[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005027442A - Motor and method of manufacturing the same - Google Patents

Motor and method of manufacturing the same Download PDF

Info

Publication number
JP2005027442A
JP2005027442A JP2003190951A JP2003190951A JP2005027442A JP 2005027442 A JP2005027442 A JP 2005027442A JP 2003190951 A JP2003190951 A JP 2003190951A JP 2003190951 A JP2003190951 A JP 2003190951A JP 2005027442 A JP2005027442 A JP 2005027442A
Authority
JP
Japan
Prior art keywords
stator core
wound
corner
stator
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003190951A
Other languages
Japanese (ja)
Other versions
JP4367030B2 (en
Inventor
Masayuki Takada
昌亨 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003190951A priority Critical patent/JP4367030B2/en
Publication of JP2005027442A publication Critical patent/JP2005027442A/en
Application granted granted Critical
Publication of JP4367030B2 publication Critical patent/JP4367030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor where the downsizing and thinning can be achieved and also the reliability is improved, by suppressing the height of a coil end to be low, and a method of manufacturing the motor. <P>SOLUTION: The axial sectional form of the wound part 7a of an insulator 7 covering a pole tooth 8 is constituted to form approximately a parallelogram where the thickness of the insulator for the amount of the space ΔG which arises by inertia when a winding nozzle shifts from a rectilinear track to a circular track is reduced, whereby even if the winding speed of the winding nozzle is increased, the winding form after winding of a drive coil 2 can be made roughly rectangular, so the height of a coil end projected axially from a stator iron core can be made low. Therefore, a thinned motor can be obtained. Moreover, since the peripheral length of a coil can be shortened, an efficient motor by the reduction of copper loss can be obtained. Moreover, since the winding speed can be increased, processing cost can be reduced. Therefore, the cost reduction of the motor can be achieved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主に集中巻巻線を有する固定子を用いた電動機およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、電気機器に搭載するファン駆動用の電動機においては、小型化、薄型化、軽量化、高効率化が強く求められており、このため、固定子の巻線密度を高める必要があり、固定子を構成する極歯毎に駆動コイルを巻装する構成が増えてきている。そして、さらなる薄型化を図るためには、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることが不可欠となってきている。
【0003】
従来、この種の電動機は、巻線の巻き乱れを抑制して、整列巻きを容易にする構成が知られている(例えば、特許文献1参照)。
【0004】
以下、その電動機について図23〜図25を参照しながら説明する。
【0005】
図に示すように、コアの径方向に突出するティース50に装着され、ティース50の軸方向端面および両側面を覆う被巻線部51を備える。ティース50の根元側および先端側に相当する被巻線部51の縁からそれぞれ軸方向のみに突出して、この被巻線部51の周りに巻回された巻線52が径方向に移動するのを禁止する根元側係止部53および先端側係止部54を備え、被巻線部51の周りに巻線52を巻回するとき、巻線ノズルが各ティース50の側面および軸方向端面に対してさらに接近した軌道を通して、巻線52の整列巻きを実現するために、先端側係止部54が軸方向に突出する先端のコーナにR(アール)または面取りを施し、ティース50の側方で巻線52とインシュレータ表面との距離(ワイヤの膨らみ)を小さくするために、被巻線部51のうちティース50の軸方向端面を覆う部分の表面は、中央部51Gが両側の端部51Gcよりも軸方向に突出した構造としている。また、被巻線部51のうちティース50の軸方向端面を覆う部分は、両側のコーナに面取りを設ける構造や、両側のコーナが切り取られて階段状に凹んだ構造も開示されている。
【0006】
また、この種の電動機にはコイルを成形しているものもある(例えば、特許文献2参照)。
【0007】
以下、その電動機について図26を参照しながら説明する。
【0008】
図に示すように、ステータコア61に形成されるスロット62をスリット状として、ティース63の幅を広くし、各スロット62に挿入される成形コイル体64を所定巻数の角型コイル65によって形成し、その角型コイル65を断面略正方形で一辺がスリット状のスロット幅にほぼ等しい形状とし、この角型コイル65をスロットの奥行方向に1列に整列し、コイルエンド64aは折り曲げ成形する構造である。
【0009】
また、この種の電動機には固定子鉄心の磁極の幅を変更しているものもある(例えば、特許文献3参照)。
【0010】
以下、その電動機について図27〜図30を参照しながら説明する。
【0011】
図に示すように、固定子鉄心70に固定子巻線75が集中巻に巻回された固定子76と、この固定子76に対向して回転可能に保持された回転子77より構成された電動機であって、固定子鉄心70は、その中央部に配置された中央部固定子鉄心71と、この中央部固定子鉄心71の両側の端部に配置された端部固定子鉄心72とから構成され、中央部固定子鉄心71は、薄板鋼板を積層して構成されるとともに、端部固定子鉄心72は、その固定子磁極部74の幅が中央部固定子鉄心の固定子磁極部73と接する側の幅に比べて、端部側の幅が狭い断面形状を有する構造である。また、端部固定子鉄心72の固定子磁極部74の断面形状が、半円形状としたものや、台形形状としたもの、端部固定子鉄心72を構成する薄板鋼板の固定子磁極の幅が端部側に行くに従って、順次狭くなるようにしたものも開示されている。
【0012】
【特許文献1】
特開2001−95188号公報
【特許文献2】
特開平7−298528号公報
【特許文献3】
特開2003−9433号公報
【0013】
【発明が解決しようとする課題】
このような従来の電動機によれば、特許文献1に記載されているものにおいては、整列巻線を実現するために、巻線ノズルの軌道はティースの側方は直線軌道、軸方向端面側は円弧軌道として巻装しているので、特にティースの幅が狭かったり、スロット開口幅が狭かったり、スロット数が多かったり、軸方向の長さが長い場合などは、巻線の巻回時において、巻線ノズルが直線軌道から円弧軌道に移行する時には、慣性力によって、それまでの直線方向に巻線が膨らんで巻装されるため、図31に示すような被巻線部の軸方向端面側には被巻線部と巻線の間に隙間ΔGを生じることとなり、巻装形状は略平行四辺形となって、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができないという課題があり、薄型化が図れるとともに、信頼性の向上した電動機を提供することが要求されている。
【0014】
また、巻線の巻回速度を早くすると、一段と慣性力によって生じる隙間が大きくなり、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができないという課題があり、巻線の巻回速度を早くしても、薄型化が図れるとともに、信頼性の向上した電動機を提供することが要求されている。
【0015】
また、特許文献2に記載されているものにおいては、成形されたコイル形状を角形としているので、角形コイルを強制的に成形するため、コイル絶縁被覆の厚さのバラツキや傷が生じ、信頼性が低下するという課題があり、小型・軽量化が図れるとともに、信頼性の向上した電動機を提供することが要求されている。
【0016】
また、特許文献3に記載されているものにおいては、特許文献1同様に整列巻線を実現するために、巻線ノズルの軌道は固定子磁極部の側方は直線軌道、軸方向端面側は円弧軌道として巻装しているので、特に固定子磁極部の幅が狭く、スロット開口幅が狭く、軸方向の長さが長い場合は、コイルの巻回時において、巻線ノズルが直線軌道から円弧軌道に移行する時には、慣性力によって、それまでの直線方向にコイルが膨らんで巻装されるため、被巻線部の軸方向端面側には被巻線部とコイルの間に隙間を生じることとなり、巻装形状は略平行四辺形となって、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができないという課題があり、薄型化が図れるとともに、信頼性の向上した電動機を提供することが要求されている。
【0017】
本発明は、このような従来の課題を解決するものであり、コイルエンドの高さを低く抑えることにより、小型化、薄型化が図れるとともに、信頼性の向上した電動機およびその製造方法を提供することを目的としている。
【0018】
【課題を解決するための手段】
本発明のブラシレスDCモータは上記目的を達成するために、スロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁するインシュレータとを備え、前記固定子鉄心の前記極歯を覆う前記インシュレータの被巻装部の軸方向断面形状は略平行四辺形としたことを特徴とする電動機の構成としたものである。
【0019】
本発明によれば、極歯を覆うインシュレータの被巻装部の軸方向断面形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分のインシュレータの肉厚を削った略平行四辺形となっているので、駆動コイル巻装後の巻形状は略長方形にでき、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0020】
また他の手段は、スロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁するインシュレータとを備え、前記固定子鉄心の前記極歯を覆う前記インシュレータの被巻装部の角部には丸みを設け、一方の対角を成す前記丸みの曲率は、他方の対角を成す前記丸みの曲率よりも大きく形成したことを特徴とする電動機の構成としたものである。
【0021】
本発明によれば、極歯を覆うインシュレータの被巻装部の角部には丸みを設け、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分のインシュレータの肉厚を削った丸みの曲率となっているので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0022】
また他の手段は、スロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁するインシュレータとを備え、前記固定子鉄心の前記極歯を覆う前記インシュレータの被巻装部の角部には面取りを設け、一方の対角を成す前記面取りの大きさは、他方の対角を成す前記面取りの大きさよりも大きく形成したことを特徴とする電動機の構成としたものである。
【0023】
本発明によれば、極歯を覆うインシュレータの被巻装部の角部には面取りを設け、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分のインシュレータの肉厚を削った面取りの大きさとなっているので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるとともに、駆動コイルの過度の屈折を防止するので、銅損の低減による高効率化した電動機が得られる。
【0024】
また他の手段は、スロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁する絶縁体とを備え、この絶縁体は前記各極歯の側面を絶縁する絶縁フィルムと、この絶縁フィルムを前記固定子鉄心の軸方向から挟み込む樹脂製のインシュレータより構成され、このインシュレータの被巻装部の軸方向端部角は片側を鈍角に形成し、他方は鋭角に形成するとともに、一方の対角は鈍角に、他方の対角は鋭角に形成したことを特徴とする電動機の構成としたものである。
【0025】
本発明によれば、被巻装部の軸方向断面の形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分のインシュレータの肉厚を削った略平行四辺形となっているので、駆動コイル巻装後の巻形状は略長方形にでき、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0026】
また他の手段は、スロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁する絶縁体とを備え、この絶縁体は前記各極歯の側面を絶縁する絶縁フィルムと、この絶縁フィルムを前記固定子鉄心の軸方向から挟み込む樹脂製のインシュレータより構成され、このインシュレータの被巻装部の軸方向端部角には丸みを設け、この丸みは片側の曲率を大きく形成し、他方の丸みの曲率は小さく形成するとともに、一方の対角を成す前記丸みの曲率は大きく形成し、他方の対角を成す前記丸みの曲率は小さく形成したことを特徴とする電動機の構成としたものである。
【0027】
本発明によれば、被巻装部の角部には丸みを設け、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分のインシュレータの肉厚を削った丸みの曲率となっているので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるとともに、駆動コイルの過度の屈折を防止するので、銅損の低減による高効率化した電動機が得られる。
【0028】
また他の手段は、スロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁する絶縁体とを備え、この絶縁体は前記各極歯の側面を絶縁する絶縁フィルムと、この絶縁フィルムを前記固定子鉄心の軸方向から挟み込む樹脂製のインシュレータより構成され、このインシュレータの被巻装部の軸方向端部角には面取りを設け、この面取りの片側は大きく形成し、他方の面取りは小さく形成するとともに、一方の対角を成す前記面取りは大きく形成し、他方の対角を成す前記面取りは小さく形成したことを特徴とする電動機の構成としたものである。
【0029】
本発明によれば、被巻装部の角部には面取りを設け、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分のインシュレータの肉厚を削った面取りの大きさとなっているので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0030】
また他の手段は、スロットを有する薄板鋼板を積層した固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子とを備え、前記固定子鉄心の軸方向端部には前記極歯の被巻装部の幅が漸減する端部積層鉄心部を設け、この端部積層鉄心部における被巻装部の幅の漸減量は、一方の対角は大きく形成し、他方の対角は小さく形成したことを特徴とする電動機の構成としたものである。
【0031】
本発明によれば、被巻装部の軸方向断面の形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分の極歯を削った形状となっているので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。
【0032】
また他の手段は、粉末磁性材料を成形固化して形成したスロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子とを備え、前記極歯の被巻装部の軸方向断面形状は略平行四辺形としたことを特徴とする電動機の構成としたものである。
【0033】
本発明によれば、被巻装部の軸方向断面の形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分の極歯を削った略平行四辺形となっているので、駆動コイル巻装後の巻形状は略長方形にでき、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0034】
また他の手段は、粉末磁性材料を成形固化して形成したスロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子とを備え、前記固定子鉄心の極歯の被巻装部角には丸みを設け、一方の対角を成す前記丸みの曲率は、他方の対角を成す前記丸みの曲率よりも大きく形成したことを特徴とする電動機の構成としたものである。
【0035】
本発明によれば、被巻装部の軸方向断面の形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分の極歯を削った形状となっているので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるとともに、駆動コイルの過度の屈折を防止するので、銅損の低減による高効率化した電動機が得られる。
【0036】
また他の手段は、粉末磁性材料を成形固化して形成したスロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子とを備え、前記固定子鉄心の前記極歯の被巻装部角には面取りを設け、一方の対角を成す前記面取りの大きさは、他方の対角を成す前記面取りの大きさよりも大きく形成したことを特徴とする電動機の構成としたものである。
【0037】
本発明によれば、被巻装部の軸方向断面の形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分の極歯を削った形状となっているので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。
【0038】
また他の手段は、インシュレータには前記回転子側への駆動コイルの崩れを防止する鍔部を設け、この鍔部の角部は円弧状とし、この円弧部の曲率は前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側は、前記被巻装部の角部が鋭角を形成している側、または前記被巻装部の角部丸みの曲率が小さい側、または前記被巻装部の角部面取りが小さい側の前記円弧部曲率よりも大きくしたことを特徴とする電動機の構成としたものである。
【0039】
本発明によれば、鍔部の円弧部の曲率が大きい側の巻線ノズルの軌道は、直線軌道から円弧軌道への移行が早くできることから、駆動コイルとインシュレータの間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。
【0040】
また他の手段は、インシュレータには前記回転子側への駆動コイルの崩れを防止する鍔部を設け、この鍔部の角部には面取り部を設け、この面取り部の大きさは前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側は、前記被巻装部の角部が鋭角を形成している側、または前記被巻装部の角部丸みの曲率が小さい側、または前記被巻装部の角部面取りが小さい側の面取りよりも大きくしたことを特徴とする電動機の構成としたものである。
【0041】
本発明によれば、鍔部角の面取り部の面取りが大きい側の巻線ノズルの軌道は、直線軌道から円弧軌道への移行が早くできることから、駆動コイルとインシュレータの間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。
【0042】
また他の手段は、インシュレータには前記回転子側への駆動コイルの崩れを防止する鍔部を設け、この鍔部には切欠きを設け、この切欠きは前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側に設けたことを特徴とする電動機の構成としたものである。
【0043】
本発明によれば、鍔部の切欠きを有する側の巻線ノズルの軌道は、直線軌道から円弧軌道への移行が早くできることから、駆動コイルとインシュレータの間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。
【0044】
また他の手段は、極歯には回転子側への駆動コイルの崩れを防止する鍔部を設け、この鍔部の角部は円弧状とし、この円弧部の曲率は前記被巻装部の幅の漸減量が大きい側、または前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側は、前記被巻装部の幅の漸減量が小さい側、または前記被巻装部の角部が鋭角を形成する側、または前記被巻装部の角部丸みの曲率が小さい側、または前記被巻装部の角部面取りが小さい側の円弧部曲率よりも大きくしたことを特徴とする電動機の構成としたものである。
【0045】
本発明によれば、鍔部の円弧状角部の曲率が大きい側の巻線ノズルの軌道は、直線軌道から円弧軌道への移行が早くできることから、駆動コイルと固定子鉄心の間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。
【0046】
また他の手段は、極歯には回転子側への駆動コイルの崩れを防止する鍔部を設け、この鍔部の角部には面取り部を設け、この面取り部の大きさは前記被巻装部の幅の漸減量が大きい側、または前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側は、前記被巻装部の幅の漸減量が小さい側、または前記被巻装部の角部が鋭角を形成する側、または前記被巻装部の角部丸みの曲率が小さい側、または前記被巻装部の角部面取りが小さい側の面取りよりも大きくしたことを特徴とする電動機の構成としたものである。
【0047】
本発明によれば、鍔部の面取りが大きい側の巻線ノズルの軌道は、直線軌道から円弧軌道への移行が早くできることから、駆動コイルと固定子鉄心の間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。
【0048】
また他の手段は、極歯には回転子側への駆動コイルの崩れを防止する鍔部を設け、この鍔部には切欠きを設け、この切欠きは前記被巻装部の幅の漸減量が大きい側、または前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側に設けたことを特徴とする電動機の構成としたものである。
【0049】
本発明によれば、鍔部の切欠きを有する側の巻線ノズルの軌道は、直線軌道から円弧軌道への移行が早くできることから、駆動コイルと固定子鉄心の間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。
【0050】
また他の手段は、巻線ノズルがスロット開口部を通過して、各極歯の周りを回転して駆動コイルを巻装する電動機の製造方法であって、前記巻線ノズルの軌道は固定子鉄心のスロット内は直線状に、固定子鉄心の軸方向端面側は円弧状とするとともに、直線状軌道から円弧状軌道に移る側の円弧の曲率は、円弧状軌道から直線状軌道に移る側の円弧の曲率よりも大きくしたことを特徴とする電動機の製造方法としたものである。
【0051】
本発明によれば、直線軌道から円弧軌道への移行が早くできることから、駆動コイルと固定子鉄心の間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機の製造方法が得られる。
【0052】
【発明の実施の形態】
請求項1に記載の発明は、固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁するインシュレータとを備え、前記固定子鉄心の前記極歯を覆う前記インシュレータの被巻装部の軸方向断面の形状は略平行四辺形としたことを特徴とする電動機の構成とすることにより、巻線巻装後の巻形状は略長方形になり、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなるとともに、コイル周長が短くなるという作用を有する。
【0053】
請求項2に記載の発明は、固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁するインシュレータとを備え、前記固定子鉄心の前記極歯を覆う前記インシュレータの被巻装部の角部には丸みを設け、一方の対角を成す前記丸みの曲率は、他方の対角を成す前記丸みの曲率よりも大きく形成したことを特徴とする電動機の構成とすることにより、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなるとともに、コイル周長が短くなるという作用を有する。
【0054】
請求項3に記載の発明は、固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁するインシュレータとを備え、前記固定子鉄心の前記極歯を覆う前記インシュレータの被巻装部の角部には面取りを設け、一方の対角を成す前記面取りの大きさは、他方の対角を成す前記面取りの大きさよりも大きく形成したことを特徴とする電動機の構成とすることにより、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなるとともに、コイル周長が短くなるという作用を有する。
【0055】
請求項4に記載の発明は、固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁する絶縁体とを備え、この絶縁体は前記各極歯の側面を絶縁する絶縁フィルムと、この絶縁フィルムを前記固定子鉄心の軸方向から挟み込む樹脂製のインシュレータより構成され、このインシュレータの被巻装部の軸方向端部角は片側を鈍角に形成し、他方は鋭角に形成するとともに、一方の対角は鈍角に、他方の対角は鋭角に形成したことを特徴とする電動機の構成とすることにより、巻線巻装後の巻形状は略長方形になり、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなるとともに、コイル周長が短くなるという作用を有する。
【0056】
請求項5に記載の発明は、固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁する絶縁体とを備え、この絶縁体は前記各極歯の側面を絶縁する絶縁フィルムと、この絶縁フィルムを前記固定子鉄心の軸方向から挟み込む樹脂製のインシュレータより構成され、このインシュレータの被巻装部の軸方向端部角には丸みを設け、この丸みは片側の曲率を大きく形成し、他方の丸みの曲率は小さく形成するとともに、一方の対角を成す前記丸みの曲率を大きく形成し、他方の対角を成す前記丸みの曲率は小さく形成したことを特徴とする電動機の構成とすることにより、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなるとともに、コイル周長が短くなるという作用を有する。
【0057】
請求項6に記載の発明は、スロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁する絶縁体とを備え、この絶縁体は前記各極歯の側面を絶縁する絶縁フィルムと、この絶縁フィルムを前記固定子鉄心の軸方向から挟み込む樹脂製のインシュレータより構成され、このインシュレータの被巻装部の軸方向端部角には面取りを設け、この面取りの片側は大きく形成し、他方の面取りは小さく形成するとともに、一方の対角を成す面取りは大きく形成し、他方の対角を成す面取りは小さく形成したことを特徴とする電動機の構成とすることにより、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなるとともに、コイル周長が短くなるという作用を有する。
【0058】
請求項7に記載の発明は、スロットを有する薄板鋼板を積層した固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子とを備え、前記固定子鉄心の軸方向端部には前記極歯の被巻装部の幅が漸減する端部積層鉄心部を設け、この端部積層鉄心部における被巻装部の幅の漸減量は、一方の対角は大きく形成し、他方の対角は小さく形成したことを特徴とする電動機の構成とすることにより、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなるとともに、コイル周長が短くなるという作用を有する。
【0059】
請求項8に記載の発明は、粉末磁性材料を成形固化して形成したスロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子とを備え、前記極歯の被巻装部の軸方向断面形状は略平行四辺形としたことを特徴とする電動機の構成とすることにより、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなるとともに、コイル周長が短くなるという作用を有する。
【0060】
請求項9に記載の発明は、粉末磁性材料を成形固化して形成したスロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子とを備え、前記固定子鉄心の前記極歯の被巻装部角には丸みを設け、一方の対角を成す前記丸みの曲率は、他方の対角を成す前記丸みの曲率よりも大きく形成したことを特徴とする電動機の構成とすることにより、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなるとともに、コイル周長が短くなるという作用を有する。
【0061】
請求項10に記載の発明は、粉末磁性材料を成形固化して形成したスロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子とを備え、前記固定子鉄心の前記極歯の被巻装部角には面取りを設け、一方の対角を成す前記面取りの大きさは、他方の対角を成す前記面取りの大きさよりも大きく形成したことを特徴とする電動機の構成とすることにより、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなるとともに、コイル周長が短くなるという作用を有する。
【0062】
請求項11に記載の発明は、インシュレータには回転子側への駆動コイルの崩れを防止する鍔部を設け、この鍔部の角部は円弧状とし、この円弧部の曲率は前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側は、前記被巻装部の角部が鋭角を形成している側、または前記被巻装部の角部丸みの曲率が小さい側、または被巻装部の角部面取りが小さい側の円弧部曲率よりも大きくしたことを特徴とする電動機の構成とすることにより、鍔部の円弧部の曲率が大きい側の巻線ノズルの軌道は、直線軌道から円弧軌道への移行が早くできるため、駆動コイルとインシュレータの間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くなるとともに、コイル周長が短くなるという作用を有する。
【0063】
請求項12に記載の発明は、インシュレータには回転子側への駆動コイルの崩れを防止する鍔部を設け、この鍔部の角部には面取り部を設け、この鍔部角面取り部の面取りの大きさは前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側は、前記被巻装部の角部が鋭角を形成している側、または前記被巻装部の角部丸みの曲率が小さい側、または前記被巻装部の角部面取りが小さい側の前記鍔部角面取り部の面取りよりも大きくしたことを特徴とする電動機の構成により、鍔部角の面取り部の面取りが大きい側の巻線ノズルの軌道は、直線軌道から円弧軌道への移行が早くできるため、駆動コイルとインシュレータの間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くなるとともに、コイル周長が短くなるという作用を有する。
【0064】
請求項13に記載の発明は、インシュレータには回転子側への駆動コイルの崩れを防止する鍔部を設け、この鍔部には切欠きを設け、この切欠きは前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側に設けたことを特徴とする電動機の構成とすることにより、鍔部の切欠きを有する側の巻線ノズルの軌道は、直線軌道から円弧軌道への移行が早くできるため、駆動コイルとインシュレータの間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くなるとともに、コイル周長が短くなるという作用を有する。
【0065】
請求項14に記載の発明は、極歯には回転子側への駆動コイルの崩れを防止する鍔部を設け、この鍔部の角部は円弧状とし、この円弧部の曲率は前記被巻装部の幅の漸減量が大きい側、または前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側は、前記被巻装部の幅の漸減量が小さい側、または前記被巻装部の角部が鋭角を形成する側、または前記被巻装部の角部丸みの曲率が小さい側、または前記被巻装部の角部面取りが小さい側の円弧部曲率よりも大きくしたことを特徴とする電動機の構成とすることにより、鍔部の円弧部の曲率が大きい側の巻線ノズルの軌道は、直線軌道から円弧軌道への移行が早くできるため、駆動コイルと固定子鉄心の間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くなるとともに、コイル周長が短くなるという作用を有する。
【0066】
請求項15に記載の発明は、極歯には回転子側への駆動コイルの崩れを防止する鍔部を設け、この鍔部の角部には面取り部を設け、この面取り部の大きさは前記被巻装部の幅の漸減量が大きい側、または前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側は、前記被巻装部の幅の漸減量が小さい側、または前記被巻装部の角部が鋭角を形成する側、または前記被巻装部の角部丸みの曲率が小さい側、または前記被巻装部の角部面取りが小さい側の面取りよりも大きくしたことを特徴とする電動機の構成とすることにより、鍔部の面取りが大きい側の巻線ノズルの軌道は、直線軌道から円弧軌道への移行が早くできるため、駆動コイルと固定子鉄心の間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くなるとともに、コイル周長が短くなるという作用を有する。
【0067】
請求項16に記載の発明は、極歯には回転子側への駆動コイルの崩れを防止する鍔部を設け、この鍔部には切欠きを設け、この切欠きは前記被巻装部の幅の漸減量が大きい側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部面取りが大きい側に設けたことを特徴とする電動機の構成とすることにより、鍔部の切欠きを有する側の巻線ノズルの軌道は、直線軌道から円弧軌道への移行が早くできるため、駆動コイルと固定子鉄心の間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くなるとともに、コイル周長が短くなるという作用を有する。
【0068】
請求項17に記載の発明は、巻線ノズルがスロット開口部を通過して、各極歯の周りを回転して駆動コイルを巻装する電動機の製造方法であって、前記巻線ノズルの軌道は固定子鉄心のスロット内は直線状に、固定子鉄心の軸方向端面側は円弧状とするとともに、直線状軌道から円弧状軌道に移る側の円弧の曲率は、円弧状軌道から直線状軌道に移る側の円弧の曲率よりも大きくしたことを特徴とする電動機の製造方法とすることにより、巻線ノズルが直線軌道から円弧軌道への移行が早くできるので、駆動コイルと固定子鉄心の間の隙間が小さくなるという作用を有する。
【0069】
以下、本発明の実施例について図1〜図22を参照しながら説明する。
【0070】
【実施例】
(実施例1)
図1〜図4に示すように、1は電動機で、10は複数のスロットを有する珪素鋼板などの薄板鋼板を積層した固定子鉄心10aに絶縁材にて形成されたインシュレータ7を介して駆動コイル2を巻装した固定子で、固定子10は熱硬化性樹脂12にてモールド成形されて外被を形成しており、11はブラケットで軸受け6を保持している。3はプラスチックマグネットを射出成形時に極配向させてシャフト9と一体成形して形成した磁石回転子であり、固定子10内周側に回転自在に配置されている。4は磁石回転子3の磁極位置を検知するホールICで、15はホールIC4の出力信号に基づいて駆動コイル2への通電を制御する駆動ICである。14はホールIC4、駆動IC15、その他電子部品を実装したプリント基板で、電動機1に内蔵されている。8は極歯で、この極歯8単位毎にインシュレータ7を介して駆動コイル2が集中巻線されている。そして、極歯8の先端部には磁石回転子3の回転方向に張り出したポールピース部8aが配置されており、このポールピース部8aのインシュレータ7には駆動コイル2が磁石回転子3側への崩れを防止する鍔部13を設け、この鍔部13の角部は円弧状となっている。そして、極歯8を覆うインシュレータ7の被巻装部7aの軸方向断面形状は略平行四辺形となっており、鈍角部7bと鋭角部7cには丸みを設けてある。そして、鍔部13角の円弧部16において、鈍角部7b側の鍔部13角は曲率の大きな円弧部16aを形成し、鋭角部7c側の鍔部13角は曲率の小さな円弧部16bを形成した構成である。
【0071】
このような本発明の電動機1によれば、極歯8を覆うインシュレータ7の被巻装部7aの軸方向断面形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分ΔGのインシュレータの肉厚を削った略平行四辺形となっているので、巻線ノズルの巻回速度を早くしても、駆動コイル2の巻装後の巻形状は略長方形にでき、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。また、巻装速度が早くできることから加工コストの削減ができることから電動機の低コスト化が実現できる。
【0072】
また、鍔部13角の円弧部16において、極歯8を覆うインシュレータ7の被巻装部7aの角が鈍角を形成している鈍角部7b側の円弧部16aの曲率を大きく形成しているので、巻線ノズルが直線軌道から円弧軌道に移行するタイミングを早くできることから、駆動コイル2とインシュレータ7の間の隙間が小さくなるので、固定子鉄心10aから軸方向に突出するコイルエンドの高さが、さらに低くなるとともに、コイル周長も短くなるため、駆動コイル2の抵抗値が低くなり、銅損がさらに低減できるので、一層の薄型化、高効率化が実現できる電動機が得られる。
【0073】
なお、本実施例1では固定子の内周側に配置された回転子が回転する内転型の電動機としたが、固定子の外周側に配置された回転子が回転する外転型の電動機としても良く、その作用効果に差異を生じない。
【0074】
また、本実施例1では駆動回路を内蔵する電動機の構成としたが、駆動回路を内蔵しないセンサレス型の電動機としても良く、その作用効果に差異を生じない。
【0075】
また、本実施例1では回転子に永久磁石を配した直流電動機の構成としたが、永久磁石を使用しない誘導電動機や、リラクタンスモータとしても良く、集中巻線を施す電動機であれば、その作用効果に差異を生じない。
【0076】
また、図5に示すように、極歯8を覆うインシュレータ7の被巻装部7aの角に丸み5を設け、一方の対角を成す丸み5aの曲率を、他方の対角を成す丸み5bの曲率よりも大きく形成するとともに、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分ΔGを丸みの曲率に差を設けた構成としても、固定子鉄心10aと駆動コイル2の距離が短くなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなり、薄型化した電動機が得られる。また、コイル周長を短くできるとともに、駆動コイルの屈折による抵抗値の増加を抑制できるので、銅損の低減による一層の高効率化を実現した電動機が得られる。
【0077】
また、図6に示すように、極歯8を覆うインシュレータ7の被巻装部7aの角に面取り17を設け、一方の対角を成す面取り17aの大きさを、他方の対角を成す面取り17bの大きさよりも大きく形成するとともに、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分ΔGを面取りの大きさに差を設けた構成としても、固定子鉄心10aと駆動コイル2の距離が短くなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなり、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0078】
また、図7に示すように、駆動コイル2と固定子鉄心10aの絶縁手段において、極歯8の側方はポリエステルフィルムなどの絶縁フィルム18を配し、この絶縁フィルム18を軸方向から樹脂製のインシュレータ19にて挟み込む構造とし、このインシュレータ19の被巻装部19aの軸方向端部角は片側を鈍角19bに形成し、他方は鋭角19cに形成するとともに、一方の対角は鈍角に、他方の対角は鋭角に形成する構成としても、被巻線部の軸方向断面の形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分ΔGのインシュレータの肉厚を削った略平行四辺形となっているので、駆動コイル2の巻装後の巻形状は略長方形にでき、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0079】
また、図8に示すように、駆動コイル2と固定子鉄心10aの絶縁手段において、極歯8の側方はポリエステルフィルムなどの絶縁フィルム18を配し、この絶縁フィルム18を軸方向から樹脂製のインシュレータ20にて挟み込む構造とし、このインシュレータ20の被巻装部20aの軸方向端部角には丸み21を設け、この丸み21の曲率は片側を大きく形成し、他方は小さく形成するとともに、一方の対角の丸み21aの曲率は大きく、他方の対角の丸み21bの曲率は小さく形成する構成としても、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分ΔGを丸みの曲率に差を設けてあるので、固定子鉄心10aと駆動コイル2の距離が短くなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなり、薄型化した電動機が得られる。また、コイル周長を短くできるとともに、駆動コイルの屈折による抵抗値の増加を抑制できるので、銅損の低減による一層の高効率化を実現した電動機が得られる。
【0080】
また、図9に示すように、駆動コイル2と固定子鉄心10aの絶縁手段において、極歯8の側方はポリエステルフィルムなどの絶縁フィルム18を配し、この絶縁フィルム18を軸方向から樹脂製のインシュレータ22にて挟み込む構造とし、このインシュレータ22の被巻装部22aの軸方向端部角には面取り23を設け、この面取り23の大きさは片側を大きく形成し、他方は小さく形成するとともに、一方の対角の面取り23aの大きさは大きく、他方の対角の面取り23bの大きさは小さく形成する構成としても、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分ΔGを面取りの大きさに差を設けてあるので、固定子鉄心10aと駆動コイル2の距離が短くなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなり、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0081】
また、図10に示すように、ポールピース部8aのインシュレータ7,19,20,22には駆動コイル2が磁石回転子3側への崩れを防止する鍔部24を設け、鍔部24の角に面取りを配し、この鍔部24角の面取り部において、極歯8を覆うインシュレータ7,19の被巻装部7a,19a角が鈍角を形成している鈍角部7b,19b側、もしくは極歯8を覆うインシュレータ7,20の被巻装部7a,20a角の曲率が大きい丸み5a,21a側、もしくは極歯8を覆うインシュレータ7,22の被巻線部7a,22a角の大きい面取り17a,23a側の鍔部24角の面取り部24aを大きく形成した構成とすることによっても、巻線ノズルが直線軌道から円弧軌道に移行するタイミングを早くできることから、駆動コイル2とインシュレータ7の間の隙間が小さくなるので、固定子鉄心10aから軸方向に突出するコイルエンドの高さが、さらに低くなるとともに、コイル周長も短くなるため、駆動コイル2の抵抗値が低くなり、銅損がさらに低減できるので、一層の薄型化、高効率化が実現できる電動機が得られる。
【0082】
また、図11に示すように、ポールピース部8aのインシュレータ7,19,20,22には駆動コイル2が磁石回転子3側への崩れを防止する鍔部25を設け、この鍔部25において、極歯8を覆うインシュレータ7,19の被巻装部7a,19a角が鈍角を形成している鈍角部7b,19b側、もしくは極歯8を覆うインシュレータ7,20の被巻装部7a,20a角の曲率が大きい丸み5a,21a側、もしくは極歯8を覆うインシュレータ7,22の被巻装部7a,22a角の大きい面取り17a,23a側の鍔部25角に切欠き26を配した構成とすることによっても、巻線ノズルが直線軌道から円弧軌道に移行するタイミングを早くできることから、駆動コイル2と固定子鉄心10aの間の隙間が小さくなるので、固定子鉄心10aから軸方向に突出するコイルエンドの高さが、さらに低くなるとともに、コイル周長も短くなるため、駆動コイル2の抵抗値が低くなり、銅損がさらに低減できるので、一層の薄型化、高効率化が実現できる電動機が得られる。
【0083】
(実施例2)
図12および図13に示すように、27は複数のスロットを有する珪素鋼板などの薄板鋼板を積層した固定子鉄心27aに駆動コイル2を巻装した固定子で、28は極歯で、この極歯28単位毎に駆動コイル2が集中巻線されている。固定子鉄心27aにおいて、軸方向両端部には極歯28の被巻装部30の幅が漸減する端部積層鉄心部29を設け、この端部積層鉄心部29において、被巻装部30の幅における漸減量は、一方の対角の漸減量ΔW1は大きくし、他方の対角の漸減量ΔW2は小さく形成し、極歯28における先端のポールピース部28aの幅は同一としている。そして、その他の構成は実施例1と同じであり、詳細な説明は省略する。
【0084】
このような本発明の電動機によれば、極歯28における被巻装部30の軸方向断面の形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分ΔGの極歯を削った形状となっているので、固定子鉄心27aから軸方向に突出するコイルエンドの高さを低くすることができ、コイル周長も短くなるため、駆動コイル2の抵抗値が低くなり、銅損の低減ができるので、一層の薄型化を実現できる電動機が得られる。ここで、固定子鉄心27aの体積は減少するので、磁束が小さくなり、発生できるトルクは小さくなるが、銅損の低減量と相殺できるので、必要とするトルクが同一であれば、薄型化が可能となる。
【0085】
なお、実施例2では極歯28の被巻装部30に対して直に駆動コイル2を巻装したが、略均一の肉厚となる絶縁体を介して巻装しても良く、その作用効果に差異を生じない。
【0086】
また、実施例1と同様に外転型の電動機の構成としても良く、その作用効果に差異を生じない。
【0087】
また、実施例1と同様にセンサレス型の電動機としても良く、その作用効果に差異を生じない。
【0088】
また、実施例1と同様に誘導電動機やリラクタンスモータとしても良く、その作用効果に差異を生じない。
【0089】
また、図14(a)に示すように、ポールピース部28aには駆動コイル2が磁石回転子3側への崩れを防止する鍔部13を設け、この鍔部13の角部には円弧部16を設け、この鍔部13角の円弧部16において、被巻装部30の幅の漸減量が多い(ΔW1)側は曲率の大きな円弧部16aを形成し、被巻装部30の幅の漸減量が少ない(ΔW2)側は曲率の小さな円弧部16b形成した構成としても、図14(b)に示すように、ポールピース部28aには駆動コイル2が磁石回転子3側への崩れを防止する鍔部24を設け、この鍔部24の角部には面取りを設け、この鍔部24角の面取り部において、被巻装部30の幅の漸減量が多い(ΔW1)側は大きな面取り部24aを形成し、被巻装部30の幅の漸減量が少ない(ΔW2)側は小さな面取り部24bを形成した構成としても、図14(c)に示すように、ポールピース部28aには駆動コイル2が磁石回転子3側への崩れを防止する鍔部25を設け、この鍔部25の角部において、被巻装部30の幅の漸減量が多い(ΔW1)側には切欠き26を形成した構成としても、巻線ノズルが直線軌道から円弧軌道に移行するタイミングを早くできることから、駆動コイル2と固定子鉄心27aの間の隙間が小さくなるので、固定子鉄心27aから軸方向に突出するコイルエンドの高さが、さらに低くなるとともに、コイル周長も短くなるため、駆動コイル2の抵抗値が低くなり、銅損がさらに低減できるので、一層の薄型化、高効率化が実現できる電動機が得られる。
【0090】
また、実施例2では被巻線部30の幅を両端とも(ΔW1,ΔW2)削った構成としたが、片側のみ削った構成としても良く、その作用効果に大きな差異を生じない。
【0091】
(実施例3)
図15および図16に示すように、31は粉末磁性材料である酸化物で表面を絶縁処理した磁性粉末と樹脂の複合材料を成形固化して形成した複数のスロットを有する固定子鉄心31aに駆動コイル2を巻装した固定子で、33は極歯で、この極歯33単位毎に駆動コイル2が集中巻線されている。そして、極歯33の先端部には磁石回転子3の回転方向に張り出したポールピース部33aが配置されており、このポールピース部33aには駆動コイル2が磁石回転子3側への崩れを防止する鍔部32を一体的に設け、この鍔部32の角部は円弧状となっている。そして、極歯33の被巻装部33bの軸方向断面形状は略平行四辺形となっており、鈍角部33cと鋭角部33dには丸みを設けてある。そして、鍔部32角の円弧部34において、鈍角部33c側の鍔部32角は曲率の大きな円弧部34aを形成し、鋭角部33d側の鍔部34角は曲率の小さな円弧部34bを形成した構成としている。そして、その他の構成は実施例1と同じであり、詳細な説明は省略する。
【0092】
このような本発明の電動機によれば、極歯33の被巻装部33bの軸方向断面形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分ΔGのインシュレータの肉厚を削った略平行四辺形となっているので、駆動コイル2の巻装後の巻形状は略長方形にでき、固定子鉄心31aから軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0093】
また、鍔部32角の円弧部34において、被巻装部33bの角が鈍角を形成している鈍角部33c側の円弧部34aの曲率を大きく形成しているので、巻線ノズルが直線軌道から円弧軌道に移行するタイミングを早くできることから、駆動コイル2と固定子鉄心31aの間の隙間が小さくなるので、固定子鉄心31aから軸方向に突出するコイルエンドの高さが、さらに低くなるとともに、コイル周長も短くなるため、駆動コイル2の抵抗値が低くなり、銅損がさらに低減できるので、一層の薄型化、高効率化が実現できる電動機が得られる。
【0094】
なお、実施例1と同様に外転型の電動機の構成としても良く、その作用効果に差異を生じない。
【0095】
また、図17に示すように、被巻装部33bの角に丸み35を設け、一方の対角を成す丸み35aの曲率を、他方の対角を成す丸み35bの曲率よりも大きく形成するとともに、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分ΔGを丸みの曲率に差を設けた構成としても、固定子鉄心と駆動コイル2の距離が短くなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなり、薄型化した電動機が得られる。また、コイル周長を短くできるとともに、駆動コイルの屈折による抵抗値の増加を抑制できるので、銅損の低減による一層の高効率化を実現した電動機が得られる。
【0096】
また、図18に示すように、被巻装部33bの角に面取り36を設け、一方の対角を成す面取り36aの大きさを、他方の対角を成す面取り36bの大きさよりも大きく形成するとともに、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分ΔGを面取りの大きさに差を設けた構成としても、固定子鉄心と駆動コイル2の距離が短くなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなり、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0097】
また、図19に示すように、ポールピース部33aには駆動コイル2が磁石回転子3側への崩れを防止する鍔部37を一体的に設け、この鍔部37の角に面取りを配し、この鍔部37角の面取り部において、被巻装部33b角が鈍角を形成している鈍角部33c側、もしくは被巻装部33b角の曲率が大きい丸み35a側、もしくは被巻装部33b角の大きい面取り36a側の鍔部37角の面取り部37aを大きく形成する構成としても、図20に示すように、ポールピース部33aには駆動コイル2が磁石回転子3側への崩れを防止する鍔部38を一体的に設け、この鍔部38において、被巻装部33b角が鈍角を形成している鈍角部33c側、もしくは被巻装部33b角の曲率が大きい丸み35a側、もしくは被巻装部33b角の大きい面取り36a側の鍔部38角に切欠き38aを配す構成としても、巻線ノズルが直線軌道から円弧軌道に移行するタイミングを早くできることから、駆動コイル2と固定子鉄心31aの間の隙間が小さくなるので、固定子鉄心31aから軸方向に突出するコイルエンドの高さが、さらに低くなるとともに、コイル周長も短くなるため、駆動コイル2の抵抗値が低くなり、銅損がさらに低減できるので、一層の薄型化、高効率化が実現できる電動機が得られる。
【0098】
(実施例4)
図21および図22に示すように、41はスロット40を有する固定子鉄心であり、この固定子鉄心41のスロット開口部43を巻線ノズル39が通過して、各極歯42の周りを回転して駆動コイル2を巻装する電動機の製造方法であって、前記巻線ノズル39の軌道は固定子鉄心41のスロット40内は直線状に、固定子鉄心の軸方向端面側は円弧状とするとともに、直線状軌道から円弧状軌道に移る側の円弧の曲率Raは、円弧状軌道から直線状軌道に移る側の円弧の曲率Rbよりも大きくした軌道で所定回数巻回することによって電動機の巻線工程の製造が完了する。それ以降の組み立ては通常の電動機の製造方法と同じである。
【0099】
このような本発明の電動機の製造方法によれば、巻線ノズル39の軌道において、直線軌道から円弧軌道に移行する側の円弧軌道の曲率Raを、円弧軌道から直線軌道に移行する側の円弧軌道の曲率Rbよりも大きくした製造方法としたことによって、直線軌道から円弧軌道への移行が早くできることから、慣性力によって生じる駆動コイル2と固定子鉄心41の間の隙間が小さくなるので、スロット数の多い固定子鉄心への巻装であっても、スロット開口部の狭い固定子鉄心への巻装であっても、軸方向長さの長い固定子鉄心への巻装であっても、極歯の被巻装部の幅が狭い固定子鉄心への巻装であっても、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化を可能とする電動機の製造方法が得られる。
【0100】
【発明の効果】
以上の実施例から明らかなように、本発明によれば、固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁するインシュレータとを備え、前記固定子鉄心の前記極歯を覆う前記インシュレータの軸方向断面の形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分のインシュレータの肉厚を削った略平行四辺形としたことを特徴とする電動機の構成とすることにより、巻線ノズルの巻回速度を早くしても、駆動コイル巻装後の巻形状は略長方形になり、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0101】
また、極歯の被巻線部を覆うインシュレータの角に丸みを設け、一方の対角を成す丸みの曲率を、他方の対角を成す丸みの曲率よりも大きく形成するとともに、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分を丸みの曲率に差を設けた構成としても、固定子鉄心と駆動コイルの距離が短くなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなり、薄型化した電動機が得られる。また、コイル周長を短くできるとともに、駆動コイルの屈折による抵抗値の増加を抑制できるので、銅損の低減による一層の高効率化を実現した電動機が得られる。ここで、一層の高効率化を実現したことによって、同一出力であれば、固定子鉄心の積層厚を薄くできるので、さらなる薄型化を実現した電動機を提供できる。
【0102】
また、極歯の被巻線部を覆うインシュレータの角に面取りを設け、一方の対角を成す面取りの大きさを、他方の対角を成す面取りの大きさよりも大きく形成するとともに、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分を面取りの大きさに差を設けた構成としても、固定子鉄心と駆動コイルの距離が短くなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなり、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0103】
また、駆動コイルと固定子鉄心の絶縁手段において、極歯の被巻線部の側方は絶縁フィルムを配し、この絶縁フィルムを軸方向から樹脂製のインシュレータにて挟み込む構造とし、このインシュレータの軸方向端部の角は片側を鈍角に形成し、他方は鋭角に形成するとともに、一方の対角は鈍角に形成し、他方の対角は鋭角に形成する構成としても、被巻線部の軸方向断面の形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分のインシュレータの肉厚を削った略平行四辺形となっているので、駆動コイルの巻装後の巻形状は略長方形にでき、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0104】
また、絶縁フィルムを軸方向から挟み込む樹脂製インシュレータの軸方向端部角には丸みを設け、この丸みの曲率は片側を大きく形成し、他方は小さく形成するとともに、一方の対角を成す丸みの曲率は大きく形成し、他方の対角を成す丸みの曲率は小さく形成する構成としても、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分を丸みの曲率に差を設けてあるので、固定子鉄心と駆動コイルの距離が短くなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなり、薄型化した電動機が得られる。また、コイル周長を短くできるとともに、駆動コイルの屈折による抵抗値の増加を抑制できるので、銅損の低減による一層の高効率化を実現した電動機が得られる。ここで、一層の高効率化を実現したことによって、同一出力であれば、固定子鉄心の積層厚を薄くできるので、さらなる薄型化を実現した電動機を提供できる。
【0105】
また、絶縁フィルムを軸方向から挟み込む樹脂製インシュレータの軸方向端部角には面取りを設け、この面取りの大きさは片側を大きく形成し、他方は小さく形成するとともに、一方の対角を成す面取りの大きさは大きく形成し、他方の対角を成す面取りの大きさは小さく形成する構成としても、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分を面取りの大きさに差を設けてあるので、固定子鉄心と駆動コイルの距離が短くなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなり、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0106】
また、固定子鉄心において、軸方向両端部には極歯の被巻装部の幅が漸減する端部積層鉄心部を設け、この端部積層鉄心部において、被巻装部の幅における漸減量は、一方の対角の漸減量は大きくし、他方の対角の漸減量は小さく形成することにより、極歯における被巻装部の軸方向断面の形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分の極歯を削った形状となっているので、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができ、コイル周長も短くなるため、駆動コイルの抵抗値が低くなり、銅損の低減ができるので、一層の薄型化を実現できる電動機が得られる。ここで、固定子鉄心の体積は減少するので、磁束が小さくなり、発生できるトルクは小さくなるが、銅損の低減量と相殺できるので、必要とするトルクが同一であれば、薄型化が可能となる。
【0107】
また、粉末磁性材料である酸化物で表面を絶縁処理した磁性粉末と樹脂の複合材料を成形固化して形成した複数のスロットを有する固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子とを備え、前記固定子鉄心の軸方向断面の形状は、巻線ノズルが直線軌道から円弧軌道に移行する時に生じる隙間分の固定子鉄心の肉厚を削った略平行四辺形としたことを特徴とする電動機の構成とすることにより、巻線巻装後の巻形状は略長方形になり、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0108】
また、粉末磁性材料を成形固化して形成した複数のスロットを有する固定子鉄心の被巻装部の角に丸みを設け、一方の対角を成す丸みの曲率を、他方の対角を成す丸みの曲率よりも大きく形成するとともに、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分を丸みの曲率に差を設けた構成としても、固定子鉄心と駆動コイルの距離が短くなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなり、薄型化した電動機が得られる。また、コイル周長を短くできるとともに、駆動コイルの屈折による抵抗値の増加を抑制できるので、銅損の低減による一層の高効率化を実現した電動機が得られる。
【0109】
また、粉末磁性材料を成形固化して形成した複数のスロットを有する固定子鉄心の被巻装部の角に面取りを設け、一方の対角を成す面取りの大きさを、他方の対角を成す面取りの大きさよりも大きく形成するとともに、巻線ノズルが直線軌道から円弧軌道に移行する時に慣性力によって生じる隙間分を面取りの大きさに差を設けた構成としても、固定子鉄心と駆動コイルの距離が短くなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが低くなり、薄型化した電動機が得られる。また、コイル周長を短くできるので、銅損の低減による高効率化した電動機が得られる。
【0110】
また、極歯には駆動コイルが磁石回転子側への崩れを防止する鍔部を設け、この鍔部の角部は円弧状とし、この鍔部の円弧部において、駆動コイル巻装時の巻線ノズルが直線軌道から円弧軌道に移行する側の円弧部曲率を、巻線ノズルが円弧軌道から直線軌道に移行する側の円弧部曲率よりも大きくした構成により、巻線ノズルが直線軌道から円弧軌道に移行するタイミングを早くできることから、駆動コイルと固定子鉄心の間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが、さらに低くなるとともに、コイル周長も短くなることから、駆動コイルの抵抗値が低くなり、銅損がさらに低減できるので、一層の薄型化、高効率化が実現できる電動機が得られる。
【0111】
また、極歯には駆動コイルが磁石回転子側への崩れを防止する鍔部を設け、この鍔部の角部には面取りを設け、この鍔部の面取り部において、駆動コイル巻装時の巻線ノズルが直線軌道から円弧軌道に移行する側の面取りの大きさを、巻線ノズルが円弧軌道から直線軌道に移行する側の面取りの大きさよりも大きくした構成としても、巻線ノズルが直線軌道から円弧軌道に移行するタイミングを早くできることから、駆動コイルと固定子鉄心の間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが、さらに低くなるとともに、コイル周長も短くなるため、駆動コイルの抵抗値が低くなり、銅損がさらに低減できるので、一層の薄型化、高効率化が実現できる電動機が得られる。
【0112】
また、極歯には駆動コイルが磁石回転子側への崩れを防止する鍔部を設け、駆動コイル巻装時の巻線ノズルが直線軌道から円弧軌道に移行する側の鍔部の角部に切欠きを設けた構成としても、巻線ノズルが直線軌道から円弧軌道に移行するタイミングを早くできることから、駆動コイルと固定子鉄心の間の隙間が小さくなるので、固定子鉄心から軸方向に突出するコイルエンドの高さが、さらに低くなるとともに、コイル周長も短くなるため、駆動コイルの抵抗値が低くなり、銅損がさらに低減できるので、一層の薄型化、高効率化が実現できる電動機が得られる。
【0113】
また、固定子鉄心のスロット開口部を巻線ノズルが通過して、各極歯の周りを回転して駆動コイルを巻装する電動機の製造方法であって、前記巻線ノズルの軌道は固定子鉄心のスロット内は直線状に、固定子鉄心の軸方向端面側は円弧状とするとともに、直線状軌道から円弧状軌道に移る側の円弧の曲率は、円弧状軌道から直線状軌道に移る側の円弧の曲率よりも大きくした軌道で所定回数巻回することによって、巻線工程の製造を行う電動機の製造方法とすることにより、巻線ノズルの軌道において、直線軌道から円弧軌道への移行が早くできることから、慣性力によって生じる駆動コイルと固定子鉄心の間の隙間が小さくなるので、スロット数の多い固定子鉄心への巻装であっても、スロット開口部の狭い固定子鉄心への巻装であっても、軸方向長さの長い固定子鉄心への巻装であっても、極歯の被巻装部の幅が狭い固定子鉄心への巻装であっても、固定子鉄心から軸方向に突出するコイルエンドの高さを低くすることができるため、薄型化を可能とする電動機の製造方法が得られる。
【図面の簡単な説明】
【図1】本発明の実施例1における電動機を示す断面図
【図2】同電動機の被巻装部を示す断面図
【図3】同電動機の鍔部を示す図
【図4】同電動機の固定子を示す平面図
【図5】同電動機の被巻装部における他の構成を示す断面図
【図6】同電動機の被巻装部における他の構成を示す断面図
【図7】同電動機の被巻装部における他の構成を示す断面図
【図8】同電動機の被巻装部における他の構成を示す断面図
【図9】同電動機の被巻装部における他の構成を示す断面図
【図10】同電動機の鍔部における他の構成を示す図
【図11】同電動機の鍔部における他の構成を示す図
【図12】本発明の実施例2の電動機における固定子鉄心を示す斜視図
【図13】同電動機の被巻装部を示す断面図
【図14】(a)同電動機の他の構成における鍔部を示す図
(b)同図
(c)同図
【図15】本発明の実施例3の電動機における被巻装部を示す断面図
【図16】同電動機の鍔部を示す図
【図17】同電動機の被巻装部における他の構成を示す断面図
【図18】同電動機の被巻装部における他の構成を示す断面図
【図19】同電動機の鍔部における他の構成を示す図
【図20】同電動機の鍔部における他の構成を示す図
【図21】本発明の実施例4における電動機の製造方法による駆動コイル巻装時の状態を示す図
【図22】同電動機の製造方法における巻線ノズルの軌道を示す図
【図23】(a)従来の電動機における概略構成を示す正面図
(b)同側断面図
【図24】(a)同電動機の先端係止部を示す図
(b)同図
【図25】(a)同電動機における被巻線部のうちティースの軸方向端面を覆う部分を示す図
(b)同図
(c)同図
(d)同図
【図26】(a)従来の電動機における他の構成のステータを示す概略図
(b)同巻線を示す概略図
【図27】従来の電動機における他の構成を示す側断面図
【図28】同電動機の巻線巻装前の構成を示す平面図
【図29】同電動機の固定子鉄心を示す分解斜視図
【図30】(a)同電動機の被巻装部を示す断面図
(b)同図
【図31】従来の電動機における被巻装部の実際の状態を示す断面図
【符号の説明】
1 電動機
2 駆動コイル
3 磁石回転子
4 ホールIC
5 丸み
5a 丸み(曲率大)
5b 丸み(曲率小)
6 軸受け
7 インシュレータ
7a 被巻装部
7b 鈍角部
7c 鋭角部
8 極歯
8a ポールピース部
9 シャフト
10 固定子
10a 固定子鉄心
11 ブラケット
12 熱硬化性樹脂
13 鍔部
14 プリント基板
15 駆動IC
16 円弧部
16a 円弧部(曲率大)
16b 円弧部(曲率小)
17 面取り
17a 面取り(大)
17b 面取り(小)
18 絶縁フィルム
19 インシュレータ
19a 被巻装部
19b 鈍角部
19c 鋭角部
20 インシュレータ
20a 被巻装部
21 丸み
21a 丸み(曲率大)
21b 丸み(曲率小)
22 インシュレータ
22a 被巻装部
23 面取り
23a 面取り(大)
23b 面取り(小)
24 鍔部
24a 鍔部角面取り部(大)
24b 鍔部角面取り部(小)
25 鍔部
26 切欠き
27 固定子
27a 固定子鉄心
28 極歯
28a ポールピース部
29 端部積層鉄心部
30 被巻線部
31 固定子
31a 固定子鉄心
32 鍔部
33 極歯
33a ポールピース部
33b 被巻線部
33c 鈍角部
33d 鋭角部
34 円弧部
34a 円弧部(曲率大)
34b 円弧部(曲率小)
35 丸み
35a 丸み(曲率大)
35b 丸み(曲率小)
36 面取り
36a 面取り(大)
36b 面取り(小)
37 鍔部
37a 鍔部角面取り部(大)
38 鍔部
38a 切欠き
39 巻線ノズル
40 スロット
40a スロット開口部
41 固定子鉄心
42 極歯
43 軸方向端面側
[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to an electric motor using a stator having concentrated windings and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, there has been a strong demand for miniaturization, thinning, weight reduction, and high efficiency in motors for driving fans mounted on electrical equipment. For this reason, it is necessary to increase the winding density of the stator, The structure which winds a drive coil for every pole tooth which comprises a child has increased. In order to further reduce the thickness, it is indispensable to reduce the height of the coil end protruding in the axial direction from the stator core.
[0003]
Conventionally, this type of electric motor is known to have a configuration that facilitates aligned winding by suppressing winding disturbance (see, for example, Patent Document 1).
[0004]
Hereinafter, the electric motor will be described with reference to FIGS.
[0005]
As shown in the figure, a wound portion 51 is provided that is attached to a tooth 50 protruding in the radial direction of the core and covers the axial end surface and both side surfaces of the tooth 50. The winding 52 wound around the to-be-winded portion 51 moves in the radial direction by projecting only from the edge of the to-be-winded portion 51 corresponding to the root side and the tip side of the tooth 50. , And when the winding 52 is wound around the wound portion 51, the winding nozzle is provided on the side surface and the axial end surface of each tooth 50. On the other hand, in order to achieve aligned winding of the winding 52 through a closer track, the distal end side locking portion 54 applies R (R) or chamfering to the corner of the distal end protruding in the axial direction, and the side of the tooth 50 In order to reduce the distance between the winding 52 and the insulator surface (bulge of the wire), the surface of the portion of the wound portion 51 that covers the axial end surface of the tooth 50 has a central portion 51G at both end portions 51Gc. Structure that protrudes more axially than It is set to. Moreover, the structure which provides the chamfering to the corner of both sides and the structure which cut off the corner of both sides and was dented in the step shape is also disclosed for the part which covers the axial direction end surface of the teeth 50 among the to-be-wound parts 51.
[0006]
Some of this type of electric motor has a coil formed (see, for example, Patent Document 2).
[0007]
Hereinafter, the electric motor will be described with reference to FIG.
[0008]
As shown in the figure, a slot 62 formed in the stator core 61 is formed into a slit shape, the width of the teeth 63 is widened, and a molded coil body 64 inserted into each slot 62 is formed by a square coil 65 having a predetermined number of turns, The rectangular coil 65 has a substantially square cross section and a side substantially equal to the slit-shaped slot width, the rectangular coil 65 is aligned in a line in the depth direction of the slot, and the coil end 64a is bent. .
[0009]
In addition, there is a motor of this type in which the width of the magnetic pole of the stator core is changed (see, for example, Patent Document 3).
[0010]
Hereinafter, the electric motor will be described with reference to FIGS.
[0011]
As shown in the figure, the stator core 70 is composed of a stator 76 in which a stator winding 75 is wound in a concentrated manner and a rotor 77 that is rotatably held facing the stator 76. The stator core 70 is an electric motor, and includes a center stator core 71 disposed at the center thereof and end stator cores 72 disposed at both ends of the center stator core 71. The center stator core 71 is configured by laminating thin steel plates, and the end stator core 72 has a stator magnetic pole portion 73 whose width of the stator magnetic pole portion 74 is the center stator core 73. The width of the end portion side is narrower than the width on the side in contact with the cross section. Further, the stator magnetic pole portion 74 of the end stator core 72 has a cross-sectional shape that is semicircular, trapezoidal, or the width of the stator magnetic pole of the thin steel plate constituting the end stator core 72. There is also disclosed a configuration in which the width gradually decreases toward the end side.
[0012]
[Patent Document 1]
JP 2001-95188 A
[Patent Document 2]
JP-A-7-298528
[Patent Document 3]
JP 2003-9433 A
[0013]
[Problems to be solved by the invention]
According to such a conventional electric motor, in the one described in Patent Document 1, in order to realize the aligned winding, the winding nozzle track is a straight track on the side of the teeth, and the axial end surface side is on the side. Since it is wound as an arc track, especially when the width of the teeth is narrow, the slot opening width is narrow, the number of slots is long, or the axial length is long, when winding the winding, When the winding nozzle moves from the linear track to the circular track, the winding is swelled and wound in the linear direction up to that time due to the inertial force, so the axial end face side of the wound portion as shown in FIG. In this case, a gap ΔG is generated between the wound portion and the winding, and the winding shape is a substantially parallelogram, so that the height of the coil end protruding in the axial direction from the stator core can be reduced. There is a problem that it can not be done, so you can reduce the thickness Together, to provide a motor with improved reliability is required.
[0014]
Further, when the winding speed of the winding is increased, the gap generated by the inertial force is further increased, and there is a problem that the height of the coil end protruding in the axial direction from the stator core cannot be reduced. There is a demand to provide an electric motor that can be thinned and improved in reliability even if the winding speed is increased.
[0015]
Moreover, in what is described in Patent Document 2, since the formed coil shape is a square, since the square coil is forcibly formed, variations in the thickness of the coil insulation coating and scratches occur, resulting in reliability. Therefore, there is a demand for providing an electric motor that can be reduced in size and weight and improved in reliability.
[0016]
Moreover, in what is described in Patent Document 3, in order to realize aligned winding as in Patent Document 1, the winding nozzle track is a straight track on the side of the stator magnetic pole part, and the axial end surface side is on the side. Since it is wound as an arc track, especially when the stator magnetic pole part is narrow, the slot opening width is narrow, and the axial length is long, the winding nozzle is moved from the straight track when winding the coil. When shifting to the arcuate track, the coil swells and winds in the linear direction up to that time due to inertial force, so that a gap is created between the coiled part and the coil on the axial end face side of the coiled part. As a result, the winding shape becomes a substantially parallelogram, and there is a problem that the height of the coil end protruding in the axial direction from the stator core cannot be lowered, and the thickness can be reduced and the reliability can be improved. Is required to provide There.
[0017]
The present invention solves such a conventional problem, and provides a motor and a method for manufacturing the same that can be reduced in size and thickness by reducing the height of a coil end and can be reduced in thickness. The purpose is that.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, the brushless DC motor of the present invention has a stator core having a slot, a stator in which a drive coil is wound for each pole tooth unit of the stator core, and the stator. An axial cross-sectional shape of a wound portion of the insulator that includes a rotor held rotatably and an insulator that insulates the stator core and the drive coil, and covers the pole teeth of the stator core. The electric motor is characterized by having a substantially parallelogram.
[0019]
According to the present invention, the axial cross-sectional shape of the wound portion of the insulator that covers the pole teeth is substantially parallel to the thinned portion of the insulator corresponding to the gap generated when the winding nozzle moves from the linear track to the arc track. Since it is shaped, the winding shape after winding the drive coil can be made substantially rectangular, and the height of the coil end protruding in the axial direction from the stator core can be reduced, so that a thin motor can be obtained. . Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0020]
Another means is a stator core having a slot, a stator having a drive coil wound for each pole tooth unit of the stator core, and a rotor held rotatably against the stator. An insulator that insulates the stator core from the drive coil, and a corner of the wound portion of the insulator that covers the pole teeth of the stator core is rounded to form one diagonal. The curvature of the roundness is formed to be larger than the curvature of the roundness that forms the other diagonal.
[0021]
According to the present invention, the corner of the wound portion of the insulator that covers the pole teeth is rounded, and the thickness of the insulator corresponding to the gap generated when the winding nozzle moves from the linear track to the arc track is rounded. Therefore, since the height of the coil end protruding in the axial direction from the stator core can be reduced, a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0022]
Another means is a stator core having a slot, a stator having a drive coil wound for each pole tooth unit of the stator core, and a rotor held rotatably against the stator. And an insulator that insulates the stator core from the drive coil, the corner of the wound portion of the insulator covering the pole teeth of the stator core is chamfered to form one diagonal The size of the chamfer is configured to be larger than the size of the chamfer forming the other diagonal.
[0023]
According to the present invention, chamfering is provided at the corner of the wound portion of the insulator covering the pole teeth, and the thickness of the insulator corresponding to the gap generated when the winding nozzle moves from the linear track to the arc track is cut off. Therefore, the height of the coil end protruding in the axial direction from the stator core can be reduced, and a thin motor can be obtained. Moreover, since the coil circumference can be shortened and excessive refraction of the drive coil is prevented, a highly efficient electric motor can be obtained by reducing copper loss.
[0024]
Another means is a stator core having a slot, a stator having a drive coil wound for each pole tooth unit of the stator core, and a rotor held rotatably against the stator. And an insulator that insulates the stator core from the drive coil, the insulator being an insulating film that insulates the side surfaces of the pole teeth, and a resin that sandwiches the insulating film from the axial direction of the stator core. The angle of the axial direction of the wound portion of this insulator is formed as an obtuse angle, the other is formed as an acute angle, one diagonal is an obtuse angle, and the other diagonal is an acute angle. It is set as the structure of the electric motor characterized by having formed in this.
[0025]
According to the present invention, the shape of the section in the axial direction of the wound portion is a substantially parallelogram obtained by cutting the thickness of the insulator corresponding to the gap generated when the winding nozzle moves from the linear track to the arc track. Therefore, the winding shape after winding the drive coil can be made substantially rectangular, and the height of the coil end protruding in the axial direction from the stator core can be reduced, so that a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0026]
Another means is a stator core having a slot, a stator having a drive coil wound for each pole tooth unit of the stator core, and a rotor held rotatably against the stator. And an insulator that insulates the stator core from the drive coil, the insulator being an insulating film that insulates the side surfaces of the pole teeth, and a resin that sandwiches the insulating film from the axial direction of the stator core. This insulator is made of an insulator, and a round end is provided at a corner in an axial direction of the wound portion of the insulator. The roundness has a large curvature on one side and a small curvature on the other side. The curvature of the roundness forming the diagonal is formed large, and the curvature of the rounding forming the other diagonal is formed small.
[0027]
According to the present invention, the corner of the wound portion is rounded, and the curvature of the rounded shape is obtained by reducing the thickness of the insulator corresponding to the gap generated when the winding nozzle moves from the linear track to the arc track. Therefore, since the height of the coil end protruding in the axial direction from the stator core can be reduced, a thin motor can be obtained. Moreover, since the coil circumference can be shortened and excessive refraction of the drive coil is prevented, a highly efficient electric motor can be obtained by reducing copper loss.
[0028]
Another means is a stator core having a slot, a stator having a drive coil wound for each pole tooth unit of the stator core, and a rotor held rotatably against the stator. And an insulator that insulates the stator core from the drive coil, the insulator being an insulating film that insulates the side surfaces of the pole teeth, and a resin that sandwiches the insulating film from the axial direction of the stator core. This insulator is made of an insulator, and a chamfer is provided at the axial end corner of the wound portion of the insulator. One side of the chamfer is formed large, the other chamfer is formed small, and one diagonal is formed. The motor has a configuration in which the chamfer is formed large and the other diagonal chamfer is formed small.
[0029]
According to the present invention, a chamfer is provided at the corner of the wound portion, and the thickness of the insulator corresponding to the gap generated when the winding nozzle moves from the linear track to the circular track is reduced. Therefore, since the height of the coil end protruding in the axial direction from the stator core can be reduced, a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0030]
Another means is that a stator core in which thin steel plates having slots are laminated, a stator in which a drive coil is wound for each pole tooth unit of the stator core, and rotatably held facing the stator. An end laminated core portion in which the width of the wound portion of the pole teeth is gradually reduced at the axial end portion of the stator core, and the wrapped portion in the end laminated core portion is provided. The gradually decreasing amount of the width of the part is a configuration of an electric motor characterized in that one diagonal is formed large and the other diagonal is formed small.
[0031]
According to the present invention, the shape of the section in the axial direction of the wound portion is a shape in which the pole teeth corresponding to the gap generated when the winding nozzle moves from the linear track to the arc track are cut off. Since the height of the coil end protruding in the axial direction can be reduced, a thin motor can be obtained.
[0032]
Another means is a stator core having a slot formed by molding and solidifying a powder magnetic material, a stator having a drive coil wound for each pole tooth unit of the stator core, and the stator facing the stator core. And a rotor that is rotatably held, and an axial sectional shape of the wound portion of the pole teeth is a substantially parallelogram.
[0033]
According to the present invention, the shape of the section in the axial direction of the wound part is a substantially parallelogram in which the pole teeth corresponding to the gap generated when the winding nozzle moves from the linear orbit to the arc orbit, Since the winding shape after the drive coil is wound can be made substantially rectangular and the height of the coil end protruding in the axial direction from the stator core can be lowered, a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0034]
Another means is a stator core having a slot formed by molding and solidifying a powder magnetic material, a stator having a drive coil wound for each pole tooth unit of the stator core, and the stator facing the stator core. And the rotor core held so as to be rotatable, the winding angle of the pole teeth of the stator core is rounded, and the curvature of the round that forms one diagonal forms the other diagonal The motor is configured to have a larger curvature than the round curvature.
[0035]
According to the present invention, the shape of the section in the axial direction of the wound portion is a shape in which the pole teeth corresponding to the gap generated when the winding nozzle moves from the linear track to the arc track are cut off. Since the height of the coil end protruding in the axial direction can be reduced, a thin motor can be obtained. Moreover, since the coil circumference can be shortened and excessive refraction of the drive coil is prevented, a highly efficient electric motor can be obtained by reducing copper loss.
[0036]
Another means is a stator core having a slot formed by molding and solidifying a powder magnetic material, a stator having a drive coil wound for each pole tooth unit of the stator core, and the stator facing the stator core. And the rotor core held rotatably, the chamfered portion of the pole tooth of the stator core is chamfered, and the size of the chamfer forming one diagonal is the other diagonal It is set as the structure of the electric motor characterized by forming larger than the magnitude | size of the said chamfering which comprises.
[0037]
According to the present invention, the shape of the section in the axial direction of the wound portion is a shape in which the pole teeth corresponding to the gap generated when the winding nozzle moves from the linear track to the arc track are cut off. Since the height of the coil end protruding in the axial direction can be reduced, a thin motor can be obtained.
[0038]
According to another means, the insulator is provided with a flange portion for preventing the drive coil from collapsing toward the rotor side, and the corner portion of the flange portion is formed in an arc shape, and the curvature of the arc portion is the same as that of the wound portion. On the side where the corner forms an obtuse angle, or on the side where the curvature of the rounded corner of the wound part is large, or on the side where the corner is chamfered, the corner of the wound part is acute. Is larger than the curvature of the arc part on the side where the curvature is small, or on the side where the curvature of the rounded corner of the wound part is small, or on the side where the corner chamfer of the wound part is small. This is a configuration of an electric motor.
[0039]
According to the present invention, since the path of the winding nozzle on the side where the curvature of the arc portion of the flange portion is large can be quickly shifted from the linear track to the arc track, the gap between the drive coil and the insulator is reduced. Since the height of the coil end protruding in the axial direction from the stator core can be reduced, a thin motor can be obtained.
[0040]
According to another means, the insulator is provided with a flange portion that prevents the drive coil from collapsing toward the rotor side, and a chamfered portion is provided at a corner portion of the flange portion, and the size of the chamfered portion is determined by the size of the wound portion. The side where the corner portion of the covering portion forms an obtuse angle, the side where the curvature of the corner portion roundness of the wound portion is large, or the side where the corner portion is chamfered is the corner of the wound portion. It is characterized in that it is larger than the chamfer on the side where the part forms an acute angle, the side where the curvature of the corner roundness of the wound part is small, or the side where the corner of the wound part is small is chamfered. This is a configuration of an electric motor.
[0041]
According to the present invention, the winding nozzle track on the side where the chamfered portion of the chamfered corner has a large chamfer can quickly transition from the linear track to the circular track, so the gap between the drive coil and the insulator is reduced. Since the height of the coil end protruding in the axial direction from the stator core can be reduced, a thin motor can be obtained.
[0042]
Another means is that the insulator is provided with a flange portion that prevents the drive coil from collapsing toward the rotor side, and this notch portion is provided with a notch, and this notch is provided at the corner of the wound portion. The motor has a configuration in which the obtuse angle is formed, the corner portion of the wound portion has a larger curvature of the corner roundness, or the corner portion of the wound portion has a larger chamfer. is there.
[0043]
According to the present invention, since the track of the winding nozzle on the side having the notch of the flange portion can be quickly shifted from the linear track to the arc track, the gap between the drive coil and the insulator is reduced, so that the stator Since the height of the coil end protruding in the axial direction from the iron core can be reduced, a thin motor can be obtained.
[0044]
As another means, a pole portion is provided with a hook portion for preventing the drive coil from collapsing to the rotor side, and a corner portion of the hook portion is formed in an arc shape, and the curvature of the arc portion is the same as that of the wound portion. The side where the width gradually decreases, the side where the corner of the wound part forms an obtuse angle, the side where the curvature of the rounded corner of the wound part is large, or the corner chamfer of the wound part The side where the winding portion is large is the side where the gradually decreasing amount of the width of the wound portion is small, the side where the corner portion of the wound portion forms an acute angle, or the side where the curvature of the corner roundness of the wound portion is small Alternatively, the configuration of the electric motor is characterized in that the corner portion chamfer of the wound portion is larger than the arc portion curvature on the smaller side.
[0045]
According to the present invention, the path of the winding nozzle on the side with a large curvature of the arcuate corner of the flange can be quickly transferred from the linear track to the arc track, so that there is a gap between the drive coil and the stator core. Since the coil end becomes smaller, the height of the coil end protruding in the axial direction from the stator core can be reduced, and a thin motor can be obtained.
[0046]
As another means, a pole portion is provided with a flange portion for preventing the drive coil from collapsing toward the rotor side, and a chamfered portion is provided at a corner portion of the flange portion, and the size of the chamfered portion is the same as that of the wound portion. The side where the gradually decreasing amount of the width of the mounting part is large, the side where the corner of the wound part forms an obtuse angle, the side where the curvature of the corner roundness of the wound part is large, or the side of the wound part The side where the corner chamfer is large is the side where the gradually decreasing amount of the width of the wound part is small, the side where the corner of the wound part forms an acute angle, or the curvature of the corner roundness of the wound part The motor is characterized in that the chamfered portion on the small side or the chamfered corner portion of the wound portion is made larger than the chamfered side on the small side.
[0047]
According to the present invention, the winding nozzle track on the side with the larger chamfered portion of the flange portion can be quickly transferred from the linear track to the circular track, so that the gap between the drive coil and the stator core is reduced. Since the height of the coil end protruding in the axial direction from the core can be reduced, a thin motor can be obtained.
[0048]
As another means, a pole portion is provided on the pole tooth to prevent the drive coil from collapsing toward the rotor side, and a notch is provided in the flange portion, and this notch gradually reduces the width of the wound portion. The side where the amount is large, the side where the corner of the wound part forms an obtuse angle, the side where the curvature of the corner roundness of the wound part is large, or the side where the corner is chamfered is large It is set as the structure of the electric motor characterized by providing in.
[0049]
According to the present invention, since the trajectory of the winding nozzle on the side having the notch of the flange portion can be quickly shifted from the linear track to the circular arc track, the gap between the drive coil and the stator core becomes small. Since the height of the coil end protruding in the axial direction from the stator core can be reduced, a thin motor can be obtained.
[0050]
Another means is a method of manufacturing an electric motor in which a winding nozzle passes through a slot opening and rotates around each pole tooth to wind a drive coil, and the track of the winding nozzle is a stator. The slot in the iron core is linear, the axial end surface side of the stator core is arc-shaped, and the curvature of the arc on the side moving from the linear track to the arc-shaped track is the side moving from the arc-shaped track to the linear track The method of manufacturing the electric motor is characterized in that it is larger than the curvature of the arc.
[0051]
According to the present invention, since the transition from the linear track to the circular track can be performed quickly, the gap between the drive coil and the stator core is reduced, so that the height of the coil end protruding in the axial direction from the stator core is reduced. Therefore, a thin motor manufacturing method can be obtained.
[0052]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is a stator in which a drive coil is wound for each pole tooth unit of the stator core, a rotor that is rotatably held facing the stator, and the stator core. A structure of an electric motor comprising an insulator for insulating the drive coil, wherein a shape of an axial section of a wound portion of the insulator covering the pole teeth of the stator core is a substantially parallelogram. As a result, the winding shape after winding is approximately rectangular, and the coil end protruding in the axial direction from the stator core has the effect of reducing the coil peripheral length.
[0053]
According to a second aspect of the present invention, there is provided a stator in which a drive coil is wound for each pole tooth unit of the stator core, a rotor that is rotatably held facing the stator, and the stator core. An insulator that insulates the drive coil, the corner of the wound portion of the insulator that covers the pole teeth of the stator core is rounded, and the curvature of the round that forms one diagonal is: The height of the coil end protruding in the axial direction from the stator core is reduced by the configuration of the electric motor characterized by being formed to be larger than the curvature of the round that forms the other diagonal. Has the effect of shortening.
[0054]
According to a third aspect of the present invention, there is provided a stator in which a drive coil is wound for each pole tooth unit of the stator core, a rotor that is rotatably held facing the stator, and the stator core. An insulator that insulates the drive coil, and a chamfer is provided at a corner of the wound portion of the insulator that covers the pole teeth of the stator core, and the size of the chamfer that forms one diagonal is The height of the coil end protruding in the axial direction from the stator core is reduced by the configuration of the electric motor characterized by being formed larger than the size of the chamfer forming the other diagonal, and the coil circumference It has the effect of shortening the length.
[0055]
According to a fourth aspect of the present invention, there is provided a stator in which a drive coil is wound for each pole tooth unit of the stator core, a rotor that is rotatably held facing the stator, and the stator core. An insulator that insulates the drive coil, and the insulator includes an insulating film that insulates the side surfaces of the pole teeth, and a resin insulator that sandwiches the insulating film from the axial direction of the stator core. The axial end angle of the wrapped portion of this insulator is formed as one obtuse angle, the other is formed as an acute angle, one diagonal is formed as an obtuse angle, and the other diagonal is formed as an acute angle. With the configuration of the electric motor, the winding shape after winding is substantially rectangular, the height of the coil end protruding in the axial direction from the stator core is reduced, and the coil circumference is shortened. Has an effect.
[0056]
According to a fifth aspect of the present invention, there is provided a stator in which a drive coil is wound for each pole tooth unit of the stator core, a rotor that is rotatably held facing the stator, and the stator core. An insulator that insulates the drive coil, and the insulator includes an insulating film that insulates the side surfaces of the pole teeth, and a resin insulator that sandwiches the insulating film from the axial direction of the stator core. The angle of the end portion in the axial direction of the wound portion of the insulator is rounded, and the roundness forms a large curvature on one side, the curvature of the other round is small, and the rounding that forms one diagonal. The coil end protruding in the axial direction from the stator core has a low height by adopting an electric motor structure characterized in that the curvature of the other part is formed large and the curvature of the other diagonal is formed small. Become , An effect that the coil circumference is shortened.
[0057]
The invention according to claim 6 is a stator iron core having a slot, a stator around which a drive coil is wound for each pole tooth unit of the stator iron core, and rotatably held facing the stator. A rotor, an insulator that insulates the stator core and the drive coil, and the insulator is an insulation film that insulates the side surfaces of the pole teeth; The chamfer is provided at the axial end corner of the wound portion of the insulator, and one side of the chamfer is formed large, the other chamfer is formed small, and one pair of chamfers is formed. The height of the coil end protruding in the axial direction from the stator core is reduced by adopting the configuration of the motor characterized in that the chamfer forming the corner is formed large and the chamfer forming the other diagonal is formed small. Together we comprising, an effect that the coil circumference is shortened.
[0058]
According to the seventh aspect of the present invention, there is provided a stator core in which thin steel plates having slots are laminated, a stator in which a drive coil is wound for each pole tooth unit of the stator core, and rotation facing the stator. An end laminated core part in which the width of the wound portion of the pole teeth is gradually reduced at the axial end of the stator core. The gradually decreasing amount of the width of the wound portion projects from the stator core in the axial direction by adopting a configuration of an electric motor characterized in that one diagonal is formed large and the other diagonal is formed small. The coil end height is lowered and the coil peripheral length is shortened.
[0059]
According to an eighth aspect of the present invention, there is provided a stator iron core having a slot formed by molding and solidifying a magnetic powder material, a stator in which a drive coil is wound for each pole tooth unit of the stator iron core, and the stator. And a rotor that is rotatably held opposite to each other, and the axial cross-sectional shape of the wound portion of the pole teeth is a substantially parallelogram. While the height of the coil end protruding in the axial direction from the core is reduced, the coil peripheral length is shortened.
[0060]
According to the ninth aspect of the present invention, there is provided a stator iron core having a slot formed by molding and solidifying a magnetic powder material, a stator in which a drive coil is wound for each pole tooth unit of the stator iron core, and the stator. A rotor that is rotatably held opposite to each other, and a rounded corner is provided at the wound portion corner of the pole tooth of the stator core, and the curvature of the round that forms one diagonal is the other. By configuring the electric motor to be larger than the curvature of the rounded diagonal, the height of the coil end protruding in the axial direction from the stator core is reduced and the coil circumference is shortened. It has the effect of becoming.
[0061]
The invention according to claim 10 includes a stator core having a slot formed by molding and solidifying a powder magnetic material, a stator having a drive coil wound for each pole tooth unit of the stator core, and the stator A chamfered portion of the pole tooth of the stator iron core, the chamfered portion being provided with a chamfer, and the size of the chamfer forming one diagonal is the other. The height of the coil end protruding in the axial direction from the stator core is reduced, and the coil peripheral length is reduced. Has the effect of shortening.
[0062]
According to the eleventh aspect of the present invention, the insulator is provided with a flange portion for preventing the drive coil from collapsing toward the rotor side, and the corner portion of the flange portion is formed in an arc shape, and the curvature of the arc portion is determined by the above-described winding. The side where the corner of the part forms an obtuse angle, the side where the curvature of the corner roundness of the wound part is large, or the side where the corner chamfer of the wound part is large is the corner of the wound part Is larger than the arcuate curvature on the side forming the acute angle, or on the side where the curvature of the rounded corner of the wound part is small, or on the side where the corner chamfer of the wound part is small. By adopting the configuration of the electric motor, the winding nozzle track on the side with the larger curvature of the arc portion of the collar portion can quickly shift from the linear track to the arc track, so the gap between the drive coil and the insulator is reduced. Therefore, the height of the coil end protruding in the axial direction from the stator core With Kunar, an effect that the coil circumference is shortened.
[0063]
According to a twelfth aspect of the present invention, the insulator is provided with a flange portion that prevents the drive coil from collapsing toward the rotor side, and a chamfered portion is provided at a corner portion of the flange portion, and the chamfered portion of the flange corner chamfered portion is provided. Is the side where the corner of the wound part forms an obtuse angle, the side where the curvature of the corner roundness of the wound part is large, or the side where the corner chamfer of the wound part is large, The flange on the side where the corner of the wound part forms an acute angle, the side where the curvature of the rounded corner of the wound part is small, or the side where the corner chamfer of the wound part is small Due to the configuration of the motor that is larger than the chamfer of the corner chamfered part, the winding nozzle trajectory on the side with the larger chamfered part of the chamfered corner corner can quickly transition from a linear track to an arced track. Because the gap between the drive coil and the insulator becomes smaller, the stator core With lower height of the coil end projecting et axis direction, an effect that the coil circumference is shortened.
[0064]
According to a thirteenth aspect of the present invention, the insulator is provided with a flange portion that prevents the drive coil from collapsing toward the rotor side, and the notch portion is provided with a notch, and the notch is provided at a corner of the wound portion. The motor is characterized in that it is provided on the side where the part forms an obtuse angle, on the side where the curvature of the corner roundness of the wound part is large, or on the side where the corner part is chamfered is large. Thus, the track of the winding nozzle on the side having the notch of the flange portion can quickly shift from the linear track to the circular track, so that the gap between the drive coil and the insulator is reduced, so that the shaft from the stator core While the height of the coil end protruding in the direction is lowered, the coil peripheral length is shortened.
[0065]
In a fourteenth aspect of the present invention, the pole teeth are provided with a flange portion that prevents the drive coil from collapsing toward the rotor side, and the corner portion of the flange portion has an arc shape, and the curvature of the arc portion is the winding The side where the gradually decreasing amount of the width of the mounting part is large, the side where the corner of the wound part forms an obtuse angle, the side where the curvature of the corner roundness of the wound part is large, or the side of the wound part The side where the corner chamfer is large is the side where the gradually decreasing amount of the width of the wound part is small, the side where the corner of the wound part forms an acute angle, or the curvature of the corner roundness of the wound part The winding on the side with the larger curvature of the arc portion of the flange portion is made by the configuration of the electric motor characterized in that the curvature is larger than the arc portion curvature on the side with a smaller corner or the corner chamfer of the wound portion. The wire nozzle trajectory allows a quick transition from a linear trajectory to an arc trajectory, so the gap between the drive coil and the stator core. Since smaller, with lower height of the coil end projecting from the stator core in the axial direction, has the effect of coil circumference is shortened.
[0066]
In the invention according to claim 15, the pole teeth are provided with a flange portion for preventing the drive coil from collapsing toward the rotor, and a chamfered portion is provided at a corner portion of the flange portion, and the size of the chamfered portion is The side where the gradually decreasing amount of the width of the wound part is large, the side where the corner of the wound part forms an obtuse angle, the side where the curvature of the corner roundness of the wound part is large, or the wound The side where the chamfered portion of the mounting part is large is the side where the amount of decrease in the width of the wound part is small, the side where the corner part of the wound part forms an acute angle, or the corner part of the wound part The winding nozzle on the side where the chamfer of the flange portion is large by adopting the configuration of the electric motor characterized in that it is larger than the chamfer on the side where the curvature of the roundness is small or the corner portion of the portion to be wound is small. Since the trajectory of the trajectory can move quickly from a straight trajectory to an arc trajectory, the gap between the drive coil and the stator core Since smaller, with lower height of the coil end projecting from the stator core in the axial direction, has the effect of coil circumference is shortened.
[0067]
In the invention described in claim 16, the pole teeth are provided with a flange portion for preventing the drive coil from collapsing toward the rotor side, the notch portion is provided with a notch, and the notch is formed on the wound portion. The side where the amount of taper decrease is large, the side where the curvature of the corner roundness of the wound part is large, the side where the corner of the wound part forms an obtuse angle, or the corner chamfer of the wound part By adopting the configuration of the electric motor characterized by being provided on the larger side, the winding nozzle trajectory on the side having the notch of the collar portion can quickly shift from the linear trajectory to the circular arc trajectory. Since the gap between the stator core and the stator core becomes small, the height of the coil end protruding in the axial direction from the stator core is lowered, and the coil peripheral length is shortened.
[0068]
The invention according to claim 17 is a method of manufacturing an electric motor in which a winding nozzle passes through a slot opening and rotates around each pole tooth to wind a drive coil, and the track of the winding nozzle Is linear in the slot of the stator core, and the axial end surface side of the stator core is arcuate, and the curvature of the arc moving from the linear track to the arcuate track is from the arcuate track to the linear track By making the motor manufacturing method characterized in that it is larger than the curvature of the arc on the moving side, the winding nozzle can make the transition from the linear orbit to the arc orbit faster, so between the drive coil and the stator core. It has the effect | action that the clearance gap between becomes small.
[0069]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0070]
【Example】
(Example 1)
As shown in FIGS. 1 to 4, 1 is an electric motor, 10 is a drive coil via an insulator 7 formed of an insulating material on a stator core 10a in which thin steel plates such as silicon steel plates having a plurality of slots are laminated. 2, a stator 10 is molded with a thermosetting resin 12 to form a jacket, and 11 is a bracket that holds a bearing 6. Reference numeral 3 denotes a magnet rotor formed by integrally orienting a plastic magnet with a shaft 9 in a polar orientation at the time of injection molding, and is arranged rotatably on the inner peripheral side of the stator 10. 4 is a Hall IC that detects the magnetic pole position of the magnet rotor 3, and 15 is a drive IC that controls energization of the drive coil 2 based on the output signal of the Hall IC 4. Reference numeral 14 denotes a printed circuit board on which the Hall IC 4, the drive IC 15, and other electronic components are mounted, and is built in the electric motor 1. 8 is a pole tooth, and the drive coil 2 is concentratedly wound via an insulator 7 for every unit of the pole tooth 8. A pole piece portion 8a projecting in the rotation direction of the magnet rotor 3 is disposed at the tip of the pole tooth 8, and the drive coil 2 is moved to the magnet rotor 3 side in the insulator 7 of the pole piece portion 8a. A flange portion 13 is provided to prevent the collapse of the flange portion, and the corner portion of the flange portion 13 has an arc shape. And the axial direction cross-sectional shape of the to-be-wrapped part 7a of the insulator 7 which covers the pole tooth 8 is a substantially parallelogram, and the obtuse angle part 7b and the acute angle part 7c are rounded. Then, in the arc portion 16 of the flange portion 13 corner, the flange portion 13 corner on the obtuse angle portion 7 b side forms an arc portion 16 a having a large curvature, and the flange portion 13 corner on the acute angle portion 7 c side forms an arc portion 16 b having a small curvature. This is the configuration.
[0071]
According to the electric motor 1 of the present invention as described above, the axial sectional shape of the wound portion 7a of the insulator 7 covering the pole teeth 8 is the gap generated by the inertial force when the winding nozzle moves from the linear track to the arc track. Since it is a substantially parallelogram with the thickness of the insulator ΔG cut, even if the winding speed of the winding nozzle is increased, the winding shape after winding of the drive coil 2 can be made substantially rectangular and fixed. Since the height of the coil end protruding in the axial direction from the core can be reduced, a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss. In addition, since the winding speed can be increased, the machining cost can be reduced, so that the cost of the electric motor can be reduced.
[0072]
Further, in the arc portion 16 of the collar portion 13 corner, the curvature of the arc portion 16a on the obtuse angle portion 7b side where the corner of the wound portion 7a of the insulator 7 covering the pole teeth 8 forms an obtuse angle is formed large. Therefore, since the timing at which the winding nozzle shifts from the linear track to the circular track can be made earlier, the gap between the drive coil 2 and the insulator 7 is reduced, so that the height of the coil end protruding in the axial direction from the stator core 10a is reduced. However, since the coil perimeter becomes shorter and the resistance value of the drive coil 2 becomes lower and the copper loss can be further reduced, an electric motor that can be further reduced in thickness and increased in efficiency can be obtained.
[0073]
In the first embodiment, an inner rotation type electric motor in which the rotor arranged on the inner peripheral side of the stator rotates is used. However, an outer rotation type electric motor in which the rotor arranged on the outer peripheral side of the stator rotates. And it does not make a difference in its effects.
[0074]
In the first embodiment, the electric motor has a built-in driving circuit. However, a sensorless electric motor without a driving circuit may be used, and there is no difference in operation and effect.
[0075]
In the first embodiment, the configuration is a DC motor in which permanent magnets are arranged on the rotor. However, an induction motor that does not use permanent magnets or a reluctance motor may be used. There is no difference in effect.
[0076]
Further, as shown in FIG. 5, a roundness 5 is provided at the corner of the wound portion 7a of the insulator 7 covering the pole teeth 8, and the curvature of the rounding 5a forming one diagonal is set to the rounding 5b forming the other diagonal. In addition, the gap ΔG generated by the inertial force when the winding nozzle moves from the linear track to the circular track is provided with a difference in rounding curvature. Therefore, the height of the coil end protruding in the axial direction from the stator core is reduced, and a thin motor can be obtained. Further, since the coil circumference can be shortened and an increase in resistance value due to refraction of the drive coil can be suppressed, an electric motor that achieves further high efficiency by reducing copper loss can be obtained.
[0077]
Further, as shown in FIG. 6, chamfers 17 are provided at the corners of the wound portion 7a of the insulator 7 that covers the pole teeth 8, and the size of the chamfer 17a that forms one diagonal is set to the chamfer that forms the other diagonal. Even if it is formed larger than the size of 17b, and the gap ΔG generated by the inertial force when the winding nozzle moves from the linear track to the circular track, the difference between the chamfered sizes is provided. Since the distance of the coil 2 is shortened, the height of the coil end protruding in the axial direction from the stator core is reduced, and a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0078]
Further, as shown in FIG. 7, in the insulating means of the drive coil 2 and the stator core 10a, an insulating film 18 such as a polyester film is disposed on the side of the pole teeth 8, and this insulating film 18 is made of resin from the axial direction. The insulator 19 has a structure sandwiched between them, and an axial end portion angle of the wound portion 19a of the insulator 19 is formed on one side as an obtuse angle 19b, the other is formed at an acute angle 19c, and one diagonal is formed as an obtuse angle. Even if the other diagonal is formed as an acute angle, the shape of the section in the axial direction of the coiled portion is the thickness of the insulator of the gap ΔG generated by the inertial force when the winding nozzle moves from the linear track to the arc track. Therefore, the winding shape after winding of the drive coil 2 can be made substantially rectangular, and the height of the coil end protruding in the axial direction from the stator core can be reduced. Since it is, thinned electric motor is obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0079]
Further, as shown in FIG. 8, in the insulating means of the drive coil 2 and the stator core 10a, an insulating film 18 such as a polyester film is disposed on the side of the pole teeth 8, and the insulating film 18 is made of resin from the axial direction. The insulator 20 has a structure sandwiched between them, and a rounded portion 21 is provided at an end corner in the axial direction of the wound portion 20a of the insulator 20, and the curvature of the rounded portion 21 is large on one side and small on the other side, Even in a configuration in which the curvature of one diagonal round 21a is large and the curvature of the other diagonal round 21b is small, the clearance ΔG generated by the inertial force when the winding nozzle moves from the linear track to the circular track is reduced. Since there is a difference in the curvature of roundness, the distance between the stator core 10a and the drive coil 2 is shortened, so the height of the coil end protruding in the axial direction from the stator core Lower, thinner and electric motor can be obtained. Further, since the coil circumference can be shortened and an increase in resistance value due to refraction of the drive coil can be suppressed, an electric motor that achieves further high efficiency by reducing copper loss can be obtained.
[0080]
Further, as shown in FIG. 9, in the insulating means of the drive coil 2 and the stator core 10a, an insulating film 18 such as a polyester film is disposed on the side of the pole teeth 8, and the insulating film 18 is made of resin from the axial direction. The chamfer 23 is provided at the axial end corner of the wound portion 22a of the insulator 22, and the chamfer 23 is formed so that one side is large and the other is small. Even if the diagonal chamfer 23a is large in size and the diagonal chamfer 23b is small in size, the gap generated by the inertial force when the winding nozzle moves from the linear track to the circular track. Since the difference ΔG is provided in the chamfer size, the distance between the stator core 10a and the drive coil 2 is shortened, so that it protrudes axially from the stator core. The height of Iruendo is low, thin the motor is obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0081]
Further, as shown in FIG. 10, the insulators 7, 19, 20, and 22 of the pole piece portion 8 a are provided with a flange portion 24 that prevents the drive coil 2 from collapsing toward the magnet rotor 3. In the chamfered portion of the 24 corners of the flange portion, the obtuse angle portions 7b and 19b side where the wound portions 7a and 19a of the insulators 7 and 19 covering the pole teeth 8 form an obtuse angle, or the pole The rounded portions 5a and 21a of the insulators 7 and 20 that cover the teeth 8 have a large curvature at the corners 7a and 20a, or the chamfers 17a and 22a of the insulators 7 and 22 that cover the pole teeth 8 have a large corner. , 23a side chamfered portion 24a of chamfered portion 24a is also formed large, so that the timing at which the winding nozzle shifts from the linear track to the circular track can be made faster. Since the gap between the regulators 7 is reduced, the height of the coil end protruding in the axial direction from the stator core 10a is further reduced and the coil circumferential length is also shortened, so that the resistance value of the drive coil 2 is reduced. In addition, since the copper loss can be further reduced, an electric motor that can be further reduced in thickness and increased in efficiency can be obtained.
[0082]
Further, as shown in FIG. 11, the insulator 7, 19, 20, 22 of the pole piece portion 8a is provided with a flange portion 25 for preventing the drive coil 2 from collapsing toward the magnet rotor 3, and in this flange portion 25, The wrapped portions 7a and 19b of the insulators 7 and 19 covering the pole teeth 8 are formed on the obtuse angle portions 7b and 19b side where the corners form an obtuse angle, or the wound portions 7a of the insulators 7 and 20 covering the pole teeth 8 The notches 26 are arranged on the rounded corners 5a and 21a having a large curvature of the 20a corner, or on the chamfered corners 25a on the chamfered portions 17a and 23a having the large corners of the insulators 7 and 22 covering the pole teeth 8, and on the chamfer 17a and 23a side. Also by adopting the configuration, the timing at which the winding nozzle shifts from the linear track to the circular track can be accelerated, so that the gap between the drive coil 2 and the stator core 10a is reduced, so that the stator core 1 Since the height of the coil end protruding in the axial direction from a is further reduced and the coil peripheral length is also shortened, the resistance value of the drive coil 2 is reduced and the copper loss can be further reduced. An electric motor capable of realizing high efficiency can be obtained.
[0083]
(Example 2)
As shown in FIGS. 12 and 13, reference numeral 27 denotes a stator in which a drive core 2 is wound around a stator core 27a in which thin steel plates such as silicon steel plates having a plurality of slots are laminated, and 28 denotes pole teeth. The drive coil 2 is concentratedly wound every 28 units of teeth. In the stator core 27 a, end laminated core portions 29 in which the width of the wound portion 30 of the pole teeth 28 gradually decrease are provided at both axial ends, and in the end laminated core portion 29, the wound portion 30 of the wound portion 30 is provided. The gradual decrease amount in the width is such that the gradual decrease amount ΔW1 in one diagonal is large, the gradual decrease amount ΔW2 in the other diagonal is small, and the width of the pole piece portion 28a at the tip of the pole tooth 28 is the same. Other configurations are the same as those of the first embodiment, and detailed description thereof is omitted.
[0084]
According to such an electric motor of the present invention, the shape of the axial section of the wound portion 30 in the pole tooth 28 is such that the pole tooth of the gap ΔG generated when the winding nozzle moves from the linear track to the arc track. Therefore, the height of the coil end protruding in the axial direction from the stator core 27a can be reduced, and the coil peripheral length is also shortened. Therefore, the resistance value of the drive coil 2 is reduced, and the copper loss is reduced. Therefore, an electric motor that can be further reduced in thickness can be obtained. Here, since the volume of the stator core 27a is reduced, the magnetic flux is reduced, and the torque that can be generated is reduced, but it can be offset with the reduced amount of copper loss. It becomes possible.
[0085]
In the second embodiment, the drive coil 2 is wound directly around the wound portion 30 of the pole tooth 28. However, the drive coil 2 may be wound via an insulator having a substantially uniform thickness, and the operation thereof. There is no difference in effect.
[0086]
Moreover, it is good also as a structure of an abduction type electric motor similarly to Example 1, and does not produce a difference in the effect.
[0087]
Moreover, it is good also as a sensorless type electric motor similarly to Example 1, and does not produce a difference in the effect.
[0088]
Moreover, it is good also as an induction motor and a reluctance motor similarly to Example 1, and does not produce a difference in the effect.
[0089]
Further, as shown in FIG. 14A, the pole piece portion 28a is provided with a flange portion 13 for preventing the drive coil 2 from collapsing toward the magnet rotor 3, and an arc portion is provided at a corner portion of the flange portion 13. 16, in the arcuate portion 16 of the 13 corners of the flange portion, the side where the gradually decreasing amount of the wound portion 30 is large (ΔW1) forms an arc portion 16a having a large curvature, and the width of the wound portion 30 is increased. As shown in FIG. 14 (b), the drive coil 2 does not collapse to the magnet rotor 3 side in the pole piece portion 28a as shown in FIG. A flange 24 to be prevented is provided, and a chamfer is provided at a corner of the flange 24. In the chamfer at the corner of the flange 24, the side where the width of the wound portion 30 is gradually decreased (ΔW1) is large. Part 24a is formed, and the gradually decreasing amount of the width of the wound part 30 is small (ΔW2) is small. Even in the configuration in which the chamfered portion 24b is formed, as shown in FIG. 14 (c), the pole piece portion 28a is provided with the flange portion 25 for preventing the drive coil 2 from collapsing toward the magnet rotor 3 side. Even when the notch 26 is formed on the side of the portion 25 where the gradually decreasing amount of the wound portion 30 is large (ΔW1), the timing at which the winding nozzle shifts from the linear track to the circular track is accelerated. Since the gap between the drive coil 2 and the stator core 27a is reduced, the height of the coil end protruding in the axial direction from the stator core 27a is further reduced, and the coil circumference is also shortened. Since the resistance value of the drive coil 2 is reduced and the copper loss can be further reduced, an electric motor that can be further reduced in thickness and increased in efficiency can be obtained.
[0090]
Further, in the second embodiment, the configuration is such that the width of the wound portion 30 is cut at both ends (ΔW1, ΔW2). However, the configuration may be such that only one side is cut, and there is no significant difference in the effect.
[0091]
(Example 3)
As shown in FIGS. 15 and 16, 31 is driven by a stator core 31a having a plurality of slots formed by molding and solidifying a composite material of magnetic powder and resin whose surface is insulated with an oxide which is a magnetic powder material. A stator 33 around which the coil 2 is wound, 33 is a pole tooth, and the drive coil 2 is concentratedly wound for each unit of the pole tooth 33. A pole piece portion 33a projecting in the rotation direction of the magnet rotor 3 is disposed at the tip of the pole tooth 33, and the drive coil 2 is prevented from collapsing toward the magnet rotor 3 in this pole piece portion 33a. The collar part 32 to prevent is provided integrally, and the corner part of the collar part 32 has an arc shape. And the axial direction cross-sectional shape of the to-be-wrapped part 33b of the pole tooth 33 is a substantially parallelogram, and the obtuse angle part 33c and the acute angle part 33d are rounded. Further, in the arc portion 34 of the flange portion 32 corner, the flange portion 32 corner on the obtuse angle portion 33c side forms an arc portion 34a having a large curvature, and the flange portion 34 angle on the acute angle portion 33d side forms an arc portion 34b having a small curvature. The configuration is as follows. Other configurations are the same as those of the first embodiment, and detailed description thereof is omitted.
[0092]
According to such an electric motor of the present invention, the axial cross-sectional shape of the wound portion 33b of the pole tooth 33 is the same as that of the insulator of the gap ΔG generated by the inertia force when the winding nozzle moves from the linear track to the arc track. Since it is a substantially parallelogram with a reduced thickness, the winding shape of the drive coil 2 after winding can be made substantially rectangular, and the height of the coil end protruding in the axial direction from the stator core 31a can be reduced. Therefore, a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0093]
In addition, in the arc portion 34 of the collar portion 32 corners, the winding nozzle 33 is formed in a straight track because the angle of the arcuate portion 34a on the obtuse angle portion 33c side where the angle of the wound portion 33b forms an obtuse angle is formed. Since the timing of the transition from the arc to the arc track can be made earlier, the gap between the drive coil 2 and the stator core 31a is reduced, so that the height of the coil end protruding in the axial direction from the stator core 31a is further reduced. Since the coil circumferential length is also shortened, the resistance value of the drive coil 2 is reduced and the copper loss can be further reduced, so that an electric motor that can be further reduced in thickness and increased in efficiency can be obtained.
[0094]
In addition, it is good also as a structure of an abduction-type electric motor similarly to Example 1, and does not produce a difference in the effect.
[0095]
In addition, as shown in FIG. 17, the round portion 35 is provided at the corner of the wound portion 33b, and the curvature of the round portion 35a that forms one diagonal is larger than the curvature of the round portion 35b that forms the other diagonal. The distance between the stator core and the drive coil 2 is shortened even if the gap ΔG generated by the inertial force when the winding nozzle moves from the linear track to the circular track has a difference in rounding curvature. The height of the coil end protruding in the axial direction from the iron core is reduced, and a thin motor can be obtained. Further, since the coil circumference can be shortened and an increase in resistance value due to refraction of the drive coil can be suppressed, an electric motor that achieves further high efficiency by reducing copper loss can be obtained.
[0096]
Further, as shown in FIG. 18, chamfers 36 are provided at the corners of the wound portion 33b, and the size of the chamfer 36a forming one diagonal is formed larger than the size of the chamfer 36b forming the other diagonal. At the same time, even if the gap ΔG generated by the inertial force when the winding nozzle moves from the linear track to the circular track is provided with a difference in the chamfer size, the distance between the stator core and the drive coil 2 is shortened. The height of the coil end protruding in the axial direction from the stator core is reduced, and a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0097]
Further, as shown in FIG. 19, the pole piece portion 33a is integrally provided with a flange portion 37 for preventing the drive coil 2 from collapsing toward the magnet rotor 3, and the corners of the flange portion 37 are chamfered. In the chamfered portion of the flange 37 corner, the obtuse angle portion 33c side where the angle of the wound portion 33b forms an obtuse angle, the roundness 35a side where the curvature of the angle of the wound portion 33b is large, or the wound portion 33b As shown in FIG. 20, the drive coil 2 is prevented from collapsing to the magnet rotor 3 side in the pole piece 33a as shown in FIG. The flange portion 38 is integrally provided, and in this flange portion 38, the obtuse angle portion 33c side where the angle of the wound portion 33b forms an obtuse angle, the round portion 35a side where the curvature of the angle of the wound portion 33b is large, or Wound part 33b corner is large Even when the notch 38a is arranged at the corner 38 of the flange 36a side, the timing at which the winding nozzle shifts from the linear track to the circular track can be accelerated, so that there is a gap between the drive coil 2 and the stator core 31a. Since the coil end becomes smaller, the height of the coil end protruding in the axial direction from the stator core 31a is further reduced, and the coil peripheral length is also shortened, so that the resistance value of the drive coil 2 is reduced and the copper loss can be further reduced. Therefore, an electric motor that can achieve further reduction in thickness and efficiency can be obtained.
[0098]
(Example 4)
As shown in FIGS. 21 and 22, reference numeral 41 denotes a stator core having a slot 40, and a winding nozzle 39 passes through a slot opening 43 of the stator core 41 to rotate around each pole tooth 42. In the method of manufacturing the electric motor in which the drive coil 2 is wound, the track of the winding nozzle 39 is linear in the slot 40 of the stator core 41, and the axial end surface side of the stator core is arcuate. At the same time, the curvature Ra of the arc on the side moving from the linear track to the arcuate track is wound a predetermined number of times on a track larger than the curvature Rb of the arc on the side moving from the arcuate track to the linear track. The winding process is completed. Subsequent assembly is the same as a normal method of manufacturing an electric motor.
[0099]
According to such a method of manufacturing an electric motor of the present invention, the curvature Ra of the circular arc track on the side of transition from the linear track to the circular track in the track of the winding nozzle 39 is changed to the arc on the side of transition from the circular track to the linear track. By making the manufacturing method larger than the curvature Rb of the track, the transition from the linear track to the circular track can be made faster, so the gap between the drive coil 2 and the stator core 41 caused by the inertial force is reduced. Whether it is winding on a large number of stator cores, winding on a stator core with a narrow slot opening, or winding on a stator core with a long axial length, Even when winding on the stator core where the width of the wound portion of the pole teeth is narrow, the height of the coil end protruding in the axial direction from the stator core can be reduced, so that the thickness can be reduced. A method for manufacturing an electric motor is obtained. .
[0100]
【The invention's effect】
As is clear from the above embodiments, according to the present invention, a stator in which a drive coil is wound for each pole tooth unit of the stator core, and a rotor that is rotatably held facing the stator. And an insulator that insulates the stator core from the drive coil, and the shape of the axial cross section of the insulator that covers the pole teeth of the stator core is such that the winding nozzle moves from a linear track to an arc track Even if the winding speed of the winding nozzle is increased by adopting a motor structure characterized by having a substantially parallelogram with the thickness of the insulator for the gap generated when The winding shape of the coil is substantially rectangular, and the height of the coil end protruding in the axial direction from the stator core can be reduced, so that a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0101]
In addition, the corners of the insulator covering the wound portion of the pole teeth are rounded, and the curvature of one of the diagonals is larger than the curvature of the other diagonal, and the winding nozzle Even if the difference between the rounding curvature and the gap generated by the inertial force when moving from the straight track to the circular track, the distance between the stator core and the drive coil is shortened, so that it protrudes from the stator core in the axial direction. The coil end is reduced in height, and a thin motor can be obtained. Further, since the coil circumference can be shortened and an increase in resistance value due to refraction of the drive coil can be suppressed, an electric motor that achieves further high efficiency by reducing copper loss can be obtained. Here, by realizing higher efficiency, the laminated thickness of the stator core can be reduced if the output is the same, so that an electric motor that is further reduced in thickness can be provided.
[0102]
Also, a chamfer is provided at the corner of the insulator that covers the wound portion of the pole teeth, and the chamfer size forming one diagonal is formed larger than the chamfer size forming the other diagonal, and the winding nozzle Even when the gap between the stator core and the drive coil is reduced, the gap between the stator core and the drive coil is shortened in the axial direction. The height of the protruding coil end is reduced, and a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0103]
In addition, in the insulating means of the drive coil and the stator core, an insulating film is provided on the side of the pole tooth winding portion, and this insulating film is sandwiched by a resin insulator from the axial direction. The angle at the end in the axial direction is an obtuse angle on one side, the other is an acute angle, one diagonal is an obtuse angle, and the other diagonal is an acute angle. The shape of the axial cross section is a substantially parallelogram with the thickness of the insulator corresponding to the gap generated by the inertia force being reduced when the winding nozzle moves from the linear orbit to the arc orbit. The coil shape can be made substantially rectangular, and the height of the coil end protruding in the axial direction from the stator core can be reduced, so that a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0104]
In addition, the resin insulator that sandwiches the insulating film from the axial direction is rounded at the end corner in the axial direction, and the curvature of this round is large on one side, small on the other, and rounded on one diagonal. Even if the curvature of the rounding that forms the other diagonal is small, the gap created by the inertial force when the winding nozzle moves from the linear orbit to the arc orbit is provided with a difference in the rounding curvature. As a result, the distance between the stator core and the drive coil is reduced, so that the height of the coil end protruding in the axial direction from the stator core is reduced, and a thin motor can be obtained. Further, since the coil circumference can be shortened and an increase in resistance value due to refraction of the drive coil can be suppressed, an electric motor that achieves further high efficiency by reducing copper loss can be obtained. Here, by realizing higher efficiency, the laminated thickness of the stator core can be reduced if the output is the same, so that an electric motor that is further reduced in thickness can be provided.
[0105]
Also, a chamfer is provided at the end corner in the axial direction of the resin insulator that sandwiches the insulating film from the axial direction, and the chamfer is formed so that one side is large and the other is small, and the other side is chamfered. Even if the size of the chamfer forming the other diagonal is small and the size of the other diagonal chamfer is small, the gap chamfered by the inertial force when the winding nozzle moves from the linear track to the circular track is chamfered. Since the distance between the stator core and the drive coil is shortened, the height of the coil end protruding in the axial direction from the stator core is reduced, and a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0106]
In addition, in the stator core, both end portions in the axial direction are provided with end laminated core portions in which the width of the wound portion of the pole teeth is gradually reduced, and in this end laminated core portion, the gradually decreasing amount in the width of the wound portion is provided. The shape of the axial cross section of the wound part at the pole teeth is such that the winding nozzle has a circular arc from the straight track by forming the gradually decreasing amount of one diagonal and reducing the decreasing amount of the other diagonal. Since it has a shape that has sharpened the teeth of the gap generated when moving to the track, the height of the coil end protruding in the axial direction from the stator core can be reduced, and the coil circumference is also shortened, Since the resistance value of the drive coil is reduced and the copper loss can be reduced, an electric motor capable of realizing further reduction in thickness can be obtained. Here, since the volume of the stator core is reduced, the magnetic flux is reduced and the torque that can be generated is reduced, but it can be offset with the reduced amount of copper loss, so if the required torque is the same, the thickness can be reduced. It becomes.
[0107]
In addition, a fixed structure in which a drive coil is wound for each pole tooth unit of a stator core having a plurality of slots formed by molding and solidifying a composite material of magnetic powder and resin whose surface is insulated with an oxide which is a magnetic powder material. A stator and a rotor held rotatably against the stator, and the shape of the axial cross section of the stator core is a clearance generated when the winding nozzle moves from a linear track to an arc track. With the configuration of an electric motor characterized by having a substantially parallelogram with the thickness of the stator core of the coil wound, the winding shape after winding is approximately rectangular, and the axial direction from the stator core Since the height of the protruding coil end can be reduced, a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0108]
In addition, the corner of the wound portion of the stator core having a plurality of slots formed by molding and solidifying powder magnetic material is rounded, the curvature of one of the diagonals is rounded, the rounding of the other diagonal The gap between the stator core and the drive coil is different even when the winding nozzle is formed to have a difference in rounding curvature due to the inertia generated when the winding nozzle moves from the linear track to the circular track. Since the length becomes shorter, the height of the coil end protruding in the axial direction from the stator core is reduced, and a thin motor can be obtained. Further, since the coil circumference can be shortened and an increase in resistance value due to refraction of the drive coil can be suppressed, an electric motor that achieves further high efficiency by reducing copper loss can be obtained.
[0109]
Also, a chamfer is provided at the corner of the wound portion of the stator core having a plurality of slots formed by molding and solidifying the magnetic powder material, and the size of the chamfer forming one diagonal is the other diagonal. In addition to forming the chamfer larger than the chamfer size, the gap generated by the inertia force when the winding nozzle moves from the linear track to the circular arc track has a difference in the chamfer size. Since the distance becomes shorter, the height of the coil end protruding in the axial direction from the stator core is reduced, and a thin motor can be obtained. Further, since the coil circumference can be shortened, a highly efficient electric motor can be obtained by reducing copper loss.
[0110]
In addition, the pole teeth are provided with a flange portion that prevents the drive coil from collapsing toward the magnet rotor, and the corner portion of the flange portion is formed in an arc shape, and the arc portion of the flange portion is wound when the drive coil is wound. The winding nozzle has a circular arc from the linear track by a configuration in which the arc curvature on the side where the linear nozzle transitions from the linear track to the circular track is larger than the arc curvature on the side where the winding nozzle transitions from the circular track to the linear track. Since the timing of shifting to the track can be made earlier, the gap between the drive coil and the stator core becomes smaller, so the height of the coil end protruding in the axial direction from the stator core is further reduced, and the coil circumference is also reduced. Since it becomes shorter, the resistance value of the drive coil becomes lower, and the copper loss can be further reduced, so that an electric motor that can be made thinner and more efficient can be obtained.
[0111]
In addition, the pole teeth are provided with a hook portion that prevents the drive coil from collapsing toward the magnet rotor side, and a chamfer is provided at the corner portion of the hook portion. Even if the chamfering size on the side where the winding nozzle moves from the linear track to the circular track is larger than the chamfering size on the side where the winding nozzle transitions from the circular track to the linear track, the winding nozzle is linear. Since the timing of transition from the track to the arc track can be made earlier, the gap between the drive coil and the stator core is reduced, so that the height of the coil end protruding in the axial direction from the stator core is further reduced, and the coil Since the circumference is also shortened, the resistance value of the drive coil is reduced and the copper loss can be further reduced, so that an electric motor that can be further reduced in thickness and increased in efficiency can be obtained.
[0112]
In addition, the pole teeth are provided with a flange that prevents the drive coil from collapsing toward the magnet rotor, and the winding nozzle when winding the drive coil is located at the corner of the flange on the side where the transition from the linear track to the arc track occurs. Even when the notch is provided, the winding nozzle can be moved from the linear track to the arc track earlier, so the gap between the drive coil and the stator core is reduced, so that it protrudes from the stator core in the axial direction. As the coil end height is further reduced and the coil circumference is also shortened, the resistance value of the drive coil is reduced and the copper loss can be further reduced, so that the motor can be further reduced in thickness and increased in efficiency. Is obtained.
[0113]
The winding nozzle passes through the slot opening of the stator core, rotates around each pole tooth and winds the drive coil, and the track of the winding nozzle is the stator. The slot in the iron core is linear, the axial end face side of the stator core is arc-shaped, and the curvature of the arc on the side moving from the linear track to the arc-shaped track is the side moving from the arc-shaped track to the linear track In the winding nozzle track, the transition from the linear track to the circular track is achieved in the winding nozzle track by winding a predetermined number of times on the track larger than the curvature of the arc. Since the gap between the drive coil and the stator core caused by the inertial force is reduced because it can be done quickly, even if it is wound around the stator core with a large number of slots, it can be wound around the stator core with a narrow slot opening. Even if Even if it is wound around a stator core with a long axial length, or even if it is wound around a stator core where the width of the pole-wound portion is narrow, it protrudes from the stator core in the axial direction. Since the height of the coil end can be reduced, a method for manufacturing an electric motor that can be reduced in thickness can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an electric motor according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view showing a wound part of the same motor
FIG. 3 is a view showing a buttock of the electric motor
FIG. 4 is a plan view showing a stator of the same motor
FIG. 5 is a cross-sectional view showing another configuration of the wound portion of the electric motor
FIG. 6 is a cross-sectional view showing another configuration of the wound portion of the electric motor
FIG. 7 is a cross-sectional view showing another configuration of the wound portion of the electric motor
FIG. 8 is a cross-sectional view showing another configuration of the wound portion of the electric motor
FIG. 9 is a cross-sectional view showing another configuration of the wound portion of the electric motor
FIG. 10 is a diagram showing another configuration of the buttock of the electric motor
FIG. 11 is a diagram showing another configuration in the buttock of the electric motor
FIG. 12 is a perspective view showing a stator core in the electric motor according to Embodiment 2 of the present invention.
FIG. 13 is a cross-sectional view showing a wound part of the same motor
FIG. 14A is a diagram showing a collar portion in another configuration of the electric motor.
(B) Figure
(C) Figure
FIG. 15 is a sectional view showing a portion to be wound in the electric motor according to the third embodiment of the present invention.
FIG. 16 is a view showing a buttock of the electric motor
FIG. 17 is a cross-sectional view showing another configuration of the wound portion of the electric motor
FIG. 18 is a cross-sectional view showing another configuration of the wound portion of the electric motor
FIG. 19 is a view showing another configuration of the buttock of the electric motor
FIG. 20 is a diagram showing another configuration of the buttock of the electric motor
FIG. 21 is a diagram showing a state when the drive coil is wound by the method for manufacturing the electric motor according to the fourth embodiment of the present invention.
FIG. 22 is a view showing a track of a winding nozzle in the method for manufacturing the same motor
FIG. 23A is a front view showing a schematic configuration of a conventional electric motor.
(B) Cross-sectional side view
FIG. 24A is a view showing a tip locking portion of the same electric motor.
(B) Figure
FIG. 25A is a view showing a portion of the wound portion in the same motor that covers the end face in the axial direction of the teeth.
(B) Figure
(C) Figure
(D) Figure
FIG. 26A is a schematic view showing a stator having another configuration in a conventional electric motor.
(B) Schematic showing the winding
FIG. 27 is a side sectional view showing another configuration of a conventional electric motor.
FIG. 28 is a plan view showing the configuration before winding the winding of the motor.
FIG. 29 is an exploded perspective view showing the stator core of the same motor.
FIG. 30 (a) is a cross-sectional view showing a portion to be wound of the electric motor
(B) Figure
FIG. 31 is a sectional view showing an actual state of a wound part in a conventional electric motor
[Explanation of symbols]
1 Electric motor
2 Drive coil
3 Magnet rotor
4 Hall IC
5 Roundness
5a Roundness (high curvature)
5b Roundness (curvature is small)
6 Bearing
7 Insulator
7a Wound part
7b obtuse corner
7c Sharp corner
8 pole teeth
8a Pole piece part
9 Shaft
10 Stator
10a Stator core
11 Bracket
12 Thermosetting resin
13 Buttocks
14 Printed circuit board
15 Drive IC
16 Arc part
16a Arc part (large curvature)
16b Arc part (small curvature)
17 Chamfer
17a Chamfer (Large)
17b Chamfer (small)
18 Insulating film
19 Insulator
19a Wound part
19b obtuse angle part
19c Sharp corner
20 Insulator
20a Wound part
21 Roundness
21a Roundness (large curvature)
21b Roundness (small curvature)
22 Insulator
22a Wound part
23 Chamfering
23a Chamfer (Large)
23b Chamfer (small)
24 Buttocks
24a Chamfered corner chamfer (large)
24b Chamfered corner chamfer (small)
25 Buttocks
26 Notch
27 Stator
27a Stator core
28 pole teeth
28a Pole piece part
29 End laminated core
30 Winded part
31 Stator
31a Stator core
32 Buttocks
33 pole teeth
33a Pole piece part
33b Winded part
33c obtuse corner
33d acute corner
34 Arc part
34a Arc part (large curvature)
34b Arc part (small curvature)
35 Roundness
35a Roundness (high curvature)
35b Roundness (small curvature)
36 Chamfer
36a Chamfer (Large)
36b Chamfer (small)
37 Buttocks
37a Chamfered corner chamfer (large)
38
38a Notch
39 Winding nozzle
40 slots
40a Slot opening
41 Stator core
42 pole teeth
43 Axial end face side

Claims (17)

スロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁するインシュレータとを備え、前記固定子鉄心の前記極歯を覆う前記インシュレータの被巻装部の軸方向断面形状は略平行四辺形としたことを特徴とする電動機。A stator core having a slot, a stator having a drive coil wound around each pole tooth unit of the stator core, a rotor rotatably held facing the stator, and the stator core An electric motor comprising an insulator that insulates the drive coil, wherein an axial section of the wound portion of the insulator that covers the pole teeth of the stator core is a substantially parallelogram. スロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁するインシュレータとを備え、前記固定子鉄心の前記極歯を覆う前記インシュレータの被巻装部の角部には丸みを設け、一方の対角を成す前記丸みの曲率は、他方の対角を成す前記丸みの曲率よりも大きく形成したことを特徴とする電動機。A stator core having a slot, a stator having a drive coil wound around each pole tooth unit of the stator core, a rotor rotatably held facing the stator, and the stator core An insulator that insulates the drive coil, the corner of the wound portion of the insulator that covers the pole teeth of the stator core is rounded, and the curvature of the round that forms one diagonal is: An electric motor characterized by being formed to be larger than the curvature of the roundness forming the other diagonal. スロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁するインシュレータとを備え、前記固定子鉄心の前記極歯を覆う前記インシュレータの被巻装部の角部には面取りを設け、一方の対角を成す前記面取りの大きさは、他方の対角を成す前記面取りの大きさよりも大きく形成したことを特徴とする電動機。A stator core having a slot, a stator having a drive coil wound around each pole tooth unit of the stator core, a rotor rotatably held facing the stator, and the stator core An insulator that insulates the drive coil, and a chamfer is provided at a corner of the wound portion of the insulator that covers the pole teeth of the stator core, and the size of the chamfer that forms one diagonal is The electric motor is formed larger than the size of the chamfer forming the other diagonal. スロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁する絶縁体とを備え、この絶縁体は前記各極歯の側面を絶縁する絶縁フィルムと、この絶縁フィルムを前記固定子鉄心の軸方向から挟み込む樹脂製のインシュレータより構成され、このインシュレータの被巻装部の軸方向端部角は片側を鈍角に形成し、他方は鋭角に形成するとともに、一方の対角は鈍角に、他方の対角は鋭角に形成したことを特徴とする電動機。A stator core having a slot, a stator having a drive coil wound around each pole tooth unit of the stator core, a rotor rotatably held facing the stator, and the stator core An insulator that insulates the drive coil, and the insulator includes an insulating film that insulates the side surfaces of the pole teeth, and a resin insulator that sandwiches the insulating film from the axial direction of the stator core. The axial end angle of the wound portion of this insulator is formed with an obtuse angle on one side, the other with an acute angle, one diagonal with an obtuse angle, and the other with an acute angle. Electric motor. スロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁する絶縁体とを備え、この絶縁体は前記各極歯の側面を絶縁する絶縁フィルムと、この絶縁フィルムを前記固定子鉄心の軸方向から挟み込む樹脂製のインシュレータより構成され、このインシュレータの被巻装部の軸方向端部角には丸みを設け、この丸みは片側の曲率を大きく形成し、他方の丸みの曲率は小さく形成するとともに、一方の対角を成す前記丸みの曲率は大きく形成し、他方の対角を成す前記丸みの曲率は小さく形成したことを特徴とする電動機。A stator core having a slot, a stator having a drive coil wound around each pole tooth unit of the stator core, a rotor rotatably held facing the stator, and the stator core An insulator that insulates the drive coil, and the insulator includes an insulating film that insulates the side surfaces of the pole teeth, and a resin insulator that sandwiches the insulating film from the axial direction of the stator core. The angle of the end portion in the axial direction of the wound portion of the insulator is rounded, and the roundness forms a large curvature on one side, the curvature of the other round is small, and the rounding that forms one diagonal. The electric motor is characterized in that it has a large curvature, and the curvature of the other rounded corner is small. スロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子と、前記固定子鉄心と前記駆動コイルとを絶縁する絶縁体とを備え、この絶縁体は前記各極歯の側面を絶縁する絶縁フィルムと、この絶縁フィルムを前記固定子鉄心の軸方向から挟み込む樹脂製のインシュレータより構成され、このインシュレータの被巻装部の軸方向端部角には面取りを設け、この面取りの片側は大きく形成し、他方の面取りは小さく形成するとともに、一方の対角を成す前記面取りは大きく形成し、他方の対角を成す前記面取りは小さく形成したことを特徴とする電動機。A stator core having a slot, a stator having a drive coil wound around each pole tooth unit of the stator core, a rotor rotatably held facing the stator, and the stator core An insulator that insulates the drive coil, and the insulator includes an insulating film that insulates the side surfaces of the pole teeth, and a resin insulator that sandwiches the insulating film from the axial direction of the stator core. In addition, a chamfer is provided at the axial end corner of the wrapped portion of the insulator, one side of the chamfer is formed large, the other chamfer is formed small, and the chamfer forming one diagonal is formed large. The electric motor characterized in that the chamfer forming the other diagonal is formed small. スロットを有する薄板鋼板を積層した固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子とを備え、前記固定子鉄心の軸方向端部には前記極歯の被巻装部の幅が漸減する端部積層鉄心部を設け、この端部積層鉄心部における被巻装部の幅の漸減量は、一方の対角は大きく形成し、他方の対角は小さく形成したことを特徴とする電動機。A stator core in which thin steel plates having slots are laminated, a stator in which a drive coil is wound for each pole tooth unit of the stator core, and a rotor that is rotatably held facing the stator. An end laminated core portion in which the width of the wound portion of the pole teeth is gradually reduced is provided at an axial end portion of the stator core, and the width of the wound portion in the end laminated core portion is gradually reduced. Is an electric motor characterized in that one diagonal is formed large and the other diagonal is formed small. 粉末磁性材料を成形固化して形成したスロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子とを備え、前記極歯の被巻装部の軸方向断面形状は略平行四辺形としたことを特徴とする電動機。A stator core having a slot formed by molding and solidifying a magnetic powder material, a stator having a drive coil wound for each pole tooth unit of the stator core, and rotatably held facing the stator. And an axial section of the wound portion of the pole teeth is a substantially parallelogram. 粉末磁性材料を成形固化して形成したスロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子とを備え、前記固定子鉄心の前記極歯の被巻装部角には丸みを設け、一方の対角を成す前記丸みの曲率は、他方の対角を成す前記丸みの曲率よりも大きく形成したことを特徴とする電動機。A stator core having a slot formed by molding and solidifying a magnetic powder material, a stator having a drive coil wound for each pole tooth unit of the stator core, and rotatably held facing the stator. And the winding angle of the pole teeth of the stator core is rounded, and the curvature of the round that forms one diagonal is more than the curvature of the round that forms the other diagonal. An electric motor characterized by a large size. 粉末磁性材料を成形固化して形成したスロットを有する固定子鉄心と、この固定子鉄心の極歯単位毎に駆動コイルを巻装した固定子と、この固定子に対向して回転可能に保持された回転子とを備え、前記固定子鉄心の前記極歯の被巻装部角には面取りを設け、一方の対角を成す前記面取りの大きさは、他方の対角を成す前記面取りの大きさよりも大きく形成したことを特徴とする電動機。A stator core having a slot formed by molding and solidifying a magnetic powder material, a stator having a drive coil wound for each pole tooth unit of the stator core, and rotatably held facing the stator. The chamfered portion of the pole tooth of the stator core is chamfered, and the size of the chamfer forming one diagonal is the size of the chamfer forming the other diagonal. An electric motor characterized by being formed larger than the above. 前記インシュレータには前記回転子側への前記駆動コイルの崩れを防止する鍔部を設け、この鍔部の角部は円弧状とし、この円弧部の曲率は前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側は、前記被巻装部の角部が鋭角を形成している側、または前記被巻装部の角部丸みの曲率が小さい側、または前記被巻装部の角部面取りが小さい側の前記円弧部曲率よりも大きくしたことを特徴とする請求項1から6のいずれかに記載の電動機。The insulator is provided with a flange portion that prevents the drive coil from collapsing toward the rotor. The corner portion of the flange portion has an arc shape, and the curvature of the arc portion is obtuse at the corner portion of the wound portion. On the side where the curvature of the rounded corner of the wound part is large, or on the side where the corner chamfer of the wound part is large, the corner of the wound part forms an acute angle. The curvature of the arcuate portion on the side where the curvature of the corner roundness of the wrapped portion is small, or on the side where the corner chamfer of the wrapped portion is small is larger than the arc portion curvature. 6. The electric motor according to any one of 6. 前記インシュレータには前記回転子側への前記駆動コイルの崩れを防止する鍔部を設け、この鍔部の角部には面取り部を設け、この鍔部角面取り部の面取りの大きさは前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側は、前記被巻装部の角部が鋭角を形成している側、または前記被巻装部の角部丸みの曲率が小さい側、または前記被巻装部の角部面取りが小さい側の前記鍔部角面取り部の面取りよりも大きくしたことを特徴とする請求項1から6のいずれかに記載の電動機。The insulator is provided with a flange portion that prevents the drive coil from collapsing toward the rotor side, and a chamfered portion is provided at a corner portion of the flange portion. The side where the corner of the winding part forms an obtuse angle, the side where the curvature of the corner roundness of the winding part is large, or the side where the corner chamfering of the winding part is large is the side of the winding part. From the chamfering of the corner chamfered portion on the side where the corner forms an acute angle, the side where the curvature of the rounded corner of the wound portion is small, or the side where the corner chamfer of the wound portion is small The electric motor according to claim 1, wherein the electric motor is also made larger. 前記インシュレータには前記回転子側への前記駆動コイルの崩れを防止する鍔部を設け、この鍔部には切欠きを設け、この切欠きは前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側に設けたことを特徴とする請求項1から6のいずれかに記載の電動機。The insulator is provided with a flange portion that prevents the drive coil from collapsing toward the rotor side, and this notch portion is provided with a notch, and this notch forms an obtuse angle at the corner of the wound portion. 7. The device according to claim 1, further comprising a side, a side having a large curvature of a corner roundness of the wound portion, or a side having a large corner chamfer of the wound portion. Electric motor. 請求項7〜10のいずれかに記載の電動機であって、前記極歯には前記回転子側への前記駆動コイルの崩れを防止する鍔部を設け、この鍔部の角部は円弧状とし、この円弧部の曲率は前記被巻装部の幅の漸減量が大きい側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部面取りが大きい側は、前記被巻装部の幅の漸減量が小さい側、または前記被巻装部の角部が鋭角を形成する側、または前記被巻装部の角部丸みの曲率が小さい側、または前記被巻装部の角部面取りが小さい側の円弧部曲率よりも大きくしたことを特徴とする電動機。11. The electric motor according to claim 7, wherein the pole teeth are provided with a flange portion that prevents the drive coil from collapsing toward the rotor, and a corner portion of the flange portion is formed in an arc shape. The curvature of the arc part is the side where the gradually decreasing amount of the width of the wound part is large, or the side where the curvature of the corner roundness of the wound part is large, or the corner part of the wound part forms an obtuse angle. The side where the corner portion chamfer of the wound portion is large, the side where the gradually decreasing amount of the width of the wound portion is small, the side where the corner portion of the wound portion forms an acute angle, or the An electric motor characterized in that it is larger than the curvature of the arc portion on the side where the curvature of the corner roundness of the wound portion is small or the side where the corner chamfer of the wound portion is small. 請求項7〜10のいずれかに記載の電動機であって、前記極歯には前記回転子側への前記駆動コイルの崩れを防止する鍔部を設け、この鍔部の角部には面取り部を設け、この面取り部の大きさは前記被巻装部の幅の漸減量が大きい側、または前記被巻装部の角部が鈍角を形成する側、または前記極歯角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側は、前記被巻装部の幅の漸減量が小さい側、または前記被巻装部の角部が鋭角を形成する側、または前記被巻装部の角部丸みの曲率が小さい側、または前記被巻装部の角部面取りが小さい側の面取りよりも大きくしたことを特徴とする電動機。11. The electric motor according to claim 7, wherein the pole teeth are provided with a flange portion that prevents the drive coil from collapsing toward the rotor, and a chamfered portion is provided at a corner portion of the flange portion. The size of the chamfered portion is such that the gradually decreasing amount of the width of the wound portion is large, the side where the corner portion of the wound portion forms an obtuse angle, or the curvature of the rounded corner of the pole tooth portion. The larger side, or the side where the chamfered portion of the wound part is larger is the side where the gradually decreasing amount of the width of the wound part is small, the side where the corner part of the wound part forms an acute angle, or the An electric motor characterized in that it is larger than the chamfer on the side where the curvature of the rounded corner of the wound part is small, or on the side where the corner of the wound part is small. 請求項7〜10のいずれかに記載の電動機であって、前記極歯には前記回転子側への前記駆動コイルの崩れを防止する鍔部を設け、この鍔部には切欠きを設け、この切欠きは前記被巻装部の幅の漸減量が大きい側、または前記被巻装部の角部が鈍角を形成する側、または前記被巻装部の角部丸みの曲率が大きい側、または前記被巻装部の角部面取りが大きい側に設けたことを特徴とする電動機。The electric motor according to any one of claims 7 to 10, wherein the pole teeth are provided with a flange portion that prevents the drive coil from collapsing toward the rotor, and the flange portion is provided with a notch, This notch is the side where the gradually decreasing amount of the width of the wound part is large, the side where the corner of the wound part forms an obtuse angle, or the side where the curvature of the rounded corner of the wound part is large, Or the electric motor provided in the side with the large corner | angular chamfering of the said to-be-wrapped part. 巻線ノズルがスロット開口部を通過して、各極歯の周りを回転して駆動コイルを巻装する電動機の製造方法であって、前記巻線ノズルの軌道は固定子鉄心のスロット内は直線状に、固定子鉄心の軸方向端面側は円弧状とするとともに、直線状軌道から円弧状軌道に移る側の円弧の曲率は、円弧状軌道から直線状軌道に移る側の円弧の曲率よりも大きくしたことを特徴とする電動機の製造方法。A method for manufacturing an electric motor in which a winding nozzle passes through a slot opening and rotates around each pole tooth to wind a drive coil, the track of the winding nozzle being straight in the slot of the stator core The axial end surface side of the stator core has an arc shape, and the curvature of the arc on the side moving from the linear track to the arc track is larger than the curvature of the arc on the side moving from the arc track to the linear track. A method of manufacturing an electric motor characterized in that it is enlarged.
JP2003190951A 2003-07-03 2003-07-03 Electric motor and method of manufacturing the electric motor Expired - Fee Related JP4367030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190951A JP4367030B2 (en) 2003-07-03 2003-07-03 Electric motor and method of manufacturing the electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190951A JP4367030B2 (en) 2003-07-03 2003-07-03 Electric motor and method of manufacturing the electric motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009021191A Division JP4935834B2 (en) 2009-02-02 2009-02-02 Electric motor and method of manufacturing the electric motor

Publications (2)

Publication Number Publication Date
JP2005027442A true JP2005027442A (en) 2005-01-27
JP4367030B2 JP4367030B2 (en) 2009-11-18

Family

ID=34188688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190951A Expired - Fee Related JP4367030B2 (en) 2003-07-03 2003-07-03 Electric motor and method of manufacturing the electric motor

Country Status (1)

Country Link
JP (1) JP4367030B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312564A (en) * 2006-05-22 2007-11-29 Denso Corp Stator of rotary electric machine
JP2010536312A (en) * 2007-08-09 2010-11-25 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Coil support with special contour
JP2010279241A (en) * 2009-04-30 2010-12-09 Panasonic Corp Stator of motor
JP2011055626A (en) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd Rotary electric machine and stator
JP2011120315A (en) * 2009-11-30 2011-06-16 Toshiba Carrier Corp Concentrated winding stator, enclosed compressor, and refrigeration cycle device
CN103973017A (en) * 2013-01-30 2014-08-06 日立空调·家用电器株式会社 Electric Motor And Fluid Compressor Provided With The Same
JPWO2015140970A1 (en) * 2014-03-19 2017-04-06 株式会社安川電機 Rotating electric machine and method of manufacturing rotating electric machine
JP2017158328A (en) * 2016-03-02 2017-09-07 アイチエレック株式会社 Winding method
CN108988547A (en) * 2017-05-31 2018-12-11 日本电产株式会社 Stator and motor
WO2019026423A1 (en) * 2017-08-01 2019-02-07 日本電産株式会社 Structure, stator, and motor
WO2019026422A1 (en) * 2017-08-01 2019-02-07 日本電産株式会社 Structure, stator, and motor
CN110224523A (en) * 2019-05-31 2019-09-10 成都金士力科技有限公司 A kind of stator and its method for winding for high/low temperature vacuum stepper motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149650U (en) * 1981-03-16 1982-09-20
JPS58201554A (en) * 1982-05-20 1983-11-24 Matsushita Electric Ind Co Ltd Stator for rotary electric machine
JPH0488352U (en) * 1990-11-30 1992-07-31
JPH04322141A (en) * 1991-04-22 1992-11-12 Victor Co Of Japan Ltd Motor core
JP2002165423A (en) * 2000-11-28 2002-06-07 Matsushita Electric Ind Co Ltd Method and device for winding coil on stator core
JP2003079080A (en) * 2001-09-03 2003-03-14 Honda Motor Co Ltd Stator and rotary electric machine using the stator
JP2003111329A (en) * 2001-10-03 2003-04-11 Mitsubishi Electric Corp Stator for rotating electric machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149650U (en) * 1981-03-16 1982-09-20
JPS58201554A (en) * 1982-05-20 1983-11-24 Matsushita Electric Ind Co Ltd Stator for rotary electric machine
JPH0488352U (en) * 1990-11-30 1992-07-31
JPH04322141A (en) * 1991-04-22 1992-11-12 Victor Co Of Japan Ltd Motor core
JP2002165423A (en) * 2000-11-28 2002-06-07 Matsushita Electric Ind Co Ltd Method and device for winding coil on stator core
JP2003079080A (en) * 2001-09-03 2003-03-14 Honda Motor Co Ltd Stator and rotary electric machine using the stator
JP2003111329A (en) * 2001-10-03 2003-04-11 Mitsubishi Electric Corp Stator for rotating electric machine

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312564A (en) * 2006-05-22 2007-11-29 Denso Corp Stator of rotary electric machine
JP2010536312A (en) * 2007-08-09 2010-11-25 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Coil support with special contour
US8704421B2 (en) 2007-08-09 2014-04-22 Continental Automotive Gmbh Spool carrier having a special contour
JP2010279241A (en) * 2009-04-30 2010-12-09 Panasonic Corp Stator of motor
JP2011055626A (en) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd Rotary electric machine and stator
JP2011120315A (en) * 2009-11-30 2011-06-16 Toshiba Carrier Corp Concentrated winding stator, enclosed compressor, and refrigeration cycle device
CN103973017A (en) * 2013-01-30 2014-08-06 日立空调·家用电器株式会社 Electric Motor And Fluid Compressor Provided With The Same
JPWO2015140970A1 (en) * 2014-03-19 2017-04-06 株式会社安川電機 Rotating electric machine and method of manufacturing rotating electric machine
US10547219B2 (en) 2014-03-19 2020-01-28 Kabushiki Kaisha Yaskawa Denki Rotating electric machine having air core coil with curved end surfaces
JP2017158328A (en) * 2016-03-02 2017-09-07 アイチエレック株式会社 Winding method
CN108988547A (en) * 2017-05-31 2018-12-11 日本电产株式会社 Stator and motor
CN108988547B (en) * 2017-05-31 2020-09-18 日本电产株式会社 Stator and motor
US20190157917A1 (en) * 2017-05-31 2019-05-23 Nidec Corporation Stator and motor
US10734849B2 (en) 2017-05-31 2020-08-04 Nidec Corporation Stator of motor having upper and lower insulator
WO2019026423A1 (en) * 2017-08-01 2019-02-07 日本電産株式会社 Structure, stator, and motor
CN110870171A (en) * 2017-08-01 2020-03-06 日本电产株式会社 Structure, stator, and motor
CN110870172A (en) * 2017-08-01 2020-03-06 日本电产株式会社 Structure, stator, and motor
WO2019026422A1 (en) * 2017-08-01 2019-02-07 日本電産株式会社 Structure, stator, and motor
CN110224523A (en) * 2019-05-31 2019-09-10 成都金士力科技有限公司 A kind of stator and its method for winding for high/low temperature vacuum stepper motor
CN110224523B (en) * 2019-05-31 2024-05-03 成都金士力科技有限公司 Stator for high-low temperature vacuum stepper motor and winding method thereof

Also Published As

Publication number Publication date
JP4367030B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP3745884B2 (en) Motor structure and manufacturing method thereof
JP3535012B2 (en) Radial gap type small cylindrical rotating electric machine
JP4367030B2 (en) Electric motor and method of manufacturing the electric motor
JP2004072957A (en) Rotor of permanent magnet type dynamo electric machine
JP2004304958A (en) Permanent-magnetic motor
JP2001333555A (en) Slot-less radial gap motor
JP4935834B2 (en) Electric motor and method of manufacturing the electric motor
JP2009124794A (en) Stator for axial motor, and axial motor
JP2009284626A (en) Stator of rotating machine and motor
JP4248778B2 (en) Permanent magnet motor rotor
JP2004032861A (en) Stepping motor
JP2004120942A (en) Flat stepping motor
JP3358667B2 (en) Disk rotation motor
JP4396142B2 (en) Permanent magnet rotating electric machine
JP2972423B2 (en) Rotating electric machine
JP5884464B2 (en) Rotating electric machine
JP2001086710A (en) Method for manufacturing permanent-magnet motor and magnetizing device
JP2022076731A (en) Rotary electric machine
JPH0436225Y2 (en)
KR900003985B1 (en) Brushless motor
JP2020178387A (en) Motor, and wiper motor
JP2003189571A (en) Dc motor with concentrated winding type brush
JP4771278B2 (en) Permanent magnet type motor and method for manufacturing the same
JP5311877B2 (en) Coil of stator and stator core of rotating device
JP3985964B2 (en) A stator having detent torque generating means and an axial air gap type brushless motor having the same stator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R151 Written notification of patent or utility model registration

Ref document number: 4367030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees