WO2019026422A1 - Structure, stator, and motor - Google Patents
Structure, stator, and motor Download PDFInfo
- Publication number
- WO2019026422A1 WO2019026422A1 PCT/JP2018/022025 JP2018022025W WO2019026422A1 WO 2019026422 A1 WO2019026422 A1 WO 2019026422A1 JP 2018022025 W JP2018022025 W JP 2018022025W WO 2019026422 A1 WO2019026422 A1 WO 2019026422A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- support surface
- stator
- pair
- support
- coil
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/32—Windings characterised by the shape, form or construction of the insulation
- H02K3/34—Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/46—Fastening of windings on the stator or rotor structure
Definitions
- the present invention relates to a structure including a coil, a stator including the structure, and a motor including the stator.
- the coil of the motor is formed by winding a conducting wire around the teeth to be the magnetic core through the insulator of the insulator. Inside the motor, a plurality of such coils are arranged around a central axis. Moreover, in order to arrange many coils around the central axis, the cross-sectional shape of the teeth may be a rectangular shape that is long in the axial direction and short in the circumferential direction.
- the conducting wire When winding the conducting wire around the teeth via the insulator, the conducting wire may expand in the circumferential direction.
- swelling (lifting) of the conducting wire with respect to both end surfaces in the circumferential direction of the insulator becomes large.
- the bulge of the wire is more pronounced as the wire with a larger wire diameter is used.
- it is required to suppress the wire bulge.
- An object of the present invention is to provide a structure capable of suppressing the expansion of a lead with respect to a support surface in a structure including a coil.
- An exemplary first invention of the present application is a structure including a coil, wherein the coil includes a cylindrical support surface extending in a direction of a magnetic core of the coil, and a conductive wire wound around the support surface.
- the support surface is a quadrilateral shape in which long sides and short sides are alternately arranged as viewed in the magnetic core direction, and a pair of first support surfaces corresponding to the short sides and the long sides A corresponding pair of second support surfaces, and the conductive wire is supported from the winding start portion in contact with the support surface toward the winding end portion farther from the support surface than the winding start portion.
- the sheet is wound around in a winding direction, and at least one of the pair of first support surfaces is an inclined surface intersecting at an obtuse angle with respect to the second support surface located on the downstream side of the winding direction.
- the conducting wire bends at an obtuse angle from the first support surface to the second support surface.
- the expansion of the wire at the second support surface can be suppressed more than when the wire is bent at a right angle.
- FIG. 1 is a longitudinal sectional view of a motor.
- FIG. 2 is a perspective view of the first resin member.
- FIG. 3 is a top view of a portion of the stator core and the insulator.
- FIG. 4 is a cross-sectional view of the stator core and the insulator as viewed from the position AA in FIG.
- FIG. 5 is a cross-sectional view of the teeth and the insulator as viewed from the position AA in FIG.
- FIG. 6 is a view showing a comparative example where there is no projection.
- a direction parallel to the central axis of the motor is "axial direction”
- a direction perpendicular to the central axis of the motor is “radial direction”
- a direction along an arc centered on the central axis of the motor is “circumferential direction”
- the axial direction is the vertical direction
- the shape and positional relationship of each part will be described with the bus bar assembly side up with respect to the stator.
- the definition in the vertical direction is not intended to limit the direction at the time of manufacture and use of the motor according to the present invention.
- parallel direction also includes a substantially parallel direction.
- orthogonal direction also includes a substantially orthogonal direction.
- FIG. 1 is a longitudinal sectional view of a motor 1 according to an embodiment of the present invention.
- the motor 1 of the present embodiment is mounted, for example, on an automobile and used as a drive source for generating a drive force of the electric power steering apparatus.
- the motor of the present invention may be used for applications other than power steering.
- the motor of the present invention may be used as a drive source of other parts of a car, such as an engine cooling fan and an oil pump.
- the motor of the present invention may be mounted on a home appliance, an OA device, a medical device or the like to generate various driving forces.
- the motor 1 has a stationary unit 2 and a rotating unit 3.
- the stationary unit 2 is fixed to the frame of the device to be driven.
- the rotating unit 3 is rotatably supported with respect to the stationary unit 2.
- the stationary portion 2 of the present embodiment includes a housing 21, a stator 22, a bus bar assembly 23, a lower bearing portion 24, and an upper bearing portion 25.
- the housing 21 has a cylindrical portion 211, a bottom plate portion 212, and a lid portion 213.
- the cylindrical portion 211 extends in a substantially cylindrical shape in the axial direction on the radially outer side of the stator 22 and the bus bar assembly 23.
- the bottom plate portion 212 extends substantially perpendicularly to the central axis 9 below the stator 22 and a rotor 32 described later.
- the lid portion 213 extends substantially perpendicularly to the central axis 9 above the bus bar assembly 23.
- the stator 22, the bus bar assembly 23, and a rotor 32 described later are accommodated in the internal space of the housing 21.
- the cylindrical portion 211, the bottom plate portion 212, and the lid portion 213 are made of, for example, a metal such as aluminum or stainless steel.
- the cylindrical portion 211 and the bottom plate portion 212 are constituted by one member, and the lid portion 213 is constituted by the other member.
- the cylindrical portion 211 and the lid portion 213 may be configured as one member, and the bottom plate portion 212 may be configured as another member.
- the stator 22 is disposed radially outward of a rotor 32 described later.
- the stator 22 has a stator core 41, a plurality of insulators 42, and a plurality of coils 43.
- the stator core 41 is a laminated steel plate in which a plurality of electromagnetic steel plates are laminated in the axial direction.
- the stator core 41 has an annular core back 411 and a plurality of teeth 412 protruding radially inward from the core back 411.
- the core back 411 is disposed substantially coaxial with the central axis 9. Further, the outer peripheral surface of the core back 411 is fixed to the inner peripheral surface of the cylindrical portion 211 of the housing 21.
- the plurality of teeth 412 are arranged at substantially equal intervals in the circumferential direction.
- the stator core 41 may be a powder magnetic core or the like instead of the laminated steel plate.
- the material of the insulator 42 is a resin which is an insulator.
- the stator 22 of the present embodiment has an insulator 42 for each tooth. At least a part of the surface of stator core 41 is covered with insulator 42. Specifically, of the surfaces of the stator core 41, at least the upper surface, the lower surface, and both end surfaces in the circumferential direction of each tooth 412 are covered with the insulator 42.
- Each insulator 42 has a first resin member 421 and a second resin member 422.
- the second resin member 422 is located below the first resin member 421.
- the first resin member 421 is attached to the stator core 41 from the upper side of the stator core 41.
- the second resin member 422 is attached to the stator core 41 from the lower surface side of the stator core 41.
- the coil 43 is constituted by a conducting wire 430 wound around the insulator 42. That is, in the present embodiment, the conducting wire 430 is wound around the teeth 412 to be the magnetic core via the insulator 42.
- the insulator 42 can prevent the electrical short between the teeth 412 and the coil 43 by interposing between the teeth 412 and the coil 43.
- the bus bar assembly 23 has a bus bar 51 made of metal such as copper which is a conductor, and a bus bar holder 52 made of resin for holding the bus bar 51.
- the bus bar 51 is electrically connected to the conducting wire 430 that constitutes the coil 43.
- a conductor extending from an external power supply (not shown) is connected to the bus bar 51. That is, coil 43 and the external power supply are electrically connected via bus bar 51.
- a circuit board may be provided instead of the bus bar assembly 23. And the coil 43 and the external power supply may be electrically connected via the circuit board.
- the lower bearing portion 24 and the upper bearing portion 25 are disposed between the housing 21 and the shaft 31 on the rotating portion 3 side.
- a ball bearing which relatively rotates the outer ring and the inner ring via a spherical body is used.
- the outer ring of the lower bearing portion 24 is fixed to the bottom plate portion 212 of the housing 21.
- the outer ring of the upper bearing portion 25 is fixed to the lid portion 213 of the housing 21.
- the inner ring of each of the lower bearing portion 24 and the upper bearing portion 25 is fixed to the shaft 31. Thereby, the shaft 31 is rotatably supported with respect to the housing 21.
- other types of bearings such as slide bearings and fluid bearings may be used.
- the rotating portion 3 of the present embodiment has a shaft 31 and a rotor 32.
- the shaft 31 is a columnar member extending along the central axis 9.
- a metal such as stainless steel is used.
- the shaft 31 can rotate around the central axis 9 while being supported by the lower bearing portion 24 and the upper bearing portion 25 described above.
