[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019087454A1 - 真空ポンプおよびその制御方法 - Google Patents

真空ポンプおよびその制御方法 Download PDF

Info

Publication number
WO2019087454A1
WO2019087454A1 PCT/JP2018/023490 JP2018023490W WO2019087454A1 WO 2019087454 A1 WO2019087454 A1 WO 2019087454A1 JP 2018023490 W JP2018023490 W JP 2018023490W WO 2019087454 A1 WO2019087454 A1 WO 2019087454A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
motor
vacuum pump
induced voltage
voltage constant
Prior art date
Application number
PCT/JP2018/023490
Other languages
English (en)
French (fr)
Inventor
康宏 木村
賢二 町家
真之介 徳平
英晃 井上
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to DE112018005090.4T priority Critical patent/DE112018005090B4/de
Priority to CN201880067103.6A priority patent/CN111213316B/zh
Priority to JP2018552082A priority patent/JP6445227B1/ja
Priority to KR1020207011242A priority patent/KR102222453B1/ko
Priority to US16/652,355 priority patent/US20200271120A1/en
Publication of WO2019087454A1 publication Critical patent/WO2019087454A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/66Controlling or determining the temperature of the rotor
    • H02P29/662Controlling or determining the temperature of the rotor the rotor having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/19Temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • H02P2207/055Surface mounted magnet motors

Definitions

  • the present invention relates to a vacuum pump provided with a permanent magnet synchronous motor and a control method thereof.
  • the mechanical booster pump is a volumetric transfer type vacuum pump which transfers the gas from the intake port to the exhaust port by synchronously rotating two male pump rotors arranged in a pump chamber inside a casing in opposite directions to each other.
  • the mechanical booster pump has very little mechanical loss because there is no contact between both pump rotors and between each pump rotor and the casing, compared to a vacuum pump with a large friction work such as an oil rotary vacuum pump, for example. , Has the advantage of being able to reduce the energy required for driving.
  • a mechanical booster pump is typically used to construct an evacuating system together with an auxiliary pump, and to start the operation to amplify the exhaust rate after the pressure is reduced to the extent of being an auxiliary pump.
  • Patent Document 1 discloses a permanent magnet synchronous type canned motor.
  • a temperature detector attached to a housing of a permanent magnet motor detects a temperature inside the inverter, and a permanent magnet is detected based on the temperature detected by the temperature detector.
  • a pump apparatus which estimates the temperature of (1) and corrects a control constant for controlling the motor based on the estimated temperature.
  • the temperature of the permanent magnet is estimated based on the temperature of the housing portion of the motor.
  • the temperature characteristic of the housing portion is different from the temperature characteristic of the permanent magnet of the rotor core, it is difficult to realize appropriate control of the number of revolutions of the motor.
  • a vacuum pump includes a pump body, a first temperature sensor, a motor, and a control unit.
  • the pump body has a rotary shaft and a casing made of metal.
  • the first temperature sensor is attached to the casing and detects the temperature of the casing.
  • the motor has a rotor core including a permanent magnet and attached to the rotating shaft, a stator core having a plurality of coils, and a can for receiving the rotor core.
  • the control unit has a drive circuit and a correction circuit.
  • the drive circuit supplies drive signals for rotating the motor based on a preset induced voltage constant to the plurality of coils.
  • the correction circuit corrects the induced voltage constant based on the output of the first temperature sensor.
  • the first temperature sensor is configured to detect the temperature of the casing portion of the pump body configured to have the same thermal time constant as the permanent magnet of the rotor core, the permanent magnet is permanent.
  • the estimation accuracy of the temperature of the magnet is enhanced. As a result, even if the thermal fluctuation occurs, the induced voltage constant can be optimized, and the pump performance can be stably maintained.
  • the correction circuit typically corrects the induced voltage constant such that the induced voltage of the motor decreases as the temperature of the casing increases as the temperature of the casing is in a predetermined temperature range. Configured as. As a result, it is possible to prevent high-speed continuous operation of the vacuum pump by preventing the step-out of the motor due to the decrease of the amount of magnetic flux of the permanent magnet accompanying the rise of the motor temperature.
  • the correction circuit corrects the induced voltage constant according to a first approximate straight line having a first temperature gradient when the temperature of the casing portion is equal to or greater than a first temperature and less than a second temperature.
  • the control unit may further include a second temperature sensor that detects the temperature of the drive circuit.
  • the drive circuit stops the supply of the drive signal to the plurality of coils when the temperature of the drive circuit is equal to or higher than the third temperature. Since the second temperature sensor for detecting the temperature of the drive circuit is provided separately from the first temperature sensor, the temperature of the drive circuit can be appropriately detected.
  • a control method of a vacuum pump is a control method of a vacuum pump provided with a permanent magnet synchronous type motor, and a drive signal for rotating the motor based on a preset induced voltage constant is used. Includes generating. The induced voltage constant is corrected on the basis of the output of a temperature sensor attached to a metal casing portion that constitutes a part of the pump body.
  • pump performance can be stably maintained even if thermal fluctuation occurs.
  • FIG. 1 is an overall perspective view seen from one side of a vacuum pump according to an embodiment of the present invention
  • FIG. 2 is an overall perspective view seen from the other side of the vacuum pump
  • FIG. 3 shows an internal structure of the vacuum pump
  • FIG. 4 is a schematic side sectional view showing the internal structure of the vacuum pump.
  • the X-axis, the Y-axis and the Z-axis indicate three axis directions orthogonal to each other.
  • the vacuum pump 100 of the present embodiment has a pump body 10, a motor 20 and a control unit 30.
  • the vacuum pump 100 is configured of a single-stage mechanical booster pump.
  • the pump body 10 has a first pump rotor 11, a second pump rotor 12, and a casing 13 accommodating the first and second pump rotors 11 and 12.
  • the casing 13 has a first casing portion 131, partition walls 132 and 133 disposed at both ends of the first casing portion 131 in the Y-axis direction, and a second casing portion 134 fixed to the partition wall 133.
  • the first casing portion 131 and the partition walls 132 and 133 form a pump chamber P in which the first and second pump rotors 11 and 12 are accommodated.
  • the first casing portion 131 and the partition walls 132 and 133 are made of, for example, an iron-based metal material such as cast iron or stainless steel, and are mutually connected via a seal ring (not shown).
  • the second casing portion 134 is made of, for example, a nonferrous metal material such as an aluminum alloy.
  • An intake port E1 communicating with the pump chamber P is formed on one main surface of the first casing portion 131, and an exhaust port E2 communicating with the pump chamber P is formed on the other main surface.
  • An intake pipe communicating with the inside of a vacuum chamber (not shown) is connected to the intake port E1, and an exhaust pipe (not shown) or an intake port of an auxiliary pump is connected to the exhaust port E2.
  • the first and second pump rotors 11 and 12 are formed of a maul-type rotor made of an iron-based material such as cast iron, and are disposed to face each other in the X-axis direction.
  • the first and second pump rotors 11 and 12 respectively have rotation axes 11s and 12s parallel to the Y-axis direction.
  • each rotary shaft 11s, 12s is rotatably supported by the bearing B1 fixed to the partition 132, and the other end 11s2, 12s2 side of each rotary shaft 11s, 12s is the partition 133 Is rotatably supported by a bearing B2 fixed to the A predetermined gap is formed between the first pump rotor 11 and the second pump rotor 12 and between each of the pump rotors 11 and 12 and the inner wall surface of the pump chamber P. , 12 are configured to rotate without contact with each other and with the inner wall surface of the pump chamber P.
  • the rotor core 21 constituting the motor 20 is fixed to one end 11s1 of the rotary shaft 11s of the first pump rotor 11, and the first synchronous gear 141 is fixed between the rotor core 21 and the bearing B1.
  • a second synchronizing gear 142 engaged with the first synchronizing gear 141 is fixed.
  • the motor 20 is configured of a permanent magnet synchronous type canned motor.
  • the motor 20 has a rotor core 21, a stator core 22, a can 23 and a motor case 24.
  • the rotor core 21 is fixed to one end 11s1 of the rotation shaft 11s of the first pump rotor 11.
  • the rotor core 21 has a laminated body of electromagnetic steel sheets and a plurality of permanent magnets M attached to the circumferential surface thereof.
  • the permanent magnets M are arranged along the circumference of the rotor core 21 so that the polarities (N pole, S pole) are alternately different.
  • an iron-based material such as a neodymium magnet or a ferrite magnet is used as the permanent magnet material.
  • the arrangement form of the permanent magnet is not particularly limited, and may be a surface magnet type (SPM) in which the permanent magnet is disposed on the surface of the rotor core 21 or an embedded magnet type (IPM) in which the permanent magnet is embedded in the rotor core 21 It may be
  • the stator core 22 is disposed around the rotor core 21 and fixed to the inner wall surface of the motor case 24.
  • the stator core 22 has a laminate of electromagnetic steel plates and a plurality of coils C wound thereon.
  • Coil C is formed of a three-phase winding including a U-phase winding, a V-phase winding and a W-phase winding, and is electrically connected to control unit 30, respectively.
  • the can 23 is disposed between the rotor core 21 and the stator core 22 and accommodates the rotor core 21 therein.
  • the can 23 is a bottomed cylindrical member made of a synthetic resin material such as PPS (polyphenylene sulfide) or PEEK (polyether ether ketone) and having one end on the gear chamber G side open.
  • the can 23 is fixed to the motor case 24 via a seal ring S mounted around the open end side thereof, and seals the rotor core 21 from the atmosphere (outside air).
  • the motor case 24 is made of, for example, an aluminum alloy, and accommodates the rotor core 21, the stator core 22, the can 23 and the synchronous gears 141 and 142.
  • the motor case 24 is fixed to the partition wall 132 via a seal ring (not shown) to form a gear chamber G.
  • the gear chamber G accommodates lubricating oil for lubricating the synchronous gears 141 and 142 and the bearing B1.
  • the outer surface of the motor case 24 is typically provided with a plurality of radiation fins.
  • the front end of the motor case 24 is covered with a cover 25.
  • the cover 25 is provided with a through hole capable of communicating with the outside air, and is configured to be capable of cooling the rotor core 21 and the stator core 22 via the cooling fan 50 disposed adjacent to the motor 20.
  • the motor case 24 may be configured to be capable of water cooling.
  • FIG. 5 is a block diagram schematically showing the configuration of control unit 30. Referring to FIG.
  • control unit 30 has a drive circuit 31, a position detection unit 32, and an SW (switching) control unit 33.
  • the control unit 30 is for controlling the drive of the motor 20.
  • the control unit 30 includes a circuit board housed in a case made of metal or the like installed in the motor case 24 and various electronic components mounted thereon.
  • the drive circuit 31 generates a drive signal that causes the motor 20 to rotate at a predetermined number of revolutions. It is comprised by the inverter circuit which has a several semiconductor switching element (transistor). These semiconductor switching elements are controlled individually by SW control unit 33 to control the drive signal supplied to coil C (U-phase winding, V-phase winding and W-phase winding) of stator core 22. Generate each.
  • the drive circuit 31 has a temperature sensor 42 (second temperature sensor).
  • the temperature sensor 42 detects the temperature of the drive circuit 31. If the temperature is higher than a predetermined temperature (for example, 90 ° C.), the drive circuit 31 stops the supply of the drive signal to the coil C. As a result, the motor 20 can be put into a free run state to prevent a further temperature rise of the motor 20.
  • the position detection unit 32 is electrically connected to the coil C of the stator 22.
  • the position detection unit 32 indirectly detects the magnetic pole position of the rotor core 21 from the waveform of the back electromotive force generated in the coil C due to the temporal change of the magnetic flux (linkage flux) intersecting the coil C, and detects it.
  • This signal is output to the SW control unit 33 as a position detection signal for controlling the energization timing to C.
  • the SW control unit 33 is a control signal for exciting the coil C (three-phase winding) of the stator core 22 based on the induced voltage constant (Ke) and the magnetic pole position of the rotor core 21 detected by the position detection unit 32. Are output to the drive circuit 31. That is, the SW control unit 33 detects the load torque of the motor 20 from the magnetic pole position of the rotor core acquired by the position detection unit 32, and generates a control signal to rotate the motor 20 without stepout based on the load torque. And is configured to output this to the drive circuit 31.
  • the induced voltage constant is a control parameter for controlling the induced voltage of the motor, and is typically determined according to the strength of the magnetic flux of the rotor core 21 (permanent magnet M), the specification of the vacuum pump, the operating condition, etc. An arbitrary value is preset in the SW control unit 33.
  • the pump body 10 when the high load operation continues, the pump body 10 generates heat due to mechanical work and the like, and the motor 20 also generates heat due to eddy current loss and the like.
  • the temperature of the rotor core 21 rises, the amount of magnetic flux of the permanent magnet M decreases (demagnetization), and the motor 20 becomes easy to step out.
  • the motor 20 is out of step, the target pump performance can not be obtained. Therefore, when the motor 20 generates heat, a technique is required that can maintain the pump performance without causing the motor 20 to be out of step.
  • the vacuum pump 100 is configured to estimate the temperature of the rotor core 21 (permanent magnet M) and correct the induced voltage constant based on the estimated temperature. That is, in order to prevent the induced voltage constant set in the inverter (drive circuit 31) from shifting due to a change in motor temperature and the amount of magnetic flux of the permanent magnet M of the rotor core, the induced voltage constant of the inverter By compensating for the change, the motor 20 is prevented from being out of step.
  • the induced voltage of the motor 20 is controlled by the input voltage from the drive circuit 31 to the coil C.
  • the input voltage is determined by the internal voltage (Vout) (see FIG. 9) of the correction circuit 331 described later.
  • the internal voltage of the correction circuit 331 is typically set to be lower as the motor temperature is higher, as shown in FIG.
  • the value of the internal voltage of the correction circuit is determined by the induced voltage constant.
  • the vacuum pump 100 is configured to estimate the temperature of the rotor core 21 based on the temperature of the first casing portion 131 of the pump main body 10 and correct the induced voltage constant based on the estimated value. Since the first casing portion 131 is made of a metal material, it has the same thermal time constant as the permanent magnet of the rotor core. As a result, the estimation accuracy of the temperatures of the rotor core 21 and the permanent magnet M is enhanced, and appropriate drive control of the motor during high load operation can be realized.
  • FIG. 7 is an experimental result showing a temperature change of each part of the vacuum pump 100 when the operation is stopped and the atmosphere is released (cooling) after continuous evacuation (load operation) at an outside air temperature of 40 ° C. for 2 hours or more.
  • the rotor temperature P1 indicates the temperature of the rotor core 21
  • the coil temperature P2 indicates the temperature of the coil C
  • the pump case temperature P3 indicates the temperature of the first casing portion 131
  • the motor case temperature P4 indicates the surface temperature of the motor case 24. ing.
  • the output of the radiation thermometer installed at the end of the motor case 24 was referred to the measurement of P1 (the measurement area was blackened to adjust the emissivity in order to suppress the influence of the difference in the emissivity of the measurement area) .
  • the output of a temperature measuring element such as a thermistor installed at each site was referred to.
  • the pump case temperature P3 corresponds to the temperature of the first casing portion 131 made of the same Fe-based material as the rotor core 21 (permanent magnet M), and the coil temperature P2 and the motor case temperature P4. , And has substantially the same temperature characteristics as the rotor temperature P1. It is presumed that this is because the first casing portion 131 faces the pump chamber P, which is one of the temperature rising sources during operation, and has a heat capacity such that the heat radiation characteristic is equivalent to that of the rotor core 21. Therefore, the temperature of the rotor core 21 can be estimated with relatively high accuracy by referring to the pump case temperature P3.
  • the vacuum pump 100 of the present embodiment includes a temperature sensor 41 (first temperature sensor) that detects the temperature of the first casing portion 131.
  • a thermistor is adopted as temperature sensor 41, it is not restricted to this, and other temperature measurement elements, such as a thermocouple, may be adopted.
  • the output of the temperature sensor 41 is input to the SW control unit 33 via the wiring cable 43.
  • the mounting method of the temperature sensor 41 is not particularly limited.
  • the temperature sensor 41 is fixed to the outer surface of the first casing portion 131 using a suitable fixing tool 61 such as a screw.
  • the portion of the first casing portion 131 to which the temperature sensor 41 is attached is not particularly limited either, and may be one end side (partition wall 132 side) of the first casing portion 131 or the other end side (partition wall 133 side). It may be an intermediate part of them.
  • the SW control unit 33 has a correction circuit 331 that corrects an induced voltage constant, which is a control parameter of the motor 20, based on the output of the temperature sensor 41.
  • the correction circuit 331 is configured as a part of the SW control unit 33, but may be configured as a circuit different from the SW control unit 33.
  • FIG. 9 is an equivalent circuit showing the relationship among the SW control unit 33, the correction circuit 331, and the temperature sensor 41.
  • the temperature sensor 41 is connected to the SW control unit 33 via the voltage dividing resistor 40, and the output (Vout) of the voltage dividing circuit configured by the temperature sensor 41 and the voltage dividing resistor 40 is input to the correction circuit 331.
  • the output (Vout) of the voltage dividing circuit corresponds to the internal voltage of the correction circuit 331.
  • the correction circuit 331 corrects the induced voltage constant so that the induced voltage of the motor 20 decreases as the temperature of the first casing portion 131 increases when the temperature of the first casing portion 131 is in a predetermined temperature range. Configured as. Thereby, high load continuous operation of the vacuum pump 100 can be realized by preventing the step-out of the motor 20 due to the thermal fluctuation of the motor 20, for example, the decrease of the magnetic flux amount of the permanent magnet M accompanying the rise of the motor temperature.
  • FIG. 10 is a conceptual diagram showing an example of correction of the induced voltage constant by the correction circuit 331, and shows the relationship between the temperature of the rotor core 21 estimated based on the output of the temperature sensor 41 and the induced voltage constant. .
  • the correction circuit 331 reduces the induced voltage constant as the estimated temperature of the rotor core 21 increases. That is, unlike the comparative example in which the motor 20 is driven with a constant induced voltage constant regardless of the motor temperature, the motor 20 is driven with an induced voltage constant corresponding to the amount of decrease of the magnetic force of the permanent magnet M accompanying the temperature rise. Thus, the vacuum pump 100 can be stably driven without causing the motor 20 to be out of step.
  • the induced voltage constant changes linearly with the estimated temperature of the rotor core 21 in the temperature range of 0 ° C. or more.
  • the slope of the induced voltage constant in this case is set to correspond to the temperature coefficient of the permanent magnet M. If the temperature coefficient of the permanent magnet M is non-linear, the gradient of the induced voltage constant can also be set to be non-linear.
  • the lower limit of the temperature for correcting the induced voltage constant is not limited to 0 ° C., and may be higher or lower than 0 ° C.
  • correction circuit 331 sets an approximate straight line AP for estimating the temperature of rotor core 21 (permanent magnet M) based on the output of temperature sensor 41 as shown by the thick solid line in the figure in the temperature range of 40 ° C. to 90 ° C.
  • the temperature corresponding to the approximate straight line AP is acquired as the estimated temperature of the rotor core 21.
  • the correction circuit 331 corrects the induced voltage constant based on the acquired estimated temperature (FIG. 10).
  • the internal voltage of the correction circuit 331 is 4.5 V (FIG. 11).
  • the correction circuit 331 acquires the estimated temperature of the rotor core 21 according to the value of the internal voltage from the approximate straight line AP (80 ° C. in this example), and corrects the induced voltage constant to a value corresponding to the estimated temperature (FIG. 10) reference).
  • the correction circuit 331 of the present embodiment has a temperature of the first casing portion 131 detected by the temperature sensor 41 not less than a first temperature Th1 (40 ° C.) and a second temperature Th2 (70). In the case of less than ° C., the induced voltage constant is corrected according to a first approximate straight line AP1 having a first temperature gradient. On the other hand, when the temperature of the first casing portion 131 detected by the temperature sensor 41 is greater than or equal to the second temperature Th2 and less than the third temperature Th3 (90 ° C.), the correction circuit 331 performs the first temperature gradient. The induced voltage constant is corrected according to a second approximate straight line AP2 having a second temperature gradient different from.
  • the first and second gradients are appropriately set according to the temperature characteristics of the output of the temperature sensor 41 at 40 ° C. or more and 90 ° C. or less.
  • the first temperature gradient is set larger than the second gradient such that the estimated temperature of the rotor core 21 in the temperature range is, for example, approximately 10 ° C. higher than the temperature detected by the temperature sensor 41.
  • the first to third temperatures Th1 to Th3 are an example, and can be appropriately changed according to the type and specification of the motor.
  • the first and second approximate straight lines AP1 and AP2 can also be set appropriately according to the temperature characteristics of the temperature sensor 41.
  • the number of approximate straight lines is not limited to two, and one or three or more may be set.
  • the approximate expression is not limited to a straight line, and may be a curve, and the approximate expression may not be continuous, but may be discrete.
  • the correction circuit 331 estimates the temperature of the rotor core 21 (permanent magnet M) as the first temperature Th1 when the temperature of the first casing portion 131 is less than the first temperature Th1 (40 ° C.). On the other hand, the correction circuit 331 estimates the temperature of the rotor core 21 (permanent magnet M) as the third temperature Th3 when the temperature of the first casing portion 131 is equal to or higher than the third temperature Th3 (90 ° C.). When the temperature of the drive circuit 31 reaches 90 ° C. or more, as described above, the drive circuit 31 stops generating the drive signal based on the output of the temperature sensor 42 (see FIG. 5).
  • the correction circuit 331 controls the drive circuit 31 to stop the motor 20 so as to stop the driving of the vacuum pump 20 or to set the free run state when the disconnection of the wiring cable 43 of the temperature sensor 41 is detected. Configured as. The disconnection of the wiring cable 43 can be detected based on the output (Vout) (see FIG. 9) of the voltage dividing circuit.
  • FIG. 12 is a flowchart showing an example of the processing procedure executed by the control unit 30.
  • the control unit 30 When the operation of the vacuum pump 100 is started, the control unit 30 generates a drive signal for rotating the motor 20 at a predetermined number of rotations based on a preset (before correction) induced voltage constant (Ke).
  • the first and second pump rotors 11 and 12 are rotated by the operation of the motor 20, and a predetermined pumping action is performed to discharge the gas in the vacuum chamber (not shown) sucked from the air inlet E1 from the air outlet E2.
  • the pump body 10 When the high load operation continues, the pump body 10 generates heat due to mechanical work and the like, and the motor 20 also generates heat due to eddy current loss and the like.
  • the temperature of the rotor core 21 rises, the amount of magnetic flux of the permanent magnet M decreases (demagnetization), and the motor 20 becomes easy to step out.
  • the motor 20 When the motor 20 is out of step, the target pump performance can not be obtained.
  • control unit 30 (correction circuit 331) is configured based on the output of the temperature sensor 41 attached to the iron-based casing portion (first casing portion 131) that constitutes a part of the pump main body 10. Correct the induced voltage constant to control the induced voltage.
  • the correction circuit 331 acquires the temperature of the first casing portion 131 based on the output of the temperature sensor 41 (first temperature sensor) (step 101). Then, the correction circuit 331 determines whether the temperature of the first casing portion 131 is equal to or higher than the first temperature Th1 (40 ° C.), and in the case of less than the first temperature Th1, the correction circuit 331 The temperature is estimated to be the first temperature Th1, and the drive of the motor 20 is continued without changing the control constant (steps 102 and 103).
  • the correction circuit 331 reduces the induced voltage according to the first approximate straight line AP1.
  • the induced voltage constant is corrected (Figs. 6, 10, 11 and steps 104, 105).
  • the correction circuit 331 induces according to the second approximate straight line AP2 (see FIG. 11).
  • the induced voltage constant is corrected so as to lower the voltage (FIG. 6, 10, 11 steps 106, 107).
  • the induced voltage constant is corrected so that the induced voltage of the motor 20 decreases as the temperature of the first casing portion 131 rises, the vacuum of the motor 20 does not occur. It becomes possible to drive pump 100 stably. Before and after the correction of the induced voltage of the motor 20, typically, the rotational speed does not change and is kept constant. For this reason, pump performance is maintained stable.
  • Mechanical booster pumps often use a torque limiter that often lowers the rotational speed to protect the pump at high loads (near atmospheric pressure). In that case, since the work of the pump is reduced and the temperature of the motor rotor and the temperature of the pump main body are reduced, the dielectric pressure constant is increased accordingly to realize stable control even in the torque limiter.
  • the control unit 30 estimates the temperature of the rotor core 21 (permanent magnet M) as the third temperature, and the induced voltage according to the third temperature
  • the motor 20 is continuously driven with a constant.
  • the generation of the drive signal by the drive circuit 31 is stopped based on the output of the temperature sensor 42 in the drive circuit 31, and the motor 20 is put into a free run state.
  • the motor 20 is put in a free run state. The above operation is repeated until the operation stop operation of the vacuum pump 100 is performed (step 109).
  • the temperature sensor 41 is configured to detect the temperature of the first casing portion 131 made of a material having the same thermal time constant as the permanent magnet M of the rotor core 21, The estimation accuracy of the temperature of the permanent magnet M is enhanced. Thereby, appropriate drive control of the motor at the time of high load operation can be realized. And since pump performance in a high load (high pressure) area can be stably maintained, exhaust time can be shortened and productivity of vacuum processing can be improved.
  • the motor 20 can be driven without step out. Such an effect can greatly contribute to the reduction of the equipment cost of a vacuum pump provided with a permanent magnet synchronous type canned motor.
  • the temperature sensor 42 for detecting the temperature of the drive circuit 31 is provided separately from the temperature sensor 41 for estimating the temperature of the rotor core 21, the temperature of the drive circuit 31 can be detected appropriately. Thus, the drive circuit 31 can be protected.
  • the mechanical booster pump has been described as an example of the vacuum pump, but the present invention is not limited to this, and the present invention is applicable to other volumetric transfer type vacuum pumps such as screw pumps and multistage roots pumps. .
  • the temperature sensor 41 is configured to detect the temperature of the first casing portion 131 of the pump main body 10, but the invention is not limited thereto.
  • the temperature of the second casing portion 134 may be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本発明の一形態に係る真空ポンプは、ポンプ本体と、第1の温度センサと、モータと、制御ユニットとを具備する。上記ポンプ本体は、回転軸と、金属製のケーシング部とを有する。上記第1の温度センサは、上記ケーシング部に取り付けられ、上記ケーシング部の温度を検出する。上記モータは、永久磁石を含み上記回転軸に取り付けられたロータコアと、複数のコイルを有するステータコアと、上記ロータコアを収容するキャンと、を有する。上記制御ユニットは、駆動回路と、補正回路とを有する。上記駆動回路は、あらかじめ設定された誘起電圧定数を基に上記モータを回転させる駆動信号を上記複数のコイルへ供給する。上記補正回路は、上記第1の温度センサの出力に基づいて上記誘起電圧定数を補正する。

Description

真空ポンプおよびその制御方法
 本発明は、永久磁石同期モータを備えた真空ポンプおよびその制御方法に関する。
 メカニカルブースタポンプは、ケーシング内部のポンプ室に配置された二つのマユ型ポンプロータを互いに反対方向に同期回転させて吸気口から排気口へ気体を移送する容積移送型の真空ポンプである。メカニカルブースタポンプは、両ポンプロータ間および各ポンプロータとケーシングとの間での接触がないため、機械的損失が非常に少なく、例えば油回転真空ポンプのような摩擦仕事の大きい真空ポンプに比べて、駆動に要するエネルギーを少なくできるという利点を有する。
 メカニカルブースタポンプは、典型的には補助ポンプとともに真空排気系を構成し、補助ポンプである程度まで圧力を下げた後に運転を開始して排気速度を増幅させるために用いられる。
 この種の真空ポンプにおいては、各ポンプロータを回転させる駆動源として、キャンドモータが広く用いられている。キャンドモータは、ロータコアとステータコアとの間の隙間に挿入された円筒状のキャンを有する。ロータコアはキャンによって密封されるため、軸受部を介してロータコア内に侵入した気体の大気(外気)側への漏出が防止される。例えば特許文献1には、永久磁石同期型のキャンドモータが開示されている。
 一方、永久磁石同期モータにおいては、ロータコアに固定された永久磁石が温度特性を有するため、温度変化に伴う永久磁石の磁束量の変化がモータ制御やポンプ性能に大きな影響を与える場合がある。例えば、高負荷によりモータ温度が高温になると、永久磁石の磁束量の減少によりモータが脱調してしまい、所望とするポンプ性能が得られなくなる。
 また仮に定格動力で安定する温度で発揮される磁束を想定したとしても、始動時から安定温度になる迄はポンプ性能が維持できない。
 このような問題を解消するため、例えば特許文献2には、永久磁石電動機のハウジング部に取り付けられた温度検出器でインバータ内部の温度を検出し、温度検出器により検出された温度から、永久磁石の温度を推定し、推定された温度に基づき電動機を制御するための制御定数を補正するポンプ装置が提案されている。
特開2008-295222号公報 特開2016-111793号公報
 特許文献2に記載のポンプ装置においては、電動機のハウジング部の温度を基に永久磁石の温度を推定している。しかしながら、上記ハウジング部の温度特性がロータコアの永久磁石の温度特性と異なるため、電動機の適切な回転数制御を実現することが困難である。
 以上のような事情に鑑み、本発明の目的は、熱変動が生じたとしてもポンプ性能を安定に維持することができる真空ポンプおよびその制御方法を提供することにある。
 上記目的を達成するため、本発明の一形態に係る真空ポンプは、ポンプ本体と、第1の温度センサと、モータと、制御ユニットとを具備する。
 上記ポンプ本体は、回転軸と、金属製のケーシング部とを有する。
 上記第1の温度センサは、上記ケーシング部に取り付けられ、上記ケーシング部の温度を検出する。
 上記モータは、永久磁石を含み上記回転軸に取り付けられたロータコアと、複数のコイルを有するステータコアと、上記ロータコアを収容するキャンと、を有する。
 上記制御ユニットは、駆動回路と、補正回路とを有する。上記駆動回路は、あらかじめ設定された誘起電圧定数を基に上記モータを回転させる駆動信号を上記複数のコイルへ供給する。上記補正回路は、上記第1の温度センサの出力に基づいて、上記誘起電圧定数を補正する。
 上記真空ポンプによれば、第1の温度センサが、ロータコアの永久磁石と同様の熱時定数を持つように構成されたポンプ本体のケーシング部の温度を検出するように構成されているため、永久磁石の温度の推定精度が高められる。これにより、熱変動が生じたとしても、誘起電圧定数の最適化を図ることができるため、ポンプ性能を安定に維持することができる。
 上記補正回路は、典型的には、上記ケーシング部の温度が所定の温度範囲の場合には、上記ケーシング部の温度が高いほど上記モータの誘起電圧が低下するように上記誘起電圧定数を補正するように構成される。
 これにより、モータ温度の上昇に伴う永久磁石の磁束量の減少によるモータの脱調を防いで、真空ポンプの高負荷連続運転を実現することができる。
 上記補正回路は、上記ケーシング部の温度が第1の温度以上第2の温度未満の場合には、第1の温度勾配を有する第1の近似直線に従って上記誘起電圧定数を補正し、上記ケーシング部の温度が上記第2の温度以上第3の温度未満の場合には、上記第1の温度勾配とは異なる第2の温度勾配を有する第2の近似直線に従って上記誘起電圧定数を補正するように構成されてもよい。
 上記制御ユニットは、上記駆動回路の温度を検出する第2の温度センサをさらに有してもよい。上記駆動回路は、上記駆動回路の温度が上記第3の温度以上の場合には、上記複数のコイルへの上記駆動信号の供給を停止する。
 駆動回路の温度を検出する第2の温度センサが第1の温度センサとは別に設けられているため、駆動回路の温度を適切に検出することができる。
 本発明の一形態に係る真空ポンプの制御方法は、永久磁石同期型のモータを備えた真空ポンプの制御方法であって、あらかじめ設定された誘起電圧定数を基に上記モータを回転させる駆動信号を生成することを含む。
 ポンプ本体の一部を構成する金属製のケーシング部に取り付けられた温度センサの出力に基づいて、上記誘起電圧定数が補正される。
 以上述べたように、本発明によれば、熱変動が生じたとしてもポンプ性能を安定に維持することができる。
本発明の一実施形態に係る真空ポンプの一方側から見た全体斜視図である。 上記真空ポンプの他方側から見た全体斜視図である。 上記真空ポンプの内部構造を示す概略拡大横断面図である。 上記真空ポンプの内部構造を示す概略側断面図である。 上記真空ポンプにおける制御ユニットの構成を概略的に示すブロック図である。 上記制御ユニットによる補正回路の内部電圧の制御例を示す図である。 所定条件で運転させたときの上記真空ポンプの各部の温度変化を示す一実験結果である。 上記真空ポンプにおける第1の温度センサの取り付け例を説明する斜視図である。 上記第1の温度センサを用いた温度検出方法を説明する等価回路図である。 上記制御ユニットにおける補正回路の作用を説明する概念図である。 上記第1の温度センサに基づくモータのロータコア推定温度と入力電圧との関係を示す図である。 上記制御ユニットによって実行される処理手順の一例を示すフローチャートである。
 以下、図面を参照しながら、本発明の実施形態を説明する。
[全体構成]
 図1は本発明の一実施形態に係る真空ポンプの一方側から見た全体斜視図、図2は上記真空ポンプの他方側から見た全体斜視図、図3は上記真空ポンプの内部構造を示す概略拡大横断面図、図4は上記真空ポンプの内部構造を示す概略側断面図である。
 図においてX軸、Y軸およびZ軸は、相互に直交する3軸方向を示している。
 本実施形態の真空ポンプ100は、ポンプ本体10と、モータ20と、制御ユニット30とを有する。真空ポンプ100は、単段のメカニカルブースタポンプで構成される。
 (ポンプ本体)
 ポンプ本体10は、第1のポンプロータ11と、第2のポンプロータ12と、第1及び第2のポンプロータ11,12を収容するケーシング13とを有する。
 ケーシング13は、第1のケーシング部131と、第1のケーシング部131のY軸方向の両端に配置された隔壁132,133と、隔壁133に固定された第2のケーシング部134とを有する。第1のケーシング部131および隔壁132,133は、第1及び第2のポンプロータ11,12を収容するポンプ室Pを形成する。
 第1のケーシング部131及び隔壁132,133は、例えば、鋳鉄やステンレス鋼等の鉄系金属材料で構成され、図示しないシールリングを介して相互に結合されている。第2のケーシング部134は、例えば、アルミニウム合金等の非鉄系金属材料で構成される。
 第1のケーシング部131の一方の主面にはポンプ室Pに連通する吸気口E1が形成され、その他方の主面にはポンプ室Pに連通する排気口E2が形成される。吸気口E1には、図示しない真空チャンバの内部と連絡する吸気管が接続され、排気口E2には、図示しない排気管あるいは補助ポンプの吸気口と接続される。
 第1及び第2のポンプロータ11,12は、鋳鉄等の鉄系材料からなるマユ型ロータで構成され、X軸方向に相互に対向して配置される。第1及び第2のポンプロータ11,12は、Y軸方向に平行な回転軸11s,12sをそれぞれ有する。各回転軸11s,12sの一端部11s1,12s1側は、隔壁132に固定されたベアリングB1に回転可能に支持されており、各回転軸11s,12sの他端部11s2,12s2側は、隔壁133に固定されたベアリングB2に回転可能に支持される。第1のポンプロータ11と第2のポンプロータ12との間、および、各ポンプロータ11,12とポンプ室Pの内壁面との間には所定の隙間が形成されており、各ポンプロータ11,12は相互に及びポンプ室Pの内壁面に非接触で回転するように構成される。
 第1のポンプロータ11の回転軸11sの一端部11s1には、モータ20を構成するロータコア21が固定され、ロータコア21とベアリングB1との間には第1の同期ギヤ141が固定される。第2のポンプロータ12の回転軸12sの一端部12s1には、第1の同期ギヤ141と噛み合う第2の同期ギヤ142が固定されている。モータ20の駆動により、第1及び第2のポンプロータ11,12は、同期ギヤ141,142を介して相互に逆方向に回転し、これにより吸気口E1から排気口E2へ気体が移送される。
 (モータ)
 モータ20は、永久磁石同期型のキャンドモータで構成される。モータ20は、ロータコア21と、ステータコア22と、キャン23と、モータケース24とを有する。
 ロータコア21は、第1のポンプロータ11の回転軸11sの一端部11s1に固定される。ロータコア21は、電磁鋼板の積層体とその周面に取り付けられた複数の永久磁石Mとを有する。永久磁石Mは、ロータコア21の周囲に沿って極性(N極、S極)を交互に異ならせて配置される。
 本実施形態では、永久磁石材料として、ネオジム磁石やフェライト磁石等の鉄系材料が用いられる。永久磁石の配置形態は特に限定されず、ロータコア21の表面に永久磁石が配置される表面磁石型(SPM)であってもよいし、ロータコア21に永久磁石が埋め込まれる埋込磁石型(IPM)であってもよい。
 ステータコア22は、ロータコア21の周囲に配置され、モータケース24の内壁面に固定される。ステータコア22は、電磁鋼板の積層体とそれに巻回された複数のコイルCとを有する。コイルCは、U相巻線、V相巻線およびW相巻線を含む三相巻線で構成され、それぞれ制御ユニット30に電気的に接続される。
 キャン23は、ロータコア21とステータコア22との間に配置され、内部にロータコア21を収容する。キャン23は、PPS(ポリフェニレンサルファイド)、PEEK(ポリエーテルエーテルケトン)等の合成樹脂材料で構成された、ギヤ室G側の一端が開口する有底の円筒部材である。キャン23は、その開口端部側の周囲に装着されたシールリングSを介してモータケース24に固定され、ロータコア21を大気(外気)から封止する。
 モータケース24は、例えば、アルミニウム合金で構成され、ロータコア21、ステータコア22、キャン23および同期ギヤ141,142を収容する。モータケース24は、図示しないシールリングを介して隔壁132に固定されることで、ギヤ室Gを形成する。ギヤ室Gは、同期ギヤ141,142およびベアリングB1を潤滑するための潤滑油を収容する。モータケース24の外表面には、典型的には、複数の放熱フィンが設けられる。
 モータケース24の先端はカバー25で被覆されている。カバー25には外気と連通可能な通孔が設けられており、モータ20に隣接して配置された冷却ファン50を介してロータコア21やステータコア22を冷却することが可能に構成される。冷却ファン50に代えて又は加えて、モータケース24を水冷可能な構造にしてもよい。
 (制御ユニット)
 図5は、制御ユニット30の構成を概略的に示すブロック図である。
 図5に示すように、制御ユニット30は、駆動回路31と、位置検出部32と、SW(スイッチング)制御部33とを有する。制御ユニット30は、モータ20の駆動を制御するためのものである。制御ユニット30は、モータケース24に設置された金属製等のケース内に収容された回路基板やその上に搭載された各種電子部品で構成される。
 駆動回路31は、モータ20を所定の回転数で回転させる駆動信号を生成する。複数の半導体スイッチング素子(トランジスタ)を有するインバータ回路で構成される。これら半導体スイッチング素子は、SW制御部33により開閉タイミングが個別に制御されることにより、ステータコア22のコイルC(U相巻線、V相巻線およびW相巻線)へ供給される駆動信号をそれぞれ生成する。
 駆動回路31は、温度センサ42(第2の温度センサ)を有する。温度センサ42は、駆動回路31の温度を検出し、これが所定温度(例えば90℃)以上の場合、駆動回路31は、コイルCへの駆動信号の供給を停止する。これにより、モータ20をフリーランの状態にしてモータ20の更なる温度上昇を防ぐことができる。
 位置検出部32は、ステータ22のコイルCと電気的に接続される。位置検出部32は、コイルCと交わる磁束(鎖交磁束)の時間的変化に起因してコイルCに発生する逆起電力の波形からロータコア21の磁極位置を間接的に検出し、それをコイルCへの通電タイミングを制御する位置検出信号としてSW制御部33へ出力する。
 SW制御部33は、誘起電圧定数(Ke)と、位置検出部32によって検出されたロータコア21の磁極位置とに基づいて、ステータコア22のコイルC(三相巻線)を励磁するための制御信号を駆動回路31へ出力する。すなわち、SW制御部33は、位置検出部32により取得されるロータコアの磁極位置からモータ20の負荷トルクを検出し、その負荷トルクに基づいてモータ20を脱調させることなく回転させる制御信号を生成し、これを駆動回路31へ出力するように構成される。誘起電圧定数は、モータの誘起電圧を制御するための制御パラメータであり、典型的には、ロータコア21(永久磁石M)の磁束の強さ、真空ポンプの仕様あるいは運転条件等に応じて決定された任意の値がSW制御部33にあらかじめ設定される。
 ここで、高負荷運転が連続すると、ポンプ本体10は機械仕事等により発熱し、モータ20もまた渦電流損失等により発熱する。ロータコア21の温度が上昇すると、永久磁石Mの磁束量が減少し(減磁)、モータ20が脱調しやすくなる。モータ20が脱調すると、目的とするポンプ性能が得られなくなる。このためモータ20の発熱時は、モータ20を脱調させずにポンプ性能を維持することができる技術が要求される。
 本実施形態の真空ポンプ100は、ロータコア21(永久磁石M)の温度を推定し、その推定された温度に基づいて、上記誘起電圧定数を補正するように構成される。つまり、モータ温度の変化によってインバータ(駆動回路31)に設定する誘起電圧定数とロータコアの永久磁石Mの磁束量とがずれてしまうことを防止するため、インバータの誘起電圧定数をモータの磁束量の変化に合わせて補正することにより、モータ20の脱調を防止する。
 ここで、モータ20の誘起電圧は、駆動回路31からコイルCへの入力電圧で制御される。入力電圧は、後述する補正回路331の内部電圧(Vout)(図9参照)によって決定される。補正回路331の内部電圧は、典型的には図6に示すように、モータ温度が高くなるほど低くなるように設定される。補正回路の内部電圧の値は、誘起電圧定数で決定される。
 本実施形態の真空ポンプ100は、ポンプ本体10の第1のケーシング部131の温度に基づいてロータコア21の温度を推定し、その推定値を基に誘起電圧定数を補正するように構成される。第1のケーシング部131は金属製材料で構成されているため、ロータコアの永久磁石と同様の熱時定数を有する。これにより、ロータコア21および永久磁石Mの温度の推定精度が高まり、高負荷運転時におけるモータの適切な駆動制御が実現可能となる。
 図7は、40℃の外気温度で2時間以上連続排気(負荷運転)した後、運転を停止させて大気解放(冷却)したときの真空ポンプ100の各部の温度変化を示す一実験結果である。同図において、ロータ温度P1はロータコア21の温度、コイル温度P2はコイルCの温度、ポンプケース温度P3は第1のケーシング部131の温度、モータケース温度P4はモータケース24の表面温度をそれぞれ示している。
 なお、P1の測定にはモータケース24の先端に設置した放射温度計の出力を参照した(測定領域の放射率の違いによる影響を抑えるため、測定領域を黒塗りして放射率を調整した)。P2~P4の計測には各々の部位に設置したサーミスタ等の測温素子の出力を参照した。
 図7に示すように、ポンプケース温度P3は、ロータコア21(永久磁石M)と同じFe系の材料で構成された第1のケーシング部131の温度に相当し、コイル温度P2やモータケース温度P4と比較して、ロータ温度P1とほぼ同様な温度特性を有する。これは、第1のケーシング部131が運転時の昇温源の一つであるポンプ室Pに面するとともに、放冷特性がロータコア21と同等となる熱容量を有することが原因と推定される。したがって、ポンプケース温度P3を参照することでロータコア21の温度を比較的高い精度で推定することができる。
 そこで本実施形態の真空ポンプ100は、第1のケーシング部131の温度を検出する温度センサ41(第1の温度センサ)を備える。温度センサ41にはサーミスタが採用されるが、これに限られず、熱電対等の他の測温素子が採用されてもよい。温度センサ41の出力は配線ケーブル43を介してSW制御部33へ入力される。
 温度センサ41の取り付け方法は特に限定されず、例えば図8に示すように、温度センサ41は第1のケーシング部131の外面にネジ等の適宜の固定具61を用いて固定される。温度センサ41が取り付けられる第1のケーシング部131の部位も特に限定されず、第1のケーシング部131の一端側(隔壁132側)でもよいし、他端側(隔壁133側)でもよいし、それらの中間部であってもよい。
 SW制御部33は、温度センサ41の出力に基づいて、モータ20の制御パラメータである誘起電圧定数を補正する補正回路331を有する。本実施形態において補正回路331は、SW制御部33の一部として構成されるが、SW制御部33とは別回路で構成されてもよい。
 図9は、SW制御部33と補正回路331と温度センサ41との関係を示す等価回路である。温度センサ41は分圧抵抗40を介してSW制御部33へ接続され、温度センサ41と分圧抵抗40とにより構成される分圧回路の出力(Vout)が補正回路331へ入力される。分圧回路の出力(Vout)は、補正回路331の内部電圧に相当する。
 補正回路331は、第1のケーシング部131の温度が所定の温度範囲の場合には、第1のケーシング部131の温度が高いほどモータ20の誘起電圧が低下するように誘起電圧定数を補正するように構成される。これにより、モータ20の熱変動、例えば、モータ温度の上昇に伴う永久磁石Mの磁束量の減少によるモータ20の脱調を防いで、真空ポンプ100の高負荷連続運転を実現することができる。
 例えば図10は、補正回路331による誘起電圧定数の補正の一例を示す概念図であって、温度センサ41の出力を基に推定されたロータコア21の温度と誘起電圧定数との関係を示している。補正回路331は、ロータコア21の推定温度が高いほど、誘起電圧定数を小さくする。つまり、モータ温度に関係なく一定の誘起電圧定数でモータ20を駆動する比較例と異なり、温度上昇に伴う永久磁石Mの磁力減少量に見合った誘起電圧定数でモータ20を駆動する。これにより、モータ20の脱調を生じさせることなく、真空ポンプ100を安定に駆動することが可能となる。
 さらに図10の例では、0℃以上の温度範囲において、ロータコア21の推定温度に対して誘起電圧定数が直線的に変化する。この場合の誘起電圧定数の傾きは、永久磁石Mの温度係数に対応するように設定される。永久磁石Mの温度係数が非線形の場合には、誘起電圧定数の勾配も非線形となるように設定することができる。誘起電圧定数を補正する温度の下限は0℃に限られず、0℃よりも高温あるいは低温であってもよい。
 温度センサ41の出力に基づくロータコア21の温度の推定方法について説明する。
 図11に温度センサ41の出力の温度特性を示す。温度センサ41には半導体部品であるサーミスタが用いられ、ロータコア21(永久磁石M)とは異なる非線形な温度特性を有する。そこで、補正回路331は、温度センサ41の出力に基づき、40℃~90℃の温度範囲においては図中太実線で示すようにロータコア21(永久磁石M)の温度を推定する近似直線APを設定し、近似直線APに対応する温度をロータコア21の推定温度として取得する。補正回路331は、取得した推定温度を基に、誘起電圧定数を補正する(図10)。
 例えば、温度センサ41の検出温度が70℃の場合、補正回路331の内部電圧は4.5Vである(図11)。補正回路331は、その内部電圧の値に応じたロータコア21の推定温度を近似直線APから取得し(本例では80℃)、当該推定温度に対応する値に誘起電圧定数を補正する(図10参照)。
 さらに本実施形態の補正回路331は、図11に示すように、温度センサ41により検出される第1のケーシング部131の温度が第1の温度Th1(40℃)以上第2の温度Th2(70℃)未満の場合には、第1の温度勾配を有する第1の近似直線AP1に従って誘起電圧定数を補正する。
 一方、温度センサ41により検出される第1のケーシング部131の温度が第2の温度Th2以上第3の温度Th3(90℃)未満の場合には、補正回路331は、上記第1の温度勾配とは異なる第2の温度勾配を有する第2の近似直線AP2に従って誘起電圧定数を補正する。
 上記第1及び第2の勾配は、40℃以上90℃以下における温度センサ41の出力の温度特性に応じて適宜設定される。本実施形態では当該温度範囲におけるロータコア21の推定温度が温度センサ41により検出される温度よりも例えば10℃程度高くなるように、第1の温度勾配が第2の勾配よりも大きく設定される。このようにロータコア推定温度を若干高めに推定することで、当該温度範囲おけるモータ20の脱調を確実に防止することができる。
 第1~第3の温度Th1~Th3は一例であり、モータの種類や仕様に応じて各々適宜変更可能である。第1及び第2の近似直線AP1,AP2も、温度センサ41の温度特性に応じて適宜設定可能である。近似直線は2つに限られず、1つ又は3つ以上設定されてもよい。近似式は直線に限られず、曲線であってもよい、また、近似式は連続的でなくてもよく、離散的であってもよい。
 補正回路331は、第1のケーシング部131の温度が第1の温度Th1(40℃)未満の場合、ロータコア21(永久磁石M)の温度を第1の温度Th1と推定する。一方、補正回路331は、第1のケーシング部131の温度が第3の温度Th3(90℃)以上の場合、ロータコア21(永久磁石M)の温度を第3の温度Th3と推定する。駆動回路31の温度が90℃以上になると、上述のように、温度センサ42(図5参照)の出力に基づいて駆動回路31は駆動信号の生成を停止する。
 補正回路331は、温度センサ41の配線ケーブル43の断線を検出したとき、真空ポンプ20の駆動が停止するようにモータ20を停止させ、あるいはフリーランの状態にするように駆動回路31を制御するように構成される。配線ケーブル43の断線は、分圧回路の出力(Vout)(図9参照)に基づいて検出することができる。
[真空ポンプの動作]
 次に、以上のように構成される本実施形態の真空ポンプ100の典型的な動作について説明する。
 図12は、制御ユニット30によって実行される処理手順の一例を示すフローチャートである。
 真空ポンプ100の運転が開始されると、制御ユニット30は、あらかじめ設定された(補正前の)誘起電圧定数(Ke)を基にモータ20を所定の回転数で回転させる駆動信号を生成する。モータ20の作動により第1及び第2のポンプロータ11,12が回転し、吸気口E1より吸入された図示しない真空チャンバ内の気体を排気口E2から排出する所定のポンプ作用が行われる。
 高負荷運転が連続すると、ポンプ本体10は機械仕事等により発熱し、モータ20もまた渦電流損失等により発熱する。ロータコア21の温度が上昇すると、永久磁石Mの磁束量が減少し(減磁)、モータ20が脱調しやすくなる。モータ20が脱調すると、目的とするポンプ性能が得られなくなる。
 そこで、制御ユニット30(補正回路331)は、ポンプ本体10の一部を構成する鉄系のケーシング部(第1のケーシング部131)に取り付けられた温度センサ41の出力に基づいて、モータ20の誘起電圧を制御するための誘起電圧定数を補正する。
 より詳細には、図12に示すように、補正回路331は、温度センサ41(第1の温度センサ)の出力に基づいて第1のケーシング部131の温度を取得する(ステップ101)。そして、補正回路331は、第1のケーシング部131の温度が第1の温度Th1(40℃)以上か否か判定し、第1の温度Th1未満の場合は、ロータコア21(永久磁石M)の温度を第1の温度Th1と推定し、制御定数を変更することなくモータ20の駆動を継続する(ステップ102,103)。
 一方、第1のケーシング部131の温度が第1の温度Th1以上、第2の温度Th2(70℃)未満の場合、補正回路331は、第1の近似直線AP1に従って、誘起電圧を低下させるように誘起電圧定数を補正する(図6,10,11、ステップ104,105)。
 補正回路331は、第1のケーシング部131の温度が第2の温度Th2以上、第3の温度Th3(90℃)未満の場合には、第2の近似直線AP2(図11参照)に従って、誘起電圧を低下させるように誘起電圧定数を補正する(図6,10,11ステップ106,107)。
 以上のように、第1のケーシング部131の温度が高くなるほどモータ20の誘起電圧が低下するように誘起電圧定数を補正するようにしているため、モータ20の脱調を生じさせることなく、真空ポンプ100を安定に駆動することが可能となる。モータ20の誘起電圧の補正の前後において、典型的には、回転数は変化せず一定に維持される。このため、ポンプ性能は安定に維持される。
 メカニカルブースタポンプでは、さらに高負荷(大気圧近傍)において、しばしば回転数を下げてポンプを保護するトルクリミッタを使用する場合がある。その場合は、ポンプの仕事が低下して、モータロータ温度およびポンプ本体温度が低下するため、それに追従して誘電圧定数を上げて、トルクリミッタ中も安定制御を実現する。
 第1のケーシング部131の温度が第3の温度Th3以上の場合、制御ユニット30は、ロータコア21(永久磁石M)の温度を第3の温度と推定し、第3の温度に応じた誘起電圧定数で引き続きモータ20を駆動する。モータ20の温度がさらに上昇すると、駆動回路31内の温度センサ42の出力に基づき、駆動回路31による駆動信号の生成が停止し、モータ20をフリーランの状態にさせる。配線ケーブル43の断線等により温度センサ41からの出力が得られないときも同様に、モータ20をフリーランの状態にさせる。
 以上の動作は、真空ポンプ100の運転停止操作が行われるまで、繰り返し実行される(ステップ109)。
 本実施形態によれば、温度センサ41が、ロータコア21の永久磁石Mと同様の熱時定数を有する材料で構成された第1のケーシング部131の温度を検出するように構成されているため、永久磁石Mの温度の推定精度が高められる。これにより、高負荷運転時におけるモータの適切な駆動制御を実現することができる。そして、高負荷(高圧力)領域でのポンプ性能を安定に維持することができるため、排気時間を短縮でき、真空処理の生産性を向上させることができる。
 本実施形態によれば、ロータコア21(永久磁石M)の温度に応じてモータ20の誘起電圧定数を補正するようにしているため、モータ20の冷却に比較的大容量の冷却構造を必要とすることなく、モータ20を脱調させずに駆動することができる。このような効果は、永久磁石同期型のキャンドモータを備えた真空ポンプの設備コストの低減に大きく貢献することができる。
 さらに本実施形態によれば、駆動回路31の温度を検出する温度センサ42を、ロータコア21の温度推定用の温度センサ41とは別に設けられているため、駆動回路31の温度を適切に検出して、駆動回路31の保護を図ることができる。
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
 例えば以上の実施形態では、真空ポンプとしてメカニカルブースタポンプを例に挙げて説明したが、これに限られず、スクリューポンプや多段ルーツポンプ等の他の容積移送型真空ポンプに本発明は適用可能である。
 また、以上の実施形態では、温度センサ41がポンプ本体10の第1のケーシング部131の温度を検出するように構成されたが、これに限られず、温度センサ41は、隔壁132,133あるいは第2のケーシング部134の温度を検出するように構成されてもよい。
 10…ポンプ本体
 11s,12s…回転軸
 20…モータ
 21…ロータコア
 22…ステータコア
 23…キャン
 24…モータケース
 30…制御ユニット
 31…駆動回路
 32…位置検出部
 33…SW制御部
 41…第1の温度センサ
 42…第2の温度センサ
 100…真空ポンプ
 131…第1のケーシング部
 331…補正回路
 M…永久磁石

Claims (8)

  1.  回転軸と、金属製のケーシング部とを有するポンプ本体と、
     前記ケーシング部に取り付けられ、前記ケーシング部の温度を検出する第1の温度センサと、
     永久磁石を含み前記回転軸に取り付けられたロータコアと、複数のコイルを有するステータコアと、前記ロータコアを収容するキャンと、を有するモータと、
     あらかじめ設定された誘起電圧定数を基に前記モータを回転させる駆動信号を前記複数のコイルへ供給する駆動回路と、前記第1の温度センサの出力に基づいて前記誘起電圧定数を補正する補正回路とを有する制御ユニットと
     を具備する真空ポンプ。
  2.  請求項1に記載の真空ポンプであって、
     前記補正回路は、前記ケーシング部の温度が所定の温度範囲の場合には、前記ケーシング部の温度が高いほど前記モータの誘起電圧が低下するように前記誘起電圧定数を補正する
     真空ポンプ。
  3.  請求項2に記載の真空ポンプであって、
     前記補正回路は、前記ケーシング部の温度が第1の温度以上第2の温度未満の場合には、第1の温度勾配を有する第1の近似直線に従って前記誘起電圧定数を補正し、前記ケーシング部の温度が前記第2の温度以上第3の温度未満の場合には、前記第1の温度勾配とは異なる第2の温度勾配を有する第2の近似直線に従って前記誘起電圧定数を補正する
     真空ポンプ。
  4.  請求項3に記載の真空ポンプであって、
     前記第1の温度勾配は、前記第2の温度勾配よりも大きい
     真空ポンプ。
  5.  請求項1~4のいずれか1つに記載の真空ポンプであって、
     前記制御ユニットは、前記駆動回路の温度を検出する第2の温度センサをさらに有し、
     前記駆動回路は、前記駆動回路の温度が前記第3の温度以上の場合には、前記複数のコイルへの前記駆動信号の供給を停止する
     真空ポンプ。
  6.  永久磁石同期型のモータを備えた真空ポンプの制御方法であって、
     あらかじめ設定された誘起電圧定数を基に前記モータを回転させる駆動信号を生成し、
     ポンプ本体の一部を構成する金属製のケーシング部に取り付けられた温度センサの出力に基づいて、前記誘起電圧定数を補正する
     真空ポンプの制御方法。
  7.  請求項6に記載の真空ポンプの制御方法であって、
     前記ケーシング部の温度が所定の温度範囲の場合には、前記ケーシング部の温度が高いほど前記モータの誘起電圧が低下するように前記誘起電圧定数を補正する
     真空ポンプの制御方法。
  8.  請求項7に記載の真空ポンプの制御方法であって、
     前記ケーシング部の温度が第1の温度以上第2の温度未満の場合には、第1の温度勾配を有する第1の近似直線に従って前記誘起電圧定数を補正し、
     前記ケーシング部の温度が前記第2の温度以上第3の温度未満の場合には、前記第1の温度勾配とは異なる第2の温度勾配を有する第2の近似直線に従って前記誘起電圧定数を補正する
     真空ポンプの制御方法。
PCT/JP2018/023490 2017-10-31 2018-06-20 真空ポンプおよびその制御方法 WO2019087454A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112018005090.4T DE112018005090B4 (de) 2017-10-31 2018-06-20 Vakuumpumpe und Steuerungsverfahren dafür
CN201880067103.6A CN111213316B (zh) 2017-10-31 2018-06-20 真空泵及其控制方法
JP2018552082A JP6445227B1 (ja) 2017-10-31 2018-06-20 真空ポンプおよびその制御方法
KR1020207011242A KR102222453B1 (ko) 2017-10-31 2018-06-20 진공펌프 및 그 제어방법
US16/652,355 US20200271120A1 (en) 2017-10-31 2018-06-20 Vacuum pump and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-210448 2017-10-31
JP2017210448 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019087454A1 true WO2019087454A1 (ja) 2019-05-09

Family

ID=66333006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023490 WO2019087454A1 (ja) 2017-10-31 2018-06-20 真空ポンプおよびその制御方法

Country Status (6)

Country Link
US (1) US20200271120A1 (ja)
KR (1) KR102222453B1 (ja)
CN (1) CN111213316B (ja)
DE (1) DE112018005090B4 (ja)
TW (1) TWI710703B (ja)
WO (1) WO2019087454A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053177A1 (ja) * 2022-09-05 2024-03-14 日立Astemo株式会社 モータ制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3076582B1 (fr) * 2018-01-09 2020-01-24 Pfeiffer Vacuum Pompe a vide de type seche et procede de commande d'un moteur synchrone de pompe a vide
DE102021134268A1 (de) 2021-12-22 2023-06-22 OET GmbH Kältemittelverdichter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119983A (ja) * 1999-10-20 2001-04-27 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2002199776A (ja) * 2000-12-27 2002-07-12 Honda Motor Co Ltd ブラシレスdcモータの定数検出装置およびブラシレスdcモータの制御装置およびブラシレスdcモータの定数検出用プログラム
JP2004522040A (ja) * 2001-03-27 2004-07-22 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング ターボ分子ポンプ
JP2016111793A (ja) * 2014-12-05 2016-06-20 株式会社日立産機システム ポンプ装置及びインバータ駆動電動機組立体

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4220015A1 (de) 1992-06-19 1993-12-23 Leybold Ag Gasreibungsvakuumpumpe
DE19857453B4 (de) 1998-12-12 2008-03-20 Pfeiffer Vacuum Gmbh Temperaturüberwachung an Rotoren von Vakuumpumpen
DE102006016405B4 (de) * 2006-04-07 2024-08-01 Pfeiffer Vacuum Gmbh Vakuumpumpe mit Antriebsgerät
JP4421603B2 (ja) * 2006-12-01 2010-02-24 本田技研工業株式会社 モータ制御方法およびモータ制御装置
JP2008295222A (ja) 2007-05-25 2008-12-04 Ebara Densan Ltd ブラシレスキャンドモータ装置
ES2727478T3 (es) * 2011-04-27 2019-10-16 Graco Minnesota Inc Conjunto de válvula de bomba alternativa con alivio térmico
JP5703963B2 (ja) * 2011-05-25 2015-04-22 株式会社ジェイテクト 電動パワーステアリング装置
JP2013126284A (ja) 2011-12-14 2013-06-24 Panasonic Corp 電動機駆動装置
JP6030379B2 (ja) * 2012-08-16 2016-11-24 株式会社荏原製作所 シール構造及びこれを備えた真空ポンプ用モータ並びに真空ポンプ
US8836260B2 (en) * 2012-11-07 2014-09-16 Remy Technologies, L.L.C. Method and apparatus for reducing torque variation in motor drive systems
WO2015083449A1 (ja) * 2013-12-03 2015-06-11 日産自動車株式会社 電動機の制御装置および制御方法
JP6277013B2 (ja) * 2014-02-21 2018-02-07 日立オートモティブシステムズ株式会社 アクチュエータの制御装置
WO2015191348A1 (en) * 2014-06-09 2015-12-17 Synerject Llc Methods and apparatus for cooling a solenoid coil of a solenoid pump
CN104034445B (zh) * 2014-06-30 2016-02-17 南车株洲电力机车研究所有限公司 一种永磁体温度在线检测方法和装置
WO2016098487A1 (ja) * 2014-12-15 2016-06-23 株式会社デンソー 電流推定装置
DE102015006988A1 (de) * 2015-05-29 2016-12-01 Man Truck & Bus Ag Verfahren und Regelkreis zur Regelung eines elektrischen Antriebs eines elektrisch angetriebenen Druckluftverdichters eines Kraftfahrzeugs
JP6627269B2 (ja) * 2015-06-11 2020-01-08 株式会社ジェイテクト 電動オイルポンプ
JP6385902B2 (ja) * 2015-08-14 2018-09-05 株式会社神戸製鋼所 油冷式スクリュ圧縮機及びその制御方法
CN106655918B (zh) * 2016-11-09 2018-11-06 北京航空航天大学 一种无位置传感器无刷直流电机换相偏差快速校正控制系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119983A (ja) * 1999-10-20 2001-04-27 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2002199776A (ja) * 2000-12-27 2002-07-12 Honda Motor Co Ltd ブラシレスdcモータの定数検出装置およびブラシレスdcモータの制御装置およびブラシレスdcモータの定数検出用プログラム
JP2004522040A (ja) * 2001-03-27 2004-07-22 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング ターボ分子ポンプ
JP2016111793A (ja) * 2014-12-05 2016-06-20 株式会社日立産機システム ポンプ装置及びインバータ駆動電動機組立体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053177A1 (ja) * 2022-09-05 2024-03-14 日立Astemo株式会社 モータ制御装置

Also Published As

Publication number Publication date
KR102222453B1 (ko) 2021-03-02
KR20200043539A (ko) 2020-04-27
CN111213316A (zh) 2020-05-29
US20200271120A1 (en) 2020-08-27
DE112018005090B4 (de) 2023-11-30
TW201918630A (zh) 2019-05-16
TWI710703B (zh) 2020-11-21
CN111213316B (zh) 2021-07-13
DE112018005090T5 (de) 2020-08-13

Similar Documents

Publication Publication Date Title
KR101324450B1 (ko) 공기 조화기, 공기 조화기의 제조 방법 및 압축기
US10090793B2 (en) Electric motor, compressor, and method for controlling electric motor or compressor
Kim et al. Design of ultra-high-speed motor for FCEV air compressor considering mechanical properties of rotor materials
WO2019087454A1 (ja) 真空ポンプおよびその制御方法
US11162503B2 (en) Magnetic bearing device and fluid machine system using same
JP2008005604A (ja) 交流回転機の制御装置
JP4818145B2 (ja) モータ駆動制御装置並びに換気扇、液体用ポンプ、冷媒圧縮機、送風機、空気調和機及び冷蔵庫
EP1515423A2 (en) Motor control system and vacuum pump equipped with the motor control system
JIKUMARU et al. 1.2 kW 100,000 rpm high speed motor for aircraft
JP4818176B2 (ja) モータ駆動制御装置並びに換気扇、液体用ポンプ、冷媒圧縮機、送風機、空気調和機及び冷蔵庫
JP5289415B2 (ja) 同期電動機の製造方法
JP6445227B1 (ja) 真空ポンプおよびその制御方法
WO2023079621A1 (ja) 真空ポンプ、真空ポンプの制御方法、真空ポンプ用電力変換装置、圧縮機用電力変換装置および圧縮機
JP2015048784A (ja) 電動オイルポンプ装置
WO2011035091A2 (en) Switched reluctance machine with eddy current loss dampener
JP6223915B2 (ja) 圧縮機及びその駆動装置
Ismagilov et al. Design analysis of submersible brushless dc motors for the oil and gas industry
Dmitrievskii et al. Development and experimental study of the high efficient synchronous reluctance motor
CN115280105A (zh) 位置检测装置和马达单元
EP3355466A1 (en) Motor control device, rotary compressor system and motor control method
US20240369064A1 (en) Vacuum pump
Chulaee et al. Sensorless Control of Low Inductance Coreless AFPM Machines for Fault-tolerant Operation of Propulsion Systems
JP2021158869A (ja) 永久磁石同期電動機における回転子磁石の温度推定装置
JP6445785B2 (ja) 電動モータ及びこれを備えたポンプ
CN115280665A (zh) 状态检测装置和马达单元

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018552082

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207011242

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18873889

Country of ref document: EP

Kind code of ref document: A1