WO2019077788A1 - 静電容量結合方式センサおよびその製造方法 - Google Patents
静電容量結合方式センサおよびその製造方法 Download PDFInfo
- Publication number
- WO2019077788A1 WO2019077788A1 PCT/JP2018/018768 JP2018018768W WO2019077788A1 WO 2019077788 A1 WO2019077788 A1 WO 2019077788A1 JP 2018018768 W JP2018018768 W JP 2018018768W WO 2019077788 A1 WO2019077788 A1 WO 2019077788A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode layer
- layer
- insulating layer
- capacitive coupling
- detection electrode
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/02—Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/04—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B25/08—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/14—Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/20—Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D1/00—Steering controls, i.e. means for initiating a change of direction of the vehicle
- B62D1/02—Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
- B62D1/04—Hand wheels
- B62D1/06—Rims, e.g. with heating means; Rim covers
- B62D1/065—Steering wheels with heating and ventilating means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/14—Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/955—Proximity switches using a capacitive detector
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/96—Touch switches
- H03K17/962—Capacitive touch switches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/02—Coating on the layer surface on fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
- B32B2255/205—Metallic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
- B32B2260/023—Two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0276—Polyester fibres
- B32B2262/0284—Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/104—Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2274/00—Thermoplastic elastomer material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/202—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/206—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/302—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
- B32B2307/3065—Flame resistant or retardant, fire resistant or retardant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/536—Hardness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D1/00—Steering controls, i.e. means for initiating a change of direction of the vehicle
- B62D1/02—Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
- B62D1/04—Hand wheels
- B62D1/046—Adaptations on rotatable parts of the steering wheel for accommodation of switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/94—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
- H03K2217/96—Touch switches
- H03K2217/9607—Capacitive touch switches
- H03K2217/960755—Constructional details of capacitive touch and proximity switches
- H03K2217/960765—Details of shielding arrangements
Definitions
- the present invention relates to a capacitive coupling type sensor which is disposed on a steering wheel, an interior part or the like of a vehicle and can detect proximity, contact or the like of a person.
- Patent Documents 1 and 2 disclose contact sensors disposed on a rim (grip) of a steering wheel.
- the contact sensor includes a shield layer and a sensor layer, and detects whether the driver has touched the steering wheel based on a change in capacitance generated between the occupant and the sensor layer.
- the rim becomes cold in winter and cold regions.
- a steering wheel in which a heater is attached to a rim portion in order to reduce the difficulty in driving and the discomfort due to this.
- the heater is disposed on the lower side (core body side) of the contact sensor.
- JP 2017-87883 A JP, 2014-190856, A Japanese Patent Application Laid-Open No. 61-196859
- FIG. 6 shows a radial sectional view of a conventional steering wheel provided with a contact sensor and a heater.
- the steering wheel 9 includes a core 20, a heater layer 30, a contact sensor 90, and a skin 40.
- the steering wheel 9 has a laminated structure in which a plurality of layers are laminated radially outward from the core body 20.
- the heater layer 30 covers the outer peripheral surface of the core 20.
- the contact sensor 90 covers the outer peripheral surface of the heater layer 30.
- the skin 40 covers the outer peripheral surface of the contact sensor 90. It is the epidermis 40 that the driver touches.
- the contact sensor 90 includes a detection electrode layer 91, a shield electrode layer 92, and an insulating layer 93.
- the detection electrode layer 91 is disposed on the epidermis 40 side, and generates capacitance with the driver's hand (the detection target).
- the shield electrode layer 92 is disposed on the heater layer 30 side and shields noise from the heater layer 30.
- the insulating layer 93 is disposed between the detection electrode layer 91 and the shield electrode layer 92.
- An adhesive layer 94 is disposed between the detection electrode layer 91 and the insulating layer 93.
- An adhesive layer 95 is disposed between the shield electrode layer 92 and the insulating layer 93. The adhesive layers 94 and 95 adhere two adjacent layers.
- an adhesive layer 31 is disposed between the heater layer 30 and the shield electrode layer 92.
- the adhesive layer 31 bonds the heater layer 30 and the shield electrode layer 92.
- An adhesive layer 41 is disposed between the epidermis 40 and the detection electrode layer 91. The adhesive layer 41 bonds the skin 40 and the detection electrode layer 91.
- the insulating layer 93 is made of a foamed resin such as polyethylene foam.
- the thermal conductivity of the foamed resin is as small as about 0.04 W / m ⁇ K.
- the thermal conductivity of the adhesive layers 31, 41, 94, 95 for bonding the layers to be laminated is also small. For this reason, even if it heats with heater layer 30, it takes time until the heat is transmitted to skin 40, and there was a problem that a driver was not able to feel warmth easily.
- attach layers by an adhesive the number of manufacturing processes increased by the part which needed the process of apply
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a capacitive coupling type sensor having a good tactile feeling and higher thermal conductivity than that of the prior art. Another object of the present invention is to provide a manufacturing method capable of manufacturing the capacitive coupling type sensor at low cost.
- a detection electrode layer that generates capacitance with a detection object, a shield electrode layer, the detection electrode layer, and the shield
- An insulating layer disposed between the electrode layer and the insulating layer, wherein the insulating layer has a thermoplastic elastomer, the thermal conductivity of the insulating layer is 0.3 W / m ⁇ K or more, and the volume resistivity is It is characterized by being 1 ⁇ 10 12 ⁇ ⁇ cm or more.
- the detection electrode layer and the shield electrode layer are made of conductive cloth, and at least a part of the conductive cloth is
- a conductive cloth to be the detection electrode layer is superimposed on the surface of the insulating layer, and the back surface of the insulating layer
- laminating the conductive cloth to be the shield electrode layer to form a laminate, and fusing the insulating layer to the conductive cloth by pressurizing the laminate in the front and back direction under heating. And a attaching process.
- thermoplastic elastomers are flexible. For this reason, even if the sensor is disposed on a member that a person touches, the tactile sensation does not easily decrease. In addition, the volume resistivity of the insulating layer is large. For this reason, the insulation between the detection electrode layer and the shield electrode layer can be sufficiently ensured, and there is little possibility that the sensor function will be inhibited. Further, the thermal conductivity of the insulating layer is larger than that of the prior art. For this reason, the thermal conductivity of the sensor is higher than in the prior art. Therefore, for example, when the capacitive coupling type sensor of the present invention is disposed on the outside of the heater layer of the steering wheel, the heat of the heater layer is rapidly transmitted to the skin, and the time until the steering wheel warms can be shortened. .
- the insulating layer comprises a thermoplastic elastomer. Therefore, when the electrode layer to be laminated is made of conductive rubber, the adhesion between the thermoplastic elastomer and the conductive rubber is used to fix the electrode layer and the insulating layer without using an adhesive. be able to.
- the thermoplastic elastomer is softened by heating. Therefore, for example, when the electrode layer to be laminated is made of a conductive cloth having a large number of voids, the electrode layer and the insulating layer are thermocompression-bonded, and the softened insulating layer is impregnated into the voids of the electrode layer The electrode layer and the insulating layer can be fixed without using an agent. As described above, according to the capacitive coupling type sensor of the present invention, since it is not necessary to use an adhesive for fixing the layers, the manufacturing process can be reduced, and the cost can be reduced.
- Patent Document 3 describes a configuration in which a heating element composed of a positive temperature coefficient thermistor is disposed on a steering wheel, and the outside thereof is covered with a heat dissipation layer made of a synthetic resin excellent in thermal conductivity.
- the heat dissipation layer described in Patent Document 3 is not a member that constitutes a sensor. Therefore, the heat dissipation layer is formed by blending a conductive metal filler with a synthetic resin, and has conductivity. Therefore, the heat dissipation layer can not be used as an insulating layer of a capacitive coupling sensor. Further, in Patent Document 3, a thermoplastic elastomer is not described as a material of the heat dissipation layer.
- the capacitive coupling type sensor of the present invention in which the detection electrode layer and the shield electrode layer are formed of a conductive cloth is manufactured.
- the thermoplastic elastomer contained in the insulating layer is softened by heating.
- the conductive cloth has many voids between the fibers. Therefore, when the conductive cloth is placed on the insulating layer and thermocompression-bonded, the softened insulating layer is impregnated into the conductive cloth, and at least a part of the conductive cloth is embedded in the insulating layer.
- the insulating layer and the conductive cloth can be fixed without using an adhesive.
- At least a part of the conductive cloth which is the detection electrode layer and at least a part of the conductive cloth which is the shield electrode layer are embedded in the insulating layer. Capacitive coupling type sensors can be easily manufactured.
- FIG. 1 It is a front view of the steering wheel in which the capacitive coupling type sensor of a first embodiment is arranged. It is II-II sectional drawing of FIG. It is a cross-sectional schematic diagram for demonstrating the laminated structure of the steering wheel. It is a cross-sectional schematic diagram for demonstrating the laminated structure of the steering wheel by which the capacitive coupling type sensor of 2nd embodiment is arrange
- FIG. 1 shows a front view of a steering wheel on which the capacitive coupling type sensor of this embodiment is disposed.
- FIG. 2 shows a cross-sectional view taken along the line II-II of FIG. The cross-sectional schematic diagram for demonstrating the laminated structure of the steering wheel to FIG. 3 is shown.
- the steering wheel 8 has a rim portion 80 and a connecting portion 81.
- the rim portion 80 has an annular shape and is gripped by the driver.
- the connecting portion 81 connects the rim portion 80 and a steering shaft (not shown).
- the capacitive coupling sensor 1 is disposed in the rim portion 80.
- the rim portion 80 includes a core body 20, a heater layer 30, a capacitive coupling sensor 1, and a skin 40.
- the core body 20 is a solid rod made of metal and has an annular shape.
- the core body 20 is connected to the steering shaft via a connecting portion 81.
- the heater layer 30 is made of non-woven fabric in which heating wires are disposed.
- the heater layer 30 covers the outer peripheral surface of the core 20.
- the heater layer 30 heats the rim portion 80 when the heating wire generates heat by energization.
- An adhesive layer 31 is disposed between the heater layer 30 and the capacitive coupling sensor 1. The adhesive layer 31 bonds the heater layer 30 and the capacitive coupling sensor 1 (specifically, the shield electrode layer 11 described later).
- the capacitive coupling sensor 1 has a flexible sheet shape.
- the capacitive coupling type sensor 1 is wound around the core layer 20 from above the heater layer 30 (one turn).
- the capacitive coupling sensor 1 covers the outer peripheral surface of the heater layer 30.
- the capacitive coupling sensor 1 includes a detection electrode layer 10, a shield electrode layer 11, and an insulating layer 12.
- the detection electrode layer 10 is made of a conductive cloth.
- the volume resistivity of the detection electrode layer 10 is on the order of 10 ⁇ 2 ⁇ ⁇ cm.
- the detection electrode layer 10 is disposed on the epidermis 40 side, and generates capacitance with the driver's hand (the object to be detected). Almost the entire detection electrode layer 10 is embedded in the insulating layer 12 as shown by dotted lines in FIGS. 2 and 3.
- the shield electrode layer 11 is made of the same conductive cloth as the detection electrode layer 10.
- the shield electrode layer 11 is disposed on the heater layer 30 side.
- the shield electrode layer 11 is grounded and shields noise from the heater layer 30.
- the shield electrode layer 11 is substantially entirely embedded in the insulating layer 12 as shown by dotted lines in FIGS. 2 and 3.
- the insulating layer 12 is disposed between the detection electrode layer 10 and the shield electrode layer 11.
