[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023079621A1 - 真空ポンプ、真空ポンプの制御方法、真空ポンプ用電力変換装置、圧縮機用電力変換装置および圧縮機 - Google Patents

真空ポンプ、真空ポンプの制御方法、真空ポンプ用電力変換装置、圧縮機用電力変換装置および圧縮機 Download PDF

Info

Publication number
WO2023079621A1
WO2023079621A1 PCT/JP2021/040574 JP2021040574W WO2023079621A1 WO 2023079621 A1 WO2023079621 A1 WO 2023079621A1 JP 2021040574 W JP2021040574 W JP 2021040574W WO 2023079621 A1 WO2023079621 A1 WO 2023079621A1
Authority
WO
WIPO (PCT)
Prior art keywords
predetermined
motor
torque
vacuum pump
less
Prior art date
Application number
PCT/JP2021/040574
Other languages
English (en)
French (fr)
Inventor
康宏 木村
栄秀 横澤
賢二 町家
英晃 井上
彬徳 後藤
Original Assignee
株式会社アルバック
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック, 株式会社安川電機 filed Critical 株式会社アルバック
Priority to PCT/JP2021/040574 priority Critical patent/WO2023079621A1/ja
Priority to JP2022536599A priority patent/JP7189394B1/ja
Priority to CN202180103879.0A priority patent/CN118176362A/zh
Publication of WO2023079621A1 publication Critical patent/WO2023079621A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to technology of a positive displacement vacuum pump and its control method.
  • a positive displacement vacuum pump discharges the gas in the chamber, which is the space to be evacuated, by transferring its volume with a motor.
  • Motors as typified by squirrel cage induction motors, have their number of rotations (also called sliding number of rotations) determined according to the input power supply frequency, and employ a control method that keeps the rotation speed within a certain range.
  • volumetric transfer is the compounded event of gas transfer and attendant compression load, and the load of maintaining a differential pressure between the gas inlet and outlet, and the volumetric transfer of the pump in question.
  • overload operation is forced such that the rated rotation speed cannot be maintained with respect to the load to be processed per unit time, which is the work of the motor.
  • Such vacuum pumps are designed on the premise that they will be periodically forced to operate with overloads above their ratings. The reason for this is that it is common for the load to be initially maximum and then connected to a reduced load that decreases exponentially. In addition to this, when maintaining the vacuum, only the work of maintaining the differential pressure becomes a load (depending on the system configuration of the vacuum pump, the differential pressure may be small), and the ratio of the vacuum maintenance time to the maximum load time is This is because it is common for them to be large. In other words, considering the load, it is rational to design the vacuum pump after giving the motor and pump a configuration that can separate the load above the continuous rating, and configure the pump system designed in such a way. or is being operated.
  • the vacuum pump was used in this way, the handling of the overloaded operation as described above had an adverse effect on the vacuum pumping performance. Specifically, when increasing the load on the vacuum pump or increasing the amount of volume transferred during operation, especially the amount transferred per unit time, the motor's capacity must be maximized. Demonstrating the above abilities is restricted, and it is not possible to demonstrate the short-time rated ability originally included.
  • an object of the present invention is to provide a vacuum pump and a method of controlling the same that can improve the evacuation performance while protecting the motor from overheating.
  • a vacuum pump includes a positive displacement pump body, a motor, and a controller.
  • the pump body has a pump rotor.
  • the motor rotates the pump rotor.
  • the control unit executes a first control mode in which the motor is driven at a predetermined number of revolutions or less when the load torque is less than or equal to a first predetermined torque, and when the load torque exceeds the first predetermined torque. executes a second control mode in which the motor is driven at a speed equal to or lower than the predetermined rotational speed and at a torque equal to or lower than a second predetermined torque higher than the first predetermined torque, with a first predetermined electric power being the upper limit.
  • the reduction in the number of revolutions of the motor can be suppressed even during overload operation, so the volumetric transfer amount per unit time by the pump rotor can be maintained and the exhaust time to the target pressure can be shortened. Also, since the rotation speed of the motor is limited to a predetermined rotation speed or less, the vacuum pump can be protected from overheating.
  • the first predetermined torque is typically the rated torque of the motor.
  • the first predetermined power is typically the rated power of the motor.
  • the predetermined number of revolutions is typically the rated number of revolutions of the motor.
  • the predetermined rotational speed is higher than the rated rotational speed when the load torque is equal to or less than the first predetermined torque and the electric power of the motor is equal to or less than the first predetermined electric power.
  • control unit drives the motor with a second predetermined power higher than the first predetermined power only for a predetermined time when the rotation state of the motor satisfies a predetermined condition.
  • the control unit calculates an estimated value of the temperature of the entire vacuum pump in the second control mode, and drives the motor in the first control mode when the estimated value is equal to or higher than a predetermined temperature.
  • a predetermined temperature may be configured to
  • a control method for a vacuum pump is a control method for a positive displacement vacuum pump having a pump rotor and a motor for rotating the pump rotor, comprising: starting the motor; when the load torque is equal to or less than a first predetermined torque, executing a first control mode in which the motor is driven at a predetermined number of revolutions or less; When the load torque exceeds the first predetermined torque, the motor is driven at a speed equal to or less than the predetermined rotation speed and a torque equal to or less than a second predetermined torque higher than the first predetermined torque, with a first predetermined electric power as an upper limit.
  • a second control mode is executed.
  • a vacuum pump power converter is a vacuum pump power converter that supplies power to a motor that rotates a pump rotor of a positive displacement pump, When the load torque is equal to or less than a first predetermined torque, a first control mode is executed to drive the motor at a predetermined rotational speed or less, and when the load torque exceeds the first predetermined torque, a first control mode is executed.
  • a control unit that executes a second control mode in which the motor is driven at a predetermined rotational speed or less and a second predetermined torque or less higher than a first predetermined torque, with a predetermined electric power as an upper limit;
  • FIG. 1 is a schematic cross-sectional view showing the internal structure of a vacuum pump according to one embodiment of the present invention
  • FIG. FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1; It is a block diagram which shows the structure of the said vacuum pump roughly. It is a functional block diagram of the control part in the said vacuum pump. It is a flowchart which shows an example of the procedure of the process performed in the said control part.
  • FIG. 4 is a graph showing experimental results showing an example of the operation of the vacuum pump, showing the relationship between load torque and pressure.
  • FIG. 4 is a graph showing the relationship between power and pressure, showing experimental results showing an example of the operation of the vacuum pump.
  • FIG. 5 is a graph showing experimental results showing an example of the operation of the vacuum pump, showing the relationship between the number of revolutions and the pressure.
  • FIG. 4 is a graph showing experimental results showing an example of the operation of the vacuum pump, showing the relationship between pumping speed and pressure.
  • FIG. 4 is a graph showing experimental results showing an example of the operation of the vacuum pump, showing the relationship between pressure and time. It is an experimental result which shows an example of operation
  • 1 shows a typical refrigeration circuit
  • FIG. 1 is a schematic cross-sectional view showing the internal structure of a vacuum pump 100 according to one embodiment of the invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • the X-axis, Y-axis and Z-axis indicate three axial directions orthogonal to each other.
  • the vacuum pump 100 of this embodiment includes a pump body 10, a motor 20, and a control unit 30.
  • a single-stage mechanical booster pump will be described as an example of the vacuum pump 100.
  • other positive displacement vacuum pumps such as screw pumps, vane pumps, and roots pumps may also be used. may
  • the pump body 10 has a first pump rotor 11, a second pump rotor 12, and a casing 13 that houses the first and second pump rotors 11,12.
  • the casing 13 has a first casing portion 131 , partition walls 132 and 133 arranged at both ends of the first casing portion 131 in the Y-axis direction, and a second casing portion 134 fixed to the partition wall 133 .
  • the first casing portion 131 and partition walls 132, 133 form a pump chamber P that accommodates the first and second pump rotors 11, 12. As shown in FIG.
  • the first casing part 131 and the partition walls 132, 133 are made of, for example, iron-based metal materials such as cast iron and stainless steel, and are connected to each other via seal rings (not shown).
  • the second casing part 134 is made of, for example, a non-ferrous metal material such as an aluminum alloy.
  • An intake port E1 communicating with the pump chamber P is formed on one main surface (upper surface in FIG. 2) of the first casing part 131, and the other main surface (lower surface in FIG. 2) communicates with the pump chamber P.
  • An exhaust port E2 is formed.
  • An intake pipe (not shown) communicating with the inside of the vacuum chamber (not shown) is connected to the intake port E1, and an exhaust pipe (not shown) or an intake port of an auxiliary pump is connected to the exhaust port E2.
  • the first and second pump rotors 11 and 12 are composed of cocoon-shaped rotors made of iron-based metal material such as cast iron, and are arranged facing each other in the X-axis direction.
  • the first and second pump rotors 11, 12 respectively have rotary shafts 11s, 12s parallel to the Y-axis direction.
  • One end 11s1, 12s1 of each of the rotating shafts 11s, 12s is rotatably supported by a bearing B1 fixed to the partition wall 132, and the other end 11s2, 12s2 of each of the rotating shafts 11s, 12s is fixed to the partition 133. rotatably supported by the bearing B2.
  • Predetermined gaps are formed between the first pump rotor 11 and the second pump rotor 12 and between the pump rotors 11 and 12 and the inner wall surface of the pump chamber P. , 12 are arranged to rotate against each other and against the inner wall surface of the pump chamber P without contact.
  • a rotor core 21 constituting the motor 20 is fixed to one end 11s1 of the rotating shaft 11s of the first pump rotor 11, and a first synchronous gear 141 is fixed between the rotor core 21 and the bearing B1.
  • a second synchronous gear 142 that meshes with the first synchronous gear 141 is fixed to one end 12s1 of the rotating shaft 12s of the second pump rotor 12 .
  • the motor 20 is a permanent magnet synchronous canned motor.
  • the motor 20 may be an induction motor such as a squirrel cage motor.
  • the vacuum pump 100 is not limited to the one in which the pump body 10 and the motor 20 are integrated as shown in FIG. 1, and the vacuum pump 100 in which the pump body 10 and the motor 20 are separated may be used.
  • the pump main body 10 and the motor 20 may be independent as a heat circuit.
  • the motor 20 has a rotor core 21 , a stator core 22 , a can 23 and a motor case 24 .
  • the rotor core 21 is fixed to one end 11 s 1 of the rotating shaft 11 s of the first pump rotor 11 .
  • the rotor core 21 has a laminated body of electromagnetic steel plates and a plurality of permanent magnets M attached to its peripheral surface.
  • the permanent magnets M are arranged along the circumference of the rotor core 21 with alternate polarities (N pole, S pole).
  • ferrous materials such as neodymium magnets and ferrite magnets are used as permanent magnet materials.
  • the arrangement form of the permanent magnets is not particularly limited, and may be a surface magnet type (SPM) in which the permanent magnets are arranged on the surface of the rotor core 21, or an embedded magnet type (IPM) in which the permanent magnets are embedded in the rotor core 21. may be
  • the stator core 22 is arranged around the rotor core 21 and fixed to the inner wall surface of the motor case 24 .
  • the stator core 22 has a laminate of electromagnetic steel plates and a plurality of coils C wound thereon.
  • Coil C is composed of three-phase windings including a U-phase winding, a V-phase winding and a W-phase winding, and is electrically connected to control unit 30 respectively.
  • the can 23 is arranged between the rotor core 21 and the stator core 22 and accommodates the rotor core 21 inside.
  • the can 23 is a bottomed cylindrical member made of a synthetic resin material such as PPS (polyphenylene sulfide) or PEEK (polyetheretherketone) and having one end open on the gear chamber G side.
  • the can 23 is fixed to the motor case 24 via a seal ring S arranged around its open end side, and seals the rotor core 21 from the atmosphere (outside air).
  • the motor case 24 is made of an aluminum alloy, for example, and accommodates the rotor core 21, the stator core 22, the can 23, and the synchronous gears 141, 142.
  • the motor case 24 forms a gear chamber G by being fixed to the partition wall 132 via a seal ring (not shown).
  • Gear chamber G contains lubricating oil for lubricating synchronous gears 141 and 142 and bearing B1.
  • a plurality of heat radiation fins are typically provided on the outer surface of the motor case 24 .
  • the tip of the motor case 24 is covered with a cover 25.
  • the cover 25 is provided with a through hole communicating with the outside air, and is configured to be able to cool the rotor core 21 and the stator core 22 via a cooling fan 50 arranged adjacent to the motor 20 .
  • the motor case 24 may be configured to be water-coolable.
  • the pump main body 10 may have a structure in which the casing 13 can be water-cooled. There are no restrictions on the configuration of the cooling fan 50, the water-coolable structure, etc., as long as the amount of heat removal that can maintain the continuous rated operation can be secured.
  • FIG. 3 is a block diagram schematically showing the configuration of the control unit 30. As shown in FIG. 3
  • the control unit 30 has a drive circuit 31, a position detection section 32, a control section 33, and a current detector .
  • the control unit 30 is for controlling the driving of the motor 20 .
  • the control unit 30 is composed of a circuit board housed in a case made of metal or the like installed in the motor case 24 and various electronic components mounted thereon, and its function is a power conversion device ( inverter).
  • the drive circuit 31 is composed of an inverter circuit having a plurality of semiconductor switching elements (transistors) that generate a drive signal for rotating the motor 20 at a predetermined number of revolutions, a predetermined power, or the like. These semiconductor switching elements supply output (electric power) to the coils C (U-phase winding, V-phase winding and W-phase winding) of the stator core 22 by individually controlling the switching timing by the control unit 33. do.
  • semiconductor switching elements supply output (electric power) to the coils C (U-phase winding, V-phase winding and W-phase winding) of the stator core 22 by individually controlling the switching timing by the control unit 33. do.
  • the current detector 34 detects the current (output current) flowing between the drive circuit 31 and the coil C of the stator core 22 .
  • the current detector 34 may be configured to detect the current of all phases (U-phase, V-phase and W-phase) of the three-phase AC, or detect the current of any two phases of the three-phase AC. may be configured to As long as no zero-phase current occurs, the sum of the U-, V-, and W-phase currents is zero, so current information for all phases is obtained even when detecting two-phase currents.
  • the current detector 34 may be configured to detect voltage. This is realized by detecting the current by using the resistance present in the circuit such as the shunt or the motor or drive circuit.
  • the position detection unit 32 grasps the current value of each layer detected by the current detector 34, and detects the rotor core 21 from the waveform of the back electromotive force generated in the coil C due to the temporal change in the magnetic flux intersecting the coil C. is indirectly detected, and is output to the controller 33 as a position detection signal for controlling the energization timing of the coil C.
  • the controller 33 As shown in FIG. If the motor 20 is an induction machine instead of a synchronous machine, for example, the position detection unit 32 is replaced with the magnetic flux estimation unit 32, and the control unit 33 described below uses known d- and q-axis magnetic fluxes.
  • a drive signal may be supplied to the drive circuit 31 by performing vector control.
  • the control unit 33 generates a control signal for exciting the coil C of the stator core 21 based on the magnetic pole position of the rotor core 21 detected by the position detection unit 32 and outputs it to the drive circuit 31 .
  • the control unit 33 is typically configured by an information processing device (computer) having a CPU (Central Processing Unit) and memory.
  • the memory stores a program for executing a processing procedure described later in the control unit 33 and various parameters for calculation.
  • FIG. 4 is a functional block diagram showing the configuration of the control section 33. As shown in FIG.
  • the control unit 33 has a speed calculation unit 331 , a power calculation unit 332 , a temperature calculation unit 333 , a determination unit 334 and a signal generation unit 335 .
  • the speed calculator 331 calculates the rotation speed of the motor 20 based on the change in the magnetic pole position of the rotor core 21 detected by the position detector 32 .
  • the power calculation unit 332 detects the load torque of the motor 20 from the magnetic pole position of the rotor core 21 acquired by the position detection unit 32 or the current value flowing through the coil C, and based on the detected load torque and the rotation speed of the motor , the output (power) to be supplied to the motor 20 is calculated.
  • the load torque may be obtained by providing detectors such as strain gauges on the rotary shaft of the motor 20 and the rotary shafts 11s and 12s of the pump rotors 11 and 12 .
  • the temperature calculation unit 333 calculates an estimated value of the calorific value (temperature) of the entire vacuum pump 100 including the pump main body 10 and the motor 20 .
  • an operation algorithm based on parameters simulating the heat capacity of the entire vacuum pump 100 and the operation time of the vacuum pump 100 is used.
  • the estimated value may be calculated based on the output of a temperature sensor that directly or indirectly detects the temperatures of the pump body 10 and the motor 20 .
  • the determination unit 334 determines the magnitude relationship between the load torque and rotation speed of the motor 20 calculated by the speed calculation unit 331 and predetermined torques (T1, T2) and a predetermined rotation speed (Rth), which will be described later. judge each. Further, the determination unit 334 determines whether or not the estimated value of the amount of heat generated calculated by the temperature calculation unit 333 is equal to or higher than a predetermined temperature (Tm), which will be described later, when the motor 20 is driven.
  • Tm predetermined temperature
  • the signal generator 335 generates a drive signal for the drive circuit 31 according to the control mode, which will be described later.
  • the control unit 33 has a first control mode and a second control mode as control modes of the motor 20, and the load torque, output (electric power), and rotation speed of the motor 20 in the determination unit 334. Based on the determination result, the control mode of the motor 20 is switched between the first control mode and the second control mode.
  • the first control mode is executed when the load torque is equal to or less than the first predetermined torque T1, and drives the motor 20 at a predetermined number of revolutions (Rth) or less.
  • the second control mode is executed when the load torque exceeds the first predetermined torque T1, and the first predetermined power P1 is set as the upper limit, the motor 20 is rotated at a predetermined rotation speed (Rth) or less, and at the first is driven at a second predetermined torque T2 or less, which is higher than the predetermined torque T1 of the motor.
  • the predetermined rotational speed Rth is the rated rotational speed
  • the first predetermined torque T1 is the rated torque
  • the first predetermined power P1 is the rated output, but of course the present invention is not limited to this.
  • motor output (electric power) P [kW] is proportional to the product of motor load torque T [N m] and rotation speed n [rpm], as shown in the following equation (1).
  • P ⁇ T ⁇ n (1) Assuming that the volume transfer amount of the pump body is represented by the number of revolutions n of the motor, the volume transfer amount is determined by the load torque of the motor.
  • the amount of volumetric transfer depends on the number of rotations in a state in which the load obtained by summing the volumetric transfer load and the differential pressure load (hereinafter also referred to as the total load) and the torque (load torque) exerted by the motor are balanced. can lead Therefore, it is possible to design a vacuum pump by considering, for example, continuous driving of the motor at the rated rotation speed as a condition for securing the exhaust performance that is the objective of the vacuum pump.
  • the vacuum pump when evacuating the chamber from the atmospheric pressure, for example, the vacuum pump has a large volumetric transfer load or a compression load associated with it immediately after startup, so the load torque of the motor is high, and the vacuum pump is operated in a high load state or a high load state. become overloaded. Under overload conditions, the motor may exceed its rated torque, and if this condition persists for a long period of time, the motor cannot be protected from overheating. Therefore, when driving a motor, the load torque is usually limited (torque limit) so that the motor does not exceed its rated torque.
  • the control method of the motor 20 is switched from the first control mode to the second control mode. It allows the motor 20 to be driven at a second predetermined torque T2 or less, which is higher than the first predetermined torque T1.
  • the second predetermined torque T2 is not particularly limited as long as the output of the motor 20 does not exceed the first predetermined power P1 (rated power), and changes according to the rotation speed n.
  • the method of driving the motor 20 in the first control mode is not particularly limited as long as the rotation speed and load torque are equal to or less than a predetermined value, and typically rotation speed control with the rated rotation speed as an indicated value is employed. Not limited to this, for example, torque control with the first predetermined torque T1 (rated torque) as the indicated value or power control with the first predetermined power P1 (rated power) as the indicated value may be employed.
  • a typical method of driving the motor 20 in the second control mode is power control in which the motor is driven with the first predetermined power P1 (rated power) as the upper limit. Therefore, even if the load torque exceeds the first predetermined torque T1 (rated torque), if the current rotation speed (n) of the motor 20 is lower than the rated rotation speed (N), the specified torque value for the motor 20 is set to It can be increased by (N/n) times. As a result, the volume transfer amount is increased, and the evacuation time can be shortened. Moreover, even if the load torque of the motor is increased by (N/n) times, the output of the motor 20 is equal to or less than the rated power, so overheating of the vacuum pump 100 is suppressed.
  • P1 rated power
  • the method of driving the motor 20 in the second control mode is not limited to the above-described power control as long as it is a control method that drives the motor 20 with a predetermined power as the upper limit. may be employed, or speed control may be employed in which the speed command value, which is the target value, is gradually increased or decreased while monitoring the electric power value.
  • making the motor 20 exert a torque higher than the rated torque means that a current higher than the rating is passed through the motor 20, and the amount of heat generated does not match the heat removal amount, and overheating of the motor 20 cannot be avoided. In some cases, the coil C or the like may be thermally damaged without the heat being applied.
  • the compression load of the pump main body 10 becomes excessively larger than the rating, the pump main body 10 is overheated, and the clearance between the pump rotors 11 and 12 becomes insufficient, or the clearance between the pump rotors 11 and 12 and the casing 13 becomes insufficient. A galling phenomenon may occur due to the shortage.
  • the rating is understood to mean that each component maintains a safe temperature range during operation by maintaining a balance between the amount of heat generated and the amount of heat removed, it is safe to generate torque above the rating. temperature range may not be guaranteed. Therefore, a function of estimating or monitoring the temperature or a physical quantity corresponding thereto and protecting the vacuum pump 100 from overheating is required.
  • the present embodiment has a temperature calculation unit 333 for calculating an estimated value of the amount of heat generated by the entire vacuum pump 100. For example, when the estimated value of the amount of heat generated is equal to or higher than a predetermined temperature (Tm), It is configured to switch to the first control mode in which the motor 20 is driven at a predetermined torque T1 of 1 and drive the motor 20 at a rated torque or less. As a result, the vacuum pump 100 can be protected from overheating.
  • Tm predetermined temperature
  • the rotation speed can be increased until the rated power is reached, so that the volume transfer amount can be increased. may exceed the limit speed of the mechanical parts that make up the vacuum pump 100 .
  • the upper limit of the rotation speed is set to the rated rotation speed (Rth). This allows the vacuum pump 100 to operate in a safe speed range.
  • the upper limit of the rotation speed may be set to a rotation speed equal to or lower than the limit speed of the mechanical parts and higher than the rated rotation speed.
  • positive displacement vacuum pumps have an evacuation time as their capacity, and the more the number of cumulative transfers of volume at a certain point in time, the shorter the evacuation time.
  • the motor can function as a vacuum pump by enabling it to apply torque or power exceeding the rated value. can be improved.
  • the vacuum pump should be There is no need to improve the exhaust performance of
  • the motor 20 when it is determined that the motor rotation state is a state in which torque or power exceeding the rated power can be applied, the motor 20 is operated with torque or power exceeding the rated torque or rated power (for example, 120% to 200% of the rated power). It can be driven. By executing such control, it becomes possible to increase the volume transfer amount (or the number of transfers) per unit time, and as a result, the evacuation time is shortened. Moreover, if the above-described temperature estimation function is provided, the problem of overheating due to overload can be avoided, and safe operation of the vacuum pump can be ensured.
  • the temperature calculation unit 333 that calculates the estimated value of the calorific value estimates the calorific value of the pump main body 10 and the motor 20 individually.
  • the heat balances of the pump main body 10 and the motor 20 are different. Therefore, for example, when one of the estimated values is equal to or higher than a predetermined temperature (Tm), the motor is switched to the first control mode in which the motor is driven at the first predetermined torque T1. It is configured to drive the motor 20 at a rated torque or less.
  • This predetermined temperature may be set separately for the pump main body 10 and the motor 20 . This is preferable because overheating of the vacuum pump can be suppressed for a longer period of time if the heat resistance is different from each other.
  • FIG. 5 is a flow chart showing an example of a procedure of processing executed by the control unit 33. As shown in FIG.
  • FIGS. 6 to 10 are experimental results showing an example of the operation from the start of operation of the vacuum pump 100 of the present embodiment until the target pressure is reached after a certain period of time has passed.
  • 7 shows the relationship between power and pressure
  • FIG. 8 shows the relationship between rotation speed and pressure
  • FIG. 9 shows the relationship between pumping speed and pressure
  • FIG. and time In FIGS. 6 to 8, the load torque, electric power, and rotation speed on the vertical axis are expressed on an arbitrary scale, and are shown as relative ratios when each rated value is set to 1.
  • FIG. 6 to 10 "power control” corresponds to the control method executed in this embodiment, and for comparison, the control method in “rotational speed control” is also shown.
  • electric power control and “rotational speed control” indicate that the controlled object of the control loop is the electric power or the rotational speed. do.
  • the controller 33 drives the motor 20 in the first control mode (step 101).
  • the motor 20 is driven by rotational speed control with the rated rotational speed Rth as an indicated value. Any control loop can be adopted as long as a load torque, which will be described later, is required.
  • the vacuum pump 100 When the pressure inside the vacuum chamber is the atmospheric pressure, the vacuum pump 100 is driven under a relatively high load immediately after the start of operation.
  • the control unit 33 monitors the load torque obtained as a result of the operation of the motor 20, and determines whether or not the load torque is equal to or less than the first predetermined torque T1 (step 102).
  • the controller 33 When the load torque is equal to or less than the first predetermined torque T1 ("Y" in step 102), the controller 33 continues driving the motor 20 in the first control mode. On the other hand, when the load torque exceeds the first predetermined torque T1 ("N" in step 102), the control unit 33 determines whether or not the number of rotations of the motor 20 is less than the predetermined number of rotations Rth (step 103). ). If the rotation speed is less than the predetermined rotation speed Rth ("Y" in step 103), the control section 33 switches from the first control mode to the second control mode (step 104). That is, when the load torque exceeds the first predetermined torque T1 and the rotational speed of the motor 20 is less than the predetermined rotational speed Rth, the second control mode is executed.
  • the motor 20 is operated at a rated rotational speed Rth or less and a second predetermined torque T2 higher than the first predetermined torque T1 or less with the first predetermined power P1 (rated power) as the power upper limit value. driven.
  • the second predetermined torque T2 is set to a torque value corresponding to 120% to 200% of the rated torque, for example.
  • the load torque can be increased within a range that does not exceed the rated power. reference). As a result, it is possible to increase the displacement amount (rotational speed) and shorten the evacuation time (see FIGS. 8 to 10). Further, since the upper limit of the rotation speed is limited to the rated rotation speed Rth, damage to the vacuum pump 100 due to excessive rotation of the motor 20 can be prevented.
  • the second control mode so that the second predetermined torque T2 is adjusted (gradually increased or decreased) to achieve the first predetermined power P1.
  • This configuration is a typical power control in which the control target of the control loop is the power and the target power is the first predetermined power P1.
  • the second predetermined torque T2 is a setting value that realizes the first predetermined electric power P1 or less, it is preferable from the viewpoint of suppressing the amount of heat generation described later.
  • the control unit 33 determines whether or not the temperature of the entire vacuum pump 100 (estimated value of heat generation calculated by the temperature calculation unit 333) is equal to or higher than a predetermined temperature Tm during execution of the second control mode (step 105).
  • a predetermined temperature Tm a predetermined temperature during execution of the second control mode.
  • the control unit 33 determines that the temperature of the vacuum pump 100 is equal to or higher than the predetermined temperature Tm ("Y" in step 105)
  • it switches from the second control mode to the first control mode.
  • the controller 33 determines that the temperature of the vacuum pump 100 is lower than the predetermined temperature Tm ("N" in step 105)
  • it continues driving the motor 20 in the second control mode.
  • control unit 33 determines whether or not the load torque tends to decrease during execution of the second control mode (step 106). Whether or not the load torque tends to decrease is determined, for example, based on whether the detected value of the load torque detected at predetermined intervals in the speed calculation unit 331 is constant or tends to decrease. Under power control, if the load torque tends to decrease, it can be assumed that the rotation speed tends to increase, so it can be determined that the chamber is moving towards vacuum.
  • the control unit 33 increases the power upper limit value (power target value) from the first predetermined power P1 (rated power) to the second 2, the torque boost control is executed to increase the power to the predetermined power P2 (step 107).
  • the second predetermined power P2 is not particularly limited as long as it is higher than the first predetermined power P1, and is set to a power value corresponding to 120% to 200% of the rated power, for example.
  • the short-time rating capability is maximized in the vacuum range (medium vacuum range) shown in FIG.
  • the torque boost control is limited to a predetermined time, so the vacuum pump 100 can be prevented from overheating (see FIG. 7).
  • the predetermined time can be experimentally obtained in advance based on the rate of heat rise of the vacuum pump 100 due to torque boost control.
  • the drive control of the motor 20 is executed mainly by power control. As a result, compared to the case where the motor 20 is driven only by controlling the rotation speed, the original exhaust performance of the vacuum pump 100 can be maximized. ) can be shortened.
  • the starting torque can be increased compared to rotation speed control with a torque limit added. Not only can it shorten the exhaust time from the oil, but it can also improve the possibility of detachment from sticking. In addition to the effect of shortening the exhaust time, it is possible to operate with reduced heat generation compared to the operation in which the torque value is simply increased by mainly controlling the electric power.
  • the control unit 33 determines whether or not the load torque is equal to or less than the first torque T1 (rated torque) (step 102). If so, switch from the second control mode to the first control mode ("Y" in step 102).
  • the rated rotation speed predetermined rotation speed Rth
  • the definitions of medium vacuum and high vacuum are based on JIS Z 8126-1 Vacuum technology, terms, Part 1: general terms.
  • the motor 20 in the first control mode, is driven at a predetermined number of revolutions Rth or less, and the predetermined number of revolutions Rth is the rated number of revolutions. It may be a variable value according to the operating state of the motor 20 at that time.
  • the predetermined rotation speed Rth is higher than the rated rotation speed. It can be a number.
  • a control loop for power control is introduced into the first control mode, and the rotation speed is allowed to rise within a range in which the power of the motor 20 does not exceed the first power consumption P1 (typically the rated power) (hereinafter referred to as (Also called high speed control).
  • the upper limit of rotation speed in the high rotation speed control can be arbitrarily set according to, for example, the upper limit of rotation speed of the pump main body or the motor, and can be set to 120% of the rated rotation speed, for example.
  • the rate of increase in the number of revolutions from the high rated number of revolutions to the upper limit of the number of revolutions is set to a value lower than the rate of increase in the number of revolutions by power control, as indicated by the dashed line Ep in FIG.
  • such high rotation speed control can be executed at a predetermined time after switching from the second control mode to the first control mode in the vicinity of a medium vacuum.
  • the operating time under high rotation speed control may be fixed in advance, or may be the time until the electric power reaches the first predetermined electric power P1.
  • the first control mode is executed in which the rated rotational speed is set as the rotational speed upper limit.
  • FIG. 12 shows a typical refrigeration circuit.
  • the high pressure superheated gas refrigerant discharged from the compressor 201 is condensed in the condenser 202 .
  • the high-pressure supercooled liquid refrigerant that has flowed out of the condenser 202 is decompressed by passing through the expansion valve 203 .
  • the low-pressure liquid refrigerant that has passed through the expansion valve 203 evaporates in the evaporator 204 .
  • the low-pressure superheated gas refrigerant that has flowed out of the evaporator 204 is sucked into the compressor 201 .
  • compressor 201 for example, a positive displacement pump such as a rotary pump or a scroll pump can be used.
  • Compressor 201 is susceptible to heat load due to the condensing temperature and evaporation temperature of the refrigerant, the degree of superheat of the suctioned steam, and the like.
  • compressors are required to have the ability to draw in a larger amount of steam and exhibit a greater refrigerating capacity under the same operating conditions. Therefore, in the compressor 201 as well, similarly to the vacuum pump described above, there is a demand for a technique for improving pump performance while protecting the motor, which is the driving source of the compressor 201, from overheating.
  • the operation control of the vacuum pump described above is also effective for such a problem.
  • the refrigerant flowing into the evaporator 204 from the expansion valve 203 can be regarded as introducing gas into the vacuum chamber.
  • the load torque of compressor 201 is also stabilized. For example, if the condensing pressure is regarded as the atmospheric pressure in the evacuation system, if the evaporation pressure is stable and the heat flow rate of the evaporator 204 is constant, the operating state of the compressor 201 is the same as the intermediate vacuum zone in the evacuation system. state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】モータを過熱から保護しつつ、真空排気性能の向上を図ることができる真空ポンプおよびその制御方法を提供する。 【解決手段】本発明の一形態に係る真空ポンプは、容積移送型のポンプ本体と、モータと、制御部とを備える。前記ポンプ本体は、ポンプロータを有する。前記モータは、前記ポンプロータを回転させる。前記制御部は、負荷トルクが第1の所定トルク以下のときは、前記モータを所定回転数以下で駆動する第1の制御モードを実行し、前記負荷トルクが前記第1の所定トルクを超えるときは、第1の所定電力を上限として、前記モータを前記所定回転数以下、かつ、第1の所定トルクより高い第2の所定トルク以下で駆動する第2の制御モードを実行する。

Description

真空ポンプ、真空ポンプの制御方法、真空ポンプ用電力変換装置、圧縮機用電力変換装置および圧縮機
 本発明は、容積移送型の真空ポンプおよびその制御方法の技術に関する。
 容積移送式の真空ポンプは、モータにてその容積を移送させることで、排気対象空間であるチャンバ内の気体を排出する。モータは、かご型誘導モータに代表されるように入力される電源周波数に応じてその回転数(すべり回転数とも言われる)が定まり、その回転速度を一定範囲とする制御方式が採用される。しかし、容積の移送とは、気体の移送および付随する圧縮負荷と、気体の吸入口と排出口との間の差圧の維持の負荷が合成された事象であって、当該ポンプの容積移送の設計思想を適用する対象によっては、モータの仕事となる単位時間あたりに処理すべき負荷に対して、その定格の回転速度を維持できないような過負荷運転を強いられる場合がある。
 過負荷運転を維持すれば、モータまたはポンプ部に過熱を招来し、真空ポンプは故障にいたることから、負荷を一定以下に制限する機械的な構成(リリーフ弁(圧縮負荷の制限)、マグネットカップリング(トルク伝達の制限))を付与して対応していた。また、近年は制御装置の高度化により、マグネットカップリングに代えて、制御装置に付属する機能であるトルクリミット(電流リミット)が利用される場合もある(例えば特許文献1参照)。
特開平8-254193号公報
 このような真空ポンプは、周期的に定格以上の過負荷運転を強いられることを前提として設計されている。この理由は、負荷が当初最大であって、その後指数的に低減していく低減負荷に接続されることが一般的であるためである。これに加え、真空を維持する際には差圧維持の仕事のみが負荷となり(真空ポンプのシステム構成によってはその差圧も小さい場合がある)、かつ最大負荷の時間より真空維持時間の比率が大きくなるのが一般的であるためである。つまり、負荷を考えると、モータおよびポンプ部は連続定格以上の負荷については分離できる構成を付与した上で真空ポンプを設計するのが合理的であり、そのように設計されたポンプシステムを構成したり、運用されたりしている。
 このように利用されていた真空ポンプであったが、上述したような過負荷時における運転の対処が真空排気性能に悪影響を及ぼしている。具体的には、真空ポンプの負荷を増加させたり、運転時に容積の移送量、特に単位時間あたりの移送量を増加させたりする際に、そのモータ能力を最大限に発揮すること、つまり連続定格以上の能力を発揮することについては制限されており、元々内包している短時間定格の能力を発揮することができない。
 以上のような事情に鑑み、本発明の目的は、モータを過熱から保護しつつ、真空排気性能の向上を図ることができる真空ポンプおよびその制御方法を提供することにある。
 本発明の一形態に係る真空ポンプは、容積移送型のポンプ本体と、モータと、制御部とを備える。
 前記ポンプ本体は、ポンプロータを有する。
 前記モータは、前記ポンプロータを回転させる。
 前記制御部は、負荷トルクが第1の所定トルク以下のときは、前記モータを所定回転数以下で駆動する第1の制御モードを実行し、前記負荷トルクが前記第1の所定トルクを超えるときは、第1の所定電力を上限として、前記モータを前記所定回転数以下、かつ、第1の所定トルクより高い第2の所定トルク以下で駆動する第2の制御モードを実行する。
 これにより、過負荷運転時においてもモータの回転数の低下が抑えられるため、ポンプロータによる単位時間あたりの容積移送量を維持して目標圧力までの排気時間の短縮を図ることができる。また、モータの回転数は所定回転数以下に制限されるため、真空ポンプを過熱から保護することができる。
 前記第1の所定トルクは、典型的には、前記モータの定格トルクである。
 前記第1の所定電力は、典型的には、前記モータの定格電力である。
 前記所定回転数は、典型的には、前記モータの定格回転数である。前記所定回転数は、前記負荷トルクが前記第1の所定トルク以下であり、かつ、前記モータの電力が前記第1の所定電力以下であるときは、前記定格回転数よりも高い回転数であってもよい。
 前記制御部は、前記第2の制御モードにおいて、前記モータの回転状態が所定の条件を満たすときは、所定時間に限って前記モータを前記第1の所定電力より高い第2の所定電力で駆動するように構成されてもよい。
 前記制御部は、前記第2の制御モードにおいて、前記真空ポンプ全体の温度の推定値を算出し、前記推定値が所定温度以上のときは、前記モータを前記第1の制御モードで駆動するように構成されてもよい。
 本発明の一形態に係る真空ポンプの制御方法は、ポンプロータと、前記ポンプロータを回転させるモータとを有する容積移送型の真空ポンプの制御方法であって、
 前記モータを起動し、
 負荷トルクが第1の所定トルク以下のときは、前記モータを所定回転数以下で駆動する第1の制御モードを実行し、
 前記負荷トルクが前記第1の所定トルクを超えるときは、第1の所定電力を上限として、前記モータを前記所定回転数以下、かつ、第1の所定トルクより高い第2の所定トルク以下で駆動する第2の制御モードを実行する。
 本発明の一形態に係る真空ポンプ用電力変換装置は、容積移送型ポンプのポンプロータを回転させるモータに電力を供給する真空ポンプ用電力変換装置であって、
 負荷トルクが第1の所定トルク以下のときは、前記モータを所定回転数以下で駆動する第1の制御モードを実行し、前記負荷トルクが前記第1の所定トルクを超えるときは、第1の所定電力を上限として、前記モータを前記所定回転数以下、かつ、第1の所定トルクより高い第2の所定トルク以下で駆動する第2の制御モードを実行する制御部を具備する
 本発明によれば、モータを過熱から保護しつつ、真空排気性能の向上を図ることができる。
本発明の一実施形態に係る真空ポンプの内部構造を示す概略横断面図である。 図1におけるA-A線断面図である。 上記真空ポンプの構成を概略的に示すブロック図である。 上記真空ポンプにおける制御部の機能ブロック図である。 上記制御部において実行される処理の手順の一例を示すフローチャートである。 上記真空ポンプの動作の一例を示す実験結果であって、負荷トルクと圧力との関係を示す図である 上記真空ポンプの動作の一例を示す実験結果であって、電力と圧力との関係を示す図である。 上記真空ポンプの動作の一例を示す実験結果であって、回転数と圧力との関係を示す図である。 上記真空ポンプの動作の一例を示す実験結果であって、排気速度と圧力との関係を示す図である。 上記真空ポンプの動作の一例を示す実験結果であって、圧力と時間との関係を示す図である。 本発明の他の実施形態に係る真空ポンプの動作の一例を示す実験結果である。 典型的な冷凍回路を示す図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。
 図1は、本発明の一実施形態に係る真空ポンプ100の内部構造を示す概略横断面図である。図2は、図1におけるA-A線断面図である。各図においてX軸、Y軸およびZ軸は、相互に直交する3軸方向を示している。
 本実施形態の真空ポンプ100は、ポンプ本体10と、モータ20と、制御ユニット30とを備える。本実施形態では、真空ポンプ100として、単段のメカニカルブースタポンプを例に挙げて説明するが、これ以外にも、スクリューポンプ、ベーンポンプ、ルーツポンプ等の他の容積移送型の真空ポンプで構成されてもよい。
(ポンプ本体)
 ポンプ本体10は、第1のポンプロータ11と、第2のポンプロータ12と、第1および第2のポンプロータ11,12を収容するケーシング13とを有する。
 ケーシング13は、第1のケーシング部131と、第1のケーシング部131のY軸方向の両端に配置された隔壁132,133と、隔壁133に固定された第2のケーシング部134とを有する。第1のケーシング部131および隔壁132,133は、第1および第2のポンプロータ11,12を収容するポンプ室Pを形成する。
 第1のケーシング部131および隔壁132,133は、例えば、鋳鉄やステンレス鋼等の鉄系金属材料で構成され、図示しないシールリングを介して相互に結合されている。第2のケーシング部134は、例えば、アルミニウム合金等の非鉄系金属材料で構成される。
 第1のケーシング部131の一方の主面(図2において上面)にはポンプ室Pに連通する吸気口E1が形成され、その他方の主面(図2において下面)にはポンプ室Pに連通する排気口E2が形成される。吸気口E1には、図示しない真空チャンバの内部と連絡する吸気管が接続され、排気口E2には、図示しない排気管あるいは補助ポンプの吸気口と接続される。
 第1および第2のポンプロータ11,12は、鋳鉄等の鉄系金属材料からなるマユ型ロータで構成され、X軸方向に相互に対向して配置される。第1および第2のポンプロータ11,12は、Y軸方向に平行な回転軸11s,12sをそれぞれ有する。各回転軸11s,12sの一端部11s1,12s1側は、隔壁132に固定されたベアリングB1に回転可能に支持され、各回転軸11s,12sの他端部11s2,12s2側は、隔壁133に固定されたベアリングB2に回転可能に支持される。第1のポンプロータ11と第2のポンプロータ12との間、および、各ポンプロータ11,12とポンプ室Pの内壁面との間には所定の隙間が形成されており、各ポンプロータ11,12は相互に、および、ポンプ室Pの内壁面に非接触で回転するように構成される。
 第1のポンプロータ11の回転軸11sの一端部11s1には、モータ20を構成するロータコア21が固定され、ロータコア21とベアリングB1との間には第1の同期ギヤ141が固定される。第2のポンプロータ12の回転軸12sの一端部12s1には、第1の同期ギヤ141と噛み合う第2の同期ギヤ142が固定されている。モータ20の駆動により、第1および第2のポンプロータ11,12は、同期ギヤ141,142を介して相互に逆方向に回転し、これによりポンプ室Pの容積が変化して吸気口E1から排気口E2へ向けて気体が移送される。
(モータ)
 本実施形態において、モータ20は、永久磁石同期型のキャンドモータで構成される。これ以外にも、モータ20は、かご型モータ等の誘導モータで構成されてもよい。また図1に示されたようなポンプ本体10とモータ20が一体型となった真空ポンプ100に限られず、ポンプ本体10とモータ20が分離した真空ポンプ100であってもよい。具体的には熱回路としてポンプ本体10とモータ20は独立していてもよい。
 モータ20は、ロータコア21と、ステータコア22と、キャン23と、モータケース24とを有する。
 ロータコア21は、第1のポンプロータ11の回転軸11sの一端部11s1に固定される。ロータコア21は、電磁鋼鈑の積層体とその周面に取り付けられた複数の永久磁石Mとを有する。永久磁石Mは、ロータコア21の周囲に沿って極性(N極、S極)を交互に異ならせて配置される。
 本実施形態では、永久磁石材料として、ネオジム磁石やフェライト磁石等の鉄系材料が用いられる。永久磁石の配置形態は特に限定されず、ロータコア21の表面に永久磁石が配置される表面磁石型(SPM)であってもよいし、ロータコア21に永久磁石が埋め込まれる埋込磁石型(IPM)であってもよい。
 ステータコア22は、ロータコア21の周囲に配置され、モータケース24の内壁面に固定される。ステータコア22は、電磁鋼鈑の積層体とそれに巻回された複数のコイルCとを有する。コイルCは、U相巻線、V相巻線およびW相巻線を含む三相巻線で構成され、それぞれ制御ユニット30に電気的に接続される。
 キャン23は、ロータコア21とステータコア22との間に配置され、内部にロータコア21を収容する。キャン23は、PPS(ポリフェニレンサルファイド)、PEEK(ポリエーテルエーテルケトン)等の合成樹脂材料で構成された、ギヤ室G側の一端が開口する有底の円筒部材である。キャン23は、その開口端部側の周囲に配置されたシールリングSを介してモータケース24に固定され、ロータコア21を大気(外気)から封止する。
 モータケース24は、例えば、アルミニウム合金で構成され、ロータコア21、ステータコア22,キャン23および同期ギヤ141,142を収容する。モータケース24は、図示しないシールリングを介して隔壁132に固定されることで、ギヤ室Gを形成する。ギヤ室Gは、同期ギヤ141,142およびベアリングB1を潤滑するための潤滑油を収容する。モータケース24の外表面には、典型的には、複数の放熱フィンが設けられる。
 モータケース24の先端は、カバー25で被覆されている。カバー25には外気と連通可能な通孔が設けられており、モータ20に隣接して配置された冷却ファン50を介してロータコア21やステータコア22を冷却することが可能に構成される。冷却ファン50に代えて又はこれに加えて、モータケース24を水冷可能な構造にしてもよい。ポンプ本体10についても同様に、ケーシング13を水冷可能な構造であってもよい。冷却ファン50や水冷可能な構造等の構成は、連続定格運転が維持できる抜熱量が確保できるのであれば、その構成に制限は無い。
(制御ユニット)
 続いて、制御ユニット30の詳細について説明する。図3は、制御ユニット30の構成を概略的に示すブロック図である。
 図3に示すように、制御ユニット30は、駆動回路31と、位置検出部32と、制御部33と、電流検出器34とを有する。制御ユニット30は、モータ20の駆動を制御するためのものである。制御ユニット30は、モータケース24に設置された金属製等のケース内に収容された回路基板やその上に搭載された各種電子部品で構成され、その機能はモータ20を制御する電力変換装置(インバータ)にて実現される。
 駆動回路31は、モータ20を所定の回転数あるいは所定の電力等を目標として回転させるための駆動信号を生成する複数の半導体スイッチング素子(トランジスタ)を有するインバータ回路で構成される。これら半導体スイッチング素子は、制御部33により開閉タイミングが個別に制御されることにより、ステータコア22のコイルC(U相巻線、V相巻線およびW相巻線)に出力(電力)をそれぞれ供給する。
 電流検出器34は、駆動回路31とステータコア22のコイルCの間に流れる電流(出力電流)を検出する。例えば電流検出器34は、三相交流の全相(U相、V相及びW相)の電流を検出するように構成されていてもよいし、三相交流のいずれか2相の電流を検出するように構成されていてもよい。零相電流が生じない限り、U相、V相、及びW相の電流の合計はゼロなので、2相の電流を検出する場合にも全相の電流の情報が得られる。なお電流検出器34は、電圧を検出する構成であっても良い。これはシャントあるいはモータや駆動回路等、回路中に存在する抵抗を利用することで電流を検出するなどして実現される。
 位置検出部32は、電流検出器34で検出された各層の電流値を把握することで、コイルCと交わる磁束の時間的変化に起因してコイルCに発生する逆起電力の波形からロータコア21の磁極位置を間接的に検出し、それをコイルCへの通電タイミングを制御する位置検出信号として制御部33へ出力する。なお、モータ20が同期機でなく誘導機である場合は、例えば位置検出部32を磁束推定部32として読み替えを行い、以降で説明している制御部33を公知のd,q軸磁束を用いたベクトル制御を実施することで、駆動回路31へ駆動信号を供給するようにしてもよい。
 制御部33は、位置検出部32によって検出されたロータコア21の磁極位置に基づいて、ステータコア21のコイルCを励磁するための制御信号を生成し、それを駆動回路31へ出力する。制御部33は、典型的には、CPU(Central Processing Unit)やメモリを有する情報処理装置(コンピュータ)で構成される。上記メモリには、制御部33において後述する処理手順を実行するためのプログラムや演算用の各種パラメータが格納される。
 図4は、制御部33の構成を示す機能ブロック図である。制御部33は、速度算出部331と、電力算出部332と、温度算出部333と、判定部334と、信号生成部335とを有する。
 速度算出部331は、位置検出部32によって検出されたロータコア21の磁極位置の変化に基づいて、モータ20の回転数を算出する。電力算出部332は、位置検出部32により取得されるロータコア21の磁極位置、あるいは、コイルCを流れる電流値からモータ20の負荷トルクを検出し、検出した負荷トルクとモータの回転数に基づいて、モータ20に供給すべき出力(電力)を算出する。なお、モータ20の回転軸やポンプロータ11,12の回転軸11s,12sにひずみゲージ等の検出器を設けて負荷トルクを求めてもよい。
 温度算出部333は、ポンプ本体10およびモータ20を含む真空ポンプ100全体の発熱量(温度)の推定値を算出する。上記推定値の算出には、例えば、真空ポンプ100全体の熱容量を模擬したパラメータと真空ポンプ100の運転時間に基づく演算アルゴリズムが用いられる。これ以外にも、ポンプ本体10およびモータ20の温度を直接または間接的に検出する温度センサの出力に基づいて上記推定値が算出されてもよい。
 判定部334は、モータ20の駆動時において、速度算出部331で算出されたモータ20の負荷トルクおよび回転数と後述する所定トルク(T1、T2)および所定回転数(Rth)との大小関係をそれぞれ判定する。また、判定部334は、モータ20の駆動時において、温度算出部333で算出された発熱量の推定値が後述する所定温度(Tm)以上か否かを判定する。
 信号生成部335は、駆動回路31へ後述する制御モードに応じた駆動信号を生成する。本実施形態において制御部33は、モータ20の制御モードとして、第1の制御モードと第2の制御モードとを有し、判定部334におけるモータ20の負荷トルク、出力(電力)、回転数に関する判定結果に基づき、モータ20の制御モードを第1の制御モードと第2の制御モードとの間で切り替える。
 第1の制御モードは、負荷トルクが第1の所定トルクT1以下のときに実行され、モータ20を所定回転数(Rth)以下で駆動する。一方、第2の制御モードは、負荷トルクが第1の所定トルクT1を超えるときに実行され、第1の所定電力P1を上限として、モータ20を所定回転数(Rth)以下、かつ、第1の所定トルクT1より高い第2の所定トルクT2以下で駆動する。典型的には、所定回転数Rthは定格回転数、第1の所定トルクT1は定格トルク、第1の所定電力P1は定格出力であるが、勿論これに限られない。
 一般に、モータの出力(電力)P[kW]は、次の(1)式に示すように、モータの負荷トルクT[N・m]と回転数n[rpm]との積と比例関係にある
  P∝T・n ・・・(1)
 ポンプ本体の容積移送量がモータの回転数nで表されるとすると、容積移送量はモータの負荷トルクで決まる。典型的には、容積移送負荷と差圧負荷とを合算した負荷(以下、合算負荷ともいう)と、モータが発揮するトルク(負荷トルク)とを平衡する状態における回転数によって、容積移送量が導ける。よって、例えばモータを定格回転数で駆動させ続けることを、真空ポンプの目的とする排気性能の確保条件と考えて、真空ポンプを設計することができる。
 一方、例えばチャンバ内を大気圧から排気するときは、起動直後の真空ポンプは容積移送負荷あるいはこれに付随する圧縮負荷が大きいため、モータの負荷トルクは高く、真空ポンプの運転は高負荷状態あるいは過負荷状態になる。過負荷状態ではモータは定格トルクを超えるときがあり、その状態が長期間継続すると、モータを過熱から保護できなくなる。このため、モータを駆動する場合、通常では、モータがその定格トルクを超えないように負荷トルクが制限される(トルクリミット)。モータの負荷トルクが定格トルクに制限されると、モータの回転数は合算負荷と平衡する状態まで低下し、その結果、容積移送量が減少するため、真空ポンプの排気性能も低下する。このとき、上記(1)式における負荷トルクT、回転数nおよび出力Pの値は、それぞれ以下のようになる。
  T=トルクリミット値(定格トルク)
  n<定格回転数
  P<定格電力
 つまり、出力で考えた場合、真空ポンプは、定格電力よりも小さい出力で運転していることになり、本来の排気能力を十分に発揮していない状態であるといえる。
 そこで本実施形態では、モータ20の負荷トルクが第1の所定トルクT1(定格トルク)を超えるときは、モータ20の制御方法が上記第1の制御モードから第2の制御モードに切り替えられ、第1の所定トルクT1より高い第2の所定トルクT2以下でのモータ20の駆動を許容する。第2の所定トルクT2は、モータ20の出力が第1の所定電力P1(定格電力)を超えない限りは特に限定されず、回転数nに応じて変化する。
 第1の制御モードにおけるモータ20の駆動方法は、回転数および負荷トルクが所定以下であれば特に限定されず、典型的には、定格回転数を指示値とする回転数制御が採用される。これに限られず、例えば、第1の所定トルクT1(定格トルク)を指示値とするトルク制御、あるいは第1の所定電力P1(定格電力)を指示値とする電力制御が採用されてもよい。
 一方、第2の制御モードにおけるモータ20の典型的な駆動方法は、第1の所定電力P1(定格電力)を上限として駆動する電力制御である。このため、負荷トルクが第1の所定トルクT1(定格トルク)を超えたとしても、モータ20の現在の回転数(n)が定格回転数(N)より低ければ、モータ20に対するトルク指定値を(N/n)倍に引き上げることができる。これにより、容積移送量が増加して排気時間の短縮が図れることになる。また、モータの負荷トルクが(N/n)倍に引き上げられたとしても、モータ20の出力は定格電力以下であるため、真空ポンプ100の過熱が抑えられる。
 第2の制御モードにおけるモータ20の駆動方法は、所定電力を上限として駆動する制御方法であれば、上述した電力制御に限られず、例えば出力される電力値を監視しながら目標値であるトルク値を漸増または漸減させるトルク制御を採用してもよいし、同様に電力値を監視しながら目標値である速度指令値を漸増または漸減させる速度制御を採用してもよい。
 なお、モータ20に定格トルク以上のトルクを発揮させるということは、モータ20には定格以上の電流を流すことになり、その発熱量が抜熱量に見合わず、モータ20の過熱状態を回避できずに、コイルCなどの熱破壊が引き起こされる場合がある。また同様に、ポンプ本体10の圧縮負荷が定格より過大となることで、ポンプ本体10が過熱し、ポンプロータ11,12間のクリアランス不足、あるいはポンプロータ11,12とケーシング13との間のクリアランス不足によるかじり現象が生じるおそれがある。つまり、定格とは、発熱量と抜熱量の平衡状態を保つことで運転時に各構成部品が安全な温度範囲を維持するという意味で理解するならば、定格以上のトルクを発揮させることは、安全な温度範囲を担保することができない場合がある。したがって、温度またはこれに相当する物理量について推定あるいは監視し、真空ポンプ100を過熱状態から保護する機能が必要となる。
 このため本実施形態においては、真空ポンプ100全体の発熱量の推定値を算出する温度算出部333を有しており、例えば、発熱量の推定値が所定温度(Tm)以上の場合は、第1の所定トルクT1で駆動する第1の制御モードに切り替えてモータ20を定格トルク以下で駆動させるように構成される。これにより、真空ポンプ100を過熱状態から保護することができる。
 また、負荷トルクが比較的低いとき、定格電力に達するまで回転数を上昇させることができる点で容積移送量を増加させることができる反面、負荷トルクが過度に低いときは、モータ20の回転数が真空ポンプ100を構成する機械部品の限界速度を超過してしまうおそれがある。このような問題を回避するため、第2の制御モードにおいては、回転数の上限が定格回転数(Rth)に設定される。これにより、真空ポンプ100を安全な速度域で運転させるようにしている。なおこれに限られず、後述するように負荷トルクおよび電力がそれぞれ定格以下の場合は、回転数の上限値を機械部品の限界速度以下で定格回転数よりも高い回転数に設定されてもよい。
 さらに、定格以上の電力でモータ20を連続的に駆動することは過負荷を招来することになるので、通常は電力制御において定格以上の電力が指令値とされることはない。つまり、電力制御の指令値は、定格電力として一定値とすることが合理的である。しかし、上記一定値では真空ポンプをその本来の最大能力を必ずしも発揮させているとはいえない。つまり、短時間であれば過熱に至らない範囲で定格以上の動力を負荷に対して発揮可能であるにもかかわらず、指令値が一定電力であるため、ポンプの排気能力が制限されているといえる。
 ここで、容積移送式の真空ポンプは、その能力として排気時間があり、ある時点での容積の累積移送数が多いほど排気時間は短縮される。つまり、モータの回転状態として、負荷が減少する(あるいは回転数が上昇する)方向にあると判断される事象においては、定格以上のトルクすなわち電力を投入可能とすることで、真空ポンプとしての機能を向上させることが可能となる。これとは反対に、例えばポンプ運転中にチャンバ内をベントする場合など、負荷が増加する(あるいは回転数が低下する)方向にあると判断される事象においては、特別な場合を除き、真空ポンプの排気性能を向上させる必要はない。
 つまり、モータの回転状態が定格以上のトルクあるいは電力を投入可能な状態であると判断された場合、定格トルクあるいは定格電力を超えるトルクあるいは電力(例えば定格の120%~200%)でモータ20を駆動させてもよいことになる。このような制御を実行することで、単位時間あたりの容積移送量(あるいは移送数)を増加させることが可能となり、結果として排気時間も短くなる。また、上述した温度推定機能を備えていれば、過負荷による過熱の問題も回避でき、真空ポンプの安全な運転が確保される。
 なお、上記温度推定機能の代わりに、定格を超える運転を所定時間に制限しつつ、定格を超える運転の間隔として一定以上の時間(禁止期間)を設定する等して、定格を超える運転後に真空ポンプを定格運転時の温度に速やかに戻すような方法も採用可能である。これにより、温度推定機能を用いずに簡素な構成で、過負荷による真空ポンプの過熱を抑えることができる。
 なお熱回路としてポンプ本体10とモータ20が独立している真空ポンプ100の場合、発熱量の推定値を算出する温度算出部333はポンプ本体10とモータ20について個別に発熱量を推定する。この場合、ポンプ本体10とモータ20の熱収支は異なるので、例えば何れかの推定値が所定温度(Tm)以上の場合に、第1の所定トルクT1で駆動する第1の制御モードに切り替えてモータ20を定格トルク以下で駆動させるように構成される。この所定温度はポンプ本体10とモータ20とで個別に設けてもよい。これは耐熱性が相互で異なる場合、より真空ポンプの過熱を長期に抑えられる事になるため好ましい。
[真空ポンプの制御方法]
 続いて、制御部33の詳細について、真空ポンプの動作と併せて説明する。図5は、制御部33において実行される処理の手順の一例を示すフローチャートである。
 また、図6~図10は、本実施形態の真空ポンプ100の運転を開始した後一定時間経過してから目標圧力に到達するまでの動作の一例を示す実験結果であり、図6は負荷トルクと圧力との関係を示し、図7は電力と圧力との関係を示し、図8は回転数と圧力との関係を示し、図9は排気速度と圧力との関係を示し、図10は圧力と時間との関係を示している。また、図6~図8では縦軸の負荷トルク、電力、回転数を任意のスケールで表しているとともに、各々の定格値を1としたときの相対比で示している。これら図6~図10において、「電力制御」とは本実施形態において実行される制御方法に相当し、その対比として、「回転数制御」での制御方法も併せて示す。なお、「電力制御」や「回転数制御」とは制御ループの制御対象が電力あるいは回転数である事を示しており、例えば電力や回転数をある目標値に保つように制御することを意味する。
 真空ポンプ100の運転が開始されると、制御部33は、第1の制御モードでモータ20を駆動する(ステップ101)。この第1の制御モードでは、定格回転数Rthを指示値とする回転数制御でモータ20が駆動される。制御ループは、後述する負荷トルクが求められるのであれば何れも採用可能とされる。
 真空チャンバ内の圧力が大気圧の場合、運転開始直後から真空ポンプ100は比較的高い負荷状態で駆動される。制御部33は、モータ20の運転結果として得られる負荷トルクを監視し、その負荷トルクが第1の所定トルクT1以下であるか否かを判定する(ステップ102)。
 負荷トルクが第1の所定トルクT1以下のとき(ステップ102において「Y」)、制御部33は第1の制御モードでのモータ20の駆動を継続する。一方、負荷トルクが第1の所定トルクT1を超えるとき(ステップ102において「N」)、制御部33は、モータ20の回転数が所定回転数Rth未満であるか否かを判定する(ステップ103)。回転数が所定回転数Rth未満の場合(ステップ103において「Y」)、制御部33は、第1の制御モードから第2の制御モードに切り替える(ステップ104)。すなわち、負荷トルクが第1の所定トルクT1を超え、かつ、モータ20の回転数が所定回転数Rth未満であると、第2の制御モードが実行される。
 第2の制御モードでは、第1の所定電力P1(定格電力)を電力上限値として、定格回転数Rth以下、かつ、第1の所定トルクT1より高い第2の所定トルクT2以下でモータ20が駆動される。第2の所定トルクT2は、例えば、定格トルクの120%~200%に相当するトルク値に設定される。
 このように本実施形態においては、真空ポンプ100の高負荷運転時に、定格電力を超えない範囲で負荷トルクを引き上げることができるため、モータ20を高トルクで駆動させることが可能となる(図6参照)。これにより容積移送量(回転数)を増加させて、排気時間の短縮を図ることができる(図8~図10参照)。また、回転数の上限は定格回転数Rthに制限されるため、モータ20の過回転に起因する真空ポンプ100の破損を防ぐことができる。
 特に、第2の所定トルクT2を調整(漸増または漸減)する事で第1の所定電力P1となる様、第2の制御モードを構成する事が好ましい。この構成は制御ループの制御対象を電力とし、その目標電力を第1の所定電力P1とした、典型的な電力制御である。また第2の所定トルクT2が第1の所定電力P1以下を実現する設定値であれば、後述する発熱量が抑えられる面からも好ましい。
 制御部33は、第2の制御モードの実行中において真空ポンプ100全体の温度(温度算出部333で算出される発熱量の推定値)が所定温度Tm以上であるか否かを判定する(ステップ105)。制御部33は、真空ポンプ100の温度が所定温度Tm以上であると判定したとき(ステップ105において「Y」)、第2の制御モードから第1の制御モードに切り替える。これにより、真空ポンプ100を過熱状態から保護することができる。一方、制御部33は、真空ポンプ100の温度が所定温度Tm未満と判定したとき(ステップ105において「N」)、第2の制御モードによるモータ20の駆動を継続する。
 さらに制御部33は、第2の制御モードの実行中において、負荷トルクが低下傾向にあるか否かを判定する(ステップ106)。負荷トルクが低下傾向にあるかどうかの判定は、例えば、速度算出部331において所定周期で検出される負荷トルクの検出値が一定、あるいは、減少傾向にあるかどうかを基準に行われる。電力制御の下では、負荷トルクが低下傾向にあれば回転数は上昇傾向にあるとみなせるため、チャンバ内が真空に向かっていると判断できる。
 そこで、負荷トルクが低下傾向にあるときは(ステップ106において「Y」)、制御部33は、電力上限値(電力目標値)を所定時間だけ、第1の所定電力P1(定格電力)から第2の所定電力P2へ上昇させるトルクブースト制御を実行する(ステップ107)。これにより、モータ20の回転数が一時的に上昇するため、容積移送量がさらに増大し、その分、排気時間を短縮することができる(図10参照)。第2の所定電力P2は、第1の所定電力P1より高い電力であれば特に限定されず、例えば、定格電力の120%~200%に相当する電力値に設定される。このように短時間定格の能力は、図10で示される真空度の領域(中真空領域)に於いて最大限にその効果が発揮され、その結果は排気時間の短縮となって確認出来る。
 一方、トルクブースト制御の実行により真空ポンプ100の発熱量は増加するが、トルクブースト制御は所定時間に限定されるため、真空ポンプ100が過熱に至ることを防ぐことができる(図7参照)。上記所定時間は、トルクブースト制御による真空ポンプ100の熱上昇率などに基づいてあらかじめ実験的に求めることができる。トルクブースト処理を所定時間行った後、および、負荷トルクが低下傾向にないときは(ステップ105において「N」)、制御部33は、電力上限値を第1の所定電力P1(定格電力)とする電力制御を引き続き実行する。
 以上の動作を繰り返し実行することにより、電力制御を主体としたモータ20の駆動制御が実行される。これにより、回転数制御のみでモータ20を駆動する場合と比較して、真空ポンプ100が本来有する排気性能を最大限に発揮させることができるので、目標とする真空圧力への到達時間(排気時間)を短縮することができる。
 また大気圧条件からの起動時に於いても、速やかに電力制御を主体とした第2の制御モードに移行する事で、トルクリミットが加えられた回転数制御に比べ、起動トルクを増大させられる事から排気時間を短くすることのみならず、固着からの離脱可能性を向上させる事が出来、また油温が低い条件下、つまり、ポンプ温度が低くメカロスが高い条件下等の悪環境に於いても排気時間を短縮する効果を奏すると共に、電力制御を主体としている事で単にトルク値を増加させた運転と比較して発熱を抑えた運転とすることが出来る。
 真空チャンバ内の圧力が所定以下にまで低下し、ポンプ本体10における気体の圧縮負荷が減少すると、真空ポンプ100の負荷は吸気口E1と排気口E2との間の差圧維持の仕事のみとなる。そこで、制御部33は、第2の制御モードの実行中、負荷トルクが第1のトルクT1(定格トルク)以下か否かを判定し(ステップ102)、負荷トルクが第1のトルクT1以下に低下すると、第2の制御モードから第1の制御モードへ切り替える(ステップ102において「Y」)。第1の制御モードでは、定格回転数(所定回転数Rth)が回転数の上限値とされているため、モータ20は、低真空から中真空(図8において約2kPa~0.1Pa)にかけては、一定の回転数(定格回転数)で駆動される。ここで中真空・高真空の定義はJIS Z 8126-1真空技術?用語? 第1部:一般用語に基づく。
<他の実施形態1>
 以上の実施形態では、第1の制御モードにおいてはモータ20を所定回転数Rth以下で駆動させるようにし、その所定回転数Rthを定格回転数としたが、これに限られず、所定回転数Rthをそのときのモータ20の運転状態に応じた可変値としてもよい。
 例えば、第1の制御モードにおいて、負荷トルクが第1の所定トルクT1以下であり、かつ、電力が第1の所定電力P1以下であるときは、所定回転数Rthを定格回転数よりも高い回転数としてもよい。つまり、第1の制御モードに電力制御の制御ループをとりいれ、モータ20の電力が第1の消費電力P1(典型的には定格電力)を超えない範囲で回転数の上昇を許容する(以下、高回転数制御ともいう)。なお、高回転数制御における回転数上限値は、例えば、ポンプ本体あるいはモータの回転数上限値に応じて任意に設定可能であり、例えば、定格回転数の120%とすることができる。高定格回転数から回転数上限値への回転数の上昇率は、図11において破線Epで示すように電力制御による回転数の上昇率よりも低い値とされる。
 このような高回転数制御は、例えば図11に示すように、中真空付近において第2の制御モードから第1の制御モードへの切り替えられた後の所定時間に実行可能である。高回転数制御での運転時間はあらかじめ固定されてもよいし、電力が第1の所定電力P1に達するまでの時間とされてもよい。高回転数制御が所定時間実行されたのち、定格回転数を回転数上限値とした第1の制御モードが実行される。これにより、真空ポンプ100の排気能力をさらに引き出せるため、到達真空度までの排気時間をより一層短縮することができるとともに、高回転数制御での圧力帯で連続運転する場合に容積移送量を増加させることができる。
<他の実施形態2>
 以上の実施形態では、真空ポンプを例に挙げて説明したが、真空ポンプ以外の他のポンプ、例えば、圧縮システムにおける圧縮機あるいはその駆動用モータにも本発明は適用可能である。
 図12は典型的な冷凍回路を示している。圧縮機201から吐出された高圧の過熱ガス冷媒は、凝縮器202において凝縮される。凝縮器202から流出した高圧の過冷却液冷媒は、膨張弁203を通過することで減圧される。膨張弁203を通過した低圧の液冷媒は、蒸発器204において蒸発する。蒸発器204から流出した低圧の過熱ガス冷媒は、圧縮機201へ吸入される。
 圧縮機201としては、例えば、ロータリ式ポンプ、スクロールポンプなどの容積移送型のポンプを用いることができる。圧縮機201は、冷媒の凝縮温度、蒸発温度および吸込蒸気の過熱度などによって熱負荷を受けやすい。一方、圧縮機には、同じ運転条件において、よりたくさんの蒸気量を吸い込み、大きな冷凍能力を発揮できる能力が要求される。このため、圧縮機201においても、上述した真空ポンプと同様に、圧縮機201の駆動源であるモータを過熱から保護しつつ、ポンプ性能を向上させる技術が要求される。このような課題に対しても、上述した真空ポンプの運転制御が有効である。
 なお、蒸発器204を上述した真空排気システムにおける真空チャンバとみなすと、膨張弁203から蒸発器204へ流入する冷媒は、真空チャンバへのガス導入とみなすことができる。凝縮器202および蒸発器204の圧力が安定すると、圧縮機201の負荷トルクも安定する。例えば、凝縮圧力を真空排気システムにおける大気圧とみなせば、蒸発圧力が安定し蒸発器204の熱流速も一定条件であれば、圧縮機201の運転状態は、真空排気システムにおける中真空帯域と同様な状態になる。
 10…ポンプ本体
 11,12…ポンプロータ
 20…モータ
 30…制御ユニット
 31…駆動回路
 32…位置検出部
 33…制御部
 100…真空ポンプ
 201…圧縮機

Claims (11)

  1.  ポンプロータを有する容積移送型のポンプ本体と、
     前記ポンプロータを回転させるモータと、
     負荷トルクが第1の所定トルク以下のときは、前記モータを所定回転数以下で駆動する第1の制御モードを実行し、前記負荷トルクが前記第1の所定トルクを超えるときは、第1の所定電力を上限として、前記モータを前記所定回転数以下、かつ、第1の所定トルクより高い第2の所定トルク以下で駆動する第2の制御モードを実行する制御部と
     を具備する真空ポンプ。
  2.  請求項1に記載の真空ポンプであって、
     前記所定回転数は、前記モータの定格回転数である
     真空ポンプ。
  3.  請求項1に記載の真空ポンプであって、
     前記所定回転数は、前記負荷トルクが前記第1の所定トルク以下であり、かつ、前記モータの電力が前記第1の所定電力以下であるときは、前記モータの定格回転数よりも高い回転数である
     真空ポンプ。
  4.  請求項1~3のいずれか1つに記載の真空ポンプであって、
     前記第1の所定電力は、前記モータの定格電力である
     真空ポンプ。
  5.  請求項1~4のいずれか1つに記載の真空ポンプであって、
     前記第1の所定トルクは、前記モータの定格トルクである
     真空ポンプ。
  6.  請求項1~5のいずれか1つに記載の真空ポンプであって、
     前記制御部は、前記第2の制御モードにおいて、前記モータの回転状態が所定の条件を満たすときは、所定時間に限って前記モータを前記第1の所定電力より高い第2の所定電力以下で駆動する
     真空ポンプ。
  7.  請求項1~6のいずれか1つに記載の真空ポンプであって、
     前記制御部は、前記第2の制御モードにおいて、前記真空ポンプ全体の温度の推定値を算出し、前記推定値が所定温度以上のときは、前記モータを前記第1の制御モードで駆動する
     真空ポンプ。
  8.  ポンプロータと、前記ポンプロータを回転させるモータとを有する容積移送型の真空ポンプの制御方法であって、
     前記モータを起動し、
     負荷トルクが第1の所定トルク以下のときは、前記モータを所定回転数以下で駆動する第1の制御モードを実行し、
     前記負荷トルクが前記第1の所定トルクを超えるときは、第1の所定電力を上限として、前記モータを前記所定回転数以下、かつ、第1の所定トルクより高い第2の所定トルク以下で駆動する第2の制御モードを実行する
     真空ポンプの制御方法。
  9.  容積移送型ポンプのポンプロータを回転させるモータに電力を供給する真空ポンプ用電力変換装置であって、
     負荷トルクが第1の所定トルク以下のときは、前記モータを所定回転数以下で駆動する第1の制御モードを実行し、前記負荷トルクが前記第1の所定トルクを超えるときは、第1の所定電力を上限として、前記モータを前記所定回転数以下、かつ、第1の所定トルクより高い第2の所定トルク以下で駆動する第2の制御モードを実行する制御部
     を具備する真空ポンプ用電力変換装置。
  10.  圧縮システムの圧縮機モータに電力を供給する圧縮機用電力変換装置であって、
     負荷トルクが第1の所定トルク以下のときは、前記モータを所定回転数以下で駆動する第1の制御モードを実行し、前記負荷トルクが前記第1の所定トルクを超えるときは、第1の所定電力を上限として、前記モータを前記所定回転数以下、かつ、第1の所定トルクより高い第2の所定トルク以下で駆動する第2の制御モードを実行する制御部
     を具備する圧縮機用電力変換装置。
  11.  ポンプロータを有する容積移送型のポンプ本体と、
     前記ポンプロータを回転させるモータと、
     負荷トルクが第1の所定トルク以下のときは、前記モータを所定回転数以下で駆動する第1の制御モードを実行し、前記負荷トルクが前記第1の所定トルクを超えるときは、第1の所定電力を上限として、前記モータを前記所定回転数以下、かつ、第1の所定トルクより高い第2の所定トルク以下で駆動する第2の制御モードを実行する制御部と
     を具備する圧縮機。
PCT/JP2021/040574 2021-11-04 2021-11-04 真空ポンプ、真空ポンプの制御方法、真空ポンプ用電力変換装置、圧縮機用電力変換装置および圧縮機 WO2023079621A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/040574 WO2023079621A1 (ja) 2021-11-04 2021-11-04 真空ポンプ、真空ポンプの制御方法、真空ポンプ用電力変換装置、圧縮機用電力変換装置および圧縮機
JP2022536599A JP7189394B1 (ja) 2021-11-04 2021-11-04 真空ポンプ、真空ポンプの制御方法、真空ポンプ用電力変換装置、圧縮機用電力変換装置および圧縮機
CN202180103879.0A CN118176362A (zh) 2021-11-04 2021-11-04 真空泵、真空泵的控制方法、真空泵用功率转换装置、压缩机用功率转换装置以及压缩机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040574 WO2023079621A1 (ja) 2021-11-04 2021-11-04 真空ポンプ、真空ポンプの制御方法、真空ポンプ用電力変換装置、圧縮機用電力変換装置および圧縮機

Publications (1)

Publication Number Publication Date
WO2023079621A1 true WO2023079621A1 (ja) 2023-05-11

Family

ID=84441465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040574 WO2023079621A1 (ja) 2021-11-04 2021-11-04 真空ポンプ、真空ポンプの制御方法、真空ポンプ用電力変換装置、圧縮機用電力変換装置および圧縮機

Country Status (3)

Country Link
JP (1) JP7189394B1 (ja)
CN (1) CN118176362A (ja)
WO (1) WO2023079621A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2625786A (en) * 2022-12-23 2024-07-03 Leybold Gmbh Method for operating a vacuum pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324780A (ja) * 1996-06-03 1997-12-16 Ebara Corp 容積式真空ポンプ
JP2014074380A (ja) * 2012-10-05 2014-04-24 Ebara Corp ドライ真空ポンプ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324780A (ja) * 1996-06-03 1997-12-16 Ebara Corp 容積式真空ポンプ
JP2014074380A (ja) * 2012-10-05 2014-04-24 Ebara Corp ドライ真空ポンプ装置

Also Published As

Publication number Publication date
JP7189394B1 (ja) 2022-12-13
JPWO2023079621A1 (ja) 2023-05-11
CN118176362A (zh) 2024-06-11

Similar Documents

Publication Publication Date Title
EP3579390B1 (en) Turbo compressor
JP5119025B2 (ja) モータ制御装置、空気圧縮機、空気調和機、乗客コンベアの制御装置及びコンベアの制御装置
CN106982016B (zh) 涡轮压缩机装置
JP5318050B2 (ja) 永久磁石型モータの駆動装置及び圧縮機
EP2873865B1 (en) Motor-driven compressor
JP7189394B1 (ja) 真空ポンプ、真空ポンプの制御方法、真空ポンプ用電力変換装置、圧縮機用電力変換装置および圧縮機
CN110651158B (zh) 空调机及空调机的运转控制方法
JP2012251713A (ja) 圧縮機
JP2019529777A (ja) 遠心圧縮機
EP3605833B1 (en) Load operation control system
CN111213316B (zh) 真空泵及其控制方法
US20080260541A1 (en) Induction Motor Control
EP3780380B1 (en) Electric motor system, and turbo compressor provided with same
EP2751430A2 (en) Capacity control system and method for centrifugal compressor
JP2010106683A (ja) 圧縮機
CN112088487B (zh) 电动机系统及包括该电动机系统的涡轮压缩机
EP3355466A1 (en) Motor control device, rotary compressor system and motor control method
JP2012251714A (ja) 圧縮機
EP3327898A1 (en) Rotary compressor system, rotary compressor, motor, and design method
WO2024204828A1 (ja) 制御装置、冷凍システム、制御方法、制御プログラム
JP2006162108A (ja) 給湯機用ヒートポンプ
JP3637368B2 (ja) 冷凍装置
WO2024204832A1 (ja) 圧縮機システム及び冷凍装置
JP7281964B2 (ja) 真空ポンプ
JP4203915B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022536599

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180103879.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21963218

Country of ref document: EP

Kind code of ref document: A1