- the upper end portion 311 of the shaft 31 protrudes above the lid portion 213.
- a device to be driven is connected to the upper end portion 311 of the shaft 31 via, for example, a power transmission mechanism such as a gear.
- the shaft 31 may not necessarily protrude upward in the axial direction from the lid 213. That is, the bottom portion 212 may be provided with a through hole, and the lower end portion of the shaft may protrude below the bottom portion 212 through the through hole. Also, the shaft may be a hollow member.
- the rotor 32 is located radially inward of the stator 22 and rotates with the shaft 31.
- the rotor 32 has a rotor core 61, a plurality of magnets 62, and a magnet holder 63.
- the rotor core 61 is a laminated steel plate in which a plurality of electromagnetic steel plates are laminated in the axial direction.
- Rotor core 61 has an axially extending through hole 60 at its center.
- the shaft 31 is press-fit into the through hole 60 of the rotor core 61. Thereby, the rotor core 61 and the shaft 31 are fixed to each other.
- a member such as a bush may be disposed between the inner side surface of the through hole 60 and the outer side surface of the shaft 31. That is, the shaft 31 and the rotor core 61 may be fixed directly or may be fixed indirectly.
- the rotor core 61 may be a dust core or the like instead of the laminated steel plate.
- the plurality of magnets 62 are fixed to the outer peripheral surface of the rotor core 61 by, for example, an adhesive.
- the radially outer surface of each magnet 62 is a magnetic pole surface that faces the radially inner end surface of the teeth 412.
- the plurality of magnets 62 are arranged in the circumferential direction so that the N pole and the S pole are alternately arranged.
- one annular magnet may be used in which the N pole and the S pole are alternately magnetized in the circumferential direction.
- the magnet holder 63 is a member made of resin fixed to the rotor core 61.
- the magnet holder 63 is obtained, for example, by insert molding using the rotor core 61 as an insert part.
- the lower surfaces and both end surfaces in the circumferential direction of the plurality of magnets 62 contact the magnet holder 63.
- each magnet 62 is positioned in the circumferential direction and the axial direction. Further, the rigidity of the entire rotor 32 is enhanced by the magnet holder 63.
- the plurality of magnets 62 may be fixed to the rotor core 61 by a mold using a resin, or may be fixed indirectly using other members.
- FIG. 2 is a perspective view of the first resin member 421.
- FIG. 3 is a top view of a portion of stator core 41 and insulator 42.
- FIG. 4 is a cross-sectional view of the stator core 41 and the insulator 42 viewed from the AA position of FIG. In FIG. 4, hatching representing a cross section of the insulator 42 is omitted.
- the direction in which the teeth 412 as the magnetic core of the coil 43 extend is referred to as the “magnetic core direction”.
- the insulator 42 has a cylindrical support surface 70 extending in the magnetic core direction.
- the support surface 70 has a pair of first support surfaces 71 and a pair of second support surfaces 72.
- the support surface 70 has a rectangular shape in which short sides and long sides are alternately arranged around the teeth 412 when viewed in the axial direction.
- the first support surface 71 is a surface corresponding to the short side.
- the second support surface 72 is a surface corresponding to the long side.
- the direction along the short side is referred to as "short side direction”
- the direction along the long side is referred to as "long side direction”.
- the upper and lower surfaces of the insulator 42 become the first support surface 71. Both end surfaces in the circumferential direction of the insulator 42 become a second support surface 72.
- the first resin member 421 includes the upper surface of the insulator 42 which is one of the pair of first support surfaces 71.
- the second resin member 422 includes the lower surface of the insulator 42 which is the other of the pair of first support surfaces 71.
- the conducting wire 430 constituting the coil 43 is wound around the support surface 70 of the insulator 42.
- the support surface 70 and the coil 43 constitute an example of the “structure” in the present invention.
- the winding start of the conducting wire 430 with respect to one insulator 42 contacts the support surface 70 of the insulator 42.
- the winding end of the conductor 430 with respect to one insulator 42 is farther from the support surface 70 than the winding start.
- the conductor 430 is wound around the support surface 70 multiple times from the beginning of the winding to the end of the winding.
- the large number of coils 43 can be densely arranged in the circumferential direction. Also, by increasing the length in the long side direction of the second support surface 72, the magnetic path inside the coils 43 can be made wider.
- the length of the second support surface 72 in the long side direction is preferably, for example, five or more times the length of the first support surface 71 in the short side direction.
- the pair of first support surfaces 71 is an inclined surface which is inclined with respect to the axial direction.
- the angle ⁇ between the first support surface 71 and the second support surface 72 located on the downstream side in the winding direction with respect to the first support surface 71 is an obtuse angle larger than 90 °. That is, the first support surface 71 intersects at an obtuse angle with the second support surface 72 located on the downstream side in the winding direction.
- FIG. 5 is a cross-sectional view of the teeth 412 and the insulator 42 viewed from the AA position of FIG.
- FIG. 6 is a view showing a comparative example in which the first support surface 71 is not an inclined surface but perpendicular to the axial direction.
- the winding direction of the conducting wire from the winding start to the winding end is indicated by a double dotted dashed arrow.
- the conducting wire 430X is bent substantially at right angles from the first support surface 71X to the second support surface 72X.
- the bulging (lifting) of the conducting wire 430X on the second support surface 72X becomes large.
- the circumferential width of the coil is increased.
- the conducting wire 430 bends at an obtuse angle from the first support surface 71 to the second support surface 72. For this reason, the swelling (lifting) of the conducting wire 430 on the second support surface 72 is suppressed more than in the case of FIG. Therefore, the circumferential width of the coil 43 can be reduced compared to the case of FIG. As a result, the multiple coils 43 can be densely arranged in the circumferential direction while preventing the conducting wires 430 of the adjacent coils 43 from coming in contact with each other.
- the number of windings of the conducting wire 430 with respect to one tooth 412 can be increased within the range of the limited circumferential direction.
- the diameter of the wire 430 to be wound can be increased to allow a larger current to flow. Thereby, the output of the motor 1 can be improved.
- the angle ⁇ between the first support surface 71 and the second support surface 72 is too large, the axial length of the stator 22 becomes long. Therefore, it is preferable that the angle ⁇ be larger than 90 ° and be the smallest angle at which the expansion of the conducting wire 430 on the second support surface 72 can be suppressed within the allowable range.
- the angle ⁇ is preferably smaller than 135 °. It is more preferable that the angle ⁇ be smaller than 120 °.
- the support surface 70 of the present embodiment is viewed in the axial direction between the first support surface 71 and the second support surface 72 located on the downstream side in the winding direction.
- a curved surface 76 having a substantially arc shape is provided.
- the curved surface 76 smoothly connects the first support surface 71 and the second support surface 72 located on the downstream side in the winding direction.
- the conductor 430 from the first support surface 71 to the second support surface 72 gently bends along the curved surface 76. Thereby, the swelling of the conducting wire 430 in the second support surface 72 is further suppressed.
- both of the pair of first support surfaces 71 are the above-described inclined surfaces. For this reason, the swelling of the conducting wire 430 with respect to the one second support surface 72 and the swelling of the conducting wire 430 with respect to the other second support surface 72 are both suppressed. As a result, the circumferential width of the coil 43 can be further reduced.
- the pair of first support surfaces 71 are parallel to each other, and the pair of second support surfaces 72 are parallel to each other. That is, the cylindrical support surface 70 is a parallelogram when viewed in the axial direction.
- the parts can be made common by making the shape of the first resin member 421 the same as the shape of the second resin member 422. Thereby, the manufacturing cost of the motor 1 can be reduced.
- the inclination angles of the pair of first support surfaces 71 may be different.
- the motor 1 of the present embodiment is a so-called inner rotor type motor in which the rotor 32 is positioned radially inward of the stator 22.
- the coils 43 adjacent in the circumferential direction easily approach each other.
- the wire 430 can be prevented from expanding in the circumferential direction. Therefore, it can suppress that the conducting wire 430 comrades of the adjacent coil 43 contact.
- the insulator 42 is a two-part member of the first resin member 421 including one of the pair of first support surfaces 71 and the second resin member 422 including the other of the pair of first support surfaces 71. It was configured. However, the insulator 42 may have a single cylindrical resin member including both of the pair of first support surfaces 71.
- the conducting wire 430 is wound around the teeth 412 of the stator core 41 via the insulator 42.
