[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019033593A1 - 透反式液晶显示装置及其制作方法 - Google Patents

透反式液晶显示装置及其制作方法 Download PDF

Info

Publication number
WO2019033593A1
WO2019033593A1 PCT/CN2017/111021 CN2017111021W WO2019033593A1 WO 2019033593 A1 WO2019033593 A1 WO 2019033593A1 CN 2017111021 W CN2017111021 W CN 2017111021W WO 2019033593 A1 WO2019033593 A1 WO 2019033593A1
Authority
WO
WIPO (PCT)
Prior art keywords
disposed
substrate
layer
liquid crystal
black matrix
Prior art date
Application number
PCT/CN2017/111021
Other languages
English (en)
French (fr)
Inventor
柳铭岗
林永伦
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/578,715 priority Critical patent/US20190056622A1/en
Publication of WO2019033593A1 publication Critical patent/WO2019033593A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular, to a transflective liquid crystal display device and a method of fabricating the same.
  • LCDs liquid crystal displays
  • Various consumer electronic products such as digital assistants, digital cameras, notebook computers, and desktop computers have become mainstream in display devices.
  • liquid crystal displays on the market are roughly classified into three types according to the requirements of light sources, transmissive liquid crystal displays, reflective liquid crystal displays, and transflective liquid crystal displays.
  • the transmissive liquid crystal display uses the backlight module on the back of the liquid crystal panel as a light source, and the light emitted by the backlight module passes through the transparent pixel electrode of the array substrate for display, and the transmissive liquid crystal display is suitable for use in a weak light source environment, such as When used outdoors, when the external light source is too strong, the intensity of the backlight will be disturbed by the external light, so that when the eye looks at the display, the panel will be too bright and unclear, affecting Image quality.
  • the long-term use of the backlight makes the power consumption very large, and the small-sized display is usually powered by a battery, so it is prone to a situation where there is no power at all.
  • the reflective liquid crystal display mainly uses a conventional light source or external natural light as a light source, and the array substrate is provided with a reflective electrode made of metal or other material having good reflective properties, and the reflected light reflects the light of the front light source or the external natural light to realize the screen display.
  • Liquid crystal displays are suitable for use in places where external light sources are strong. Displaying by reflecting natural light can reduce the energy consumption of the display. However, where the light source is weak, there is a phenomenon of insufficient light intensity, which affects image quality.
  • the transflective liquid crystal display panel can be regarded as a combination of a transmissive and reflective liquid crystal display panel.
  • a transmissive and reflective liquid crystal display panel On the array substrate, both a reflective area and a transmissive area are provided, and the backlight and the front light source or the external light source can be simultaneously used for performing. display.
  • the transmission mode is mainly used, that is, the backlight of the liquid crystal display itself is used to cause the liquid crystal display panel to display an image.
  • the reflection mode is mainly used, that is, the liquid crystal display panel is utilized.
  • the reflective electrode inside reflects the external natural light and displays the image as a light source. Therefore, the transflective liquid crystal display is suitable for external environments of various light intensities, especially excellent outdoor visibility, and the brightness of the backlight is not required. Very high, with low power consumption.
  • FIG. 1 is a schematic structural diagram of a transflective liquid crystal display device including an upper substrate 100 ′ and a lower substrate 200 ′ disposed opposite to each other, and an upper substrate 100 ′.
  • the insulating layer 220' and the reflective electrode 230' disposed on the insulating layer 220', the lower substrate 200' has a reflective region 201' and a transmissive region 202', and the insulating layer 220' and the reflective electrode 230' are both
  • the array substrate 210' is provided with a pixel electrode 211' in the transmissive region 202', and the thickness of the region corresponding to the reflective region 201' in the liquid crystal layer 300' is two-half the thickness of the region corresponding to the transmissive region 202'.
  • the transflective liquid crystal display device can perform transflective display, the transmittance of the liquid crystal display device is seriously affected by the presence of the reflective region 201', and the liquid crystal layer 300 needs to be realized by controlling the thickness of the insulating layer 220'.
  • the thickness of the 'reflecting region 201' is one-half of the thickness of the transmissive region 202', and the process complexity is difficult to achieve, while the uniformity of the light exiting the reflective region 201' is poor.
  • An object of the present invention is to provide a transflective liquid crystal display device capable of improving brightness of a display screen when external light intensity is large, high transmittance, no need to introduce an additional insulating layer, simple structure, and uniform light emission in the reflective area. .
  • Another object of the present invention is to provide a transflective liquid crystal display device, which can obtain a transflective liquid crystal display device capable of improving the brightness of a display screen when the external light intensity is large, and has high transmittance and reflection.
  • the area has a uniform light output and is easy to operate.
  • the present invention firstly provides a transflective liquid crystal display device comprising: an upper substrate and a lower substrate disposed opposite to each other; and a liquid crystal layer disposed between the upper substrate and the lower substrate;
  • the lower substrate includes a first substrate, a TFT array layer disposed on the first substrate, a color resist layer disposed on the TFT array layer, a flat layer covering the color resist layer, and a BPS light shielding layer disposed on the flat layer a pixel electrode disposed on the flat layer and a reflective electrode disposed on the BPS light shielding layer;
  • the BPS light shielding layer comprises a black matrix, a main spacer disposed on the black matrix and spaced apart, and an auxiliary spacer, wherein the black matrix has an area other than a region where the main spacer and the auxiliary spacer are located. a plurality of first protrusions; the reflective electrode is disposed on the black matrix and covers the plurality of first protrusions to form a plurality of convex surfaces on the upper surface thereof, and the reflective electrode is connected to the pixel electrode;
  • the thickness of the region of the liquid crystal layer corresponding to the reflective electrode is one-half of the thickness of the region corresponding to the pixel electrode.
  • the flat layer has a plurality of second protrusions on the black matrix, so that the plurality of second protrusions on the black matrix form a plurality of first protrusions.
  • the transflective liquid crystal display device further includes an upper polarized light disposed on a side of the upper substrate away from the lower substrate a sheet, and a lower polarizer disposed on a side of the lower substrate away from the upper substrate; and two quarter-wave plates respectively disposed between the upper substrate and the upper polarizer, and between the lower substrate and the lower polarizer;
  • the optical axis of the upper polarizer is parallel to the optical axis of the lower polarizer
  • the transflective liquid crystal display device further includes a backlight module disposed on a side of the lower polarizer away from the lower substrate.
  • the upper substrate includes a second substrate and a common electrode disposed on a side of the second substrate adjacent to the lower substrate.
  • the material of the reflective electrode is aluminum or silver.
  • the invention also provides a manufacturing method of a transflective liquid crystal display device, comprising the following steps:
  • Step S1 providing a first substrate, sequentially forming a TFT array layer and a color resist layer on the first substrate;
  • Step S2 forming a flat layer on the color resist layer
  • Step S3 coating a BPS material layer on the flat layer, performing a photolithography process on the BPS material layer by using a first photomask to form a BPS light shielding layer;
  • the BPS light shielding layer includes a black matrix, a main spacer disposed on the black matrix and spaced apart from each other, and an auxiliary spacer; the black matrix has an area other than a region where the main spacer and the auxiliary spacer are located; a plurality of first protrusions;
  • Step S4 forming a pixel electrode on the flat layer, forming a reflective electrode covering the plurality of first protrusions on the black matrix, the upper surface of the reflective electrode forming a plurality of convex surfaces corresponding to the plurality of first protrusions, the pixel electrode and The reflective electrodes are connected to obtain a lower substrate;
  • Step S5 providing an upper substrate, pairing the lower substrate and the upper substrate, and providing a liquid crystal layer between the upper substrate and the lower substrate;
  • the thickness of the region of the liquid crystal layer corresponding to the reflective electrode is one-half of the thickness of the region corresponding to the pixel electrode.
  • the first photomask is a halftone mask or a gray scale mask.
  • the step S2 specifically includes:
  • Step S21 coating an organic material layer on the color resist layer
  • Step S22 exposing and developing the organic material layer by using a second photomask, forming a plurality of organic material patterns on the organic material layer, each organic material pattern including the stacked first organic block and the second organic block The size of the first organic block is larger than the size of the second organic block;
  • Step S23 baking and re-forming a plurality of organic material patterns to form a flat layer having a plurality of second protrusions
  • the plurality of second protrusions on the black matrix form a plurality of first protrusions.
  • the step S3 specifically includes:
  • Step S31 coating a layer of BPS material on the flat layer
  • Step S32 exposing and developing the BPS material layer by using the first mask to form a black matrix, and a main spacer and an auxiliary spacer disposed on the black matrix, and simultaneously removing the main spacer and the auxiliary spacer on the black matrix.
  • a black photoresist pattern is formed in a region other than the region where the pad is located, and each black photoresist pattern includes a stacked first black photoresist block and a second black photoresist block. The size of the first black photoresist block is larger than the second The size of the black photoresist block;
  • Step S33 baking and re-forming a plurality of black photoresist patterns to form a plurality of first protrusions on the black matrix.
  • the manufacturing method of the transflective liquid crystal display device further includes:
  • Step S6 an upper polarizer is disposed on a side of the upper substrate away from the lower substrate, a lower polarizer is disposed on a side of the lower substrate away from the upper substrate, and four points are respectively disposed between the upper substrate and the upper polarizer, and between the lower substrate and the lower polarizer.
  • a wave plate, a backlight module is disposed on a side of the lower polarizer away from the lower substrate to obtain a liquid crystal display device;
  • the upper substrate includes a second substrate and a common electrode disposed on the second substrate, and the side of the lower substrate having the pixel electrode and the side of the upper substrate having the common electrode in the step S5 group.
  • the present invention also provides a transflective liquid crystal display device comprising: an upper substrate and a lower substrate disposed opposite to each other, and a liquid crystal layer disposed between the upper substrate and the lower substrate;
  • the lower substrate includes a first substrate, a TFT array layer disposed on the first substrate, a color resist layer disposed on the TFT array layer, a flat layer covering the color resist layer, and a BPS light shielding layer disposed on the flat layer a pixel electrode disposed on the flat layer and a reflective electrode disposed on the BPS light shielding layer;
  • the BPS light shielding layer comprises a black matrix, a main spacer disposed on the black matrix and spaced apart, and an auxiliary spacer, wherein the black matrix has an area other than a region where the main spacer and the auxiliary spacer are located. a plurality of first protrusions; the reflective electrode is disposed on the black matrix and covers the plurality of first protrusions to form a plurality of convex surfaces on the upper surface thereof, and the reflective electrode is connected to the pixel electrode;
  • the thickness of the region of the liquid crystal layer corresponding to the reflective electrode is one-half of the thickness of the region corresponding to the pixel electrode
  • the flat layer has a plurality of second protrusions on the black matrix, so that the plurality of second protrusions on the black matrix form a plurality of first protrusions;
  • the method further includes an upper polarizer disposed on a side of the upper substrate away from the lower substrate, a lower polarizer disposed on a side of the lower substrate away from the upper substrate, and a first polarizer disposed between the upper substrate and the upper polarizer, and a lower substrate and a lower polarizer. Two quarter wave plates between;
  • the optical axis of the upper polarizer is parallel to the optical axis of the lower polarizer
  • the transflective liquid crystal display device further includes a backlight disposed on a side of the lower polarizer away from the lower substrate Module
  • the upper substrate includes a second substrate, and a common electrode disposed on a side of the second substrate adjacent to the lower substrate;
  • the material of the reflective electrode is aluminum or silver.
  • a transflective liquid crystal display device provided by the present invention adopts a COA and BPS design, and a plurality of first protrusions are disposed on a black matrix of a BPS light shielding layer, and a reflective electrode is disposed on a BPS light shielding layer.
  • the black matrix is covered with a plurality of first protrusions to form a plurality of convex surfaces on the upper surface thereof, and the reflective electrodes are connected to the pixel electrodes, so that the device forms a reflection area in a region corresponding to the reflective electrode, and the region corresponding to the pixel electrode forms a transmission.
  • the area can enhance the brightness of the display when the external light intensity is large, and the thickness of the liquid crystal cell of the reflective area and the transmissive area can be controlled by controlling the thickness of the black matrix without introducing an additional insulating layer, the structure is simple, and the reflective area is not Occupying the area of the transmission area does not affect the transmittance of the device, and the uniformity of light emission in the reflection area is greatly enhanced, and the display quality is high.
  • the transflective liquid crystal display device provided by the invention provides a transflective liquid crystal display device capable of improving the brightness of the display screen when the external light intensity is large, the transmittance is high, and the light of the reflective area is emitted. Uniform and easy to operate.
  • FIG. 1 is a schematic cross-sectional view showing a conventional transflective liquid crystal display device
  • FIG. 2 is a cross-sectional view showing a first embodiment of a transflective liquid crystal display device of the present invention
  • FIG. 3 is a cross-sectional view showing a second embodiment of a transflective liquid crystal display device of the present invention.
  • FIG. 4 is a schematic plan view of a color resist layer and a BPS light shielding layer of a transflective liquid crystal display device of the present invention
  • FIG. 5 is a flow chart showing a method of fabricating a transflective liquid crystal display device of the present invention.
  • FIG. 6 is a schematic view showing a step S1 of a method for fabricating a transflective liquid crystal display device of the present invention
  • FIGS 9 to 11 are schematic diagrams showing the first protrusion formed in step S3 of the first embodiment of the transflective liquid crystal display device of the present invention.
  • Figure 14 is a schematic view showing a step S2 of the second embodiment of the method for fabricating a transflective liquid crystal display device of the present invention.
  • 15 to 17 are schematic views showing the second protrusion formed in step S2 of the second embodiment of the method for fabricating a transflective liquid crystal display device of the present invention.
  • step S3 of the second embodiment of the method for fabricating a transflective liquid crystal display device of the present invention is a schematic diagram of step S3 of the second embodiment of the method for fabricating a transflective liquid crystal display device of the present invention.
  • step S4 of the second embodiment of the method for fabricating a transflective liquid crystal display device of the present invention is a schematic diagram of step S4 of the second embodiment of the method for fabricating a transflective liquid crystal display device of the present invention.
  • Figure 20 is a schematic view showing a step S5 of the second embodiment of the method for fabricating a transflective liquid crystal display device of the present invention.
  • a first embodiment of a transflective liquid crystal display device of the present invention includes a transflective liquid crystal display device of the present invention, including a technique for simultaneously preparing a black matrix and a main and auxiliary spacers through a process.
  • the upper substrate 100 and the lower substrate 200 are disposed opposite to each other, the liquid crystal layer 300 disposed between the upper substrate 100 and the lower substrate 200, the upper polarizer 400 disposed on the side of the upper substrate 100 away from the lower substrate 200, and the lower substrate 200.
  • the lower substrate 200 includes a first substrate 210, a TFT array layer 220 disposed on the first substrate 210, a color resist layer 230 disposed on the TFT array layer 220, and a flat layer 240 covering the color resist layer 230.
  • the BPS light shielding layer 250 provided on the flat layer 240, the pixel electrode 260 provided on the flat layer 240, and the reflective electrode 270 provided on the BPS light shielding layer 250.
  • the BPS light shielding layer 250 includes a black matrix 251 , a main spacer 252 disposed on the black matrix 251 and spaced apart, and an auxiliary spacer 253 .
  • the black matrix 251 has a plurality of first protrusions 2511 in a region other than the area where the main spacer 252 and the auxiliary spacer 253 are located;
  • the reflective electrode 270 is disposed on the black matrix 251 and covers a plurality of a first protrusion 2511 and a plurality of convex surfaces are formed on the upper surface thereof, and the reflective electrode 270 is connected to the pixel electrode 260;
  • the thickness of the region of the liquid crystal layer 300 corresponding to the reflective electrode 270 is one-half of the thickness of the region corresponding to the pixel electrode 260.
  • the optical axis of the upper polarizer 400 is parallel to the optical axis of the lower polarizer 500, that is, the transflective liquid crystal display device of the present invention is in a normally black state when no voltage is applied.
  • the upper substrate 100 includes a second substrate 110 and a common electrode 120 disposed on a side of the second substrate 110 adjacent to the lower substrate 200.
  • the transflective liquid crystal display device of the present invention adopts a BPS design, and a plurality of first protrusions 2511 are disposed on the black matrix 251 of the BPS light shielding layer 250, and the reflective electrode 270 is disposed on the black matrix 251 and covered.
  • the reflective electrode 270 is connected to the pixel electrode 260, thereby forming a reflective area in a region corresponding to the reflective electrode 270, a transmissive area in a region corresponding to the pixel electrode 260, and the pixel electrode 260 and the upper substrate
  • the distance between the two is twice the distance between the reflective electrode 270 and the upper substrate 100, so that the optical path difference between the transmissive area and the reflective area is the same.
  • the transmissive area is dark, due to the optical path of the reflective area. The difference is the same as the transmissive area, and thus the reflective area is also in a dark state.
  • the transmissive area and the reflective area are The liquid crystal deflection angle is synchronized, and the reflection area is also bright, which improves the display brightness of the picture, and the greater the external light intensity, the higher the brightness of the reflection area, the higher the brightness of the picture display, and
  • the upper surface of the reflective electrode 270 forms a plurality of convex surfaces corresponding to the plurality of first protrusions 2511, when external light passes from the upper substrate.
  • the plurality of convex surfaces of the reflective electrode 270 can be scattered to emit the transflective liquid crystal display device, which can be greatly enhanced.
  • the uniformity of light emission in the reflective region, the display quality is remarkably improved, and at the same time, by controlling the process parameters for forming the BPS light-shielding layer 250, the step difference between the black matrix 251 and the flat layer 240, and the black matrix 251 and the main spacer can be easily controlled.
  • the step difference between the objects 252 is such that the distance between the pixel electrode 260 formed on the flat layer 240 and the upper substrate 100 is twice the distance between the reflective electrode 270 formed on the black matrix 251 and the upper substrate 100, as compared with the present
  • the technology has no need to introduce an additional insulating layer, the structure is simple, the process difficulty is low, and the reflective area is disposed on the black matrix 251, and does not occupy the area of the transmissive area, and does not affect Transmittance opposed.
  • the upper layer 240 is The surface is flat.
  • the first protrusion 2511 on the black matrix 251 is formed by exposing and developing the BPS material layer 250 ′ by using a first mask to form a black matrix 251 and black.
  • the main spacer 252 and the auxiliary spacer 253 on the matrix 251 form a plurality of black photoresist patterns 251' on the black matrix 251 except for the region where the main spacer 252 and the auxiliary spacer 253 are located.
  • a black photoresist pattern 251' includes a stacked first black photoresist block 2511' and a second black photoresist block 2512'.
  • the size of the first black photoresist block 2511' is larger than the size of the second black photoresist block 2512'. Then, a plurality of black photoresist patterns 251' are baked and reshaped, and a plurality of first bumps 2511 are formed on the black matrix 251.
  • the first photomask may be a halftone mask or a gray scale mask.
  • the first reticle has a first light transmissive area and a second light transmissive area, a third light transmissive area outside the first light transmissive area and the second light transmissive area, and a third light transmissive area.
  • the light transmittance of the first light transmission area is greater than the light transmittance of the second light transmission area
  • the light transmittance of the second light transmission area is greater than the light transmittance of the third light transmission area
  • the third light transmissive region includes a first sub-transmissive region, a second sub-transparent region located outside the first sub-transparent region, and a second sub-transparent region. a third sub-transmission region outside the optical zone, the transmittance of the first sub-transmission region is greater than that of the second sub-transmission region, and the transmittance of the second sub-transmission region is greater than that of the third sub-transmissive region, thereby utilizing the After the first mask is exposed and developed to the BPS material layer 250', a second black photoresist block 2512' is formed corresponding to the first sub-transmissive region, and a first black photoresist block 2511' is formed corresponding to the first and second sub-transmissive regions. .
  • the color resist layer 230 includes a plurality of color resist units 231 arranged in an array, and the black matrix 251 blocks the intersection of the adjacent two rows of color resist units 231 .
  • the material of the reflective electrode 270 may be aluminum, silver, or other conductive material having high reflectivity.
  • FIG. 3 is a schematic structural view of a second embodiment of a transflective liquid crystal display device according to the present invention.
  • the second embodiment is different from the first embodiment in that the flat layer 240 has a plurality of second layers.
  • the protrusions 241 are formed such that after the BPS light-shielding layer 250 is formed on the flat layer 240, the plurality of second protrusions 241 are formed on the black matrix 251 to form a plurality of first protrusions 2511, so that it is not necessary to form the main and auxiliary spacers 252.
  • a black resist pattern 251' is formed on the black matrix 250 at the same time as 253.
  • the second bump 241 on the flat layer 240 is formed by using a second mask pair to form a color resist.
  • the organic material layer 240' on the layer 230 is subjected to exposure and development, and a plurality of organic material patterns 241' are formed on the organic material layer 240'.
  • Each of the organic material patterns 241' includes a stacked first organic block 2411' and a second organic Block 2412', the size of the first organic block 2411' is larger than the size of the second organic block 2412', and then the plurality of organic material patterns 241' are baked and reshaped, A flat layer 240 having a plurality of second protrusions 241 is formed.
  • the second reticle is a halftone reticle.