- the insulating layer 12 includes a styrene-based elastomer, an olefin-based elastomer, and magnesium oxide particles.
- the thermal conductivity of the magnesium oxide particles is 45 W / m ⁇ K.
- Magnesium oxide particles are included in the concept of the inorganic filler in the present invention.
- the thermal conductivity of the insulating layer 12 is 0.5 W / m ⁇ K, and the volume resistivity is 1 ⁇ 10 13 ⁇ ⁇ cm.
- the type A durometer hardness of the insulating layer 12 is 56.
- the skin 40 is made of resin and covers the outer peripheral surface of the capacitive coupling sensor 1.
- An adhesive layer 41 is disposed between the skin 40 and the capacitive coupling sensor 1. The adhesive layer 41 bonds the skin 40 and the capacitive coupling sensor 1 (specifically, the detection electrode layer 10).
- a method of manufacturing the capacitive coupling sensor according to the present embodiment will be described.
- a conductive cloth for the detection electrode layer 10 is stacked on the surface of the insulating layer 12, and a conductive cloth for the shield electrode layer 11 is stacked on the back surface to form a laminate (stacking step).
- the laminate is heat pressed.
- the softened insulating layer 12 is impregnated into the conductive cloth, and the insulating layer 12 is fused to the conductive cloth (fusing step).
- the conductive cloth (the detection electrode layer 10 and the shield electrode layer 11) is embedded in the insulating layer 12.
- the capacitive coupling sensor 1 is manufactured.
- the manufactured capacitive coupling type sensor 1 is disposed so as to cover the outer peripheral surface of the heater layer 30 wound around the core 20 with the shield electrode layer 11 inside.
- An adhesive is applied to the surface of the heater layer 30. Thereby, the heater layer 30 and the shield electrode layer 11 are bonded.
- the epidermis 40 is disposed to cover the detection electrode layer 10.
- An adhesive is applied to the back surface of the epidermis 40. Thereby, the epidermis 40 and the detection electrode layer 10 are adhered.
- the rim portion 80 of the steering wheel 8 is manufactured.
- the capacitive coupling type sensor 1 a flexible thermoplastic elastomer (styrene-based elastomer and olefin-based elastomer) is used for the insulating layer 12.
- the detection electrode layer 10 and the shield electrode layer 11 are also made of a flexible conductive cloth. Therefore, the entire capacitive coupling type sensor 1 is flexible, and the touch of the rim portion 80 is good. Moreover, the volume resistivity of the insulating layer 12 is large.
- the insulation between the detection electrode layer 10 and the shield electrode layer 11 can be sufficiently ensured, and the sensor function is unlikely to be inhibited.
- the thermal conductivity of the insulating layer 12 is large compared with the past.
- the thermal conductivity of the capacitive coupling sensor 1 is higher than that of the related art. Therefore, the heat of the heater layer 30 can be rapidly transmitted to the skin 40, and the temperature rise time of the rim portion 80 can be shortened. As a result, even when driving in winter or in a cold region, the driver can immediately feel warmth, thereby reducing the difficulty and discomfort of driving.
- the insulating layer 12 since the thermoplastic elastomer is used for the insulating layer 12, the insulating layer 12, the detection electrode layer 10, and the shield are utilized by using the softening due to the heating of the thermoplastic elastomer without using an adhesive.
- the electrode layer 11 can be fixed.
- the detection electrode layer 10 and the shield electrode layer 11 are both made of a conductive cloth.
- the insulating layer 12 is impregnated with the conductive layer by heat pressing with the insulating layer 12 sandwiched between the two conductive layers, and the pressure-sensitive adhesive
- the detection electrode layer 10 and the shield electrode layer 11 can be fixed to the insulating layer 12 without using the As a result, the process of applying the pressure-sensitive adhesive, which has been conventionally required, becomes unnecessary, and the cost can be reduced by the amount of reduction of the manufacturing process.
- the difference between the capacitive coupling type sensor according to the present embodiment and the capacitive coupling type sensor according to the first embodiment is that the detection electrode layer is not made of conductive cloth but made of conductive rubber.
- the difference between the manufacturing method of the capacitive coupling type sensor of the present embodiment and the manufacturing method of the capacitive coupling type sensor of the first embodiment is that the detection electrode layer is crimped to the insulating layer separately from the shield electrode layer. Fixed point.
- FIG. 4 is a schematic cross-sectional view for explaining the layered structure of the steering wheel in which the capacitive coupling type sensor of the present embodiment is disposed. Note that FIG. 4 corresponds to FIG. 3, and the same parts as in FIG. 3 are indicated by the same reference numerals.
- the rim portion 80 includes a core 20, a heater layer 30, a capacitive coupling sensor 1, and a skin 40.
- the capacitive coupling sensor 1 includes a detection electrode layer 13, a shield electrode layer 11, and an insulating layer 12.
- the detection electrode layer 13 is made of conductive rubber having an elastomer and a conductive material.
- the volume resistivity of the detection electrode layer 13 is on the order of 10 ⁇ 2 ⁇ ⁇ cm.
- the detection electrode layer 13 is fixed to the surface (surface on the outer side in the radial direction) of the insulating layer 12.
- the capacitive coupling sensor 1 is manufactured as follows. First, a conductive cloth for the shield electrode layer 11 is overlaid on the back surface of the insulating layer 12 and heat pressed. As a result, the softened insulating layer 12 is impregnated into the conductive cloth, and the insulating layer 12 is fused to the conductive cloth. At the same time, the conductive cloth (shield electrode layer 11) is embedded in the insulating layer 12 as shown by a dotted line in FIG. Next, conductive rubber for the detection electrode layer 13 is stacked on the surface of the insulating layer 12 and pressed. In this case, the detection electrode layer 13 and the insulating layer 12 are fixed due to the adhesiveness between the thermoplastic elastomer contained in the insulating layer 12 and the conductive rubber.
- the capacitive coupling type sensor according to the present embodiment and the method for manufacturing the same, and the capacitive coupling type sensor according to the first embodiment and the method for manufacturing the same have similar functions and effects with respect to parts having the same configuration.
- the detection electrode layer 13 is made of conductive rubber. For this reason, the detection electrode layer 13 and hence the entire capacitive coupling type sensor 1 become more flexible, and the touch of the rim portion 80 is improved. Moreover, when fixing the detection electrode layer 13 and the insulating layer 12, it is not necessary to heat in order to use the adhesiveness between the thermoplastic elastomer and the conductive rubber contained in the insulating layer 12 (of course, the pressure-sensitive adhesive Not necessary).
- the capacitive coupling sensor of this embodiment is the same as the capacitive coupling sensor of the first embodiment.
- the rim portion of the steering wheel according to the present embodiment is different from the rim portion according to the first embodiment in that the adhesive layer is not disposed between the capacitive coupling type sensor and the heater layer.
- differences will be mainly described.
- FIG. 5 is a schematic cross-sectional view for explaining the laminated structure of the steering wheel in which the capacitive coupling type sensor of the present embodiment is disposed. Note that FIG. 5 corresponds to FIG. 3, and the same parts as in FIG. 3 are indicated by the same reference numerals.
- the rim portion 80 includes a core 20, a heater layer 30, a capacitive coupling sensor 1, and a skin 40.
- the capacitive coupling sensor 1 includes a detection electrode layer 13, a shield electrode layer 11, and an insulating layer 12.
- the shield electrode layer 11 is substantially entirely embedded in the insulating layer 12 as shown by a dotted line in FIG. That is, the insulating layer 12 is impregnated in the shield electrode layer 11. Furthermore, the insulating layer 12 is also impregnated in the surface layer portion of the heater layer 30, as shown by the broken line in FIG.
- the capacitive coupling sensor 1 is fixed to the heater layer 30.
- An adhesive layer is not disposed between the capacitive coupling sensor 1 and the heater layer 30.
- the rim portion 80 of the present embodiment is manufactured as follows. First, a conductive cloth for the detection electrode layer 10 is stacked on the surface of the insulating layer 12, and a conductive cloth for the shield electrode layer 11 and a nonwoven fabric for the heater layer 30 are stacked in this order on the back surface to form a laminate. Do. Next, the laminate is heat pressed. Thereby, the softened insulating layer 12 is impregnated into the conductive cloth and the non-woven fabric, and the insulating layer 12 is fused to the conductive cloth and the non-woven fabric. At the same time, the conductive cloth (the detection electrode layer 10 and the shield electrode layer 11) is embedded in the insulating layer 12. Thus, the heater layer 30 and the capacitive coupling sensor 1 are fixed.
- the heater layer 30 to which the capacitive coupling type sensor 1 is fixed is wound around the outer peripheral surface of the core body 20.
- the epidermis 40 is disposed to cover the detection electrode layer 10.
- An adhesive is applied to the back surface of the epidermis 40. Thereby, the epidermis 40 and the detection electrode layer 10 are adhered.
- the rim portion 80 of the steering wheel 8 is manufactured.
- the present embodiment and the first embodiment have the same effects as those of the parts having the same configuration.
- the detection electrode layer 10 and the shield electrode layer 11 constituting the capacitive coupling type sensor 1 but also the heater layer 30 utilizing the softening of the thermoplastic elastomer contained in the insulating layer 12 due to heating.
- the detection electrode layer 10 and the shield electrode layer 11 are made of a conductive cloth
- the heater layer 30 is made of a non-woven fabric. That is, they all consist of a sheet-like cloth member. Therefore, by laminating these fabric members on the insulating layer 12 and performing heat pressing, the fabric members can be impregnated with the insulating layer 12 and the layers can be fixed without using an adhesive. Thereby, the application process of an adhesive can be reduced and the reduction of cost can be aimed at.
- the thermoplastic elastomer used for the insulating layer is not particularly limited. It may be suitably selected from elastomers such as styrene type, olefin type, vinyl chloride type, urethane type, ester type and amide type.
- the thermoplastic elastomer may be used alone or in combination of two or more.
- SBS styrene-type thermoplastic elastomer
- SEBS SEBS, SEPS etc.
- the olefin elastomer include EEA, EMA, EMMA, etc., and copolymers of ethylene and ⁇ -olefin (ethylene-octene copolymer).
- the insulating layer may contain rubber or resin other than the thermoplastic elastomer.
- rubber such as ethylene-propylene rubber (EPM, EPDM)
- EPM ethylene-propylene rubber
- the insulating layer may contain a flexibility imparting component such as a plasticizer.
- the thermal conductivity of the insulating layer is 0.3 W / m ⁇ K or more.
- the preferable thermal conductivity is 0.4 W / m ⁇ K or more, and further 0.5 W / m ⁇ K or more.
- the insulating layer preferably has an inorganic filler having a relatively high thermal conductivity and an insulating property.
- the preferred thermal conductivity of the inorganic filler used to increase the thermal conductivity of the insulating layer is 20 W / m ⁇ K or more.
- an inorganic filler with comparatively large heat conductivity magnesium oxide, aluminum oxide, aluminum nitride, boron nitride, silicon carbide etc. are mentioned, for example.
- the insulating layer preferably has a flame retardant and insulating inorganic filler.
- an inorganic filler which has an insulating layer magnesium hydroxide, aluminum hydroxide, boron nitride etc. are mentioned, for example.
- the insulating layer be flexible in order to improve the feel of the sensor.
- the type A durometer hardness of the insulating layer is preferably 35 or more and less than 90.
- the hardness is 90 or more, when a person touches it, it feels hard and the feel is reduced.
