WO2019029045A1 - 一种控制无人飞行器的方法、装置及无人飞行器 - Google Patents
一种控制无人飞行器的方法、装置及无人飞行器 Download PDFInfo
- Publication number
- WO2019029045A1 WO2019029045A1 PCT/CN2017/112061 CN2017112061W WO2019029045A1 WO 2019029045 A1 WO2019029045 A1 WO 2019029045A1 CN 2017112061 W CN2017112061 W CN 2017112061W WO 2019029045 A1 WO2019029045 A1 WO 2019029045A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- moment
- aerial vehicle
- unmanned aerial
- rolling
- motor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000005096 rolling process Methods 0.000 claims abstract description 284
- 238000004590 computer program Methods 0.000 claims description 5
- 238000011946 reduction process Methods 0.000 claims description 3
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000007664 blowing Methods 0.000 abstract 1
- 238000004891 communication Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0055—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
- G05D1/0072—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements to counteract a motor failure
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P5/00—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
Definitions
- the embodiments of the present invention relate to the field of flight control technologies, and in particular, to a method, a device, and an unmanned aerial vehicle for controlling an unmanned aerial vehicle.
- An unmanned aerial vehicle is a non-manned aircraft that is operated by radio remote control equipment and its own program control device. It can be equipped with a miniature camera to capture video and pictures in the air. It can also be used to carry various measuring instruments to achieve high altitude. Detection and so on, therefore, UAVs have a wide range of applications in agriculture, detection, meteorology, disaster prediction and rescue.
- the UAV relies on the yaw moment generated by the difference in the anti-torsion caused by the different rotational speeds between the motors to complete the attitude control of the left/right yaw; and depends on the rolling moment difference between the motors.
- the attitude control of the forward/backward flight is completed depending on the pitching moment which is caused by the thrust difference between the motors.
- the fuselage of the UAV is located in a plane formed by the X-axis and the Y-axis, wherein the forward direction of the X-axis indicates the head orientation of the UAV.
- the UAV is equipped with four motors M1, M2, M3 and M4 on its four arms.
- the arrows drawn on the motors M1 and M3 are thicker than the arrows drawn on the motors M2 and M4, which means that the rotational speeds of the motors M1 and M3 are greater than the rotational speeds of the motors M2 and M4.
- the four-axis unmanned aerial vehicle takes a posture of flying to the left.
- the four-axis unmanned aerial vehicle takes a posture of flying to the right.
- the inventor of the present application found in the process of implementing the present application that for an unmanned aerial vehicle, especially a multi-rotor unmanned aerial vehicle, the ability of the motor to generate a thrust perpendicular to the plane of the fuselage is greater than the plane generated by the motor and the plane of the fuselage.
- the ability of the surface to reverse the torsion is much greater, so the control demand for the yaw attitude that is required to perform the anti-torque force on the unmanned aerial vehicle is increased.
- the possibility that the motor is saturated and the phenomenon of the bomber will be extremely increased.
- the technical problem to be solved by the present application is to provide a method, a device and an unmanned aerial vehicle for controlling an unmanned aerial vehicle, which can avoid the overload of the motor of the unmanned aerial vehicle and cause the situation of the explosive machine when adjusting the flight attitude of the unmanned aerial vehicle.
- the present application provides a method for controlling an unmanned aerial vehicle, comprising: receiving an attitude control command, wherein the attitude control command carries a yaw moment N N originally required to control a flight attitude of the unmanned aerial vehicle Information on the magnitudes of the rolling moment L N and the pitching moment M N ; determining whether the torque output capability of the motor of the unmanned aerial vehicle satisfies the output of the originally required yaw moment N N , the rolling moment L N and the pitching moment M N needs; not satisfied, the flight attitude of the unmanned aircraft originally required yaw moment N N, roll moment L N, M N is the size of the pitch moment, to give the said unmanned aircraft
- the torque output capability of the motor can output the processed yaw moment N N ', the rolling moment L N ' and the pitching moment M N '; the processed yaw moment N N ', the rolling moment L N ' and the pitch
- the moment M N ' is used as a yaw moment
- the determining whether the torque output capability of the motor of the UAV meets the need to output the originally required yaw moment N N , rolling moment L N and pitching moment M N includes:
- T the torque threshold
- the yaw moment N N , the rolling moment L N , and the pitching moment M N that are originally required for the flight attitude of the UAV are processed to obtain the motor of the UAV.
- the processed yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' that the torque output capability can output include:
- the yaw moment N N , the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV are reduced, and the result is used as the processed yaw Torque N N ', rolling moment L N ' and pitching moment M N ';
- the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV are maintained as the processed rolling moment L N ' and the pitching moment M N ', and The magnitude of the yaw moment N N originally required for the flight attitude of the unmanned aerial vehicle is reduced, and the result is taken as the processed yaw moment N N '.
- the determining whether the torque output capability of the motor of the UAV meets the need to output the originally required rolling moment L N and pitching moment M N includes:
- T the torque threshold
- the yaw moment N N , the rolling moment L N , and the pitching moment M N that are originally required for the flight attitude of the UAV are reduced, and the result is taken as the The yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' are as follows:
- L Nmax is the maximum rolling moment that the torque output capability of the motor of the unmanned aerial vehicle can satisfy
- M Nmax is the maximum pitching moment that can be satisfied by the torque output capability of the motor of the unmanned aerial vehicle.
- the yaw moment N N , the rolling moment L N , and the pitching moment M N originally required for the flight attitude of the UAV are reduced, and the result is used as the processed bias.
- the flight torque N N ', the rolling moment L N ' and the pitching moment M N ' using the following formula:
- the rolling moment L N and the pitching moment M N that are originally required for the flight attitude of the UAV remain unchanged as the processed rolling moment L N ' and the pitching moment M N ', and reducing the magnitude of the yaw moment N N originally required for the flight attitude of the unmanned aerial vehicle, and using the result as the processed yaw moment N N ', using the following formula:
- L Nmax is the maximum rolling moment that the torque output capability of the motor of the unmanned aerial vehicle can satisfy
- M Nmax is the maximum pitching moment that can be satisfied by the torque output capability of the motor of the unmanned aerial vehicle.
- the present application further provides an apparatus for controlling an unmanned aerial vehicle, comprising: a receiving module, configured to receive an attitude control command, wherein the attitude control command carries an original flight attitude for controlling the unmanned aerial vehicle Information on the magnitude of the required yaw moment N N , the rolling moment L N and the pitching moment M N ;
- a judging module configured to determine whether a torque output capability of the motor of the unmanned aerial vehicle meets a requirement for outputting the originally required yaw moment N N , rolling moment L N and pitching moment M N ;
- a processing module configured to: when the determining module determines that the torque output capability of the motor of the unmanned aerial vehicle cannot meet the requirement of outputting the originally required yaw moment N N , rolling moment L N and pitching moment M N , The yaw moment N N , the rolling moment L N , and the pitching moment M N originally required by the flight attitude of the unmanned aerial vehicle are processed, and the processed torque output capability of the motor of the unmanned aerial vehicle can be obtained. Yaw moment N N ', rolling moment L N ' and pitching moment M N ';
- a control module for using the processed yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' as the yaw moment, the rolling moment and the pitching moment actually to be output by the motor,
- the motor is controlled to control the flight attitude of the UAV.
- the determining module determines whether the torque output capability of the motor of the UAV meets the need to output the originally required yaw moment N N , roll moment L N , and pitch moment M N , including :
- T the torque threshold
- the processing module is specifically configured to:
- the judging module judges that the torque output capability of the motor of the unmanned aerial vehicle cannot meet the need of outputting the originally required yaw moment N N , rolling moment L N and pitching moment M N , further determining the unmanned Whether the torque output capability of the motor of the aircraft satisfies the need to output the originally required rolling moment L N and pitching moment M N ;
- the yaw moment N N , the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV are reduced, and the result is used as the processed yaw Torque N N ', rolling moment L N ' and pitching moment M N ';
- the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV are maintained as the processed rolling moment L N ' and the pitching moment M N ', and The magnitude of the yaw moment N N originally required for the flight attitude of the unmanned aerial vehicle is reduced, and the result is taken as the processed yaw moment N N '.
- the processing module further determines whether the torque output capability of the motor of the UAV meets the need to output the originally required rolling moment L N and pitching moment M N , including:
- T the torque threshold
- the processing module performs a reduction process on the yaw moment N N , the roll moment L N , and the pitch moment M N that are originally required for the flight attitude of the UAV, and the result is After the treatment, the yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' are expressed by the following formula:
- L Nmax is the maximum rolling moment that the torque output capability of the motor of the unmanned aerial vehicle can satisfy
- M Nmax is the maximum pitching moment that the torque output capability of the motor of the unmanned aerial vehicle can satisfy.
- the processing module reduces the yaw moment N N , the rolling moment L N , and the pitching moment M N originally required by the flight attitude of the UAV, and uses the result as the processing.
- the yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' using the following formula:
- the processing module maintains the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV as the processed rolling moment L N ' and pitch The moment M N ', and reducing the magnitude of the yaw moment N N originally required for the flight attitude of the unmanned aerial vehicle, and using the result as the yaw moment N N ' after the treatment, the following formula is adopted:
- L Nmax is the maximum rolling moment that the torque output capability of the motor of the unmanned aerial vehicle can satisfy
- M Nmax is the maximum pitching moment that can be satisfied by the torque output capability of the motor of the unmanned aerial vehicle.
