[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019024087A1 - 获取剩余关键系统信息的公共控制资源集时频资源位置的方法 - Google Patents

获取剩余关键系统信息的公共控制资源集时频资源位置的方法 Download PDF

Info

Publication number
WO2019024087A1
WO2019024087A1 PCT/CN2017/096018 CN2017096018W WO2019024087A1 WO 2019024087 A1 WO2019024087 A1 WO 2019024087A1 CN 2017096018 W CN2017096018 W CN 2017096018W WO 2019024087 A1 WO2019024087 A1 WO 2019024087A1
Authority
WO
WIPO (PCT)
Prior art keywords
rmsi
coreset
time
window
synchronization signal
Prior art date
Application number
PCT/CN2017/096018
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201780000821.7A priority Critical patent/CN108401527B/zh
Priority to PCT/CN2017/096018 priority patent/WO2019024087A1/zh
Priority to US16/636,336 priority patent/US11159294B2/en
Publication of WO2019024087A1 publication Critical patent/WO2019024087A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and apparatus for acquiring a common control resource set (CORESET) time-frequency resource location of remaining critical system information (RMSI), a method and device for indicating a CORESET time-frequency resource location of an RMSI, and a user A device, base station, and computer readable storage medium.
  • CORESET common control resource set
  • RMSI remaining critical system information
  • the fifth generation mobile communication technology 5th Generation, referred to as 5G
  • 5G the fifth generation mobile communication technology
  • a downlink synchronization mode based on a beam scanning-based synchronization signal block (SSB) is introduced, that is, the introduced synchronization signal block includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the UE parses the PBCH, some key system information can be obtained, but the PBCH can carry very few bits, so it is impossible to carry all the key system information.
  • the 3rd Generation Partnership Project (3GPP) divides the key system information into two parts, and the part of the non-PBCH bearer is called Remaining System Information (RMSI).
  • RMSI Remaining System Information
  • the PBCH cannot carry the content in the RMSI, the location of the RMSI must be given.
  • the companies agreed that the RMSI bears on the physical downlink shared channel (PDSCH); and the 3GPP defines the time-frequency resource set where the physical downlink control channel (PDCCH) is located as a common control resource set (CORESET). . Therefore, it is necessary to give the time-frequency resource position of the above CORESET in the PBCH.
  • PDSCH physical downlink shared channel
  • CORESET common control resource set
  • the present application discloses a method and apparatus for acquiring a CORESET time-frequency resource location of an RMSI, a method and apparatus for indicating a CORESET time-frequency resource location of an RMSI, a user equipment, a base station, and a computer-readable storage medium to implement
  • the PRESET carries the CORESET time-frequency information of the RMSI, and acquires the CORESET time-frequency resource location of the RMSI according to the CORESET time-frequency information of the RMSI carried in the PBCH.
  • a method for acquiring a common control resource set CORESET time-frequency resource location of a remaining critical system information RMSI is provided, which is applied to a user equipment, the method comprising:
  • PBCH Physical broadcast channel
  • the PBCH carries time domain information and frequency domain information corresponding to the CORESET of the RMSI
  • the time domain information includes window information and a time domain symbol value
  • the CORESET time-frequency resource location corresponding to the RMSI is obtained according to the time domain information and the frequency domain information corresponding to the CORESET of the RMSI, including:
  • a blind check is performed in the window according to the frequency domain information and the time domain symbol value corresponding to the CORESET of the RMSI, and the CORESET time-frequency resource location corresponding to the RMSI is obtained.
  • the window information corresponding to the CORESET of the RMSI includes a time difference and a window length of the RMSI and the corresponding synchronization signal block
  • the frequency domain information corresponding to the CORESET of the RMSI includes the corresponding synchronization signal block of the RMSI.
  • the window corresponding to the CORESET of the RMSI is determined according to the window information corresponding to the CORESET of the RMSI, including:
  • a window corresponding to the CORESET of the RMSI is determined according to a start time of the window and a final window length of the window.
  • a method for indicating a common control resource set CORESET time-frequency resource location of remaining key system information RMSI is provided, which is applied to a base station, and the method includes:
  • the physical broadcast channel PBCH of the synchronization signal block corresponding to the synchronization signal carries time domain information and frequency domain information corresponding to the CORESET of the RMSI, for the UE to correspond to the CORESET according to the RMSI
  • the time domain information and the frequency domain information acquire the CORESET time-frequency resource location corresponding to the RMSI.
  • the time domain information corresponding to the CORESET of the RMSI includes window information and time domain symbol values.
  • the window information includes a time difference and a window length of the RMSI and the corresponding synchronization signal block
  • the frequency domain information corresponding to the CORESET of the RMSI includes a PRB number of the corresponding synchronization signal block of the RMSI.
  • apparatus for acquiring a common control resource set CORESET time-frequency resource location of remaining key system information RMSI comprising:
  • a receiving determining module configured to receive a synchronization signal sent by the base station, and determine a synchronization signal block corresponding to the synchronization signal
  • a first acquiring module configured to acquire a physical broadcast channel PBCH of the synchronization signal block determined by the receiving determining module, where the PBCH carries time domain information and frequency domain information corresponding to a CORESET of the RMSI;
  • the second obtaining module is configured to acquire a CORESET time-frequency resource location corresponding to the RMSI according to the time domain information and the frequency domain information corresponding to the CORESET of the RMSI carried in the PBCH acquired by the first acquiring module.
  • the time domain information includes window information and a time domain symbol value
  • the second obtaining module includes:
  • a window determining submodule configured to determine a window corresponding to the CORESET of the RMSI according to window information corresponding to the CORESET of the RMSI;
  • the blind detection sub-module is configured to perform blind detection in the window determined by the window determining sub-module according to the frequency domain information and the time domain symbol value corresponding to the CORESET of the RMSI, to obtain a CORESET time-frequency resource location corresponding to the RMSI .
  • the window information corresponding to the CORESET of the RMSI includes a time difference and a window length of the RMSI and the corresponding synchronization signal block
  • the frequency domain information corresponding to the CORESET of the RMSI includes the corresponding synchronization signal block of the RMSI.
  • the window determining submodule comprises:
  • a first determining unit configured to determine a start time of the window according to a time difference of the RMSI and a corresponding synchronization signal block and a transmission time of the corresponding synchronization signal block;
  • a second determining unit configured to determine a time interval of the corresponding synchronization signal block of the RMSI and a next synchronization signal block and a minimum value of the window length as a final window length of the window;
  • a third determining unit configured to determine a window corresponding to the CORESET of the RMSI according to a start time of the window determined by the first determining unit and a final window length of the window determined by the second determining unit .
  • an apparatus for indicating a common control resource set CORESET time-frequency resource location of remaining key system information RMSI comprising:
  • a configuration module configured to configure time domain information and frequency domain information for the RMSI CORESET
  • a sending module configured to send a synchronization signal to the user equipment UE, where the synchronization signal corresponds to a synchronization signal block
  • the time domain information and the frequency domain information corresponding to the CORESET of the RMSI configured by the configuration module are carried in the PBCH, and are used by the UE to obtain the time domain information and the frequency domain information corresponding to the CORESET of the RMSI.
  • the time domain information corresponding to the CORESET of the RMSI includes window information and time domain symbol values.
  • the window information includes a time difference and a window length of the RMSI and the corresponding synchronization signal block
  • the frequency domain information corresponding to the CORESET of the RMSI includes a PRB number of the corresponding synchronization signal block of the RMSI.
  • a user equipment including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • PBCH Physical broadcast channel
  • the PBCH carries time domain information and frequency domain information corresponding to the CORESET of the RMSI
  • a base station including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the physical broadcast channel PBCH of the synchronization signal block corresponding to the synchronization signal carries time domain information and frequency domain information corresponding to the CORESET of the RMSI, for the UE to correspond to the CORESET according to the RMSI
  • the time domain information and the frequency domain information acquire the CORESET time-frequency resource location corresponding to the RMSI.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the method of acquiring a CORESET time-frequency resource location of the RMSI.
  • a computer readable storage medium having stored thereon a computer program, the program being executed by the processor to implement the step of the method of indicating a CORESET time-frequency resource location of the RMSI.
  • the implementation is simple.
  • the implementation is simple and the resources are small.
  • the scheme is made easier to implement.
  • the time domain information and the frequency domain information are configured for the CORESET of the RMSI, and the time domain information and the frequency domain information corresponding to the CORESET of the RMSI are carried in the PBCH of the synchronization signal block corresponding to the synchronization signal transmitted to the UE, thereby obtaining a correspondence for the UE.
  • the RMSI CORESET time-frequency resource location provides the conditions.
  • the scheme is made easier to implement.
  • FIG. 1 is a flowchart of a method for acquiring a CORESET time-frequency resource location of an RMSI according to an exemplary embodiment of the present application
  • FIG. 2 is a flow chart showing the location of a CORESET time-frequency resource for acquiring an RMSI according to an exemplary embodiment of the present application
  • FIG. 3 is a flow chart showing a window corresponding to determining a CORESET of an RMSI according to an exemplary embodiment of the present application
  • FIG. 4 is a schematic diagram of a downlink signal transmitted by a base station by a beam according to an exemplary embodiment of the present application
  • FIG. 5 is a diagram showing a method for indicating a CORESET time-frequency resource position of an RMSI according to an exemplary embodiment of the present application. flow chart;
  • FIG. 6 is a block diagram of an apparatus for acquiring a CORESET time-frequency resource location of an RMSI, according to an exemplary embodiment
  • FIG. 7 is a block diagram of another apparatus for acquiring a CORESET time-frequency resource location of an RMSI, according to an exemplary embodiment
  • FIG. 8 is a block diagram of another apparatus for acquiring a CORESET time-frequency resource location of an RMSI, according to an exemplary embodiment
  • FIG. 9 is a block diagram of an apparatus for indicating a CORESET time-frequency resource location of an RMSI, according to an exemplary embodiment
  • FIG. 10 is a block diagram of an apparatus suitable for acquiring a CORESET time-frequency resource location of an RMSI, according to an exemplary embodiment
  • FIG. 11 is a block diagram of an apparatus suitable for indicating a CORESET time-frequency resource location of an RMSI, according to an exemplary embodiment.
