WO2018201439A1 - 随机接入方法及装置、用户设备和计算机可读存储介质 - Google Patents
随机接入方法及装置、用户设备和计算机可读存储介质 Download PDFInfo
- Publication number
- WO2018201439A1 WO2018201439A1 PCT/CN2017/083186 CN2017083186W WO2018201439A1 WO 2018201439 A1 WO2018201439 A1 WO 2018201439A1 CN 2017083186 W CN2017083186 W CN 2017083186W WO 2018201439 A1 WO2018201439 A1 WO 2018201439A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- preamble sequence
- random access
- policy
- base station
- sequence code
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000004044 response Effects 0.000 claims description 62
- 238000005259 measurement Methods 0.000 claims description 30
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims description 2
- 238000004891 communication Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/006—Transmission of channel access control information in the downlink, i.e. towards the terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/30—Transmission power control [TPC] using constraints in the total amount of available transmission power
- H04W52/32—TPC of broadcast or control channels
- H04W52/325—Power control of control or pilot channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/004—Transmission of channel access control information in the uplink, i.e. towards network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0866—Non-scheduled access, e.g. ALOHA using a dedicated channel for access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/38—TPC being performed in particular situations
- H04W52/48—TPC being performed in particular situations during retransmission after error or non-acknowledgment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/38—TPC being performed in particular situations
- H04W52/50—TPC being performed in particular situations at the moment of starting communication in a multiple access environment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
Definitions
- the present disclosure relates to the field of communications technologies, and in particular, to a random access method and apparatus, a user equipment, and a computer readable storage medium.
- the random access procedure is based on omnidirectional transmission of uplink and downlink signals, and the user equipment (UE) only needs to select appropriate resources according to system information, and in this resource.
- a preamble is randomly selected to initiate random access.
- the present application discloses a random access method and apparatus, device, and computer readable storage medium to solve the configuration requirements and access requirements of a system with a high frequency range.
- a random access method comprising:
- the uplink physical random access channel PRACH resource corresponding to the adopted policy includes: a first beam and a preamble sequence code resource set;
- the uplink physical random access channel PRACH resource corresponding to the adopted policy includes: a first beam, a second beam, and a preamble sequence code resource set;
- the first beam and the second beam are adjacent to each other and each corresponds to a beam of a downlink signal synchronization block.
- the sending the preamble sequence to the base station based on the determined uplink PRACH resource includes:
- the adopted policy is the first policy, selecting a preamble sequence code from the set of preamble sequence code resources, and Transmitting, to the base station, a preamble sequence corresponding to the preamble sequence code on the first beam;
- the adopted policy is the second policy
- selecting a preamble sequence code from the set of preamble sequence code resources and transmitting the preamble to the base station on the first beam and the second beam respectively The preamble sequence corresponding to the sequence code.
- the preamble sequence code resource set includes a first preamble sequence code resource set and a second preamble sequence code resource set;
- the sending the preamble sequence to the base station based on the determined uplink PRACH resource includes:
- the method further includes:
- the adopted policy is the first policy
- the adopted policy is the second policy
- the random access response message is not received, increasing the transmit power of the first beam and the second beam, and respectively increasing the transmit power
- the preamble sequence is transmitted to the base station on a beam and a second beam.
- the method further includes:
- the preamble sequence After transmitting the preamble sequence to the base station on the third beam, if the random access response message is still not received, increasing the transmit power of the first beam and increasing the transmit power The preamble sequence is transmitted to the base station on the subsequent first beam.
- the method further includes:
- the preamble sequence is sent to the base station on the first beam after the transmit power is increased, if the random access response message is still not received, the transmit power of the fourth beam is increased, and The preamble sequence is sent to the base station on a fourth beam after the transmit power is increased, and the fourth beam is different from the first beam.
- the method further includes:
- the preamble sequence is sent to the base station on the first beam and the second beam respectively, if two random access response messages are received, the two random access responses are obtained.
- the power measurement of the message
- a random access device comprising:
- the first determining module is configured to determine, according to the received configuration information, a policy adopted by the current UE for random access, where the configuration information includes different policies for indicating random access;
- a second determining module configured to determine an uplink physical random access channel PRACH resource corresponding to the adopted policy determined by the first determining module
- a sending module configured to send a preamble sequence to the base station according to the uplink PRACH resource determined by the second determining module.
- the uplink physical random access channel PRACH resource corresponding to the adopted policy includes: a first beam and a preamble sequence code resource set;
- the uplink physical random access channel PRACH resource corresponding to the adopted policy includes: a first beam, a second beam, and a preamble sequence code resource set;
- the first beam and the second beam are adjacent to each other and each corresponds to a beam of a downlink signal synchronization block.
- the sending module includes:
- a first sending submodule configured to: when the adopted policy is the first policy, select a preamble sequence code from the set of preamble sequence code resources, and send the same to the base station on the first beam a preamble sequence corresponding to the preamble sequence code;
- a second sending submodule configured to: when the adopted policy is the second policy, select a preamble sequence code from the set of preamble sequence code resources, and respectively on the first beam and the second beam And transmitting, to the base station, a preamble sequence corresponding to the preamble sequence code.
- the preamble sequence code resource set includes a first preamble sequence code resource set and a second preamble sequence code resource set;
- the sending module includes:
- a third sending submodule configured to select a first preamble sequence code from the first preamble sequence code resource set, and Transmitting, by the first beam, a first preamble sequence corresponding to the first preamble sequence code to the base station;
- a fourth sending submodule configured to select a second preamble sequence code from the second preamble sequence code resource set, and send, on the second beam, a second preamble sequence code corresponding to the second preamble sequence code Second preamble sequence.
- the first sending submodule is further configured to: when the adopted policy is the first policy, send a message to the base station on the third beam if the random access response message is not received. a preamble sequence, the third beam being different from the first beam;
- the second sending submodule is further configured to: when the adopted policy is the second policy, if the random access response message is not received, increase the transmit power of the first beam and the second beam, And transmitting the preamble sequence to the base station on the first beam and the second beam after the transmission power is increased respectively.
- the first sending submodule is further configured to: after the sending the preamble sequence to the base station on the third beam, if the random access response message is still not received, increase Transmitting the transmit power of the first beam and transmitting the preamble sequence to the base station on a first beam after the transmit power is increased.
- the first sending submodule is further configured to: after the transmitting the preamble sequence to the base station on the first beam after the transmit power is increased, if the a random access response message, the transmit power of the fourth beam is increased, and the preamble sequence is sent to the base station on a fourth beam after the transmit power is increased, where the fourth beam is different from the first beam .
- the apparatus further includes:
- An acquiring module configured to: after the second sending submodule sends the preamble sequence to the base station on the first beam and the second beam, respectively, if two random access response messages are received And acquiring power measurement values of the two random access response messages;
- Determining the drop sending module configured to determine a beam corresponding to the random access response message with a large power measurement value obtained by the acquiring module, discarding a random access response message with a small power measurement value, and transmitting the random access response message to the base station on the determined beam Send a connection establishment request.
- a user equipment including:
- a memory for storing processor executable instructions
- processor is configured to:
- a computer readable storage medium having stored thereon a computer program (instruction) that, when executed by a processor, implements the steps of the above method.
- the user equipment can determine the policy adopted by the random access according to the received configuration information, and determine the uplink PRACH resource corresponding to the adopted policy, by including different policies for indicating random access in the configuration information. Then, the preamble sequence is sent to the base station based on the determined uplink PRACH resource, which satisfactorily solves the configuration requirements and access requirements of a system with a large frequency range.
- FIG. 1 is a flowchart of a random access method according to an exemplary embodiment of the present application.
- FIG. 3 is a flowchart of another random access method according to an exemplary embodiment of the present application.
- FIG. 4 is a block diagram of a random access device according to an exemplary embodiment
- FIG. 5 is a block diagram of a random access device according to an exemplary embodiment
- FIG. 6 is a block diagram of a random access device according to an exemplary embodiment
- FIG. 7 is a block diagram of a random access device according to an exemplary embodiment
- FIG. 8 is a block diagram of a device suitable for random access, according to an exemplary embodiment.
- the embodiment of the present disclosure includes a different policy for indicating random access in the configuration information, that is, a system with a relatively low frequency may adopt a first strategy, for a relatively high frequency.
- the system can adopt the second strategy (the low frequency and high frequency here are relative concepts, for example, 50 GHz is low frequency with respect to 60 GHz, but both belong to high frequency), so that the user equipment (UE) can determine itself according to the received configuration information.
- the strategy adopted by the random access is determined, and the uplink physical random access channel (PRACH) resource corresponding to the adopted policy is determined, and then the preamble sequence is sent to the base station based on the determined uplink PRACH resource.
- PRACH physical random access channel
- FIG. 1 is a flowchart of a random access method according to an exemplary embodiment of the present application. The embodiment is described from the UE side. As shown in FIG. 1 , the random access method includes:
- step S101 a policy adopted by the current UE for random access is determined according to the received configuration information, where the configuration information includes different policies for indicating random access.
- the different policies for indicating the random access may include the system working frequency band and the corresponding strategy used by the random access. For example, when the system working frequency band is 6-20 GHz, the strategy adopted by the random access is the first strategy, and the system works. When the frequency band is 20-60 GHz, the strategy adopted by the random access is the second strategy. Because the configuration information includes the system working frequency band and the corresponding strategy adopted by the random access, for a system with a high frequency range, the current UE's random access policy can be determined according to the working frequency band.
- the UE may receive the foregoing configuration information sent by the base station in advance.
- step S102 a PRACH resource corresponding to the adopted policy is determined.
- the uplink physical random access channel PRACH resource corresponding to the adopted policy may include: a first beam and a preamble sequence code resource set.
- the uplink physical random access channel PRACH resource corresponding to the adopted policy may include: a first beam, a second beam, and a preamble sequence code resource set, where the first beam and the second The beams are adjacent and each correspond to a beam of a downlink signal sync block.
- first policy and the second policy are used to indicate that the two are different policies.
- first beam and the second beam are used to indicate that the two are different beams and are adjacent to each other.
- step S103 a preamble sequence is sent to the base station based on the determined uplink PRACH resource.
- the UE may select a preamble sequence code from the preamble sequence code resource set. And transmitting a preamble sequence corresponding to the preamble sequence code to the base station on the first beam.
- the adopted policy is the second policy
- the UE may select a preamble sequence code from the preamble sequence code resource set, and send a preamble sequence corresponding to the preamble sequence code to the base station on the first beam and the second beam, respectively.
- the UE sends a preamble sequence.
- the UE sends a preamble sequence on two adjacent beams, that is, two preamble sequences are sent in total.
- the present disclosure can greatly improve the success rate of random access by transmitting two preamble sequences.
- the user equipment can determine the policy adopted by the user according to the received configuration information, and determine the policy corresponding to the adopted policy, by including different policies for indicating random access in the configuration information.
- the uplink PRACH resource is then sent to the base station based on the determined uplink PRACH resource, which well solves the configuration requirements and access requirements of a system with a high frequency range.
- FIG. 2 is a flowchart of another random access method according to an exemplary embodiment of the present application. As shown in FIG. 2, the random access method includes:
- step S200 a policy adopted by the current UE for random access is determined according to the received configuration information.
- step S201 it is determined whether the adopted policy is the first policy or the second policy. If the adopted policy is the first policy, step S202 is performed, and if the adopted policy is the second policy, step S203 is performed.
- step S202 it is determined that the uplink PRACH resource corresponding to the first policy includes the first beam and the preamble sequence code resource set, and step S204 is performed.
- step S203 it is determined that the uplink PRACH resource corresponding to the second policy includes the first beam, the second beam, and the preamble sequence code resource set, and step S205 is performed.
- step S204 a preamble sequence code is selected from the preamble sequence code resource set, and a preamble sequence corresponding to the preamble sequence code is transmitted to the base station on the first beam, and step S206 is performed.
- step S205 a preamble sequence code is selected from the preamble sequence code resource set, and a preamble sequence corresponding to the preamble sequence code is sent to the base station on the first beam and the second beam, respectively, and step S207 is performed.
- the preamble sequence code resource set may include a first preamble sequence code resource set and a second preamble sequence code resource set.
- the preamble sequence in addition to transmitting the preamble sequence in the manner shown in step S205, may also be sent in the following manner: selecting the first preamble sequence code from the first preamble sequence code resource set, and on the first beam Transmitting, to the base station, a first preamble sequence corresponding to the first preamble sequence code, and selecting a second preamble from the second preamble sequence code resource set The sequence code is guided, and a second preamble sequence corresponding to the second preamble sequence code is transmitted to the base station on the second beam.
- the received power of the first beam and the second beam can be measured before the preamble sequence is transmitted, if the received power of the first beam is greater than the received power of the second beam, the first preamble can be sent with a larger power on the first beam.
- the sequence transmits the second preamble sequence with a smaller power on the second beam to improve the current UE access success rate while reducing interference to random access of other UEs.
- step S206 if the random access response message is not received, the preamble sequence is transmitted to the base station on the third beam, and step S208 is performed.
- the third beam is different from the first beam. It should be noted that the third beam is used to indicate a beam different from the first beam, that is, any beam other than the first beam.
- step S207 if the random access response message is not received, the transmit powers of the first beam and the second beam are increased, and the preamble is sent to the base station on the first beam and the second beam after the transmit power is increased respectively. Sequence, the operation ends.
- step S208 if the random access response message has not been received, the transmit power of the first beam is increased, and the preamble sequence is sent to the base station on the first beam after the transmit power is increased.
- step S209 if the random access response message has not been received, the transmit power of the fourth beam is increased, and the preamble sequence is transmitted to the base station on the fourth beam after the transmit power is increased.
- the fourth beam is different from the first beam. It should be noted that the fourth beam is used to indicate a beam different from the first beam, that is, any beam other than the first beam.
- the UE After the UE fails to send the preamble sequence, the UE first performs beam adjustment. If the transmission fails, the UE upgrades the power of the original beam, that is, the first beam. If the transmission fails, the beam is replaced and the power is increased.
- FIG. 3 is a flowchart of another random access method according to an exemplary embodiment of the present application. As shown in FIG. 3, after the step S205, the random access method may further include:
- step S210 if two random access response messages are received, the power measurement values of the two random access response messages are acquired.
- step S211 a beam corresponding to the random access response message with a large power measurement value is determined, a random access response message with a small power measurement value is discarded, and a connection establishment request is sent to the base station on the determined beam.
- connection establishment request increases the random access success rate.
- the random access response message with a small power measurement value is discarded, and the connection establishment request is sent to the base station on the beam corresponding to the random access response message with a large power measurement value, thereby improving the random access success rate.
- FIG. 4 is a block diagram of a random access device according to an exemplary embodiment. As shown in FIG. 4, the device includes a first determining module 41, a second determining module 42, and a sending module 43.
- the first determining module 41 is configured to determine, according to the received configuration information, a policy adopted by the current UE for random access, where the configuration information includes different policies for indicating random access.
- the different policies for indicating the random access may include the system working frequency band and the corresponding strategy used by the random access. For example, when the system working frequency band is 6-20 GHz, the strategy adopted by the random access is the first strategy, and the system works. When the frequency band is 20-60 GHz, the strategy adopted by the random access is the second strategy. Because the configuration information includes the system working frequency band and the corresponding strategy adopted by the random access, for a system with a high frequency range, the current UE's random access policy can be determined according to the working frequency band.
- the second determining module 42 is configured to determine an uplink physical random access channel PRACH resource corresponding to the adopted policy determined by the first determining module 41.
- the uplink physical random access channel PRACH resource corresponding to the adopted policy may include: a first beam and a preamble sequence code resource set.
- the uplink physical random access channel PRACH resource corresponding to the adopted policy may include: a first beam, a second beam, and a preamble sequence code resource set, where the first beam and the second The beams are adjacent and each correspond to a beam of a downlink signal sync block.
- first policy and the second policy are used to indicate that the two are different policies.
- first beam and the second beam are used to indicate that the two are different beams and are adjacent to each other.
- the transmitting module 43 is configured to send a preamble sequence to the base station based on the uplink PRACH resources determined by the second determining module 42.
- the UE may select a preamble sequence code from the preamble sequence code resource set, and send a preamble sequence corresponding to the preamble sequence code to the base station on the first beam.
- the adopted strategy is the second strategy
- the UE may select a preamble sequence code from the set of preamble sequence code resources, and send a preamble sequence corresponding to the preamble sequence code to the base station on the first beam and the second beam, respectively.
- the UE sends a preamble sequence.
- the UE sends a preamble sequence on two adjacent beams, that is, two preamble sequences are sent in total.
- the present disclosure can greatly improve the success rate of random access by transmitting two preamble sequences.
- the device shown in FIG. 4 is used to implement the method flow shown in FIG. 1 , and the related content descriptions are the same, and are not described here.
- the user equipment can determine the policy adopted by the user according to the received configuration information, and determine the policy corresponding to the adopted policy, by including different policies for indicating random access in the configuration information.
- the uplink PRACH resource is then sent to the base station based on the determined uplink PRACH resource, which well solves the configuration requirements and access requirements of a system with a high frequency range.
- FIG. 5 is a block diagram of another random access device according to an exemplary embodiment.
- the sending module 43 may include: a first sending submodule. 431 and a second transmitting sub-module 432.
- the first sending submodule 431 is configured to select a preamble sequence code from the preamble sequence code resource set when the adopted policy is the first policy, and send a preamble sequence corresponding to the preamble sequence code to the base station on the first beam.
- the second sending submodule 432 is configured to: when the adopted policy is the second policy, select a preamble sequence code from the preamble sequence code resource set, and send the preamble sequence to the base station on the first beam and the second beam respectively The leading sequence corresponding to the code.
- the first sending submodule 431 may be further configured to: when the adopted policy is the first policy, send a preamble sequence to the base station on the third beam if the random access response message is not received, The third beam is different from the first beam.
- the second sending submodule 432 may be further configured to: when the adopted policy is the second policy, if the random access response message is not received, increase the transmit power of the first beam and the second beam, and respectively transmit power The increased first and second beams transmit a preamble sequence to the base station.
- the third beam is different from the first beam. It should be noted that the third beam is used to indicate a beam different from the first beam, that is, any beam other than the first beam.
- the first sending submodule 431 may be further configured to increase the transmission of the first beam after the preamble sequence is sent to the base station on the third beam, if the random access response message has not been received yet. Power and transmit power The preamble sequence is sent to the base station on the increased first beam.
- the first sending submodule 431 may be further configured to: after transmitting the preamble sequence to the base station on the first beam after the transmit power is increased, if the random access response message has not been received, increase The transmit power of the large fourth beam is transmitted to the base station on the fourth beam after the transmit power is increased, and the fourth beam is different from the first beam.
- the fourth beam is different from the first beam. It should be noted that the fourth beam is used to indicate a beam different from the first beam, that is, any beam other than the first beam.
- FIG. 6 is a block diagram of another random access device according to an exemplary embodiment.
- the preamble sequence code resource set may include a first preamble sequence.
- the sending module 43 may include: a third sending submodule 433 and a fourth sending submodule 434, when the adopted policy is the second policy.
- the third sending submodule 433 is configured to select a first preamble sequence code from the first preamble sequence code resource set, and send a first preamble sequence corresponding to the first preamble sequence code to the base station on the first beam.
- the fourth transmitting sub-module 434 is configured to select a second preamble sequence code from the second preamble sequence code resource set, and send a second preamble sequence corresponding to the second preamble sequence code to the base station on the second beam.
- the received power of the first beam and the second beam can be measured before the preamble sequence is transmitted, if the received power of the first beam is greater than the received power of the second beam, the first preamble can be sent with a larger power on the first beam.
- the sequence transmits the second preamble sequence with a smaller power on the second beam to improve the current UE access success rate while reducing interference to random access of other UEs.
- FIG. 7 is a block diagram of another random access device according to an exemplary embodiment. As shown in FIG. 7, on the basis of the foregoing embodiment shown in FIG. 5, the device may further include: an obtaining module 44 and determining The sending module 45 is discarded.
- the obtaining module 44 is configured to acquire two random access responses after receiving the preamble sequence on the first beam and the second beam on the first beam and the second beam respectively, if two random access response messages are received The power measurement of the message.
- Determining that the drop sending module 45 is configured to determine a random access response with a large power measurement value acquired by the obtaining module 44
- the beam corresponding to the message discards the random access response message with a small power measurement value, and sends a connection establishment request to the base station on the determined beam.
- the connection establishment request is sent to the base station, that is, only one connection establishment request is sent, thereby improving the random access success rate.
- the random access response message with a small power measurement value is discarded, and the connection establishment request is sent to the base station on the beam corresponding to the random access response message with a large power measurement value, thereby improving the random access success rate.
- FIG. 8 is a block diagram of a device suitable for random access, according to an exemplary embodiment.
- device 800 can be a user device such as a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
- device 800 can include one or more of the following components: processing component 802, memory 804, power component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814, And a communication component 816.
- Processing component 802 typically controls the overall operation of device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
- Processing component 802 can include one or more processors 820 to execute instructions to perform all or part of the steps of the above described methods.
- processing component 802 can include one or more modules to facilitate interaction between component 802 and other components.
- processing component 802 can include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
- Memory 804 is configured to store various types of data to support operation at device 800. Examples of such data include instructions for any application or method operating on device 800, contact data, phone book data, messages, pictures, videos, and the like.
- the memory 804 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
- SRAM static random access memory
- EEPROM electrically erasable programmable read only memory
- EPROM Electrically erasable programmable read only memory
- PROM Programmable Read Only Memory
- ROM Read Only Memory
- Magnetic Memory Flash Memory
- Disk Disk or Optical Disk.
- Power component 806 provides power to various components of device 800.
- Power component 806 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 800.
- the multimedia component 808 includes a screen between the device 800 and the user that provides an output interface.
- the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen It can be implemented as a touch screen to receive input signals from the user.
- the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor can sense not only the boundaries of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
- the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
- the audio component 810 is configured to output and/or input an audio signal.
- the audio component 810 includes a microphone (MIC) that is configured to receive an external audio signal when the device 800 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
- the received audio signal may be further stored in memory 804 or transmitted via communication component 816.
- the audio component 810 also includes a speaker for outputting an audio signal.
- the I/O interface 812 provides an interface between the processing component 802 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
- Sensor assembly 814 includes one or more sensors for providing device 800 with a status assessment of various aspects.
- sensor component 814 can detect an open/closed state of device 800, a relative positioning of components, such as a display and a keypad of device 800, and sensor component 814 can also detect a change in position of device 800 or a component of device 800, the user The presence or absence of contact with device 800, device 800 orientation or acceleration/deceleration and temperature variation of device 800.
- Sensor assembly 814 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
- Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
- the sensor assembly 814 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
- Communication component 816 is configured to facilitate wired or wireless communication between device 800 and other devices.
- the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
- the communication component 816 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
- communication component 816 also includes a near field communication (NFC) module to facilitate short range communication.
- NFC near field communication
- the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
- RFID radio frequency identification
- IrDA infrared data association
- UWB ultra-wideband
- Bluetooth Bluetooth
- device 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGA field programmable A gate array
- controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
- non-transitory computer readable storage medium comprising instructions, such as a memory 804 comprising instructions executable by processor 820 of apparatus 800 to perform the above method.
- the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
- the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
- the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开是关于一种随机接入方法及装置、用户设备和计算机可读存储介质。其中,随机接入方法包括:根据接收的配置信息确定当前UE随机接入所采用的策略,该配置信息中包含用于指示随机接入的不同策略;确定与所采用的策略对应的上行物理随机接入信道PRACH资源;基于所确定的上行PRACH资源向基站发送前导序列。本公开通过在配置信息中包含用于指示随机接入的不同策略,使得UE可以根据接收的配置信息确定自己随机接入所采用的策略,并确定与所采用的策略对应的上行PRACH资源,然后基于所确定的上行PRACH资源向基站发送前导序列,很好地解决了高频范围很大系统的配置需求和接入需求。
Description
本公开涉及通信技术领域,尤其涉及一种随机接入方法及装置、用户设备和计算机可读存储介质。
在第四代移动通信技术(4h Generation,简称4G)系统中,随机接入过程是基于全向发送上下行信号的,用户设备(UE)只需根据系统信息选择合适的资源,并在此资源上随机选择一个前导序列(preamble)发起随机接入。
但是,对于高频范围很大的系统,采用上述随机接入方式无法很好地满足接入需求。
发明内容
有鉴于此,本申请公开了一种随机接入方法及装置、设备、计算机可读存储介质,以解决高频范围很大系统的配置需求和接入需求。
根据本公开实施例的第一方面,提供一种随机接入方法,所述方法包括:
根据接收的配置信息确定当前UE随机接入所采用的策略,所述配置信息中包含用于指示随机接入的不同策略;
确定与所采用的策略对应的上行物理随机接入信道PRACH资源;
基于所确定的所述上行PRACH资源向基站发送前导序列。
在一实施例中,当所采用的策略为第一策略时,所述与所采用的策略对应的上行物理随机接入信道PRACH资源包括:第一波束和前导序列码资源集合;
当所采用的策略为第二策略时,所述与所采用的策略对应的上行物理随机接入信道PRACH资源包括:第一波束、第二波束和前导序列码资源集合;
其中,所述第一波束和所述第二波束相邻且均与下行信号同步块的波束相对应。
在一实施例中,所述基于所确定的所述上行PRACH资源向基站发送前导序列,包括:
当所采用的策略为第一策略时,从所述前导序列码资源集合中选择一个前导序列码,并
在所述第一波束上向所述基站发送与所述前导序列码对应的前导序列;
当所采用的策略为第二策略时,从所述前导序列码资源集合中选择一个前导序列码,并分别在所述第一波束上和所述第二波束上向所述基站发送与所述前导序列码对应的前导序列。
在一实施例中,所述前导序列码资源集合包括第一前导序列码资源集合和第二前导序列码资源集合;
当所采用的策略为第二策略时,所述基于所确定的所述上行PRACH资源向基站发送前导序列,包括:
从所述第一前导序列码资源集合中选择第一前导序列码,并在所述第一波束上向所述基站发送与所述第一前导序列码对应的第一前导序列;
从所述第二前导序列码资源集合中选择第二前导序列码,并在所述第二波束上向所述基站发送与所述第二前导序列码对应的第二前导序列。
在一实施例中,所述方法还包括:
当所采用的策略为所述第一策略时,若未接收到随机接入响应消息,则在第三波束上向所述基站发送所述前导序列,所述第三波束与所述第一波束不同;
当所采用的策略为所述第二策略时,若未接收到随机接入响应消息,则增大所述第一波束和所述第二波束的发射功率,并分别在发射功率增大后的第一波束和第二波束上向所述基站发送所述前导序列。
在一实施例中,所述方法还包括:
在所述在第三波束上向所述基站发送所述前导序列之后,若仍未接收到所述随机接入响应消息,则增大所述第一波束的发射功率,并在发射功率增大后的第一波束上向所述基站发送所述前导序列。
在一实施例中,所述方法还包括:
在所述在发射功率增大后的第一波束上向所述基站发送所述前导序列之后,若仍未接收到所述随机接入响应消息,则增大第四波束的发射功率,并在发射功率增大后的第四波束上向所述基站发送所述前导序列,所述第四波束与所述第一波束不同。
在一实施例中,所述方法还包括:
在所述分别在所述第一波束上和所述第二波束上向所述基站发送所述前导序列之后,若接收到两个随机接入响应消息,则获取所述两个随机接入响应消息的功率测量值;
确定功率测量值大的随机接入响应消息对应的波束,丢弃功率测量值小的随机接入响应消息,并在所确定的波束上向基站发送连接建立请求。
根据本公开实施例的第二方面,提供一种随机接入装置,所述装置包括:
第一确定模块,被配置为根据接收的配置信息确定当前UE随机接入所采用的策略,所述配置信息中包含用于指示随机接入的不同策略;
第二确定模块,被配置为确定与所述第一确定模块确定的所采用的策略对应的上行物理随机接入信道PRACH资源;
发送模块,被配置为基于所述第二确定模块所确定的所述上行PRACH资源向基站发送前导序列。
在一实施例中,当所采用的策略为第一策略时,所述与所采用的策略对应的上行物理随机接入信道PRACH资源包括:第一波束和前导序列码资源集合;
当所采用的策略为第二策略时,所述与所采用的策略对应的上行物理随机接入信道PRACH资源包括:第一波束、第二波束和前导序列码资源集合;
其中,所述第一波束和所述第二波束相邻且均与下行信号同步块的波束相对应。
在一实施例中,所述发送模块包括:
第一发送子模块,被配置为当所采用的策略为第一策略时,从所述前导序列码资源集合中选择一个前导序列码,并在所述第一波束上向所述基站发送与所述前导序列码对应的前导序列;
第二发送子模块,被配置为当所采用的策略为第二策略时,从所述前导序列码资源集合中选择一个前导序列码,并分别在所述第一波束上和所述第二波束上向所述基站发送与所述前导序列码对应的前导序列。
在一实施例中,所述前导序列码资源集合包括第一前导序列码资源集合和第二前导序列码资源集合;
当所采用的策略为第二策略时,所述发送模块包括:
第三发送子模块,被配置为从所述第一前导序列码资源集合中选择第一前导序列码,并
在所述第一波束上向所述基站发送与所述第一前导序列码对应的第一前导序列;
第四发送子模块,被配置为从所述第二前导序列码资源集合中选择第二前导序列码,并在所述第二波束上向所述基站发送与所述第二前导序列码对应的第二前导序列。
在一实施例中,第一发送子模块,还被配置为当所采用的策略为所述第一策略时,若未接收到随机接入响应消息,则在第三波束上向所述基站发送所述前导序列,所述第三波束与所述第一波束不同;
第二发送子模块,还被配置为当所采用的策略为所述第二策略时,若未接收到随机接入响应消息,则增大所述第一波束和所述第二波束的发射功率,并分别在发射功率增大后的第一波束和第二波束上向所述基站发送所述前导序列。
在一实施例中,第一发送子模块,还被配置为在所述在第三波束上向所述基站发送所述前导序列之后,若仍未接收到所述随机接入响应消息,则增大所述第一波束的发射功率,并在发射功率增大后的第一波束上向所述基站发送所述前导序列。
在一实施例中,所述第一发送子模块,还被配置为在所述在发射功率增大后的第一波束上向所述基站发送所述前导序列之后,若仍未接收到所述随机接入响应消息,则增大第四波束的发射功率,并在发射功率增大后的第四波束上向所述基站发送所述前导序列,所述第四波束与所述第一波束不同。
在一实施例中,所述装置还包括:
获取模块,被配置为在所述第二发送子模块分别在所述第一波束上和所述第二波束上向所述基站发送所述前导序列之后,若接收到两个随机接入响应消息,则获取所述两个随机接入响应消息的功率测量值;
确定丢弃发送模块,被配置为确定所述获取模块获取的功率测量值大的随机接入响应消息对应的波束,丢弃功率测量值小的随机接入响应消息,并在所确定的波束上向基站发送连接建立请求。
根据本公开实施例的第三方面,提供一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
根据接收的配置信息确定当前UE随机接入所采用的策略,所述配置信息中包含用于指示
随机接入的不同策略;
确定与所采用的策略对应的上行物理随机接入信道PRACH资源;
基于所确定的所述上行PRACH资源向基站发送前导序列。
根据本公开实施例的第四方面,提供一种计算机可读存储介质,其上存储有计算机程序(指令),该程序(指令)被处理器执行时实现上述方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过在配置信息中包含用于指示随机接入的不同策略,使得用户设备(UE)可以根据接收的配置信息确定自己随机接入所采用的策略,并确定与所采用的策略对应的上行PRACH资源,然后基于所确定的上行PRACH资源向基站发送前导序列,很好地解决了高频范围很大系统的配置需求和接入需求。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
图1是本申请一示例性实施例示出的一种随机接入方法的流程图;
图2是本申请一示例性实施例示出的另一种随机接入方法的流程图;
图3是本申请一示例性实施例示出的另一种随机接入方法的流程图;
图4是根据一示例性实施例示出的一种随机接入装置的框图;
图5是根据一示例性实施例示出的一种随机接入装置的框图;
图6是根据一示例性实施例示出的一种随机接入装置的框图;
图7是根据一示例性实施例示出的一种随机接入装置的框图;
图8是根据一示例性实施例示出的一种适用于随机接入装置的框图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,
都属于本申请保护的范围。
为了解决高频范围很大系统的接入需求,本公开实施例通过在配置信息中包含用于指示随机接入的不同策略,即对于相对低频的系统可以采用第一策略,对于相对高频的系统可以采用第二策略(此处的低频和高频是相对概念,例如50GHZ相对于60GHZ是低频,但二者均属于高频),从而使得用户设备(UE)可以根据接收的配置信息确定自己随机接入所采用的策略,并确定与所采用的策略对应的上行物理随机接入信道(PRACH)资源,然后基于所确定的上行PRACH资源向基站发送前导序列。下面将结合实施例进行详细描述。
图1是本申请一示例性实施例示出的一种随机接入方法的流程图,该实施例从UE侧进行描述,如图1所示,该随机接入方法包括:
在步骤S101中,根据接收的配置信息确定当前UE随机接入所采用的策略,该配置信息中包含用于指示随机接入的不同策略。
其中,指示随机接入的不同策略可以包括系统工作频段及随机接入所对应采用的策略,例如,系统工作频段为6-20GHZ时,随机接入所对应采用的策略为第一策略,系统工作频段为20-60GHZ时,随机接入所对应采用的策略为第二策略。由于配置信息中包含系统工作频段及随机接入所对应采用的策略,因此,对于高频范围很大的系统,可以根据其工作频段来确定当前UE随机接入所采用的策略。
上述6-20GHZ、20-60GHZ仅为举例,在实际应用中可以根据需要灵活设置不同策略对应的工作频段。
另外,在执行上述步骤S101之前,UE可以预先接收基站发送的上述配置信息。
在步骤S102中,确定与所采用的策略对应的PRACH资源。
当所采用的策略为第一策略时,与所采用的策略对应的上行物理随机接入信道PRACH资源可以包括:第一波束和前导序列码资源集合。当所采用的策略为第二策略时,与所采用的策略对应的上行物理随机接入信道PRACH资源可以包括:第一波束、第二波束和前导序列码资源集合,其中,第一波束和第二波束相邻且均与下行信号同步块的波束相对应。
需要说明的是,上述第一策略和第二策略用于表示二者是不同的策略,类似地,第一波束和第二波束用于表示二者是不同的波束且二者相邻。
在步骤S103中,基于所确定的上行PRACH资源向基站发送前导序列。
当所采用的策略为第一策略时,UE可以从前导序列码资源集合中选择一个前导序列码,
并在第一波束上向基站发送与前导序列码对应的前导序列。当所采用的策略为第二策略时,UE可以从前导序列码资源集合中选择一个前导序列码,并分别在第一波束上和第二波束上向基站发送与前导序列码对应的前导序列。
由此可见,对于第一策略,UE发送了一个前导序列,对于第二策略,UE在两个相邻的波束上分别发送了一个前导序列,即共发送了两个前导序列。由于系统工作频率越高,信号衰减越大,随机接入成功率越低,而本公开通过发送两个前导序列的方式可以大大提高随机接入的成功率。
上述实施例,通过在配置信息中包含用于指示随机接入的不同策略,使得用户设备(UE)可以根据接收的配置信息确定自己随机接入所采用的策略,并确定与所采用的策略对应的上行PRACH资源,然后基于所确定的上行PRACH资源向基站发送前导序列,很好地解决了高频范围很大系统的配置需求和接入需求。
图2是本申请一示例性实施例示出的另一种随机接入方法的流程图,如图2所示,该随机接入方法包括:
在步骤S200中,根据接收的配置信息确定当前UE随机接入所采用的策略。
在步骤S201中,判断所采用的策略为第一策略还是第二策略,若所采用的策略为第一策略,则执行步骤S202,若所采用的策略为第二策略,则执行步骤S203。
在步骤S202中,确定与第一策略对应的上行PRACH资源包括第一波束和前导序列码资源集合,并执行步骤S204。
在步骤S203中,确定与第二策略对应的上行PRACH资源包括第一波束、第二波束和前导序列码资源集合,并执行步骤S205。
在步骤S204中,从前导序列码资源集合中选择一个前导序列码,并在第一波束上向基站发送与前导序列码对应的前导序列,并执行步骤S206。
在步骤S205中,从前导序列码资源集合中选择一个前导序列码,并分别在第一波束上和第二波束上向基站发送与前导序列码对应的前导序列,并执行步骤S207。
其中,前导序列码资源集合可以包括第一前导序列码资源集合和第二前导序列码资源集合。在该实施例中,除了可以通过步骤S205所示的方式发送前导序列,还可以采用以下方式发送前导序列:从第一前导序列码资源集合中选择第一前导序列码,并在第一波束上向基站发送与第一前导序列码对应的第一前导序列,以及从第二前导序列码资源集合中选择第二前
导序列码,并在第二波束上向基站发送与第二前导序列码对应的第二前导序列。
由于在发送前导序列之前可以测量上述第一波束和第二波束的接收功率,假设第一波束的接收功率大于第二波束的接收功率,则可以在第一波束上以较大功率发送第一前导序列,在第二波束上以较小功率发送第二前导序列,以达到提高当前UE接入成功率的同时减少对其他UE随机接入的干扰。
在步骤S206中,若未接收到随机接入响应消息,则在第三波束上向基站发送前导序列,并执行步骤S208。
其中,第三波束与第一波束不同,需要说明的是,第三波束用于表示与第一波束不同的波束,即可以为除第一波束之外的任意波束。
在步骤S207中,若未接收到随机接入响应消息,则增大第一波束和第二波束的发射功率,并分别在发射功率增大后的第一波束和第二波束上向基站发送前导序列,操作结束。
在步骤S208中,若仍未接收到随机接入响应消息,则增大第一波束的发射功率,并在发射功率增大后的第一波束上向基站发送前导序列。
在步骤S209中,若仍未接收到随机接入响应消息,则增大第四波束的发射功率,并在发射功率增大后的第四波束上向基站发送前导序列。
第四波束与第一波束不同,需要说明的是,第四波束用于表示与第一波束不同的波束,即可以为除第一波束之外的任意波束。
UE在前导序列发送失败后,首先进行波束调整,如果仍然发送失败,则对原波束即第一波束进行功率提升,如果还是发送失败,则再更换波束且同时提升功率。
上述实施例,通过描述UE在不同策略下的随机接入过程,很好地解决了高频范围很大系统的接入需求。
图3是本申请一示例性实施例示出的另一种随机接入方法的流程图,如图3所示,在上述步骤S205之后,该随机接入方法还可以包括:
在步骤S210中,若接收到两个随机接入响应消息,则获取两个随机接入响应消息的功率测量值。
在步骤S211中,确定功率测量值大的随机接入响应消息对应的波束,丢弃功率测量值小的随机接入响应消息,并在所确定的波束上向基站发送连接建立请求。
在该实施例中,在获取两个随机接入响应消息的功率测量值后,通过比较两个随机接
入响应消息的功率测量值的大小,并丢弃功率测量值小的随机接入响应消息,而在功率测量值大的随机接入响应消息对应的波束上向基站发送连接建立请求,即只发送一个连接建立请求,从而提高随机接入成功率。
上述实施例,通过丢弃功率测量值小的随机接入响应消息,而在功率测量值大的随机接入响应消息对应的波束上向基站发送连接建立请求,从而提高随机接入成功率。
图4是根据一示例性实施例示出的一种随机接入装置的框图,如图4所示,该装置包括:第一确定模块41、第二确定模块42和发送模块43。
第一确定模块41被配置为根据接收的配置信息确定当前UE随机接入所采用的策略,配置信息中包含用于指示随机接入的不同策略。
其中,指示随机接入的不同策略可以包括系统工作频段及随机接入所对应采用的策略,例如,系统工作频段为6-20GHZ时,随机接入所对应采用的策略为第一策略,系统工作频段为20-60GHZ时,随机接入所对应采用的策略为第二策略。由于配置信息中包含系统工作频段及随机接入所对应采用的策略,因此,对于高频范围很大的系统,可以根据其工作频段来确定当前UE随机接入所采用的策略。
上述6-20GHZ、20-60GHZ仅为举例,在实际应用中可以根据需要灵活设置不同策略对应的工作频段。
第二确定模块42被配置为确定与第一确定模块41确定的所采用的策略对应的上行物理随机接入信道PRACH资源。
当所采用的策略为第一策略时,与所采用的策略对应的上行物理随机接入信道PRACH资源可以包括:第一波束和前导序列码资源集合。当所采用的策略为第二策略时,与所采用的策略对应的上行物理随机接入信道PRACH资源可以包括:第一波束、第二波束和前导序列码资源集合,其中,第一波束和第二波束相邻且均与下行信号同步块的波束相对应。
需要说明的是,上述第一策略和第二策略用于表示二者是不同的策略,类似地,第一波束和第二波束用于表示二者是不同的波束且二者相邻。
发送模块43被配置为基于第二确定模块42所确定的上行PRACH资源向基站发送前导序列。
当所采用的策略为第一策略时,UE可以从前导序列码资源集合中选择一个前导序列码,并在第一波束上向基站发送与前导序列码对应的前导序列。当所采用的策略为第二策略
时,UE可以从前导序列码资源集合中选择一个前导序列码,并分别在第一波束上和第二波束上向基站发送与前导序列码对应的前导序列。
由此可见,对于第一策略,UE发送了一个前导序列,对于第二策略,UE在两个相邻的波束上分别发送了一个前导序列,即共发送了两个前导序列。由于系统工作频率越高,信号衰减越大,随机接入成功率越低,而本公开通过发送两个前导序列的方式可以大大提高随机接入的成功率。
如图4所示的装置用于实现上述如图1所示的方法流程,涉及到的相关内容描述相同,此处不赘述。
上述实施例,通过在配置信息中包含用于指示随机接入的不同策略,使得用户设备(UE)可以根据接收的配置信息确定自己随机接入所采用的策略,并确定与所采用的策略对应的上行PRACH资源,然后基于所确定的上行PRACH资源向基站发送前导序列,很好地解决了高频范围很大系统的配置需求和接入需求。
图5是根据一示例性实施例示出的另一种随机接入装置的框图,如图5所示,在上述图4所示实施例的基础上,发送模块43可以包括:第一发送子模块431和第二发送子模块432。
第一发送子模块431被配置为当所采用的策略为第一策略时,从前导序列码资源集合中选择一个前导序列码,并在第一波束上向基站发送与前导序列码对应的前导序列。
第二发送子模块432被配置为当所采用的策略为第二策略时,从前导序列码资源集合中选择一个前导序列码,并分别在第一波束上和第二波束上向基站发送与前导序列码对应的前导序列。
在另一实施例中,第一发送子模块431还可以被配置为当所采用的策略为第一策略时,若未接收到随机接入响应消息,则在第三波束上向基站发送前导序列,第三波束与第一波束不同。第二发送子模块432还可以被配置为当所采用的策略为第二策略时,若未接收到随机接入响应消息,则增大第一波束和第二波束的发射功率,并分别在发射功率增大后的第一波束和第二波束上向基站发送前导序列。
其中,第三波束与第一波束不同,需要说明的是,第三波束用于表示与第一波束不同的波束,即可以为除第一波束之外的任意波束。
在另一实施例中,第一发送子模块431还可以被配置为在在第三波束上向基站发送前导序列之后,若仍未接收到随机接入响应消息,则增大第一波束的发射功率,并在发射功率
增大后的第一波束上向基站发送前导序列。
在另一实施例中,第一发送子模块431还可以被配置为在在发射功率增大后的第一波束上向基站发送前导序列之后,若仍未接收到随机接入响应消息,则增大第四波束的发射功率,并在发射功率增大后的第四波束上向基站发送前导序列,第四波束与第一波束不同。
第四波束与第一波束不同,需要说明的是,第四波束用于表示与第一波束不同的波束,即可以为除第一波束之外的任意波束。
上述实施例,通过描述UE在不同策略下的随机接入过程,很好地解决了高频范围很大系统的接入需求。
图6是根据一示例性实施例示出的另一种随机接入装置的框图,如图6所示,在上述图4所示实施例的基础上,前导序列码资源集合可以包括第一前导序列码资源集合和第二前导序列码资源集合;当所采用的策略为第二策略时,发送模块43可以包括:第三发送子模块433和第四发送子模块434。
第三发送子模块433被配置为从第一前导序列码资源集合中选择第一前导序列码,并在第一波束上向基站发送与第一前导序列码对应的第一前导序列。
第四发送子模块434被配置为从第二前导序列码资源集合中选择第二前导序列码,并在第二波束上向基站发送与第二前导序列码对应的第二前导序列。
由于在发送前导序列之前可以测量上述第一波束和第二波束的接收功率,假设第一波束的接收功率大于第二波束的接收功率,则可以在第一波束上以较大功率发送第一前导序列,在第二波束上以较小功率发送第二前导序列,以达到提高当前UE接入成功率的同时减少对其他UE随机接入的干扰。
上述实施例,可以达到提高当前UE接入成功率的同时减少对其他UE随机接入的干扰。
图7是根据一示例性实施例示出的另一种随机接入装置的框图,如图7所示,在上述图5所示实施例的基础上,该装置还可以包括:获取模块44和确定丢弃发送模块45。
获取模块44被配置为在第二发送子模块432分别在第一波束上和第二波束上向基站发送前导序列之后,若接收到两个随机接入响应消息,则获取两个随机接入响应消息的功率测量值。
确定丢弃发送模块45被配置为确定获取模块44获取的功率测量值大的随机接入响应
消息对应的波束,丢弃功率测量值小的随机接入响应消息,并在所确定的波束上向基站发送连接建立请求。
在该实施例中,在获取两个随机接入响应消息的功率测量值后,通过比较两个随机接入响应消息的功率测量值的大小,并丢弃功率测量值小的随机接入响应消息,而在功率测量值大的随机接入响应消息对应的波束上向基站发送连接建立请求,即只发送一个连接建立请求,从而提高随机接入成功率。
上述实施例,通过丢弃功率测量值小的随机接入响应消息,而在功率测量值大的随机接入响应消息对应的波束上向基站发送连接建立请求,从而提高随机接入成功率。
图8是根据一示例性实施例示出的一种适用于随机接入装置的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等用户设备。
参照图8,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理元件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理部件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕
可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信部件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (18)
- 一种随机接入方法,其特征在于,所述方法包括:根据接收的配置信息确定当前UE随机接入所采用的策略,所述配置信息中包含用于指示随机接入的不同策略;确定与所采用的策略对应的上行物理随机接入信道PRACH资源;基于所确定的所述上行PRACH资源向基站发送前导序列。
- 根据权利要求1所述的方法,其特征在于,当所采用的策略为第一策略时,所述与所采用的策略对应的上行物理随机接入信道PRACH资源包括:第一波束和前导序列码资源集合;当所采用的策略为第二策略时,所述与所采用的策略对应的上行物理随机接入信道PRACH资源包括:第一波束、第二波束和前导序列码资源集合;其中,所述第一波束和所述第二波束相邻且均与下行信号同步块的波束相对应。
- 根据权利要求2所述的方法,其特征在于,所述基于所确定的所述上行PRACH资源向基站发送前导序列,包括:当所采用的策略为第一策略时,从所述前导序列码资源集合中选择一个前导序列码,并在所述第一波束上向所述基站发送与所述前导序列码对应的前导序列;当所采用的策略为第二策略时,从所述前导序列码资源集合中选择一个前导序列码,并分别在所述第一波束上和所述第二波束上向所述基站发送与所述前导序列码对应的前导序列。
- 根据权利要求2所述的方法,其特征在于,所述前导序列码资源集合包括第一前导序列码资源集合和第二前导序列码资源集合;当所采用的策略为第二策略时,所述基于所确定的所述上行PRACH资源向基站发送前导序列,包括:从所述第一前导序列码资源集合中选择第一前导序列码,并在所述第一波束上向所述基站发送与所述第一前导序列码对应的第一前导序列;从所述第二前导序列码资源集合中选择第二前导序列码,并在所述第二波束上向所述基站发送与所述第二前导序列码对应的第二前导序列。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:当所采用的策略为所述第一策略时,若未接收到随机接入响应消息,则在第三波束上向所述基站发送所述前导序列,所述第三波束与所述第一波束不同;当所采用的策略为所述第二策略时,若未接收到随机接入响应消息,则增大所述第一波束和所述第二波束的发射功率,并分别在发射功率增大后的第一波束和第二波束上向所述基站发送所述前导序列。
- 根据权利要求5所述的方法,其特征在于,所述方法还包括:在所述在第三波束上向所述基站发送所述前导序列之后,若仍未接收到所述随机接入响应消息,则增大所述第一波束的发射功率,并在发射功率增大后的第一波束上向所述基站发送所述前导序列。
- 根据权利要求6所述的方法,其特征在于,所述方法还包括:在所述在发射功率增大后的第一波束上向所述基站发送所述前导序列之后,若仍未接收到所述随机接入响应消息,则增大第四波束的发射功率,并在发射功率增大后的第四波束上向所述基站发送所述前导序列,所述第四波束与所述第一波束不同。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:在所述分别在所述第一波束上和所述第二波束上向所述基站发送所述前导序列之后,若接收到两个随机接入响应消息,则获取所述两个随机接入响应消息的功率测量值;确定功率测量值大的随机接入响应消息对应的波束,丢弃功率测量值小的随机接入响应消息,并在所确定的波束上向基站发送连接建立请求。
- 一种随机接入装置,其特征在于,所述装置包括:第一确定模块,被配置为根据接收的配置信息确定当前UE随机接入所采用的策略,所述配置信息中包含用于指示随机接入的不同策略;第二确定模块,被配置为确定与所述第一确定模块确定的所采用的策略对应的上行物理随机接入信道PRACH资源;发送模块,被配置为基于所述第二确定模块所确定的所述上行PRACH资源向基站发送前导序列。
- 根据权利要求9所述的装置,其特征在于,当所采用的策略为第一策略时,所述与所采用的策略对应的上行物理随机接入信道PRACH资源包括:第一波束和前导序列码资源集合;当所采用的策略为第二策略时,所述与所采用的策略对应的上行物理随机接入信道PRACH资源包括:第一波束、第二波束和前导序列码资源集合;其中,所述第一波束和所述第二波束相邻且均与下行信号同步块的波束相对应。
- 根据权利要求10所述的装置,其特征在于,所述发送模块包括:第一发送子模块,被配置为当所采用的策略为第一策略时,从所述前导序列码资源集合中选择一个前导序列码,并在所述第一波束上向所述基站发送与所述前导序列码对应的前导序列;第二发送子模块,被配置为当所采用的策略为第二策略时,从所述前导序列码资源集合中选择一个前导序列码,并分别在所述第一波束上和所述第二波束上向所述基站发送与所述前导序列码对应的前导序列。
- 根据权利要求10所述的装置,其特征在于,所述前导序列码资源集合包括第一前导序列码资源集合和第二前导序列码资源集合;当所采用的策略为第二策略时,所述发送模块包括:第三发送子模块,被配置为从所述第一前导序列码资源集合中选择第一前导序列码,并在所述第一波束上向所述基站发送与所述第一前导序列码对应的第一前导序列;第四发送子模块,被配置为从所述第二前导序列码资源集合中选择第二前导序列码,并在所述第二波束上向所述基站发送与所述第二前导序列码对应的第二前导序列。
- 根据权利要求11所述的装置,其特征在于,第一发送子模块,还被配置为当所采用的策略为所述第一策略时,若未接收到随机接入响应消息,则在第三波束上向所述基站发送所述前导序列,所述第三波束与所述第一波束不同;第二发送子模块,还被配置为当所采用的策略为所述第二策略时,若未接收到随机接入响应消息,则增大所述第一波束和所述第二波束的发射功率,并分别在发射功率增大后的第一波束和第二波束上向所述基站发送所述前导序列。
- 根据权利要求13所述的装置,其特征在于,第一发送子模块,还被配置为在所述在第三波束上向所述基站发送所述前导序列之后,若仍未接收到所述随机接入响应消息,则增大所述第一波束的发射功率,并在发射功率增大后的第一波束上向所述基站发送所述前导序列。
- 根据权利要求14所述的装置,其特征在于,所述第一发送子模块,还被配置为在所述在发射功率增大后的第一波束上向所述基站发送所述前导序列之后,若仍未接收到所述随机接入响应消息,则增大第四波束的发射功率,并在发射功率增大后的第四波束上向所述基站发送所述前导序列,所述第四波束与所述第一波束不同。
- 根据权利要求11所述的装置,其特征在于,所述装置还包括:获取模块,被配置为在所述第二发送子模块分别在所述第一波束上和所述第二波束上向所述基站发送所述前导序列之后,若接收到两个随机接入响应消息,则获取所述两个随机接 入响应消息的功率测量值;确定丢弃发送模块,被配置为确定所述获取模块获取的功率测量值大的随机接入响应消息对应的波束,丢弃功率测量值小的随机接入响应消息,并在所确定的波束上向基站发送连接建立请求。
- 一种用户设备,其特征在于,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:根据接收的配置信息确定当前UE随机接入所采用的策略,所述配置信息中包含用于指示随机接入的不同策略;确定与所采用的策略对应的上行物理随机接入信道PRACH资源;基于所确定的所述上行PRACH资源向基站发送前导序列。
- 一种计算机可读存储介质,其上存储有计算机程序(指令),其特征在于,该程序(指令)被处理器执行时实现权利要求1所述方法的步骤。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780000381.5A CN108476479B (zh) | 2017-05-05 | 2017-05-05 | 随机接入方法及装置、用户设备和计算机可读存储介质 |
PCT/CN2017/083186 WO2018201439A1 (zh) | 2017-05-05 | 2017-05-05 | 随机接入方法及装置、用户设备和计算机可读存储介质 |
US16/610,906 US11178699B2 (en) | 2017-05-05 | 2017-05-05 | Random access method and apparatus, user equipment, and computer readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/083186 WO2018201439A1 (zh) | 2017-05-05 | 2017-05-05 | 随机接入方法及装置、用户设备和计算机可读存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018201439A1 true WO2018201439A1 (zh) | 2018-11-08 |
Family
ID=63266980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/083186 WO2018201439A1 (zh) | 2017-05-05 | 2017-05-05 | 随机接入方法及装置、用户设备和计算机可读存储介质 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11178699B2 (zh) |
CN (1) | CN108476479B (zh) |
WO (1) | WO2018201439A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11197324B2 (en) * | 2018-02-23 | 2021-12-07 | Qualcomm Incorporated | NR RACH MSG3 and MSG4 resource configuration for CV2X |
CN111294787B (zh) * | 2018-12-10 | 2024-03-12 | 中兴通讯股份有限公司 | 一种用户设备ue定位方法及装置 |
WO2020164527A1 (zh) * | 2019-02-14 | 2020-08-20 | 华为技术有限公司 | 一种随机接入方法和装置 |
WO2022006916A1 (zh) * | 2020-07-10 | 2022-01-13 | 北京小米移动软件有限公司 | 通信方法、装置、设备及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104812084A (zh) * | 2014-01-28 | 2015-07-29 | 中兴通讯股份有限公司 | 配置信息的发送、获取方法、接入方法、通信节点及系统 |
CN104956606A (zh) * | 2013-01-25 | 2015-09-30 | 交互数字专利控股公司 | 用于垂直波束成形的方法和设备 |
WO2016093754A1 (en) * | 2014-12-11 | 2016-06-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Improved random access |
CN105744591A (zh) * | 2014-12-09 | 2016-07-06 | 中兴通讯股份有限公司 | 网络接入的处理、网络接入方法及装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2946628A1 (en) * | 2013-01-17 | 2015-11-25 | Telefonaktiebolaget L M Ericsson (publ) | Dynamic random access resource size configuration and selection |
WO2015065156A1 (ko) * | 2013-11-04 | 2015-05-07 | 엘지전자 주식회사 | 무선 통신 시스템에서 신호를 전송하는 방법 및 장치 |
US20150334743A1 (en) * | 2014-05-15 | 2015-11-19 | Qualcomm Incorporated | Physical cell identifier and physical random access channel offset joint planning |
CN105120529A (zh) * | 2015-09-06 | 2015-12-02 | 厦门大学 | 基于长期演进蜂窝网络的设备到设备通信建立装置及方法 |
RU2716741C1 (ru) * | 2016-06-30 | 2020-03-16 | Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. | Способ и устройство для передачи системной информации |
-
2017
- 2017-05-05 WO PCT/CN2017/083186 patent/WO2018201439A1/zh active Application Filing
- 2017-05-05 CN CN201780000381.5A patent/CN108476479B/zh active Active
- 2017-05-05 US US16/610,906 patent/US11178699B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104956606A (zh) * | 2013-01-25 | 2015-09-30 | 交互数字专利控股公司 | 用于垂直波束成形的方法和设备 |
CN104812084A (zh) * | 2014-01-28 | 2015-07-29 | 中兴通讯股份有限公司 | 配置信息的发送、获取方法、接入方法、通信节点及系统 |
CN105744591A (zh) * | 2014-12-09 | 2016-07-06 | 中兴通讯股份有限公司 | 网络接入的处理、网络接入方法及装置 |
WO2016093754A1 (en) * | 2014-12-11 | 2016-06-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Improved random access |
Also Published As
Publication number | Publication date |
---|---|
CN108476479B (zh) | 2021-06-01 |
CN108476479A (zh) | 2018-08-31 |
US11178699B2 (en) | 2021-11-16 |
US20200163119A1 (en) | 2020-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11469962B2 (en) | Method and apparatus for configuring information of indicating time-frequency position of SSB, and method and apparatus for determining time-frequency position of SSB | |
US11877280B2 (en) | Buffer status report transmission and device | |
WO2019183881A1 (zh) | 信息上报方法及装置和基于带宽部分的操作方法及装置 | |
WO2019183854A1 (zh) | 寻呼同步指示方法及装置、寻呼同步方法及装置和基站 | |
WO2019095140A1 (zh) | 剩余关键系统信息的公共控制资源集合的周期信息指示方法 | |
WO2019084879A1 (zh) | 剩余关键系统信息的公共资源集合的查找方法及装置 | |
WO2019196034A1 (zh) | 非授权小区中的数据传输方法及装置、基站和用户设备 | |
WO2019192021A1 (zh) | 上行资源请求方法及装置 | |
WO2019047143A1 (zh) | 寻呼消息接收方法及装置和寻呼配置方法及装置 | |
CN109156026B (zh) | 上行调度请求的发送方法、装置、设备及存储介质 | |
WO2019095105A1 (zh) | 通信链路的配置方法及装置 | |
WO2019100402A1 (zh) | 信息指示方法及装置、基站和用户设备 | |
WO2019028772A1 (zh) | 随机接入方法及装置、用户设备和基站 | |
WO2019023885A1 (zh) | 蜂窝网络中实现全双工传输的方法、装置、设备及基站 | |
WO2019218366A1 (zh) | 前导码和调度请求的发送方法及装置 | |
US20240063980A1 (en) | System information reception method and apparatus, and system information transmission method and apparatus | |
WO2019024053A1 (zh) | 无人机控制方法及装置、无人机和遥控设备 | |
WO2018201439A1 (zh) | 随机接入方法及装置、用户设备和计算机可读存储介质 | |
WO2019047168A1 (zh) | 寻呼配置方法及装置、寻呼消息接收方法及装置和基站 | |
WO2018205227A1 (zh) | 用于发送和接收系统消息的方法、装置、用户设备及基站 | |
WO2018205279A1 (zh) | 用于接收和发送系统消息的方法、装置、用户设备及基站 | |
WO2019023880A1 (zh) | 传输方向的指示方法及装置 | |
CN108353331B (zh) | 随机接入方法及装置、用户设备和计算机可读存储介质 | |
WO2019140692A1 (zh) | 信息配置方法及装置、接收功率的确定方法及装置和基站 | |
WO2019109349A1 (zh) | 终端接入的控制方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17908630 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17908630 Country of ref document: EP Kind code of ref document: A1 |