- the present application further provides an unmanned aerial vehicle comprising: a motor; at least one processor coupled to the motor; and a memory communicatively coupled to the at least one processor; wherein the memory is stored There are instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the method described above.
- an unmanned aerial vehicle including:
- processor disposed within the body, the processor for:
- attitude control command carries information for controlling a magnitude of a yaw moment N N , a rolling moment L N , and a pitching moment M N that are originally required for a flight attitude of the unmanned aerial vehicle;
- the yaw moment N N , the rolling moment L N , and the pitching moment M N originally required by the flight attitude of the unmanned aerial vehicle are processed to obtain the torque output capability of the motor of the unmanned aerial vehicle.
- the processed yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' can be output;
- the processed yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' are used as the yaw moment, the rolling moment and the pitching moment that the motor actually outputs, and the motor is controlled, thereby Controlling the flight attitude of the unmanned aerial vehicle.
- the processor is specifically configured to:
- T the torque threshold
- the processor is specifically configured to:
- the yaw moment N N , the rolling moment L N and the pitching moment M N originally required for the flight attitude of the unmanned aerial vehicle are reduced, and the result is used as the processed yaw Torque N N ', rolling moment L N ' and pitching moment M N ';
- the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV are maintained as the processed rolling moment L N ' and the pitching moment M N ', and The magnitude of the yaw moment N N originally required for the flight attitude of the unmanned aerial vehicle is reduced, and the result is taken as the processed yaw moment N N '.
- the processor is further configured to:
- T the torque threshold
- the processor reduces the magnitudes of the yaw moment N N , the rolling moment L N , and the pitching moment M N that are originally required for the flight attitude of the UAV by using the following formula:
- the result is the yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' after the treatment:
- L Nmax is the maximum rolling moment that the torque output capability of the motor of the unmanned aerial vehicle can satisfy
- M Nmax is the maximum pitching moment that can be satisfied by the torque output capability of the motor of the unmanned aerial vehicle.
- the processor reduces the magnitudes of the yaw moment N N , the rolling moment L N , and the pitching moment M N that are originally required for the flight attitude of the UAV by using the following formula:
- the result is the yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' after the treatment:
- the processor uses the following formula to maintain the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV as the processed rolling moment L. N ' and pitching moment M N ', and reducing the magnitude of the yaw moment N N originally required for the flight attitude of the unmanned aerial vehicle, and using the result as the processed yaw moment N N ':
- L Nmax is the maximum rolling moment that the torque output capability of the motor of the unmanned aerial vehicle can satisfy
- M Nmax is the maximum pitching moment that can be satisfied by the torque output capability of the motor of the unmanned aerial vehicle.
- the motor of the UAV when it is required to adjust the flight attitude of the UAV, it is determined whether the motor of the UAV is overloaded when the yaw moment, the rolling moment, and the pitching force required to adjust the flight posture of the UAV are satisfied. If overloaded, reduce the required yaw moment, rolling moment and pitching moment, and control the motor according to the reduced yaw moment, rolling moment and pitching moment, avoid forcibly controlling the motor output to adjust the flight of the unmanned aerial vehicle. When the yaw moment, rolling torque and pitching moment required for the attitude cause the motor to be overloaded, the problem of the bomber is caused.
- Figure 1 is a schematic diagram of a four-axis unmanned aerial vehicle achieving yaw to the left;
- Figure 2 is a schematic view of the four-axis unmanned aerial vehicle achieving yaw to the right;
- Figure 3 is a schematic view showing the four-axis unmanned aerial vehicle flying to the left;
- Figure 4 is a schematic view showing the four-axis unmanned aerial vehicle flying to the right;
- Figure 5 is a schematic view of a four-axis unmanned aerial vehicle achieving forward flight
- Figure 6 is a schematic view of the four-axis unmanned aerial vehicle achieving backward flight
- FIG. 7 is a schematic diagram of an operating environment of an embodiment of the present application.
- FIG. 8 is a flow chart of a first embodiment of a method for controlling an unmanned aerial vehicle of the present application
- FIG. 9 is a flow chart of a second embodiment of a method for controlling an unmanned aerial vehicle of the present application.
- FIG. 10 is a schematic diagram of an embodiment of an apparatus for controlling an unmanned aerial vehicle of the present application.
- Figure 11 is a schematic illustration of an embodiment of an unmanned aerial vehicle of the present application.
- FIG. 7 is a schematic diagram of an application environment of an embodiment of the present application.
- the application environment includes an unmanned aerial vehicle 10 and a remote controller 10.
- the unmanned aerial vehicle 10 includes a body 100 and a body 100.
- a typical power device includes a motor 102, a propeller 103 on the motor 102, a control device (not shown) disposed on the body 100 or the arm 101, and electrically connected to the motor 102, and a control device.
- Electrically connected communication device (not shown).
- the control device is used to control the rotation of the motor 102, and the rotation of the motor 102 drives the screw 103 to spiral, thereby generating an upward thrust to realize the ascent or descent of the unmanned aerial vehicle 10.
- the motor 102 is fixed to the unmanned aerial vehicle 10, when the motor 102 rotates, the motor 102 also generates a thrust acting on the unmanned aerial vehicle 10, and a thrust difference is generated between different motors by adjusting the thrust of the different motors.
- the left/right flight and the forward/backward flight of the unmanned aerial vehicle 103 are realized; in addition, the motor 102 also generates an anti-torque force acting on the unmanned aerial vehicle 10, which is adjusted in different motors by adjusting the magnitude of the reverse torque of different motors.
- a counter-torque difference is generated to achieve a leftward yaw/rightward yaw of the unmanned aerial vehicle 103.
- the magnitude of the thrust of the motor 102 acting on the unmanned aerial vehicle 10 is related to the rotational speed of the motor.
- the greater the rotational speed of the motor the greater the thrust, and the corresponding force arm of the motor 102 is fixed.
- the magnitude of the torque generated by the thrust of the motor can be adjusted. Therefore, by adjusting the rotation speed of the motor, the thrust of the motor can be further changed to adjust the rolling torque and the pitching moment generated by the motor, thereby realizing the left/right flight and the forward/backward flight of the UAV. Attitude control.
- the magnitude of the anti-torque force acting on the unmanned aerial vehicle 10 to overcome the air resistance is also related to the rotational speed of the motor.
- the greater the rotational speed of the motor, the anti-torque force The force arm corresponding to the motor 102 is fixed.
- the magnitude of the torque generated by the reverse torque of the motor can be adjusted. Therefore, by adjusting the rotational speed of the motor, the reverse torque of the motor can be further changed to adjust the magnitude of the yaw moment generated by the motor, thereby realizing the control of the left-to-right yaw flight attitude of the unmanned aerial vehicle.
- the communication device is used for communication connection with the remote controller 11, and the unmanned aerial vehicle 10 interacts with the remote controller 11 through the communication device.
- the operable remote controller 11 transmits attitude control to the communication device.
- communication device will control attitude
- the command is sent to the control device, and the control device controls the rotational speed of the motor 102 according to the attitude control command to adjust the yaw moment, the rolling moment, and/or the pitching moment, thereby adjusting the flight attitude of the unmanned aerial vehicle.
- the UAV 10 may be a four-axis unmanned aerial vehicle, the four motors of the four-axis UAV are the same, and the corresponding arm of each motor is also fixed, thus, the four-axis unmanned The maximum yaw moment, maximum rolling moment and maximum pitching moment that the aircraft's motor can output are fixed.
- the present application provides an unmanned aerial vehicle control method for use in the above described application environment.
- the main body of the UAV control method is the unmanned aerial vehicle. Please refer to Figure 8.
- the method includes:
- Step 201 Receive an attitude control instruction, where the attitude control instruction carries information for controlling a magnitude of a yaw moment N N , a rolling moment L N , and a pitching moment M N originally required by the flight attitude of the unmanned aerial vehicle;
- the flight attitude of the UAV is mainly determined by its yaw moment, rolling moment and pitching moment.
- the yaw moment is used to control the UAV to make left/right yaw
- the rolling moment is used to control the UAV.
- the left/right flight is performed, and the pitching moment is used to control the unmanned aerial vehicle to fly forward/backward. Therefore, the unmanned aircraft requires different torques in different flight attitudes.
- Step 202 Determine whether the torque output capability of the motor of the UAV meets the need of outputting the yaw moment N N , the rolling moment L N and the pitching moment M N originally required. If not, proceed to step 203, otherwise The motor is directly controlled according to the yaw moment N N , the rolling moment L N and the pitching moment M N ;
- the UAV Since the UAV relies on the pitching moment generated by the difference in thrust between different motors to complete the attitude control of the UAV forward/backward flight, it depends on the rolling torque generated by the difference between the different motors.
- the thrust and reverse torque of the motor depend on the speed of the motor.
- the speed of the motor is proportional to the current of the motor. When the current is smaller, the speed is slower.
- Step 203 processing the magnitudes of the yaw moment N N , the rolling moment L N , and the pitching moment M N originally required for the flight attitude of the unmanned aerial vehicle, and obtaining the processing capable of outputting the torque output capability of the motor of the unmanned aerial vehicle The subsequent yaw moment N N ', the rolling moment L N ' and the pitching moment M N '.