- the cylindrical support surface 70 which supports the conducting wire 430 is provided on the insulator 42.
- the conducting wire 430 may be directly wound around the teeth 412 of the stator core 41 whose insulator 42 is omitted and the surface is coated with an insulator. In that case, the teeth 412 themselves may have the same support surface as the support surface 70 of the insulator 42 described above.
- both of the pair of first support surfaces 71 are inclined surfaces.
- only one of the pair of first support surfaces 71 may be an inclined surface. Even in this case, the swelling (lifting) of the conducting wire 430 in at least one of the pair of second support surfaces 72 is suppressed. Therefore, the circumferential width of the coil can be reduced.
- the structure included in the motor has been described.
- the structure of the present invention may be included in equipment other than a motor such as a generator.
- the plurality of magnets do not necessarily have to be located on the outer peripheral surface of the rotor core. At least a portion of the magnet may be embedded in the rotor core.
- the motor may have a control board that controls energization of the stator.
- the control board is electrically connected to the bus bar.
- the motor may not have the bus bar assembly.
- the conducting wire is electrically connected to a connector or the like connected to an external power supply.
- the motor may not have the bus bar assembly.
- the conducting wire is electrically connected to the control substrate without passing through the bus bar assembly.
- the present invention is applicable to a structure including a coil, a stator including the structure, and a motor including the stator.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
Abstract
A structure having: a tubular support surface extending in the magnetic core direction of a coil; and a coil constituted by a conducting wire wound on the support surface. The support surface is a quadrilateral shape in which the long sides and the short sides are alternately aligned as seen in the magnetic core direction. The support surface has a pair of first support surfaces corresponding to the short sides, and a pair of second support surfaces corresponding to the long sides. The conducting wire is wound in a winding direction around the support surface from a winding start part in contact with the support surface toward a winding end part set at a distance farther from the support surface than the winding start part. At least one of the pair of first support surfaces is an inclined surface that intersects at an obtuse angle with respect to the second support surface positioned to the downstream side in the winding direction.
Description
本発明は、コイルを含む構造体、当該構造体を含むステータ、および当該ステータを有するモータに関する。
The present invention relates to a structure including a coil, a stator including the structure, and a motor including the stator.
従来、モータのコイルは、磁芯となるティースの周りに、絶縁体のインシュレータを介して導線を巻き付けることにより、形成される。モータの内部には、このようなコイルが、中心軸の周りに複数配列される。また、中心軸の周りに多くのコイルを配列するために、ティースの断面形状は、軸方向に長く周方向に短い長方形状とされる場合がある。
Conventionally, the coil of the motor is formed by winding a conducting wire around the teeth to be the magnetic core through the insulator of the insulator. Inside the motor, a plurality of such coils are arranged around a central axis. Moreover, in order to arrange many coils around the central axis, the cross-sectional shape of the teeth may be a rectangular shape that is long in the axial direction and short in the circumferential direction.
従来のモータに含まれるティース、インシュレータ、およびコイルの構造については、例えば、特開2003-190951号公報および特開2010-519471号公報に記載されている。
特開2003-190951号公報
特開2010-519471号公報
The structures of teeth, an insulator, and a coil included in a conventional motor are described in, for example, Japanese Patent Application Laid-Open Nos. 2003-190951 and 2010-519471.
JP 2003-190951 A JP, 2010-519471, A
ティースの周りにインシュレータを介して導線を巻き付ける際に、導線が周方向に膨らむ場合がある。特に、ティースの断面形状が上述した長方形状の場合、インシュレータの周方向の両端面に対する導線の膨らみ(浮き)が大きくなる。この導線の膨らみは、線径の太い導線を用いるほど顕著に生じる。中心軸の周りにより多くのコイルを配列するためには、この導線の膨らみを抑制することが求められる。
When winding the conducting wire around the teeth via the insulator, the conducting wire may expand in the circumferential direction. In particular, in the case where the cross-sectional shape of the teeth is the rectangular shape described above, swelling (lifting) of the conducting wire with respect to both end surfaces in the circumferential direction of the insulator becomes large. The bulge of the wire is more pronounced as the wire with a larger wire diameter is used. In order to arrange more coils around the central axis, it is required to suppress the wire bulge.
本発明の目的は、コイルを含む構造体において、支持面に対する導線の膨らみを抑制できる構造を提供することである。
An object of the present invention is to provide a structure capable of suppressing the expansion of a lead with respect to a support surface in a structure including a coil.
本願の例示的な第1発明は、コイルを含む構造体であって、前記コイルの磁芯方向に延びる筒状の支持面と、前記支持面に巻き付けられた導線により構成される前記コイルと、を有し、前記支持面は、前記磁芯方向に視て、長辺と短辺とが交互に並ぶ四角形状であり、前記短辺に相当する一対の第1支持面と、前記長辺に相当する一対の第2支持面と、を有し、前記導線は、前記支持面に接触する巻き始め部から、前記巻き始め部よりも前記支持面から離れた巻き終わり部へ向けて、前記支持面の周りに巻き方向に巻き付けられ、前記一対の第1支持面のうちの少なくとも一方は、前記巻き方向の下流側に位置する前記第2支持面に対して、鈍角に交差する傾斜面である。
An exemplary first invention of the present application is a structure including a coil, wherein the coil includes a cylindrical support surface extending in a direction of a magnetic core of the coil, and a conductive wire wound around the support surface. And the support surface is a quadrilateral shape in which long sides and short sides are alternately arranged as viewed in the magnetic core direction, and a pair of first support surfaces corresponding to the short sides and the long sides A corresponding pair of second support surfaces, and the conductive wire is supported from the winding start portion in contact with the support surface toward the winding end portion farther from the support surface than the winding start portion. The sheet is wound around in a winding direction, and at least one of the pair of first support surfaces is an inclined surface intersecting at an obtuse angle with respect to the second support surface located on the downstream side of the winding direction. .
本願の例示的な第1発明によれば、導線が、第1支持面から第2支持面へ向けて、鈍角に曲がる。これにより、導線が直角に曲がる場合よりも、第2支持面における導線の膨らみを抑制できる。
According to the first exemplary invention of the present application, the conducting wire bends at an obtuse angle from the first support surface to the second support surface. Thereby, the expansion of the wire at the second support surface can be suppressed more than when the wire is bent at a right angle.
以下、本発明の例示的な実施形態について、図面を参照しながら説明する。なお、本願では、モータの中心軸と平行な方向を「軸方向」、モータの中心軸に直交する方向を「径方向」、モータの中心軸を中心とする円弧に沿う方向を「周方向」、とそれぞれ称する。本願では、軸方向を上下方向とし、ステータに対してバスバーアッセンブリ側を上として、各部の形状や位置関係を説明する。ただし、この上下方向の定義により、本発明に係るモータの製造時および使用時の向きを限定する意図はない。
Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. In the present application, a direction parallel to the central axis of the motor is "axial direction", a direction perpendicular to the central axis of the motor is "radial direction", and a direction along an arc centered on the central axis of the motor is "circumferential direction" , Respectively. In the present application, the axial direction is the vertical direction, and the shape and positional relationship of each part will be described with the bus bar assembly side up with respect to the stator. However, the definition in the vertical direction is not intended to limit the direction at the time of manufacture and use of the motor according to the present invention.
上述した「平行な方向」は、略平行な方向も含む。上述した「直交する方向」は、略直交する方向も含む。
The above-mentioned "parallel direction" also includes a substantially parallel direction. The “orthogonal direction” described above also includes a substantially orthogonal direction.
<1.モータの全体構成>
図1は、本発明の一実施形態に係るモータ1の縦断面図である。本実施形態のモータ1は、例えば、自動車に搭載され、電動パワーステアリング装置の駆動力を発生させる駆動源として使用される。ただし、本発明のモータは、パワーステアリング以外の用途に使用されるものであってもよい。例えば、本発明のモータは、自動車の他の部位、例えばエンジン冷却用ファンやオイルポンプの駆動源として、使用されるものであってもよい。また、本発明のモータは、家電製品、OA機器、医療機器等に搭載され、各種の駆動力を発生させるものであってもよい。 <1. Overall configuration of motor>
FIG. 1 is a longitudinal sectional view of amotor 1 according to an embodiment of the present invention. The motor 1 of the present embodiment is mounted, for example, on an automobile and used as a drive source for generating a drive force of the electric power steering apparatus. However, the motor of the present invention may be used for applications other than power steering. For example, the motor of the present invention may be used as a drive source of other parts of a car, such as an engine cooling fan and an oil pump. Further, the motor of the present invention may be mounted on a home appliance, an OA device, a medical device or the like to generate various driving forces.
図1は、本発明の一実施形態に係るモータ1の縦断面図である。本実施形態のモータ1は、例えば、自動車に搭載され、電動パワーステアリング装置の駆動力を発生させる駆動源として使用される。ただし、本発明のモータは、パワーステアリング以外の用途に使用されるものであってもよい。例えば、本発明のモータは、自動車の他の部位、例えばエンジン冷却用ファンやオイルポンプの駆動源として、使用されるものであってもよい。また、本発明のモータは、家電製品、OA機器、医療機器等に搭載され、各種の駆動力を発生させるものであってもよい。 <1. Overall configuration of motor>
FIG. 1 is a longitudinal sectional view of a
図1に示すように、モータ1は、静止部2と回転部3とを有する。静止部2は、駆動対象となる機器の枠体に固定される。回転部3は、静止部2に対して、回転可能に支持される。
As shown in FIG. 1, the motor 1 has a stationary unit 2 and a rotating unit 3. The stationary unit 2 is fixed to the frame of the device to be driven. The rotating unit 3 is rotatably supported with respect to the stationary unit 2.
本実施形態の静止部2は、ハウジング21、ステータ22、バスバーアッセンブリ23、下軸受部24、および上軸受部25を有する。
The stationary portion 2 of the present embodiment includes a housing 21, a stator 22, a bus bar assembly 23, a lower bearing portion 24, and an upper bearing portion 25.
ハウジング21は、筒状部211、底板部212、および蓋部213を有する。筒状部211は、ステータ22およびバスバーアッセンブリ23の径方向外側において、軸方向に略円筒状に延びる。底板部212は、ステータ22および後述するロータ32よりも下側において、中心軸9に対して略垂直に広がる。蓋部213は、バスバーアッセンブリ23よりも上側において、中心軸9に対して略垂直に広がる。ステータ22、バスバーアッセンブリ23、および後述するロータ32は、ハウジング21の内部空間に、収容される。
The housing 21 has a cylindrical portion 211, a bottom plate portion 212, and a lid portion 213. The cylindrical portion 211 extends in a substantially cylindrical shape in the axial direction on the radially outer side of the stator 22 and the bus bar assembly 23. The bottom plate portion 212 extends substantially perpendicularly to the central axis 9 below the stator 22 and a rotor 32 described later. The lid portion 213 extends substantially perpendicularly to the central axis 9 above the bus bar assembly 23. The stator 22, the bus bar assembly 23, and a rotor 32 described later are accommodated in the internal space of the housing 21.
筒状部211、底板部212、および蓋部213は、例えば、アルミニウムやステンレス等の金属により構成される。本実施形態では、筒状部211と底板部212とが一部材で構成され、蓋部213が他部材で構成されている。ただし、筒状部211と蓋部213とが一部材で構成され、底板部212が他部材で構成されていてもよい。
The cylindrical portion 211, the bottom plate portion 212, and the lid portion 213 are made of, for example, a metal such as aluminum or stainless steel. In the present embodiment, the cylindrical portion 211 and the bottom plate portion 212 are constituted by one member, and the lid portion 213 is constituted by the other member. However, the cylindrical portion 211 and the lid portion 213 may be configured as one member, and the bottom plate portion 212 may be configured as another member.
ステータ22は、後述するロータ32の径方向外側に配置される。ステータ22は、ステータコア41、複数のインシュレータ42、および複数のコイル43を有する。本実施形態において、ステータコア41は、複数枚の電磁鋼板が軸方向に積層された積層鋼板である。ステータコア41は、円環状のコアバック411と、コアバック411から径方向内側へ向けて突出した複数のティース412とを有する。コアバック411は、中心軸9と略同軸に配置される。また、コアバック411の外周面は、ハウジング21の筒状部211の内周面に、固定される。複数のティース412は、周方向に略等間隔に配列される。なお、ステータコア41は、積層鋼板に代えて、圧粉磁心などであってもよい。
The stator 22 is disposed radially outward of a rotor 32 described later. The stator 22 has a stator core 41, a plurality of insulators 42, and a plurality of coils 43. In the present embodiment, the stator core 41 is a laminated steel plate in which a plurality of electromagnetic steel plates are laminated in the axial direction. The stator core 41 has an annular core back 411 and a plurality of teeth 412 protruding radially inward from the core back 411. The core back 411 is disposed substantially coaxial with the central axis 9. Further, the outer peripheral surface of the core back 411 is fixed to the inner peripheral surface of the cylindrical portion 211 of the housing 21. The plurality of teeth 412 are arranged at substantially equal intervals in the circumferential direction. The stator core 41 may be a powder magnetic core or the like instead of the laminated steel plate.
本実施形態において、インシュレータ42の材料は、絶縁体である樹脂である。本実施形態のステータ22は、ティース毎にインシュレータ42を有する。ステータコア41の表面の少なくとも一部は、インシュレータ42に覆われる。具体的には、ステータコア41の表面のうち、少なくとも、各ティース412の上面、下面、および周方向の両端面は、インシュレータ42に覆われる。各インシュレータ42は、第1樹脂部材421と第2樹脂部材422とを有する。第2樹脂部材422は、第1樹脂部材421よりも下側に位置する。第1樹脂部材421は、ステータコア41の上側から、ステータコア41に装着される。第2樹脂部材422は、ステータコア41の下面側から、ステータコア41に装着される。
In the present embodiment, the material of the insulator 42 is a resin which is an insulator. The stator 22 of the present embodiment has an insulator 42 for each tooth. At least a part of the surface of stator core 41 is covered with insulator 42. Specifically, of the surfaces of the stator core 41, at least the upper surface, the lower surface, and both end surfaces in the circumferential direction of each tooth 412 are covered with the insulator 42. Each insulator 42 has a first resin member 421 and a second resin member 422. The second resin member 422 is located below the first resin member 421. The first resin member 421 is attached to the stator core 41 from the upper side of the stator core 41. The second resin member 422 is attached to the stator core 41 from the lower surface side of the stator core 41.
インシュレータ42のより詳細な構造については、後述する。
The more detailed structure of the insulator 42 will be described later.
コイル43は、インシュレータ42の周囲に巻かれた導線430により、構成される。すなわち、本実施形態では、磁芯となるティース412の周囲に、インシュレータ42を介して、導線430が巻かれる。インシュレータ42は、ティース412とコイル43との間に介在することによって、ティース412とコイル43とが電気的に短絡することを、防止することができる。
The coil 43 is constituted by a conducting wire 430 wound around the insulator 42. That is, in the present embodiment, the conducting wire 430 is wound around the teeth 412 to be the magnetic core via the insulator 42. The insulator 42 can prevent the electrical short between the teeth 412 and the coil 43 by interposing between the teeth 412 and the coil 43.
バスバーアッセンブリ23は、導体である銅などの金属からなるバスバー51と、バスバー51を保持する樹脂製のバスバーホルダ52とを有する。バスバー51は、コイル43を構成する導線430と、電気的に接続される。また、モータ1の使用時には、外部電源(図示省略)から延びる導線が、バスバー51に接続される。すなわち、コイル43と外部電源とが、バスバー51を介して、電気的に接続される。なお、ハウジング21内に、バスバーアッセンブリ23に代えて、回路基板が設けられていてもよい。そして、コイル43と外部電源とが、回路基板を介して電気的に接続されていてもよい。
The bus bar assembly 23 has a bus bar 51 made of metal such as copper which is a conductor, and a bus bar holder 52 made of resin for holding the bus bar 51. The bus bar 51 is electrically connected to the conducting wire 430 that constitutes the coil 43. Further, when the motor 1 is used, a conductor extending from an external power supply (not shown) is connected to the bus bar 51. That is, coil 43 and the external power supply are electrically connected via bus bar 51. In the housing 21, a circuit board may be provided instead of the bus bar assembly 23. And the coil 43 and the external power supply may be electrically connected via the circuit board.
