、例えば、直列多重インバータ1Aに設けられた不図示のボタンが操作された場合に、制御部40Aによって開始される。また、制御部40Aは、予め設定されたタイミングで図17に示す処理を実行することができる。予め設定されたタイミングは、任意に設定可能なタイミングであり、例えば、1日周期のタイミングおよび1ヶ月周期のタイミングといった予め設定された周期で発生するタイミングであってもよい。
また、実施の形態2にかかる直列多重インバータ1Aの制御部40Aについてのハードウェア構成例は、図15に示すハードウェア構成例と同じである。プロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、駆動信号生成部41、駆動信号出力部42、位相差選択部43A、インピーダンス検出部44、および高調波電流演算部45の機能を実行することができる。
以上のように、実施の形態2にかかる直列多重インバータ1Aは、電圧検出部20と、電流検出部30と、インピーダンス検出部44と、高調波電流演算部45とを備える。電圧検出部20は、電力変換部10の出力電圧Voを検出する。電流検出部30は、電力変換部10の出力電流Ioを検出する。インピーダンス検出部44は、電圧検出部20によって検出された出力電圧Voと電流検出部30によって検出された出力電流Ioとに基づいて、電力変換部10に接続された負荷3のインピーダンスZmを検出する。高調波電流演算部45は、インピーダンス検出部44によって検出された負荷3のインピーダンスZmに基づいて、負荷3に流れる複数の次数の高調波電流Iomを演算する。位相差選択部43Aは、高調波電流演算部45によって検出された複数の次数の高調波電流Iomを閾値Ith以下にする第1の位相差φ1を複数の位相差候補の中から選択する。これにより、人手によって第1の位相差φ1を設定することなく、適切な値の第1の位相差φ1が自動的に選択されることから、負荷3を流れる高調波電流Iomを容易に抑制することができる。
また、位相差選択部43Aは、複数の位相差候補のうち複数の次数の高調波電流Iomを閾値Ith以下にする位相差候補が複数ある場合、複数の次数の高調波電流Iomを閾値Ith以下にする複数の位相差候補のうち最も小さい位相差候補を第1の位相差φ1として選択する。これにより、第1の位相差φ1を他の値にする場合に比べ、電力変換部10から出力可能な出力電圧Voの最大値が低減することを抑制することができる。
なお、上述した直列多重インバータ1,1Aは、n個のトランス12を有する構成であるが、n個のトランス12に代えて、1台の多出力トランスを有する構成であってもよい。この場合、単相交流電源2に1次側が接続された多出力トランスのn個の二次側からn個の整流回路13へ交流電圧が出力される。
また、上述した例では、単相交流電源2から単相の交流電圧Vacを直流電圧Vdcへ変換する構成であるが、電源は、単相交流電源2に限定されない。例えば、直列多重インバータ1,1Aは、単相交流電源2に代えて三相交流電源から三相の交流電圧を直流電圧Vdcへ変換する構成を有してもよい。この場合、トランス12を三相トランスとし、整流回路13を三相整流回路にすることで、三相の交流電圧を直流電圧Vdcへ変換することができる。
また、上述した例では、単相インバータ15毎に、トランス12、整流回路13、およびコンデンサ14を各々含む独立した直流電源から直流電圧Vdcを入力する構成であるが、一つの直流電源からn個の単相インバータ15へ直流電圧Vdcを入力する構成であってもよい。この場合、各単相インバータ15の出力電圧VINVは、単相インバータ15毎に設けられたn個のトランスの1次側へ入力される。n個のトランスの2次側は直列に接続されており、これにより、各単相インバータ15の出力電圧VINVが合成されて負荷3へ出力される。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1,1A 直列多重インバータ、2 単相交流電源、3,3A,3B,3C 負荷、10 電力変換部、111~11n 電力変換ブロック、12,121~12n トランス、13,131~13n 整流回路、14,141~14n コンデンサ、15,151~15n 単相インバータ、161~16n,171~17n 出力端子、18 ゲートドライバ、20 電圧検出部、30 電流検出部、40,40A 制御部、41 駆動信号生成部、42 駆動信号出力部、43,43A 位相差選択部、44 インピーダンス検出部、45 高調波電流演算部、50 操作部、60 実効値演算部、61 電流指令出力部、62 減算器、63 電流制御部、64 キャリア波出力部、65 比較器、66 信号生成部、70 高調波フィルタ、Sp,Sp1~Spn 駆動信号。
Claims (4)
- 複数の単相インバータを有し、前記複数の単相インバータの出力端子が直列に接続された電力変換部と、
前記複数の単相インバータ間の矩形波電圧の位相差を複数の位相差候補の中から選択する位相差選択部と、
前記位相差選択部で選択された前記位相差ずつ位相が順次ずれた複数の矩形波電圧を各々異なる単相インバータから出力させる複数の駆動信号を生成する駆動信号生成部と、
前記駆動信号生成部によって生成された複数の駆動信号を前記複数の単相インバータへ出力する駆動信号出力部と、を備える
ことを特徴とする直列多重インバータ。 - 入力を受け付ける操作部を備え、
前記位相差選択部は、
前記操作部への前記入力に基づいて、前記位相差を複数の位相差候補の中から選択する
ことを特徴とする請求項1に記載の直列多重インバータ。 - 前記電力変換部の出力電圧を検出する電圧検出部と、
前記電力変換部の出力電流を検出する電流検出部と、
前記電圧検出部によって検出された前記出力電圧と前記電流検出部によって検出された前記出力電流とに基づいて、前記電力変換部に接続された負荷のインピーダンスを検出するインピーダンス検出部と、
前記インピーダンス検出部によって検出された前記負荷のインピーダンスに基づいて、前記負荷に流れる複数の次数の高調波電流を演算する高調波電流演算部と、を備え、
前記位相差選択部は、
前記高調波電流演算部によって検出された前記複数の次数の高調波電流を閾値以下にする前記位相差を前記複数の位相差候補の中から選択する
ことを特徴とする請求項1に記載の直列多重インバータ。 - 前記位相差選択部は、
前記複数の位相差候補のうち前記複数の次数の高調波電流を前記閾値以下にする位相差候補が複数ある場合、前記複数の次数の高調波電流を前記閾値以下にする複数の位相差候補のうち最も小さい位相差候補を前記位相差として選択する
ことを特徴とする請求項3に記載の直列多重インバータ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018516865A JP6370522B1 (ja) | 2018-01-30 | 2018-01-30 | 直列多重インバータ |
US16/962,001 US11349410B2 (en) | 2018-01-30 | 2018-01-30 | Series multiplex inverter |
DE112018006973.7T DE112018006973T5 (de) | 2018-01-30 | 2018-01-30 | Serieller multiplex-umrichter |
PCT/JP2018/003019 WO2019150443A1 (ja) | 2018-01-30 | 2018-01-30 | 直列多重インバータ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/003019 WO2019150443A1 (ja) | 2018-01-30 | 2018-01-30 | 直列多重インバータ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019150443A1 true WO2019150443A1 (ja) | 2019-08-08 |
Family
ID=63104296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003019 WO2019150443A1 (ja) | 2018-01-30 | 2018-01-30 | 直列多重インバータ |
Country Status (4)
Country | Link |
---|---|
US (1) | US11349410B2 (ja) |
JP (1) | JP6370522B1 (ja) |
DE (1) | DE112018006973T5 (ja) |
WO (1) | WO2019150443A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019216509A (ja) * | 2018-06-11 | 2019-12-19 | 東芝三菱電機産業システム株式会社 | 多段変換器の制御装置 |
JP2022087433A (ja) * | 2020-12-01 | 2022-06-13 | 東芝三菱電機産業システム株式会社 | 自励式変換器 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112018006967T5 (de) * | 2018-01-29 | 2020-10-08 | Mitsubishi Electric Corporation | Reihen-Multiplex-Umrichter |
JP6856099B2 (ja) * | 2019-09-06 | 2021-04-07 | 株式会社明電舎 | 直列多重インバータの制御装置 |
EP4224688A1 (en) * | 2022-02-04 | 2023-08-09 | Ikerlan, S. Coop | A system for filtering fluctuant power generated in a single-phase line for feeding an inductive element |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004120968A (ja) * | 2002-09-30 | 2004-04-15 | Mitsubishi Electric Corp | 電力変換装置 |
JP2014165982A (ja) * | 2013-02-22 | 2014-09-08 | Riso Kagaku Corp | 駆動制御装置 |
JP2015107021A (ja) * | 2013-12-02 | 2015-06-08 | 富士電機株式会社 | 電力変換装置 |
JP2016140137A (ja) * | 2015-01-26 | 2016-08-04 | 富士電機株式会社 | 直列多重インバータ装置 |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3782848T2 (de) * | 1986-04-22 | 1993-04-01 | Mitsubishi Electric Corp | Steuerschaltung fuer einen umrichter. |
JP2760666B2 (ja) * | 1991-03-15 | 1998-06-04 | 株式会社東芝 | Pwmコンバ―タの制御方法及び装置 |
JP3309468B2 (ja) | 1993-02-22 | 2002-07-29 | 株式会社明電舎 | 多重インバータのpwm波形制御方式 |
GB2336223B (en) * | 1998-04-09 | 2000-04-19 | Alstom Uk Ltd | Improvements in or relating to the application of power-factor correction in AV power systems |
US6169677B1 (en) * | 1998-10-15 | 2001-01-02 | Kabushiki Kaisha Toshiba | Power converting system multiplexed with voltage dividing transformers, the voltage transformers, and controller for the system |
DE10037972B4 (de) * | 1999-08-05 | 2005-09-15 | Sharp K.K. | Vorrichtung und Verfahren zur Elektromotorsteuerung |
EP1120897A3 (en) * | 2000-01-06 | 2004-01-21 | Axel Akerman A/S | Independent load sharing between parallel inverter units in an AC power system |
JP2002112553A (ja) * | 2000-09-29 | 2002-04-12 | Canon Inc | 電力変換装置およびその制御方法、並びに、発電装置 |
JP2003180036A (ja) * | 2001-10-01 | 2003-06-27 | Canon Inc | 電力変換装置、電力変換システム、及び単独運転検出方法 |