- the yaw moment, the rolling moment and the pitching moment may be processed: the yaw moment, the rolling moment and the pitching moment are simultaneously reduced, or the yaw moment, the rolling moment and the pitching moment One or more of them are subjected to reduction processing.
- Step 204 Taking the processed yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' as the yaw moment, the rolling moment and the pitching moment that the motor actually outputs, perform the motor on the motor Controlling, thereby controlling the flight attitude of the unmanned aerial vehicle;
- the information on the magnitude of the pitching moment M N is different. Therefore, the flight attitude of the unmanned aerial vehicle adjusted according to the processed yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' It will be different from the flight attitude indicated in the attitude control command, but it is very good to avoid overloading the motor.
- the need to satisfy the yaw moment N N the rolling moment L N and the pitching moment M N originally required to adjust the flight attitude of the unmanned aerial vehicle is determined.
- the required yaw moment N N , the rolling moment L N and the pitching moment M N are processed to obtain the torque output capability of the motor of the unmanned aerial vehicle.
- FIG. 2 is a flowchart of a second embodiment of a method for controlling an unmanned aerial vehicle.
- the method for controlling an unmanned aerial vehicle in this embodiment is also an unmanned aerial vehicle.
- the method includes:
- Step 301 Receive an attitude control instruction, where the attitude control instruction carries information for controlling a magnitude of a yaw moment N N , a rolling moment L N , and a pitching moment M N originally required by the flight attitude of the unmanned aerial vehicle;
- Step 302 Determine whether the torque output capability of the motor of the UAV meets the requirement of outputting the yaw moment N N , the rolling moment L N and the pitching moment M N that are originally required. If not, proceed to step 303. Otherwise, the motor is directly controlled according to the originally required yaw moment N N , rolling moment L N and pitching moment M N .
- determining whether the torque output capability of the motor of the UAV meets the need to output the yaw moment N N , the rolling moment L N , and the pitching moment M N that are originally required specifically including: determining Whether it is established, where T is the torque threshold. If When established, it is determined that the torque output capability of the motor of the unmanned aerial vehicle does not satisfy the need to output the originally required yaw moment N N , rolling moment L N and pitching moment M N ; Not established, that is, satisfied at this time Then, it is determined that the torque output capability of the motor of the UAV satisfies the need to output the originally required yaw moment N N , rolling moment L N and pitching moment M N .
- the torque threshold T is the total torque output value that the torque output capability of the motor of the UAV is satisfied.
- Step 303 determining whether the torque output capability of the motor of the unmanned aerial vehicle meets the need to output the originally required rolling torque L N and pitching moment M N , if not, proceed to step 304, otherwise proceed to step 305;
- determining whether the torque output capability of the motor of the UAV meets the need to output the originally required rolling moment L N and pitching moment M N specifically includes: determining Whether it is established. If When it is established, it is judged that the torque output capability of the motor of the UAV does not satisfy the need to output the originally required rolling moment L N and pitching moment M N ; Not established, that is, satisfied at this time Then, it is judged that the torque output capability of the motor of the UAV satisfies the need to output the originally required rolling moment L N and pitching moment M N .
- Step 304 Performing reduction processing on the yaw moment N N , the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV, and using the result as the processed yaw moment N N ', rolling moment L N ' and pitching moment M N ';
- the magnitudes of the yaw moment N N , the rolling moment L N , and the pitching moment M N that are originally required for the flight attitude of the UAV are reduced, and the result is used as the processed bias.
- the flight torque N N ', the rolling moment L N ' and the pitching moment M N ' using the following formula:
- L Nmax is the maximum rolling moment that the torque output capability of the motor of the unmanned aerial vehicle can satisfy
- M Nmax is the maximum pitching moment that can be satisfied by the torque output capability of the motor of the unmanned aerial vehicle.
- the UAV Since the forward/backward flight and the left/right flight of the UAV are caused by the pitching moment and the rolling moment generated by the thrust difference between the motors, the UAV is left/right.
- Yaw is achieved by the torque generated by the anti-torque force of the unmanned aerial vehicle that is formed by the air resistance during the rotation due to the opposite direction of rotation of the motor rotor, but the ability of the motor to generate thrust perpendicular to the plane of the fuselage It is much easier than the ability of the motor to generate an anti-torsion that is coplanar with the plane of the fuselage. Therefore, when yaw control is performed on the unmanned aerial vehicle, the motor needs to output a large thrust, and the thrust of the motor is determined by the rotational speed of the motor.
- the speed of the motor is determined by the current of the motor. Therefore, the current required by the UAV to achieve the same pitch angle or roll angle is much smaller than the current required to achieve the same yaw angle, and the motor overload caused by the same yaw angle is satisfied. The risk is much greater than the risk of motor overload caused by the pitch or roll angle.
- the torque output capability of the motor of the UAV cannot simultaneously meet the needs of adjusting the yaw moment N N , the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV, the UAV is preferentially satisfied.
- the flight torque, such a treatment, is conducive to reducing the risk of the bomber caused by adjusting the flight attitude of the UAV.
- the yaw moment N N , the rolling moment L N , and the pitching moment M N that are originally required for the flight attitude of the UAV are reduced, and the result is treated as the processing.
- the yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' the following formula is used:
- the processed torque output capability of the motor of the unmanned aerial vehicle can be obtained. Yaw moment N N ', rolling moment L N ' and pitching moment M N '.
- Step 305 Maintaining the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV as the processed rolling moment L N ' and the pitching moment M N ', and The magnitude of the yaw moment N N originally required for the flight attitude of the UAV is reduced, and the result is taken as the processed yaw moment N N ';
- the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV the rolling torque and the pitching moment are preferentially satisfied.
- the yaw moment is redistributed, which is beneficial to reduce the risk of the bomber caused when adjusting the flying attitude of the unmanned aerial vehicle.
- the rolling moment L N and the pitching moment M N that are originally required for the flight attitude of the UAV remain unchanged as the processed rolling moment L N ' and the pitching moment M N ', and reducing the magnitude of the yaw moment N N originally required for the flight attitude of the unmanned aerial vehicle, and using the result as the processed yaw moment N N ', using the following formula:
- L Nmax is the maximum rolling moment that the torque output capability of the motor of the unmanned aerial vehicle can satisfy
- M Nmax is the maximum pitching moment that can be satisfied by the torque output capability of the motor of the unmanned aerial vehicle.
- Step 306 Taking the processed yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' as the yaw moment, the rolling moment and the pitching moment that the motor actually outputs, perform the motor on the motor Controlling, thereby controlling the flight attitude of the unmanned aerial vehicle;
- the difference in the rotational speed between different motors required to satisfy the yaw moment is greater than the difference in the rotational speed between different motors required to satisfy the rolling or pitching moment. Therefore, the risk of a motor bomber appearing to achieve the required yaw moment is relatively greater. Therefore, when the torque output capability of the motor of the UAV cannot simultaneously satisfy the need of the yaw moment, the rolling moment and the pitching moment which are originally required to adjust the flight attitude of the UAV, the rolling torque and the pitching moment are preferentially satisfied, and are satisfied. After the rolling moment and the pitching moment, the yaw moment is redistributed, which is beneficial to reduce the risk of the bomber caused by adjusting the flight attitude of the unmanned aerial vehicle.
- the apparatus 40 for controlling an unmanned aerial vehicle includes a receiving module 401, a judging module 402, a processing module 403, and a control module 404.
- the receiving module 401 is configured to receive an attitude control command, where is used to receive an attitude control command, where the attitude control command carries a yaw moment N N and a rolling moment that are originally required to control a flight attitude of the unmanned aerial vehicle Information on the magnitude of L N and pitching moment M N .
- the determining module 402 is configured to determine whether the torque output capability of the motor of the UAV meets the need to output the originally required yaw moment N N , rolling moment L N and pitching moment M N .
- the determining module 402 determines whether the torque output capability of the motor of the UAV meets the need to output the originally required yaw moment N N , rolling moment L N and pitching moment M N , Including: judgment Whether it is established, where T is the torque threshold.
- the torque threshold T is the total torque output value that the torque output capability of the motor of the UAV is satisfied.
- the processing module 403 is configured to: when the determining module 402 determines that the torque output capability of the motor of the unmanned aerial vehicle cannot meet the requirement of outputting the originally required yaw moment N N , rolling moment L N and pitching moment M N Processing the yaw moment N N , the rolling moment L N , and the pitching moment M N originally required for the flight attitude of the unmanned aerial vehicle to obtain a processing capable of outputting the torque output capability of the motor of the unmanned aerial vehicle The subsequent yaw moment N N ', the rolling moment L N ' and the pitching moment M N '.
- a control module 404 configured to use the processed yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' as the yaw moment, the rolling moment and the pitching moment that the motor actually outputs
- the motor is controlled to control the flight attitude of the UAV.
- the processing module 403 is configured to: when the determining module determines that the torque output capability of the motor of the unmanned aerial vehicle cannot meet the requirement of outputting the originally required yaw moment N N , rolling moment L N and pitching moment M N , It is further determined whether the torque output capability of the motor of the UAV meets the need to output the originally required rolling moment L N and pitching moment M N . If not satisfied, the yaw moment N N , the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV are reduced, and the result is used as the processed yaw Torque N N ', rolling moment L N ' and pitching moment M N '.
- the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV are maintained as the processed rolling moment L N ' and the pitching moment M N ', and The magnitude of the yaw moment N N originally required for the flight attitude of the unmanned aerial vehicle is reduced, and the result is taken as the yaw moment N N ' after the processing.
- the processing module further determines whether the torque output capability of the motor of the UAV meets the need to output the originally required rolling moment L N and pitching moment M N , including: determining Whether it is established. If When it is established, it is judged that the torque output capability of the motor of the UAV does not satisfy the need to output the originally required rolling moment L N and pitching moment M N ; Not established, that is, satisfied at this time Then, it is judged that the torque output capability of the motor of the UAV satisfies the need to output the originally required rolling moment L N and pitching moment M N , wherein T is a torque threshold.
- the processing module performs a reduction process on the yaw moment N N , the roll moment L N , and the pitch moment M N that are originally required for the flight attitude of the UAV, and the result is After the treatment, the yaw moment N N ', the rolling moment L N ' and the pitching moment M N ' are expressed by the following formula:
- L Nmax is the maximum rolling moment that the torque output capability of the motor of the unmanned aerial vehicle can satisfy
- M Nmax is the maximum pitching moment that can be satisfied by the torque output capability of the motor of the unmanned aerial vehicle.
- the yaw moment N N is directly set to zero, and then the rolling moment is set. L N and the pitching moment M N are reduced to achieve a strategy of prioritizing the rolling moment L N and the pitching moment M N .
- the processing module may further reduce the yaw moment N N , the rolling moment L N , and the pitching moment M N that are originally required by the flight attitude of the UAV.
- the rolling moment L N and the pitching moment M N instead of preferentially satisfying the rolling moment L N and the pitching moment M N , then specifically, the processing module pairs the unmanned aerial vehicle
- the yaw moment N N , the rolling moment L N and the pitching moment M N which are originally required for the flight attitude are all reduced, and the result is taken as the processed yaw moment N N ' and the rolling moment L N ' And the pitching moment M N ', the following formula can be used:
- the processing module maintains the rolling moment L N and the pitching moment M N originally required for the flight attitude of the UAV as the processed rolling moment L N ' and pitch
- L Nmax is the maximum rolling moment that the torque output capability of the motor of the unmanned aerial vehicle can satisfy
- M Nmax is the maximum pitching moment that can be satisfied by the torque output capability of the motor of the unmanned aerial vehicle.
- the flight attitude of the unmanned aerial vehicle is determined by the yaw moment, the rolling moment and the pitching moment of the unmanned aerial vehicle, the yaw moment and the rolling force of the unmanned aerial vehicle
- the moment and pitching moment are determined by the motor of the unmanned aerial vehicle.
- the motor of the unmanned aerial vehicle When judging whether the torque output capability of the motor of the unmanned aerial vehicle meets the yaw moment, the rolling moment and the pitching moment which are originally required to adjust the flight attitude of the unmanned aerial vehicle, the motor of the unmanned aerial vehicle, if not satisfied, the original The required yaw moment, rolling moment and pitching moment are reduced until the torque output capability of the motor can meet the needs of the reduced yaw moment, rolling moment and pitching moment, according to the reduced yaw moment, rolling The torque and pitching moment control the motor, which avoids the problem of forcibly controlling the motor output to adjust the yaw moment, rolling torque and pitching moment originally required for the flight attitude of the unmanned aerial vehicle, causing the motor to be overloaded and causing the problem of the bomber.
- FIG. 6 is a schematic diagram of an embodiment of an unmanned aerial vehicle of the present application.
- the UAV 50 includes a memory 51, at least one processor 52 and a motor 53, and at least one processor 52 is coupled to the motor 53 and the memory 51, respectively.
- the processor 52 is connected to the motor 53 and the memory 51, respectively, and may be connected by a bus or other means.
- the bus connection is taken as an example.
- the memory 51 stores instructions executable by the at least one processor 52, the instruction program being executed by the at least one processor 52 to enable the at least one processor 52 to execute: Steps 201 to 204, steps 301 to 306 of FIG. 9, and modules 401 to 404 of FIG.
- the memory 51 is a non-volatile computer readable storage medium, and can be used for storing a non-volatile software program, a non-volatile computer-executable program, and a module, such as a program corresponding to the steps performed by the processor in the embodiment of the present application. Instruction/module.
- the memory 51 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function.
- the memory 51 may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, a flash memory device, or other nonvolatile solid state storage device.
- memory 51 may optionally include memory remotely located relative to processor 51, which may be connected to the air conditioner over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
- the one or more modules are stored in the memory 51, and when executed by the one or more processors 51, perform steps 201 to 204 shown in FIG. 8, and steps 301 to 211 in FIG. 306, modules 401 through 404 of FIG.
- Embodiments of the present application provide a non-transitory computer readable storage medium storing computer-executable instructions that are executed by an unmanned aerial vehicle
- the aircraft performs: steps 201 to 204 shown in Fig. 8, steps 301 to 306 in Fig. 9, and modules 401 to 404 in Fig. 10.
- An embodiment of the present application provides a computer program product, including a computing program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer, The computer executes: steps 201 to 204 shown in Fig. 8, steps 301 to 306 in Fig. 9, and modules 401 to 404 in Fig. 10.
- the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or the like.