- the hardness is less than 35, it is too soft to be handled, and the workability such as assembling is reduced.
- the tensile strength of the insulating layer is preferably 0.1 MPa or more, and more preferably 2.0 MPa or more.
- the breaking elongation of the insulating layer is preferably 100% or more, and more preferably 500% or more.
- the volume resistivity of the insulating layer is 1 ⁇ 10 12 ⁇ ⁇ cm or more.
- the preferred volume resistivity is 1 ⁇ 10 13 ⁇ ⁇ cm or more.
- the insulating layer is disposed between the detection electrode layer and the shield electrode layer.
- the insulating layer may be interposed between the two electrode layers, and may be impregnated in the electrode layer or may be in contact without being impregnated in the electrode layer.
- a plate-like filler may be contained in order to improve the flowability of a material such as a thermoplastic elastomer.
- a material with high insulating properties such as talc and boron nitride may be used.
- the detection electrode layer is desirably conductive and flexible.
- the preferred volume resistivity of the detection electrode layer is less than 10 ⁇ ⁇ cm. It is more preferable that it is 1 ohm * cm or less.
- the detection electrode layer may be formed of conductive rubber or conductive cloth.
- the conductive rubber has an elastomer and a conductive material.
- the elastomer one or more kinds selected from acrylic rubber, silicone rubber, urethane rubber, urea rubber, fluororubber, nitrile rubber, crosslinked rubber such as hydrogenated nitrile rubber, and thermoplastic elastomer may be used.
- the conductive material metal particles composed of silver, gold, copper, nickel, rhodium, palladium, chromium, titanium, platinum, iron and alloys thereof, metal oxide particles composed of zinc oxide, titanium oxide etc., titanium carbonate
- the conductive rubber may contain a crosslinking agent, a crosslinking accelerator, a dispersing agent, a reinforcing material, a plasticizer, an antiaging agent, a coloring agent and the like.
- the conductive cloth may, for example, be a polyester fiber such as polyethylene terephthalate (PET), which is plated with copper, nickel or the like having high conductivity.
- PET polyethylene terephthalate
- the shield electrode layer desirably has high conductivity from the viewpoint of shielding noise from the detection electrode layer.
- the preferred volume resistivity of the shield electrode layer is less than 1 ⁇ 10 ⁇ 1 ⁇ ⁇ cm.
- the material of the shield electrode layer may be the same as or different from that of the detection electrode layer. In order to achieve both high conductivity and flexibility, it is desirable that the shield electrode layer be formed of the above-mentioned conductive cloth.
- the capacitive coupling type sensor, and the skin and heater layer (counter member) laminated thereon are adhered with an adhesive.
- the type of adhesive is not particularly limited.
- an acrylic adhesive etc. are mentioned.
- a thermoplastic resin having a type A durometer hardness of less than 35 and tackiness and a thermal conductivity of 0.3 W / m ⁇ K or more may be disposed and fixed by adhesion.
- Examples of the detection target of the capacitive coupling type sensor of the present invention include human hands.
- the capacitive coupling type sensor according to the present invention is a sensor for detecting proximity or contact of a person, which is disposed on an interior part such as a door trim, an armrest, a console box, an instrument panel, a headrest or a seat besides a steering wheel of a vehicle. Is preferred.
- the capacitive coupling sensor according to the present invention is disposed on the steering wheel as in the above embodiment, the heater does not necessarily have to be disposed on the rim portion.
- Example 1 First, styrenic thermoplastic elastomer (SEBS) (100 parts by mass of "Taftec (registered trademark) H1221” manufactured by Asahi Kasei Corp. and olefinic thermoplastic elastomer (manufactured by Dow Chemical Japan KK “engage (registered trademark) XLT 8677”) 200 parts by mass of magnesium oxide powder ("RF-50SC” manufactured by Ube Materials Co., Ltd., thermal conductivity 45 W / m ⁇ K) as an inorganic filler is added to 50 parts by mass, and biaxial extrusion for compounding is performed. The mixture was kneaded at a temperature of 200 ° C.
- SEBS styrenic thermoplastic elastomer
- Capacitive coupling type sensor (hereinafter simply referred to as "sensor") consisting of detection electrode layer) / elastomer sheet (insulation layer) / conductive cloth (shield electrode layer) was manufactured. Almost entirely embedded in the elastomeric sheet.
- Example 2 The sensor of Example 2 was manufactured in the same manner as Example 1 except that the blending amount of the styrene-based thermoplastic elastomer was 50 parts by mass and the blending amount of the olefin-based thermoplastic elastomer was changed to 100 parts by mass.
- Example 3 in the same manner as in Example 1 except that 50 parts by mass of low density polyethylene (LDPE, manufactured by Sumitomo Chemical Co., Ltd., “Ecselene (registered trademark) GH 030) was blended in place of the olefin-based thermoplastic elastomer. The sensor was manufactured.
- LDPE low density polyethylene
- Ecselene registered trademark
- Example 4 A sensor of Example 2 was manufactured in the same manner as Example 1 except that the blending amount of the magnesium oxide powder was changed to 300 parts by mass.
- Example 5 The blending amount of the magnesium oxide powder is changed to 150 parts by mass, and in addition to this, 150 mass of magnesium hydroxide powder ("Kisuma (registered trademark) 5" manufactured by Kyowa Chemical Industry Co., Ltd.) as an inorganic filler having flame retardancy A sensor of Example 5 was manufactured in the same manner as Example 1 except that the compound was manufactured by adding a part thereof.
- Example 6 The sensor of Example 6 was prepared in the same manner as Example 1, except that 150 parts by mass of magnesium hydroxide powder (same as above) was added as an inorganic filler having flame retardancy in addition to the magnesium oxide powder to produce a compound. Manufactured.
- Comparative Example 1 In the same manner as in Example 1 except that magnesium oxide powder was added to 150 parts by mass of low density polyethylene (same as above) without using styrenic thermoplastic elastomer and olefinic thermoplastic elastomer, and a compound was produced, The sensor of Comparative Example 1 was manufactured. Also in the sensor of Comparative Example 1, the conductive cloth of the electrode layer was almost entirely embedded in the elastomer sheet.
- Comparative Example 2 A sensor of Comparative Example 2 was manufactured in the same manner as Example 1 except that the magnesium oxide powder was not blended.
- Comparative Example 3 A sensor of Comparative Example 3 was manufactured in the same manner as Example 1 except that 15 parts by mass of carbon black ("# 3030B" manufactured by Mitsubishi Chemical Corporation) was blended instead of the magnesium oxide powder.
- insulation layer The type A durometer hardness, the thermal conductivity, the volume resistivity, the tensile strength, and the breaking elongation of an elastomer sheet (hereinafter, referred to as "insulation layer") constituting the sensors of Examples and Comparative Examples were measured.
- the measuring method is as follows.
- Type A durometer hardness Using a hardness meter (“ASKER P1-A type” manufactured by Kobunshi Keiki Co., Ltd.) according to JIS K6253-3: 2012, the type A durometer hardness was measured by stacking three 1-mm thick insulating layers . As the type A durometer hardness, an instantaneous value immediately after the contact between the needle and the insulating layer was adopted.
- Thermal conductivity was measured using “HC-110” manufactured by Eko Seiki Co., Ltd. in accordance with the heat flow meter method of JIS A 1412-2: 1999.
- volume resistivity The volume resistivity was measured using “High Voltage Source Measure Unit 237” manufactured by Keithley Instruments, Inc. in accordance with the parallel terminal electrode method of JIS K 6271-2: 2015. The applied voltage was 100V.
- Table 1 summarizes the measurement results of the components and physical properties of the insulating layer.
- the thermal conductivity of the insulating layers constituting the sensors of Examples 1 to 6 was 0.3 W / m ⁇ K or more, and the volume resistivity was 1 ⁇ 10 12 ⁇ ⁇ cm or more. . That is, the insulating layers constituting the sensors of Examples 1 to 6 correspond to the insulating layers defined in the present invention. Further, since the type A durometer hardness of the insulating layer constituting the sensor of Examples 1 to 6 is less than 90 and the tensile strength is 2.0 MPa or more, the insulating layer is flexible and is easy to assemble, It turns out that it is excellent in durability.
- the insulating layers of Examples 1 to 5 have a breaking elongation of 500% or more and are excellent in elongation characteristics, but the insulating layer of Example 6 has a large amount of inorganic filler, so other Examples Elongation at break decreased compared with.
- the insulating layers of Examples 6 and 7 to which magnesium hydroxide powder was added as the inorganic filler the volume resistivity increased compared to the examples not including it.
- the insulating layer which comprises the sensor of the comparative example 1 does not contain a thermoplastic elastomer. Therefore, the type A durometer hardness of the insulating layer is 90 and the breaking elongation is 400%, and it can be seen that the insulating layer has poor flexibility. Moreover, the insulating layer which comprises the sensor of the comparative example 2 does not contain the inorganic filler with large heat conductivity. For this reason, the thermal conductivity of the said insulating layer became small. Moreover, the insulating layer which comprises the sensor of the comparative example 3 does not have an inorganic filler with large heat conductivity, but contains carbon black which has electroconductivity. For this reason, it can be understood that the volume resistivity of the insulating layer is small and not suitable for the capacitive coupling sensor of the present invention.
- ⁇ Flame retardancy evaluation of insulating layer The flame retardance of the insulating layer which comprises the sensor of an Example and a comparative example was evaluated. The evaluation of the flame retardancy was performed based on the United States Federal Automobile Safety Standard "FMVSS No. 302" (ISO 3795, JIS D 1201) which is a combustion test of automobile interior materials. The said combustion test fixes a test piece to a U-shaped jig
- Capacitive coupling sensor 8: steering wheel
- 10 detection electrode layer
- 11 shield electrode layer
- 12 insulating layer
- 13 detection electrode layer
- 20 core
- 30 heater layer
- 31 adhesion Layers
- 40 skin
- 41 adhesive layer
- 80 rim portion
- 81 connection portion.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Geology (AREA)
- Electromagnetism (AREA)
- Geophysics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Transportation (AREA)
- Textile Engineering (AREA)
- Laminated Bodies (AREA)
- Geophysics And Detection Of Objects (AREA)
- Steering Controls (AREA)
Abstract
静電容量結合方式センサ(1)は、検出対象物との間に静電容量を生じる検出電極層(10)と、シールド電極層(11)と、検出電極層(10)とシールド電極層(11)との間に配置される絶縁層(12)と、を備え、絶縁層(12)は熱可塑性エラストマーを有し、絶縁層(12)の熱伝導率は0.3W/m・K以上であり、体積抵抗率は1×1012Ω・cm以上である。検出電極層(10)およびシールド電極層(11)が導電性布からなる場合、絶縁層(12)の表面に検出電極層(10)用の導電性布を重ね、絶縁層(12)の裏面にシールド電極層(11)用の導電性布を重ねて積層体を形成し、該積層体を加熱下で表裏方向に加圧することにより、絶縁層(12)を導電性布に融着させて、静電容量結合方式センサ(1)を製造する。
Description
本発明は、車両のステアリングホイール、内装部品などに配置され、人の近接、接触などを検出可能な静電容量結合方式センサに関する。
自動車などの車両においては、乗員の状態を検出する様々なセンサが搭載される。例えば、特許文献1、2には、ステアリングホイールのリム部(グリップ)に配置される接触センサが開示されている。当該接触センサは、シールド層とセンサ層とを備え、乗員とセンサ層との間に生じる静電容量の変化に基づいて、運転者がステアリングホイールに接触したか否かを検出する。一方、冬季や寒冷地においてはリム部が冷たくなる。これによる運転しづらさや不快感を軽減するために、リム部にヒータを取付けたステアリングホイールが知られている。特許文献1、2に記載されているステアリングホイールにおいて、ヒータは、接触センサの下側(芯体側)に配置されている。
図6に、接触センサおよびヒータを備える従来のステアリングホイールの径方向断面図を示す。図6に示すように、ステアリングホイール9は、芯体20と、ヒータ層30と、接触センサ90と、表皮40と、を備えている。ステアリングホイール9は、芯体20から径方向外側に向かって複数の層が積層される積層構造を有している。ヒータ層30は、芯体20の外周面を覆っている。接触センサ90は、ヒータ層30の外周面を覆っている。表皮40は、接触センサ90の外周面を覆っている。運転者が触れるのは、表皮40である。
接触センサ90は、検出電極層91と、シールド電極層92と、絶縁層93と、を有している。検出電極層91は、表皮40側に配置され、運転者の手(検出対象物)との間に静電容量を生じる。シールド電極層92は、ヒータ層30側に配置され、ヒータ層30からのノイズを遮蔽する。絶縁層93は、検出電極層91とシールド電極層92との間に配置されている。検出電極層91と絶縁層93との間には、粘着層94が配置されている。シールド電極層92と絶縁層93との間には、粘着層95が配置されている。粘着層94、95は、隣り合う二層を接着している。同様に、ヒータ層30とシールド電極層92との間には、粘着層31が配置されている。粘着層31は、ヒータ層30とシールド電極層92とを接着している。表皮40と検出電極層91との間には、粘着層41が配置されている。粘着層41は、表皮40と検出電極層91とを接着している。
運転者がステアリングホイール9を握った際の感触を向上させるため、絶縁層93には、ポリエチレンフォームなどの発泡樹脂が用いられる。しかし、発泡樹脂の熱伝導率は0.04W/m・K程度と小さい。加えて、積層される層同士を接着する粘着層31、41、94、95の熱伝導率も小さい。このため、ヒータ層30により加熱しても、その熱が表皮40に伝達されるまでに時間を要し、運転者がなかなか温かさを感じられないという問題があった。また、層同士を粘着剤で接着するため、粘着剤を塗布する工程などが必要になる分だけ製造工程が多くなり、コスト高になっていた。
本発明は、このような実情に鑑みてなされたものであり、触感が良好で、従来よりも熱伝導性が高い静電容量結合方式センサを提供することを課題とする。また、当該静電容量結合方式センサを低コストで製造することができる製造方法を提供することを課題とする。
(1)上記課題を解決するため、本発明の静電容量結合方式センサは、検出対象物との間に静電容量を生じる検出電極層と、シールド電極層と、該検出電極層と該シールド電極層との間に配置される絶縁層と、を備え、該絶縁層は熱可塑性エラストマーを有し、該絶縁層の熱伝導率は0.3W/m・K以上であり、体積抵抗率は1×1012Ω・cm以上であることを特徴とする。
(2)上記課題を解決するため、本発明の静電容量結合方式センサの製造方法は、前記検出電極層および前記シールド電極層は導電性布からなり、該導電性布の少なくとも一部は前記絶縁層に埋入されている形態の上記本発明の静電容量結合方式センサの製造方法であって、前記絶縁層の表面に前記検出電極層となる導電性布を重ね、該絶縁層の裏面に前記シールド電極層となる導電性布を重ねて積層体を形成する積層工程と、該積層体を加熱下で表裏方向に加圧することにより、該絶縁層を該導電性布に融着させる融着工程と、を有することを特徴とする。
(1)本発明の静電容量結合方式センサにおいては、絶縁層に熱可塑性エラストマーを使用する。熱可塑性エラストマーは柔軟である。このため、人が触れる部材にセンサを配置しても触感が低下しにくい。また、絶縁層の体積抵抗率は大きい。このため、検出電極層とシールド電極層との間の絶縁性を充分に確保することができ、センサ機能が阻害されるおそれは少ない。また、絶縁層の熱伝導率は従来と比較して大きい。このため、センサの熱伝導性は従来と比較して高くなる。したがって、例えば本発明の静電容量結合方式センサを、ステアリングホイールのヒータ層の外側に配置すると、ヒータ層の熱が表皮まで速やかに伝達され、ステアリングホイールが温まるまでの時間を短縮することができる。
絶縁層は熱可塑性エラストマーを有する。このため、積層される電極層が導電性ゴムからなる場合には、熱可塑性エラストマーと導電性ゴムとの粘着性を利用して、粘着剤を用いずに、電極層と絶縁層とを固定することができる。また、熱可塑性エラストマーは加熱により軟化する。よって、例えば積層される電極層が多数の空隙を有する導電性布からなる場合には、電極層と絶縁層とを熱圧着し、軟化した絶縁層を電極層の空隙に含浸させることにより、粘着剤を用いずに電極層と絶縁層とを固定することができる。このように、本発明の静電容量結合方式センサによると、層同士の固定に粘着剤を使用しないで済むため、製造工程を削減することができ、コストの削減を図ることができる。
なお、特許文献3には、ステアリングホイールに正特性サーミスタからなる発熱体を配置し、その外側を熱伝導性に優れた合成樹脂製の放熱層で覆う構成が記載されている。しかし、特許文献3に記載されている放熱層は、センサを構成する部材ではない。このため、当該放熱層は、合成樹脂に導電性の金属フィラーを配合して形成されており、導電性を有する。よって、当該放熱層を、静電容量結合方式センサの絶縁層として使用することはできない。また、特許文献3には、放熱層の材料として、熱可塑性エラストマーは記載されていない。
(2)本発明の静電容量結合方式センサの製造方法おいては、検出電極層およびシールド電極層が導電性布からなる形態の本発明の静電容量結合方式センサを製造する。絶縁層に含まれる熱可塑性エラストマーは、加熱により軟化する。一方、導電性布は繊維間に多数の空隙を有する。このため、導電性布を絶縁層に重ねて熱圧着することにより、軟化した絶縁層が導電性布に含浸し、導電性布の少なくとも一部が絶縁層に埋入される。これにより、粘着剤を用いずに、絶縁層と導電性布(検出電極層およびシールド電極層)とを固定することができる。本発明の製造方法によると、検出電極層である導電性布の少なくとも一部と、シールド電極層である導電性布の少なくとも一部と、が絶縁層に埋入されている形態の本発明の静電容量結合方式センサを、容易に製造することができる。
以下、本発明の静電容量結合方式センサおよびその製造方法の実施の形態について説明する。
<第一実施形態>
[構成]
まず、本実施形態の静電容量結合方式センサの構成を説明する。図1に、本実施形態の静電容量結合方式センサが配置されたステアリングホイールの正面図を示す。図2に、図1のII-II断面図を示す。図3に、同ステアリングホイールの積層構造を説明するための断面模式図を示す。
[構成]
まず、本実施形態の静電容量結合方式センサの構成を説明する。図1に、本実施形態の静電容量結合方式センサが配置されたステアリングホイールの正面図を示す。図2に、図1のII-II断面図を示す。図3に、同ステアリングホイールの積層構造を説明するための断面模式図を示す。
図1に示すように、ステアリングホイール8は、リム部80と、連結部81と、を有している。リム部80は、環状を呈し、運転者に把持される。連結部81は、リム部80とステアリングシャフト(図略)とを接続している。図1中、点線で示すように、リム部80には、静電容量結合方式センサ1が配置されている。
図2、図3に示すように、リム部80は、芯体20と、ヒータ層30と、静電容量結合方式センサ1と、表皮40と、を有している。
芯体20は、金属製の中実の棒であり、環状を呈している。芯体20は、連結部81を介してステアリングシャフトに接続されている。
ヒータ層30は、電熱線が配置された不織布からなる。ヒータ層30は、芯体20の外周面を覆っている。ヒータ層30は、通電により電熱線が発熱することにより、リム部80を加温する。ヒータ層30と静電容量結合方式センサ1との間には、粘着層31が配置されている。粘着層31は、ヒータ層30と静電容量結合方式センサ1(具体的には後述するシールド電極層11)とを接着している。
静電容量結合方式センサ1は、柔軟なシート状を呈している。静電容量結合方式センサ1は、ヒータ層30の上から芯体20に巻装(一巻き)されている。静電容量結合方式センサ1は、ヒータ層30の外周面を覆っている。静電容量結合方式センサ1は、検出電極層10と、シールド電極層11と、絶縁層12と、を有している。
検出電極層10は、導電性布からなる。検出電極層10の体積抵抗率は10-2Ω・cmのオーダーである。検出電極層10は、表皮40側に配置され、運転者の手(検出対象物)との間に静電容量を生じる。検出電極層10は、図2、図3中、点線で示すように、そのほぼ全体が絶縁層12に埋入されている。シールド電極層11は、検出電極層10と同じ導電性布からなる。シールド電極層11は、ヒータ層30側に配置されている。シールド電極層11は接地されており、ヒータ層30からのノイズを遮蔽する。シールド電極層11は、図2、図3中、点線で示すように、そのほぼ全体が絶縁層12に埋入されている。
絶縁層12は、検出電極層10とシールド電極層11との間に配置されている。絶縁層12は、スチレン系エラストマーと、オレフィン系エラストマーと、酸化マグネシウム粒子と、を有している。酸化マグネシウム粒子の熱伝導率は、45W/m・Kである。酸化マグネシウム粒子は、本発明における無機フィラーの概念に含まれる。絶縁層12の熱伝導率は、0.5W/m・Kであり、体積抵抗率は1×1013Ω・cmである。絶縁層12のタイプAデュロメータ硬さは56である。
表皮40は、樹脂製であり、静電容量結合方式センサ1の外周面を覆っている。表皮40と静電容量結合方式センサ1との間には、粘着層41が配置されている。粘着層41は、表皮40と静電容量結合方式センサ1(具体的には検出電極層10)とを接着している。
[製造方法]
次に、本実施形態の静電容量結合方式センサの製造方法を説明する。まず、絶縁層12の表面に検出電極層10用の導電性布を重ね、裏面にシールド電極層11用の導電性布を重ねて積層体を形成する(積層工程)。次に、積層体を熱プレスする。これにより、軟化した絶縁層12が導電性布に含浸し、絶縁層12が導電性布に融着される(融着工程)。同時に、導電性布(検出電極層10およびシールド電極層11)は絶縁層12に埋入される。このようにして、静電容量結合方式センサ1が製造される。
次に、本実施形態の静電容量結合方式センサの製造方法を説明する。まず、絶縁層12の表面に検出電極層10用の導電性布を重ね、裏面にシールド電極層11用の導電性布を重ねて積層体を形成する(積層工程)。次に、積層体を熱プレスする。これにより、軟化した絶縁層12が導電性布に含浸し、絶縁層12が導電性布に融着される(融着工程)。同時に、導電性布(検出電極層10およびシールド電極層11)は絶縁層12に埋入される。このようにして、静電容量結合方式センサ1が製造される。
製造した静電容量結合方式センサ1を、シールド電極層11を内側にして、芯体20に巻装されたヒータ層30の外周面を覆うように配置する。ヒータ層30の表面には粘着剤が塗布されている。これにより、ヒータ層30とシールド電極層11とが接着される。それから、表皮40を、検出電極層10を覆うように配置する。表皮40の裏面には粘着剤が塗布されている。これにより、表皮40と検出電極層10とが接着される。このようにして、ステアリングホイール8のリム部80が製造される。
[静電容量結合方式センサの動き]
次に、本実施形態の静電容量結合方式センサの動きを説明する。運転者の手(導電性を有し、人体を介してアースされている。)が表皮40に接近すると、検出電極層10と手との間に、静電容量が発生する。検出電極層10には、図示しない検出回路部が電気的に接続されている。当該検出回路部は、手が接近していない状態から手が接近している状態における静電容量の変化量を算出し、算出された値に基づいて、運転者がステアリングホイール8に接触したか否かを判別する。
次に、本実施形態の静電容量結合方式センサの動きを説明する。運転者の手(導電性を有し、人体を介してアースされている。)が表皮40に接近すると、検出電極層10と手との間に、静電容量が発生する。検出電極層10には、図示しない検出回路部が電気的に接続されている。当該検出回路部は、手が接近していない状態から手が接近している状態における静電容量の変化量を算出し、算出された値に基づいて、運転者がステアリングホイール8に接触したか否かを判別する。
[作用効果]
次に、本実施形態の静電容量結合方式センサおよびその製造方法の作用効果を説明する。静電容量結合方式センサ1によると、絶縁層12に柔軟な熱可塑性エラストマー(スチレン系エラストマーおよびオレフィン系エラストマー)を使用する。また、検出電極層10およびシールド電極層11も柔軟な導電性布からなる。このため、静電容量結合方式センサ1の全体が柔軟であり、リム部80の触感は良好である。また、絶縁層12の体積抵抗率は大きい。このため、検出電極層10とシールド電極層11との間の絶縁性を充分に確保することができ、センサ機能が阻害されにくい。また、絶縁層12の熱伝導率は従来と比較して大きい。加えて、絶縁層20と検出電極層10およびシールド電極層11との間には、粘着層がない。このため、静電容量結合方式センサ1の熱伝導性は、従来と比較して高くなる。したがって、ヒータ層30の熱が表皮40まで速やかに伝達され、リム部80の昇温時間を短縮することができる。これにより、冬季や寒冷地で運転する場合にも、運転者は速やかに温かさを感じることができ、運転しづらさや不快感が軽減される。
次に、本実施形態の静電容量結合方式センサおよびその製造方法の作用効果を説明する。静電容量結合方式センサ1によると、絶縁層12に柔軟な熱可塑性エラストマー(スチレン系エラストマーおよびオレフィン系エラストマー)を使用する。また、検出電極層10およびシールド電極層11も柔軟な導電性布からなる。このため、静電容量結合方式センサ1の全体が柔軟であり、リム部80の触感は良好である。また、絶縁層12の体積抵抗率は大きい。このため、検出電極層10とシールド電極層11との間の絶縁性を充分に確保することができ、センサ機能が阻害されにくい。また、絶縁層12の熱伝導率は従来と比較して大きい。加えて、絶縁層20と検出電極層10およびシールド電極層11との間には、粘着層がない。このため、静電容量結合方式センサ1の熱伝導性は、従来と比較して高くなる。したがって、ヒータ層30の熱が表皮40まで速やかに伝達され、リム部80の昇温時間を短縮することができる。これにより、冬季や寒冷地で運転する場合にも、運転者は速やかに温かさを感じることができ、運転しづらさや不快感が軽減される。
静電容量結合方式センサ1においては、絶縁層12に熱可塑性エラストマーを使用するため、粘着剤を用いずに熱可塑性エラストマーの加熱による軟化を利用して、絶縁層12と検出電極層10およびシールド電極層11とを固定することができる。検出電極層10およびシールド電極層11は、いずれも導電性布からなる。このため、本実施形態の静電容量結合方式センサの製造方法によると、2枚の導電性布で絶縁層12を挟み熱プレスすることにより、絶縁層12が導電性布に含浸し、粘着剤を使用しなくても、絶縁層12に検出電極層10およびシールド電極層11を固定することができる。これにより、従来必要であった粘着剤の塗布工程が不要になり、製造工程が削減される分だけコストの削減を図ることができる。
<第二実施形態>
本実施形態の静電容量結合方式センサと、第一実施形態の静電容量結合方式センサとの相違点は、検出電極層が導電性布ではなく導電性ゴムからなる点である。本実施形態の静電容量結合方式センサの製造方法と、第一実施形態の静電容量結合方式センサの製造方法との相違点は、検出電極層をシールド電極層とは別に絶縁層に圧着して固定する点である。ここでは、相違点を中心に説明する。
本実施形態の静電容量結合方式センサと、第一実施形態の静電容量結合方式センサとの相違点は、検出電極層が導電性布ではなく導電性ゴムからなる点である。本実施形態の静電容量結合方式センサの製造方法と、第一実施形態の静電容量結合方式センサの製造方法との相違点は、検出電極層をシールド電極層とは別に絶縁層に圧着して固定する点である。ここでは、相違点を中心に説明する。
図4に、本実施形態の静電容量結合方式センサが配置されたステアリングホイールの積層構造を説明するための断面模式図を示す。なお、図4は、図3と対応しており、図3と同じ部位については同じ符号で示す。
図4に示すように、リム部80は、芯体20と、ヒータ層30と、静電容量結合方式センサ1と、表皮40と、を有している。静電容量結合方式センサ1は、検出電極層13と、シールド電極層11と、絶縁層12と、を有している。検出電極層13は、エラストマーと導電材とを有する導電性ゴムからなる。検出電極層13の体積抵抗率は10-2Ω・cmのオーダーである。検出電極層13は、絶縁層12の表面(径方向外側の面)に固定されている。
静電容量結合方式センサ1は、以下のようにして製造される。まず、絶縁層12の裏面にシールド電極層11用の導電性布を重ねて熱プレスする。これにより、軟化した絶縁層12が導電性布に含浸し、絶縁層12が導電性布に融着される。同時に、導電性布(シールド電極層11)は、図4中、点線で示すように、絶縁層12に埋入される。次に、絶縁層12の表面に検出電極層13用の導電性ゴムを重ねてプレスする。こうすると、絶縁層12に含まれる熱可塑性エラストマーと導電性ゴムとの粘着性により、検出電極層13と絶縁層12とが固定される。
本実施形態の静電容量結合方式センサおよびその製造方法と、第一実施形態の静電容量結合方式センサおよびその製造方法とは、構成が共通する部分に関しては、同様の作用効果を有する。
本実施形態によると、検出電極層13は導電性ゴムからなる。このため、検出電極層13、ひいては静電容量結合方式センサ1の全体がより柔軟になり、リム部80の触感が向上する。また、検出電極層13と絶縁層12とを固定する際には、絶縁層12に含まれる熱可塑性エラストマーと導電性ゴムとの粘着性を利用するため、加熱する必要はない(勿論、粘着剤も必要ない)。
<第三実施形態>
本実施形態の静電容量結合方式センサは、第一実施形態の静電容量結合方式センサと同じである。しかし、本実施形態のステアリングホイールのリム部は、静電容量結合方式センサとヒータ層との間に粘着層が配置されていない点において、第一実施形態のリム部の構成と相違する。ここでは、相違点を中心に説明する。
本実施形態の静電容量結合方式センサは、第一実施形態の静電容量結合方式センサと同じである。しかし、本実施形態のステアリングホイールのリム部は、静電容量結合方式センサとヒータ層との間に粘着層が配置されていない点において、第一実施形態のリム部の構成と相違する。ここでは、相違点を中心に説明する。
図5に、本実施形態の静電容量結合方式センサが配置されたステアリングホイールの積層構造を説明するための断面模式図を示す。なお、図5は、図3と対応しており、図3と同じ部位については同じ符号で示す。
図5に示すように、リム部80は、芯体20と、ヒータ層30と、静電容量結合方式センサ1と、表皮40と、を有している。静電容量結合方式センサ1は、検出電極層13と、シールド電極層11と、絶縁層12と、を有している。シールド電極層11は、図5中、点線で示すように、そのほぼ全体が絶縁層12に埋入されている。すなわち、絶縁層12は、シールド電極層11に含浸している。さらに絶縁層12は、図5中、波線で示すように、ヒータ層30の表層部分にも含浸している。これにより、静電容量結合方式センサ1は、ヒータ層30に固定されている。静電容量結合方式センサ1とヒータ層30との間には、粘着層は配置されていない。
本実施形態のリム部80は、以下のようにして製造される。まず、絶縁層12の表面に検出電極層10用の導電性布を重ね、裏面にシールド電極層11用の導電性布とヒータ層30用の不織布とをこの順で重ねて、積層体を形成する。次に、積層体を熱プレスする。これにより、軟化した絶縁層12が導電性布および不織布に含浸し、絶縁層12が導電性布および不織布に融着される。同時に、導電性布(検出電極層10およびシールド電極層11)は絶縁層12に埋入される。これにより、ヒータ層30と静電容量結合方式センサ1とが固定される。それから、静電容量結合方式センサ1が固定されたヒータ層30を芯体20の外周面に巻き付ける。最後に、表皮40を、検出電極層10を覆うように配置する。表皮40の裏面には粘着剤が塗布されている。これにより、表皮40と検出電極層10とが接着される。このようにして、ステアリングホイール8のリム部80が製造される。
本実施形態と、第一実施形態とは、構成が共通する部分に関しては、同様の作用効果を有する。本実施形態によると、絶縁層12に含まれる熱可塑性エラストマーの加熱による軟化を利用して、静電容量結合方式センサ1を構成する検出電極層10およびシールド電極層11だけでなく、ヒータ層30も一緒に固定する。検出電極層10およびシールド電極層11は導電性布からなり、ヒータ層30は不織布からなる。つまり、これらはいずれもシート状の布部材からなる。よって、これらの布部材を絶縁層12に積層して熱プレスすることにより、絶縁層12が布部材に含浸し、粘着剤を使用しなくても、層同士を固定することができる。これにより、粘着剤の塗布工程を減らすことができ、コストの削減を図ることができる。
<他の実施形態>
以上、本発明の静電容量結合方式センサおよびその製造方法の実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
以上、本発明の静電容量結合方式センサおよびその製造方法の実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
[絶縁層]
絶縁層に用いられる熱可塑性エラストマーは、特に限定されない。スチレン系、オレフィン系、塩ビ系、ウレタン系、エステル系、アミド系などのエラストマーから適宜選択すればよい。熱可塑性エラストマーは、一種類でも二種類以上用いてもよい。例えば、スチレン系熱可塑性エラストマーとしては、SBS、SEBS、SEPSなどが挙げられる。オレフィン系エラストマーとしては、EEA、EMA、EMMAなどの他、エチレンとαオレフィンとの共重合体(エチレン-オクテン共重合体)などが挙げられる。
絶縁層に用いられる熱可塑性エラストマーは、特に限定されない。スチレン系、オレフィン系、塩ビ系、ウレタン系、エステル系、アミド系などのエラストマーから適宜選択すればよい。熱可塑性エラストマーは、一種類でも二種類以上用いてもよい。例えば、スチレン系熱可塑性エラストマーとしては、SBS、SEBS、SEPSなどが挙げられる。オレフィン系エラストマーとしては、EEA、EMA、EMMAなどの他、エチレンとαオレフィンとの共重合体(エチレン-オクテン共重合体)などが挙げられる。
絶縁層は熱可塑性エラストマー以外のゴム、樹脂を含んでいてもよい。例えば、エチレン-プロピレンゴム(EPM、EPDM)などのゴムを含む場合には、絶縁層の柔軟性が向上する。絶縁層の柔軟性を向上させるという観点から、絶縁層に可塑剤などの柔軟性付与成分を含有させてもよい。
絶縁層の熱伝導率は、0.3W/m・K以上である。好適な熱伝導率は、0.4W/m・K以上、さらには0.5W/m・K以上である。絶縁層の熱伝導率を大きくするという観点から、絶縁層は、熱伝導率が比較的大きく、かつ絶縁性の無機フィラーを有することが望ましい。絶縁層の熱伝導率を大きくするために用いる無機フィラーの好適な熱伝導率は、20W/m・K以上である。熱伝導率が比較的大きい無機フィラーとしては、例えば、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素などが挙げられる。
また、絶縁層に難燃性を付与するという観点から、絶縁層は、難燃性かつ絶縁性の無機フィラーを有することが望ましい。絶縁層を有する無機フィラーとしては、例えば、水酸化マグネシウム、水酸化アルミニウム、窒化ホウ素などが挙げられる。
センサの触感を良くするという観点から、絶縁層は柔軟であることが望ましい。例えば、絶縁層のタイプAデュロメータ硬さは、35以上90未満であると好適である。当該硬さが90以上の場合には、人が触れた時に硬く感じてしまい触感が低下する。反対に当該硬さが35未満の場合には、柔らか過ぎて取り扱い難くなるため、組み付けなどの作業性が低下する。また、組み付け性、耐久性を向上させるという観点から、絶縁層の引張強さは、0.1MPa以上、さらには2.0MPa以上であると好適である。絶縁層の破断伸びは、100%以上、さらには500%以上であると好適である。
検出電極層とシールド電極層との間の絶縁性を確保して、センサ機能を維持するという観点から、絶縁層の体積抵抗率は、1×1012Ω・cm以上である。好適な体積抵抗率は、1×1013Ω・cm以上である。絶縁層は、検出電極層とシールド電極層との間に配置される。絶縁層は、二つの電極層の間に介在していればよく、電極層に含浸していても、電極層に含浸せずに接しているだけでもよい。
絶縁層を押出し加工により成形する場合には、熱可塑性エラストマーなどの材料の流動性を向上させる目的で、板状フィラーを含有させてもよい。板状フィラーとしては、タルク、窒化ホウ素などの絶縁性の高い材料を用いればよい。
[検出電極層]
検出電極層は、導電性を有し、柔軟であることが望ましい。検出電極層の好適な体積抵抗率は、10Ω・cm未満である。1Ω・cm以下であるとより好適である。検出電極層は、導電性ゴムまたは導電性布から形成すればよい。
検出電極層は、導電性を有し、柔軟であることが望ましい。検出電極層の好適な体積抵抗率は、10Ω・cm未満である。1Ω・cm以下であるとより好適である。検出電極層は、導電性ゴムまたは導電性布から形成すればよい。
導電性ゴムは、エラストマーと導電材とを有する。エラストマーとしては、アクリルゴム、シリコーンゴム、ウレタンゴム、ウレアゴム、フッ素ゴム、ニトリルゴム、水素化ニトリルゴムなどの架橋ゴム、および熱可塑性エラストマーから選ばれる一種以上を用いればよい。導電材としては、銀、金、銅、ニッケル、ロジウム、パラジウム、クロム、チタン、白金、鉄、およびこれらの合金などからなる金属粒子、酸化亜鉛、酸化チタンなどからなる金属酸化物粒子、チタンカーボネートなどからなる金属炭化物粒子、銀、金、銅、白金、およびニッケルなどからなる金属ナノワイヤ、カーボンブラック、カーボンナノチューブ、黒鉛、薄層黒鉛、グラフェンなどの導電性炭素材料の中から、適宜選択すればよい。導電性ゴムは、架橋剤、架橋促進剤、分散剤、補強材、可塑剤、老化防止剤、着色剤などを含んでいてもよい。
導電性布としては、導電性繊維の織物、不織布などを用いればよい。導電性繊維は、ポリエチレンテレフタレート(PET)などのポリエステル繊維に、導電性が高い銅、ニッケルなどのめっきを施したものが挙げられる。
[シールド電極層]
シールド電極層は、検出電極層に対するノイズを遮蔽するという観点から、高い導電性を有することが望ましい。シールド電極層の好適な体積抵抗率は、1×10-1Ω・cm未満である。シールド電極層の材質は、検出電極層のそれと同じでも異なってもよい。高い導電性と柔軟性との両方を実現するためには、シールド電極層は、上述した導電性布から形成されることが望ましい。
シールド電極層は、検出電極層に対するノイズを遮蔽するという観点から、高い導電性を有することが望ましい。シールド電極層の好適な体積抵抗率は、1×10-1Ω・cm未満である。シールド電極層の材質は、検出電極層のそれと同じでも異なってもよい。高い導電性と柔軟性との両方を実現するためには、シールド電極層は、上述した導電性布から形成されることが望ましい。
[製造方法]
絶縁層に検出電極層およびシールド電極層を固定するには、絶縁層に検出電極層およびシールド電極層の少なくとも一方を重ねた状態で、必要に応じて加熱しながら加圧すればよい。また、絶縁層を厚さ方向に二つに分割した第一絶縁層と第二絶縁層とを準備して、第一絶縁層に検出電極層を固定し、第二絶縁層にシールド電極層を固定した後、第一絶縁層と第二絶縁層とを重ねて圧着してもよい。
絶縁層に検出電極層およびシールド電極層を固定するには、絶縁層に検出電極層およびシールド電極層の少なくとも一方を重ねた状態で、必要に応じて加熱しながら加圧すればよい。また、絶縁層を厚さ方向に二つに分割した第一絶縁層と第二絶縁層とを準備して、第一絶縁層に検出電極層を固定し、第二絶縁層にシールド電極層を固定した後、第一絶縁層と第二絶縁層とを重ねて圧着してもよい。
上記実施形態においては、静電容量結合方式センサと、それに積層される表皮、ヒータ層(相手部材)とを粘着剤により接着した。粘着剤の種類は特に限定されない。例えば、アクリル系粘着剤などが挙げられる。あるいは、タイプAデュロメータ硬さが35未満で粘着性を有し、かつ熱伝導率が0.3W/m・K以上の熱可塑性樹脂を配置して、粘接着により固定してもよい。
[用途]
本発明の静電容量結合方式センサの検出対象物としては、人の手などが挙げられる。本発明の静電容量結合方式センサは、車両のステアリングホイールの他、ドアトリム、アームレスト、コンソールボックス、インストロメントパネル、ヘッドレスト、シートなどの内装部品に配置され、人の近接、接触を検出するセンサとして好適である。なお、上記実施形態のように、本発明の静電容量結合方式センサをステアリングホイールに配置する場合、リム部には必ずしもヒータが配置される必要はない。
本発明の静電容量結合方式センサの検出対象物としては、人の手などが挙げられる。本発明の静電容量結合方式センサは、車両のステアリングホイールの他、ドアトリム、アームレスト、コンソールボックス、インストロメントパネル、ヘッドレスト、シートなどの内装部品に配置され、人の近接、接触を検出するセンサとして好適である。なお、上記実施形態のように、本発明の静電容量結合方式センサをステアリングホイールに配置する場合、リム部には必ずしもヒータが配置される必要はない。
次に、実施例を挙げて本発明をより具体的に説明する。
<静電容量結合方式センサの製造>
[実施例1]
まず、スチレン系熱可塑性エラストマー(SEBS)(旭化成(株)製「タフテック(登録商標)H1221」100質量部およびオレフィン系熱可塑性エラストマー(ダウ・ケミカル日本(株)製「エンゲージ(登録商標)XLT8677」)50質量部に、無機フィラーとしての酸化マグネシウム粉末(宇部マテリアルズ(株)製「RF-50SC」、熱伝導率45W/m・K)200質量部を添加して、コンパウンディング用二軸押出機((株)日本製鋼所製「TEX(登録商標)25αIII」)にて温度200℃で混練し、ペレット状のコンパウンドを製造した。次に、コンパウンドを、単軸押出機((株)プラスチック工学研究所製「UT-25」)にてTダイ押出し加工して、幅150mm、厚さ1mmのエラストマーシートを製造した。続いて、エラストマーシートを所定の長さに切断し、それを二枚の導電性布(セーレン(株)製「Sui-10-511M」)で挟んで積層体を作製した。そして、当該積層体をプレス成型機(三友工業(株)製の150トンプレス機)で熱プレスして、エラストマーシートの厚さ方向両面に導電性布を融着した。このようにして、導電性布(検出電極層)/エラストマーシート(絶縁層)/導電性布(シールド電極層)からなる静電容量結合方式センサ(以下単に「センサ」と称す)を製造した。製造したセンサにおいて、導電性布は、ほぼ全体がエラストマーシートに埋入されている。
[実施例1]
まず、スチレン系熱可塑性エラストマー(SEBS)(旭化成(株)製「タフテック(登録商標)H1221」100質量部およびオレフィン系熱可塑性エラストマー(ダウ・ケミカル日本(株)製「エンゲージ(登録商標)XLT8677」)50質量部に、無機フィラーとしての酸化マグネシウム粉末(宇部マテリアルズ(株)製「RF-50SC」、熱伝導率45W/m・K)200質量部を添加して、コンパウンディング用二軸押出機((株)日本製鋼所製「TEX(登録商標)25αIII」)にて温度200℃で混練し、ペレット状のコンパウンドを製造した。次に、コンパウンドを、単軸押出機((株)プラスチック工学研究所製「UT-25」)にてTダイ押出し加工して、幅150mm、厚さ1mmのエラストマーシートを製造した。続いて、エラストマーシートを所定の長さに切断し、それを二枚の導電性布(セーレン(株)製「Sui-10-511M」)で挟んで積層体を作製した。そして、当該積層体をプレス成型機(三友工業(株)製の150トンプレス機)で熱プレスして、エラストマーシートの厚さ方向両面に導電性布を融着した。このようにして、導電性布(検出電極層)/エラストマーシート(絶縁層)/導電性布(シールド電極層)からなる静電容量結合方式センサ(以下単に「センサ」と称す)を製造した。製造したセンサにおいて、導電性布は、ほぼ全体がエラストマーシートに埋入されている。
[実施例2]
スチレン系熱可塑性エラストマーの配合量を50質量部、オレフィン系熱可塑性エラストマーの配合量を100質量部に変更した点以外は実施例1と同様にして、実施例2のセンサを製造した。
スチレン系熱可塑性エラストマーの配合量を50質量部、オレフィン系熱可塑性エラストマーの配合量を100質量部に変更した点以外は実施例1と同様にして、実施例2のセンサを製造した。
[実施例3]
オレフィン系熱可塑性エラストマーに代えて、低密度ポリエチレン(LDPE、住友化学(株)製「エクセレン(登録商標)GH030」を50質量部配合した点以外は実施例1と同様にして、実施例3のセンサを製造した。
オレフィン系熱可塑性エラストマーに代えて、低密度ポリエチレン(LDPE、住友化学(株)製「エクセレン(登録商標)GH030」を50質量部配合した点以外は実施例1と同様にして、実施例3のセンサを製造した。
[実施例4]
酸化マグネシウム粉末の配合量を300質量部に変更した点以外は実施例1と同様にして、実施例2のセンサを製造した。
酸化マグネシウム粉末の配合量を300質量部に変更した点以外は実施例1と同様にして、実施例2のセンサを製造した。
[実施例5]
酸化マグネシウム粉末の配合量を150質量部に変更し、これに加えて難燃性を有する無機フィラーとして水酸化マグネシウム粉末(協和化学工業(株)製「キスマ(登録商標)5」)を150質量部添加してコンパウンドを製造した点以外は、実施例1と同様にして、実施例5のセンサを製造した。
酸化マグネシウム粉末の配合量を150質量部に変更し、これに加えて難燃性を有する無機フィラーとして水酸化マグネシウム粉末(協和化学工業(株)製「キスマ(登録商標)5」)を150質量部添加してコンパウンドを製造した点以外は、実施例1と同様にして、実施例5のセンサを製造した。
[実施例6]
酸化マグネシウム粉末に加えて、難燃性を有する無機フィラーとして水酸化マグネシウム粉末(同上)を150質量部添加してコンパウンドを製造した点以外は、実施例1と同様にして、実施例6のセンサを製造した。
酸化マグネシウム粉末に加えて、難燃性を有する無機フィラーとして水酸化マグネシウム粉末(同上)を150質量部添加してコンパウンドを製造した点以外は、実施例1と同様にして、実施例6のセンサを製造した。
[比較例1]
スチレン系熱可塑性エラストマーおよびオレフィン系熱可塑性エラストマーを用いずに、低密度ポリエチレン(同上)の150質量部に酸化マグネシウム粉末を添加して、コンパウンドを製造した点以外は実施例1と同様にして、比較例1のセンサを製造した。比較例1のセンサにおいても、電極層の導電性布は、ほぼ全体がエラストマーシートに埋入されていた。
スチレン系熱可塑性エラストマーおよびオレフィン系熱可塑性エラストマーを用いずに、低密度ポリエチレン(同上)の150質量部に酸化マグネシウム粉末を添加して、コンパウンドを製造した点以外は実施例1と同様にして、比較例1のセンサを製造した。比較例1のセンサにおいても、電極層の導電性布は、ほぼ全体がエラストマーシートに埋入されていた。
[比較例2]
酸化マグネシウム粉末を配合しない点以外は実施例1と同様にして、比較例2のセンサを製造した。
酸化マグネシウム粉末を配合しない点以外は実施例1と同様にして、比較例2のセンサを製造した。
[比較例3]
酸化マグネシウム粉末に代えて、カーボンブラック(三菱ケミカル(株)製「#3030B」)を15質量部配合した点以外は実施例1と同様にして、比較例3のセンサを製造した。
酸化マグネシウム粉末に代えて、カーボンブラック(三菱ケミカル(株)製「#3030B」)を15質量部配合した点以外は実施例1と同様にして、比較例3のセンサを製造した。
<絶縁層の物性測定>