  • the UE before obtaining the RMSI, the UE only has the information of the SSB, that is, the UE knows the synchronization signal block that it parses, but the base station does not know which synchronization signal block the UE parses. Therefore, the base station uses the beam scanning method to transmit the CORESET time-frequency of the RMSI. Information, each scanned beam has a corresponding relationship with the index of the sync signal block.
  • the bandwidth of the SSB is removed, and the remaining bandwidth is limited. Therefore, the method of frequency division multiplexing using SSB and RMSI is not very feasible, and time division multiplexing is adopted.
  • the RMSI is sent at a different time after the SSB. Since the transmission time of the SSB in each 20ms period does not exceed 5ms, even if the uplink transmission ratio during the period is considered, the remaining 50% of the time domain resources can be used for the scheduling of the RMSI, that is, the CORESET time-frequency information carrying the RMSI.
  • FIG. 1 is a flowchart of a method for acquiring a CORESET time-frequency resource position of an RMSI according to an exemplary embodiment of the present application. The embodiment is described from the UE side. As shown in FIG. 1, the CORESET time-frequency of acquiring the RMSI is shown in FIG. Resource bit
  • the methods include:
  • step S101 the synchronization signal transmitted by the base station is received, and the synchronization signal block corresponding to the synchronization signal is determined.
  • the UE may determine the corresponding synchronization signal block according to the synchronization signal.
  • step S102 the PBCH of the synchronization signal block is acquired, and the PBCH carries time domain information and frequency domain information corresponding to the CORESET of the RMSI.
  • the UE can acquire the PBCH of the synchronization signal block after determining the synchronization signal block.
  • the time domain information corresponding to the CORESET of the RMSI may include window information and time domain symbol values.
  • the time domain symbol value may be multiple, but each PBCH may carry only one time domain symbol value, for example, 1, 2, or 3, and the like. This embodiment makes the solution easier to implement by specifying the content of the time domain information.
  • step S103 the CORESET time-frequency resource location corresponding to the RMSI is obtained according to the time domain information and the frequency domain information corresponding to the CORESET of the RMSI.
  • the synchronization signal block corresponding to the received synchronization signal is determined, and the PBCH of the synchronization signal block is obtained, and then the CORESET corresponding to the RMSI is obtained according to the time domain information and the frequency domain information corresponding to the CORESET of the RMSI carried in the PBCH.
  • the frequency resource location is simple to implement.
  • the step S103 may include the following steps:
  • step S1031 a window corresponding to the CORESET of the RMSI is determined based on the window information corresponding to the CORESET of the RMSI.
  • the window information corresponding to the CORESET of the RMSI may include the time difference and window length of the RMSI and the corresponding sync signal block.
  • the time difference between the RMSI and the corresponding synchronization signal block may be used to determine the start time of the window, and the window length may be used by the UE to determine the final window length.
  • the determined final window length is greater than 1, it indicates that the base station can pass through the window.
  • the time-frequency information of the CORESET is sent at a time, the time flexibility is stronger, and the uplink scheduling can be staggered. This embodiment makes the solution easier to implement by specifying the contents of the window information.
  • step S1032 blind detection is performed in the window according to the frequency domain information and the time domain symbol value corresponding to the CORESET of the RMSI, and the CORESET time-frequency resource position corresponding to the RMSI is obtained.
  • the frequency domain information corresponding to the CORESET of the RMSI may include the number of physical resource blocks (PRBs) of the corresponding synchronization signal block of the RMSI. This embodiment makes the solution easier to implement by specifying the content of the frequency domain information.
  • PRBs physical resource blocks
  • the UE after determining the window corresponding to the CORESET of the RMSI, the UE can perform a small amount of blind detection in the window to obtain the CORESET time-frequency resource location corresponding to the RMSI, which is simple in implementation and consumes less resources.
  • FIG. 3 is a flowchart of determining a CORESET corresponding window of the RMSI according to an exemplary embodiment of the present application. As shown in FIG. 3, determining a window corresponding to the CORESET of the RMSI may include:
  • step S301 the start time of the window is determined according to the time difference between the RMSI and the corresponding sync signal block and the transmission time of the corresponding sync signal block.
  • the start time of the window is T+X.
  • step S302 the minimum time interval of the RMSI corresponding sync signal block and the next sync signal block and the window length are determined as the final window length of the window.
  • the beam 1-2 has a time interval with the beam 3-4, and between the beam 1 and the beam 3.
  • Interval 3 time domain resource units the time domain resource unit may be a symbol, or may be a mini-slot, a time slot, a field or a radio frame, etc., since the beam corresponds to the signal synchronization block, therefore,
  • the gap between the beam 1 and the beam 3 is 3 resource units, that is, the signal sync block 1 and the signal sync block 3 are separated by 3 resource units.
  • the value in each window (ie 1, 2, 3 or 4) represents the time domain symbol value of the corresponding window.
  • step S303 a window corresponding to the CORESET of the RMSI is determined according to the start time of the window and the final window length of the window.
  • the UE determines the start time of the window and the final window length to complete the determination of the window.
  • the start time of the window is determined according to the time difference between the RMSI and the corresponding sync signal block and the transmission time of the corresponding sync signal block, and the time interval and window length of the corresponding sync signal block of the RMSI and the next sync signal block are The minimum value is determined as the final window length of the window to complete the determination of the window, thus providing conditions for subsequent blind inspection within the window.
  • FIG. 5 is a flowchart of a method for indicating a CORESET time-frequency resource position of an RMSI according to an exemplary embodiment of the present application. The embodiment is described from a base station side. As shown in FIG. 5, the CORESET time-frequency indicating the RMSI is shown in FIG. 5.
  • the method of resource location includes:
  • step S501 time domain information and frequency domain information are configured for the CORESET of the RMSI.
  • the time domain information corresponding to the CORESET of the RMSI may include window information and time domain symbol values.
  • the time domain symbol value may be multiple, but each PBCH may carry only one time domain symbol value, for example, 1, 2, or 3, and the like.
  • the window information corresponding to the CORESET of the RMSI may include the time difference and window length of the RMSI and the corresponding sync signal block.
  • the frequency domain information corresponding to the CORESET of the RMSI may include the number of PRBs of the corresponding sync signal block of the RMSI.
  • the length of the window configured by the base station is also greater than 1, so as to achieve the purpose of transmitting the time-frequency information of the CORESET through multiple times in the window, and the time flexibility is stronger.
  • This embodiment makes the solution easier to implement by specifying the content of the window information and the content of the frequency domain information.
  • the synchronization signal is sent to the UE, and the PBCH of the synchronization signal block corresponding to the synchronization signal carries time domain information and frequency domain information corresponding to the CORESET of the RMSI, and is used for time domain information corresponding to the CORESET of the UE according to the RMSI.
  • the frequency domain information is obtained, and the CORESET time-frequency resource location corresponding to the RMSI is obtained.
  • the base station may send the synchronization signal through the continuous beam, and carry the time domain information and the frequency domain information configured for the CORESET of the RMSI in the PBCH of the synchronization signal block corresponding to the synchronization signal, so that when the UE receives the CORESET corresponding to the RMSI, After the domain information and the frequency domain information, the CORESET time-frequency resource location corresponding to the RMSI can be obtained according to the time domain information and the frequency domain information corresponding to the CORESET of the RMSI.
  • the time domain information and frequency domain information configured for the CORESET of the RMSI occupy less PBCH resources.
  • the time domain information and the frequency domain information are configured for the CORESET of the RMSI, and the time domain information and the frequency domain information corresponding to the CORESET of the RMSI are carried in the PBCH of the synchronization signal block corresponding to the synchronization signal transmitted to the UE, thereby It provides conditions for the UE to obtain the CORESET time-frequency resource location corresponding to the RMSI.
  • FIG. 6 is a block diagram of an apparatus for acquiring a CORESET time-frequency resource location of an RMSI, the apparatus being applicable to a user equipment, as shown in FIG. 6, the apparatus includes: a receiving determination module 61, a first embodiment, according to an exemplary embodiment An acquisition module 62 and a second acquisition module 63.
  • the reception determining module 61 is configured to receive the synchronization signal transmitted by the base station, and determine a synchronization signal block corresponding to the synchronization signal.
  • the UE may A corresponding sync signal block is determined based on the synchronization signal.
  • the first obtaining module 62 is configured to acquire the physical broadcast channel PBCH of the synchronization signal block determined by the determining module 61, and the time domain information and frequency domain information corresponding to the CORESET of the RMSI in the PBCH.
  • the UE can acquire the PBCH of the synchronization signal block after determining the synchronization signal block.
  • the time domain information corresponding to the CORESET of the RMSI may include window information and time domain symbol values.
  • the time domain symbol value may be multiple, but each PBCH may carry only one time domain symbol value, for example, 1, 2, or 3, and the like. This embodiment makes the solution easier to implement by specifying the content of the time domain information.
  • the second obtaining module 63 is configured to acquire the CORESET time-frequency resource location corresponding to the RMSI according to the time domain information and the frequency domain information corresponding to the CORESET of the RMSI carried in the PBCH acquired by the first obtaining module 62.
  • the synchronization signal block corresponding to the received synchronization signal is determined, and the PBCH of the synchronization signal block is obtained, and then the CORESET corresponding to the RMSI is obtained according to the time domain information and the frequency domain information corresponding to the CORESET of the RMSI carried in the PBCH.
  • the frequency resource location is simple to implement.
  • FIG. 7 is a block diagram of another apparatus for acquiring a CORESET time-frequency resource location of an RMSI according to an exemplary embodiment.
  • the time domain information includes a window.
  • the information and time domain symbol values, the second acquisition module 62 can include a window determination sub-module 621 and a blind detection sub-module 622.
  • the window determination sub-module 621 is configured to determine a window corresponding to the CORESET of the RMSI based on the window information corresponding to the CORESET of the RMSI.
  • the window information corresponding to the CORESET of the RMSI may include the time difference and window length of the RMSI and the corresponding sync signal block.
  • the time difference between the RMSI and the corresponding synchronization signal block may be used to determine the start time of the window, and the window length may be used by the UE to determine the final window length.
  • the determined final window length is greater than 1, it indicates that the base station can pass through the window.
  • the time-frequency information of the CORESET is sent at a time, the time flexibility is stronger, and the uplink scheduling can be staggered. This embodiment makes the solution easier to implement by specifying the contents of the window information.
  • the blind detection sub-module 622 is configured to perform blind detection in the window determined by the window determination sub-module 621 according to the frequency domain information and the time-domain symbol value corresponding to the CORESET of the RMSI, to obtain the CORESET time-frequency resource location corresponding to the RMSI.
  • the frequency domain information corresponding to the CORESET of the RMSI may include the number of physical resource blocks (PRBs) of the corresponding synchronization signal block of the RMSI.
  • PRBs physical resource blocks
  • This embodiment makes the solution easier to implement by specifying the content of the frequency domain information.
  • the corresponding RMSI is obtained by determining the window corresponding to the CORESET of the RMSI and performing a small amount of blind detection in the window.
  • the CORESET time-frequency resource location is simple to implement and consumes less resources.
  • FIG. 8 is a block diagram of another apparatus for acquiring a CORESET time-frequency resource location of an RMSI, as shown in FIG. 8, on the basis of the embodiment shown in FIG. 7, the window determining sub-module 621, according to an exemplary embodiment.
  • the first determining unit 6211, the second determining unit 6212, and the third determining unit 6213 are included.
  • the first determining unit 6211 is configured to determine a start time of the window according to a time difference of the RMSI and the corresponding sync signal block and a transmission time of the corresponding sync signal block.
  • the start time of the window is T+X.
  • the second determining unit 6212 is configured to determine the minimum interval of the time interval and the window length of the corresponding sync signal block of the RMSI and the next sync signal block as the final window length of the window.
  • the beam 1-2 has a time interval with the beam 3-4, and between the beam 1 and the beam 3.
  • Interval 3 time domain resource units the time domain resource unit may be a symbol, or may be a mini-slot, a time slot, a field or a radio frame, etc., since the beam corresponds to the signal synchronization block, therefore,
  • the gap between the beam 1 and the beam 3 is 3 resource units, that is, the signal sync block 1 and the signal sync block 3 are separated by 3 resource units.
  • the value in each window (ie 1, 2, 3 or 4) represents the time domain symbol value of the corresponding window.
  • the third determining unit 6213 is configured to determine a window corresponding to the CORESET of the RMSI according to the start time of the window determined by the first determining unit 6211 and the final window length of the window determined by the second determining unit 6212.
  • the UE determines the start time of the window and the final window length to complete the determination of the window.
  • the start time of the window is determined according to the time difference between the RMSI and the corresponding sync signal block and the transmission time of the corresponding sync signal block, and the time interval and window length of the corresponding sync signal block of the RMSI and the next sync signal block are The minimum value is determined as the final window length of the window to complete the determination of the window, thus providing conditions for subsequent blind inspection within the window.
  • FIG. 9 is a block diagram of an apparatus for indicating a CORESET time-frequency resource location of an RMSI, the apparatus being applicable to a base station, as shown in FIG. 9, the apparatus includes: a configuration module 91 and a transmitting module 92, according to an exemplary embodiment. .
  • the configuration module 91 is configured to configure time domain information and frequency domain information for the CORESET of the RMSI.
  • the time domain information corresponding to the CORESET of the RMSI may include window information and time domain symbols. value.
  • the time domain symbol value may be multiple, but each PBCH may carry only one time domain symbol value, for example, 1, 2, or 3, and the like. This embodiment makes the solution easier to implement by specifying the content of the time domain information.
  • the window information corresponding to the CORESET of the RMSI may include the time difference and window length of the RMSI and the corresponding sync signal block.
  • the frequency domain information corresponding to the CORESET of the RMSI may include the number of PRBs of the corresponding sync signal block of the RMSI.
  • the length of the window configured by the base station is also greater than 1, so as to achieve the purpose of transmitting the time-frequency information of the CORESET through multiple times in the window, and the time flexibility is stronger. This embodiment makes the solution easier to implement by specifying the content of the window information and the content of the frequency domain information.
  • the sending module 92 is configured to send a synchronization signal to the user equipment UE, and the physical broadcast channel PBCH of the synchronization signal block corresponding to the synchronization signal carries the time domain information and the frequency domain information corresponding to the CORESET of the RMSI configured by the configuration module 91, for the UE. According to the time domain information and the frequency domain information corresponding to the CORESET of the RMSI, the CORESET time-frequency resource location corresponding to the RMSI is obtained.
  • the base station may send the synchronization signal through the continuous beam, and carry the time domain information and the frequency domain information configured for the CORESET of the RMSI in the PBCH of the synchronization signal block corresponding to the synchronization signal, so that when the UE receives the CORESET corresponding to the RMSI, After the domain information and the frequency domain information, the CORESET time-frequency resource location corresponding to the RMSI can be obtained according to the time domain information and the frequency domain information corresponding to the CORESET of the RMSI.
  • the time domain information and frequency domain information configured for the CORESET of the RMSI occupy less PBCH resources.
  • the base station there is a time interval between consecutive beams transmitted by the base station, so that uplink scheduling can be staggered.
  • the time domain information and the frequency domain information are configured for the CORESET of the RMSI, and the time domain information and the frequency domain information corresponding to the CORESET of the RMSI are carried in the PBCH of the synchronization signal block corresponding to the synchronization signal transmitted to the UE, thereby It provides conditions for the UE to obtain the CORESET time-frequency resource location corresponding to the RMSI.
  • FIG. 10 is a block diagram of an apparatus suitable for acquiring a CORESET time-frequency resource location of an RMSI, according to an exemplary embodiment.
  • the device 1000 can be a user device such as a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • apparatus 1000 can include one or more of the following components: processing component 1002, memory 1004, power component 1006, multimedia component 1008, audio component 1010, input/output (I/O) interface 1012, sensor component 1014, And a communication component 1016.
  • Processing component 1002 typically controls the overall operation of device 1000, such as with display, telephone calls, data communications, The operations associated with camera operations and recording operations.
  • Processing component 1002 can include one or more processors 1020 to execute instructions to perform all or part of the steps of the above described methods.
  • processing component 1002 can include one or more modules to facilitate interaction between component 1002 and other components.
  • processing component 1002 can include a multimedia module to facilitate interaction between multimedia component 1008 and processing component 1002.
  • the memory 1004 is configured to store various types of data to support operation at the device 1000. Examples of such data include instructions for any application or method operating on device 1000, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 1004 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk
  • Optical Disk Optical Disk
  • Power component 1006 provides power to various components of device 1000.
  • Power component 1006 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 1000.
  • the multimedia component 1008 includes a screen between the device 1000 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor can sense not only the boundaries of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1008 includes a front camera and/or a rear camera. When the device 1000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1010 is configured to output and/or input an audio signal.
  • the audio component 1010 includes a microphone (MIC) that is configured to receive an external audio signal when the device 1000 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 1004 or transmitted via communication component 1016.
  • the audio component 1010 also includes a speaker for outputting an audio signal.
  • the I/O interface 1012 provides an interface between the processing component 1002 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 1014 includes one or more sensors for providing device 1000 with various aspects of state assessment.
  • sensor assembly 1014 can detect an open/closed state of device 1000, relative positioning of components, such as components For the display and keypad of device 1000, sensor assembly 1014 can also detect changes in position of one component of device 1000 or device 1000, presence or absence of user contact with device 1000, orientation of device 1000 or acceleration/deceleration, and temperature change of device 1000.
  • Sensor assembly 1014 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1014 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1016 is configured to facilitate wired or wireless communication between device 1000 and other devices.
  • the device 1000 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1016 receives a broadcast signal or broadcast associated information from an external broadcast management system via a broadcast channel.
  • communication component 1016 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 1000 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • a non-transitory computer readable storage medium comprising instructions, such as a memory 1004 comprising instructions executable by processor 1020 of apparatus 1000 to perform the above-described CORESET time-frequency for acquiring RMSI The method of resource location.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • apparatus 1100 is a block diagram of another apparatus suitable for indicating a CORESET time-frequency resource location of an RMSI, according to an exemplary embodiment.
  • the device 1100 can be provided as a base station.
  • apparatus 1100 includes a processing component 1122, a wireless transmit/receive component 1124, an antenna component 1126, and a signal processing portion specific to the wireless interface.
  • the processing component 1122 can further include one or more processors.
  • One of the processing components 1122 can be configured to:
  • the physical broadcast channel PBCH of the synchronization signal block corresponding to the synchronization signal carries time domain information and frequency domain information corresponding to the CORESET of the RMSI, for time domain information and frequency corresponding to the CORESET of the UE according to the RMSI. Domain information, obtain the CORESET time-frequency resource location corresponding to the RMSI.
  • non-transitory computer readable storage medium comprising instructions, the above The method may be performed by the processing component 1122 of the device 1100 to perform the above-described CORESET time-frequency resource location indicating the RMSI.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units illustrated as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located in one place. Or it can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种获取RMSI的CORESET时频资源位置的方法及装置、指示RMSI的CORESET时频资源位置的方法及装置、用户设备、基站和计算机可读存储介质。其中,获取RMSI的CORESET时频资源位置的方法包括:接收基站发送的同步信号,确定同步信号对应的同步信号块;获取同步信号块的物理广播信道PBCH,PBCH中携带RMSI的CORESET对应的时域信息和频域信息;根据RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。本公开使得UE可以获取对应RMSI的CORESET时频资源位置,且实现方式简单。

Description

获取剩余关键系统信息的公共控制资源集时频资源位置的方法 技术领域
本公开涉及通信技术领域,尤其涉及一种获取剩余关键系统信息(RMSI)的公共控制资源集(CORESET)时频资源位置的方法及装置、指示RMSI的CORESET时频资源位置的方法及装置、用户设备、基站和计算机可读存储介质。
背景技术
随着无线通信技术的飞速发展,出现了第五代移动通信技术(5th Generation,简称为5G)。5G系统中引入基于波束扫描的同步信号块(SSB)的下行同步方式,即引入的同步信号块包含主同步信号(PSS)、辅同步信号(SSS)和物理广播信道(PBCH)。用户设备(UE)解析PBCH后可以得到一部分关键系统信息,但PBCH能承载的比特(bit)非常少,所以不可能承载全部关键系统信息。因此,第三代合作伙伴计划(3GPP)将关键系统信息分为两部分,非PBCH承载的部分叫剩余关键系统信息(Remaining system information,简称为RMSI)。PBCH虽然不能承载RMSI中的内容,但必须给出RMSI的位置。3GPP会议上各公司同意RMSI承载在物理下行共享信道(PDSCH);而3GPP又定义了物理下行控制信道(PDCCH)所在的时频资源集合为公共控制资源集(Common control resource set,简称为CORESET)。因此,需要在PBCH里给出上述CORESET的时频资源位置。
发明内容
有鉴于此,本申请公开了一种获取RMSI的CORESET时频资源位置的方法及装置、指示RMSI的CORESET时频资源位置的方法及装置、用户设备、基站和计算机可读存储介质,以实现在PBCH中携带RMSI的CORESET时频信息,以及根据PBCH中携带的RMSI的CORESET时频信息获取到RMSI的CORESET时频资源位置。
根据本公开实施例的第一方面,提供一种获取剩余关键系统信息RMSI的公共控制资源集CORESET时频资源位置的方法,应用于用户设备,所述方法包括:
接收基站发送的同步信号,确定所述同步信号对应的同步信号块;
获取所述同步信号块的物理广播信道PBCH,所述PBCH中携带RMSI的CORESET对应的时域信息和频域信息;
根据所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
在一实施例中,所述时域信息包括窗口信息和时域符号值,所述根据所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置,包括:
根据所述RMSI的CORESET对应的窗口信息,确定所述RMSI的CORESET对应的窗口;
根据所述RMSI的CORESET对应的频域信息和时域符号值在所述窗口内进行盲检,得到对应RMSI的CORESET时频资源位置。
在一实施例中,所述RMSI的CORESET对应的窗口信息包括所述RMSI与对应同步信号块的时间差和窗口长度,所述RMSI的CORESET对应的频域信息包括所述RMSI的对应同步信号块的物理资源块PRB数。
在一实施例中,所述根据所述RMSI的CORESET对应的窗口信息,确定所述RMSI的CORESET对应的窗口,包括:
根据所述RMSI与对应同步信号块的时间差以及对应同步信号块的发送时间确定所述窗口的起始时间;
将所述RMSI的对应同步信号块与下一个同步信号块的时间间隔和所述窗口长度的最小值确定为所述窗口的最终窗口长度;
根据所述窗口的起始时间和所述窗口的最终窗口长度,确定所述RMSI的CORESET对应的窗口。
根据本公开实施例的第二方面,提供一种指示剩余关键系统信息RMSI的公共控制资源集CORESET时频资源位置的方法,应用于基站,所述方法包括:
为RMSI的CORESET配置时域信息和频域信息;
向用户设备UE发送同步信号,所述同步信号对应的同步信号块的物理广播信道PBCH中携带RMSI的CORESET对应的时域信息和频域信息,以用于所述UE根据所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
在一实施例中,所述RMSI的CORESET对应的时域信息包括窗口信息和时域符号值。
在一实施例中,所述窗口信息包括所述RMSI与对应同步信号块的时间差和窗口长度,所述RMSI的CORESET对应的频域信息包括所述RMSI的对应同步信号块的PRB数。
根据本公开实施例的第三方面,提供一种获取剩余关键系统信息RMSI的公共控制资源集CORESET时频资源位置的装置,应用于用户设备,所述装置包括:
接收确定模块,被配置为接收基站发送的同步信号,确定所述同步信号对应的同步信号块;
第一获取模块,被配置为获取所述接收确定模块确定的所述同步信号块的物理广播信道PBCH,所述PBCH中携带RMSI的CORESET对应的时域信息和频域信息;
第二获取模块,被配置为根据所述第一获取模块获取的PBCH中携带的所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
在一实施例中,所述时域信息包括窗口信息和时域符号值,所述第二获取模块包括:
窗口确定子模块,被配置为根据所述RMSI的CORESET对应的窗口信息,确定所述RMSI的CORESET对应的窗口;
盲检子模块,被配置为根据所述RMSI的CORESET对应的频域信息和时域符号值在所述窗口确定子模块确定的所述窗口内进行盲检,得到对应RMSI的CORESET时频资源位置。
在一实施例中,所述RMSI的CORESET对应的窗口信息包括所述RMSI与对应同步信号块的时间差和窗口长度,所述RMSI的CORESET对应的频域信息包括所述RMSI的对应同步信号块的物理资源块PRB数。
在一实施例中,所述窗口确定子模块包括:
第一确定单元,被配置为根据所述RMSI与对应同步信号块的时间差以及对应同步信号块的发送时间确定所述窗口的起始时间;
第二确定单元,被配置为将所述RMSI的对应同步信号块与下一个同步信号块的时间间隔和所述窗口长度的最小值确定为所述窗口的最终窗口长度;
第三确定单元,被配置为根据所述第一确定单元确定的所述窗口的起始时间和所述第二确定单元确定的所述窗口的最终窗口长度,确定所述RMSI的CORESET对应的窗口。
根据本公开实施例的第四方面,提供一种指示剩余关键系统信息RMSI的公共控制资源集CORESET时频资源位置的装置,应用于基站,所述装置包括:
配置模块,被配置为为RMSI的CORESET配置时域信息和频域信息;
发送模块,被配置为向用户设备UE发送同步信号,所述同步信号对应的同步信号块的物 理广播信道PBCH中携带所述配置模块配置的所述RMSI的CORESET对应的时域信息和频域信息,以用于所述UE根据所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
在一实施例中,所述RMSI的CORESET对应的时域信息包括窗口信息和时域符号值。
在一实施例中,所述窗口信息包括所述RMSI与对应同步信号块的时间差和窗口长度,所述RMSI的CORESET对应的频域信息包括所述RMSI的对应同步信号块的PRB数。
根据本公开实施例的第五方面,提供一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收基站发送的同步信号,确定所述同步信号对应的同步信号块;
获取所述同步信号块的物理广播信道PBCH,所述PBCH中携带RMSI的CORESET对应的时域信息和频域信息;
根据所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
根据本公开实施例的第六方面,提供一种基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
为RMSI的CORESET配置时域信息和频域信息;
向用户设备UE发送同步信号,所述同步信号对应的同步信号块的物理广播信道PBCH中携带RMSI的CORESET对应的时域信息和频域信息,以用于所述UE根据所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述获取RMSI的CORESET时频资源位置的方法的步骤。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述指示RMSI的CORESET时频资源位置的方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过确定接收的同步信号对应的同步信号块,并获取该同步信号块的PBCH,然后根据PBCH中携带的RMSI的CORESET对应的时域信息和频域信息来获取对应RMSI的CORESET时频资源位置,实现方式简单。
通过确定RMSI的CORESET对应的窗口,并在该窗口内进行少量盲检来得到对应RMSI的CORESET时频资源位置,实现方式简单,耗费的资源少。
通过具体说明窗口信息的内容以及频域信息的内容,使得方案更容易实现。
通过根据RMSI与对应同步信号块的时间差以及对应同步信号块的发送时间确定窗口的起始时间,以及将RMSI的对应同步信号块与下一个同步信号块的时间间隔和窗口长度的最小值确定为窗口的最终窗口长度,来完成窗口的确定,从而为后续在窗口内盲检提供了条件。
通过为RMSI的CORESET配置时域信息和频域信息,并通过在向UE发送的同步信号对应的同步信号块的PBCH中携带RMSI的CORESET对应的时域信息和频域信息,从而为UE获取对应RMSI的CORESET时频资源位置提供了条件。
通过具体说明时域信息的内容,使得方案更容易实现。
通过具体说明窗口信息的内容以及频域信息的内容,使得方案更容易实现。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本申请一示例性实施例示出的一种获取RMSI的CORESET时频资源位置的方法的流程图;
图2是本申请一示例性实施例示出的获取RMSI的CORESET时频资源位置的流程图;
图3是本申请一示例性实施例示出的确定RMSI的CORESET对应的窗口的流程图;
图4是本申请一示例性实施例示出的基站以波束发送的下行信号的示意图;
图5是本申请一示例性实施例示出的一种指示RMSI的CORESET时频资源位置的方法的 流程图;
图6是根据一示例性实施例示出的一种获取RMSI的CORESET时频资源位置的装置的框图;
图7是根据一示例性实施例示出的另一种获取RMSI的CORESET时频资源位置的装置的框图;
图8是根据一示例性实施例示出的另一种获取RMSI的CORESET时频资源位置的装置的框图;
图9是根据一示例性实施例示出的一种指示RMSI的CORESET时频资源位置的装置的框图;
图10是根据一示例性实施例示出的一种适用于获取RMSI的CORESET时频资源位置的装置的框图;
图11是根据一示例性实施例示出的一种适用于指示RMSI的CORESET时频资源位置的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
目前,UE在获得RMSI之前,只有SSB的信息,即UE知道自己解析的同步信号块,但基站不知道UE解析的是哪个同步信号块,因此,基站采用波束扫描的方式发送RMSI的CORESET时频信息,每个扫描的波束和同步信号块的索引有对应关系。但是,因为有UE能支持的最小带宽限制,所以从频域上看,除去SSB的带宽,剩余的带宽有限,因此SSB和RMSI采用频分复用的方式不是很可行,而采用时分复用的方式更合适,即RMSI在SSB之后另外的时间上发送。由于SSB在每个20ms周期内的发送时间不超过5ms,即使考虑期间的上行发送比例,剩余50%的时域资源可以用于RMSI的调度,即携带RMSI的CORESET时频信息。
图1是本申请一示例性实施例示出的一种获取RMSI的CORESET时频资源位置的方法的流程图,该实施例从UE侧进行描述,如图1所示,该获取RMSI的CORESET时频资源位 置的方法包括:
在步骤S101中,接收基站发送的同步信号,确定该同步信号对应的同步信号块。
由于同步信号块中包括同步信号,因此,UE在接收到基站发送的同步信号后,可以根据该同步信号确定对应的同步信号块。
在步骤S102中,获取同步信号块的PBCH,该PBCH中携带RMSI的CORESET对应的时域信息和频域信息。
由于同步信号块中还包括PBCH,因此,UE在确定同步信号块后,可以获取该同步信号块的PBCH。
在该实施例中,该RMSI的CORESET对应的时域信息可以包括窗口信息和时域符号值。其中,时域符号值可以有多个,但每个PBCH中只能携带一个时域符号值,例如为1、2或3等。该实施例通过具体说明时域信息的内容,使得方案更容易实现。
在步骤S103中,根据RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
上述实施例,通过确定接收的同步信号对应的同步信号块,并获取该同步信号块的PBCH,然后根据PBCH中携带的RMSI的CORESET对应的时域信息和频域信息来获取对应RMSI的CORESET时频资源位置,实现方式简单。
如图2所示,该步骤S103可以包括以下步骤:
在步骤S1031中,根据RMSI的CORESET对应的窗口信息,确定RMSI的CORESET对应的窗口。
在该实施例中,RMSI的CORESET对应的窗口信息可以包括RMSI与对应同步信号块的时间差和窗口长度。其中,RMSI与对应同步信号块的时间差可以用于确定窗口的起始时间,窗口长度可以用于UE确定最终窗口长度,当确定的最终窗口长度大于1时,则表明基站可以通过窗口内的多个时间发送CORESET的时频信息,时间灵活性更强,且可以错开上行调度。该实施例通过具体说明窗口信息的内容,使得方案更容易实现。
在步骤S1032中,根据RMSI的CORESET对应的频域信息和时域符号值在窗口内进行盲检,得到对应RMSI的CORESET时频资源位置。
其中,RMSI的CORESET对应的频域信息可以包括RMSI的对应同步信号块的物理资源块(PRB)数。该实施例通过具体说明频域信息的内容,使得方案更容易实现。
在该实施例中,UE在确定RMSI的CORESET对应的窗口之后,可以在该窗口内进行少量盲检即可得到对应RMSI的CORESET时频资源位置,实现方式简单,耗费的资源少。
图3是本申请一示例性实施例示出的确定RMSI的CORESET对应的窗口的流程图,如图3所示,确定RMSI的CORESET对应的窗口可以包括:
在步骤S301中,根据RMSI与对应同步信号块的时间差以及对应同步信号块的发送时间确定窗口的起始时间。
假设RMSI1的对应同步信号块为同步信号块1,且RMSI 1与同步信号块1的时间差为X,同步信号块1的发送时间为T,则窗口的起始时间为T+X。
在步骤S302中,将RMSI的对应同步信号块与下一个同步信号块的时间间隔和窗口长度的最小值确定为窗口的最终窗口长度。
为了更清楚地描述确定最终窗口长度的方式,下面结合图4所示的下行信号进行说明,如图4所示,波束1-2与波束3-4有时间间隔,波束1和波束3之间间隔3个时域资源单位,该时域资源单位可以为符号,还可以为微时隙(mini-slot)、时隙、半帧或无线帧等,由于波束与信号同步块相对应,因此,波束1和波束3之间间隔3个资源单位也即信号同步块1和信号同步块3之间间隔3个资源单位。假设,基站配置的窗口长度为5,则取3和5的最小值,即3,因此,确定的最终窗口长度为3。其中,每个窗口中的取值(即1、2、3或4)表示对应窗口的时域符号值。
在步骤S303中,根据窗口的起始时间和窗口的最终窗口长度,确定RMSI的CORESET对应的窗口。
UE确定好窗口的起始时间和最终窗口长度也就完成了窗口的确定。
上述实施例,通过根据RMSI与对应同步信号块的时间差以及对应同步信号块的发送时间确定窗口的起始时间,以及将RMSI的对应同步信号块与下一个同步信号块的时间间隔和窗口长度的最小值确定为窗口的最终窗口长度,来完成窗口的确定,从而为后续在窗口内盲检提供了条件。
图5是本申请一示例性实施例示出的一种指示RMSI的CORESET时频资源位置的方法的流程图,该实施例从基站侧进行描述,如图5所示,该指示RMSI的CORESET时频资源位置的方法包括:
在步骤S501中,为RMSI的CORESET配置时域信息和频域信息。
在该实施例中,该RMSI的CORESET对应的时域信息可以包括窗口信息和时域符号值。其中,时域符号值可以有多个,但每个PBCH中只能携带一个时域符号值,例如为1、2或3等。该实施例通过具体说明时域信息的内容,使得方案更容易实现。在该实施例中,RMSI的CORESET对应的窗口信息可以包括RMSI与对应同步信号块的时间差和窗口长度。RMSI的CORESET对应的频域信息可以包括RMSI的对应同步信号块的PRB数。为了使UE确定的最终窗口长度大于1,基站配置的窗口长度也大于1,以达到可以通过窗口内的多个时间发送CORESET的时频信息的目的,时间灵活性更强。该实施例通过具体说明窗口信息的内容以及频域信息的内容,使得方案更容易实现。
在步骤S502中,向UE发送同步信号,上述同步信号对应的同步信号块的PBCH中携带RMSI的CORESET对应的时域信息和频域信息,以用于UE根据RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
其中,基站可以通过连续波束发送同步信号,并在同步信号对应的同步信号块的PBCH中携带为RMSI的CORESET配置的时域信息和频域信息,这样,UE在接收到RMSI的CORESET对应的时域信息和频域信息之后,可以根据RMSI的CORESET对应的时域信息和频域信息获取对应RMSI的CORESET时频资源位置。
在该实施例中,为RMSI的CORESET配置的时域信息和频域信息占用较少的PBCH资源。
另外,在该实施例中,基站发送的连续波束之间有时间间隔,这样,可以错开上行调度。例如,如图4所示,波束1-2与波束3-4之间有时间间隔,基站可以在发送下行信号的同时进行上行调度。
上述实施例,通过为RMSI的CORESET配置时域信息和频域信息,并通过在向UE发送的同步信号对应的同步信号块的PBCH中携带RMSI的CORESET对应的时域信息和频域信息,从而为UE获取对应RMSI的CORESET时频资源位置提供了条件。
图6是根据一示例性实施例示出的一种获取RMSI的CORESET时频资源位置的装置的框图,该装置可应用于用户设备,如图6所示,该装置包括:接收确定模块61、第一获取模块62和第二获取模块63。
接收确定模块61被配置为接收基站发送的同步信号,确定同步信号对应的同步信号块。
由于同步信号块中包括同步信号,因此,UE在接收到基站发送的同步信号后,可以 根据该同步信号确定对应的同步信号块。
第一获取模块62被配置为获取接收确定模块61确定的同步信号块的物理广播信道PBCH,PBCH中携带RMSI的CORESET对应的时域信息和频域信息。
由于同步信号块中还包括PBCH,因此,UE在确定同步信号块后,可以获取该同步信号块的PBCH。
在该实施例中,该RMSI的CORESET对应的时域信息可以包括窗口信息和时域符号值。其中,时域符号值可以有多个,但每个PBCH中只能携带一个时域符号值,例如为1、2或3等。该实施例通过具体说明时域信息的内容,使得方案更容易实现。
第二获取模块63被配置为根据第一获取模块62获取的PBCH中携带的RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
上述实施例,通过确定接收的同步信号对应的同步信号块,并获取该同步信号块的PBCH,然后根据PBCH中携带的RMSI的CORESET对应的时域信息和频域信息来获取对应RMSI的CORESET时频资源位置,实现方式简单。
图7是根据一示例性实施例示出的另一种获取RMSI的CORESET时频资源位置的装置的框图,如图7所示,在上述图6所示实施例的基础上,时域信息包括窗口信息和时域符号值,第二获取模块62可以包括:窗口确定子模块621和盲检子模块622。
窗口确定子模块621被配置为根据RMSI的CORESET对应的窗口信息,确定RMSI的CORESET对应的窗口。
在该实施例中,RMSI的CORESET对应的窗口信息可以包括RMSI与对应同步信号块的时间差和窗口长度。其中,RMSI与对应同步信号块的时间差可以用于确定窗口的起始时间,窗口长度可以用于UE确定最终窗口长度,当确定的最终窗口长度大于1时,则表明基站可以通过窗口内的多个时间发送CORESET的时频信息,时间灵活性更强,且可以错开上行调度。该实施例通过具体说明窗口信息的内容,使得方案更容易实现。
盲检子模块622被配置为根据RMSI的CORESET对应的频域信息和时域符号值在窗口确定子模块621确定的窗口内进行盲检,得到对应RMSI的CORESET时频资源位置。
其中,RMSI的CORESET对应的频域信息可以包括RMSI的对应同步信号块的物理资源块(PRB)数。该实施例通过具体说明频域信息的内容,使得方案更容易实现。上述实施例,通过确定RMSI的CORESET对应的窗口,并在该窗口内进行少量盲检来得到对应RMSI 的CORESET时频资源位置,实现方式简单,耗费的资源少。
图8是根据一示例性实施例示出的另一种获取RMSI的CORESET时频资源位置的装置的框图,如图8所示,在上述图7所示实施例的基础上,窗口确定子模块621包括:第一确定单元6211、第二确定单元6212和第三确定单元6213。
第一确定单元6211被配置为根据RMSI与对应同步信号块的时间差以及对应同步信号块的发送时间确定窗口的起始时间。
假设RMSI1的对应同步信号块为同步信号块1,且RMSI 1与同步信号块1的时间差为X,同步信号块1的发送时间为T,则窗口的起始时间为T+X。
第二确定单元6212被配置为将RMSI的对应同步信号块与下一个同步信号块的时间间隔和窗口长度的最小值确定为窗口的最终窗口长度。
为了更清楚地描述确定最终窗口长度的方式,下面结合图4所示的下行信号进行说明,如图4所示,波束1-2与波束3-4有时间间隔,波束1和波束3之间间隔3个时域资源单位,该时域资源单位可以为符号,还可以为微时隙(mini-slot)、时隙、半帧或无线帧等,由于波束与信号同步块相对应,因此,波束1和波束3之间间隔3个资源单位也即信号同步块1和信号同步块3之间间隔3个资源单位。假设,基站配置的窗口长度为5,则取3和5的最小值,即3,因此,确定的最终窗口长度为3。其中,每个窗口中的取值(即1、2、3或4)表示对应窗口的时域符号值。
第三确定单元6213被配置为根据第一确定单元6211确定的窗口的起始时间和第二确定单元6212确定的窗口的最终窗口长度,确定RMSI的CORESET对应的窗口。
UE确定好窗口的起始时间和最终窗口长度也就完成了窗口的确定。
上述实施例,通过根据RMSI与对应同步信号块的时间差以及对应同步信号块的发送时间确定窗口的起始时间,以及将RMSI的对应同步信号块与下一个同步信号块的时间间隔和窗口长度的最小值确定为窗口的最终窗口长度,来完成窗口的确定,从而为后续在窗口内盲检提供了条件。
图9是根据一示例性实施例示出的一种指示RMSI的CORESET时频资源位置的装置的框图,该装置可应用于基站,如图9所示,该装置包括:配置模块91和发送模块92。
配置模块91被配置为为RMSI的CORESET配置时域信息和频域信息。
在该实施例中,该RMSI的CORESET对应的时域信息可以包括窗口信息和时域符号 值。其中,时域符号值可以有多个,但每个PBCH中只能携带一个时域符号值,例如为1、2或3等。该实施例通过具体说明时域信息的内容,使得方案更容易实现。
在该实施例中,RMSI的CORESET对应的窗口信息可以包括RMSI与对应同步信号块的时间差和窗口长度。RMSI的CORESET对应的频域信息可以包括RMSI的对应同步信号块的PRB数。为了使UE确定的最终窗口长度大于1,基站配置的窗口长度也大于1,以达到可以通过窗口内的多个时间发送CORESET的时频信息的目的,时间灵活性更强。该实施例通过具体说明窗口信息的内容以及频域信息的内容,使得方案更容易实现。
发送模块92被配置为向用户设备UE发送同步信号,同步信号对应的同步信号块的物理广播信道PBCH中携带配置模块91配置的RMSI的CORESET对应的时域信息和频域信息,以用于UE根据RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
其中,基站可以通过连续波束发送同步信号,并在同步信号对应的同步信号块的PBCH中携带为RMSI的CORESET配置的时域信息和频域信息,这样,UE在接收到RMSI的CORESET对应的时域信息和频域信息之后,可以根据RMSI的CORESET对应的时域信息和频域信息获取对应RMSI的CORESET时频资源位置。
在该实施例中,为RMSI的CORESET配置的时域信息和频域信息占用较少的PBCH资源。
另外,在该实施例中,基站发送的连续波束之间有时间间隔,这样,可以错开上行调度。例如,如图4所示,波束1-2与波束3-4之间有时间间隔,基站可以在发送下行信号的同时进行上行调度。上述实施例,通过为RMSI的CORESET配置时域信息和频域信息,并通过在向UE发送的同步信号对应的同步信号块的PBCH中携带RMSI的CORESET对应的时域信息和频域信息,从而为UE获取对应RMSI的CORESET时频资源位置提供了条件。
图10是根据一示例性实施例示出的一种适用于获取RMSI的CORESET时频资源位置的装置的框图。例如,装置1000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等用户设备。
参照图10,装置1000可以包括以下一个或多个组件:处理组件1002,存储器1004,电源组件1006,多媒体组件1008,音频组件1010,输入/输出(I/O)的接口1012,传感器组件1014,以及通信组件1016。
处理组件1002通常控制装置1000的整体操作,诸如与显示,电话呼叫,数据通信, 相机操作和记录操作相关联的操作。处理元件1002可以包括一个或多个处理器1020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1002可以包括一个或多个模块,便于处理组件1002和其他组件之间的交互。例如,处理部件1002可以包括多媒体模块,以方便多媒体组件1008和处理组件1002之间的交互。
存储器1004被配置为存储各种类型的数据以支持在设备1000的操作。这些数据的示例包括用于在装置1000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1006为装置1000的各种组件提供电力。电源组件1006可以包括电源管理系统,一个或多个电源,及其他与为装置1000生成、管理和分配电力相关联的组件。
多媒体组件1008包括在装置1000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1008包括一个前置摄像头和/或后置摄像头。当设备1000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1010被配置为输出和/或输入音频信号。例如,音频组件1010包括一个麦克风(MIC),当装置1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1004或经由通信组件1016发送。在一些实施例中,音频组件1010还包括一个扬声器,用于输出音频信号。
I/O接口1012为处理组件1002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1014包括一个或多个传感器,用于为装置1000提供各个方面的状态评估。例如,传感器组件1014可以检测到设备1000的打开/关闭状态,组件的相对定位,例如组件 为装置1000的显示器和小键盘,传感器组件1014还可以检测装置1000或装置1000一个组件的位置改变,用户与装置1000接触的存在或不存在,装置1000方位或加速/减速和装置1000的温度变化。传感器组件1014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1016被配置为便于装置1000和其他设备之间有线或无线方式的通信。装置1000可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件1016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信部件1016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1004,上述指令可由装置1000的处理器1020执行以完成上述获取RMSI的CORESET时频资源位置的方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图11是根据一示例性实施例示出的另一种适用于指示RMSI的CORESET时频资源位置的装置的框图。装置1100可以被提供为一基站。参照图11,装置1100包括处理组件1122、无线发射/接收组件1124、天线组件1126、以及无线接口特有的信号处理部分,处理组件1122可进一步包括一个或多个处理器。
处理组件1122中的其中一个处理器可以被配置为:
为RMSI的CORESET配置时域信息和频域信息;
向用户设备UE发送同步信号,同步信号对应的同步信号块的物理广播信道PBCH中携带RMSI的CORESET对应的时域信息和频域信息,以用于UE根据RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,上述指 令可由装置1100的处理组件1122执行以完成上述指示RMSI的CORESET时频资源位置的方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (18)

  1. 一种获取剩余关键系统信息RMSI的公共控制资源集CORESET时频资源位置的方法,其特征在于,应用于用户设备,所述方法包括:
    接收基站发送的同步信号,确定所述同步信号对应的同步信号块;
    获取所述同步信号块的物理广播信道PBCH,所述PBCH中携带RMSI的CORESET对应的时域信息和频域信息;
    根据所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
  2. 根据权利要求1所述的方法,其特征在于,所述时域信息包括窗口信息和时域符号值,所述根据所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置,包括:
    根据所述RMSI的CORESET对应的窗口信息,确定所述RMSI的CORESET对应的窗口;
    根据所述RMSI的CORESET对应的频域信息和时域符号值在所述窗口内进行盲检,得到对应RMSI的CORESET时频资源位置。
  3. 根据权利要求2所述的方法,其特征在于,所述RMSI的CORESET对应的窗口信息包括所述RMSI与对应同步信号块的时间差和窗口长度,所述RMSI的CORESET对应的频域信息包括所述RMSI的对应同步信号块的物理资源块PRB数。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述RMSI的CORESET对应的窗口信息,确定所述RMSI的CORESET对应的窗口,包括:
    根据所述RMSI与对应同步信号块的时间差以及对应同步信号块的发送时间确定所述窗口的起始时间;
    将所述RMSI的对应同步信号块与下一个同步信号块的时间间隔和所述窗口长度的最小值确定为所述窗口的最终窗口长度;
    根据所述窗口的起始时间和所述窗口的最终窗口长度,确定所述RMSI的CORESET对应的窗口。
  5. 一种指示剩余关键系统信息RMSI的公共控制资源集CORESET时频资源位置的方法,其特征在于,应用于基站,所述方法包括:
    为RMSI的CORESET配置时域信息和频域信息;
    向用户设备UE发送同步信号,所述同步信号对应的同步信号块的物理广播信道PBCH 中携带RMSI的CORESET对应的时域信息和频域信息,以用于所述UE根据所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
  6. 根据权利要求5所述的方法,其特征在于,所述RMSI的CORESET对应的时域信息包括窗口信息和时域符号值。
  7. 根据权利要求6所述的方法,其特征在于,所述窗口信息包括所述RMSI与对应同步信号块的时间差和窗口长度,所述RMSI的CORESET对应的频域信息包括所述RMSI的对应同步信号块的PRB数。
  8. 一种获取剩余关键系统信息RMSI的公共控制资源集CORESET时频资源位置的装置,其特征在于,应用于用户设备,所述装置包括:
    接收确定模块,被配置为接收基站发送的同步信号,确定所述同步信号对应的同步信号块;
    第一获取模块,被配置为获取所述接收确定模块确定的所述同步信号块的物理广播信道PBCH,所述PBCH中携带RMSI的CORESET对应的时域信息和频域信息;
    第二获取模块,被配置为根据所述第一获取模块获取的PBCH中携带的所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
  9. 根据权利要求8所述的装置,其特征在于,所述时域信息包括窗口信息和时域符号值,所述第二获取模块包括:
    窗口确定子模块,被配置为根据所述RMSI的CORESET对应的窗口信息,确定所述RMSI的CORESET对应的窗口;
    盲检子模块,被配置为根据所述RMSI的CORESET对应的频域信息和时域符号值在所述窗口确定子模块确定的所述窗口内进行盲检,得到对应RMSI的CORESET时频资源位置。
  10. 根据权利要求9所述的装置,其特征在于,所述RMSI的CORESET对应的窗口信息包括所述RMSI与对应同步信号块的时间差和窗口长度,所述RMSI的CORESET对应的频域信息包括所述RMSI的对应同步信号块的物理资源块PRB数。
  11. 根据权利要求10所述的装置,其特征在于,所述窗口确定子模块包括:
    第一确定单元,被配置为根据所述RMSI与对应同步信号块的时间差以及对应同步信号块的发送时间确定所述窗口的起始时间;
    第二确定单元,被配置为将所述RMSI的对应同步信号块与下一个同步信号块的时间间隔和所述窗口长度的最小值确定为所述窗口的最终窗口长度;
    第三确定单元,被配置为根据所述第一确定单元确定的所述窗口的起始时间和所述第二 确定单元确定的所述窗口的最终窗口长度,确定所述RMSI的CORESET对应的窗口。
  12. 一种指示剩余关键系统信息RMSI的公共控制资源集CORESET时频资源位置的装置,其特征在于,应用于基站,所述装置包括:
    配置模块,被配置为为RMSI的CORESET配置时域信息和频域信息;
    发送模块,被配置为向用户设备UE发送同步信号,所述同步信号对应的同步信号块的物理广播信道PBCH中携带所述配置模块配置的所述RMSI的CORESET对应的时域信息和频域信息,以用于所述UE根据所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
  13. 根据权利要求12所述的装置,其特征在于,所述RMSI的CORESET对应的时域信息包括窗口信息和时域符号值。
  14. 根据权利要求13所述的装置,其特征在于,所述窗口信息包括所述RMSI与对应同步信号块的时间差和窗口长度,所述RMSI的CORESET对应的频域信息包括所述RMSI的对应同步信号块的PRB数。
  15. 一种用户设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收基站发送的同步信号,确定所述同步信号对应的同步信号块;
    获取所述同步信号块的物理广播信道PBCH,所述PBCH中携带RMSI的CORESET对应的时域信息和频域信息;
    根据所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
  16. 一种基站,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    为RMSI的CORESET配置时域信息和频域信息;
    向用户设备UE发送同步信号,所述同步信号对应的同步信号块的物理广播信道PBCH中携带RMSI的CORESET对应的时域信息和频域信息,以用于所述UE根据所述RMSI的CORESET对应的时域信息和频域信息,获取对应RMSI的CORESET时频资源位置。
  17. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1所述获取RMSI的CORESET时频资源位置的方法的步骤。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求5所述指示RMSI的CORESET时频资源位置的方法的步骤。
PCT/CN2017/096018 2017-08-04 2017-08-04 获取剩余关键系统信息的公共控制资源集时频资源位置的方法 WO2019024087A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780000821.7A CN108401527B (zh) 2017-08-04 2017-08-04 获取剩余关键系统信息的公共控制资源集时频资源位置的方法
PCT/CN2017/096018 WO2019024087A1 (zh) 2017-08-04 2017-08-04 获取剩余关键系统信息的公共控制资源集时频资源位置的方法
US16/636,336 US11159294B2 (en) 2017-08-04 2017-08-04 Method for obtaining time-frequency resource position of common control resource set of remaining system information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/096018 WO2019024087A1 (zh) 2017-08-04 2017-08-04 获取剩余关键系统信息的公共控制资源集时频资源位置的方法

Publications (1)

Publication Number Publication Date
WO2019024087A1 true WO2019024087A1 (zh) 2019-02-07

Family

ID=63095026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096018 WO2019024087A1 (zh) 2017-08-04 2017-08-04 获取剩余关键系统信息的公共控制资源集时频资源位置的方法

Country Status (3)

Country Link
US (1) US11159294B2 (zh)
CN (1) CN108401527B (zh)
WO (1) WO2019024087A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11758490B2 (en) * 2017-10-20 2023-09-12 Vivo Mobile Communication Co., Ltd. Processing method of synchronization indication information and device, indicating method of synchronization signal block and device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11184788B2 (en) * 2017-04-12 2021-11-23 Htc Corporation Device and method of handling a measurement gap in a wireless communication system
BR112019025111A2 (pt) * 2017-08-11 2020-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Estação base e método relacionado, dispositivo terminal e método relacionado e meio de armazenamento legível por computador
WO2019061354A1 (zh) * 2017-09-29 2019-04-04 Oppo广东移动通信有限公司 无线通信方法和设备
CN109787732B (zh) * 2017-11-14 2020-10-20 电信科学技术研究院 一种资源配置方法及装置、计算机存储介质
WO2019095321A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种通信方法及装置
CN109803402B (zh) 2017-11-17 2023-11-24 中兴通讯股份有限公司 信息发送、接收方法及装置
US11457472B2 (en) * 2017-12-18 2022-09-27 Samsung Electronics Co., Ltd. Method and apparatus for initial access block on stand-alone NR unlicensed spectrum
CN110149676B (zh) * 2018-02-11 2022-03-25 华为技术有限公司 一种选择驻留小区的方法及装置
WO2020061946A1 (zh) 2018-09-27 2020-04-02 Oppo广东移动通信有限公司 一种信息处理方法、设备及存储介质
CN110972238B (zh) * 2018-09-28 2021-06-22 华为技术有限公司 一种通信方法及装置
CN111294174B (zh) * 2019-01-11 2023-02-17 展讯通信(上海)有限公司 同步信号块的发送、接收方法及装置、存储介质、基站、用户终端
WO2021031002A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 用于指示控制信息的方法和装置
CN112788634B (zh) * 2019-11-01 2023-06-02 广州海格通信集团股份有限公司 通信系统、方法、装置、计算机设备和存储介质
EP4072214A4 (en) * 2019-12-31 2022-12-28 Huawei Technologies Co., Ltd. COMMUNICATION APPARATUS AND METHOD
JP7445024B2 (ja) * 2020-07-03 2024-03-06 北京小米移動軟件有限公司 リソース指示方法および装置、リソース決定方法および装置
US12068997B2 (en) * 2020-07-30 2024-08-20 Qualcomm Incorporated Frequency configuration for control resource set in non-terrestrial networks
CN113965975B (zh) * 2021-12-22 2022-03-15 中国移动通信有限公司研究院 信号处理方法、装置、通信设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101300802A (zh) * 2005-11-01 2008-11-05 诺基亚公司 用于多带宽ofdm系统的信号布置
CN101395830A (zh) * 2006-01-18 2009-03-25 株式会社Ntt都科摩 发送装置、接收装置以及通信方法
US20100124919A1 (en) * 2008-11-18 2010-05-20 Samsung Electronics Co. Ltd. Apparatus and method for receiving system information in mobile communication terminal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565390B (zh) * 2016-07-21 2021-10-22 Lg 电子株式会社 在无线通信系统中发送或者接收下行链路控制信息的方法及其设备
US11128511B2 (en) * 2017-04-27 2021-09-21 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, communication method, and integrated circuit
CN108809602B (zh) * 2017-05-05 2022-06-03 北京三星通信技术研究有限公司 基站、终端及随机接入前导检测、随机接入信道配置方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101300802A (zh) * 2005-11-01 2008-11-05 诺基亚公司 用于多带宽ofdm系统的信号布置
CN101395830A (zh) * 2006-01-18 2009-03-25 株式会社Ntt都科摩 发送装置、接收装置以及通信方法
US20100124919A1 (en) * 2008-11-18 2010-05-20 Samsung Electronics Co. Ltd. Apparatus and method for receiving system information in mobile communication terminal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Details on NR PBCH design", 3GPP TSG RAN WG1 MEETING RANI #89, RL-1707339, 19 May 2017 (2017-05-19), pages 1 - 3, XP051262999 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11758490B2 (en) * 2017-10-20 2023-09-12 Vivo Mobile Communication Co., Ltd. Processing method of synchronization indication information and device, indicating method of synchronization signal block and device

Also Published As

Publication number Publication date
CN108401527A (zh) 2018-08-14
CN108401527B (zh) 2021-11-23
US20200162222A1 (en) 2020-05-21
US11159294B2 (en) 2021-10-26

Similar Documents

Publication Publication Date Title
CN108401527B (zh) 获取剩余关键系统信息的公共控制资源集时频资源位置的方法
US11469962B2 (en) Method and apparatus for configuring information of indicating time-frequency position of SSB, and method and apparatus for determining time-frequency position of SSB
US11057853B2 (en) Methods and apparatus for indicating and determining synchronization block, and base station and user equipment
CN108064466B (zh) 剩余关键系统信息的公共控制资源集合的周期信息指示方法
JP7510492B2 (ja) 残りの最小システム情報の共通制御リソースセットの周波数領域情報を示すための方法
WO2018141134A1 (zh) 关于网络切片的接入方法及装置
WO2019084879A1 (zh) 剩余关键系统信息的公共资源集合的查找方法及装置
WO2019100402A1 (zh) 信息指示方法及装置、基站和用户设备
WO2020143707A1 (zh) 一种上行传输资源选择方法、终端和存储介质
WO2018201469A1 (zh) 信号传输方法、装置、电子设备和计算机可读存储介质
EP3592086A1 (en) Method and apparatus for service multiplexing and transmission, and computer-readable storage medium
WO2018195863A1 (zh) 系统信息的传输方法、装置及计算机可读存储介质
WO2019210468A1 (zh) 同步广播块的发送、解调方法及装置、基站和用户设备
WO2019024084A1 (zh) 数据传输方法、装置以及计算机可读存储介质
WO2019024037A1 (zh) 指示多业务数据复用传输的方法及装置、终端和基站
WO2018201439A1 (zh) 随机接入方法及装置、用户设备和计算机可读存储介质
WO2019095183A1 (zh) 剩余关键系统信息的公共控制资源集合的时域信息指示方法
WO2019127250A1 (zh) 数据传输方法、装置、系统及计算机可读存储介质
WO2019210488A1 (zh) 信息发送方法及装置、基站和用户设备
WO2018227599A1 (zh) 信号传输方法和信号传输装置
WO2018205227A1 (zh) 用于发送和接收系统消息的方法、装置、用户设备及基站
WO2019144388A1 (zh) 信息指示方法及装置、基站和用户设备
CN108401482B (zh) 数据传输方法和装置
US11160042B2 (en) Information determining method and apparatus, electronic device, and computer readable storage medium
WO2018214169A1 (zh) 移动性测量的方法、装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920088

Country of ref document: EP

Kind code of ref document: A1