WO2003038970A2 (en) * | 2001-10-26 | 2003-05-08 | Youtility, Inc. | Anti-islanding techniques for distributed power generation |
US7733676B2 (en) * | 2004-03-30 | 2010-06-08 | Daifuku Co., Ltd. | Non-contact power supply system utilizing synchronized command signals to control and correct phase differences amongst power supply units |
JP2006006035A (ja) | 2004-06-17 | 2006-01-05 | Central Japan Railway Co | インバータ制御方法 |
JP2006320103A (ja) * | 2005-05-12 | 2006-11-24 | Fuji Electric Systems Co Ltd | 直列多重電力変換装置の制御装置 |
WO2008053532A1 (fr) * | 2006-10-31 | 2008-05-08 | Olympus Medical Systems Corp. | Dispositif source d'alimentation électrique haute fréquence pour cautère |
JP4279886B2 (ja) * | 2007-02-28 | 2009-06-17 | 株式会社日立製作所 | 同期モータ駆動装置および方法 |
US8791759B2 (en) * | 2011-03-22 | 2014-07-29 | The United States Of America As Represented By The Secretary Of The Army | Bipolar stacked transistor architecture |
JP5729693B2 (ja) * | 2011-03-30 | 2015-06-03 | 株式会社ダイヘン | 高周波電源装置 |
JP2013090358A (ja) * | 2011-10-13 | 2013-05-13 | Fuji Electric Co Ltd | 直列多重インバータ装置 |
US9673732B2 (en) * | 2012-01-24 | 2017-06-06 | Infineon Technologies Austria Ag | Power converter circuit |
WO2013145248A1 (ja) * | 2012-03-30 | 2013-10-03 | 東芝三菱電機産業システム株式会社 | 電源装置 |
DE112014001388B4 (de) * | 2013-03-15 | 2024-02-15 | Mitsubishi Electric Co. | Leistungsmodul |
JP6303819B2 (ja) * | 2014-05-29 | 2018-04-04 | 住友電気工業株式会社 | 電力変換装置及び三相交流電源装置 |
US20160072395A1 (en) * | 2014-09-08 | 2016-03-10 | Infineon Technologies Austria Ag | Multi-cell power conversion method and multi-cell power converter |
US9584034B2 (en) * | 2014-09-08 | 2017-02-28 | Infineon Technologies Austria Ag | Power converter circuit and method with asymmetrical half bridge |
US10236818B2 (en) * | 2014-10-15 | 2019-03-19 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Drive and control apparatus for multiple-winding motor |
CN107306516B (zh) * | 2014-12-24 | 2019-08-20 | 东芝三菱电机产业系统株式会社 | 功率转换装置 |
JP6406225B2 (ja) * | 2015-01-30 | 2018-10-17 | 株式会社デンソー | 非接触給電装置 |
WO2016132586A1 (ja) * | 2015-02-17 | 2016-08-25 | 三菱電機株式会社 | 電力変換システム |
US10679823B2 (en) * | 2015-02-18 | 2020-06-09 | Reno Technologies, Inc. | Switching circuit |
EP3269458A4 (en) * | 2015-03-10 | 2018-10-31 | Olympus Corporation | Drive device and drive device control method |
US10148093B2 (en) * | 2015-06-16 | 2018-12-04 | Koolbridge Solar, Inc. | Inter coupling of microinverters |
JP2017034737A (ja) | 2015-07-28 | 2017-02-09 | 株式会社東芝 | 電力変換装置の制御装置、制御方法、制御プログラム及び電力変換システム |
CN109196766B (zh) * | 2016-05-31 | 2020-09-29 | 东芝三菱电机产业系统株式会社 | 双向绝缘型dc/dc转换器及智能电网 |
JP6725758B2 (ja) * | 2017-06-06 | 2020-07-22 | 株式会社日立製作所 | 電力変換装置および三相電力変換装置 |
WO2019059292A1 (ja) * | 2017-09-20 | 2019-03-28 | アイシン・エィ・ダブリュ株式会社 | 駆動電源装置 |
CN111133667B (zh) * | 2017-09-27 | 2022-08-02 | 东芝三菱电机产业系统株式会社 | 电源装置 |
DE112018006967T5 (de) * | 2018-01-29 | 2020-10-08 | Mitsubishi Electric Corporation | Reihen-Multiplex-Umrichter |