実施例および比較例のセンサを構成するエラストマーシート(以下、「絶縁層」と称す)のタイプAデュロメータ硬さ、熱伝導率、体積抵抗率、引張強さ、および破断伸びを測定した。測定方法は以下の通りである。
実施例および比較例のセンサを構成するエラストマーシート(以下、「絶縁層」と称す)のタイプAデュロメータ硬さ、熱伝導率、体積抵抗率、引張強さ、および破断伸びを測定した。測定方法は以下の通りである。
[タイプAデュロメータ硬さ]
JIS K6253-3:2012に準拠した硬度計(高分子計器(株)製「ASKER P1-A型」)を用いて、厚さ1mmの絶縁層を3枚重ねてタイプAデュロメータ硬さを測定した。タイプAデュロメータ硬さとしては、押針と絶縁層とが接触した直後の瞬間値を採用した。
JIS K6253-3:2012に準拠した硬度計(高分子計器(株)製「ASKER P1-A型」)を用いて、厚さ1mmの絶縁層を3枚重ねてタイプAデュロメータ硬さを測定した。タイプAデュロメータ硬さとしては、押針と絶縁層とが接触した直後の瞬間値を採用した。
[熱伝導率]
JIS A1412-2:1999の熱流計法に準拠した、英弘精機(株)製「HC-110」を用いて熱伝導率を測定した。
JIS A1412-2:1999の熱流計法に準拠した、英弘精機(株)製「HC-110」を用いて熱伝導率を測定した。
[体積抵抗率]
JIS K6271-2:2015の平行端子電極法に準拠した、ケースレーインスツルメンツ社製「高電圧ソース・メジャーユニット237」を用いて、体積抵抗率を測定した。印加電圧は100Vとした。
JIS K6271-2:2015の平行端子電極法に準拠した、ケースレーインスツルメンツ社製「高電圧ソース・メジャーユニット237」を用いて、体積抵抗率を測定した。印加電圧は100Vとした。
[引張強さおよび破断伸び]
JIS K6251:2017に規定される引張試験を行い、引張強さおよび破断伸びを測定した。破断伸びは、同JISに規定される切断時伸び(Eb)と同義である。引張試験は、ダンベル状5号形の試験片を用い、引張速度を100mm/minとして行った。
JIS K6251:2017に規定される引張試験を行い、引張強さおよび破断伸びを測定した。破断伸びは、同JISに規定される切断時伸び(Eb)と同義である。引張試験は、ダンベル状5号形の試験片を用い、引張速度を100mm/minとして行った。
表1に示すように、実施例1~6のセンサを構成する絶縁層の熱伝導率は0.3W/m・K以上であり、体積抵抗率は1×1012Ω・cm以上であった。すなわち、実施例1~6のセンサを構成する絶縁層は、本発明において規定された絶縁層に相当する。また、実施例1~6のセンサを構成する絶縁層のタイプAデュロメータ硬さは90未満、かつ引張強さは2.0MPa以上であることから、当該絶縁層は柔軟であると共に、組み付け性、耐久性に優れることがわかる。このうち、実施例1~5の絶縁層については、破断伸びが500%以上であり伸び特性に優れるが、実施例6の絶縁層については、無機フィラーの配合量が多いため、他の実施例と比較して破断伸びが低下した。一方、無機フィラーとして水酸化マグネシウム粉末を加えた実施例6、7の絶縁層については、それを含まない実施例と比較して、体積抵抗率が大きくなった。
これに対して、比較例1のセンサを構成する絶縁層は、熱可塑性エラストマーを含まない。このため、当該絶縁層のタイプAデュロメータ硬さは90、破断伸びは400%となり、当該絶縁層は柔軟性に乏しいことがわかる。また、比較例2のセンサを構成する絶縁層は、熱伝導率が大きい無機フィラーを含まない。このため、当該絶縁層の熱伝導率は小さくなった。また、比較例3のセンサを構成する絶縁層は、熱伝導率が大きい無機フィラーではなく導電性を有するカーボンブラックを含む。このため、当該絶縁層の体積抵抗率は小さく、本発明の静電容量結合方式センサには適さないことがわかる。
以上より、本発明において規定された絶縁層によると、触感が良好で、熱伝導性が高い静電容量結合方式センサを構成できることが確認された。
<絶縁層の難燃性評価>
実施例および比較例のセンサを構成する絶縁層の難燃性を評価した。難燃性の評価は、自動車内装材料の燃焼試験である米国連邦自動車安全規格「FMVSS No.302」(ISO 3795、JIS D 1201)に基づいて行った。当該燃焼試験は、U字状の治具に試験片を固定して、試験片の一端側にバーナーの炎を接炎した時の燃焼速度を測定するものである。燃焼速度は、接炎する一端から38mm地点にA標線を設置し、同一端から292mm地点にB標線を設置して、A標線とB標線との間の254mmの燃焼区間で測定する。そして、以下の3つの要件のいずれかを満たすものを、規格適合と判定する。
1.試験片に着火しない、またはA標線手前で自消する。
2.燃焼距離51mm以内かつ60秒以内で自消する。
3.燃焼速度が102mm/分以下である。
表2に、燃焼試験の結果を示す。
実施例および比較例のセンサを構成する絶縁層の難燃性を評価した。難燃性の評価は、自動車内装材料の燃焼試験である米国連邦自動車安全規格「FMVSS No.302」(ISO 3795、JIS D 1201)に基づいて行った。当該燃焼試験は、U字状の治具に試験片を固定して、試験片の一端側にバーナーの炎を接炎した時の燃焼速度を測定するものである。燃焼速度は、接炎する一端から38mm地点にA標線を設置し、同一端から292mm地点にB標線を設置して、A標線とB標線との間の254mmの燃焼区間で測定する。そして、以下の3つの要件のいずれかを満たすものを、規格適合と判定する。
1.試験片に着火しない、またはA標線手前で自消する。
2.燃焼距離51mm以内かつ60秒以内で自消する。
3.燃焼速度が102mm/分以下である。
表2に、燃焼試験の結果を示す。
表2に示すように、無機フィラーとして水酸化マグネシウム粉末を含む実施例5、6の絶縁層は、規格適合になったが、水酸化マグネシウム粉末を含まない実施例および比較例の絶縁層は、規格不適合となった。以上より、難燃性の無機フィラーを添加すると、触感が良好で、熱伝導性が高く、さらに難燃性が高い静電容量結合方式センサを構成できることが確認された。
1:静電容量結合方式センサ、8:ステアリングホイール、10:検出電極層、11:シールド電極層、12:絶縁層、13:検出電極層、20:芯体、30:ヒータ層、31:粘着層、40:表皮、41:粘着層、80:リム部、81:連結部。
Claims (13)
- 検出対象物との間に静電容量を生じる検出電極層と、
シールド電極層と、
該検出電極層と該シールド電極層との間に配置される絶縁層と、
を備え、
該絶縁層は熱可塑性エラストマーを有し、
該絶縁層の熱伝導率は0.3W/m・K以上であり、体積抵抗率は1×1012Ω・cm以上であることを特徴とする静電容量結合方式センサ。 - 前記絶縁層は、無機フィラーを有する請求項1に記載の静電容量結合方式センサ。
- 前記無機フィラーの熱伝導率は、20W/m・K以上である請求項2に記載の静電容量結合方式センサ。
- 前記無機フィラーは、難燃性を有する請求項2に記載の静電容量結合方式センサ。
- 前記無機フィラーは、水酸化マグネシウムである請求項4に記載の静電容量結合方式センサ。
- 前記絶縁層のタイプAデュロメータ硬さは、35以上90未満である請求項1ないし請求項5のいずれかに記載の静電容量結合方式センサ。
- 前記熱可塑性エラストマーは、スチレン系エラストマーおよびオレフィン系エラストマーから選ばれる一種以上である請求項1ないし請求項6のいずれかに記載の静電容量結合方式センサ。
- 前記検出電極層は、導電性ゴムまたは導電性布からなる請求項1ないし請求項7のいずれかに記載の静電容量結合方式センサ。
- 前記シールド電極層は、導電性布からなる請求項1ないし請求項8のいずれかに記載の静電容量結合方式センサ。
- 前記検出電極層および前記シールド電極層は導電性布からなり、
該導電性布の少なくとも一部は前記絶縁層に埋入されている請求項1ないし請求項9のいずれかに記載の静電容量結合方式センサ。 - ステアリングホイールに配置される請求項1ないし請求項10のいずれかに記載の静電容量結合方式センサ。
- 前記ステアリングホイールはヒータ層を備え、
前記シールド電極層が該ヒータ層側に配置される請求項11に記載の静電容量結合方式センサ。 - 請求項10に記載の静電容量結合方式センサの製造方法であって、
前記絶縁層の表面に前記検出電極層となる導電性布を重ね、該絶縁層の裏面に前記シールド電極層となる導電性布を重ねて積層体を形成する積層工程と、
該積層体を加熱下で表裏方向に加圧することにより、該絶縁層を該導電性布に融着させる融着工程と、
を有することを特徴とする静電容量結合方式センサの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880062502.3A CN111133339B (zh) | 2017-10-19 | 2018-05-15 | 静电电容耦合式传感器及其制造方法 |
DE112018001935.7T DE112018001935T5 (de) | 2017-10-19 | 2018-05-15 | Kapazitiver kopplungssensor und verfahren zur herstellung desselben |
JP2019500893A JP6511210B1 (ja) | 2017-10-19 | 2018-05-15 | 静電容量結合方式センサおよびその製造方法 |
US16/516,707 US11029438B2 (en) | 2017-10-19 | 2019-07-19 | Capacitive-coupling sensor and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-202364 | 2017-10-19 | ||
JP2017202364 | 2017-10-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/516,707 Continuation US11029438B2 (en) | 2017-10-19 | 2019-07-19 | Capacitive-coupling sensor and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019077788A1 true WO2019077788A1 (ja) | 2019-04-25 |
Family
ID=66173253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/018768 WO2019077788A1 (ja) | 2017-10-19 | 2018-05-15 | 静電容量結合方式センサおよびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11029438B2 (ja) |
JP (1) | JP6511210B1 (ja) |
CN (1) | CN111133339B (ja) |
DE (1) | DE112018001935T5 (ja) |
WO (1) | WO2019077788A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020157937A (ja) * | 2019-03-27 | 2020-10-01 | 住友理工株式会社 | 内装部品 |
KR20210133130A (ko) * | 2020-04-28 | 2021-11-05 | 주식회사 코모스 | 운전자 파지감지 패드의 제조방법 |
JP2022026032A (ja) * | 2020-07-30 | 2022-02-10 | Joyson Safety Systems Japan株式会社 | ステアリング把持センサ及びステアリング |
US12072215B2 (en) | 2019-03-27 | 2024-08-27 | Sumitomo Riko Company Limited | Capacitive coupling sensor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019119860A1 (de) * | 2019-07-23 | 2021-01-28 | ZF Automotive Safety Germany GmbH | Lenkvorrichtungssensor, messsystem, bediensystem und lenkvorrichtung |
CN114720025B (zh) * | 2022-03-28 | 2023-08-11 | 哈尔滨工业大学(威海) | 折叠卷绕结构的电容型柔性力传感器 |
US20240010262A1 (en) * | 2022-07-05 | 2024-01-11 | Pixart Imaging Inc. | Pressure sensing device, 3d gesture control system and vehicle control system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0419370U (ja) * | 1990-06-11 | 1992-02-18 | ||
JP2011074537A (ja) * | 2009-09-30 | 2011-04-14 | Toyota Boshoku Corp | 編物 |
JP2011127053A (ja) * | 2009-12-21 | 2011-06-30 | Sekisui Chem Co Ltd | 樹脂シート及び積層体 |
JP2013052775A (ja) * | 2011-09-05 | 2013-03-21 | Nippon Plast Co Ltd | 部材、特に把持部材、内装部材、およびステアリングホイール |
JP2013102143A (ja) * | 2011-10-13 | 2013-05-23 | Sumitomo Bakelite Co Ltd | 半導体パッケージおよび半導体装置 |
JP2014190856A (ja) * | 2013-03-27 | 2014-10-06 | Nidec Elesys Corp | ハンドル手放検知装置 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61196859A (ja) | 1985-02-27 | 1986-09-01 | Nippon Plast Co Ltd | ステアリングホイ−ル |
JP2910153B2 (ja) | 1990-05-11 | 1999-06-23 | 株式会社豊田自動織機製作所 | ピストン式圧縮機における潤滑構造 |
WO2001064496A2 (en) * | 2000-02-28 | 2001-09-07 | Delphi Technologies, Inc. | Apparatus and method for heating a steering wheel |
US8524622B2 (en) * | 2009-04-10 | 2013-09-03 | Toyota Boshoku Kabushiki Kaisha | Skin material of vehicle interior equipment and manufacturing method for the same |
JP6039672B2 (ja) * | 2011-09-06 | 2016-12-07 | イマージョン コーポレーションImmersion Corporation | 触覚出力装置および触覚出力装置において触覚効果を生成する方法 |
DE102011084903A1 (de) * | 2011-10-20 | 2013-04-25 | TAKATA Aktiengesellschaft | Sensorsysteme für ein Kraftfahrzeug |
LU91942B1 (en) * | 2012-02-10 | 2013-08-12 | Iee Sarl | Capacitive detection device |
CN105074862B (zh) * | 2013-02-08 | 2017-08-25 | 株式会社藤仓 | 静电电容传感器以及方向盘 |
DE112014002044T5 (de) * | 2013-05-15 | 2016-01-14 | Gentherm Canada Ltd. | Leitfähige Heizeinrichtung mit Fühlereigenschaften |
KR20150106972A (ko) * | 2013-10-16 | 2015-09-22 | 히타치가세이가부시끼가이샤 | 도전성 섬유를 포함하는 적층체, 감광성 도전 필름, 도전 패턴의 제조 방법, 도전 패턴 기판, 및 터치 패널 |
CN104733399A (zh) * | 2013-12-24 | 2015-06-24 | 北京有色金属研究总院 | 一种层状高导热绝缘基板及其制备方法 |
DE102014223128A1 (de) * | 2014-11-12 | 2016-05-12 | Bayerische Motoren Werke Ag | Lenkrad mit einem Sensoraufbau zur Belegterkennung einer beheizten Kontaktfläche, Lenkradsystem und Verfahren zur Belegterkennung einer beheizten Kontaktfläche |
LU92616B1 (en) | 2014-12-15 | 2016-06-16 | Iee Sarl | Planar flexible carrier for use in steering wheel heating and/or sensing |
EP3240059A4 (en) * | 2014-12-25 | 2018-08-29 | Riken Technos Corporation | Thermoplastic elastomer composition for battery pack protective member |
LU92690B1 (en) * | 2015-04-03 | 2016-10-04 | Iee Int Electronics & Eng Sa | Heating device for curved surfaces |
EP3101998B1 (de) * | 2015-06-02 | 2020-12-16 | Eberspächer catem GmbH & Co. KG | Ptc-heizelement sowie elektrische heizvorrichtung umfassend ein solches ptc-heizelement und verfahren zum herstellen einer elektrischen heizvorrichtung |
JP2017022095A (ja) * | 2015-07-13 | 2017-01-26 | 国立大学法人名古屋大学 | 導電膜及びその製造方法 |
JP6297755B2 (ja) * | 2015-07-31 | 2018-03-20 | 住友理工株式会社 | 静電容量型センサ、センサシートおよび静電容量型センサの製造方法 |
JP6310439B2 (ja) | 2015-11-06 | 2018-04-11 | 本田技研工業株式会社 | 接触判定処理装置 |
DE202015007837U1 (de) * | 2015-11-16 | 2017-02-20 | I.G. Bauerhin Gmbh | Lenkradummantelung |
US10457163B2 (en) * | 2016-07-20 | 2019-10-29 | Joyson Safety Systems Acquisition Llc | Occupant detection and classification system |
KR101831599B1 (ko) * | 2016-12-19 | 2018-04-04 | (주)웹스 | 이중 절연층을 포함한 방열시트 제조방법 및 이를 이용한 방열시트 |
-
2018
- 2018-05-15 WO PCT/JP2018/018768 patent/WO2019077788A1/ja active Application Filing
- 2018-05-15 DE DE112018001935.7T patent/DE112018001935T5/de active Pending
- 2018-05-15 JP JP2019500893A patent/JP6511210B1/ja active Active
- 2018-05-15 CN CN201880062502.3A patent/CN111133339B/zh active Active
-
2019
- 2019-07-19 US US16/516,707 patent/US11029438B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0419370U (ja) * | 1990-06-11 | 1992-02-18 | ||
JP2011074537A (ja) * | 2009-09-30 | 2011-04-14 | Toyota Boshoku Corp | 編物 |
JP2011127053A (ja) * | 2009-12-21 | 2011-06-30 | Sekisui Chem Co Ltd | 樹脂シート及び積層体 |
JP2013052775A (ja) * | 2011-09-05 | 2013-03-21 | Nippon Plast Co Ltd | 部材、特に把持部材、内装部材、およびステアリングホイール |
JP2013102143A (ja) * | 2011-10-13 | 2013-05-23 | Sumitomo Bakelite Co Ltd | 半導体パッケージおよび半導体装置 |
JP2014190856A (ja) * | 2013-03-27 | 2014-10-06 | Nidec Elesys Corp | ハンドル手放検知装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020157937A (ja) * | 2019-03-27 | 2020-10-01 | 住友理工株式会社 | 内装部品 |
JP7258624B2 (ja) | 2019-03-27 | 2023-04-17 | 住友理工株式会社 | 内装部品 |
US12072215B2 (en) | 2019-03-27 | 2024-08-27 | Sumitomo Riko Company Limited | Capacitive coupling sensor |
KR20210133130A (ko) * | 2020-04-28 | 2021-11-05 | 주식회사 코모스 | 운전자 파지감지 패드의 제조방법 |
KR102539308B1 (ko) * | 2020-04-28 | 2023-06-02 | 주식회사 코모스 | 운전자 파지감지 패드의 제조방법 |
JP2022026032A (ja) * | 2020-07-30 | 2022-02-10 | Joyson Safety Systems Japan株式会社 | ステアリング把持センサ及びステアリング |
JP7481192B2 (ja) | 2020-07-30 | 2024-05-10 | Joyson Safety Systems Japan合同会社 | ステアリング把持センサ及びステアリング |
Also Published As
Publication number | Publication date |
---|---|
CN111133339B (zh) | 2022-10-04 |
JP6511210B1 (ja) | 2019-05-15 |
US20190339412A1 (en) | 2019-11-07 |
US11029438B2 (en) | 2021-06-08 |
CN111133339A (zh) | 2020-05-08 |
JPWO2019077788A1 (ja) | 2019-11-14 |
DE112018001935T5 (de) | 2019-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6511210B1 (ja) | 静電容量結合方式センサおよびその製造方法 | |
JP6714788B1 (ja) | 静電容量センサ、その製造方法、および静電容量センサ用網目状柔軟電極 | |
US12072215B2 (en) | Capacitive coupling sensor | |
JP5201137B2 (ja) | 高分子抵抗体 | |
JP5568613B2 (ja) | シートヒーター | |
JP7543255B2 (ja) | 静電型トランスデューサおよび静電型トランスデューサユニット | |
JP4877066B2 (ja) | 抵抗体組成物およびこれを用いた面状発熱体 | |
JP7258624B2 (ja) | 内装部品 | |
US12007520B2 (en) | Electrostatic transducer and electrostatic transducer unit | |
JP2008293671A (ja) | 抵抗体組成物およびこれを用いた面状発熱体 | |
JP2007227280A (ja) | 柔軟性ptc発熱体 | |
JP2011003330A (ja) | 面状発熱体およびそれを用いた座席 | |
CN113196868B (zh) | 静电型换能器 | |
JP2007227281A (ja) | 柔軟性ptc発熱体 | |
JP2008041356A (ja) | 発熱体 | |
JP2024152509A (ja) | 絶縁体、静電容量式センサ、把持センサ、及びステアリングホイール | |
JP2010257685A (ja) | 面状発熱体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019500893 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18868647 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18868647 Country of ref document: EP Kind code of ref document: A1 |