  • the second photomask includes a fourth light transmissive region, a fifth light transmissive region outside the fourth light transmissive region, and a sixth light transmissive region outside the fifth light transmissive region, when the organic material When the material of the layer 240' is a positive photoresist material, the transmittance of the fourth transparent region is smaller than that of the fifth transparent region, and the transmittance of the fifth transparent region is smaller than the sixth transparent region, thereby utilizing the second After the mask is exposed and developed to the organic material layer 240', the second organic block 2412' is formed corresponding to the fourth light transmitting region, and the first organic block 2411' is formed corresponding to the fourth and fifth light transmitting regions; when the organic material layer 240 is When the material is a negative photoresist material, the transmittance of the fourth light-transmitting region is greater than that of the fifth light-transmitting region, and the light transmittance of the fifth light-transmitting
  • the present invention further provides a method for fabricating a transflective liquid crystal display device.
  • a method for fabricating a transflective liquid crystal display device of the present invention is provided. Examples include the following steps:
  • Step S1 referring to FIG. 6, a first substrate 210 is provided, and a TFT array layer 220 and a color resist layer 230 are sequentially formed on the first substrate 210.
  • the color resist layer 230 includes a plurality of color resist units 231 arranged in an array.
  • Step S2 referring to FIG. 7, a flat layer 240 is formed on the color resist layer 230.
  • the upper surface of the flat layer 240 is flat.
  • Step S3 please refer to FIG. 8, the BPS material layer 250' is coated on the flat layer 240, and the BPS material layer 250' is photolithographically processed by a first mask to form the BPS light shielding layer 250;
  • the BPS light shielding layer 250 includes a black matrix 251, a main spacer 252 disposed on the black matrix 251 and spaced apart from each other, and an auxiliary spacer 253; the black matrix 251 is on the main spacer 252 and the auxiliary spacer
  • the area outside the area where the object 253 is located has a plurality of first protrusions 2511.
  • the black matrix 251 covers the boundary of the adjacent two rows of color resist units 231.
  • the step S3 specifically includes:
  • Step S31 referring to Figure 9, a layer of BPS material 250' is applied over flat layer 240.
  • Step S32 exposing and developing the BPS material layer 250' by using the first mask to form a black matrix 251, and a main spacer 252 and an auxiliary spacer 253 disposed on the black matrix 251.
  • a plurality of black resist patterns 251' are formed on the black matrix 251 except for the region where the main spacer 252 and the auxiliary spacer 253 are located, and each black resist pattern 251' includes The first black photoresist block 2511' and the second black photoresist block 2512' are stacked, and the size of the first black photoresist block 2511' is larger than the size of the second black photoresist block 2512'.
  • the first photomask may be a halftone mask or a gray scale mask.
  • the first reticle has a first light transmissive area and a second light transmissive area, a third light transmissive area outside the first light transmissive area and the second light transmissive area, and a third light transmissive area.
  • the light transmittance of the first light transmission area is greater than the light transmittance of the second light transmission area
  • the light transmittance of the second light transmission area is greater than the light transmittance of the third light transmission area
  • the third light transmissive region includes a first sub-transmissive region, a second sub-transparent region located outside the first sub-transparent region, and a second sub-transparent region. a third sub-transmission region outside the optical zone, the transmittance of the first sub-transmission region is greater than that of the second sub-transmission region, and the transmittance of the second sub-transmission region is greater than that of the third sub-transmissive region, thereby utilizing the After the first mask is exposed and developed to the BPS material layer 250', a second black photoresist block 2512' is formed corresponding to the first sub-transmissive region, and a first black photoresist block 2511' is formed corresponding to the first and second sub-transmissive regions. .
  • Step S33 referring to Fig. 11, a plurality of black photoresist patterns 251' are baked and reshaped, and a plurality of first bumps 2511 are formed on the black matrix 251.
  • Step S4 referring to FIG. 12, a pixel electrode 260 is formed on the flat layer 240, and a reflective electrode 270 covering the plurality of first protrusions 2511 is formed on the black matrix 251.
  • the upper surface of the reflective electrode 270 corresponds to a plurality of first protrusions.
  • a plurality of convex surfaces are formed from 2511, and the pixel electrode 260 is connected to the reflective electrode 270 to obtain a lower substrate 200.
  • the material of the reflective electrode 270 may be aluminum, silver, or other conductive material having high reflectivity.
  • Step S5 please refer to FIG. 13, providing an upper substrate 100, the lower substrate 200 and the upper substrate 100 are paired, and a liquid crystal layer 300 is disposed between the upper substrate 100 and the lower substrate 200;
  • the thickness of the region corresponding to the reflective electrode 270 of the liquid crystal layer 300 is one-half of the thickness of the region corresponding to the pixel electrode 260.
  • the upper substrate 100 includes a second substrate 110 and a common electrode 120 disposed on the second substrate 110, and the side of the lower substrate 200 having the pixel electrode 260 in the step S5 is The upper substrate 100 has a pair of side electrodes of the common electrode 120.
  • Step S6 the upper polarizer 400 is disposed on the side of the upper substrate 100 away from the lower substrate 200, and the lower polarizer 500 is disposed on the side of the lower substrate 200 away from the upper substrate 100, between the upper substrate 100 and the upper polarizer 400, and the lower substrate 200 and A quarter-wave plate 700 is disposed between the lower polarizers 500, and a backlight module 600 is disposed on the side of the lower polarizer 500 away from the lower substrate 200 to obtain a liquid crystal display device as shown in FIG.
  • a plurality of first protrusions 2511 are disposed on the black matrix 251 of the BPS light shielding layer 250, the reflective electrodes 270 are disposed on the black matrix 251 and cover the plurality of first protrusions 2511, and the reflective electrodes are provided.
  • 270 is connected to the pixel electrode 260, so that a reflective region is formed in a region corresponding to the reflective electrode 270, a transmissive region is formed in a region corresponding to the pixel electrode 260, and a distance between the pixel electrode 260 and the upper substrate 100 is a reflective electrode 270 and an upper substrate 100.
  • the distance between the transmissive region and the reflective region is twice as large as the distance between the transmissive region and the reflective region.
  • the transmissive region In the case where no voltage is applied, the transmissive region is in a dark state. Since the optical path difference of the reflective region is the same as that of the transmissive region, the reflective region is also dark.
  • the transmission region is synchronized with the liquid crystal deflection angle in the reflection region, and the reflection region is also bright.
  • the display brightness of the picture is improved, and the external light intensity is increased, the brightness of the reflection area is higher, the brightness of the picture display is higher, and by providing the first protrusion 2511 on the black matrix 251,
  • the upper surface of the reflective electrode 270 forms a plurality of convex surfaces corresponding to the plurality of first protrusions 2511.
  • the external light enters the transflective liquid crystal display device from the side of the upper substrate 100, the light is After being incident on the upper surface of the reflective electrode 270, the plurality of convex surfaces of the reflective electrode 270 can be scattered to emit the transflective liquid crystal display device, which can greatly enhance the uniformity of light emission in the reflective region, and the display quality is remarkably improved.
  • the step difference between the black matrix 251 and the flat layer 240, and the step difference between the black matrix 251 and the main spacer 252 can be easily controlled so as to be formed on the flat layer 240.
  • the distance between the pixel electrode 260 and the upper substrate 100 is twice the distance between the reflective electrode 270 and the upper substrate 100 formed on the black matrix 251.
  • it is not necessary to introduce an additional insulating layer and the structure is simple and the process is simple.
  • the difficulty is low, and the reflection area is disposed on the black matrix 251, and does not occupy the area of the transmission area, and does not affect the transmittance of the device.
  • a second embodiment of a method for fabricating a transflective liquid crystal display device according to the present invention is disclosed.
  • the second embodiment differs from the first embodiment in that:
  • the step S2 specifically includes:
  • Step S21 please refer to FIG. 15, coating the organic material layer 240' on the color resist layer 230;
  • Step S22 exposing and developing the organic material layer 240' by using a second mask, forming a plurality of organic material patterns 241' on the organic material layer 240', each of the organic material patterns 241' including the stacked An organic block 2411' and a second organic block 2412', the size of the first organic block 2411' is larger than the size of the second organic block 2412';
  • Step S23 baking and re-forming a plurality of organic material patterns 241' to form a flat layer 240 having a plurality of second protrusions 241;
  • the light transmittance of the first light-transmissive region of the first reticle provided by the step S3 is the same, so please refer to FIG. 18, after the step S3 forms the BPS light-shielding layer 250 on the flat layer 240, the black matrix A plurality of first protrusions 2511 are formed on the 251 corresponding to the plurality of second protrusions 241.
  • the third light-transmitting region in the first mask for forming the BPS light-shielding layer 250 of the second embodiment can adopt the same light transmittance, the cost is low, and the process is simple.
  • the second reticle is a halftone reticle.
  • the second photomask includes a fourth light transmissive region, a fifth light transmissive region outside the fourth light transmissive region, and a sixth light transmissive region outside the fifth light transmissive region, when the organic material When the material of the layer 240' is a positive photoresist material, the transmittance of the fourth transparent region is smaller than that of the fifth transparent region, and the transmittance of the fifth transparent region is smaller than the sixth transparent region, thereby utilizing the second After the mask is exposed and developed to the organic material layer 240', the second organic block 2412' is formed corresponding to the fourth light transmitting region, and the first organic block 2411' is formed corresponding to the fourth and fifth light transmitting regions; when the organic material layer 240 is When the material is a negative photoresist material, the transmittance of the fourth light-transmitting region is greater than that of the fifth light-transmitting region, and the light transmittance of the fifth light-transmitting
  • the transflective liquid crystal display device of the present invention adopts a COA and BPS design, and a plurality of first bumps are disposed on the black matrix of the BPS light shielding layer, and the reflective electrodes are disposed on the black matrix of the BPS light shielding layer.
  • a plurality of first protrusions are formed on the upper surface thereof to form a plurality of convex surfaces, and the reflective electrodes are connected to the pixel electrodes, so that the device forms a reflection area in a region corresponding to the reflective electrode, and a region corresponding to the pixel electrode forms a transmission area, which can be externally
  • the thickness of the liquid crystal cell of the reflective area and the transmissive area can be controlled by controlling the thickness of the black matrix without introducing an additional insulating layer, the structure is simple, and the reflective area does not occupy the transmissive area.
  • the area does not affect the transmittance of the device, and the uniformity of light emission in the reflective area is greatly enhanced, and the display quality is high.
  • the transflective liquid crystal display device can improve the brightness of the display screen when the external light intensity is large, the transmittance is high, and the light in the reflective region is uniform, and the operation is performed. simple.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种透反式液晶显示装置,采用COA及BPS设计,在BPS遮光层(250)的黑色矩阵(251)上设置多个第一凸起(2511),将反射电极(270)设置于BPS遮光层(250)的黑色矩阵(251)上覆盖多个第一凸起(2511)而使其上表面形成多个凸面,且使反射电极(270)与像素电极(260)相连接,使装置在对应反射电极(270)的区域形成反射区,而对应像素电极(260)的区域形成透射区,能够在外在光强度较大时提升显示画面的亮度,反射区与透射区的液晶盒厚可通过控制黑色矩阵(251)的厚度进行控制,无需引入额外的绝缘层,结构简单,同时反射区并不占用透射区的面积,不会影响装置的透过率,并且反射区的出光均匀性大大增强,显示品质高。还提供透反式液晶显示装置的制作方法。