JP6690662B2 (ja) * | 2018-03-29 | 2020-04-28 | ダイキン工業株式会社 | 電源品質管理システムならびに空気調和装置 |
US10651739B1 (en) * | 2019-02-25 | 2020-05-12 | Nextracker Inc. | Power converters and methods of controlling same |
-
2018
- 2018-01-30 WO PCT/JP2018/003019 patent/WO2019150443A1/ja active Application Filing
- 2018-01-30 DE DE112018006973.7T patent/DE112018006973T5/de active Pending
- 2018-01-30 US US16/962,001 patent/US11349410B2/en active Active
- 2018-01-30 JP JP2018516865A patent/JP6370522B1/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004120968A (ja) * | 2002-09-30 | 2004-04-15 | Mitsubishi Electric Corp | 電力変換装置 |
JP2014165982A (ja) * | 2013-02-22 | 2014-09-08 | Riso Kagaku Corp | 駆動制御装置 |
JP2015107021A (ja) * | 2013-12-02 | 2015-06-08 | 富士電機株式会社 | 電力変換装置 |
JP2016140137A (ja) * | 2015-01-26 | 2016-08-04 | 富士電機株式会社 | 直列多重インバータ装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019216509A (ja) * | 2018-06-11 | 2019-12-19 | 東芝三菱電機産業システム株式会社 | 多段変換器の制御装置 |
JP7500157B2 (ja) | 2018-06-11 | 2024-06-17 | 株式会社Tmeic | 多段変換器の制御装置 |
JP2022087433A (ja) * | 2020-12-01 | 2022-06-13 | 東芝三菱電機産業システム株式会社 | 自励式変換器 |
JP7455050B2 (ja) | 2020-12-01 | 2024-03-25 | 東芝三菱電機産業システム株式会社 | 自励式変換器 |
Also Published As
Publication number | Publication date |
---|---|
US20210075338A1 (en) | 2021-03-11 |
DE112018006973T5 (de) | 2020-10-08 |
JP6370522B1 (ja) | 2018-08-08 |
US11349410B2 (en) | 2022-05-31 |
JPWO2019150443A1 (ja) | 2020-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6370522B1 (ja) | 直列多重インバータ | |
JP4669723B2 (ja) | 電動機制御装置 | |
US20090244936A1 (en) | Three-phase inverter | |
JP6391897B1 (ja) | 直列多重インバータ | |
KR20160122923A (ko) | 3상 인버터의 옵셋 전압 생성 장치 및 방법 | |
WO2014049779A1 (ja) | 電力変換装置 | |
JP4929863B2 (ja) | 電力変換装置 | |
KR101250454B1 (ko) | 삼각파 비교 pwm방식을 적용한 비엔나 정류기의 전압제어를 위한 스위칭 함수 발생기 및 스위칭 함수 발생방법 | |
JP6142926B2 (ja) | 電力変換装置 | |
CN110366814B (zh) | 电源控制装置、电力转换系统和电源控制方法 | |
JP3200283B2 (ja) | インバータ制御方法及びインバータ制御装置 | |
Foti et al. | A new approach to improve the current harmonic content on open-end winding AC motors supplied by multi-level inverters | |
JP3873888B2 (ja) | 交流−交流電力変換装置 | |
EP3591828B1 (en) | Power supply control device, power conversion system, and power supply control method | |
JP2005073380A (ja) | 電力変換器の制御装置 | |
JP5511529B2 (ja) | 電源回路 | |
JP6440067B2 (ja) | 電力変換装置 | |
KR102328616B1 (ko) | 기존의 배전용 변압기에 작은 전력 변환기를 추가한 지능형 변압기 토폴로지 | |
JP5769555B2 (ja) | 交流−直流電力変換器の制御装置 | |
JP4470618B2 (ja) | 電力変換装置の制御装置及び方法 | |
Melo et al. | Finite control set-model predictive control applied to dual-converter-based rectifiers | |
JP2010226793A (ja) | 双方向昇降圧コンバータ | |
JP2018038191A (ja) | 整流回路装置 | |
JP2003230279A (ja) | 交流‐直流電力変換装置 | |
JP2005137166A (ja) | 電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018516865 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18903686 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18903686 Country of ref document: EP Kind code of ref document: A1 |