- the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- the various modules in the embodiments of the present application can be implemented as separate hardware or software, and a combination of functions of the respective units can be implemented using separate hardware or software as needed.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Power Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Toys (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种涉及飞行控制技术领域,尤其涉及控制无人飞行器的方法、装置及无人飞行器,包括:接收姿态控制指令,其中,姿态控制指令携带有控制无人飞行器(10)的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小的信息(201);判断无人飞行器(10)的电机(102)的力矩输出能力是否满足输出原本需要的偏航力矩NN、滚转力矩L N和俯仰力矩MN的需要(202);若不满足,则对无人飞行器(10)的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小进行处理,得到无人飞行器(10)的电机(102)的力矩输出能力能够输出的处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'(203)。能够在调整无人飞行器的飞行姿态时,避免出现无人飞行器的电机出现过载,引起炸机的情况。
Description
本申请要求于2017年8月7日提交中国专利局、申请号为201710667848.3、申请名称为“一种控制飞行的方法、装置及飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及飞行控制技术领域,尤其涉及一种控制无人飞行器的方法、装置及无人飞行器。
无人飞行器是指利用无线电遥控设备和自备的程序控制装置操纵的非载人型飞机,其可以搭载微型相机,实现空中采集视频、图片等,也可以用来搭载各种测量仪器,实现高空探测等等,因此,无人飞行器在农业、探测、气象、灾害预报和救援等领域具有广泛的应用。
无人飞行器依赖于电机之间的不同转速导致的反扭力差所产生的偏航力矩来完成向左/向右偏航的姿态控制;并依赖于电机之间的推力差所差生的滚转力矩、来完成向左/向右飞行的姿态控制,依赖于电机之间的推力差所差生的俯仰力矩来完成向前/向后飞行的姿态控制。为了方便读者更好地理解无人飞行器如何通过控制电机实现偏航、滚转和俯仰,以下以四轴无人飞行器为例进行说明,
如图1-4所示,无人飞行器的机身位于X轴、Y轴共同形成的平面内,其中,X轴的正向指示无人飞行器的机头朝向。无人飞行器在其四个机臂上分别安装有四个电机M1、M2、M3和M4。在图1中,绘制在电机M1和M3上的箭头比绘制在电机M2和M4上的箭头更粗,这表示电机M1和M3的转速大于电机M2和M4的转速。当电机M1和M3的转速大于电机M2和M4的转速时,由电机M1和M3的转子转动而产生的反扭力大于由电机M2和M4的转子转动而产生的反扭力,该反扭力差所产生的偏
航力矩使四轴无人飞行器发生向左偏航的飞行姿态。
同理,如图2所示,当电机M2和M4的转速大于电机M1和M3的转速时,由电机M2和M4的转子转动而产生的反扭力大于由电机M1和M3的转子转动而产生的反扭力,该反扭力差所产生的偏航力矩使四轴无人飞行器发生向右偏航的飞行姿态。
如图3所示,当电机M2和M3的转速大于电机M1和M4的转速时,电机M2和M3所产生的推力大于电机M1和M4所产生的推力,该推力差所产生的滚转力矩使四轴无人飞行器发生向左飞行的姿态。
如图4所示,当电机M1和M4的转速大于电机M2和M3的转速时,电机M1和M4所产生的推力大于电机M2和M3所产生的推力,该推力差所产生的滚转力矩使四轴无人飞行器发生向右飞行的姿态。
如图5所示,与图4中的原理类似,当电机M4和M3的转速大于电机M1和M2的转速时,电机M4和M3所产生的推力大于电机M1和M2所产生的推力,该推力差所产生的俯仰力矩使四轴无人飞行器发生向前飞行的姿态。
同理,如图6所示,当电机M1和M2的转速大于电机M4和M3的转速时,电机M1和M2所产生的推力大于电机M4和M3所产生的推力,该推力差所产生的俯仰力矩使四轴无人飞行器发生向后飞行的姿态。
由此可知,无人飞行器在向前、向后飞行时,依赖于电机之间的推力差所产生的俯仰力矩;同理,无人飞行器在向左、向右飞行时,依赖于电机之间的推力差所产生的滚转力矩。与此不同的是,无人飞行器在向左、向右偏航时,则是依赖于电机在旋转过程中的反扭力所产生的偏航扭矩,该反扭力是由于电机旋转时受到的空气阻力作用而形成的。上述的推力差的方向与多旋翼机身所在的平面垂直,上述的反扭力的方向与多旋翼无人飞行器的机身所在的平面共面。
本申请的发明人在实现本申请的过程中发现:对于无人飞行器,尤其是多旋翼无人飞行器而言,电机产生与机身所在平面垂直的推力的能力比电机产生与机身所在平面共面的反扭力的能力大很多,因此,尤其是在对无人飞行器进行需要反扭力来实现的偏航姿态的控制需求增大
时,出现电机运转饱和进而导致炸机现象的可能性将极度增大。另外,由于无人飞行器固有的机身结构特点,以及由于无人飞行器的飞行姿态控制的特定原理和电机的输出能力的局限性,将导致在完成无人飞行器的复杂姿态控制时,例如俯仰,滚转和偏航同时发生时,由于导致无人飞行器的电机的容易达到饱和状态,从而引发严重不可控的炸机现象。
发明内容
本申请要解决的技术问题是提供一种控制无人飞行器的方法、装置及无人飞行器,能够在调整无人飞行器的飞行姿态时,避免出现无人飞行器的电机过载,引起炸机的情况。
为了解决上述技术问题,本申请提供一种控制无人飞行器方法,包括:接收姿态控制指令,其中,所述姿态控制指令携带有控制所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小的信息;判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要;若不满足,则对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN、俯仰力矩MN的大小进行处理,得到所述无人飞行器的电机的力矩输出能力能够输出的处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN';将处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'作为所述电机实际将要输出的偏航力矩、滚转力矩和俯仰力矩,对所述电机进行控制,从而控制所述无人飞行器的飞行姿态。
在一些实施例中,所述判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要,包括:
若成立,则确定所述无人飞行器的电机的力矩输出能力不满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要;
若不成立,则确定所述无人飞行器的电机的力矩输出能力满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要;
其中,T为力矩阈值。
在一些实施例中,所述对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小进行处理,得到所述无人飞行器的电机的力矩输出能力能够输出的处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN',包括:
进一步判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要:
若不满足,则对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN';
若满足,则将所述无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN保持不变,作为所述处理后的滚转力矩LN'和俯仰力矩MN',并对所述无人飞行器的飞行姿态原本需要的偏航力矩NN的大小进行缩小处理,将结果作为所述处理后的偏航力矩NN'。
在一些实施例中,所述进一步判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要,包括:
若成立,则确定所述无人飞行器的电机的力矩输出能力不满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要;
若不成立,则确定所述无人飞行器的电机的力矩输出能力满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要;
其中,T为力矩阈值。
在一些实施例中,所述对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN',采用以
下公式:
NN'=0,
其中,LNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大滚转力矩,MNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大俯仰力矩。
可选地,所述对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN',采用以下公式:
在一些实施例中,所述将所述无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN保持不变,作为所述处理后的滚转力矩LN'和俯仰力矩MN',并对所述无人飞行器的飞行姿态原本需要的偏航力矩NN的大小进行缩小处理,将结果作为所述处理后的偏航力矩NN',采用以下公式:
LN'=LN;
MN'=MN;
其中,LNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大滚转力矩,MNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大俯仰力矩。
为了解决上述技术问题,本申请还提供一种控制无人飞行器的装
置,包括:接收模块,用于接收姿态控制指令,其中,所述姿态控制指令携带有控制所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小的信息;
判断模块,用于判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要;
处理模块,用于在所述判断模块判断到无人飞行器的电机的力矩输出能力不能满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要时,对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN、俯仰力矩MN的大小进行处理,得到所述无人飞行器的电机的力矩输出能力能够输出的处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN';
控制模块,用于将处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'作为所述电机实际将要输出的偏航力矩、滚转力矩和俯仰力矩,对所述电机进行控制,从而控制所述无人飞行器的飞行姿态。
在一些实施例中,所述判断模块判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要,包括:
若成立,则确定所述无人飞行器的电机的力矩输出能力不满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要;
若不成立,则确定所述无人飞行器的电机的力矩输出能力满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要,
其中,T为力矩阈值。
在一些实施例中,所述处理模块具体用于:
在所述判断模块判断到无人飞行器的电机的力矩输出能力不能满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要时,进一步判断所述无人飞行器的电机的力矩输出能力是否满足输出所
述原本需要的滚转力矩LN和俯仰力矩MN的需要;
若不满足,则对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN';
若满足,则将所述无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN保持不变,作为所述处理后的滚转力矩LN'和俯仰力矩MN',并对所述无人飞行器的飞行姿态原本需要的偏航力矩NN的大小进行缩小处理,将结果作为所述处理后的偏航力矩NN'。
在一些实施例中,所述处理模块进一步判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要,包括:
若成立,则确定所述无人飞行器的电机的力矩输出能力不满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要;
若不成立,则确定所述无人飞行器的电机的力矩输出能力满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要;
其中,T为力矩阈值。
在一些实施例中,所述处理模块对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN',采用以下公式:
NN'=0,
其中,LNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大滚转力矩,MNmax为所述无人飞行器的电机的力矩输出能力所能满足的
最大俯仰力矩。
可选地,所述处理模块对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN',采用以下公式:
在一些实施例中,所述处理模块将所述无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN保持不变,作为所述处理后的滚转力矩LN'和俯仰力矩MN',并对所述无人飞行器的飞行姿态原本需要的偏航力矩NN的大小进行缩小处理,将结果作为所述处理后的偏航力矩NN',采用以下公式:
LN'=LN;
MN'=MN;
其中,LNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大滚转力矩,MNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大俯仰力矩。
为了解决上述技术问题,本申请还提供一种无人飞行器,包括电机;至少一个处理器,与所述电机连接;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的方法。
为了解决上述技术问题,本申请还提供一种无人飞行器,包括:
机身;
与所述机身相连的机臂;
设置在所述机臂上的动力装置;以及
设置在所述机身内的处理器,所述处理器用于:
接收姿态控制指令,其中,所述姿态控制指令携带有控制所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小的信息;
判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要;
若不满足,则对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN、俯仰力矩MN的大小进行处理,得到所述无人飞行器的电机的力矩输出能力能够输出的处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN';
将处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'作为所述电机实际将要输出的偏航力矩、滚转力矩和俯仰力矩,对所述电机进行控制,从而控制所述无人飞行器的飞行姿态。
在一些实施例中,所述处理器具体用于:
若成立,则确定所述无人飞行器的电机的力矩输出能力不满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要;
若不成立,则确定所述无人飞行器的电机的力矩输出能力满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要;
其中,T为力矩阈值。
在一些实施例中,所述处理器具体用于:
进一步判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要:
若不满足,则对所述无人飞行器的飞行姿态原本需要的偏航力矩
NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN';
若满足,则将所述无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN保持不变,作为所述处理后的滚转力矩LN'和俯仰力矩MN',并对所述无人飞行器的飞行姿态原本需要的偏航力矩NN的大小进行缩小处理,将结果作为所述处理后的偏航力矩NN'。
在一些实施例中,所述处理器还用于:
若成立,则确定所述无人飞行器的电机的力矩输出能力不满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要;
若不成立,则确定所述无人飞行器的电机的力矩输出能力满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要;
其中,T为力矩阈值。
在一些实施例中,所述处理器采用以下公式,对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN':
NN'=0,
其中,LNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大滚转力矩,MNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大俯仰力矩。
在一些实施例中,所述处理器采用以下公式,对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和
俯仰力矩MN':
在一些实施例中,所述处理器采用以下公式,将所述无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN保持不变,作为所述处理后的滚转力矩LN'和俯仰力矩MN',并对所述无人飞行器的飞行姿态原本需要的偏航力矩NN的大小进行缩小处理,将结果作为所述处理后的偏航力矩NN':
LN'=LN;
MN'=MN;
其中,LNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大滚转力矩,MNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大俯仰力矩。
在本申请实施例中,当需要调整无人飞行器的飞行姿态时,确定在满足调整无人飞行器的飞行姿态所需要的偏航力矩、滚转力矩和俯仰力时无人飞行器的电机是否过载,若过载,对所需要的偏航力矩、滚转力矩和俯仰力矩进行缩小处理,并且根据缩小后的偏航力矩、滚转力矩和俯仰力矩控制电机,避免强行控制电机输出调整无人飞行器的飞行姿态所需要的偏航力矩、滚转力矩和俯仰力矩时,造成电机过载,引起炸机的问题。
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,
这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为四轴无人飞行器实现向左偏航的示意图;
图2为四轴无人飞行器实现向右偏航的示意图;
图3为四轴无人飞行器实现向左飞行的示意图;
图4为四轴无人飞行器实现向右飞行的示意图;
图5为四轴无人飞行器实现向前飞行的示意图;
图6为四轴无人飞行器实现向后飞行的示意图;
图7是本申请实施例的运行环境示意图;
图8为本申请控制无人飞行器的方法第一实施例的流程图;
图9为本申请控制无人飞行器的方法第二实施例的流程图;
图10为本申请控制无人飞行器的装置实施例的示意图;
图11为本申请无人飞行器实施例的示意图。
下面介绍的是本申请的多个可能实施例中的一些,旨在提供对本申请的基本了解,并不旨在确认本申请的关键或决定性的要素或限定所要的保护的范围。容易理解的是,根据本申请的技术方案,在不变更本申请的实质精神下,本领域的一般技术人员可以提出相互替换的其他实现方式。因此,以下具体实施例以及附图仅是对本申请的技术方案的示例性说明,而不应当视为本申请的全部或者视为对本申请技术方案的限定或限制。
下面的描述中,为了描述的清楚和简明,并没有再附图中对空调控制系统的所有部件一一示出,附图中重点示出了本领域普通技术人员为完全能够实现本申请的多个部件,并且对于本领域技术人员来说,许多部件的操作都是熟悉而且明显的。
请参阅图7,图7是本申请实施例应用环境示意图,该应用环境包括无人飞行器10和遥控器11,无人飞行器10包括机身100、与机身100
相连的机臂101以及设置在机臂101上的动力装置。典型的动力装置包括电机102、设置电机102上的螺旋桨103、设置于所述机身100或机臂101上并与所述电机102电性连接的控制装置(图未示)、以及与控制装置电性连接的通信装置(图未示)。控制装置用于控制电机102转动,通过电机102的转动带动螺旋桨103螺旋,从而产生向上推力,实现无人飞行器10的上升或者下降。由于电机102是固定于无人飞行器10上,当电机102转动时,电机102也会产生一个作用于无人飞行器10的推力,通过调节不同电机的推力大小而在不同电机之间产生推力差,实现无人飞行器103的向左/向右飞行、向前/向后飞行;另外,电机102还会产生作用于无人飞行器10的反扭力,通过调节不同电机的反扭力大小而在不同电机之间产生反扭力差,实现无人飞行器103的向左偏航/向右偏航。
需要说明的是:电机102作用于无人飞行器10的推力大小与电机的转速有关,通常情况下,电机的转速越大,其推力越大,而电机102对应的力臂是固定的,对于固定的力臂而言,通过调整推力的大小,可以调整电机的推力所产生的力矩的大小。因此,可以通过调节电机的转速,进一步改变电机的推力,来调节电机所产生滚转力矩和俯仰力矩的大小,从而实现对无人飞行器的向左/向右飞行和向前/向后飞行的姿态控制。
同理,电机102在转子旋转的过程中,为克服空气阻力而产生的作用于无人飞行器10的反扭力大小也与电机的转速有关,通常情况下,电机的转速越大,其反扭力,而电机102对应的力臂是固定的,对于固定的力臂而言,通过调整反扭力的大小,可以调整电机的反扭力所产生的力矩的大小。因此,可以通过调节电机的转速,进一步改变电机的反扭力,来调节电机所产生的偏航力矩的大小,从而实现对无人飞行器的向左/向右偏航的飞行姿态的控制。
通信装置用于与遥控器11通信连接,无人飞行器10通过通信装置与遥控器11进行交互,例如:当需要控制无人飞行器10的飞行姿态时,可操作遥控器11向通信装置发送姿态控制指令,通信装置将姿态控制
指令发送至控制装置,控制装置根据姿态控制指令控制电机102的转速,调整偏航力矩、滚转力矩和/或俯仰力矩,从而调整无人飞行器的飞行姿态。
在一些实施例中,无人飞行器10可选为四轴无人飞器,四轴无人飞行器的四个电机是相同,并且各个电机的对应的力臂也是固定的,因此,四轴无人飞行器的电机所能输出的最大偏航力矩、最大滚转力矩和最大俯仰力矩是固定的。
本申请提供应用于上述应用环境的无人飞行器控制方法。无人飞行器控制方法的执行主体是无人飞行器,请参阅图8,方法包括:
步骤201:接收姿态控制指令,其中,所述姿态控制指令携带有控制所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小的信息;
无人飞行器的飞行姿态主要决定于其偏航力矩、滚转力矩和俯仰力矩,其中,偏航力矩用于控制无人飞行器进行向左/向右偏航,滚转力矩用于控制无人飞行器进行向左/向右飞行,俯仰力矩用于控制无人飞行器进行向前/向后飞行,因此,无人飞行器在不同的飞行姿态时,其需要力矩是不相同的。
步骤202:判断所述无人飞行器的电机的力矩输出能力是否满足输出原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要,若不满足,进入步骤203,否则将直接根据偏航力矩NN、滚转力矩LN和俯仰力矩MN对电机进行控制;
由于无人飞行器依赖于不同电机之间的推力差所产生的俯仰力矩来完成无人飞行器向前/向后飞行的姿态控制,依赖于不同电机之间的推力差所产生的滚转力矩来完成无人飞行器向左/向右飞行的姿态控制;并依赖于不同电机之间的反扭力差所产生的偏航力矩来完成无人飞行器向左/向右偏航的姿态控制。而电机的推力和反扭力取决于电机的转速,电机的转速与电机的电流是正比,当其电流越小,其转速越慢,当其电流越大,其转速越快,但是每一个电机所允许的负载(即最大电流)是固定的,当输入的电流值超过电机的负载时,电机就会出现饱和
状态,引起炸机,因此,在接收至姿态控制指令时,先判断无人飞行器的电机的力矩输出能力是否满足原本需要的偏航力矩、滚转力矩和俯仰力矩。
步骤203:对无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN、俯仰力矩MN的大小进行处理,得到所述无人飞行器的电机的力矩输出能力能够输出的处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'。
当为了满足原本需要的偏航力矩、滚转力矩和俯仰力矩,无人飞行器的电机出现负载过载时,则对原本需要的偏航力矩、滚转力矩和俯仰力矩进行处理,可以很好地避免强行满足原本需要的偏航力矩、滚转力矩和俯仰力矩造成电机过载的情况。
需要说明的是:对偏航力矩、滚转力矩和俯仰力矩进行处理可以是:偏航力矩、滚转力矩和俯仰力矩三者同时进行缩小处理,或者,偏航力矩、滚转力矩和俯仰力矩中一个或者多个进行缩小处理。
步骤204:将处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'作为所述电机实际将要输出的偏航力矩、滚转力矩和俯仰力矩,对所述电机进行控制,从而控制所述无人飞行器的飞行姿态;
可以理解的是,处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN',与姿态控制指令中所携带的原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小的信息是不相同的,因此,根据处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'调整出来的无人飞行器的飞行姿态会也会与姿态控制指令中所指示的飞行姿态不相同的,但其很好避免电机出现过载的情况。
在本申请实施例中,当需要调整无人飞行器的飞行姿态时,先确定在满足调整无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要时无人飞行器的电机是否过载,若过载,对原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要的大小进行处理,得到无人飞行器的电机的力矩输出能力能够输出的处理后的偏航力
矩NN'、滚转力矩LN'和俯仰力矩MN',并且根据处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN',对所述电机进行控制,控制所述无人飞行器的飞行姿态,从而很好地避免强行控制电机输出原来需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN时,造成电机过载,引起炸机的问题。
请参阅图2,图2是本申请控制无人飞行器的方法第二实施例的流程图,本实施中控制无人飞行器的方法的执行主体也是无人飞行器,该方法包括:
步骤301:接收姿态控制指令,所述姿态控制指令携带有控制所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小的信息;
步骤302:判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要,若不满足,则进入步骤303,否则直接根据原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN对电机进行控制。
在一些实施例中,判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要,具体包括:判断是否成立,其中,T为力矩阈值。若成立,则确定所述无人飞行器的电机的力矩输出能力不满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要;若不成立,即,此时满足则确定所述无人飞行器的电机的力矩输出能力满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要。
需要说明的是:力矩阈值T为无人飞行器的电机的力矩输出能力所满足的总的力矩输出值。
步骤303:判断无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要,若不满足,则进入步骤304,否则进入步骤305;
在一些实施例中,判断无人飞行器的电机的力矩输出能力是否满足
输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要具体包括:判断是否成立。若成立,则判断所述无人飞行器的电机的力矩输出能力不满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要;若不成立,即,此时满足则判断所述无人飞行器的电机的力矩输出能力满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要。
步骤304:对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN';
在一些实施例中,对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN',采用以下公式:
NN'=0,
其中,LNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大滚转力矩,MNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大俯仰力矩。
由于无人飞行器的向前/向后飞行、向左/向右飞行是依赖于电机之间的推力差所产生的俯仰力矩、滚转力矩来实现的,而无人飞行器的向左/向右偏航则是依赖于无人飞行器电机在旋转过程中由于空气阻力作用形成的与电机转子的转动方向相反的反扭力所产生的扭矩实现的,但是电机产生与机身所在平面垂直的推力的能力比电机产生与机身所在平面共面的反扭力的能力容易得多,因此,在对无人飞行器进行偏航控制时,需要电机输出较大的推力,而电机的推力决定于电机的转速,而
电机的转速决定于电机的电流,因此,无人飞行器实现相同俯仰角或滚转角所需要的电机的电流远小于实现相同偏航角所需要的电流,满足相同偏航角所引起的电机过载的风险远大于满足俯仰角或滚转角所引起的电机过载的风险。当无人飞行器的电机的力矩输出能力无法同时满足调整无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要时,优先满足实现无人飞行器向左/向右飞行、向前/向后飞行所需的滚转力矩和俯仰力矩,在满足滚转力矩和俯仰力矩后,再分配用于实现无人飞行器向左/向右飞行所需的偏航力矩,这样的处理方式,有利于降低在调整无人飞行器的飞行姿态时所引起炸机风险。
进一步,当无人飞行器的电机的力矩输出能力连原本需要的滚转力矩LN和俯仰力矩MN的都无法满足时,直至将偏航力矩NN置零,然后再原本需要的滚转力矩LN和俯仰力矩MN进行缩小处理,以保证滚转力矩LN和俯仰力矩MN优先的策略。
在另一些实施例中,所述对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN',采用以下公式:
在本实施例中,通过对原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN进行等比例缩小,得到所述无人飞行器的电机的力矩输出能力能够输出的处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'。
步骤305:将所述无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN保持不变,作为所述处理后的滚转力矩LN'和俯仰力矩MN',并对所述无人飞行器的飞行姿态原本需要的偏航力矩NN的大小进行缩
小处理,将结果作为所述处理后的偏航力矩NN';
当无人飞行器的电机的力矩输出能力无法满足调整无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要时,优先满足滚转力矩和俯仰力矩,在满足滚转力矩和俯仰力矩时,再分配偏航力矩,有利于降低在调整无人飞行器的飞行姿态时所引起炸机风险。
在一些实施例中,所述将所述无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN保持不变,作为所述处理后的滚转力矩LN'和俯仰力矩MN',并对所述无人飞行器的飞行姿态原本需要的偏航力矩NN的大小进行缩小处理,将结果作为所述处理后的偏航力矩NN',采用以下公式:
LN'=LN;
MN'=MN;
其中,LNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大滚转力矩,MNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大俯仰力矩。
步骤306:将处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'作为所述电机实际将要输出的偏航力矩、滚转力矩和俯仰力矩,对所述电机进行控制,从而控制所述无人飞行器的飞行姿态;
在本申请实施例中,由于在相同电机运转能力下,满足偏航力矩所需达到的不同电机之间的转速差比满足滚转力矩或俯仰力矩所需达到的不同电机之间的转速差大,因而为实现所需要的偏航力矩而出现电机炸机的风险相对而言也就更大。因此,当无人飞行器的电机的力矩输出能力无法同时满足调整无人飞行器的飞行姿态原本需要的偏航力矩、滚转力矩和俯仰力矩的需要时,优先满足滚转力矩和俯仰力矩,在满足滚转力矩和俯仰力矩后,再分配偏航力矩,有利于降低在调整无人飞行器的飞行姿态时所引起炸机风险。
本申请又提供了控制无人飞行器的装置实施例。请参阅图,控制无人飞行器的装置40包括接收模块401、判断模块402、处理模块403和控制模块404。
接收模块401,用于接收姿态控制指令,其中,用于接收姿态控制指令,其中,所述姿态控制指令携带有控制所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小的信息。判断模块402,用于判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要。
在一些实施例中,所述判断模块402判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要,包括:判断是否成立,其中,T为力矩阈值。若成立,则确定所述无人飞行器的电机的力矩输出能力不满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要,若不成立,即,此时满足则确定所述无人飞行器的电机的力矩输出能力满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要,其中,T为力矩阈值。
需要说明的是:力矩阈值T为无人飞行器的电机的力矩输出能力所满足的总的力矩输出值。
处理模块403,用于在所述判断模块402判断到无人飞行器的电机的力矩输出能力不能满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要时,对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN、俯仰力矩MN的大小进行处理,得到所述无人飞行器的电机的力矩输出能力能够输出的处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'。控制模块404,用于将处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'作为所述电机实际将要输出的偏航力矩、滚转力矩和俯仰力矩,对所述电机进行控制,从而控制所述无人飞行器的
飞行姿态。
当需要调整无人飞行器的飞行姿态时,先在满足调整无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN时无人飞行器的电机是否出现过载,若过载,则对原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN进行处理,得到所述无人飞行器的电机的力矩输出能力能够输出的处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN',再根据处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'对电机进行控制,很好地避免强行控制电机输出调整无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN时,造成电机过载,引起炸机的问题。
进一步地,由于在相同的电机运转能力下,满足偏航力矩所需达到的不同电机之间的转速差比满足滚转力矩或俯仰力矩所需达到的不同电机之间的转速差大,因而为实现所需要的偏航力矩而出现电机炸机的风险相对而言也就更大。因此,当无人飞行器的电机的力矩输出能力无法同时满足调整无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要时,优先满足滚转力矩和俯仰力矩,在满足滚转力矩和俯仰力矩后,再分配偏航力矩,有利于降低在调整无人飞行器的飞行姿态时所引起炸机风险,具体地:
处理模块403用于:在所述判断模块判断到无人飞行器的电机的力矩输出能力不能满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要时,进一步判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要。若不满足,则对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'。若满足,则将所述无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN保持不变,作为所述处理后的滚转力矩LN'和俯仰力矩MN',并对所述无人飞行器的飞行姿态原本需要的偏航力矩NN的大小进行缩小处理,将结果作为所述
处理后的偏航力矩NN'。
在一些实施例中,处理模块进一步判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要,包括:判断是否成立。若成立,则判断所述无人飞行器的电机的力矩输出能力不满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要;若不成立,即,此时满足则判断所述无人飞行器的电机的力矩输出能力满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要,其中,T为力矩阈值。
在一些实施例中,所述处理模块对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN',采用以下公式:
NN'=0,
其中,LNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大滚转力矩,MNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大俯仰力矩。
在本实施例中,当无人飞行器的电机的力矩输出能力连原本需要的滚转力矩LN和俯仰力矩MN都无法满足时,直接将偏航力矩NN置零,再将滚转力矩LN和俯仰力矩MN进行缩小,实现以滚转力矩LN和俯仰力矩MN优先的策略。
当然,在另一些实施例中,处理模块对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理的处理方式也可以为对偏航力矩NN、滚转力矩LN和俯仰力矩MN进
行等比例缩小,而不是优先满足滚转力矩LN和俯仰力矩MN,则具体的,处理模块对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN',又可以采用以下公式:
在一些实施例中,所述处理模块将所述无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN保持不变,作为所述处理后的滚转力矩LN'和俯仰力矩MN',并对所述无人飞行器的飞行姿态原本需要的偏航力矩NN的大小进行缩小处理,将结果作为所述处理后的偏航力矩NN',又可以采用以下公式:
LN'=LN;
MN'=MN;
其中,LNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大滚转力矩,MNmax为所述无人飞行器的电机的力矩输出能力所能满足的最大俯仰力矩。
在本实施例中,当无人飞行器的电机的力矩输出能力无法满足调整无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要,但电机的力矩输出能力又能满足调整无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN的需要时,优先满足滚转力矩和俯仰力矩,在满足滚转力矩和俯仰力矩时,再将剩余能力分配给偏航力矩。
在本申请实施例中,由于无人飞行器的飞行姿态决定于无人飞行器的偏航力矩、滚转力矩和俯仰力矩,而无人飞行器的偏航力矩、滚转力
矩和俯仰力矩决定于无人飞行器的电机,当所需要的偏航力矩、滚转力矩和俯仰力矩超出电机的力矩输出能力时,会造成电机炸机,因此,当需要调整无人飞行器的飞行姿态时,先判断无人飞行器的电机的力矩输出能力是否满足输出调整无人飞行器的飞行姿态原本需要的偏航力矩、滚转力矩和俯仰力矩时无人飞行器的电机,若不满足,则对原本需要的偏航力矩、滚转力矩和俯仰力矩进行缩小处理,直至电机的力矩输出能力能够满足缩小后的偏航力矩、滚转力矩和俯仰力矩的需要,才根据缩小后的偏航力矩、滚转力矩和俯仰力矩对电机进行控制,很好地避免强行控制电机输出调整无人飞行器的飞行姿态原本需要的偏航力矩、滚转力矩和俯仰力矩时,造成电机过载,引起炸机的问题。
请参阅图6,图6是本申请无人飞行器实施例的示意图,无人飞行器50包括:存储器51、至少一个处理器52和电机53,至少一个处理器52分别与电机53和存储器51连接。
处理器52分别与电机53和所述存储器51连接可以通过总线或者其他方式连接,图6中以通过总线连接为例。
所述存储器51存储有可被所述至少一个处理器52执行的指令,所述指令程序被所述至少一个处理器52执行,以使所述至少一个处理器52能够执行:附图8所示的步骤201至204,附图9中步骤301至步骤306,附图10中模块401至404。
存储器51作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中处理器所执行步骤对应的程序指令/模块。存储器51可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序。此外,存储器51可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器51可选包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至空调。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器51中,当被所述一个或者多个处理器51执行时,执行:附图8所示的步骤201至204,附图9中步骤301至步骤306,附图10中模块401至404。
本申请实施例提供了一种非易失性计算机可读存储介质,所述非易失性计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被无人飞行器执行时,无人飞行器执行:附图8所示的步骤201至204,附图9中步骤301至步骤306,附图10中模块401至404。
本申请实施例提供了一种计算机程序产品,包括存储在非易失性计算机可读存储介质上的计算程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时时,使所述计算机执行:附图8所示的步骤201至204,附图9中步骤301至步骤306,附图10中模块401至404。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人
员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
需要说明的是,本申请实施例中的空调控制装置中的各个模块、单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,具体内容同样适用于空调控制装置。本申请实施例中的各个模块能作为单独的硬件或软件来实现,并且可以根据需要使用单独的硬件或软件来实现各个单元的功能的组合。
Claims (23)
- 一种控制无人飞行器的方法,其特征在于,包括:接收姿态控制指令,其中,所述姿态控制指令携带有控制所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小的信息;判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要;若不满足,则对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN、俯仰力矩MN的大小进行处理,得到所述无人飞行器的电机的力矩输出能力能够输出的处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN';将处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'作为所述电机实际将要输出的偏航力矩、滚转力矩和俯仰力矩,对所述电机进行控制,从而控制所述无人飞行器的飞行姿态。
- 根据权利要求2所述的方法,其特征在于,所述对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大 小进行处理,得到所述无人飞行器的电机的力矩输出能力能够输出的处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN',包括:进一步判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要:若不满足,则对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN';若满足,则将所述无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN保持不变,作为所述处理后的滚转力矩LN'和俯仰力矩MN',并对所述无人飞行器的飞行姿态原本需要的偏航力矩NN的大小进行缩小处理,将结果作为所述处理后的偏航力矩NN'。
- 一种控制无人飞行器的装置,其特征在于,包括:接收模块,用于接收姿态控制指令,其中,所述姿态控制指令携带有控制所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小的信息;判断模块,用于判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要;处理模块,用于在所述判断模块判断到无人飞行器的电机的力矩输出能力不能满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要时,对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN、俯仰力矩MN的大小进行处理,得到所述无人飞行器的电机的力矩输出能力能够输出的处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN';控制模块,用于将处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'作为所述电机实际将要输出的偏航力矩、滚转力矩和俯仰力矩,对所述电机进行控制,从而控制所述无人飞行器的飞行姿态。
- 根据权利要求8或9所述的装置,其特征在于,所述处理模块具体用于:在所述判断模块判断到无人飞行器的电机的力矩输出能力不能满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要时,进一步判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要;若不满足,则对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN';若满足,则将所述无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN保持不变,作为所述处理后的滚转力矩LN'和俯仰力矩MN',并对所述无人飞行器的飞行姿态原本需要的偏航力矩NN的大小进行缩小处理,将结果作为所述处理后的偏航力矩NN'。
- 一种无人飞行器,其特征在于,包括:电机;至少一个处理器,与所述电机连接;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1至7任一项所述的方法。
- 一种无人飞行器,其特征在于,包括:机身;与所述机身相连的机臂;设置在所述机臂上的动力装置;以及设置在所述机身内的处理器,所述处理器用于:接收姿态控制指令,其中,所述姿态控制指令携带有控制所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小的信息;判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的需要;若不满足,则对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN、俯仰力矩MN的大小进行处理,得到所述无人飞行器的电机的力矩输出能力能够输出的处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN';将处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN'作为所述电机实际将要输出的偏航力矩、滚转力矩和俯仰力矩,对所述电机进行控制,从而控制所述无人飞行器的飞行姿态。
- 根据权利要求17所述的无人飞行器,其特征在于,所述处理器具体用于:进一步判断所述无人飞行器的电机的力矩输出能力是否满足输出所述原本需要的滚转力矩LN和俯仰力矩MN的需要:若不满足,则对所述无人飞行器的飞行姿态原本需要的偏航力矩NN、滚转力矩LN和俯仰力矩MN的大小均进行缩小处理,将结果作为所述处理后的偏航力矩NN'、滚转力矩LN'和俯仰力矩MN';若满足,则将所述无人飞行器的飞行姿态原本需要的滚转力矩LN和俯仰力矩MN保持不变,作为所述处理后的滚转力矩LN'和俯仰力矩MN',并对所述无人飞行器的飞行姿态原本需要的偏航力矩NN的大小进行缩小处理,将结果作为所述处理后的偏航力矩NN'。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-7任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710667848.3 | 2017-08-07 | ||
CN201710667848.3A CN109388145B (zh) | 2017-08-07 | 2017-08-07 | 一种控制飞行器的方法、装置及飞行器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019029045A1 true WO2019029045A1 (zh) | 2019-02-14 |
Family
ID=65273339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/112061 WO2019029045A1 (zh) | 2017-08-07 | 2017-11-21 | 一种控制无人飞行器的方法、装置及无人飞行器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109388145B (zh) |
WO (1) | WO2019029045A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103197670A (zh) * | 2013-02-25 | 2013-07-10 | 西北工业大学 | 飞行器气动强耦合解耦方法 |
CN103387051A (zh) * | 2013-07-23 | 2013-11-13 | 中国科学院长春光学精密机械与物理研究所 | 四旋翼飞行器 |
CN104743107A (zh) * | 2015-04-24 | 2015-07-01 | 北京双飞伟业科技有限公司 | 多旋翼飞行器 |
CN204979224U (zh) * | 2015-06-10 | 2016-01-20 | 胡家祺 | 旋翼控制装置及旋翼飞行器 |
US20160122018A1 (en) * | 2014-10-29 | 2016-05-05 | Denso Corporation | Observation Device |
CN106990790A (zh) * | 2017-06-06 | 2017-07-28 | 成都纵横自动化技术有限公司 | 一种抗饱和多旋翼飞行器控制方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130133445A1 (en) * | 2011-11-29 | 2013-05-30 | Christopher Jan Heiberg | Control moment gyroscope desaturation in aircraft |
CN104102128B (zh) * | 2013-04-09 | 2017-08-04 | 中国人民解放军第二炮兵工程大学 | 一种适用于小型无人飞行器的抗干扰姿态控制方法 |
DE102013013340B4 (de) * | 2013-08-09 | 2023-08-10 | Liebherr-Aerospace Lindenberg Gmbh | Klappensystem für ein Flugzeughochauftriebsystem oder eine Triebwerksaktuation und Verfahren zur Überwachung eines Klappensystems |
CN104044734B (zh) * | 2014-06-20 | 2016-03-02 | 中国科学院合肥物质科学研究院 | 具有可倾斜机翼和旋翼的多旋翼无人机控制系统和方法 |
US9616990B2 (en) * | 2014-07-18 | 2017-04-11 | Hamilton Sundstrand Corporation | Aircraft component rotary device |
CN104950898B (zh) * | 2015-06-10 | 2017-10-17 | 北京理工大学 | 一种再入飞行器全阶非奇异终端滑模姿态控制方法 |
-
2017
- 2017-08-07 CN CN201710667848.3A patent/CN109388145B/zh active Active
- 2017-11-21 WO PCT/CN2017/112061 patent/WO2019029045A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103197670A (zh) * | 2013-02-25 | 2013-07-10 | 西北工业大学 | 飞行器气动强耦合解耦方法 |
CN103387051A (zh) * | 2013-07-23 | 2013-11-13 | 中国科学院长春光学精密机械与物理研究所 | 四旋翼飞行器 |
US20160122018A1 (en) * | 2014-10-29 | 2016-05-05 | Denso Corporation | Observation Device |
CN104743107A (zh) * | 2015-04-24 | 2015-07-01 | 北京双飞伟业科技有限公司 | 多旋翼飞行器 |
CN204979224U (zh) * | 2015-06-10 | 2016-01-20 | 胡家祺 | 旋翼控制装置及旋翼飞行器 |
CN106990790A (zh) * | 2017-06-06 | 2017-07-28 | 成都纵横自动化技术有限公司 | 一种抗饱和多旋翼飞行器控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109388145A (zh) | 2019-02-26 |
CN109388145B (zh) | 2020-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018099198A1 (zh) | 无人机姿态控制方法、装置及无人机 | |
Cabecinhas et al. | A globally stabilizing path following controller for rotorcraft with wind disturbance rejection | |
WO2017181512A1 (zh) | 无人机的飞行控制方法和装置 | |
CN104699108B (zh) | 一种多旋翼飞行器的控制分配方法 | |
WO2021057601A1 (zh) | 一种无人机飞行方法、装置和无人机 | |
US11245848B2 (en) | Method of controlling gimbal, gimbal and UAV | |
WO2020237528A1 (zh) | 垂直起降无人机的飞行控制方法、设备及垂直起降无人机 | |
WO2019210640A1 (zh) | 电机控制方法和装置 | |
EP3384361A1 (en) | Multirotor aircraft control systems | |
US11822350B2 (en) | Adjusting load on tethered aircraft | |
CN110254696B (zh) | 无人机模式切换控制方法、装置,存储介质及电子设备 | |
CN106802659A (zh) | 变桨距多旋翼飞行器的控制方法 | |
CN108572655A (zh) | 飞行控制方法及相关装置 | |
WO2016141888A1 (zh) | 飞行器及其翻转方法 | |
WO2019210639A1 (zh) | 一种油门控制的方法、装置及无人机 | |
CN108803643A (zh) | 飞行控制方法、装置、飞行控制器及复合翼飞行器 | |
WO2021072733A1 (zh) | 无人机的控制所述方法、装置以及无人机 | |
CN109308064A (zh) | 一种四旋翼无人机的故障容错控制方法及系统 | |
WO2019029045A1 (zh) | 一种控制无人飞行器的方法、装置及无人飞行器 | |
US20210188426A1 (en) | Multi-rotor aerial vehicle and control method thereof | |
WO2022165311A1 (en) | Geometric control envelope system and method for limiting commands to actuator mapping function | |
WO2021035623A1 (zh) | 一种飞行控制方法、设备及飞行器 | |
CN115542937B (zh) | 一种扑翼飞行器控制方法、装置、电子设备以及存储介质 | |
Pratama et al. | Robustness of PD control for transporting quadrotor with payload uncertainties | |
CN113625763A (zh) | 无人机的控制方法、装置、介质、电子设备和无人机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17920667 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17920667 Country of ref document: EP Kind code of ref document: A1 |