Description

透反式液晶显示装置及其制作方法 技术领域
本发明涉及液晶显示技术领域,尤其涉及一种透反式液晶显示装置及其制作方法。
背景技术
随着显示技术的发展,液晶显示器(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
目前市场上液晶显示器以光源需求大略分为三类,透射式液晶显示器、反射式液晶显示器及透反式液晶显示器。其中,透射式的液晶显示器以液晶面板背面的背光模组作为光源,背光模组发出的光线穿过阵列基板透明的像素电极进行画面显示,透射式液晶显示器适合使用在弱光源的环境中,如在室内使用,而在室外使用时,当外在光源过于强大时,会使背光源的强度受到外在光的干扰,而使得眼睛看显示器时会因此而觉得面板过亮而不清楚,影响到影像品质。而且长期使用背光源,使电量的消耗非常大,而小尺寸的显示器通常使用电池供电,所以容易出现很快没电的情况。
反射式液晶显示器主要是以前光源或者外界自然光作为光源,其阵列基板上设有用金属或者其他具有良好反射特性材料制作的反射电极,通过反射电极反射前光源或者外界自然光的光线实现画面显示,反射式液晶显示器则适合用于外在光源强大的地方,通过反射自然光进行显示能够降低显示器的能耗,但在光源弱的地方,会出现光强度不足的现象,影响影像品质。
透反式液晶显示面板则可视为透射式与反射式液晶显示面板的结合,在阵列基板上既设置有反射区,又设置有透射区,可以同时利用背光源以及前光源或者外界光源以进行显示。在光线较暗的环境下,主要靠透射模式,也就是利用液晶显示器自身的背光源发光使液晶显示面板显示图像,在阳光下等光线充足的情况下,主要靠反射模式,即利用液晶显示面板内的反射电极将外部的自然光反射出去,以此作为光源显示图像,因此透反式液晶显示器适用于各种光线强度的外部环境,尤其具有优秀的户外可视性能,并且背光源的亮度不需要很高,具有功耗低的特点。
请参阅图1,为现有的一种透反式液晶显示装置的结构示意图,该透反式液晶显示装置包括相对设置的上基板100’与下基板200’、及设于上基板100’与下基板200’之间的液晶层300’,其中,所述上基板100’为彩膜基板,具有公共电极110’,所述下基板200’包括阵列基板210’、设于阵列基板210’上的绝缘层220’、及设于所述绝缘层220’上的反射电极230’,所述下基板200’具有反射区201’及透射区202’,绝缘层220’及反射电极230’均与反射区201’对应,阵列基板210’在透射区202’设有像素电极211’,液晶层300’中与反射区201’对应区域的厚度为与透射区202’对应区域的厚度的二分之一。该透反式液晶显示装置虽然能够进行透反显示,然而由于反射区201’的存在,严重的影响了液晶显示装置的透过率,同时需要通过控制绝缘层220’的厚度来实现液晶层300’在反射区201’的厚度为在透射区202’的厚度的二分之一,制程复杂难以实现,同时反射区201’出光的均匀性较差。
发明内容
本发明的目的在于提供一种透反式液晶显示装置,能够在外在光强度较大时提升显示画面的亮度,透过率高,无需引入额外的绝缘层,结构简单,且反射区的出光均匀。
本发明的目的还在于提供一种透反式液晶显示装置的制作方法,制得的透反式液晶显示装置,能够在外在光强度较大时提升显示画面的亮度,透过率高,且反射区的出光均匀,操作简单。
为实现上述目的,本发明首先提供一种透反式液晶显示装置,包括:相对设置的上基板与下基板、及设于上基板与下基板之间的液晶层;
所述下基板包括第一衬底、设于第一衬底上的TFT阵列层、设于TFT阵列层上的色阻层、覆盖色阻层的平坦层、设于平坦层上的BPS遮光层、设于平坦层上的像素电极、及设于BPS遮光层上的反射电极;
所述BPS遮光层包括黑色矩阵、设于黑色矩阵上且间隔设置的主隔垫物及辅助隔垫物,所述黑色矩阵上在除主隔垫物及辅助隔垫物所在区域以外的区域具有多个第一凸起;所述反射电极设于所述黑色矩阵上且覆盖多个第一凸起而在其上表面形成多个凸面,所述反射电极与像素电极相连接;
所述液晶层对应反射电极的区域的厚度为对应像素电极的区域的厚度的二分之一。
所述平坦层上具有多个第二凸起,使黑色矩阵上对应多个第二凸起形成多个第一凸起。
所述透反式液晶显示装置还包括设于上基板远离下基板一侧的上偏光 片、及设于下基板远离上基板一侧的下偏光片、及分别设于上基板与上偏光片之间、下基板与下偏光片之间的两个四分之一波片;
所述上偏光片的光轴与下偏光片的光轴相平行;
所述透反式液晶显示装置还包括设于下偏光片远离下基板一侧的背光模组。
所述上基板包括第二衬底、及设于第二衬底靠近下基板一侧上的公共电极。
所述反射电极的材料为铝或银。
本发明还提供一种透反式液晶显示装置的制作方法,包括如下步骤:
步骤S1、提供第一衬底,在第一衬底上依次形成TFT阵列层及色阻层;
步骤S2、在色阻层上形成平坦层;
步骤S3、在平坦层上涂布BPS材料层,利用一第一光罩对BPS材料层进行光刻制程,形成BPS遮光层;
所述BPS遮光层包括黑色矩阵、设于黑色矩阵上且间隔设置的主隔垫物及辅助隔垫物;所述黑色矩阵上在除主隔垫物及辅助隔垫物所在区域以外的区域具有多个第一凸起;
步骤S4、在平坦层上形成像素电极,在黑色矩阵上形成覆盖多个第一凸起的反射电极,所述反射电极上表面对应多个第一凸起形成多个凸面,所述像素电极与反射电极相连,得到下基板;
步骤S5、提供上基板,将所述下基板与上基板对组,在上基板与下基板之间设置液晶层;
所述液晶层对应反射电极的区域的厚度为对应像素电极的区域的厚度的二分之一。
所述第一光罩为半色调光罩或灰阶光罩。
所述步骤S2具体包括:
步骤S21、在色阻层上涂布有机材料层;
步骤S22、利用一第二光罩对所述有机材料层进行曝光及显影,在有机材料层上形成多个有机材料图案,每一有机材料图案均包括堆叠的第一有机块及第二有机块,第一有机块的尺寸大于第二有机块的尺寸;
步骤S23、对多个有机材料图案进行烘烤再成型,形成具有多个第二凸起的平坦层;
所述步骤S3在平坦层上形成BPS遮光层后,黑色矩阵上对应多个第二凸起形成多个第一凸起。
所述步骤S3具体包括:
步骤S31、在平坦层上涂布BPS材料层;
步骤S32、利用第一光罩对BPS材料层进行曝光显影,形成黑色矩阵、及设于黑色矩阵上的主隔垫物及辅助隔垫物,同时在黑色矩阵上除主隔垫物及辅助隔垫物所在区域以外的区域形成多个黑色光阻图案,每一黑色光阻图案均包括堆叠的第一黑色光阻块及第二黑色光阻块,第一黑色光阻块的尺寸大于第二黑色光阻块的尺寸;
步骤S33、对多个黑色光阻图案进行烘烤再成型,在黑色矩阵上形成多个第一凸起。
所述透反式液晶显示装置的制作方法还包括:
步骤S6、在上基板远离下基板一侧设置上偏光片,在下基板远离上基板一侧设置下偏光片,在上基板与上偏光片之间、下基板与下偏光片之间分别设置四分之一波片,在下偏光片远离下基板一侧设置背光模组,得到液晶显示装置;
所述上基板包括第二衬底、及设于第二衬底上的公共电极,所述步骤S5中将所述下基板具有像素电极的一侧与所述上基板具有公共电极的一侧对组。
本发明还提供一种透反式液晶显示装置,包括:相对设置的上基板与下基板、及设于上基板与下基板之间的液晶层;
所述下基板包括第一衬底、设于第一衬底上的TFT阵列层、设于TFT阵列层上的色阻层、覆盖色阻层的平坦层、设于平坦层上的BPS遮光层、设于平坦层上的像素电极、及设于BPS遮光层上的反射电极;
所述BPS遮光层包括黑色矩阵、设于黑色矩阵上且间隔设置的主隔垫物及辅助隔垫物,所述黑色矩阵上在除主隔垫物及辅助隔垫物所在区域以外的区域具有多个第一凸起;所述反射电极设于所述黑色矩阵上且覆盖多个第一凸起而在其上表面形成多个凸面,所述反射电极与像素电极相连接;
所述液晶层对应反射电极的区域的厚度为对应像素电极的区域的厚度的二分之一;
其中,所述平坦层上具有多个第二凸起,使黑色矩阵上对应多个第二凸起形成多个第一凸起;
还包括设于上基板远离下基板一侧的上偏光片、设于下基板远离上基板一侧的下偏光片、及分别设于上基板与上偏光片之间、下基板与下偏光片之间的两个四分之一波片;
所述上偏光片的光轴与下偏光片的光轴相平行;
所述透反式液晶显示装置还包括设于下偏光片远离下基板一侧的背光 模组;
其中,所述上基板包括第二衬底、及设于第二衬底靠近下基板一侧上的公共电极;
其中,所述反射电极的材料为铝或银。
本发明的有益效果:本发明提供的一种透反式液晶显示装置,采用COA及BPS设计,在BPS遮光层的黑色矩阵上设置多个第一凸起,将反射电极设置于BPS遮光层的黑色矩阵上覆盖多个第一凸起而使其上表面形成多个凸面,且使反射电极与像素电极相连接,使装置在对应反射电极的区域形成反射区,而对应像素电极的区域形成透射区,能够在外在光强度较大时提升显示画面的亮度,反射区与透射区的液晶盒厚可通过控制黑色矩阵的厚度进行控制,无需引入额外的绝缘层,结构简单,同时反射区并不占用透射区的面积,不会影响装置的透过率,并且反射区的出光均匀性大大增强,显示品质高。本发明提供的一种透反式液晶显示装置的制作方法,制得的透反式液晶显示装置,能够在外在光强度较大时提升显示画面的亮度,透过率高,且反射区的出光均匀,操作简单。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的一种透反式液晶显示装置的剖视示意图;
图2为本发明的透反式液晶显示装置第一实施例的剖视示意图;
图3为本发明的透反式液晶显示装置第二实施例的剖视示意图;
图4为本发明的透反式液晶显示装置的色阻层及BPS遮光层的俯视示意图;
图5为本发明的透反式液晶显示装置的制作方法的流程图;
图6为本发明的透反式液晶显示装置的制作方法的步骤S1的示意图;
图7为本发明的透反式液晶显示装置的制作方法第一实施例的步骤S2的示意图;
图8为本发明的透反式液晶显示装置的制作方法第一实施例的步骤S3的示意图;
图9至11为本发明的透反式液晶显示装置的制作方法第一实施例的步骤S3形成第一凸起的示意图;
图12为本发明的透反式液晶显示装置的制作方法第一实施例的步骤S4的示意图;
图13为本发明的透反式液晶显示装置的制作方法第一实施例的步骤S5的示意图;
图14为本发明的透反式液晶显示装置的制作方法第二实施例的步骤S2的示意图;
图15至17为本发明的透反式液晶显示装置的制作方法第二实施例的步骤S2形成第二凸起的示意图;
图18为本发明的透反式液晶显示装置的制作方法第二实施例的步骤S3的示意图;
图19为本发明的透反式液晶显示装置的制作方法第二实施例的步骤S4的示意图;
图20为本发明的透反式液晶显示装置的制作方法第二实施例的步骤S5的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
本发明提供一种透反式液晶显示装置,应用将彩色滤光层直接制备在的阵列基板上(Color Filter on Array,COA)的技术、及利用黑色光阻隔垫物(Black Photo Spacer,BPS)材料通过一道制程同时制得黑色矩阵和主、辅助隔垫物的技术,请参阅图2,为本发明的透反式液晶显示装置的第一实施例,本发明的透反式液晶显示装置包括:相对设置的上基板100与下基板200、设于上基板100与下基板200之间的液晶层300、设于上基板100远离下基板200一侧的上偏光片400、设于下基板200远离上基板100一侧的下偏光片500、设于下偏光片500远离下基板200一侧的背光模组600、及分别设于上基板100与上偏光片400之间、下基板200与下偏光片500之间的两个四分之一波片700。
其中,所述下基板200包括第一衬底210、设于第一衬底210上的TFT阵列层220、设于TFT阵列层220上的色阻层230、覆盖色阻层230的平坦层240、设于平坦层240上的BPS遮光层250、设于平坦层240上的像素电极260、及设于BPS遮光层250上的反射电极270。
值得注意的是,请结合图2及图4,所述BPS遮光层250包括黑色矩阵251、设于黑色矩阵251上且间隔设置的主隔垫物252及辅助隔垫物253, 所述黑色矩阵251上在除主隔垫物252及辅助隔垫物253所在区域以外的区域具有多个第一凸起2511;所述反射电极270设于所述黑色矩阵251上且覆盖多个第一凸起2511而在其上表面形成多个凸面,所述反射电极270与像素电极260相连接;
所述液晶层300对应反射电极270的区域的厚度为对应像素电极260的区域的厚度的二分之一。
具体地,所述上偏光片400的光轴与下偏光片500的光轴相平行,也即本发明的透反式液晶显示装置在不施加电压时为常黑态。
具体地,所述上基板100包括第二衬底110、及设于第二衬底110靠近下基板200一侧上的公共电极120。
需要说明的是,本发明的透反式液晶显示装置,采用BPS设计,在BPS遮光层250的黑色矩阵251上设置多个第一凸起2511,将反射电极270设置在黑色矩阵251上且覆盖多个第一凸起2511,并使反射电极270与像素电极260相连接,从而在对应反射电极270的区域形成反射区,在对应像素电极260的区域形成透射区,且像素电极260与上基板100间的距离为反射电极270与上基板100间距离的两倍,使透射区与反射区的光程差相同,在不施加电压的情况下,透射区为暗态,由于反射区的光程差与透射区相同,因而反射区也为暗态,当向公共电极120与像素电极260之间施加电压使透射区为亮态时,由于像素电极260与反射电极270相连,透射区与反射区内的液晶偏转角度同步,反射区也为亮态,提升了画面的显示亮度,且外在光强度越大,反射区的亮度越高,画面显示亮度越高,并且,通过在黑色矩阵251上设置第一凸起2511,使反射电极270形成在黑色矩阵251上之后,反射电极270的上表面对应多个第一凸起2511形成多个凸面,当外部光线从上基板100一侧入射透反式液晶显示装置后,光线在射入反射电极270的上表面后,反射电极270的多个凸面能够对其进行散射后使其射出透反式液晶显示装置,能够大大增强反射区的出光均匀性,显示品质显著提高,同时,通过控制形成BPS遮光层250的工艺参数,可以很容易地控制黑色矩阵251与平坦层240之间的段差、以及黑色矩阵251与主隔垫物252之间的段差,使形成在平坦层240上的像素电极260与上基板100间的距离为形成在黑色矩阵251上的反射电极270与上基板100间距离的两倍,相比于现有技术,无需引入额外的绝缘层,结构简单,制程难度低,且反射区设置于黑色矩阵251上,并不会占用透射区的面积,不影响装置的透过率。
具体地,请参阅图2,在本发明的第一实施例中,所述平坦层240的上 表面平坦,结合图8至图11,黑色矩阵251上的第一凸起2511的制作方法为:利用一第一光罩对BPS材料层250’进行曝光显影,形成黑色矩阵251、及设于黑色矩阵251上的主隔垫物252及辅助隔垫物253,同时在黑色矩阵251上除主隔垫物252及辅助隔垫物253所在区域以外的区域形成多个黑色光阻图案251’,每一黑色光阻图案251’均包括堆叠的第一黑色光阻块2511’及第二黑色光阻块2512’,第一黑色光阻块2511’的尺寸大于第二黑色光阻块2512’的尺寸,之后对多个黑色光阻图案251’进行烘烤再成型,在黑色矩阵251上形成多个第一凸起2511。
具体地,该第一光罩可为半色调光罩或灰阶光罩。具体地,所述第一光罩具有间隔的第一透光区及第二透光区、位于第一透光区及第二透光区外的第三透光区、及位于第三透光区外的遮光区,第一透光区的透光率大于第二透光区的透光率,第二透光区的透光率大于第三透光区的透光率,利用该第一光罩对BPS材料层250’曝光显影后,对应第一透光区形成主隔垫物252,对应第二透光区形成辅助隔垫物253,对应第一、第二、第三透光区形成黑色矩阵251。具体地,在本发明的第一实施例中,所述第三透光区包括第一子透光区、位于第一子透光区外的第二子透光区、及位于第二子透光区外的第三子透光区,第一子透光区的透光率大于第二子透光区,第二子透光区的透光率大于第三子透光区,从而利用该第一光罩对BPS材料层250’曝光显影后,对应第一子透光区形成第二黑色光阻块2512’,对应第一、第二子透光区形成第一黑色光阻块2511’。
具体地,请参阅图4,所述色阻层230包括阵列排布的多个色阻单元231,所述黑色矩阵251遮挡相邻两行色阻单元231的交界处。
具体地,所述反射电极270的材料可以为铝、银、或其他具有高反射率的导电材料。
请参阅图3,为本发明的透反式液晶显示装置的第二实施例的结构示意图,该第二实施例与上述第一实施例的区别在于,所述平坦层240上具有多个第二凸起241,从而使在平坦层240上形成BPS遮光层250后,黑色矩阵251上对应多个第二凸起241形成多个第一凸起2511,因而无需在形成主、辅助隔垫物252、253的同时在黑色矩阵250上形成黑色光阻图案251’,结合图15至图17,平坦层240上的第二凸起241的制作方法为:利用一第二光罩对形成于色阻层230上的有机材料层240’进行曝光显影,在有机材料层240’上形成多个有机材料图案241’,每一有机材料图案241’均包括堆叠的第一有机块2411’及第二有机块2412’,第一有机块2411’的尺寸大于第二有机块2412’的尺寸,之后对多个有机材料图案241’进行烘烤再成型,形 成具有多个第二凸起241的平坦层240。
具体地,该第二光罩为半色调光罩。具体地,所述第二光罩包括第四透光区、位于第四透光区外的第五透光区、及位于第五透光区外的第六透光区,当所述有机材料层240’的材料为正性光阻材料时,第四透光区的透光率小于第五透光区,第五透光区的透光率小于第六透光区,从而利用该第二光罩对有机材料层240’曝光显影后,对应第四透光区形成第二有机块2412’,对应第四、第五透光区形成第一有机块2411’;当所述有机材料层240’的材料为负性光阻材料时,第四透光区的透光率大于第五透光区,第五透光区的透光率大于第六透光区,从而利用该第二光罩对有机材料层240’曝光显影后,对应第四透光区形成第二有机块2412’,对应第四、第五透光区形成第一有机块2411’。相较于第一实施例,该第二实施例用于形成BPS遮光层250的第一光罩中的第三区域采用同一透光率即可,成本较低,制程简单。
请参阅图5,基于同一发明构思,本发明还提供一种透反式液晶显示装置的制作方法,请参阅图6至图13,本发明的透反式液晶显示装置的制作方法的第一实施例包括如下步骤:
步骤S1、请参阅图6,提供第一衬底210,在第一衬底210上依次形成TFT阵列层220及色阻层230。
具体地,请参阅图4,所述色阻层230包括阵列排布的多个色阻单元231。
步骤S2、请参阅图7,在色阻层230上形成平坦层240。
具体地,在本发明的第一实施例中,所述平坦层240上表面平坦。
步骤S3、请参阅图8,在平坦层240上涂布BPS材料层250’,利用一第一光罩对BPS材料层250’进行光刻制程,形成BPS遮光层250;
所述BPS遮光层250包括黑色矩阵251、设于黑色矩阵251上且间隔设置的主隔垫物252及辅助隔垫物253;所述黑色矩阵251上在除主隔垫物252及辅助隔垫物253所在区域以外的区域具有多个第一凸起2511。
具体地,所述黑色矩阵251覆盖相邻两行色阻单元231的交界处。
具体地,在本发明的第一实施例中,所述步骤S3具体包括:
步骤S31、请参阅图9,在平坦层240上涂布BPS材料层250’。
步骤S32、利用第一光罩对BPS材料层250’进行曝光显影,形成黑色矩阵251、及设于黑色矩阵251上的主隔垫物252及辅助隔垫物253,请参阅图10,同时在黑色矩阵251上除主隔垫物252及辅助隔垫物253所在区域以外的区域形成多个黑色光阻图案251’,每一黑色光阻图案251’均包括 堆叠的第一黑色光阻块2511’及第二黑色光阻块2512’,第一黑色光阻块2511’的尺寸大于第二黑色光阻块2512’的尺寸。
具体地,该第一光罩可为半色调光罩或灰阶光罩。具体地,所述第一光罩具有间隔的第一透光区及第二透光区、位于第一透光区及第二透光区外的第三透光区、及位于第三透光区外的遮光区,第一透光区的透光率大于第二透光区的透光率,第二透光区的透光率大于第三透光区的透光率,利用该第一光罩对BPS材料层250’曝光显影后,对应第一透光区形成主隔垫物252,对应第二透光区形成辅助隔垫物253,对应第一、第二、第三透光区形成黑色矩阵251。具体地,在本发明的第一实施例中,所述第三透光区包括第一子透光区、位于第一子透光区外的第二子透光区、及位于第二子透光区外的第三子透光区,第一子透光区的透光率大于第二子透光区,第二子透光区的透光率大于第三子透光区,从而利用该第一光罩对BPS材料层250’曝光显影后,对应第一子透光区形成第二黑色光阻块2512’,对应第一、第二子透光区形成第一黑色光阻块2511’。
步骤S33、请参阅图11,对多个黑色光阻图案251’进行烘烤再成型,在黑色矩阵251上形成多个第一凸起2511。
步骤S4、请参阅图12,在平坦层240上形成像素电极260,在黑色矩阵251上形成覆盖多个第一凸起2511的反射电极270,所述反射电极270上表面对应多个第一凸起2511形成多个凸面,所述像素电极260与反射电极270相连,得到下基板200。
具体地,所述反射电极270的材料可以为铝、银、或其他具有高反射率的导电材料。
步骤S5、请参阅图13,提供上基板100,将所述下基板200与上基板100对组,在上基板100与下基板200之间设置液晶层300;
所述液晶层300与反射电极270对应区域的厚度为与像素电极260对应区域的厚度的二分之一。
具体地,所述上基板100包括第二衬底110、及设于第二衬底110上的公共电极120,所述步骤S5中将所述下基板200具有像素电极260的一侧与所述上基板100具有公共电极120的一侧对组。
步骤S6、在上基板100远离下基板200一侧设置上偏光片400,在下基板200远离上基板100一侧设置下偏光片500,在上基板100与上偏光片400之间、下基板200与下偏光片500之间分别设置四分之一波片700,在下偏光片500远离下基板200一侧设置背光模组600,得到如图2所示的液晶显示装置。
需要说明的是,本发明在BPS遮光层250的黑色矩阵251上设置多个第一凸起2511,将反射电极270设置在黑色矩阵251上且覆盖多个第一凸起2511,并使反射电极270与像素电极260相连接,从而在对应反射电极270的区域形成反射区,在对应像素电极260的区域形成透射区,且像素电极260与上基板100间的距离为反射电极270与上基板100间距离的两倍,使透射区与反射区的光程差相同,在不施加电压的情况下,透射区为暗态,由于反射区的光程差与透射区相同,因而反射区也为暗态,当向公共电极120与像素电极260之间施加电压使透射区为亮态时,由于像素电极260与反射电极270相连,透射区与反射区内的液晶偏转角度同步,反射区也为亮态,提升了画面的显示亮度,且外在光强度越大,反射区的亮度越高,画面显示亮度越高,并且,通过在黑色矩阵251上设置第一凸起2511,使反射电极270形成在黑色矩阵251上之后,反射电极270的上表面对应多个第一凸起2511形成多个凸面,当外部光线从上基板100一侧入射透反式液晶显示装置后,光线在射入反射电极270的上表面后,反射电极270的多个凸面能够对其进行散射后使其射出透反式液晶显示装置,能够大大增强反射区的出光均匀性,显示品质显著提高,同时,通过控制形成BPS遮光层250的工艺参数,可以很容易地控制黑色矩阵251与平坦层240之间的段差、以及黑色矩阵251与主隔垫物252之间的段差,使形成在平坦层240上的像素电极260与上基板100间的距离为形成在黑色矩阵251上的反射电极270与上基板100间距离的两倍,相比于现有技术,无需引入额外的绝缘层,结构简单,制程难度低,且反射区设置于黑色矩阵251上,并不会占用透射区的面积,不影响装置的透过率。
请参阅图6、及图14至图20,为本发明的透反式液晶显示装置的制作方法的第二实施例,该第二实施例与上述第一实施例的区别在于:
所述步骤S2具体包括:
步骤S21、请参阅图15,在色阻层230上涂布有机材料层240’;
步骤S22、利用一第二光罩对所述有机材料层240’进行曝光及显影,在有机材料层240’上形成多个有机材料图案241’,每一有机材料图案241’均包括堆叠的第一有机块2411’及第二有机块2412’,第一有机块2411’的尺寸大于第二有机块2412’的尺寸;
步骤S23、对多个有机材料图案241’进行烘烤再成型,形成具有多个第二凸起241的平坦层240;
所述步骤S3提供的第一光罩的第三透光区内的透光率相同,从而请参阅图18,所述步骤S3在平坦层240上形成BPS遮光层250后,黑色矩阵 251上对应多个第二凸起241形成多个第一凸起2511。相较于第一实施例,该第二实施例用于形成BPS遮光层250的第一光罩中的第三透光区采用同一透光率即可,成本较低,制程简单。
具体地,该第二光罩为半色调光罩。具体地,所述第二光罩包括第四透光区、位于第四透光区外的第五透光区、及位于第五透光区外的第六透光区,当所述有机材料层240’的材料为正性光阻材料时,第四透光区的透光率小于第五透光区,第五透光区的透光率小于第六透光区,从而利用该第二光罩对有机材料层240’曝光显影后,对应第四透光区形成第二有机块2412’,对应第四、第五透光区形成第一有机块2411’;当所述有机材料层240’的材料为负性光阻材料时,第四透光区的透光率大于第五透光区,第五透光区的透光率大于第六透光区,从而利用该第二光罩对有机材料层240’曝光显影后,对应第四透光区形成第二有机块2412’,对应第四、第五透光区形成第一有机块2411’。
综上所述,本发明的透反式液晶显示装置,采用COA及BPS设计,在BPS遮光层的黑色矩阵上设置多个第一凸起,将反射电极设置于BPS遮光层的黑色矩阵上覆盖多个第一凸起而使其上表面形成多个凸面,且使反射电极与像素电极相连接,使装置在对应反射电极的区域形成反射区,而对应像素电极的区域形成透射区,能够在外在光强度较大时提升显示画面的亮度,反射区与透射区的液晶盒厚可通过控制黑色矩阵的厚度进行控制,无需引入额外的绝缘层,结构简单,同时反射区并不占用透射区的面积,不会影响装置的透过率,并且反射区的出光均匀性大大增强,显示品质高。本发明的透反式液晶显示装置的制作方法,制得的透反式液晶显示装置,能够在外在光强度较大时提升显示画面的亮度,透过率高,且反射区的出光均匀,操作简单。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (11)

  1. 一种透反式液晶显示装置,包括:相对设置的上基板与下基板、及设于上基板与下基板之间的液晶层;
    所述下基板包括第一衬底、设于第一衬底上的TFT阵列层、设于TFT阵列层上的色阻层、覆盖色阻层的平坦层、设于平坦层上的BPS遮光层、设于平坦层上的像素电极、及设于BPS遮光层上的反射电极;
    所述BPS遮光层包括黑色矩阵、设于黑色矩阵上且间隔设置的主隔垫物及辅助隔垫物,所述黑色矩阵上在除主隔垫物及辅助隔垫物所在区域以外的区域具有多个第一凸起;所述反射电极设于所述黑色矩阵上且覆盖多个第一凸起而在其上表面形成多个凸面,所述反射电极与像素电极相连接;
    所述液晶层对应反射电极的区域的厚度为对应像素电极的区域的厚度的二分之一。
  2. 如权利要求1所述的透反式液晶显示装置,其中,所述平坦层上具有多个第二凸起,使黑色矩阵上对应多个第二凸起形成多个第一凸起。
  3. 如权利要求1所述的透反式液晶显示装置,还包括设于上基板远离下基板一侧的上偏光片、设于下基板远离上基板一侧的下偏光片、及分别设于上基板与上偏光片之间、下基板与下偏光片之间的两个四分之一波片;
    所述上偏光片的光轴与下偏光片的光轴相平行;
    所述透反式液晶显示装置还包括设于下偏光片远离下基板一侧的背光模组。
  4. 如权利要求1所述的透反式液晶显示装置,其中,所述上基板包括第二衬底、及设于第二衬底靠近下基板一侧上的公共电极。
  5. 如权利要求1所述的透反式液晶显示装置,其中,所述反射电极的材料为铝或银。
  6. 一种透反式液晶显示装置的制作方法,包括如下步骤:
    步骤S1、提供第一衬底,在第一衬底上依次形成TFT阵列层及色阻层;
    步骤S2、在色阻层上形成平坦层;
    步骤S3、在平坦层上涂布BPS材料层,利用一第一光罩对BPS材料层进行光刻制程,形成BPS遮光层;
    所述BPS遮光层包括黑色矩阵、设于黑色矩阵上且间隔设置的主隔垫物及辅助隔垫物;所述黑色矩阵上在除主隔垫物及辅助隔垫物所在区域以外的区域具有多个第一凸起;
    步骤S4、在平坦层上形成像素电极,在黑色矩阵上形成覆盖多个第一凸起的反射电极,所述反射电极上表面对应多个第一凸起形成多个凸面,所述像素电极与反射电极相连,得到下基板;
    步骤S5、提供上基板,将所述下基板与上基板对组,在上基板与下基板之间设置液晶层;
    所述液晶层对应反射电极的区域的厚度为对应像素电极的区域的厚度的二分之一。
  7. 如权利要求6所述的透反式液晶显示装置的制作方法,其中,所述第一光罩为半色调光罩或灰阶光罩。
  8. 如权利要求6所述的透反式液晶显示装置的制作方法,其中,
    所述步骤S2具体包括:
    步骤S21、在色阻层上涂布有机材料层;
    步骤S22、利用一第二光罩对所述有机材料层进行曝光及显影,在有机材料层上形成多个有机材料图案,每一有机材料图案均包括堆叠的第一有机块及第二有机块,第一有机块的尺寸大于第二有机块的尺寸;
    步骤S23、对多个有机材料图案进行烘烤再成型,形成具有多个第二凸起的平坦层;
    所述步骤S3在平坦层上形成BPS遮光层后,黑色矩阵上对应多个第二凸起形成多个第一凸起。
  9. 如权利要求7所述的透反式液晶显示装置的制作方法,其中,所述步骤S3具体包括:
    步骤S31、在平坦层上涂布BPS材料层;
    步骤S32、利用第一光罩对BPS材料层进行曝光显影,形成黑色矩阵、及设于黑色矩阵上的主隔垫物及辅助隔垫物,同时在黑色矩阵上除主隔垫物及辅助隔垫物所在区域以外的区域形成多个黑色光阻图案,每一黑色光阻图案均包括堆叠的第一黑色光阻块及第二黑色光阻块,第一黑色光阻块的尺寸大于第二黑色光阻块的尺寸;
    步骤S33、对多个黑色光阻图案进行烘烤再成型,在黑色矩阵上形成多个第一凸起。
  10. 如权利要求6所述的透反式液晶显示装置的制作方法,还包括:
    步骤S6、在上基板远离下基板一侧设置上偏光片,在下基板远离上基板一侧设置下偏光片,在上基板与上偏光片之间、下基板与下偏光片之间分别设置四分之一波片,在下偏光片远离下基板一侧设置背光模组,得到液晶显示装置;
    所述上基板包括第二衬底、及设于第二衬底上的公共电极,所述步骤S5中将所述下基板具有像素电极的一侧与所述上基板具有公共电极的一侧对组。
  11. 一种透反式液晶显示装置,包括:相对设置的上基板与下基板、及设于上基板与下基板之间的液晶层;
    所述下基板包括第一衬底、设于第一衬底上的TFT阵列层、设于TFT阵列层上的色阻层、覆盖色阻层的平坦层、设于平坦层上的BPS遮光层、设于平坦层上的像素电极、及设于BPS遮光层上的反射电极;
    所述BPS遮光层包括黑色矩阵、设于黑色矩阵上且间隔设置的主隔垫物及辅助隔垫物,所述黑色矩阵上在除主隔垫物及辅助隔垫物所在区域以外的区域具有多个第一凸起;所述反射电极设于所述黑色矩阵上且覆盖多个第一凸起而在其上表面形成多个凸面,所述反射电极与像素电极相连接;
    所述液晶层对应反射电极的区域的厚度为对应像素电极的区域的厚度的二分之一;
    其中,所述平坦层上具有多个第二凸起,使黑色矩阵上对应多个第二凸起形成多个第一凸起;
    还包括设于上基板远离下基板一侧的上偏光片、设于下基板远离上基板一侧的下偏光片、及分别设于上基板与上偏光片之间、下基板与下偏光片之间的两个四分之一波片;
    所述上偏光片的光轴与下偏光片的光轴相平行;
    所述透反式液晶显示装置还包括设于下偏光片远离下基板一侧的背光模组;
    其中,所述上基板包括第二衬底、及设于第二衬底靠近下基板一侧上的公共电极;
    其中,所述反射电极的材料为铝或银。
PCT/CN2017/111021 2017-08-16 2017-11-15 透反式液晶显示装置及其制作方法 WO2019033593A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/578,715 US20190056622A1 (en) 2017-08-16 2017-11-15 Transflective liquid crystal display and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710703207.9A CN107357076A (zh) 2017-08-16 2017-08-16 透反式液晶显示装置及其制作方法
CN201710703207.9 2017-08-16

Publications (1)

Publication Number Publication Date
WO2019033593A1 true WO2019033593A1 (zh) 2019-02-21

Family

ID=60286934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111021 WO2019033593A1 (zh) 2017-08-16 2017-11-15 透反式液晶显示装置及其制作方法

Country Status (2)

Country Link
CN (1) CN107357076A (zh)
WO (1) WO2019033593A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107463039A (zh) * 2017-08-25 2017-12-12 深圳市华星光电半导体显示技术有限公司 透反式液晶显示装置
CN107908054B (zh) * 2017-12-15 2020-11-06 深圳市华星光电技术有限公司 显示装置、半透半反的阵列基板及其制造方法
JP6736539B2 (ja) * 2017-12-15 2020-08-05 キヤノン株式会社 撮像装置及びその駆動方法
US10461102B2 (en) 2017-12-15 2019-10-29 Shenzhen China Star Optoelectronics Technology Co., Ltd Display device, transflective array substrate, and manufacturing method thereof
TWI673550B (zh) * 2018-08-24 2019-10-01 友達光電股份有限公司 半穿反顯示面板及其畫素結構
CN110908170B (zh) * 2019-11-14 2021-11-02 Tcl华星光电技术有限公司 显示面板、显示基板及其制作方法
TWI848688B (zh) * 2023-05-05 2024-07-11 凌巨科技股份有限公司 半穿反液晶顯示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833197A (zh) * 2009-03-12 2010-09-15 胜华科技股份有限公司 液晶显示器
US20140049710A1 (en) * 2007-03-12 2014-02-20 Japan Display West Inc. Liquid crystal device and electronic apparatus
CN203688942U (zh) * 2014-01-24 2014-07-02 京东方科技集团股份有限公司 半透半反式液晶显示面板及显示装置
CN104199213A (zh) * 2014-08-18 2014-12-10 京东方科技集团股份有限公司 一种半透半反式液晶显示面板及液晶显示器
CN106950767A (zh) * 2016-01-06 2017-07-14 三星显示有限公司 显示装置及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060122489A (ko) * 2005-05-27 2006-11-30 삼성전자주식회사 액정 표시 장치
CN100578331C (zh) * 2008-08-18 2010-01-06 友达光电股份有限公司 半穿透半反射式液晶显示面板
CN101738778A (zh) * 2008-11-07 2010-06-16 上海天马微电子有限公司 半反半透液晶显示装置及其上基板的制造方法
CN101408704B (zh) * 2008-11-27 2010-07-07 友达光电股份有限公司 半穿反式液晶显示面板的像素结构及其制作方法
CN102087446B (zh) * 2010-12-31 2011-12-28 四川大学 透反电光特性曲线相匹配的单盒厚透反蓝相液晶显示器
CN102122101B (zh) * 2011-03-28 2012-02-29 四川大学 一种透反蓝相液晶显示器
CN103811669B (zh) * 2012-11-09 2016-08-17 上海天马微电子有限公司 有机发光器件、有机发光二极管显示装置及制造方法
CN103018951B (zh) * 2012-12-14 2015-02-04 京东方科技集团股份有限公司 半透半反式液晶显示面板及其制作方法、显示装置
CN103226270B (zh) * 2013-05-03 2016-01-20 合肥京东方光电科技有限公司 一种半透半反液晶显示面板、显示装置及阵列基板
CN103941452A (zh) * 2014-03-17 2014-07-23 京东方科技集团股份有限公司 阵列基板及显示装置
CN104049430B (zh) * 2014-06-18 2017-04-19 南京中电熊猫液晶显示科技有限公司 一种阵列基板、显示装置及其制造方法
CN104965366B (zh) * 2015-07-15 2018-11-20 深圳市华星光电技术有限公司 阵列彩膜集成式液晶显示面板的制作方法及其结构
CN105093665A (zh) * 2015-09-22 2015-11-25 京东方科技集团股份有限公司 半透半反显示面板和半透半反显示装置
CN105974636B (zh) * 2016-07-18 2019-05-31 深圳市华星光电技术有限公司 液晶显示面板的制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140049710A1 (en) * 2007-03-12 2014-02-20 Japan Display West Inc. Liquid crystal device and electronic apparatus
CN101833197A (zh) * 2009-03-12 2010-09-15 胜华科技股份有限公司 液晶显示器
CN203688942U (zh) * 2014-01-24 2014-07-02 京东方科技集团股份有限公司 半透半反式液晶显示面板及显示装置
CN104199213A (zh) * 2014-08-18 2014-12-10 京东方科技集团股份有限公司 一种半透半反式液晶显示面板及液晶显示器
CN106950767A (zh) * 2016-01-06 2017-07-14 三星显示有限公司 显示装置及其制造方法

Also Published As

Publication number Publication date
CN107357076A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
WO2019033593A1 (zh) 透反式液晶显示装置及其制作方法
US7440048B2 (en) Method of forming a color filter having various thicknesses and a transflective LCD with the color filter
CN107632453B (zh) 显示面板及制造方法和显示装置
WO2017020518A1 (zh) 阵列基板、液晶显示面板及显示装置
US6912027B2 (en) Transflective liquid crystal display device and fabricating method thereof
US9250466B2 (en) Transreflective color filter and method for manufacturing the same and liquid crystal display device
US20150253473A1 (en) Color filter array substrate, method for fabricating the same and display device
US9733513B2 (en) Transflective liquid crystal display panel comprising a transmission axis of a first polarizer and a transmission axis of a second polarizer forming an angle of 0 to 20 degrees, manufacturing method thereof, and display device
WO2018176629A1 (zh) 显示面板及其制造方法
US20180335553A1 (en) Method for manufacturing color filter substrate and method for manufacturing liquid crystal panel
CN108363235B (zh) 减反膜及其制备方法、阵列基板、显示装置
WO2018171079A1 (zh) 主动开关阵列基板及其制造方法与显示面板
US9964801B2 (en) Display substrate, manufacturing method thereof and display device
JP2000284272A (ja) 液晶表示装置及びその製造方法
CN105629556B (zh) 光阀及显示装置
JP2002328370A (ja) 液晶表示装置
TWI375839B (en) Liquid crystal panel and method of making the same
WO2018201545A1 (zh) 光罩及其应用于主动开关阵列基板的制造方法
US20190064616A1 (en) Transflective liquid crystal display
WO2018171078A1 (zh) 主动开关阵列基板及其制造方法与其应用的显示设备
WO2019037286A1 (zh) 透反式液晶显示装置
US20200004072A1 (en) Touch panel and method for manufacturing the same
WO2019029036A1 (zh) 半穿透半反射式液晶显示器
US20190056622A1 (en) Transflective liquid crystal display and manufacturing method thereof
KR100673716B1 (ko) 단일갭형 반투과형 액정표시소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921581

Country of ref document: EP

Kind code of ref document: A1