下軸受部24および上軸受部25は、ハウジング21と、回転部3側のシャフト31との間に配置される。本実施形態の下軸受部24および上軸受部25には、球体を介して外輪と内輪とを相対回転させるボールベアリングが、使用されている。下軸受部24の外輪は、ハウジング21の底板部212に固定される。上軸受部25の外輪は、ハウジング21の蓋部213に固定される。また、下軸受部24および上軸受部25の各々の内輪は、シャフト31に固定される。これにより、ハウジング21に対してシャフト31が、回転可能に支持される。ただし、ボールベアリングに代えて、すべり軸受や流体軸受等の他方式の軸受が、使用されていてもよい。
The lower bearing portion 24 and the upper bearing portion 25 are disposed between the housing 21 and the shaft 31 on the rotating portion 3 side. In the lower bearing portion 24 and the upper bearing portion 25 of the present embodiment, a ball bearing which relatively rotates the outer ring and the inner ring via a spherical body is used. The outer ring of the lower bearing portion 24 is fixed to the bottom plate portion 212 of the housing 21. The outer ring of the upper bearing portion 25 is fixed to the lid portion 213 of the housing 21. Further, the inner ring of each of the lower bearing portion 24 and the upper bearing portion 25 is fixed to the shaft 31. Thereby, the shaft 31 is rotatably supported with respect to the housing 21. However, instead of the ball bearings, other types of bearings such as slide bearings and fluid bearings may be used.
本実施形態の回転部3は、シャフト31とロータ32とを有する。
The rotating portion 3 of the present embodiment has a shaft 31 and a rotor 32.
シャフト31は、中心軸9に沿って延びる柱状の部材である。シャフト31の材料には、例えば、ステンレス等の金属が使用される。シャフト31は、上述した下軸受部24および上軸受部25に支持されながら、中心軸9を中心として回転することができる。シャフト31の上端部311は、蓋部213よりも上方へ突出する。シャフト31の当該上端部311には、例えば、ギア等の動力伝達機構を介して、駆動対象となる装置が連結される。なお、シャフト31は、必ずしも蓋部213から軸方向上側に突出しなくてもよい。すなわち、底部212に貫通孔が設けられ、シャフトの下端部が、当該貫通孔を通って底部212よりも下方へ突出してもよい。また、シャフトは、中空の部材であってもよい。
The shaft 31 is a columnar member extending along the central axis 9. For the material of the shaft 31, for example, a metal such as stainless steel is used. The shaft 31 can rotate around the central axis 9 while being supported by the lower bearing portion 24 and the upper bearing portion 25 described above. The upper end portion 311 of the shaft 31 protrudes above the lid portion 213. A device to be driven is connected to the upper end portion 311 of the shaft 31 via, for example, a power transmission mechanism such as a gear. The shaft 31 may not necessarily protrude upward in the axial direction from the lid 213. That is, the bottom portion 212 may be provided with a through hole, and the lower end portion of the shaft may protrude below the bottom portion 212 through the through hole. Also, the shaft may be a hollow member.
ロータ32は、ステータ22の径方向内側に位置し、シャフト31とともに回転する。ロータ32は、ロータコア61、複数のマグネット62、およびマグネットホルダ63を有する。本実施形態において、ロータコア61は、複数枚の電磁鋼板が軸方向に積層された積層鋼板である。ロータコア61は、その中央に、軸方向に延びる貫通孔60を有する。シャフト31は、ロータコア61の当該貫通孔60に圧入される。これにより、ロータコア61とシャフト31とが、互いに固定される。なお、貫通孔60を構成する内側面とシャフト31の外側面との間にブッシュなどの部材が配置されてもよい。すなわち、シャフト31とロータコア61とは、直接的に固定されてもよく、間接的に固定されてもよい。ロータコア61は、積層鋼板に代えて、圧粉磁心などであってもよい。
The rotor 32 is located radially inward of the stator 22 and rotates with the shaft 31. The rotor 32 has a rotor core 61, a plurality of magnets 62, and a magnet holder 63. In the present embodiment, the rotor core 61 is a laminated steel plate in which a plurality of electromagnetic steel plates are laminated in the axial direction. Rotor core 61 has an axially extending through hole 60 at its center. The shaft 31 is press-fit into the through hole 60 of the rotor core 61. Thereby, the rotor core 61 and the shaft 31 are fixed to each other. A member such as a bush may be disposed between the inner side surface of the through hole 60 and the outer side surface of the shaft 31. That is, the shaft 31 and the rotor core 61 may be fixed directly or may be fixed indirectly. The rotor core 61 may be a dust core or the like instead of the laminated steel plate.
複数のマグネット62は、ロータコア61の外周面に、例えば接着剤で固定される。各マグネット62の径方向外側の面は、ティース412の径方向内側の端面に対向する磁極面となっている。複数のマグネット62は、N極とS極とが交互に並ぶように、周方向に配列される。なお、複数のマグネット62に代えて、N極とS極とが周方向に交互に着磁された1つの円環状のマグネットが、使用されていてもよい。
The plurality of magnets 62 are fixed to the outer peripheral surface of the rotor core 61 by, for example, an adhesive. The radially outer surface of each magnet 62 is a magnetic pole surface that faces the radially inner end surface of the teeth 412. The plurality of magnets 62 are arranged in the circumferential direction so that the N pole and the S pole are alternately arranged. In place of the plurality of magnets 62, one annular magnet may be used in which the N pole and the S pole are alternately magnetized in the circumferential direction.
マグネットホルダ63は、ロータコア61に対して固定された樹脂製の部材である。マグネットホルダ63は、例えば、ロータコア61をインサート部品とするインサート成型により得られる。複数のマグネット62の下面および周方向の両端面は、マグネットホルダ63に接触する。これにより、各マグネット62が、周方向および軸方向に位置決めされる。また、マグネットホルダ63により、ロータ32全体の剛性が高められる。また、複数のマグネット62は、ロータコア61に、樹脂を用いたモールドにより固定されてもよく、他の部材を用いて間接的に固定されてもよい。
The magnet holder 63 is a member made of resin fixed to the rotor core 61. The magnet holder 63 is obtained, for example, by insert molding using the rotor core 61 as an insert part. The lower surfaces and both end surfaces in the circumferential direction of the plurality of magnets 62 contact the magnet holder 63. Thereby, each magnet 62 is positioned in the circumferential direction and the axial direction. Further, the rigidity of the entire rotor 32 is enhanced by the magnet holder 63. The plurality of magnets 62 may be fixed to the rotor core 61 by a mold using a resin, or may be fixed indirectly using other members.
外部電源から、バスバー51を介してコイル43に駆動電流が供給されると、ステータコア41の複数のティース412に、磁束が生じる。そして、ティース412とマグネット62との間の磁束の作用により、周方向のトルクが発生する。その結果、静止部2に対して回転部3が、中心軸9を中心として回転する。
When a drive current is supplied to the coil 43 from the external power supply via the bus bar 51, magnetic flux is generated in the plurality of teeth 412 of the stator core 41. Then, the action of the magnetic flux between the teeth 412 and the magnet 62 generates torque in the circumferential direction. As a result, the rotating unit 3 rotates around the central axis 9 with respect to the stationary unit 2.
<2.インシュレータおよびコイルの構造について>
続いて、コイル43を構成する導線430を、インシュレータ42に巻き付ける構造について、より詳細に説明する。図2は、第1樹脂部材421の斜視図である。図3は、ステータコア41の一部分およびインシュレータ42の上面図である。図4は、図3のA-A位置から視たステータコア41およびインシュレータ42の断面図である。なお、図4では、インシュレータ42の断面を表すハッチングが省略されている。以下では、コイル43の磁芯であるティース412が延びる方向を「磁芯方向」と称する。 <2. About the structure of insulator and coil>
Then, the structure which winds theconducting wire 430 which comprises the coil 43 around the insulator 42 is demonstrated in more detail. FIG. 2 is a perspective view of the first resin member 421. As shown in FIG. FIG. 3 is a top view of a portion of stator core 41 and insulator 42. As shown in FIG. FIG. 4 is a cross-sectional view of the stator core 41 and the insulator 42 viewed from the AA position of FIG. In FIG. 4, hatching representing a cross section of the insulator 42 is omitted. Hereinafter, the direction in which the teeth 412 as the magnetic core of the coil 43 extend is referred to as the “magnetic core direction”.
続いて、コイル43を構成する導線430を、インシュレータ42に巻き付ける構造について、より詳細に説明する。図2は、第1樹脂部材421の斜視図である。図3は、ステータコア41の一部分およびインシュレータ42の上面図である。図4は、図3のA-A位置から視たステータコア41およびインシュレータ42の断面図である。なお、図4では、インシュレータ42の断面を表すハッチングが省略されている。以下では、コイル43の磁芯であるティース412が延びる方向を「磁芯方向」と称する。 <2. About the structure of insulator and coil>
Then, the structure which winds the
図2~図4に示すように、インシュレータ42は、磁芯方向に延びる筒状の支持面70を有する。支持面70は、一対の第1支持面71と、一対の第2支持面72とを有する。支持面70は、軸心方向に視て、ティース412の周囲において短辺と長辺とが交互に並ぶ四角形状となっている。第1支持面71は、その短辺に相当する面である。第2支持面72は、その長辺に相当する面である。以下では、短辺に沿う方向を「短辺方向」と称し、長辺に沿う方向を「長辺方向」と称する。
As shown in FIGS. 2 to 4, the insulator 42 has a cylindrical support surface 70 extending in the magnetic core direction. The support surface 70 has a pair of first support surfaces 71 and a pair of second support surfaces 72. The support surface 70 has a rectangular shape in which short sides and long sides are alternately arranged around the teeth 412 when viewed in the axial direction. The first support surface 71 is a surface corresponding to the short side. The second support surface 72 is a surface corresponding to the long side. Hereinafter, the direction along the short side is referred to as "short side direction", and the direction along the long side is referred to as "long side direction".
本実施形態では、インシュレータ42の上面および下面が、第1支持面71となる。インシュレータ42の周方向の両端面が、第2支持面72となる。第1樹脂部材421は、一対の第1支持面71の一方であるインシュレータ42の上面を含む。第2樹脂部材422は、一対の第1支持面71の他方であるインシュレータ42の下面を含む。
In the present embodiment, the upper and lower surfaces of the insulator 42 become the first support surface 71. Both end surfaces in the circumferential direction of the insulator 42 become a second support surface 72. The first resin member 421 includes the upper surface of the insulator 42 which is one of the pair of first support surfaces 71. The second resin member 422 includes the lower surface of the insulator 42 which is the other of the pair of first support surfaces 71.
コイル43を構成する導線430は、インシュレータ42の支持面70に巻き付けられる。支持面70およびコイル43は、本発明の「構造体」の一例を構成する。1つのインシュレータ42に対する導線430の巻き始め部は、そのインシュレータ42の支持面70に接触する。1つのインシュレータ42に対する導線430の巻き終わり部は、巻き始め部よりも、支持面70から離れている。導線430は、巻き始め部から巻き終わり部へ向けて、支持面70の周りに複数回巻き付けられる。
The conducting wire 430 constituting the coil 43 is wound around the support surface 70 of the insulator 42. The support surface 70 and the coil 43 constitute an example of the “structure” in the present invention. The winding start of the conducting wire 430 with respect to one insulator 42 contacts the support surface 70 of the insulator 42. The winding end of the conductor 430 with respect to one insulator 42 is farther from the support surface 70 than the winding start. The conductor 430 is wound around the support surface 70 multiple times from the beginning of the winding to the end of the winding.
第1支持面71の短辺方向の長さを短くすることにより、多数のコイル43を、周方向に密に配置できる。また、第2支持面72の長辺方向の長さを長くすることにより、各コイル43の内側の磁路を、広くとることができる。第2支持面72の長辺方向の長さは、例えば、第1支持面71の短辺方向の長さの5倍以上とすることが好ましい。
By shortening the length in the short side direction of the first support surface 71, the large number of coils 43 can be densely arranged in the circumferential direction. Also, by increasing the length in the long side direction of the second support surface 72, the magnetic path inside the coils 43 can be made wider. The length of the second support surface 72 in the long side direction is preferably, for example, five or more times the length of the first support surface 71 in the short side direction.
一対の第1支持面71は、それぞれ、軸方向に対して傾斜した傾斜面となっている。第1支持面71と、その第1支持面71に対して巻き方向の下流側に位置する第2支持面72とがなす角度θは、90°よりも大きい鈍角である。すなわち、第1支持面71は、その巻き方向の下流側に位置する第2支持面72に対して、鈍角に交差する。
The pair of first support surfaces 71 is an inclined surface which is inclined with respect to the axial direction. The angle θ between the first support surface 71 and the second support surface 72 located on the downstream side in the winding direction with respect to the first support surface 71 is an obtuse angle larger than 90 °. That is, the first support surface 71 intersects at an obtuse angle with the second support surface 72 located on the downstream side in the winding direction.
図5は、図3のA-A位置から視たティース412およびインシュレータ42の断面図である。図6は、第1支持面71が傾斜面でなく、軸方向に対して垂直な場合の比較例を示す図である。図5および図6には、巻き始め部から巻き終わり部へ向かう導線の巻き方向が、二点鎖線の矢印で示されている。図6のように、第1支持面71Xが軸方向に対して垂直な場合には、第1支持面71Xから第2支持面72Xへ向けて、導線430Xがほぼ直角に曲がる。この場合、第2支持面72Xにおける導線430Xの膨らみ(浮き)が大きくなる。これにより、コイルの周方向の幅が大きくなる。
FIG. 5 is a cross-sectional view of the teeth 412 and the insulator 42 viewed from the AA position of FIG. FIG. 6 is a view showing a comparative example in which the first support surface 71 is not an inclined surface but perpendicular to the axial direction. In FIGS. 5 and 6, the winding direction of the conducting wire from the winding start to the winding end is indicated by a double dotted dashed arrow. As shown in FIG. 6, when the first support surface 71X is perpendicular to the axial direction, the conducting wire 430X is bent substantially at right angles from the first support surface 71X to the second support surface 72X. In this case, the bulging (lifting) of the conducting wire 430X on the second support surface 72X becomes large. As a result, the circumferential width of the coil is increased.
これに対し、本実施形態では、図5のように、第1支持面71から第2支持面72へ向けて、導線430が鈍角に曲がる。このため、図6の場合よりも、第2支持面72における導線430の膨らみ(浮き)が抑制される。したがって、図6の場合よりも、コイル43の周方向の幅を低減できる。その結果、隣り合うコイル43の導線430同士が接触することを防止しながら、多数のコイル43を、周方向に密に配置できる。
On the other hand, in the present embodiment, as shown in FIG. 5, the conducting wire 430 bends at an obtuse angle from the first support surface 71 to the second support surface 72. For this reason, the swelling (lifting) of the conducting wire 430 on the second support surface 72 is suppressed more than in the case of FIG. Therefore, the circumferential width of the coil 43 can be reduced compared to the case of FIG. As a result, the multiple coils 43 can be densely arranged in the circumferential direction while preventing the conducting wires 430 of the adjacent coils 43 from coming in contact with each other.
本実施形態の構造によれば、限られた周方向の範囲内で、1本のティース412に対する導線430の巻き付け回数を増やすことができる。また、巻き付ける導線430の径を大きくして、より大きな電流を流すこともできる。これにより、モータ1の出力を向上させることができる。
According to the structure of the present embodiment, the number of windings of the conducting wire 430 with respect to one tooth 412 can be increased within the range of the limited circumferential direction. In addition, the diameter of the wire 430 to be wound can be increased to allow a larger current to flow. Thereby, the output of the motor 1 can be improved.
ただし、第1支持面71と第2支持面72との間の角度θが大き過ぎると、ステータ22の軸方向の長さが長くなる。このため、角度θは、90°よりも大きく、かつ、第2支持面72における導線430の膨らみが許容範囲内に抑えられる最小の角度とすることが好ましい。例えば、角度θは、135°よりも小さくすることが好ましい。また、角度θは、120°よりも小さくすることがより好ましい。
However, if the angle θ between the first support surface 71 and the second support surface 72 is too large, the axial length of the stator 22 becomes long. Therefore, it is preferable that the angle θ be larger than 90 ° and be the smallest angle at which the expansion of the conducting wire 430 on the second support surface 72 can be suppressed within the allowable range. For example, the angle θ is preferably smaller than 135 °. It is more preferable that the angle θ be smaller than 120 °.
図4および図5に示すように、本実施形態の支持面70は、第1支持面71と、その巻き方向の下流側に位置する第2支持面72との間に、軸心方向に視て略円弧状の曲面76を有する。曲面76は、第1支持面71と、その巻き方向の下流側に位置する第2支持面72とを、なだらかに繋ぐ。第1支持面71から第2支持面72へ向かう導線430は、曲面76に沿って緩やかに曲がる。これにより、第2支持面72における導線430の膨らみが、より抑制される。
As shown in FIGS. 4 and 5, the support surface 70 of the present embodiment is viewed in the axial direction between the first support surface 71 and the second support surface 72 located on the downstream side in the winding direction. A curved surface 76 having a substantially arc shape is provided. The curved surface 76 smoothly connects the first support surface 71 and the second support surface 72 located on the downstream side in the winding direction. The conductor 430 from the first support surface 71 to the second support surface 72 gently bends along the curved surface 76. Thereby, the swelling of the conducting wire 430 in the second support surface 72 is further suppressed.
本実施形態では、一対の第1支持面71の双方が、上述した傾斜面となっている。このため、一方の第2支持面72に対する導線430の膨らみと、他方の第2支持面72に対する導線430の膨らみとが、ともに抑制される。その結果、コイル43の周方向の幅をさらに低減できる。
In the present embodiment, both of the pair of first support surfaces 71 are the above-described inclined surfaces. For this reason, the swelling of the conducting wire 430 with respect to the one second support surface 72 and the swelling of the conducting wire 430 with respect to the other second support surface 72 are both suppressed. As a result, the circumferential width of the coil 43 can be further reduced.
本実施形態では、一対の第1支持面71が互いに平行であり、かつ、一対の第2支持面72が互いに平行となっている。すなわち、筒状の支持面70は、軸心方向に視て平行四辺形となっている。このようにすれば、第1樹脂部材421の形状と、第2樹脂部材422の形状とを同一として、部品を共通化できる。これにより、モータ1の製造コストを低減できる。ただし、一対の第1支持面71の傾斜角度は、異なる角度であってもよい。
In the present embodiment, the pair of first support surfaces 71 are parallel to each other, and the pair of second support surfaces 72 are parallel to each other. That is, the cylindrical support surface 70 is a parallelogram when viewed in the axial direction. In this way, the parts can be made common by making the shape of the first resin member 421 the same as the shape of the second resin member 422. Thereby, the manufacturing cost of the motor 1 can be reduced. However, the inclination angles of the pair of first support surfaces 71 may be different.
また、本実施形態のモータ1は、ステータ22の径方向内側にロータ32が位置する、いわゆるインナロータ型のモータである。インナロータ型の場合、周方向に隣り合うコイル43同士が接近しやすい。しかしながら、本実施形態の構造によれば、導線430が周方向に膨らむことを防止できる。したがって、隣り合うコイル43の導線430同士が接触することを抑制できる。
Further, the motor 1 of the present embodiment is a so-called inner rotor type motor in which the rotor 32 is positioned radially inward of the stator 22. In the case of the inner rotor type, the coils 43 adjacent in the circumferential direction easily approach each other. However, according to the structure of the present embodiment, the wire 430 can be prevented from expanding in the circumferential direction. Therefore, it can suppress that the conducting wire 430 comrades of the adjacent coil 43 contact.
<3.変形例>
以上、本発明の一実施形態について説明したが、本発明は上記の実施形態には限定されない。 <3. Modified example>
As mentioned above, although one embodiment of the present invention was described, the present invention is not limited to the above-mentioned embodiment.
以上、本発明の一実施形態について説明したが、本発明は上記の実施形態には限定されない。 <3. Modified example>
As mentioned above, although one embodiment of the present invention was described, the present invention is not limited to the above-mentioned embodiment.
上記の実施形態では、インシュレータ42が、一対の第1支持面71の一方を含む第1樹脂部材421と、一対の第1支持面71の他方を含む第2樹脂部材422と、の2部材で構成されていた。しかしながら、インシュレータ42は、一対の第1支持面71の双方を含む単一の筒状の樹脂部材を有していてもよい。
In the above embodiment, the insulator 42 is a two-part member of the first resin member 421 including one of the pair of first support surfaces 71 and the second resin member 422 including the other of the pair of first support surfaces 71. It was configured. However, the insulator 42 may have a single cylindrical resin member including both of the pair of first support surfaces 71.
上記の実施形態では、ステータコア41のティース412に、インシュレータ42を介して導線430が巻き付けられる。このため、導線430を支持する筒状の支持面70が、インシュレータ42に設けられる。しかしながら、インシュレータ42を省略し、表面が絶縁塗されたステータコア41のティース412に、直接導線430が巻き付けられていてもよい。その場合、ティース412自体が、上述したインシュレータ42の支持面70と同形状の支持面を有していればよい。
In the above embodiment, the conducting wire 430 is wound around the teeth 412 of the stator core 41 via the insulator 42. For this reason, the cylindrical support surface 70 which supports the conducting wire 430 is provided on the insulator 42. However, the conducting wire 430 may be directly wound around the teeth 412 of the stator core 41 whose insulator 42 is omitted and the surface is coated with an insulator. In that case, the teeth 412 themselves may have the same support surface as the support surface 70 of the insulator 42 described above.
上記の実施形態では、一対の第1支持面71の双方が傾斜面となっていた。しかしながら、一対の第1支持面71の一方のみを傾斜面としてもよい。この場合であっても、一対の第2支持面72の少なくとも一方における導線430の膨らみ(浮き)は、抑制される。したがって、コイルの周方向の幅を低減できる。
In the above embodiment, both of the pair of first support surfaces 71 are inclined surfaces. However, only one of the pair of first support surfaces 71 may be an inclined surface. Even in this case, the swelling (lifting) of the conducting wire 430 in at least one of the pair of second support surfaces 72 is suppressed. Therefore, the circumferential width of the coil can be reduced.
上記の実施形態では、ステータ22よりもロータ32が径方向内側に位置する、いわゆるインナロータ型のモータについて説明した。しかしながら、本発明の構造体、ステータ、およびモータは、ステータよりもロータが径方向外側に位置する、いわゆるアウタロータ型のモータに適用されてもよい。
In the above embodiment, a so-called inner rotor type motor in which the rotor 32 is positioned radially inward of the stator 22 has been described. However, the structure, the stator and the motor of the present invention may be applied to a so-called outer rotor type motor in which the rotor is located radially outward of the stator.
上記の実施形態および変形例では、モータに含まれる構造体について説明した。しかしながら、本発明の構造体は、発電機などのモータ以外の機器に含まれるものであってもよい。
In the above embodiment and modification, the structure included in the motor has been described. However, the structure of the present invention may be included in equipment other than a motor such as a generator.
複数のマグネットは、必ずしもロータコアの外周面に位置する必要はない。マグネットの少なくとも一部が、ロータコアに埋め込まれてもよい。
The plurality of magnets do not necessarily have to be located on the outer peripheral surface of the rotor core. At least a portion of the magnet may be embedded in the rotor core.
さらに、モータは、ステータへの通電を制御する制御基板を有してもよい。この場合、制御基板は、バスバーと電気的に接続される。また、モータは、バスバーアッセンブリを有していなくてもよい。この場合、導線が外部電源に接続されるコネクタ等に電気的に接続される。また、モータが制御基板を有する場合にも、モータはバスバーアッセンブリを有していなくてもよい。この場合、導線が、バスバーアッセンブリを介さずに制御基板に電気的に接続される。
Furthermore, the motor may have a control board that controls energization of the stator. In this case, the control board is electrically connected to the bus bar. Also, the motor may not have the bus bar assembly. In this case, the conducting wire is electrically connected to a connector or the like connected to an external power supply. Also, even when the motor has a control board, the motor may not have the bus bar assembly. In this case, the conducting wire is electrically connected to the control substrate without passing through the bus bar assembly.
各部材の細部の形状については、本願の各図に示された形状と、相違していてもよい。上記の実施形態や変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。
The shape of the detail of each member may be different from the shape shown in each drawing of the present application. The elements appearing in the above-described embodiment and modifications may be combined as appropriate as long as no contradiction occurs.
本発明は、コイルを含む構造体、当該構造体を含むステータ、および当該ステータを有するモータに利用できる。
The present invention is applicable to a structure including a coil, a stator including the structure, and a motor including the stator.
1 モータ、 2 静止部、 3 回転部、 9 中心軸、 21 ハウジング、 22 ステータ、 23 バスバーアッセンブリ、 24 下軸受部、 25 上軸受部、 31 シャフト、 32 ロータ、 41 ステータコア、 42 インシュレータ、 43 コイル、 70 支持面、 71 第1支持面、 72 第2支持面、 76 曲面、 411 コアバック、 412 ティース、 421 第1樹脂部材、 422 第2樹脂部材、 430 導線
Reference Signs List 1 motor, 2 stationary portion, 3 rotating portion, 9 central shaft, 21 housing, 22 stator, 23 bus bar assembly, 24 lower bearing portion, 25 upper bearing portion, 31 shaft, 32 rotor, 41 stator core, 42 insulator, 43 coil, 70 support surface, 71 first support surface, 72 second support surface, 76 curved surface, 411 core back, 412 teeth, 421 first resin member, 422 second resin member, 430 conductor
Claims (13)
- コイルを含む構造体であって、
前記コイルの磁芯方向に延びる筒状の支持面と、
前記支持面に巻き付けられた導線により構成される前記コイルと、
を有し、
前記支持面は、前記磁芯方向に視て、長辺と短辺とが交互に並ぶ四角形状であり、前記短辺に相当する一対の第1支持面と、前記長辺に相当する一対の第2支持面と、を有し、
前記導線は、前記支持面に接触する巻き始め部から、前記巻き始め部よりも前記支持面から離れた巻き終わり部へ向けて、前記支持面の周りに巻き方向に巻き付けられ、
前記一対の第1支持面のうちの少なくとも一方は、前記巻き方向の下流側に位置する前記第2支持面に対して、鈍角に交差する傾斜面である構造体。 A structure including a coil,
A cylindrical support surface extending in a magnetic core direction of the coil;
The coil comprising a conductive wire wound around the support surface;
Have
The support surface is a quadrangular shape in which long sides and short sides are alternately arranged as viewed in the magnetic core direction, and a pair of first support surfaces corresponding to the short sides and a pair corresponding to the long sides. And a second support surface,
The conductive wire is wound around the support surface in a winding direction from a start of winding contacting the support surface toward an end of wrap farther from the support surface than the start of winding.
At least one of the pair of first support surfaces is an inclined surface intersecting at an obtuse angle with respect to the second support surface located on the downstream side in the winding direction. - 請求項1に記載の構造体であって、
前記鈍角は、135°よりも小さい構造体。
The structure according to claim 1, wherein
The obtuse angle is a structure smaller than 135 °.
- 請求項1に記載の構造体であって、
前記支持面は、前記第1支持面と前記第2支持面とをなだらかに繋ぐ曲面をさらに有する構造体。 The structure according to claim 1, wherein
The structure wherein the support surface further has a curved surface smoothly connecting the first support surface and the second support surface. - 請求項1から請求項3までのいずれか1項に記載の構造体であって、
前記一対の第1支持面の双方が、前記傾斜面である構造体。 A structure according to any one of claims 1 to 3, which is:
The structure in which both of the pair of first support surfaces are the inclined surfaces. - 請求項4に記載の構造体であって、
前記一対の第1支持面は、互いに平行であり、
前記一対の第2支持面は、互いに平行である構造体。
The structure according to claim 4, wherein
The pair of first support surfaces are parallel to each other,
The structure in which the pair of second support surfaces are parallel to each other.
- 請求項1から請求項5までのいずれか1項に記載の構造体であって、
前記第2支持面の前記長辺方向の長さは、前記第1支持面の前記短辺方向の長さの5倍以上である構造体。 The structure according to any one of claims 1 to 5, wherein
The structure whose length of the said long side direction of a said 2nd support surface is 5 times or more of the length of the said short side direction of a said 1st support surface. - 請求項1から請求項6までのいずれか1項に記載の構造体を含むステータであって、
ステータコアと、
前記ステータコアの少なくとも一部を覆う樹脂製のインシュレータと、
前記コイルと、
を有し、
前記インシュレータが、前記支持面を有するステータ。 A stator including the structure according to any one of claims 1 to 6,
Stator core,
A resin insulator covering at least a part of the stator core;
The coil,
Have
A stator having the support surface; - 請求項7に記載のステータであって、
前記インシュレータは、
前記一対の第1支持面の一方を含む第1樹脂部材と、
前記一対の第1支持面の他方を含む第2樹脂部材と、
を有するステータ。 The stator according to claim 7, wherein
The insulator is
A first resin member including one of the pair of first support surfaces;
A second resin member including the other of the pair of first support surfaces;
With a stator. - 請求項7に記載のステータであって、
前記インシュレータは、
前記一対の第1支持面の双方を含む筒状の樹脂部材を有するステータ。 The stator according to claim 7, wherein
The insulator is
A stator having a cylindrical resin member including both of the pair of first support surfaces. - 請求項1から請求項6までのいずれか1項に記載の構造体を含むステータであって、
表面が絶縁塗装されたステータコアと、
前記コイルと、を有し、
前記ステータコアが、前記支持面を有するステータ。 A stator including the structure according to any one of claims 1 to 6,
Stator core whose surface is coated with insulation,
And the coil;
A stator wherein the stator core has the support surface. - 請求項7から請求項10までのいずれか1項に記載のステータと、
前記ステータに対して回転するロータと、
を有するモータ。 A stator according to any one of claims 7 to 10;
A rotor rotating with respect to the stator;
With a motor. - 請求項11に記載のモータであって、
前記ロータは、前記ステータの径方向内側に位置するモータ。 The motor according to claim 11, wherein
The motor is located radially inward of the stator. - 請求項11または請求項12に記載のモータであって、
電動パワーステアリング装置の駆動源となるモータ。 A motor according to claim 11 or 12, wherein
A motor serving as a drive source of an electric power steering device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880045948.5A CN110870172A (en) | 2017-08-01 | 2018-06-08 | Structure, stator, and motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-149073 | 2017-08-01 | ||
JP2017149073 | 2017-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019026422A1 true WO2019026422A1 (en) | 2019-02-07 |
Family
ID=65233667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022025 WO2019026422A1 (en) | 2017-08-01 | 2018-06-08 | Structure, stator, and motor |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110870172A (en) |
WO (1) | WO2019026422A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001275325A (en) * | 2000-03-27 | 2001-10-05 | Honda Motor Co Ltd | Motor-driven power steering device |
JP2005027442A (en) * | 2003-07-03 | 2005-01-27 | Matsushita Electric Ind Co Ltd | Motor and method of manufacturing the same |
JP2010279241A (en) * | 2009-04-30 | 2010-12-09 | Panasonic Corp | Stator of motor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009112141A (en) * | 2007-10-31 | 2009-05-21 | Nissan Motor Co Ltd | Stator of rotating machine |
DE102013109264A1 (en) * | 2013-08-27 | 2015-03-05 | Magna Powertrain Bad Homburg GmbH | Brushless electric motor with an external rotor |
-
2018
- 2018-06-08 CN CN201880045948.5A patent/CN110870172A/en not_active Withdrawn
- 2018-06-08 WO PCT/JP2018/022025 patent/WO2019026422A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001275325A (en) * | 2000-03-27 | 2001-10-05 | Honda Motor Co Ltd | Motor-driven power steering device |
JP2005027442A (en) * | 2003-07-03 | 2005-01-27 | Matsushita Electric Ind Co Ltd | Motor and method of manufacturing the same |
JP2010279241A (en) * | 2009-04-30 | 2010-12-09 | Panasonic Corp | Stator of motor |
Also Published As
Publication number | Publication date |
---|---|
CN110870172A (en) | 2020-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11025129B2 (en) | Wire support for motor stator | |
JP5519808B2 (en) | Stator and rotating electric machine including the stator | |
JP6809476B2 (en) | motor | |
JP2020124105A (en) | motor | |
JP5734794B2 (en) | Stator and rotating electric machine including the stator | |
US10840656B2 (en) | Bus bar unit and rotary electric machine having the same | |
WO2012140771A1 (en) | Power transmission device | |
JP2019170013A (en) | Motor and electric power steering device | |
JP6305634B2 (en) | Rotating electric machine | |
JP2021058000A (en) | Motor and transmission device | |
JP2011217448A (en) | Armature and motor | |
US11677290B2 (en) | Motor | |
JP2021052492A (en) | Bus-bar unit and motor | |
JP2021052493A (en) | Motor and assembly method for motor | |
WO2019026422A1 (en) | Structure, stator, and motor | |
US10720799B2 (en) | Stator of rotary electric machine | |
JP2014033605A (en) | Rotary electric machine | |
CN112583212B (en) | Motor with a motor housing | |
WO2019026423A1 (en) | Structure, stator, and motor | |
WO2020080548A1 (en) | Motor | |
WO2019208090A1 (en) | Busbar unit, motor, and electric power steering device | |
JP2014014215A (en) | Stator for rotary electric machine | |
JP5144180B2 (en) | Stator midpoint connection structure | |
JP2022158983A (en) | Motor and drive device | |
JP2023053644A (en) | Stator, motor with the same, and manufacturing method of stator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18841438 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18841438 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |