WO2019073698A1 - 床面の表面保護被膜形成方法 - Google Patents
床面の表面保護被膜形成方法 Download PDFInfo
- Publication number
- WO2019073698A1 WO2019073698A1 PCT/JP2018/031007 JP2018031007W WO2019073698A1 WO 2019073698 A1 WO2019073698 A1 WO 2019073698A1 JP 2018031007 W JP2018031007 W JP 2018031007W WO 2019073698 A1 WO2019073698 A1 WO 2019073698A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- forming
- coating
- floor
- coat layer
- hard coat
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/36—Successively applying liquids or other fluent materials, e.g. without intermediate treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/02—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/24—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
- C09D183/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
Definitions
- the present invention can form a coating excellent in abrasion resistance, water resistance and glossiness by maintaining the floor surface of an office building, a commercial facility, a convenience store, etc., and can maintain the aesthetic appearance of the floor surface for a long time
- the present invention relates to a method for forming a surface protective coating on a floor surface.
- an aqueous floor polish is used for the purpose of protecting floor materials from scratches and dirt, etc., as well as providing gloss and improving the appearance.
- these aqueous floor polishes having a resin emulsion as a main component have a problem that scratches and dirt easily accumulate due to walking of a person or transportation of a carriage, and the gloss (aesthetic appearance) is reduced early.
- no improvement is found in the maintenance for cleaning, it is necessary to peel off the coating on the floor surface, and there is an inherent problem that the wastewater generated at that time becomes an industrial waste.
- Patent Document 1 discloses a floor coating agent comprising an aqueous urethane resin, water, and 1- (2-methoxy-2-methylethoxy) -2-propanol. .
- the floor coating agent described in Patent Document 1 is excellent in durability, adhesion, gloss and the like because a film is formed of an aqueous urethane resin, but a lacquer type (a volatilization-drying type coating formed by evaporating a solvent) Since the crosslink density is low, abrasions occur early and there is a problem that the appearance can not be maintained for a long time.
- Patent Document 2 a polyorgan having an average of 0.9 to 1.1 hydrocarbon groups bonded to a silicon atom per silicon atom, and at least two hydroxyl groups bonded to a silicon atom per molecule.
- a room temperature curable floor coating composition containing a siloxane resin and having a slip resistance of 0.10 kgf or greater is disclosed.
- the floor coating agent described in Patent Document 2 can obtain a film excellent in drying property and curability by a polyorganosiloxane resin having a silanol group, but since the polarity of the resin is low, adhesion may not be obtained depending on the type of floor material. It might have been enough.
- Patent Document 3 a floor surface on-site coating curing method is applied in which various cold setting drying type coating compositions are applied to a floor surface, a primer layer is applied, and then an ultraviolet curing middle coat and / or a top coat is cured.
- a primer layer is applied to a floor surface
- an ultraviolet curing middle coat and / or a top coat is cured.
- the invention described in Patent Document 3 requires a large-scale apparatus for curing the top coat with ultraviolet light
- the primer disclosed in Patent Document 3 has a problem in drying property, and coating workability, the process film obtained The water resistance, finish and adhesion were not always satisfactory.
- the present invention has been made in view of the above-mentioned circumstances, and the construction can be carried out simply and in a short time, and the adhesion, finish, tear resistance, scratch resistance and glossiness of the obtained surface protective film are excellent.
- a method of forming a surface protective film on a surface is provided.
- the inventors of the present invention conducted intensive studies and found that when forming a hard coat layer by a coating agent for forming a hard coat layer on a floor surface, a cured coating layer by a specific room temperature curing urethane primer composition in advance. It has been found that the above problems can be solved by including the step of forming
- the present invention provides a method of forming a surface protective coating on a floor surface, which includes the following aspects: (Aspect 1) A step of coating a room temperature curing type urethane primer composition (A) on a floor surface to form a cured coating layer (I) by the composition, and then applying a coating agent for forming a hard coat layer (B), A method of forming a surface protective film on a floor surface comprising the step of forming one hard coat layer (II), wherein the cold-curable urethane primer composition (A) is The main component containing a hydroxyl group-containing acrylic resin (a) and a curing agent containing a polyisocyanate compound (b), and the isocyanate group of the polyisocyanate compound (b) contained in the curing agent and the hydroxyl group contained in the main component A method of forming a surface protective film on a floor surface, wherein the ratio (NCO / OH) of the contained acrylic resin (a) to the hydroxyl group is in the range
- Aspect 2 Aspect 1 in which the hard coat layer-forming coating agent (B) contains an epoxysilane oligomer (c), colloidal silica (d) having an average particle diameter in the range of 1 to 100 nm, and a curing catalyst (e) The surface protective film formation method of the floor surface as described in-.
- a room temperature curing type urethane primer composition forms a film even at normal temperature, so It can be easily constructed, the coating time in the painting process is short, and the construction period can be shortened.
- the multilayer film (it may be abbreviated as a process film) formed by this method is excellent in adhesion with the floor material, and has a coating film such as finish, resistance to rubbing, scratch resistance and gloss. Physical properties can be maintained for a long time.
- a floor surface is coated with a specific cold-curable urethane primer composition (A) to form a cured coating layer (I) of the composition, and then a hard coat is formed on the cured coating layer. Applying a layer forming coating agent (B) to form at least one hard coat layer (II).
- the object to which this method is applied is a floor surface.
- the floor surface is constituted by a general floor material, for example, ceramic floor materials such as porcelain and porcelain tiles; metal floor materials such as iron and aluminum; and wood floors such as natural wood and plywood Materials: Synthetic resin flooring such as vinyl chloride resin; Stone flooring such as granite and marble; flooring made of composites of these materials, etc .; and protective seal and old paint film provided on the surface It may also be one.
- the shape and size of the floor material are not particularly limited. It may be either a new floor or an existing floor.
- a vinyl chloride resin-based floor material is preferable as a substrate to which the present method is applied.
- This method uses a specific cold-curable urethane primer composition (A).
- the said room temperature curing type urethane primer composition (A) can be coated by publicly known means, such as mop coating, spray coating, roller coating, brush coating, flow coating, for example. It can be appropriately selected and used according to the site where the material is applied.
- the number of times of coating is not particularly limited, and may be applied one or more times.
- the dry film thickness varies depending on the condition of the object to be coated and the surrounding environment, but can generally be in the range of 3 to 50 ⁇ m, preferably 7 to 30 ⁇ m at one time.
- a drying method normal temperature drying is adopted, and a coating film can be obtained by drying, but there is no particular problem even if it is dried by heating or forced drying depending on the coating environment and the like. You may use wind drying together using a blower etc. as needed.
- a coating can be obtained by drying under an environment of 5 to 45.degree.
- the relative humidity (hereinafter sometimes abbreviated as RH) at the time of coating is preferably 80% or less, particularly 70% or less.
- a circulator or the like When wind drying is used in combination, for example, a circulator or the like is installed in a normal temperature environment, and ventilation is performed for 10 to 60 minutes, preferably 15 to 55 minutes, thereby promoting drying and a coating film having a uniform curing state. You can get
- the drying time after coating of the room temperature curing type urethane primer composition (A) used in the present method is to dry until the cured state becomes a semi cured dry state or more, the finish of the process film obtained and the hard coat described later It is preferable from the point of the crack resistance at the time of forming a layer.
- the semi-cured and dried state means the semi-cured and dried state defined in JIS K 5600-1-1 (2004), that is, the center of the coated surface is gently rubbed with a fingertip and coated. It is a coating film in a state where no marks are formed on the surface.
- a cured coating film less than the semi-cured and dried state is a state in which the coating film has not reached the cured and dried state, and refers to the non-touch-dried state specified in JIS K 5600-1-1 (2004). .
- the room temperature curing type urethane primer composition (A) of the present method is excellent in finishability and adhesion when a coating agent (B) for forming a hard coat layer described later is applied repeatedly if it is at least the above-mentioned semicured and dried state.
- a surface protective coating can be formed on the floor surface.
- the initial drying property means the time until the coated film state reaches the cured and dried state, and the shorter the better, the better the drying property and the quick drying property.
- the room temperature curing type urethane primer composition (A) used in the present method is brought into the semi-cured dry state, but for example, when the dry film thickness is 50 ⁇ m or less It may be less than 3 hours, and may be 1 to 2 hours.
- This method using a room temperature curing type urethane primer composition (A) as a primer (primer) can coat a coating agent (B) for forming a hard coat layer described later in a relatively short time, and is excellent in working efficiency .
- a coating agent (B) for forming a hard coat layer described later in a relatively short time, and is excellent in working efficiency .
- this method there is no particular problem even if it takes a long time such as 3 hours or more until the time of overpainting.
- a cured coating layer (I) is formed by the cold-curable urethane primer composition (A).
- the cured coating layer (I) preferably has a Martens hardness of 30 N / mm 2 or more, particularly preferably 50 to 300 N / mm 2 under the following conditions from the viewpoint of the warpage resistance of the step film. is there.
- Martens hardness is a test plate obtained by applying a sample to a glass plate using an applicator so that the dry film thickness is 20 ⁇ m and drying for 24 hours under an atmosphere of 23 ° C. and 50% relative humidity. It is a value measured using an ultra-microhardness tester.
- ultra-micro hardness tester examples include Fisher Scope HM-2000 (trade name) manufactured by Fisher Instruments Co., Ltd., etc., using a Vickers indenter under an atmosphere of 23 ° C. and 50% relative humidity. The load shall be measured under the condition of 20 mN / 25 seconds.
- the hard coat layer-forming coating agent (B) is applied on the cured coating layer (I) of the room temperature curing type urethane primer composition (A) to form at least one hard coat layer (II). Do.
- the coating agent (B) for hard-coat layer formation As a coating method at the time of coating the coating agent (B) for hard-coat layer formation, it can be coated by publicly known means, such as mop coating, spray coating, roller coating, brush coating, flow coating, for example. It can be appropriately selected and used according to the site where the material is applied. Furthermore, it is also possible to wipe off the excess after painting if necessary.
- publicly known means such as mop coating, spray coating, roller coating, brush coating, flow coating, for example. It can be appropriately selected and used according to the site where the material is applied. Furthermore, it is also possible to wipe off the excess after painting if necessary.
- the number of times of coating is not particularly limited, and may be applied one or more times.
- the dry film thickness per one time can be in the range of 2 to 50 ⁇ m, preferably 3 to 30 ⁇ m, from the viewpoint of finishability and resistance to cracking.
- Drying of the formed coating film can be carried out by normal temperature drying, but depending on the coating environment etc., heat drying or forced drying may be carried out. Moreover, you may use wind drying together using a blower etc. as needed.
- a coating can be obtained by drying under an environment of 5 to 45.degree.
- the relative humidity (hereinafter sometimes abbreviated as RH) at the time of coating is preferably 80% or less, particularly 70% or less.
- a circulator or the like may be installed in a normal temperature environment to promote drying by ventilating during drying.
- a cured coating layer (I) is formed on a floor surface by a specific room temperature curing type urethane primer composition (A), and a hard coating layer to be described later is formed on the coating layer (I).
- A room temperature curing type urethane primer composition
- a hard coating layer to be described later is formed on the coating layer (I).
- the room temperature curing type urethane primer composition (A) applied to the present method is to form a coating film having a urethane bond in a coating film after curing, and a main agent containing a hydroxyl group-containing acrylic resin (a) and a polyisocyanate
- a ratio of the isocyanate group of the polyisocyanate compound (b) contained in the curing agent to the curing agent containing the compound (b) and the hydroxyl group of the hydroxyl group-containing acrylic resin (a) contained in the main agent (NCO / OH) is characterized in that it is in the range of 0.7 to 2.0.
- the coating agent (B) for forming a hard coat layer can be coated in a short time, and at the same time, the finishability, cracking resistance and scratch resistance are achieved.
- An excellent surface protective film can be formed.
- the NCO / OH is preferably in the range of 0.8 to 1.8, more preferably in the range of 0.9 to 1.6, from the viewpoint of the finish and the pot life of the room temperature curing type urethane primer composition (A).
- a range of more than 1.0 and less than 1.6 is more preferable.
- the room temperature curing type urethane primer composition (A) applied to this method may be any form of water-based paint and organic solvent type paint, as long as it can be cured at normal temperature and forms a polyurethane cross-linked coating film. Good.
- the composition applied to the present method is preferably an aqueous coating composition from the viewpoint of reducing the environmental impact and the point of odor.
- the hydroxyl group-containing acrylic resin (a) contained in the main agent is a component to be a polyurethane cross-linked film-forming component together with the later-described polyisocyanate compound (b).
- the glass transition temperature (hereinafter sometimes abbreviated as Tg) of the hydroxyl group-containing acrylic resin (a) is preferably in the range of 20 to 90 ° C. from the viewpoint of the initial drying property and the warpage resistance of the surface protective film. From the viewpoint of durability, the range of 25 to 80 ° C. is more preferable, and the range of 30 to 70 ° C. is more preferable.
- the hydroxyl value of the hydroxyl group-containing acrylic resin (a) is preferably in the range of 15 to 200 mg KOH / g, more preferably in the range of 30 to 180 mg KOH / g, from the viewpoint of the balance between initial drying and pot life. More preferably, it is in the range of ⁇ 160 mg KOH / g.
- the glass transition temperature (Tg) of the hydroxyl group-containing acrylic resin is a value calculated by the following equation.
- W 1 , W 2 ,... W n are mass fractions of respective monomers
- T 1 , T 2 ... T n are glass transition temperatures Tg (K) of homopolymers of respective monomers .
- the glass transition temperature of the homopolymer of each monomer is described in POLYMER HANDBOOK Fourth Edition, J. Org. Brandrup, E. h. Immergut, E., et al. A.
- the glass transition temperature of a monomer which is a value according to Grulke (1999) and which is not described in the literature is static when a homopolymer of the monomer is synthesized to have a weight average molecular weight of about 50,000. Let it be the glass transition temperature.
- the static glass transition temperature is obtained, for example, by taking a sample in a measuring cup and vacuum suction to completely remove the solvent, and then using a differential scanning calorimeter “DSC-50Q type” (trade name, manufactured by Shimadzu Corporation), It can be measured by measuring the heat change in the range of -100 ° C. to 150 ° C. at a heating rate of 3 ° C./min, and using the initial baseline change point on the low temperature side as the static glass transition temperature. .
- DSC-50Q type trade name, manufactured by Shimadzu Corporation
- hydroxyl group-containing acrylic resin (a) usually, a hydroxyl group-containing polymerizable unsaturated monomer and another polymerizable unsaturated monomer copolymerizable with the hydroxyl group-containing polymerizable unsaturated monomer can be obtained by a conventionally known method, for example, It can be produced by copolymerization by a method such as a solution polymerization method in an organic solvent or an emulsion polymerization method in water.
- hydroxyl group-containing polymerizable unsaturated monomer examples include, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate (Meth) acrylic acid and monoester of dihydric alcohol of 2 to 8 carbon atoms; ⁇ -caprolactone modified product of monoester of (meth) acrylic acid and dihydric alcohol of 2 to 8 carbon atoms; allyl alcohol Etc. can be mentioned.
- polymerizable unsaturated monomers copolymerizable with the hydroxyl group-containing polymerizable unsaturated monomer for example, methyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, tert- Alkyl or cycloalkyl (meth) acrylates such as butyl (meth) acrylate and cyclohexyl (meth) acrylate; polymerizable unsaturated monomers having an isobornyl group; polymerizable unsaturated monomers having an adamantyl group; vinyl aromatic compounds; alkoxysilyl groups Perfluoroalkyl (meth) acrylate; polymerizable unsaturated monomer having a fluorinated alkyl group; polymerizable unsaturated monomer having a photopolymerizable functional group such as a maleimide group; vinyl compound; ) Acrylic acid, maleic acid, black Carbox
- hydroxyl group-containing acrylic resin (a) may be modified, and examples thereof include urethane modification, epoxy modification, silicone modification and the like.
- the form of the hydroxyl group-containing acrylic resin (a) may be any of water dispersion type, water solubility, and organic solvent type, but from the viewpoint of safety and health of the coating environment and odor, water dispersion type or water solubility
- the water dispersion type is preferable from the viewpoint of water resistance.
- a conventionally known method can be used as a method for producing a water dispersion of a hydroxyl group-containing acrylic resin.
- a method of emulsion-polymerizing a polymerizable unsaturated monomer in the presence of an emulsifier, or a part or all of an anionic group such as a carboxyl group contained in a resin produced by the solution polymerization method is a basic compound such as an amine
- an emulsifying agent or surfactant may be used, and excess organic solvent may be removed before addition of the neutralizing agent or after water dispersion.
- the above-mentioned water-dispersed hydroxyl group-containing acrylic resin may be copolymerized by dividing the polymerizable unsaturated monomer components having different compositions into multiple steps, and it is not only a single layer but also a multilayer structure called core-shell type. It may be
- the hydroxyl group-containing acrylic resin (a) When the hydroxyl group-containing acrylic resin (a) is dispersed in water, it is preferable to contain a carboxyl group-containing polymerizable unsaturated monomer from the viewpoint of the stability of the aqueous dispersion.
- the carboxyl group-containing polymerizable unsaturated monomer is not particularly limited, but those exemplified for the carboxyl group-containing polymerizable unsaturated monomer can be used. Among them, acrylic acid and methacrylic acid are preferable.
- a neutralizing agent may be added to the hydroxyl group-containing acrylic resin (a) to neutralize at least a part of the carboxyl groups.
- the neutralizing agent is not particularly limited, and examples thereof include: ammonia; organic amines such as monomethylamine, dimethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine and dimethylethanolamine; and inorganic bases such as sodium hydroxide and potassium hydroxide And the like. These neutralizing agents may be used alone or in combination of two or more.
- the acid value of the hydroxyl group-containing acrylic resin (a) before neutralization is preferably 50 mg KOH / g or less from the viewpoint of the water dispersion stability of the acrylic resin, the storage stability and the water resistance of the coating film.
- the weight average molecular weight of the hydroxyl group-containing acrylic resin (a) described above can be generally adjusted in the range of 3,000 to 2,000,000, and from the viewpoint of coating workability and initial drying property, 5 A range of from 1,000 to 1,000,000 is preferable.
- the hydroxyl group-containing acrylic resin (a) is a resin produced by a solution polymerization method
- the weight average molecular weight of the resin (a) is 3,000 to 100,000, and further 5,000 to 60.
- the range of 1,000 is more preferable.
- the acid value of the hydroxyl group-containing acrylic resin (a) produced by the solution polymerization method is preferably in the range of 0 to 50 mg KOH / g, from the viewpoint of production stability, storage stability, and water resistance of the coating film. It is more preferably in the range of ⁇ 48 mg KOH / g.
- the weight average molecular weight of the resin was measured by gel permeation chromatography (GPC) based on standard polystyrene.
- the measurement in the following production examples etc. is “HLC8120GPC” (trade name, manufactured by Tosoh Corp.) as a GPC apparatus, “TSKgel G-4000HXL”, “TSKgel G-3000HXL”, “TSKgel G-2500HXL” as a column, Using four “TSKgel G-2000HXL” (all manufactured by Tosoh Corp., trade name): Mobile phase: tetrahydrofuran, measurement temperature: 40 ° C., flow rate: 1 cc / min, detector: performed under RI conditions.
- the average particle diameter of the dispersion resin is preferably in the range of 0.05 to 1.0 ⁇ m, and more preferably in the range of 0.08 to 0.8 ⁇ m. preferable.
- a sample is diluted with deionized water to a concentration suitable for measurement with Coulter Counter N4 (trade name, manufactured by Beckman Coulter, Inc., particle size distribution measuring apparatus), The value is measured at about 20 ° C.
- the resin solid content of the hydroxyl group-containing acrylic resin (a) is preferably about 35 to 65% by mass from the viewpoint of the dispersion stability of the hydroxyl group-containing acrylic resin (a).
- resin solid content is a value calculated by collecting about 2.0 g of a sample in an aluminum foil cup having a diameter of about 5 cm and measuring the residual content (g) after heating at 110 ° C. for 1 hour It is.
- polyisocyanate compound (b) contained in the curing agent used in the present invention is a compound having two or more free isocyanate groups in one molecule, and has conventionally been used for the production of polyurethane Can be used.
- aliphatic diisocyanates such as tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate and the like; alicyclic diisocyanates such as 4,4'-methylene bis (cyclohexyl isocyanate) and isophorone diisocyanate; Aromatic diisocyanates such as diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane diisocyanate (hereinafter referred to as polymeric MDI); and derivative compounds such as these isocyanurates and burettes.
- polymeric MDI polymeric MDI
- aliphatic diisocyanates, alicyclic diisocyanates and derivative compounds thereof are preferably used for at least a part of the components, and specifically, hexamethylene diisocyanate (HMDI), hexamethylene Derivative compounds of diisocyanate (HMDI), isophorone diisocyanate (IPDI), derivatives of isophorone diisocyanate (IPDI), and the like are preferably used.
- HMDI hexamethylene diisocyanate
- HMDI hexamethylene Derivative compounds of diisocyanate
- IPDI isophorone diisocyanate
- IPDI derivatives of isophorone diisocyanate
- IPDI isophorone diisocyanate
- hydrophilicized polyisocyanate compound in which a hydrophilic group such as a polyether group, a carboxyl group, a sulfonic acid group, a phosphoric acid group or a betaine structure-containing group is introduced into the polyisocyanate compound, or a polyisocyanate using a surfactant.
- a hydrophilic group such as a polyether group, a carboxyl group, a sulfonic acid group, a phosphoric acid group or a betaine structure-containing group is introduced into the polyisocyanate compound, or a polyisocyanate using a surfactant.
- polyisocyanate compounds for aqueous coatings such as water-dispersible polyisocyanate compounds, which allow the compounds to be dispersed in water.
- the above polyisocyanate compounds can be used alone or in combination of two or more.
- the room temperature curing type urethane primer composition (A) is an aqueous paint
- the polyisocyanate compound (b) a polyisocyanate compound modified for an aqueous paint which can be mixed with water immediately before coating.
- anionic group-containing polyisocyanate compounds are preferable from the viewpoint of the smoothness of the obtained coating film and the like.
- the anionic group-containing polyisocyanate polyisocyanate compounds having a sulfonic acid group and / or a phosphoric acid group are particularly preferred.
- the isocyanate group content of the polyisocyanate compound (b) is preferably in the range of 6 to 25% by mass from the viewpoint of interlayer adhesion and cracking resistance.
- the isocyanate group content refers to the mass fraction of the amount of isocyanate groups contained in the compound.
- the measurement of the amount of the isocyanate group can be performed in accordance with JIS K 1603-1 (2007). Specifically, it is a value determined by back titration of unreacted dibutylamine with a hydrochloric acid standard solution after adding an excess of dibutylamine to the sample to cause a reaction sufficiently.
- the content of the polyisocyanate compound (b) contained in the curing agent is more preferably adjusted in the range of 10 to 99.9% by mass and 30 to 80% by mass based on the total mass of the curing agent.
- the organic solvent for diluting the curing agent conventionally known ones can be used, but since they may react with the above-mentioned polyisocyanate compound (b), among the water-soluble solvents having no hydroxyl group It is preferable to select suitably.
- an acetate type, a ketone type, an ester type, an ether type, a glycol ether type may be mentioned, and an acetate type water soluble solvent having no hydroxyl group, a glycol ether type having no hydroxyl group, from the viewpoint of safety and health and finishability. At least one selected from water-soluble solvents is preferred.
- Examples of acetates include ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-butyl ether acetate (alias: n-butyl cellosolve acetate), diethylene glycol monoethyl ether acetate, diethylene glycol mono-n-butyl ether acetate And 3-methoxybutyl acetate, propylene glycol monomethyl ether acetate (alias: methoxypropyl acetate), 1-methoxypropyl-2-acetate and the like.
- ketone system As a ketone system, acetone, methyl ethyl ketone, methyl amyl ketone, methyl isobutyl ketone etc. are mentioned, for example.
- esters examples include ethyl acetate (alias: ethyl acetate), butyl acetate (alias: butyl acetate), isobutyl acetate (alias: isobutyl acetate), methyl benzoate (alias: methyl benzoate), ethyl ethoxypropionate, propion Ethyl acid, methyl propionate and the like can be mentioned.
- ether group examples include tetrahydrofuran, dioxane, dimethoxyethane, aromatic hydrocarbons, aliphatic hydrocarbons and the like.
- glycol ethers include ethylene glycol diethers such as ethylene glycol dimethyl ether and ethylene glycol diethyl ether; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol divinyl ether, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, diethylene glycol butyl methyl ether and the like Diethylene glycol diether; triethylene glycol diether such as triethylene glycol dimethyl ether, triethylene glycol divinyl ether; tetraethylene glycol diether such as tetraethylene glycol diethyl ether; propylene glycol dimethyl ether, pro Propylene glycol diethers such as propylene glycol diether, propylene glycol di-n-propyl ether, propylene glycol diisopropyl ether, propylene glycol di-n-butyl ether, propylene glycol diisobutyl ether,
- the content in the case of containing the organic solvent is 10% by mass or more, particularly 20 to 70% by mass from the viewpoint of the miscibility with the polyisocyanate compound (b), that is, the finish based on the total mass of the curing agent. It is preferable to adjust in the range of
- urethane curing catalyst conventionally known ones can be used.
- tin octylate dibutyltin diacetate, dibutyltin di (2-ethylhexanoate), dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin Diacetate, dioctyltin di (2-ethylhexanoate), dibutyltin oxide, dibutyltin sulfite, dioctyltin oxide, dibutyltin fatty acid salt, lead 2-ethylhexanoate, zinc octylate, zinc naphthenate, fatty acid zinc
- bismuth octanoate bismuth 2-ethylhexanoate, bismuth oleate, bismuth neodecanoate, bismuth versatate, bismuth naphthenate, cobal
- the content of the curing catalyst is room temperature curing, from the viewpoint of the balance between the drying property and the pot life (working life) and the water resistance of the coating film obtained and the finish of the step film. It is preferably in the range of 0.0001 to 1.0% by mass, more preferably in the range of 0.0005 to 0.5% by mass, relative to the total amount of solids in the urethane primer composition (A) .
- the total solid content of the room temperature curing type urethane primer composition (A) refers to the resin solid content of the hydroxyl group-containing acrylic resin (a), the resin solid content of the polyisocyanate compound (b) and other additives to be blended It refers to the total mass of the active ingredient.
- the active ingredient means the total mass of the residue obtained by removing the solvent such as water and organic solvent from the sample.
- the room temperature curing type urethane primer composition (A) used in the present invention is a two-component type primer composition comprising a main agent containing the above-mentioned hydroxyl group-containing acrylic resin (a) and a curing agent, It can be easily prepared by mixing it with
- the room temperature curing type urethane primer composition (A) is a resin other than the hydroxyl group-containing acrylic resin (a) (for example, polyurethane resin), a surface control agent, an extender pigment, a color pigment, if necessary, in addition to the above components.
- Fillers eg, talc, glass beads, mica etc.
- dyes eg, talc, glass beads, mica etc.
- dispersion stabilizers e.g., viscosity modifiers
- UV absorbers e.g., UV absorbers
- light stabilizers e.g., UV absorbers
- polymer particles e.g., polyethylene glycol
- film forming aids e.g., film forming aids
- preservatives e.g., antifoaming agents
- neutralizing agents e.g., talc, glass beads, mica etc.
- additives such as a leveling agent, a silane coupling agent, a plasticizer, an antifreeze agent, a fragrance, a pH adjuster, a flame retardant, and a dilution solvent.
- additives such as a leveling agent, a silane coupling agent, a plasticizer, an antifreeze agent, a fragrance, a pH adjuster, a
- talc is preferably 0.3 to 15% by mass with respect to the total solid content in the room temperature curing type urethane primer composition (A).
- the amount of the polyurethane resin added is preferably 0.3 to 15% by mass, more preferably 1.0 to 10%, as the solid content of the polyurethane resin, based on the total solid content in the room temperature curing type urethane primer composition (A). It is mass%.
- anionic surfactants such as dialkyl sulfosuccinates, alkyl naphthalene sulfonates and fatty acid salts; polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, acetylene glycol Surfactants and nonionic surfactants such as polyoxyethylene / polyoxypropylene block copolymers; cationic surfactants such as alkylamine salts and quaternary ammonium salts; silicone surfactants; fluorosurfactants and the like It can be mentioned.
- silicone surfactants or fluorosurfactants are preferable from the viewpoint of the wettability to the floor material of the room temperature curing type urethane primer composition (A).
- colloidal silica may be contained from the viewpoint of the warpage resistance of the multilayer film formed by the present method, and as the colloidal silica, those mentioned in the coating agent (B) for forming a hard coat layer described later are particularly mentioned It can be used suitably.
- the room temperature curing type urethane primer composition (A) used in the present invention has a solid content of usually 15 to 15 in view of finish, ease of spreading on a floor surface and formation of a uniform crosslinked coating during coating.
- the content is preferably 70% by mass, and more preferably 20 to 60% by mass.
- the viscosity of the room temperature curing type urethane primer composition (A) is preferably 25 Pa ⁇ s or less from the viewpoint of coating workability.
- the viscosity is a value measured by mixing a main agent and a curing agent under conditions of 23 ° C. and 50% RH for 1 minute, leaving it to stand for 1 minute, and using a B-type viscometer at 60 rpm.
- the coating agent (B) for forming a hard coat layer applied to the present method is suitably used one that forms a coating having a siloxane bond in the coating after curing. can do.
- the hydrolyzable group and the silanol group in the coating agent composition may be reacted to form a siloxane bond to form a three-dimensional glassy cured film.
- a silica, a hydrolysable silane, and / or its condensate are mentioned, for example, Furthermore, a silane coupling agent etc. are mentioned, These are used individually or in combination suitably Can.
- the coating agent (B) for forming the hard coat layer comprises an epoxysilane oligomer (c) as a hydrolyzable silane, colloidal silica (d) having an average particle diameter in the range of 1 to 100 nm, and a curing catalyst (e It is particularly preferable from the viewpoint of drying property, cracking resistance and scratch resistance that the ink composition contains
- epoxysilane Oligomer (c) is a compound having an epoxy group and a siloxane bond in the molecule, and, for example, hydrolysis of an epoxy group-containing hydrolyzable silane represented by the following general formula (I) Hydrolyzed condensate (c2) of a condensate (c1) and / or a mixture of the epoxy group-containing hydrolyzable silane and a hydrolyzable silane represented by the following general formula (II) having no epoxy group Can be.
- general formula (I) Hydrolyzed condensate (c2) of a condensate (c1) and / or a mixture of the epoxy group-containing hydrolyzable silane and a hydrolyzable silane represented by the following general formula (II) having no epoxy group Can be.
- R 1 is an epoxy-containing organic group
- X is a hydrolyzable group
- a is an integer of 1 to 3.
- the above-mentioned X is a hydrolyzable group, and examples thereof include an alkoxy group, an acetoxy group, an oxime group, an aminoxy group, a halogen atom and the like, and an alkoxy group having 1 to 6 carbon atoms which is easily available is preferable. From the viewpoint of reaction rate, a methoxy group is preferred.
- organic group containing an epoxy group of R 1 include glycidoxy groups such as glycidoxypropyl group, (3,4-epoxycyclohexyl) methyl group, (3,4-epoxycyclohexyl) ethyl group And 3,4-epoxycyclohexyl groups.
- hydrolyzable silane represented by the above general formula (I) examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Glycidoxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) methyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) methyltriethoxysilane, 2- (3,4-epoxycyclohexyl) Ethyl trimethoxysilane, 2- (3,4-epoxycyclohexyl) methyldimethoxysilane and the like can be mentioned.
- R 2 is an organic group having no epoxy group
- X is a hydrolyzable group which may be the same or different
- a represents an integer of 0 to 3].
- the organic group having no epoxy group is preferably a monovalent organic group having 1 to 18 carbon atoms in view of scratch resistance, and may be linear or branched, and urethane bond, ester bond, ether bond And may be substituted by halogen such as fluorine.
- hydrolyzable silane represented by the above general formula (II) for example, a monofunctional, bifunctional, trifunctional or tetrafunctional hydrolysis wherein the a is an integer of 0 to 3
- Degradable silanes can be mentioned.
- trifunctional hydrolyzable silanes where a 1, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, phenyltrimethoxysilane , Phenyltriethoxysilane, partially hydrolyzed condensate of methyltrimethoxysilane (trade name “KC-89S”, Shin-Etsu Chemical Co., Ltd.), p-styryltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyl Triethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-aminopropyltrimethoxysi
- difunctional hydrolyzable silanes where a 2, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylethyldimethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, methylpropyl Dimethoxysilane, methylpropyldiethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxypropyldimethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldisilane
- Ethoxysilanes and organohalosilanes such as dimethyldichlorosilane and trimethylchlorosilane can be mentioned.
- tetrafunctional silanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraphenoxysilane, and the like; tetrahalosilanes such as tetrachlorosilane; It can be mentioned.
- the monofunctional, bifunctional, trifunctional or tetrafunctional hydrolyzable silanes may be used in combination of two or more, if necessary.
- the weight average molecular weight of the epoxysilane oligomer (c) is preferably adjusted to be in the range of 500 to 20,000, and more preferably in the range of 800 to 10,000, from the viewpoint of improving the drying property and the cracking resistance. It is preferable to be adjusted to be inside.
- the epoxy equivalent of the epoxysilane oligomer (c) is preferably in the range of 150 to 1,000 (g / eq), and in the range of 200 to 800 (g / eq), from the viewpoint of water dilution stability and curability. Is more preferred.
- the epoxy equivalent is the number of grams of a resin containing one gram equivalent of an epoxy group measured by the method according to JIS K7236.
- the weight average molecular weight is the retention time (retention capacity) of a standard polystyrene of known molecular weight, which is measured under the same conditions as the retention time (retention capacity) measured using gel permeation chromatography (GPC) It is the value calculated by converting it into the molecular weight of polystyrene.
- GPC gel permeation chromatography
- G2000HXL trade names, all manufactured by Tosoh Corporation
- a differential refractometer is used as a detector
- mobile phase tetrahydrofuran
- measurement temperature 40 ° C.
- flow rate 1 mL / min. It can be measured below.
- the epoxy silane oligomer (c) can be obtained by combining a production method used for producing a general organosilane oligomer with a conventionally known chemical reaction. For example, it can manufacture using the following manufacturing methods.
- a hydrolyzable silane having no epoxy group-containing hydrolyzable silane represented by the formula (I) and optionally an epoxy group represented by the formula (II) as a starting material And hydrolytic condensation reaction in the presence of water and a catalyst to produce an epoxysilane oligomer (c).
- the epoxysilane oligomer (c) is a hydrolysis condensate (a1) of an epoxy group-containing hydrolyzable silane represented by the above general formula (I), particularly from the viewpoint of scratch resistance, the epoxysilane oligomer (c) And / or a hydrolytic condensate (a2) of a mixture of the epoxy group-containing hydrolyzable silane and the epoxy group-free hydrolyzable silane represented by the general formula (II) is preferred, and in particular The hydrolytic condensate (a2) of a mixture of the epoxy group-containing hydrolyzable silane represented by the formula (I) and the hydrolyzable silane having no epoxy group represented by the general formula (II) is preferred.
- the epoxysilane oligomer (c) is the hydrolysis compound (a2), it is represented by the epoxy group-containing hydrolyzable silane represented by the formula (I) and the formula (II)
- the ratio to the hydrolyzable silane having no epoxy group is preferably in the range of 99/1 to 55/45 as the former / the latter (molar ratio), and is in the range of 85/15 to 60/40. It is further preferred that the
- the epoxysilane oligomer (c) may be used in combination with the hydrolysis condensate (a1) and the hydrolysis condensate (a2).
- the hydrolysis condensation reaction in the method for producing the epoxysilane oligomer (c) used in the present invention may employ, for example, conditions of pH 1 to 7.5, preferably pH 2 to 7 in the presence of the catalyst. . By reacting in the above-mentioned pH range, it is possible to suppress gelation and generation of aggregates during synthesis.
- the catalyst is not particularly limited as long as it can be adjusted to the above-mentioned pH range, and for example, formic acid, acetic acid, propionic acid, oxalic acid, citric acid, maleic acid, benzoic acid, malonic acid, glutaric acid, Organic acids such as toluene sulfonic acid or inorganic acids such as hydrogen fluoride, hydrochloric acid, nitric acid, phosphoric acid and sulfuric acid, or solid acid catalysts such as cation exchange resin having carboxylic acid group and sulfonic acid group on the surface .
- the amount of the catalyst used is not particularly limited. However, if the amount is too large, there are problems such as cost increase, gelation during synthesis or storage, etc., and if less, reaction may be delayed.
- the amount of the catalyst used is suitably in the range of 0.1 to 20 parts by mass, preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the hydrolyzable silane compounded as the starting material.
- An organic solvent may be used in the hydrolysis and condensation reaction. It is preferable to use an organic solvent from the viewpoint of preventing gelation and in that the viscosity at the time of production can be adjusted.
- organic solvent examples include alcohols such as methanol, ethanol and isopropanol, aromatic compounds such as toluene and xylene, ketones such as acetone, and esters such as ethyl acetate.
- the reaction temperature at the time of hydrolysis and condensation is generally 0 to 200 ° C., preferably 10 to 190 ° C., and more preferably 10 to 120 ° C.
- the reaction can be carried out regardless of the pressure, but a pressure range of 0.02 to 0.2 MPa is preferable, and a pressure range of 0.08 to 0.15 MPa is particularly preferable.
- the reaction usually completes in about 1 to 15 hours.
- the alcohol, the solvent and the catalyst produced in the reaction may be removed by a known method.
- the product obtained may be further purified according to the purpose by removing the catalyst by various purification methods such as washing, column separation, adsorption by a solid adsorbent, and the like. From the point of efficiency, it is preferable to remove the alcohol and catalyst generated in the reaction by washing with water.
- the structure of the epoxysilane oligomer changes depending on the condensation ratio of the hydrolyzable group of the hydrolyzable silane in the hydrolytic condensation reaction, but the product obtained by the present production method has a Si-OH group of 100 In some cases, it may include an epoxysilane oligomer of a fully caged structure, a linear, branched, ladder structure, an incomplete caged structure and / or a random condensation product in which a fully caged structure, a Si-OH group remains.
- the epoxysilane oligomer which is the component (c) obtained by the present production method may be any one of the complete cage structure, linear, branched, ladder structure, incomplete cage structure and / or random condensation product. Good.
- the content of the epoxysilane oligomer in the coating agent (B) for forming a hard coat layer is the total amount of the active ingredients of the coating agent (B) for forming a hard coat layer from the viewpoint of the hardness and abrasion resistance of the obtained film
- the range of 20 to 80% by mass is preferable, and the range of 35 to 75% by mass is more preferable.
- colloidal Silica A commercially available product of colloidal silica includes colloidal silica fine particles.
- Colloidal silica is obtained by dispersing ultrafine particles of silica in a dispersion medium.
- the dispersion medium for example, water; alcohol solvents such as methanol, ethanol, isopropanol, n-propanol, isobutanol and n-butanol; polyhydric alcohol solvents such as ethylene glycol; ethylene glycol monoethyl ether, ethylene glycol mono Examples thereof include polyhydric alcohol derivatives such as butyl ether; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and diacetone alcohol; and monomers such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate and tetrahydrofurfuryl acrylate.
- a water-soluble solvent such as water, methanol, ethanol or the like, particularly water as a dispersion medium, from the viewpoint of stability when applied to the coating agent.
- colloidal silica which makes water a dispersion medium
- acidic colloidal silica As colloidal silica which makes water a dispersion medium, acidic colloidal silica, basic colloidal silica, etc. are mentioned, for example.
- the acidic colloidal silica is not particularly limited.
- Snowtex AK, Snowtex O, Snowtex O-40, Snowtex OL, Snowtex OUP, Snowtex OXS, Snowtex OYL all trade names
- Snowtex is a registered trademark
- Adelite AT-20Q trade name, manufactured by ADEKA, Adelite is a registered trademark
- the basic colloidal silica is not particularly limited.
- Snowtex C, Snowtex N, Snowtex NXS trade names, manufactured by Nissan Chemical Industries, Ltd., Snowtex is a registered trademark
- Adelite AT- 20 trade names, manufactured by ADEKA, Adelite is a registered trademark
- ADEKA ADEKA
- Adelite is a registered trademark
- the colloidal silica using a water-soluble solvent as a dispersion medium is not particularly limited.
- commercially available products such as MA-ST-M, IPA-ST, EG-ST, PGM-ST (all trade names, Nissan Chemical Industries, Ltd.) And the like.
- colloidal silicas may be used alone or in combination of two or more.
- a method of using two or more types of colloidal silica in combination specifically, for example, the mass ratio of acidic colloidal silica having an average primary particle size of 10 to 15 nm and acidic colloidal silica having an average primary particle size of 20 to 25 nm Acidic colloidal silica having an average primary particle size of 20 to 25 nm and an acid colloidal having an average primary particle size of 50 to 80 nm, preferably used in combination such that the former / latter) is preferably in the range of 10/90 to 70/30.
- a method of using silica and a mass ratio (the former / the latter) preferably in the range of 10/90 to 60/40 can be mentioned.
- inorganic fine particles other than silica fine particles such as alumina sol, titania sol, ceria sol can also be contained in the colloidal silica.
- the average particle diameter of the colloidal silica (d) is preferably in the range of 1 to 100 nm, and more preferably in the range of 8 to 50 nm, from the viewpoint of the transparency and hardness of the cured coating.
- acidic colloidal silica can be suitably used as the colloidal silica from the viewpoint of the stability of the hard coat layer-forming coating agent (B) and the appearance of the coating film.
- the average particle size is an average particle size of primary particles of colloidal silica particles.
- the average particle size of colloidal silica refers to the average particle size calculated by the nitrogen adsorption method (BET method) unless otherwise specified.
- the content of the colloidal silica (d) is in the range of 20 to 80% by mass based on the total amount of the active ingredients of the coating agent (B) for forming a hard coat layer from the viewpoint of the hardness and abrasion resistance of the obtained film.
- the content is preferably in the range of 35 to 75% by mass.
- the curing catalyst is not particularly limited as long as it can accelerate the curing by hydrolytic condensation of a compound having a hydrolyzable group, and the method for producing the epoxysilane oligomer (c) is not particularly limited.
- organotin compounds such as diacetyltin diacetate, dibutyltin dilaurate, dibutyltin diacetate, dioctyltin dilaurate, diacetyltin dioctoate, tin octoate, dibutyltin diacetate, dibutyltin dioctyrate;
- phosphoric acid compounds and organic tin compounds are preferable in view of drying property, scuff resistance, and water dilution stability.
- examples of the above phosphoric acid compounds include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, phosphorous acid, polyphosphoric acid, phosphonic acid, methanephosphonic acid, benzenephosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid, phosphinic acid And alkali metal salts or ammonium salts of these phosphoric acid compounds.
- the content of the curing catalyst (e) is preferably in the range of 0.1 to 30 parts by mass with respect to the total amount of the active ingredients of the coating agent (B) for forming the hard coat layer, and more preferably 0.5 to 20 It is desirable to adjust in the range which becomes a mass part.
- the coating agent (B) for hard-coat layer formation used for this invention can mix
- the functional group is not particularly limited as long as it is functional, and specific examples thereof include epoxy group, hydroxyl group, amino group, ureido group, mercapto group, vinyl group, (meth) acryloyl group and isocyanate group.
- glycidoxy group-containing silane cups such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, etc.
- the content thereof is the active ingredient of the hard coat layer-forming coating agent (B) from the viewpoint of the coating film appearance and the scratch resistance. It is preferably in the range of 1 to 70% by mass, more preferably in the range of 5 to 50% by mass, based on the total amount of
- the coating agent (B) for forming a hard coat layer used in the present invention is, in addition, a dilution solvent, RTV rubber, color pigment, extender pigment, dye, matting agent, aggregate, resin particles, surface conditioner, viscosity modifier, Antifoaming agent, antibacterial agent, antifungal agent, flame retardant, antifogging agent, plasticizer, slip agent, dehydrating agent, ultraviolet absorber, light stabilizer, metal oxide fine particles, metal powder, antioxidant, surfactant Agents, film forming aids, thickeners, antistatic agents, water repellent agents, additives such as fibers; crosslinking agents such as isocyanate compounds and melamine resins; resin components such as resin emulsions and wax emulsions; acrylic resins, Modifiers such as fluorocarbon resins and various organically modified silicone oils can be appropriately blended.
- a dilution solvent RTV rubber, color pigment, extender pigment, dye, matting agent, aggregate, resin particles, surface conditioner, viscosity modifier,
- the coating agent (B) for hard-coat layer formation used for this invention may be a non-solvent, or may contain the organic solvent.
- an organic solvent By containing an organic solvent, the compatibility between the hydrolyzable silane and the silica can be improved, which is particularly preferable. Any appropriate organic solvent may be used as long as it dissolves the hydrolyzable silane compound and can be dissolved even after the hydrolysis condensation reaction proceeds.
- organic solvent examples include alcohol solvents such as methanol, ethanol, butanol, methyl isobutyl carbinol, 2-ethylhexanol and benzyl alcohol; ketone solvents such as acetone and methyl isobutyl ketone; ethyl acetate, butyl acetate and benzoic acid Ester solvents such as methyl and methyl propionate; Ether solvents such as cyclohexanone, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monotertiary butyl ether, propylene glycol monomethyl ether and isopropyl glycol; diethylene glycol monomethyl Ether, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3 Glycol ether solvents such as methoxy-3-methyl-1-butanol, aromatic hydrocarbon solvents include
- the solubility (20 ° C.) of the organic solvent in water is preferably 5 g / 100 g or more, and from the viewpoint of the finish and the improvement of the compatibility between the hydrolyzable silane and the silica, 20 g / water 100 g or more is preferable. Preferably it is 50 g / 100 g or more of water.
- organic solvents it is selected from among butanol, 3-methoxy-3-methyl-1-butanol and ethylene glycol monotertiary butyl ether from the viewpoint of coating workability and compatibility.
- at least one is used.
- the content thereof is the total amount of the active ingredients of the coating agent for forming hard coat (B) from the viewpoint of coating appearance and coating workability.
- the amount is, for example, 5 to 200 parts by mass, preferably 10 to 50 parts by mass, based on 100 parts by mass.
- the coating agent for forming a hard coat layer (B) is a hydrolyzable silane, It may contain at least one hydrolyzable silane selected from hydrofunctional silanes having 1 to 4 functions and / or its hydrolytic condensate (f).
- a hydrolysis condensate of the hydrolyzable silane represented by the general formula (II) can be suitably used.
- hydrolyzable silane having no 1 to 4 functional epoxy group represented by the above general formula (II) are mentioned, and among them, methyltrimethoxysilane is preferable in particular from the viewpoint of drying property.
- the content thereof can be appropriately adjusted from the viewpoint of the balance between the abrasion resistance and the crack resistance etc., but the content is based on the total amount of the active ingredients of the hard coat layer forming coating agent (B). And 1 to 40% by mass, preferably 35 to 30% by mass.
- a coating agent (B) for forming a hard coat layer is tetrafunctional in at least a part of the components (f) among the components (f). It may contain a hydrolyzable silane and / or its hydrolytic condensate (g).
- component (g) examples include hydrolyzable silanes represented by the following general formula (III) and / or hydrolytic condensates thereof.
- the general formula (III) is a tetrafunctional hydrolyzable silane, and specifically, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraphenoxysilane, etc .; Halosilane etc. can be mentioned.
- hydrolytic condensate of the above-mentioned tetrafunctional hydrolyzable silane one having an average degree of condensation of 2 to 15 is preferable, and the silica remaining as silica when the organosilicate compound is calcined at 900 ° C.
- Condensates condensed to a weight fraction of 20 to 60% by mass are preferred.
- the hydrolytic condensate may contain a condensate of a branched or cyclic structure.
- the average degree of condensation can be determined using the molecular weight obtained from gel permeation chromatography (GPC) of a condensation compound of a tetrafunctional hydrolyzable silane.
- the content of the tetrafunctional hydrolyzable silane represented by the general formula (III) and / or its content in the case of containing the hydrolytic condensate (G) is the scratch resistance, the drying property, and the crack resistance. From the viewpoint of balance, the content is preferably in the range of 1 to 20% by mass, and more preferably 1.5 to 15% by mass, with respect to the total amount of the active ingredients of the hard coat layer forming coating agent (B).
- the active ingredient means a residue obtained by removing a solvent such as water and an organic solvent from a sample.
- the amount of the active ingredient can be determined, for example, from the heating residue when the solvent, etc. is volatilized by drying the mixture, composition, etc. containing water, organic solvent etc. in a hot air drier at 105 ° C. for 3 hours .
- silicon compounds such as hydrolyzable silanes and silane coupling agents are included in the active ingredients.
- the coating agent (B) for hard coat layer formation may contain water (h). By containing water, drying can be promoted at the time of film formation. Moreover, the viscosity of the coating agent (B) for hard-coat layer formation can be suitably adjusted by diluting with water at the time of coating later, and coating workability can be prepared.
- the coating agent (B) for hard coat layer formation can contain water, and water can be used instead of the organic solvent in the dilution operation of the coating step. There is little risk of damaging the surrounding sanitation environment and safety is high.
- water (h) arbitrary things can be used, for example, tap water, ion exchange water, and a pure water are used preferably.
- the content of the water (h) can be appropriately adjusted within the range in which the finishing properties of the hard coat layer forming coating agent (B) and the repelling properties at the time of coating are considered.
- the addition amount thereof can be, for example, in the range of 1 to 30% by mass with respect to the total amount of the active ingredients of the coating agent (B) for hard coat layer formation before dilution.
- the coating agent (B) for forming a hard coat layer is a curing catalyst other than the curing catalyst, a RTV rubber, a coloring pigment, an extender pigment, a pigment such as a luster pigment, a dye, and a matting agent as long as the performance is not impaired.
- the form and preparation method of the coating agent (B) for hard-coat layer formation applied to this method may be a one-pack type composition, and two or more multi-packs It may be a mold composition.
- a method of using a hydrolyzable silane as the first component, a curing catalyst (e) as the second component, and distributing the other components to any or third components may be mentioned. it can.
- the third solution containing silica (d) can be individually prepared, and the entire solution can be mixed and used immediately before use.
- the above-mentioned silane coupling agent, organic solvent, components (f) to (h) and other various additives such as pigment dispersant, anti-settling agent, anti-foaming agent, anti-oxidant, ultraviolet absorber etc. It can be suitably contained in any of the solutions.
- the compatibility may be improved by mixing the colloidal silica (d) with the curing catalyst (e) in advance, which is preferable in some cases.
- the coating agent (B) for hard-coat layer formation applied to this method may be a non-solvent, and may contain a dilution solvent.
- a dilution solvent water and an organic solvent may be mentioned, and from the viewpoint of odor and compatibility, those exemplified in the section of the organic solvent for diluting the above-mentioned curing agent can be suitably used.
- the coating agent (B) for hard coat layer formation used in the present invention has a content of the active ingredient of usually 15% by mass or more, particularly in the range of 20 to 60% by mass from the viewpoint of workability and finish during coating. It is preferable to
- the hard coat layer (II) has a Martens hardness in the range of 100 to 300 N / mm 2 , particularly 120 to 300 N / mm 2 from the viewpoint of scratch resistance and cracking resistance of the process film. ing.
- a mixture consisting of the following monomer blend was added to form an emulsion, and the emulsion was dropped at a constant speed over 4 hours into a glass four-necked flask kept at 82 ° C. After completion of the dropwise addition, the mixture is further stirred at 82 ° C. for 2 hours, cooled to 40 ° C., and adjusted to pH 7.5 with ammonia to obtain a hydroxyl group-containing acrylic resin having an average particle diameter of 150 nm and a resin solid content of 50% (a An aqueous dispersion of -1) was obtained.
- the hydroxyl value of the hydroxyl group-containing acrylic resin (a-1) was 103 mg KOH / g, and the glass transition temperature was 41 ° C.
- a hydroxyl group-containing acrylic resin having an average particle diameter of 150 nm and a resin solid content of 50% (a A core-shell type aqueous dispersion of -2) was obtained.
- the hydroxyl value of the hydroxyl group-containing acrylic resin was 103 mg KOH / g, and the glass transition temperature was 40 ° C.
- a solution of 4 parts of azobisisobutyronitrile dissolved in 80 parts of "Swazol 1000" is added dropwise over 1 hour, and stirring is further continued at 90 ° C for 1 hour, and then cooled to 40 ° C.
- a 50% solution of hydroxyl group-containing acrylic resin (a-4) was obtained.
- the acrylic resin had a hydroxyl value of 103 mg KOH / g, a glass transition temperature of 39 ° C., and a weight average molecular weight of 15,000.
- the dispersion of the hydroxyl group-containing acrylic resin had a hydroxyl value of 103 mg KOH / g, a glass transition temperature of 43 ° C., and a weight average molecular weight of 30,000.
- Production Example 6 Comparative Resin (a'-1) In Production Example 1, except that the composition of the monomer mixture is as shown in the column of acrylic resin (a'-1) in Table 1, it is hydroxyl-free in the same manner as in Production Example 1 and diacetone as a crosslinking functional group monomer. An aqueous dispersion of an acrylic resin (a'-1) obtained by copolymerizing acrylamide was obtained.
- the resin solid content, average particle diameter, hydroxyl value, acid value and glass transition temperature of the hydroxyl group-containing acrylic resin or acrylic resin obtained in Production Examples 1 to 6 are shown in Table 2.
- the solid content and NCO / OH ratio of the room temperature curing type urethane primer composition (A-1) are shown in Table 3.
- the results of the initial drying evaluation of the room temperature curing type urethane primer composition (A-1) and the value of Martens hardness are also shown in Table 3.
- test methods and evaluation criteria of the test items in the table are as follows.
- Martens hardness It measured according to the method of a statement statement.
- Epoxysilane oligomer (c-1) 236 parts (1.0 mol) of KBM-403 (Note 7) and methanol in a separable flask equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen inlet tube 32 parts (1.0 mol) were added and mixed and stirred at room temperature.
- 10 parts of 0.05 N hydrochloric acid water was added dropwise over 30 minutes while stirring, and the mixture was further stirred for 30 minutes. Thereafter, the temperature was raised to 75 ° C. using a mantle heater, and reflux was performed for 2 hours while simultaneously removing by-produced methanol.
- an epoxysilane oligomer (c-1) After cooling to room temperature, filtration was performed to obtain an epoxysilane oligomer (c-1). As a result of heating the product (c-1) at 120 ° C. for 1 hour, the heating residue (active ingredient) was 80%. Moreover, the weight average molecular weight was 1,100 and the epoxy equivalent was 220 g / eq.
- KBM-403 trade name, manufactured by Shin-Etsu Chemical Co., Ltd., 3-glycidoxypropyltrimethoxysilane, molecular weight 236.34.
- KBM-13 trade name, manufactured by Shin-Etsu Chemical, methyltrimethoxysilane.
- each room temperature curing type urethane primer composition described in Table 4 The paint was applied using a floor mop and dried for 2 hours under conditions of a temperature of 23 ° C. and a humidity of 50% RH to form each primer cured coating layer (I).
- the dry film thickness was as shown in Table 4. The interval until the over-coating of the next process at this time was 2 hours of drying time.
- a coating agent (B-1) or (B-3) for hard coat layer formation is applied once on this to a dry film thickness of 15 ⁇ m using a floor mop, air temperature 23 ° C., humidity 50% RH The coated film was dried for 4 days under the following conditions to form a hard coat layer (II) to obtain each painted tile.
- Example 10 Each room temperature curing type urethane primer composition (A shown in Table 4) on a 305 ⁇ 305 ⁇ 2 mm composition vinyl floor tile (trade name “P tile P-60”, made by Tajima, vinyl chloride resin floor material) -1) was painted using a floor mop and dried for 24 hours under conditions of an air temperature of 23 ° C. and a humidity of 50% RH to form a primer cured coating layer (I).
- the dry film thickness was as shown in Table 4. The interval until the over-coating of the next process at this time was 24 hours of the drying time.
- the coating agent (B-1) for hard-coat layer formation is once coated so that it may become dry film thickness 25micrometer using a floor mop on this, and it is 4 days on condition of temperature 23 ° C, humidity 50% RH. After drying, a hard coat layer (II) was formed to obtain a painted tile.
- each room temperature curing type urethane primer composition described in Table 4 was applied using a floor mop and dried for 2 hours under conditions of a temperature of 23 ° C. and a humidity of 50% RH to form each primer cured coating layer (I).
- the dry film thickness was as shown in Table 4. The interval until the over-coating of the next process at this time was 2 hours of drying time.
- the coating described in the first column of the hard coat layer forming coating in Table 4 is applied once on this to a dry film thickness of 15 ⁇ m using a floor mop, air temperature 23 ° C., humidity 50% RH Let stand for 18 hours under the following conditions, and then further coat the coating agent described in the second column of the hard coat layer forming coating once with a floor mop to a dry film thickness of 15 ⁇ m, It dried under the same conditions for 4 days, and obtained the coated tile in which two-layer hard-coat layer (II) was formed on primer cured coating layer (I).
- the interval to over-coating before applying the second layer hard coating agent is 18 hours of drying time.
- Example 12 to 14 The same steps as in Example 1 are carried out except that the room temperature curing type primer composition, the coating agent for forming a hard coat layer, and the coating interval (time: h) are as shown in Table 4 in Example 11, and each primer On the layer (I), a painted tile in which two hard coat layers (II) were formed was obtained.
- Example 3 The same steps as in Example 1 are carried out in Example 1 except that the room temperature curing type primer composition, the coating agent for forming a hard coat layer, and the overlapping coating interval (time: h) are as shown in Table 4; A painted tile having a hard coat layer (II) formed thereon was obtained on (I).
- a hard coat is not coated on a 305 ⁇ 305 ⁇ 2 mm composition vinyl floor tile (trade name “P tile P-60”, made by Tajima, vinyl chloride resin floor material), and the room temperature curing type urethane primer composition is not coated.
- the layer forming coating agent (B-1) was coated once using a floor mop to a dry film thickness of 15 ⁇ m, dried at a temperature of 23 ° C. and a humidity of 50% RH for 4 days, and a hard coat layer To obtain a coated tile having no primer cured coating layer (I).
- a hard coat is not coated on a 305 ⁇ 305 ⁇ 2 mm composition vinyl floor tile (trade name “P tile P-60”, made by Tajima, vinyl chloride resin floor material), and the room temperature curing type urethane primer composition is not coated.
- the layer forming coating agent (B-2) was coated once using a floor mop to a dry film thickness of 15 ⁇ m, allowed to stand for 18 hours under conditions of temperature 23 ° C., humidity 50% RH, and then further The coating agent (B-2) for hard-coat layer formation is once coated so that it may become a dry film thickness of 15 micrometers using a floor mop, and it is made to dry under the same conditions for 4 days.
- (I) There was obtained a painted tile in which two hard coat layers (II) were formed. The interval to over-coating before applying the second layer hard coating agent is 18 hours of drying time.
- Each painted tile obtained as described above was used as a test plate and subjected to various tests.
- test item 4. Finishing property [coating film appearance (visual)]: The coating film appearance of each test plate was visually confirmed and evaluated according to the following criteria. :: Smooth and uniform gloss feeling is observed ⁇ : Smooth but very slight gloss unevenness is observed ⁇ : Yuzu skin and gloss unevenness are slightly observed ⁇ : Remarkable Yuz skin and gloss unevenness are recognized Be
- Adhesion The coated film on each test plate is cross-cut to reach the substrate, and the coated cell surface after sticking adhesive cellophane tape on the coated surface and peeling strongly is checked visually, and the following criteria for peeling from the tile It evaluated. In addition, all interfaces when the coating film was peeled were the vinyl chloride resin material / primer interlayer. :: Peeling not observed ⁇ : Peeling slightly observed on the crosscut line ⁇ : Peeling partially observed along the crosscut area ⁇ : Peeling all over the crosscut area Is recognized.
- Test item 8. Water resistance: The test boards obtained were left for 4 days under conditions of a temperature of 23 ° C. and a humidity of 50% RH for 4 days, and then immersed in water at 20 ° C. for 24 hours, and then the appearance of the test boards washed in water was evaluated according to the following criteria.
- X Significant whitening is observed for the coating before the test.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Floor Finish (AREA)
Abstract
本発明は、簡便かつ短時間での施工ができ、かつ、得られる表面保護被膜の密着性、仕上がり性、耐ワレ性、耐擦り傷性及び艶感に優れる、床面の表面保護被膜形成方法を提供することを課題とする。本発明は、床面に、常温硬化型ウレタンプライマー組成物(A)を塗装し、該組成物による硬化塗膜層(I)を形成する工程、次いでハードコート層形成用コーティング剤(B)を塗布し、少なくとも1層のハードコート層(II)を形成する工程、を含む床面の表面保護被膜形成方法であって、前記常温硬化型ウレタンプライマー組成物(A)の、硬化剤中に含まれるポリイソシアネート化合物(b)のイソシアネート基と主剤中に含まれる水酸基含有アクリル樹脂(a)の水酸基との比率(NCO/OH)が、0.7~2.0の範囲内であることを特徴とする床面の表面保護被膜形成方法に関する。
Description
本発明は、オフィスビルや商業施設、コンビニエンスストア等の床面に施工することにより、耐擦り傷性、耐水性及び艶感に優れる被膜を形成し、床面の美観を長期間維持することができる床面の表面保護被膜形成方法に関する。
オフィスビルや商業施設、コンビニエンスストア等の床面は、擦り傷や汚れ等から床材を保護するとともに、艶を出し、美観を向上させる目的で水性フロアポリッシュが使用されている。しかしながら、樹脂エマルションを主成分とするこれらの水性フロアポリッシュは、人の歩行や台車の運搬により傷や汚れが蓄積しやすく艶(美観)が早期に低下するという問題があった。また、洗浄でのメンテナンスで改善がみられない場合は床面上の被膜を剥離する必要があり、その際に発生する廃水が産業廃棄物になるという問題も内在している。
そこで、これらの問題を解決するために、例えば特許文献1には、水性ウレタン樹脂、水、1-(2-メトキシ-2-メチルエトキシ)-2-プロパノールからなるフロアーコーティング剤が開示されている。特許文献1に記載のフロアーコーティング剤は、水性ウレタン樹脂により被膜を形成することから、耐久性、密着性及び光沢等に優れるが、ラッカータイプ(溶剤を揮発させることにより成膜する揮発乾燥型塗料)であり架橋密度が低いため、擦り傷が早期に発生し、美観を長期にわたって維持できないという問題がある。
また、特許文献2には、ケイ素原子1個あたり平均0.9~1.1個の炭化水素基がケイ素原子に結合し、及びケイ素原子に結合した水酸基を1分子あたり少なくとも2個有するポリオルガノシロキサン樹脂を含有し、0.10kgf以上の滑り抵抗性を有する室温硬化性のフロアーコーティング剤組成物が開示されている。特許文献2に記載のフロアーコーティング剤は、シラノール基を有するポリオルガノシロキサン樹脂により、乾燥性及び硬化性に優れる被膜が得られるが、樹脂の極性が低いため床材の種類によっては密着性が不十分となる場合があった。
特許文献3には、床面に各種常温硬化乾燥型の塗料組成物を塗装しプライマー層を塗設せしめ、次いで紫外線硬化性の中塗り及び/又は上塗りを硬化せしめる床面の現場塗装硬化方法が記載されている。しかしながら、特許文献3に記載の発明は、上塗りを紫外線で硬化させるために装置が大掛かりとなる他、特許文献3に開示のプライマーでは乾燥性に問題があり、塗装作業性、得られる工程膜の耐水性、仕上がり性及び密着性を必ずしも満足するものではなかった。
本発明は上記事情に鑑みてなされたものであり、簡便かつ短時間での施工ができ、得られる表面保護被膜の密着性、仕上がり性、耐ワレ性、耐擦り傷性及び艶感に優れる、床面の表面保護被膜形成方法を提供することである。
かかる状況の下、本発明者らは鋭意研究した結果、床面にハードコート層形成用コーティング剤によるハードコート層を形成する際に予め、特定の常温硬化型ウレタンプライマー組成物による硬化塗膜層を形成する工程を含むことにより、上記課題を解決できることを見出した。
本発明は、下記の態様を包含する床面の表面保護被膜形成方法を提供する:
(態様1)
床面に、常温硬化型ウレタンプライマー組成物(A)を塗装し、該組成物による硬化塗膜層(I)を形成する工程、次いでハードコート層形成用コーティング剤(B)を塗布し、少なくとも1層のハードコート層(II)を形成する工程、を含む床面の表面保護被膜形成方法であって、前記常温硬化型ウレタンプライマー組成物(A)が、
水酸基含有アクリル樹脂(a)を含む主剤と、ポリイソシアネート化合物(b)を含む硬化剤とを含有し、前記硬化剤中に含まれるポリイソシアネート化合物(b)のイソシアネート基と主剤中に含まれる水酸基含有アクリル樹脂(a)の水酸基との比率(NCO/OH)が、0.7~2.0の範囲内であることを特徴とする床面の表面保護被膜形成方法。
(態様1)
床面に、常温硬化型ウレタンプライマー組成物(A)を塗装し、該組成物による硬化塗膜層(I)を形成する工程、次いでハードコート層形成用コーティング剤(B)を塗布し、少なくとも1層のハードコート層(II)を形成する工程、を含む床面の表面保護被膜形成方法であって、前記常温硬化型ウレタンプライマー組成物(A)が、
水酸基含有アクリル樹脂(a)を含む主剤と、ポリイソシアネート化合物(b)を含む硬化剤とを含有し、前記硬化剤中に含まれるポリイソシアネート化合物(b)のイソシアネート基と主剤中に含まれる水酸基含有アクリル樹脂(a)の水酸基との比率(NCO/OH)が、0.7~2.0の範囲内であることを特徴とする床面の表面保護被膜形成方法。
(態様2)
前記ハードコート層形成用コーティング剤(B)が、エポキシシランオリゴマー(c)と、平均粒子径が1~100nmの範囲内のコロイダルシリカ(d)と、硬化触媒(e)と、を含む態様1に記載の床面の表面保護被膜形成方法。
前記ハードコート層形成用コーティング剤(B)が、エポキシシランオリゴマー(c)と、平均粒子径が1~100nmの範囲内のコロイダルシリカ(d)と、硬化触媒(e)と、を含む態様1に記載の床面の表面保護被膜形成方法。
(態様3)
前記水酸基含有アクリル樹脂(a)のガラス転移温度が、20~90℃の範囲である態様1又は2に記載の床面の表面保護被膜形成方法。
前記水酸基含有アクリル樹脂(a)のガラス転移温度が、20~90℃の範囲である態様1又は2に記載の床面の表面保護被膜形成方法。
(態様4)
前記水酸基含有アクリル樹脂(a)の水酸基価が、15~200mgKOH/gの範囲内である態様1~3のいずれか1の態様に記載の床面の表面保護被膜形成方法。
前記水酸基含有アクリル樹脂(a)の水酸基価が、15~200mgKOH/gの範囲内である態様1~3のいずれか1の態様に記載の床面の表面保護被膜形成方法。
(態様5)
前記常温硬化型ウレタンプライマー組成物(A)が、充填剤及び/又はポリウレタン樹脂を含む態様1~4のいずれか1の態様に記載の床面の表面保護被膜形成方法。
前記常温硬化型ウレタンプライマー組成物(A)が、充填剤及び/又はポリウレタン樹脂を含む態様1~4のいずれか1の態様に記載の床面の表面保護被膜形成方法。
(態様6)
前記常温硬化型ウレタンプライマー組成物(A)の塗装時における固形分含有率が、15~70質量%である態様1~5のいずれか1の態様に記載の床面の表面保護被膜形成方法。
前記常温硬化型ウレタンプライマー組成物(A)の塗装時における固形分含有率が、15~70質量%である態様1~5のいずれか1の態様に記載の床面の表面保護被膜形成方法。
(態様7)
前記ハードコート層形成用コーティング剤(B)が、加水分解性シラン及び/又はその縮合物、並びにシリカを含む、態様1~6のいずれか1の態様に記載の床面の表面保護被膜形成方法。
前記ハードコート層形成用コーティング剤(B)が、加水分解性シラン及び/又はその縮合物、並びにシリカを含む、態様1~6のいずれか1の態様に記載の床面の表面保護被膜形成方法。
(態様8)
前記硬化塗膜層(I)のマルテンス硬度が30N/mm2以上、ハードコート層のマルテンス硬度が100~300N/mm2にある態様1~7のいずれか1の態様に記載の床面の表面保護被膜形成方法。
前記硬化塗膜層(I)のマルテンス硬度が30N/mm2以上、ハードコート層のマルテンス硬度が100~300N/mm2にある態様1~7のいずれか1の態様に記載の床面の表面保護被膜形成方法。
(態様9)
前記床面が、塩化ビニル樹脂系である態様1~7のいずれか1の態様に記載の床面の表面保護被膜形成方法。
前記床面が、塩化ビニル樹脂系である態様1~7のいずれか1の態様に記載の床面の表面保護被膜形成方法。
本発明の床面の表面保護被膜形成方法(以下、「本方法」と略称する場合がある)によれば、常温硬化型ウレタンプライマー組成物が常温でも被膜を形成するため、床材に対して容易に施工でき、塗装過程における塗り重ね時間が短く、工期短縮化が図れる。また、本方法により形成された複層被膜(工程膜と略称する場合がある)は、床材との密着性に優れ、前記仕上がり性、耐ワレ性、耐擦り傷性及び艶感等の塗膜物性を長期間維持することのできるものである。
<床面の表面保護被膜形成方法>
本方法は、床面に、特定の常温硬化型ウレタンプライマー組成物(A)を塗装し、該組成物による硬化塗膜層(I)を形成する工程、次いで該硬化塗膜層上にハードコート層形成用コーティング剤(B)を塗布し、少なくとも1層のハードコート層(II)を形成する工程、を含むことを特徴とする。以下順に説明する。
本方法は、床面に、特定の常温硬化型ウレタンプライマー組成物(A)を塗装し、該組成物による硬化塗膜層(I)を形成する工程、次いで該硬化塗膜層上にハードコート層形成用コーティング剤(B)を塗布し、少なくとも1層のハードコート層(II)を形成する工程、を含むことを特徴とする。以下順に説明する。
本方法を適用する被塗物は床面である。
この床面を構成するものとしては、一般的な床材であり、例えば、陶磁器、磁器タイルなどのセラミックス系床材;鉄、アルミニウム等の金属系床材;天然木、合板等の木質系床材;塩化ビニル樹脂等の合成樹脂系床材;御影石、大理石等の石材系床材;これらの素材を複合した床材等を挙げることができ、表面に保護シールや旧塗膜が設けられたものもであってもよい。床材の形状、大きさは特に制限されない。新設又は既設の床材どちらであってもよい。
また、本方法を適用する前に、被塗物に洗浄や研磨等の素地調整を行ってもよい。特に、本方法を適用する被塗物としては、塩化ビニル樹脂系床材が好ましい。
本方法は、特定の常温硬化型ウレタンプライマー組成物(A)使用する。
該常温硬化型ウレタンプライマー組成物(A)を塗装する際の塗装方法としては、例えば、モップ塗装、スプレー塗り、ローラー塗り、刷毛塗り、流し塗り等の公知の手段で塗装することができ、基材の適用される現場に応じて適宜選択して使用することができる。塗装回数は特に制限されることなく、1回又は複数回塗り重ねてもよい。乾燥膜厚としては、被塗物の状態や周囲環境によって異なるが、一般には1回あたり3~50μm、好ましくは7~30μmの範囲内とすることができる。
乾燥方法としては、常温乾燥が採用され、乾燥によって塗膜を得ることができるが、塗装環境等に応じて、加熱乾燥又は強制乾燥しても特に問題はない。必要に応じてブロアー等を用いて風乾燥を併用してもよい。常温乾燥では、例えば5~45℃の環境下で乾燥することにより塗膜を得ることができる。塗装時における相対湿度(以下RHと略すことがある)は、80%以下、特に70%以下が好ましい。
風乾燥を併用する場合は、例えば、常温環境下、サーキュレーター等を設置し、10~60分好ましくは15~55分換気をすることにより、乾燥を促進させ、かつ、硬化状態が均一な塗膜を得ることができる。
本方法に用いる常温硬化型ウレタンプライマー組成物(A)の塗装後の乾燥時間は、硬化状態が半硬化乾燥状態以上となるまで乾燥することが、得られる工程膜の仕上がり性及び後述するハードコート層を形成した際の耐ワレ性の点から好ましい。
ここで、本明細書中において、半硬化乾燥状態とは、JIS K 5600-1-1(2004)に規定された半硬化乾燥状態、すなわち、塗面の中央を指先で静かに軽くこすって塗面にすり跡が付かない状態の塗膜である。一方、半硬化乾燥状態未満の硬化塗膜とは、塗膜が上記硬化乾燥状態に至っていない状態であって、JIS K 5600-1-1(2004)に規定された指触乾燥状態以下をいう。
本方法の常温硬化型ウレタンプライマー組成物(A)は、前記半硬化乾燥状態以上であれば、後述するハードコート層形成用コーティング剤(B)を重ね塗りした際、仕上がり性及び密着性に優れる床面の表面保護被膜を形成することができる。
本明細書中において、初期乾燥性とは、塗膜状態が前記硬化乾燥状態になるまでの時間を示し、短い方がより乾燥性が良く速乾性である。
本方法に用いられる常温硬化型ウレタンプライマー組成物(A)を前記半硬化乾燥状態とするまでには、乾燥膜厚と塗装環境のバランスによって異なるが、例えば、乾燥膜厚が50μm以下の場合、3時間未満とすることができ、1~2時間であってもよい。
常温硬化型ウレタンプライマー組成物(A)を下塗り(プライマー)として用いる本方法は、比較的短時間で、後述するハードコート層形成用コーティング剤(B)を重ね塗りすることができ作業効率に優れる。本方法において、重ね塗りまでの時間が、3時間以上など長時間を要しても、特段問題はない。
かくして、常温硬化型ウレタンプライマー組成物(A)による硬化塗膜層(I)が形成される。
本発明において、硬化塗膜層(I)は、工程膜の耐ワレ性の点から下記条件でのマルテンス硬度が30N/mm2以上であることが好ましく、特に好ましくは50~300N/mm2である。
本明細書においてマルテンス硬度は、ガラス板に試料を乾燥膜厚が20μmとなるようにアプリケーターを用いて塗布し、23℃、50%相対湿度の雰囲気下で24時間乾燥させたものを試験板とし、超微小硬度計を用いて測定した値である。
超微小硬度計としては、例えば、(株)フィッシャー・インストルメンツ社製、フィッシャースコープHM-2000(商品名)などが挙げられ、23℃、50%相対湿度の雰囲気下で、ビッカース圧子を用いて荷重=20mN/25秒の条件で測定して求めるものとする。
次いで、前記常温硬化型ウレタンプライマー組成物(A)による硬化塗膜層(I)上に、ハードコート層形成用コーティング剤(B)を塗布し、少なくとも1層のハードコート層(II)を形成する。
前記ハードコート層形成用コーティング剤(B)を塗装する際の塗装方法としては、例えば、モップ塗装、スプレー塗り、ローラー塗り、刷毛塗り、流し塗り等の公知の手段で塗装することができ、基材の適用される現場に応じて適宜選択して使用することができる。さらに必要に応じて塗装後の余剰分を拭き取ることもできる。
塗装回数は特に制限されることなく、1回又は複数回塗り重ねてもよい。
1回あたりの乾燥膜厚は、仕上がり性、耐ワレ性の点から2~50μm、好ましくは3~30μmの範囲内とすることができる。
形成塗膜の乾燥は、常温乾燥で行うことができるが、塗装環境等に応じて、加熱乾燥又は強制乾燥してもよい。また、必要に応じてブロアー等を用いて風乾燥を併用してもよい。
常温乾燥では、例えば5~45℃の環境下で乾燥することにより塗膜を得ることができる。塗装時における相対湿度(以下RHと略すことがある)は、80%以下、特に70%以下が好ましい。
風乾燥を併用する場合は、例えば、常温環境下、サーキュレーター等を設置し、乾燥の間換気することにより乾燥を促進させることができる。
本発明は、床面に、特定の常温硬化型ウレタンプライマー組成物(A)による硬化塗膜層(I)を形成し、該塗膜層(I)の上に、後述するハードコート層形成用コーティング剤(B)を塗装し、少なくとも1層のハードコート層(II)を形成することにより、得られる工程膜の密着性に優れ、かつ、床面の耐擦り傷性と仕上がり性を向上させることができる。
(A)常温硬化型ウレタンプライマー組成物
本方法に適用される、前記常温硬化型ウレタンプライマー組成物(A)について説明する。
本方法に適用される、前記常温硬化型ウレタンプライマー組成物(A)について説明する。
本方法に適用される常温硬化型ウレタンプライマー組成物(A)は、硬化後塗膜中にウレタン結合を有する塗膜を形成するもので、水酸基含有アクリル樹脂(a)を含む主剤と、ポリイソシアネート化合物(b)を含む硬化剤とを含有し、前記硬化剤中に含まれるポリイソシアネート化合物(b)のイソシアネート基と主剤中に含まれる水酸基含有アクリル樹脂(a)の水酸基との比率(NCO/OH)が、0.7~2.0の範囲内であることを特徴とする。
NCO/OHが上記範囲内であると、初期乾燥性に優れ、ハードコート層形成用コーティング剤(B)の塗り重ねが短時間で可能になると同時に、仕上がり性、耐ワレ性、耐擦り傷性に優れた表面保護被膜を形成することができる。
常温硬化型ウレタンプライマー組成物(A)の仕上がり性及びポットライフの観点から、NCO/OHは、0.8~1.8の範囲内が好ましく、0.9~1.6の範囲内がより好ましく、1.0を超えて1.6未満の範囲内がさらに好ましい。
本方法に適用される常温硬化型ウレタンプライマー組成物(A)は、常温で硬化可能でありポリウレタン架橋塗膜を形成するのであれば、水性塗料及び有機溶剤型塗料のいずれの形態であってもよい。本方法に適用される組成物は、環境負荷を低減する観点及び臭気の点から、水性塗料組成物であることが好ましい。
(a)水酸基含有アクリル樹脂
主剤に含まれる水酸基含有アクリル樹脂(a)は、後述のポリイソシアネート化合物(b)と共にポリウレタン架橋塗膜形成成分となる成分である。
主剤に含まれる水酸基含有アクリル樹脂(a)は、後述のポリイソシアネート化合物(b)と共にポリウレタン架橋塗膜形成成分となる成分である。
特に、水酸基含有アクリル樹脂(a)のガラス転移温度(以下Tgと略す場合がある)は、初期乾燥性及び表面保護被膜の耐ワレ性の点から、20~90℃の範囲内が好ましく、長期耐久性の点から、25~80℃の範囲内がより好ましく、30~70℃の範囲内がさらに好ましい。
特に、水酸基含有アクリル樹脂(a)の水酸基価は、初期乾燥性及びポットライフのバランスの点から、15~200mgKOH/gの範囲内が好ましく、30~180mgKOH/gの範囲内がより好ましく、50~160mgKOH/gの範囲内がさらに好ましい。
なお、本明細書において、上記水酸基含有アクリル樹脂のガラス転移温度(Tg)は、下記式により算出される値である。
1/Tg(K)=W1/T1+W2/T2+・・・Wn/Tn
Tg(℃)=Tg(K)-273
式中、W1、W2、・・・Wnは各モノマーの質量分率であり、T1、T2・・・Tnは各モノマーのホモポリマーのガラス転移温度Tg(K)である。なお、各モノマーのホモポリマーのガラス転移温度は、POLYMER HANDBOOK Fourth Edition,J.Brandrup,E.h.Immergut,E.A.Grulke編(1999年)による値であり、該文献に記載されていないモノマーのガラス転移温度は、該モノマーのホモポリマーを重量平均分子量が50,000程度になるようにして合成したときの静的ガラス転移温度とする。
Tg(℃)=Tg(K)-273
式中、W1、W2、・・・Wnは各モノマーの質量分率であり、T1、T2・・・Tnは各モノマーのホモポリマーのガラス転移温度Tg(K)である。なお、各モノマーのホモポリマーのガラス転移温度は、POLYMER HANDBOOK Fourth Edition,J.Brandrup,E.h.Immergut,E.A.Grulke編(1999年)による値であり、該文献に記載されていないモノマーのガラス転移温度は、該モノマーのホモポリマーを重量平均分子量が50,000程度になるようにして合成したときの静的ガラス転移温度とする。
上記静的ガラス転移温度は、例えば、試料を測定カップにとり、真空吸引して完全に溶剤を除去した後、示差走査熱量計「DSC-50Q型」(商品名、島津製作所製)を用いて、3℃/分の昇温速度で-100℃~150℃の範囲で熱量変化を測定し、低温側における最初のベースラインの変化点を静的ガラス転移温度とすることによって、測定することができる。
上記水酸基含有アクリル樹脂(a)としては、通常、水酸基含有重合性不飽和モノマー及び該水酸基含有重合性不飽和モノマーと共重合可能な他の重合性不飽和モノマーを、従来公知の方法、例えば、有機溶媒中での溶液重合法、水中での乳化重合法などの方法により、共重合せしめることによって製造することができる。
水酸基含有重合性不飽和モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物;該(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物のε-カプロラクトン変性体;アリルアルコール等を挙げることができる。
また、水酸基含有重合性不飽和モノマーと共重合可能な他の重合性不飽和モノマーとしては、例えば、メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のアルキル又はシクロアルキル(メタ)アクリレート;イソボルニル基を有する重合性不飽和モノマー;アダマンチル基を有する重合性不飽和モノマー;ビニル芳香族化合物;アルコキシシリル基を有する重合性不飽和モノマー;パーフルオロアルキル(メタ)アクリレート;フッ素化アルキル基を有する重合性不飽和モノマー;マレイミド基等の光重合性官能基を有する重合性不飽和モノマー;ビニル化合物;(メタ)アクリル酸、マレイン酸、クロトン酸、フマル酸、イタコン酸等のカルボン酸、β-カルボキシエチル(メタ)アクリレート等やジカルボン酸モノエステル等のカルボキシル基含有重合性不飽和モノマー;含窒素重合性不飽和モノマー;重合性不飽和基を1分子中に2個以上有する重合性不飽和モノマー;グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、3,4-エポキシシクロヘキシルプロピル(メタ)アクリレート、アリルグリシジルエーテル等のエポキシ基含有重合性不飽和モノマー;分子末端がアルコキシ基であるポリオキシエチレン鎖を有する(メタ)アクリレート;スルホン酸基を有する重合性不飽和モノマー;リン酸基を有する重合性不飽和モノマー;紫外線吸収性官能基を有する重合性不飽和モノマー;紫外線安定性重合性不飽和モノマー;アクロレイン、ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、アセトアセトキシエチルメタクリレート、ホルミルスチロール、4~7個の炭素原子を有するビニルアルキルケトン(例えば、ビニルメチルケトン、ビニルエチルケトン、ビニルブチルケトン)等のカルボニル基を有する重合性不飽和モノマー化合物等が挙げられ、これらはそれぞれ単独でもしくは2種以上組み合わせて使用することができる。
さらに、上記水酸基含有アクリル樹脂(a)は変性されていてもよく、例えば、ウレタン変性、エポキシ変性、シリコーン変性などを挙げることができる。
水酸基含有アクリル樹脂(a)の形態としては、水分散型、水溶性、有機溶剤系のいずれであってもよいが、塗装環境の安全衛生面や臭気の点から、水分散型又は水溶性であることが好ましく、さらに耐水性の点から水分散型が好ましい。
水酸基含有アクリル樹脂の水分散体の製造方法としては、従来公知の方法を使用することができる。例えば、乳化剤存在下、重合性不飽和モノマーを乳化重合する方法や、前記溶液重合法により製造された樹脂に含まれるカルボキシル基等のアニオン性基の一部又は全部をアミン等の塩基性化合物で中和してイオン化することによって水中に分散させる方法、前記溶液重合法により製造された樹脂を撹拌機等により強制分散させる方法を用いることが可能である。必要に応じて、乳化剤や界面活性剤を用いてもよく、中和剤の添加前もしくは水分散後に過剰な有機溶剤を除去してもよい。
さらに、上記水分散型水酸基含有アクリル樹脂が、相異なる組成の重合性不飽和モノマー成分を多段階に分けて共重合してもよく、単層だけでなく、コア・シェルタイプと言われる多層構造であってもよい。
上記水酸基含有アクリル樹脂(a)を水分散する場合、水分散体の安定性の点からカルボキシル基含有重合性不飽和モノマーを含有することが好ましい。該カルボキシル基含有重合性不飽和モノマーとしては特に限定されないが、前記カルボキシル基含有重合性不飽和モノマーの例示で挙げたものを使用できる。中でもアクリル酸、メタクリル酸が好ましい。
さらに、貯蔵安定性の点から上記水酸基含有アクリル樹脂(a)に中和剤を加えて、カルボキシル基の少なくとも一部を中和してもよい。該中和剤としては特に限定されず、例えば、アンモニア;モノメチルアミン、ジメチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン及びジメチルエタノールアミン等の有機アミン;水酸化ナトリウム、水酸化カリウム等の無機塩基類等が挙げられる。これらの中和剤は単独で使用してもよく、2種以上を併用してもよい。
前記中和する前の水酸基含有アクリル樹脂(a)の酸価は、アクリル樹脂の水分散安定性、貯蔵安定性及び塗膜の耐水性の点から、50mgKOH/g以下が好ましい。
以上に述べた水酸基含有アクリル樹脂(a)の重量平均分子量は、一般に3,000~2,000,000の範囲内で適宜調整することができ、塗装作業性及び初期乾燥性の点から、5,000~1,000,000の範囲内が好ましい。
以上に述べた水酸基含有アクリル樹脂(a)の重量平均分子量は、一般に3,000~2,000,000の範囲内で適宜調整することができ、塗装作業性及び初期乾燥性の点から、5,000~1,000,000の範囲内が好ましい。
一方、水酸基含有アクリル樹脂(a)が溶液重合法により製造された樹脂である場合には、該樹脂(a)の重量平均分子量は、3,000~100,000、さらに、5,000~60,000の範囲内がより好ましい。
また、溶液重合法により製造された水酸基含有アクリル樹脂(a)の酸価は、製造安定性、貯蔵安定性、塗膜の耐水性の点から、0~50mgKOH/gの範囲内が好ましく、3~48mgKOH/gの範囲内がより好ましい。
本明細書において、樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)により、標準ポリスチレンを基準として測定した。下記製造例等における測定は、GPC装置として、「HLC8120GPC」(商品名、東ソー(株)製)、カラムとして、「TSKgel G-4000HXL」、「TSKgel G-3000HXL」、「TSKgel G-2500HXL」、「TSKgel G-2000HXL」(いずれも東ソー(株)製、商品名)の4本を用いて、移動相;テトラヒドロフラン、測定温度;40℃、流速;1cc/分、検出器;RIの条件で行った。
前記水酸基含有アクリル樹脂(a)が水分散体である場合には、分散樹脂の平均粒子径は0.05~1.0μmの範囲内が好ましく、0.08~0.8μmの範囲内がより好ましい。
本明細書において平均粒子径としてはコールターカウンターN4(商品名、ベックマン・コールター株式会社製、粒度分布測定装置)にて、試料を脱イオン水にて測定に適した濃度に希釈して、常温(20℃程度)にて測定した値とする。
水酸基含有アクリル樹脂(a)の樹脂固形分は、水酸基含有アクリル樹脂(a)の分散安定性の点から、35~65質量%程度であることが好ましい。
ここで、本明細書において樹脂固形分とは、試料約2.0gを直径約5cmのアルミニウム箔カップに採取し、110℃で1時間加熱後の残分(g)を測定して算出した値である。
(b)ポリイソシアネート化合物
本発明で用いる硬化剤中に含まれるポリイソシアネート化合物(b)は、1分子中に遊離のイソシアネート基を2個以上有する化合物であり、従来からポリウレタンの製造に使用されているものを使用することができる。
本発明で用いる硬化剤中に含まれるポリイソシアネート化合物(b)は、1分子中に遊離のイソシアネート基を2個以上有する化合物であり、従来からポリウレタンの製造に使用されているものを使用することができる。
例えば、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネートなどの脂肪族ジイソシアネ-ト;4,4’-メチレンビス(シクロヘキシルイソシアネート)、イソホロンジイソシアネートなどの脂環族ジイソシアネート;キシリレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリフェニルメタンジイソシアネート(以下ポリメリックMDI)などの芳香族ジイソシアネート;及びこれらのイソシアヌレート体やビュウレット体等の誘導体化合物が挙げられる。これらのうち、特に、少なくともその成分の一部に、脂肪族ジイソシアネート、脂環族ジイソシアネート及びこれらの誘導体化合物が用いられていることが好ましく、具体的には、ヘキサメチレンジイソシアネート(HMDI)、ヘキサメチレンジイソシアネート(HMDI)の誘導体化合物、イソホロンジイソシアネート(IPDI)、イソホロンジイソシアネート(IPDI)の誘導化合物体などが用いられていることが好適である。
また、ポリエーテル基やカルボキシル基、スルホン酸基、リン酸基又はべタイン構造含有基等の親水性基を前記ポリイソシアネート化合物に導入した親水化ポリイソシアネート化合物や、界面活性剤を用いてポリイソシアネート化合物を水中で分散状態とすることができる水分散性ポリイソシアネート化合物などの水性塗料用ポリイソシアネート化合物も挙げることがきる。以上のポリイソシアネート化合物は1種又は2種以上混合して使用できる。
常温硬化型ウレタンプライマー組成物(A)が水性塗料である場合には、ポリイソシアネート化合物(b)としては、塗装直前に水と混合できる水性塗料用に変性されたポリイソシアネート化合物を用いることが好ましいが、中でも、得られる塗膜の平滑性などの観点から、アニオン性基含有ポリイソシアネート化合物が好ましい。アニオン性基含有ポリイソシアネートとしては、スルホン酸基及び/又はリン酸基を有するポリイソシアネート化合物が特に好ましい。
前記ポリイソシアネート化合物(b)のイソシアネート基含有率は、層間密着性及び耐ワレ性の点から、6~25質量%の範囲内のものが好ましい。
ここで、本明細書において、イソシアネート基含有率は、化合物中に含まれるイソシアネート基の量を質量分率で表したものである。該イソシアネート基の量の測定は、JIS K 1603-1(2007)に準拠して行うことができる。具体的には、試料に過剰のジブチルアミンを加え充分に反応させた後、未反応のジブチルアミンを塩酸標準溶液で逆滴定することによって求めた値である。
硬化剤中に含まれるポリイソシアネート化合物(b)の含有量は、硬化剤の合計質量を基準として、10~99.9質量%、30~80質量%の範囲内に調整することがより好ましい。
硬化剤を希釈する有機溶剤としては、従来から公知のものを使用することができるが、前述したポリイソシアネート化合物(b)と反応することがあるため、水酸基を有さない水溶性溶剤の中から適宜選択することが好ましい。例えば、アセテート系、ケトン系、エステル系、エーテル系、グリコールエーテル系が挙げられ、特に安全衛生面や仕上がり性の点から水酸基を有さないアセテート系水溶性溶剤、水酸基を有さないグリコールエーテル系水溶性溶剤から選ばれる少なくとも1種が好ましい。
アセテート系としては、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート(別名;酢酸n-ブチルセロソルブ)、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノ-n-ブチルエーテルアセテート、3-メトキシブチルアセテート、プロピレングリコールモノメチルエーテルアセテート(別名:メトキシプロピルアセテート)、1-メトキシプロピル-2-アセテート等が挙げられる。
ケトン系としては、例えば、アセトン、メチルエチルケトン、メチルアミルケトン、メチルイソブチルケトン等が挙げられる。
エステル系としては、例えば、酢酸エチル(別名:エチルアセテート)、酢酸ブチル(別名:ブチルアセテート)、酢酸イソブチル(別名:イソブチルアセテート)、安息香酸メチル(別名:メチルベンゾエート)、エトキシプロピオン酸エチル、プロピオン酸エチル、プロピオン酸メチル等が挙げられる。
エーテル系としては、例えば、テトラヒドロフラン、ジオキサン、ジメトキシエタン、芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。
グリコールエーテル系としては、例えば、エチレングリコールジメチルエーテル及びエチレングリコールジエチルエーテル等のエチレングリコールジエーテル;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジビニルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジエチレングリコールブチルメチルエーテル等のジエチレングリコールジエーテル;トリエチレングリコールジメチルエーテル、トリエチレングリコールジビニルエーテル等のトリエチレングリコールジエーテル;テトラエチレングリコールジエチルエーテル等のテトラエチレングリコールジエーテル等;プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジイソプロピルエーテル、プロピレングリコールジ-n-ブチルエーテル、プロピレングリコールジイソブチルエーテル、プロピレングリコールジアリルエーテル、プロピレングリコールジフェニルエーテル等のプロピレングリコールジエーテル;ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、及びジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールジイソブチルエーテル、ジプロピレングリコールアリルエーテル等のジプロピレングリコールジエーテル;トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、及びトリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールジイソブチルエーテル、トリプロピレングリコールジアリルエーテル等のトリプロピレングリコールジエーテル等;ブチレングリコールジメチルエーテル、ブチレングリコールジエチルエーテル、及びブチレングリコールジ-n-ブチルエーテル等のブチレングリコールジエーテル等、2-ブトキシエチルジエトキシエチルエーテル、2-ブトキシエチルトリエトキシエーテル、2-ブトキシエチルテトラエトキシエチルエーテル等が挙げられる。
上記有機溶剤を含有する場合の含有量は、硬化剤の合計質量を基準として、ポリイソシアネート化合物(b)との混和性、すなわち仕上がり性の観点から、10質量%以上、特に20~70質量%の範囲内に調整することが好ましい。
ウレタン硬化触媒は、従来から公知のものを使用することができ、例えば、オクチル酸錫、ジブチル錫ジアセテート、ジブチル錫ジ(2-エチルヘキサノエート)、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジオクチル錫ジアセテート、ジオクチル錫ジ(2-エチルヘキサノエート)、ジブチル錫オキサイド、ジブチル錫サルファイト、ジオクチル錫オキサイド、ジブチル錫脂肪酸塩、2-エチルヘキサン酸鉛、オクチル酸亜鉛、ナフテン酸亜鉛、脂肪酸亜鉛類、オクタン酸ビスマス、2-エチルヘキサン酸ビスマス、オレイン酸ビスマス、ネオデカン酸ビスマス、バーサチック酸ビスマス、ナフテン酸ビスマス、ナフテン酸コバルト、オクチル酸カルシウム、ナフテン酸銅、テトラ(2-エチルヘキシル)チタネート等の有機金属化合物;第三級アミン;イミダゾール化合物等が挙げられ、これらはそれぞれ単独でもしくは2種以上組み合せて使用することができる。
また、上記硬化触媒を使用する場合、乾燥性とポットライフ(可使時間)のバランス及び、得られる塗膜の耐水性及び工程膜での仕上がり性の点から、その含有量としては、常温硬化型ウレタンプライマー組成物(A)中の固形分総量に対して、0.0001~1.0質量%の範囲内が好ましく、0.0005~0.5質量%の範囲内であることがより好ましい。
常温硬化型ウレタンプライマー組成物(A)の固形分総量とは、前記水酸基含有アクリル樹脂(a)の樹脂固形分、ポリイソシアネート化合物(b)の樹脂固形分及び配合されるその他の添加剤等の有効成分の合計質量を指す。ここで、本明細書中において、有効成分とは、試料から、水、有機溶剤などの溶媒を除いた残渣の合計質量を意味する。
本発明に用いられる常温硬化型ウレタンプライマー組成物(A)は、上記水酸基含有アクリル樹脂(a)を含む主剤と、硬化剤と、を含む2液型のプライマー組成物であり、これらを使用直前に混合することによって容易に調製することができる。
常温硬化型ウレタンプライマー組成物(A)は、前記各成分以外にも必要に応じて、水酸基含有アクリル樹脂(a)以外の樹脂(例えば、ポリウレタン樹脂)、表面調整剤、体質顔料、着色顔料、充填剤(例えば、タルク、ガラスビーズ、マイカ等)、染料、分散安定剤、粘度調整剤、紫外線吸収剤、光安定剤、ポリマー微粒子、造膜助剤、防腐剤、消泡剤、中和剤、レベリング剤、シランカップリング剤、可塑剤、凍結防止剤、香料、pH調整剤、難燃化剤等の添加剤や希釈溶媒を含有してもよい。これらは、水酸基含有アクリル樹脂(a)を含む主剤とポリイソシアネート化合物(b)を含む硬化剤の双方に含有することができ、また、いずれか一方に含有してもよい。
中でも、充填剤やその他の樹脂としてポリウレタン樹脂を添加すると、高温高湿度(梅雨や夏場)もしくは低温低湿度(冬場)を含む幅広い環境下においても工程膜と床材との密着性、仕上がり性、耐ワレ性、耐擦り傷性及び艶感等の塗膜物性に優れるため好ましい。なお、タルクの添加量は、常温硬化型ウレタンプライマー組成物(A)中の固形分総量に対して、0.3~15質量%が好ましい。ポリウレタン樹脂の添加量は、常温硬化型ウレタンプライマー組成物(A)中の固形分総量に対して、ポリウレタン樹脂の固形分として0.3~15質量%が好ましく、より好ましくは1.0~10質量%である。
これらのうち前記表面調整剤としては、例えば、ジアルキルスルホコハク酸塩類、アルキルナフタレンスルホン酸塩類及び脂肪酸塩類等のアニオン性界面活性剤;ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、アセチレングリコール類及びポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類等のノニオン性界面活性剤;アルキルアミン塩類及第四級アンモニウム塩類等のカチオン性界面活性剤;シリコーン系界面活性剤;フッ素系界面活性剤などが挙げられる。
中でも常温硬化型ウレタンプライマー組成物(A)の床素材への濡れ広がり性の点から、シリコーン系界面活性剤またはフッ素系界面活性剤が好ましい。
さらに、本方法で形成された複層膜の耐ワレ性の点からコロイダルシリカを含有してもよく、コロイダルシリカとしては、後述するハードコート層形成用のコーティング剤(B)で挙げるものを特に好適に使用できる。
本発明に用いる常温硬化型ウレタンプライマー組成物(A)は、塗装時において、仕上り性、床面への塗れ広がりやすさ及び均一な架橋塗膜形成の点から、固形分含有率を通常15~70質量%、特に20~60質量%の範囲内とすることが好ましい。
常温硬化型ウレタンプライマー組成物(A)の粘度は、塗装作業性の点から25Pa・s以下であることが好ましい。前記粘度は、23℃、50%RH条件下で主剤と硬化剤を1分間混合した後、1分間静置してB型粘度計60rpmで測定した値である。
(B)ハードコート層形成用コーティング剤
本方法に適用されるハードコート層形成用のコーティング剤(B)は、硬化後、塗膜中にシロキサン結合を有する塗膜を形成するものを好適に使用することができる。具体的にはコーティング剤組成物中の加水分解性基及びシラノール基が反応してシロキサン結合を形成し、3次元のガラス質の硬化膜を形成しうるものであることができる。該硬化膜を形成しうる成分としては、例えば、シリカ、加水分解性シラン及び/又はその縮合物が挙げられ、さらに、シランカップリング剤などが挙げられ、これらは単独で又は適宜組み合わせて用いることができる。
本方法に適用されるハードコート層形成用のコーティング剤(B)は、硬化後、塗膜中にシロキサン結合を有する塗膜を形成するものを好適に使用することができる。具体的にはコーティング剤組成物中の加水分解性基及びシラノール基が反応してシロキサン結合を形成し、3次元のガラス質の硬化膜を形成しうるものであることができる。該硬化膜を形成しうる成分としては、例えば、シリカ、加水分解性シラン及び/又はその縮合物が挙げられ、さらに、シランカップリング剤などが挙げられ、これらは単独で又は適宜組み合わせて用いることができる。
特に、ハードコート層形成用のコーティング剤(B)が、加水分解性シランとしてエポキシシランオリゴマー(c)と、平均粒子径が1~100nmの範囲内のコロイダルシリカ(d)と、硬化触媒(e)と、を含むものであることが、乾燥性、耐ワレ性及び耐擦り傷性の点から特に好ましい。
(c)エポキシシランオリゴマー
エポキシシランオリゴマー(c)は、分子内にエポキシ基とシロキサン結合を有する化合物であり、例えば、下記一般式(I)で表されるエポキシ基含有加水分解性シランの加水分解縮合物(c1)、及び/又は、該エポキシ基含有加水分解性シランとエポキシ基を有さない下記一般式(II)で表される加水分解性シランとの混合物の加水分解縮合物(c2)であることができる。
エポキシシランオリゴマー(c)は、分子内にエポキシ基とシロキサン結合を有する化合物であり、例えば、下記一般式(I)で表されるエポキシ基含有加水分解性シランの加水分解縮合物(c1)、及び/又は、該エポキシ基含有加水分解性シランとエポキシ基を有さない下記一般式(II)で表される加水分解性シランとの混合物の加水分解縮合物(c2)であることができる。
[式(I)中、R1はエポキシ基を含有する有機基であり、Xは、加水分解性基であり、aは1~3の整数である。]
前記Xは加水分解性基であり、例えば、アルコキシ基、アセトキシ基、オキシム基、アミノキシ基、ハロゲン原子などが挙げられるが、入手しやすい炭素数1~6のアルコキシ基が好ましく、加水分解縮合の反応速度の点から、メトキシ基が好ましい。
前記Xは加水分解性基であり、例えば、アルコキシ基、アセトキシ基、オキシム基、アミノキシ基、ハロゲン原子などが挙げられるが、入手しやすい炭素数1~6のアルコキシ基が好ましく、加水分解縮合の反応速度の点から、メトキシ基が好ましい。
前記R1のエポキシ基を含有する有機基としては、具体的には、グリシドキシプロピル基等のグリシドキシ基、(3,4-エポキシシクロヘキシル)メチル基、(3,4-エポキシシクロヘキシル)エチル基等の3,4-エポキシシクロヘキシル基等を挙げることができる。
前記一般式(I)で表される加水分解性シランとしては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)メチルジメトキシシランなどが挙げられる。
[式(II)中、R2はエポキシ基を有さない有機基であり、Xは同一又は異なってもよい加水分解性基、aは0~3の整数を示す]。
エポキシ基を有さない有機基としては、耐擦り傷性の点から、炭素数1~18の1価の有機基が好ましく、直鎖でも分岐していてもよく、ウレタン結合、エステル結合、エーテル結合等を有していてもよく、フッ素などのハロゲン等により置換されていてもよい。
前記一般式(II)で表される加水分解性シランとして具体的には、例えば、前記aが0~3の整数であり、単官能性、2官能性、3官能性又は4官能性の加水分解性シランが挙げられる。
a=1である3官能性の加水分解性シランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、メチルトリメトキシシランの部分加水分解縮合物(商品名「KC-89S」、信越化学工業製)、p-スチリルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン;メトキシPEG-10プロピルトリメトキシシラン等のポリアルキレングリコール変性トリメトキシシランなどを挙げることができる。
a=2である2官能性の加水分解性シランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルエチルジメトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルジメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン;ジメチルジクロロシラン、トリメチルクロロシラン等のオルガノハロシランなどを挙げることができる。
a=3である単官能性の加水分解性シランとしては、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルイソプロピルプロポキシシラン、ジメチルイソブチルメトキシシランなどを挙げることができる。
a=0である4官能性の加水分解性シランとしては、具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラフェノキシシランなどのテトラアルコキシシラン;テトラクロロシランなどのテトラハロシランを挙げることができる。
単官能性、2官能性、3官能性又は4官能性の加水分解性シランは、必要に応じて2種以上を組み合わせて使用してもよい。
前記エポキシシランオリゴマー(c)の重量平均分子量は、乾燥性向上と耐ワレ性の点から、500~20,000の範囲内となるよう調整されることが好ましく、さらに800~10,000の範囲内となるよう調整されることが好ましい。
前記エポキシシランオリゴマー(c)のエポキシ当量は、水希釈安定性と硬化性の点から、150~1,000(g/eq)の範囲内が好ましく、200~800(g/eq)の範囲内がより好ましい。
ここで、本明細書中においてエポキシ当量とは、JIS K7236に準拠した方法により測定した1グラム当量のエポキシ基を含む樹脂のグラム数である。
また、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)を用いて測定した保持時間(保持容量)を、同一条件で測定した分子量既知の標準ポリスチレンの保持時間(保持容量)によりポリスチレンの分子量に換算して求めた値である。具体的には、ゲルパーミエーションクロマトグラフ装置として、「HLC-8120GPC」(商品名、東ソー社製)を使用し、カラムとして、「TSKgel G4000HXL」、「TSKgel G3000HXL」、「TSKgel G2500HXL」及び「TSKgel G2000HXL」(商品名、いずれも東ソー社製)の計4本を使用し、検出器として、示差屈折率計を使用し、移動相:テトラヒドロフラン、測定温度:40℃、流速:1mL/minの条件下で測定することができる。
エポキシシランオリゴマー(c)の製造方法
前記エポキシシランオリゴマー(c)は、一般的なオルガノシランオリゴマーの製造に用いられている製造方法と従来公知の化学反応とを組み合わせることにより得ることができる。例えば、以下の製造方法を用いて製造することができる。
前記エポキシシランオリゴマー(c)は、一般的なオルガノシランオリゴマーの製造に用いられている製造方法と従来公知の化学反応とを組み合わせることにより得ることができる。例えば、以下の製造方法を用いて製造することができる。
具体的には例えば、出発物質に前記式(I)で表されるエポキシ基含有加水分解性シランと、必要に応じて前記式(II)で表されるエポキシ基を有さない加水分解性シランとを、水及び触媒の存在下で加水分解縮合反応を行いエポキシシランオリゴマー(c)を製造する方法が挙げられる。
エポキシシランオリゴマー(c)は、特に耐擦り傷性の点から、エポキシシランオリゴマー(c)が、前記一般式(I)で表されるエポキシ基含有加水分解性シランの加水分解縮合物(a1)、及び/又は、該エポキシ基含有加水分解性シランと前記一般式(II)で表されるエポキシ基を有さない加水分解性シランとの混合物の加水分解縮合物(a2)が好ましく、特に前記一般式(I)で表されるエポキシ基含有加水分解性シランと前記一般式(II)で表されるエポキシ基を有さない加水分解性シランとの混合物の加水分解縮合物(a2)が好ましい。
上記のうち、エポキシシランオリゴマー(c)が、前記加水分解化合物(a2)である場合には、前記式(I)で表されるエポキシ基含有加水分解性シランと前記式(II)で表されるエポキシ基を有さない加水分解性シランとの割合が、前者/後者(モル比)として99/1~55/45の範囲内であることが好ましく、85/15~60/40の範囲内で調整されることがさらに好ましい。
前記エポキシシランオリゴマー(c)は、前記加水分解縮合物(a1)と前記加水分解縮合物(a2)を併用してもよい。
本発明に使用するエポキシシランオリゴマー(c)の製造方法における加水分解縮合反応は、前記触媒の存在下で、例えばpH1~7.5、好ましくはpH2~7の範囲の条件を採用するのがよい。上記pH領域で反応させることで合成中にゲル化や、凝集物が発生したりすることを抑制できる。
触媒としては、前記pH領域に調整できるものであれば、その種類は特に制限はなく、例えば、ギ酸、酢酸、プロピオン酸、シュウ酸、クエン酸、マレイン酸、安息香酸、マロン酸、グルタール酸、トルエンスルホン酸などの有機酸類もしくはフッ化水素、塩酸、硝酸、リン酸、硫酸等の無機酸類、又は表面にカルボン酸基やスルホン酸基を有する陽イオン交換樹脂等の固体酸触媒等が挙げられる。
前記触媒の使用量は、特に限定されるものではないが、多すぎるとコスト高になる、合成中や貯蔵中にゲル化する等の問題があり、少ないと反応が遅くなる場合がある。
そのため、前記触媒の使用量は、出発物質として配合される加水分解性シラン100質量部に対して0.1~20質量部、好ましくは0.5~15質量部の範囲が適当である。
前記加水分解縮合反応において、有機溶媒を使用してもよい。有機溶媒を用いることは、ゲル化を防止する点及び製造時の粘度を調節できる点から好ましい。
有機溶媒としては、例えば、メタノール、エタノール、イソプロパノールなどのアルコール類、トルエン、キシレンなどの芳香族化合物類、アセトンなどのケトン類、酢酸エチルなどのエステル類が挙げられる。
加水分解縮合時の反応温度としては、通常0~200℃、好ましくは10~190℃、さらに好ましくは10~120℃である。また、この反応は圧力によらず実施できるが、0.02~0.2MPaの圧力範囲が好ましく、特に0.08~0.15MPaの圧力範囲が好ましい。当該反応は、通常、1~15時間程度で終了する。
加水分解縮合後の混合液からは、反応で生成したアルコール、溶媒及び触媒を公知の手法で除去してもよい。尚、得られた生成物は、その目的に応じて、洗浄、カラム分離、固体吸着剤による吸着等の各種の精製法によって触媒を除去し、さらに精製してもよい。効率の点から水洗により反応で生成したアルコール及び触媒を除去することが好ましい。
ここで、前記加水分解縮合反応において前記加水分解性シランの加水分解性基の縮合割合によりエポキシシランオリゴマーの構造が変化するが、本製造方法により得られる生成物には、Si-OH基が100%縮合した、完全籠型構造、Si-OH基が残存した直鎖状、分岐状、ラダー構造、不完全籠型構造及び/又はランダム縮合体のエポキシシランオリゴマーが含まれる場合がある。本製造方法により得られる(c)成分であるエポキシシランオリゴマーは、それら完全籠型構造、直鎖状、分岐状、ラダー構造、不完全籠型構造及び/又はランダム縮合体のいずれであってもよい。
ハードコート層形成用のコーティング剤(B)中のエポキシシランオリゴマーの含有量は、得られる被膜の硬度と耐擦り傷性の点から、ハードコート層形成用のコーティング剤(B)の有効成分の総量に対して、20~80質量%の範囲内が好ましく、35~75質量%の範囲内がより好ましい。
(d)コロイダルシリカ
コロイダルシリカの、市販品としては、コロイダルシリカ微粒子が挙げられる。
コロイダルシリカの、市販品としては、コロイダルシリカ微粒子が挙げられる。
コロイダルシリカは、シリカの超微粒子を分散媒に分散させたものである。
分散媒としては、例えば、水;メタノール、エタノール、イソプロパノール、n-プロパノール、イソブタノール、n-ブタノール等のアルコール系溶剤;エチレングリコール等の多価アルコール系溶剤;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル等の多価アルコール誘導体;メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール等のケトン系溶剤;2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート等のモノマーが挙げられる。コーティング剤が水性である場合には、水、メタノール、エタノール等の水溶性溶剤、特に水を分散媒としたものであることが、コーティング剤に適用した際の安定性の点から好ましい。
水を分散媒とするコロイダルシリカとしては、例えば、酸性コロイダルシリカ、塩基性コロイダルシリカ等が挙げられる。
酸性コロイダルシリカとしては、特に限定されないが、例えば、市販品としてスノーテックスAK、スノーテックスO、スノーテックスO-40、スノーテックスOL、スノーテックスOUP、スノーテックスOXS、スノーテックスOYL(以上、商品名、日産化学工業社製、スノーテックスは登録商標)、アデライトAT-20Q(商品名、ADEKA社製、アデライトは登録商標)等が挙げられる。
塩基性コロイダルシリカとしては、特に限定されないが、例えば、市販品としてスノーテックスC、スノーテックスN、スノーテックスNXS(以上、商品名、日産化学工業社製、スノーテックスは登録商標)、アデライトAT-20、アデライトAT-20N(以上、商品名、ADEKA社製、アデライトは登録商標)等が挙げられる。
水溶性溶剤を分散媒とするコロイダルシリカとしては、特に限定されないが、例えば、市販品としてMA-ST-M、IPA-ST、EG-ST、PGM-ST(以上、商品名、日産化学工業社製)等が挙げられる。
これらコロイダルシリカは単独で用いても、2種以上を併用してもよい。2種以上のコロイダルシリカを併用する方法としては、具体的には例えば、平均一次粒子径が10~15nmの酸性コロイダルシリカと平均一次粒子径が20~25nmの酸性コロイダルシリカとを、質量比(前者/後者)が、好ましくは10/90~70/30の範囲内となるように併用する方法、平均一次粒子径が20~25nmの酸性コロイダルシリカと平均一次粒子径が50~80nmの酸性コロイダルシリカとを、質量比(前者/後者)が、好ましくは10/90~60/40となるように併用する方法が挙げられる。
さらに、コロイダルシリカには、アルミナゾル、チタニアゾル、セリアゾル等のシリカ微粒子以外の無機質微粒子を含有させることもできる。
コロイダルシリカ(d)の平均粒子径は、硬化塗膜の透明性及び硬度の点から1~100nmの範囲内が好ましく、8~50nmの範囲内がさらに好ましい。
中でも、前記コロイダルシリカは、ハードコート層形成用コーティング剤(B)の安定性、塗膜外観から酸性コロイダルシリカが好適に使用できる。
本明細書において、平均粒子径は、コロイダルシリカ粒子の一次粒子の平均粒子径である。本明細書において、コロイダルシリカの平均粒子径は、特に断りのない限り窒素吸着法(BET法)によって算出される平均粒子径をいう。
前記コロイダルシリカ(d)の含有量は、得られる被膜の硬度と耐擦り傷性の点から、ハードコート層形成用コーティング剤(B)の有効成分の総量に対して、20~80質量%の範囲内が好ましく、35~75質量%の範囲内がより好ましい。
(e)硬化触媒
硬化触媒としては、加水分解性基を有する化合物を加水分解縮合させて硬化性を促進させうるものであれば、特に限定されず、前記エポキシシランオリゴマー(c)の製造方法の項に例示した触媒の他、例えば、ジアセチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジアセチル錫ジオクトエート、オクチル酸錫、ジブチル錫ジアセテート、ジブチル錫ジオクチレートなどの有機錫化合物;アルミニウムトリメトキシド、トリス(アセチルアセトネート)アルミニウム、アルミニウムトリ-n-ブトキシド、アルミニウムトリス(アセチルアセトン)、アルミニウムトリス(アセトアセテートエチル)、アルミニウムジイソプロポキシ(アセトアセテートエチル)、アルミニウムアセチルアセトネート等の有機アルミニウム化合物;チタニウムテトラキス(エチレングリコールモノメチルエーテル)、チタニウムテトラキス(エチレングリコールモノエチルエーテル)、チタニウムテトラキス(エチレングリコールモノブチルエーテル)、テトラノルマルブチルチタネート等の有機チタン化合物;ジルコニウムテトラキス(エチレングリコールモノメチルエーテル)、ジルコニウムテトラキス(エチレングリコールモノエチルエーテル)、ジルコニウムテトラキス(エチレングリコールモノブチルエーテル)、ジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコニウムテトラキス(アセチルアセトネート)等の有機ジルコニウム化合物;ナフテン酸亜鉛等の有機亜鉛化合物;オクチル酸コバルト、ナフテン酸コバルト等の有機コバルト化合物;ホウ酸、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリブチル、ホウ酸トリフェニル、ホウ酸トリ(4-クロロフェニル)、ホウ酸トリヘキサフルオロイソプロピル等のホウ酸エステル等のホウ酸化合物等;水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等の水酸化アンモニウム塩;テトラブチルアンモニウムフルオリド等のフッ化アンモニウム塩;ジエチルアミン、トリエチルアミン等のアミン類;モノエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン等のエタノールアミン類、DBU等の強塩基3級アミン化合物等が挙げられる。上記硬化触媒は、単独で使用してもよいし、2種以上を併用してもよい。
硬化触媒としては、加水分解性基を有する化合物を加水分解縮合させて硬化性を促進させうるものであれば、特に限定されず、前記エポキシシランオリゴマー(c)の製造方法の項に例示した触媒の他、例えば、ジアセチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジアセチル錫ジオクトエート、オクチル酸錫、ジブチル錫ジアセテート、ジブチル錫ジオクチレートなどの有機錫化合物;アルミニウムトリメトキシド、トリス(アセチルアセトネート)アルミニウム、アルミニウムトリ-n-ブトキシド、アルミニウムトリス(アセチルアセトン)、アルミニウムトリス(アセトアセテートエチル)、アルミニウムジイソプロポキシ(アセトアセテートエチル)、アルミニウムアセチルアセトネート等の有機アルミニウム化合物;チタニウムテトラキス(エチレングリコールモノメチルエーテル)、チタニウムテトラキス(エチレングリコールモノエチルエーテル)、チタニウムテトラキス(エチレングリコールモノブチルエーテル)、テトラノルマルブチルチタネート等の有機チタン化合物;ジルコニウムテトラキス(エチレングリコールモノメチルエーテル)、ジルコニウムテトラキス(エチレングリコールモノエチルエーテル)、ジルコニウムテトラキス(エチレングリコールモノブチルエーテル)、ジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコニウムテトラキス(アセチルアセトネート)等の有機ジルコニウム化合物;ナフテン酸亜鉛等の有機亜鉛化合物;オクチル酸コバルト、ナフテン酸コバルト等の有機コバルト化合物;ホウ酸、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリブチル、ホウ酸トリフェニル、ホウ酸トリ(4-クロロフェニル)、ホウ酸トリヘキサフルオロイソプロピル等のホウ酸エステル等のホウ酸化合物等;水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等の水酸化アンモニウム塩;テトラブチルアンモニウムフルオリド等のフッ化アンモニウム塩;ジエチルアミン、トリエチルアミン等のアミン類;モノエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン等のエタノールアミン類、DBU等の強塩基3級アミン化合物等が挙げられる。上記硬化触媒は、単独で使用してもよいし、2種以上を併用してもよい。
上記硬化触媒の中でも、乾燥性や耐擦り傷性、水希釈安定性の点からリン酸化合物、有機錫化合物が好ましい。上記リン酸化合物としては、例えば、オルトリン酸、メタリン酸、ピロリン酸、亜リン酸、ポリリン酸、ホスホン酸、メタンホスホン酸、ベンゼンホスホン酸、1-ヒドロキシエタン-1,1-ジホスホン酸、ホスフィン酸;これらのリン酸化合物のアルカリ金属塩又はアンモニウム塩などが挙げられる。
硬化触媒(e)の含有量としては、ハードコート層形成用のコーティング剤(B)の有効成分の総量に対して、0.1~30質量部の範囲内が好ましく、さらに0.5~20質量部となる範囲内で調整されることが望ましい。
本発明に用いるハードコート層形成用コーティング剤(B)はさらにシランカップリング剤を配合することができ、シランカップリング剤としては、前記コーティング剤(B)に凝集が発生せず、常温で反応し得る官能基であれば特に制限されないが、具体的には、エポキシ基、水酸基、アミノ基、ウレイド基、メルカプト基、ビニル基、(メタ)アクリロイル基又はイソシアネート基等を挙げることができる。
例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、等のグリシドキシ基含有シランカップリング剤、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)メチルジメトキシシラン等の(3,4-エポキシシクロヘキシル)基含有シランカップリング剤等のエポキシ基含有シランカップリング剤;3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン等のアミノ基含有シランカップリング剤;3-ウレイドプロピルトリアルコキシシラン等のウレイド基含有シランカップリング剤;3-メルカプトプロピルトリメトキシシラン等のメルカプト基含有シランカップリング剤;ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(メトキシエトキシ)シラン等のビニル基含有シランカップリング剤;3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルジメトキシメチルシラン等の(メタ)アクリロイル基含有シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有シランカップリング剤等が挙げられる。前記コーティング剤(B)の安定性、耐擦り傷性の点からウレイド基含有シランカップリング剤、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)メチルジメトキシシラン等のエポキシ基含有シランカップリング剤が好ましい。
シランカップリング剤をハードコート層形成用コーティング剤(B)に含有させる場合、その含有率としては、塗膜外観、耐擦り傷性の点から、ハードコート層形成用コーティング剤(B)の有効成分の総量を基準として、1~70質量%の範囲内が好ましく、5~50質量%の範囲内がより好ましい。
本発明に用いるハードコート層形成用コーティング剤(B)は、その他、希釈溶媒、RTVゴム、着色顔料、体質顔料、染料、艶消し剤、骨材、樹脂粒子、表面調整剤、粘度調整剤、消泡剤、抗菌剤、防カビ剤、難燃剤、防曇剤、可塑剤、スリップ剤、脱水剤、紫外線吸収剤、光安定化剤、金属酸化物微粒子、金属粉、酸化防止剤、界面活性剤、造膜助剤、増粘剤、帯電防止剤、撥水性付与剤、繊維類等の添加剤;イソシアネート化合物やメラミン樹脂等の架橋剤;樹脂エマルション、ワックスエマルション等の樹脂成分;アクリル樹脂、フッ素樹脂、各種有機変性シリコーンオイル等の改質剤などを適宜配合することができる。
本発明に用いるハードコート層形成用コーティング剤(B)は、無溶剤でもよく、または有機溶剤を含有してもよい。有機溶剤を含有することにより、前記加水分解性シランとシリカとの相溶性を向上させることができ特に好ましい。有機溶剤としては、上記加水分解性シラン化合物を溶解し、その加水分解縮合反応が進行した後も溶解し得る限り、任意の適切なものを用いることができる。
有機溶剤としては、例えば、メタノール、エタノール、ブタノール、メチルイソブチルカルビノール、2-エチルヘキサノール、ベンジルアルコール等のアルコール系溶剤;アセトン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル系溶剤;シクロヘキサノン、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノターシャリーブチルエーテル、プロピレングリコールモノメチルエーテル、イソプロピルグリコール等のエーテル系溶剤;ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メトキシ-3-メチル-1-ブタノール等のグリコールエーテル系溶剤、芳香族炭化水素系溶剤、脂肪族炭化水素類系溶剤が挙げられる。これらは、粘度の調整、塗布性の調整等の目的に応じて適宜組み合わせて使用することができる。
上記有機溶剤の水への溶解度(20℃)としては、5g/水100g以上が好ましく、仕上がり性と前記加水分解性シランとシリカの相溶性向上の点から、好ましくは20g/水100g以上、より好ましくは50g/水100g以上である。
仕上がり性と硬化性の点から、上記有機溶剤の中でも、塗装作業性と相溶性の点から、ブタノール、3-メトキシ-3-メチル-1-ブタノール、エチレングリコールモノターシャリーブチルエーテルの中から選ばれる少なくとも1種を用いることが好ましい。
有機溶剤をハードコート層形成用コーティング剤(B)に含有させる場合、その含有率としては、塗膜外観、塗装作業性の点から、前記ハードコート形成用コーティング剤(B)の有効成分の総量100質量部を基準として、例えば5~200質量部、好ましくは10~50質量部である。
(f)1~4官能性の加水分解性シランから選ばれる少なくとも1種の加水分解性シラン及び/又はその加水分解縮合物
ハードコート層形成用コーティング剤(B)は、加水分解性シランとして、1~4官能性の加水分解性シランから選ばれる少なくとも1種の加水分解性シラン及び/又はその加水分解縮合物(f)を含有してもよい。前記(f)成分としては、前記一般式(II)で表される加水分解性シランの加水分解縮合物を好適に使用することができる。
ハードコート層形成用コーティング剤(B)は、加水分解性シランとして、1~4官能性の加水分解性シランから選ばれる少なくとも1種の加水分解性シラン及び/又はその加水分解縮合物(f)を含有してもよい。前記(f)成分としては、前記一般式(II)で表される加水分解性シランの加水分解縮合物を好適に使用することができる。
前記一般式(II)で表される1~4官能性のエポキシ基を有さない加水分解性シランが具体的に挙げられるが、中でも、特に乾燥性の点から、メチルトリメトキシシランが好ましい。
前記1~4官能性のエポキシ基を有さない加水分解性シランから選ばれる少なくとも1種の加水分解性シラン及び/又はその加水分解縮合物(f)をハードコート層形成用コーティング剤(B)に含有させる場合、その含有率としては、耐擦り傷性と耐クラック性などのバランスの点から適宜調整することができるが、ハードコート層形成用コーティング剤(B)の有効成分の総量に対して、1~40質量%、好ましくは35~30質量%である。
(g)4官能性の加水分解性シラン及び/又はその加水分解縮合物
ハードコート層形成用コーティング剤(B)は、前記(f)成分のうち、少なくともその成分の一部に4官能性の加水分解性シラン及び/又はその加水分解縮合物(g)を含有してもよい。
ハードコート層形成用コーティング剤(B)は、前記(f)成分のうち、少なくともその成分の一部に4官能性の加水分解性シラン及び/又はその加水分解縮合物(g)を含有してもよい。
(g)成分としては、下記一般式(III)で表される加水分解性シラン及び/又はその加水分解縮合物が挙げられる。
[前記式(III)中、Xは前記と同じ意味である。]
上記一般式(III)は、4官能性の加水分解性シランであり、具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラフェノキシシランなどのテトラアルコキシシラン;テトラクロロシランなどのテトラハロシラン等を挙げることができる。
上記一般式(III)は、4官能性の加水分解性シランであり、具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラフェノキシシランなどのテトラアルコキシシラン;テトラクロロシランなどのテトラハロシラン等を挙げることができる。
前記4官能性の加水分解性シランの加水分解縮合物としては、平均縮合度が2~15のものが好適であり、該オルガノシリケート化合物を900℃で焼成した際にシリカとなって残る該シリカの重量分率で20~60質量%の範囲内となるまで縮合せしめた縮合物が好適である。また該加水分解縮合物には、直鎖状の縮合物以外に、分岐状或いは環状構造の縮合物を含んでいてもよい。
なお、前記平均縮合度は、4官能性の加水分解性シランの縮合化合物におけるゲルパーミエーションクロマトグラフィ(GPC)から得られる分子量を用いて求めることができる。
前記一般式(III)で表される4官能性の加水分解性シラン及び/又はその加水分解縮合物(G)を含有させる場合のその含有率は、耐擦り傷性と乾燥性、耐クラック性のバランスの観点から、ハードコート層形成用コーティング剤(B)の有効成分の総量に対して1~20質量%、好ましくは1.5~15質量%の範囲内が好ましい。
ここで、本明細書において、有効成分とは、試料から、水、有機溶剤などの溶媒を除いた残渣を意味する。有効成分の量は、例えば水、有機溶剤等が含まれる混合物・組成物等を105℃の熱風乾燥機中で3時間乾燥して溶剤等を揮散させたときの加熱残分により求めることができる。尚、本明細書において、加水分解性シラン及びシランカップリング剤などのケイ素化合物に関しては有効成分に含むものとする。
(h)水
ハードコート層形成用コーティング剤(B)は、水(h)を含有してもよい。水を含有することにより、塗膜形成時に乾燥を促進することができる。また、塗装時に水で後から希釈することによりハードコート層形成用コーティング剤(B)の粘度を適宜調整し、塗装作業性を調製することができる。ハードコート層形成用コーティング剤(B)は水を含むことが可能であると共に、塗装段階の希釈作業において、有機溶剤ではなく水を用いることができるため、屋内作業においても、作業者の健康や周辺の衛生環境を損なう恐れが少なく安全性が高い。
ハードコート層形成用コーティング剤(B)は、水(h)を含有してもよい。水を含有することにより、塗膜形成時に乾燥を促進することができる。また、塗装時に水で後から希釈することによりハードコート層形成用コーティング剤(B)の粘度を適宜調整し、塗装作業性を調製することができる。ハードコート層形成用コーティング剤(B)は水を含むことが可能であると共に、塗装段階の希釈作業において、有機溶剤ではなく水を用いることができるため、屋内作業においても、作業者の健康や周辺の衛生環境を損なう恐れが少なく安全性が高い。
水(h)としては、任意のものを用いることができ、例えば、水道水、イオン交換水、および純水が好ましく用いられる。
上記水(h)の含有量は、ハードコート層形成用コーティング剤(B)の仕上がり性や塗装時のハジキ性を配慮した範囲内で適宜調節することができる。
後から添加する場合、その添加量としては、例えば希釈前のハードコート層形成用コーティング剤(B)の有効成分の総量に対して、1~30質量%の範囲内とすることができる。
ハードコート層形成用コーティング剤(B)は、その他、性能を損なわない範囲で、前記硬化触媒以外の硬化触媒、RTVゴム、着色顔料、体質顔料、光輝性顔料等の顔料、染料、艶消し剤、骨材、樹脂粒子、表面調整剤、粘度調整剤、消泡剤、抗菌剤、防カビ剤、難燃剤、防曇剤、可塑剤、スリップ剤、脱水剤、紫外線吸収剤、光安定化剤、金属酸化物微粒子、金属粉、酸化防止剤、界面活性剤、造膜助剤、増粘剤、帯電防止剤、撥水性付与剤、繊維類等の添加剤;イソシアネート化合物やメラミン樹脂等の架橋剤;樹脂エマルション、ワックスエマルション等の樹脂成分;アクリル樹脂、フッ素樹脂、各種有機変性シリコーンオイル等の改質剤などを適宜配合することができる。
ハードコート層形成用コーティング剤(B)の形態及び調製方法
本方法に適用するハードコート層形成用コーティング剤(B)は、一液型組成物であってもよいし、二液以上の多液型組成物であってもよい。
本方法に適用するハードコート層形成用コーティング剤(B)は、一液型組成物であってもよいし、二液以上の多液型組成物であってもよい。
多液型とする場合は、例えば、加水分解性シランを第1成分に、硬化触媒(e)を第2成分にし、それ以外のその他成分をいずれかもしくは第3成分に振り分ける方法を挙げることができる。
ハードコート層形成用コーティング剤(B)において、貯蔵安定性及び塗装作業性の観点から、例えば、エポキシシランオリゴマー(c)を含む第一液、硬化触媒(e)を含む第二液及び、コロイダルシリカ(d)を含む第三液を個別に作成し、使用直前に全液を混合して使用することができる。前記シランカップリング剤、有機溶剤、(f)~(h)成分やその他、顔料分散剤、沈降防止剤、消泡剤、酸化防止剤、紫外線吸収剤等の各種添加剤等を第一~三液のいずれかに適宜含ませることができる。
上記の例の場合、混合中に凝集物が発生するのを抑制する観点から、前記第一液および前記第三液を先に混合した後、前記第二液を最後に混合することが好ましい。
シランカップリング剤を含有する場合には、コロイダルシリカ(d)と予め分散せしめてから硬化触媒(e)を混合することで相溶性が向上する場合があり好ましい。
上述のように、本方法に適用するハードコート層形成用コーティング剤(B)は、無溶剤でもよく、さらに希釈溶媒を含有してもよい。希釈溶媒としては、水及び有機溶剤が挙げられ、臭気及び相溶性の点から、先の硬化剤を希釈する有機溶剤の項で例示に挙げたものを好適に使用することができる。
本発明に用いるハードコート層形成用コーティング剤(B)は、塗装時において、作業性と仕上り性の点から、有効成分の含有率は通常15質量%以上、特に20~60質量%の範囲内とすることが好ましい。
本発明においてハードコート層(II)は、工程膜の耐スリキズ性、耐ワレ性の点から、マルテンス硬度が100~300N/mm2、特に120~300N/mm2の範囲内にあることが適している。
以下、実施例を挙げて本発明をさらに詳細に説明する。尚、「部」及び「%」は、特記しない限り「質量部」及び「質量%」を示す。
(製造例1)水酸基含有アクリル樹脂(a-1)
温度計、撹拌機、還流冷却管、窒素導入口を備えた2リットルのガラス製4ツ口フラスコに、脱イオン水400部、ドデシルベンゼンスルホン酸ソーダ1部を仕込み、内部の空気を窒素置換した後、撹拌しながら82℃まで昇温させた。別容器に、脱イオン水440部、ドデシルベンゼンスルホン酸ソーダ40部、過硫酸アンモニウム2部を添加し、よく撹拌後、その中に表1の水酸基含有アクリル樹脂名(a-1)の欄に記載のモノマー配合からなる混合物を加え乳化物とし、該乳化物を82℃に保ったガラス製4ツ口フラスコに4時間かけて一定速度で滴下した。滴下終了後、さらに82℃で2時間撹拌した後、40℃まで冷却し、アンモニアでpHを7.5に調整することにより、平均粒子径150nm、樹脂固形分50%の水酸基含有アクリル樹脂(a-1)の水分散体を得た。該水酸基含有アクリル樹脂(a-1)の水酸基価は103mgKOH/g、ガラス転移温度は41℃であった。
温度計、撹拌機、還流冷却管、窒素導入口を備えた2リットルのガラス製4ツ口フラスコに、脱イオン水400部、ドデシルベンゼンスルホン酸ソーダ1部を仕込み、内部の空気を窒素置換した後、撹拌しながら82℃まで昇温させた。別容器に、脱イオン水440部、ドデシルベンゼンスルホン酸ソーダ40部、過硫酸アンモニウム2部を添加し、よく撹拌後、その中に表1の水酸基含有アクリル樹脂名(a-1)の欄に記載のモノマー配合からなる混合物を加え乳化物とし、該乳化物を82℃に保ったガラス製4ツ口フラスコに4時間かけて一定速度で滴下した。滴下終了後、さらに82℃で2時間撹拌した後、40℃まで冷却し、アンモニアでpHを7.5に調整することにより、平均粒子径150nm、樹脂固形分50%の水酸基含有アクリル樹脂(a-1)の水分散体を得た。該水酸基含有アクリル樹脂(a-1)の水酸基価は103mgKOH/g、ガラス転移温度は41℃であった。
(製造例2)水酸基含有アクリル樹脂(a-2)
温度計、撹拌機、還流冷却管、窒素導入口を備えた2リットルのガラス製4ツ口フラスコに、脱イオン水300部、ドデシルベンゼンスルホン酸ソーダ1部を仕込み、内部の空気を窒素置換した後、撹拌しながら82℃まで昇温させた。別容器に、脱イオン水340部、ドデシルベンゼンスルホン酸ソーダ20部、過硫酸アンモニウム1部を添加し、よく撹拌後、その中に表1の水酸基含有アクリル樹脂(a-2)のコア部の欄に記載のモノマー配合からなる混合物を加え乳化物とし、該乳化物を82℃に保ったガラス製4ツ口フラスコに2時間かけて一定速度で滴下した。
温度計、撹拌機、還流冷却管、窒素導入口を備えた2リットルのガラス製4ツ口フラスコに、脱イオン水300部、ドデシルベンゼンスルホン酸ソーダ1部を仕込み、内部の空気を窒素置換した後、撹拌しながら82℃まで昇温させた。別容器に、脱イオン水340部、ドデシルベンゼンスルホン酸ソーダ20部、過硫酸アンモニウム1部を添加し、よく撹拌後、その中に表1の水酸基含有アクリル樹脂(a-2)のコア部の欄に記載のモノマー配合からなる混合物を加え乳化物とし、該乳化物を82℃に保ったガラス製4ツ口フラスコに2時間かけて一定速度で滴下した。
滴下終了後、82℃で30分間撹拌した後、別容器にて脱イオン水200部、ドデシルベンゼンスルホン酸ソーダ20部、過硫酸アンモニウム1部を添加し、よく撹拌後、その中に表1の水酸基含有アクリル樹脂(a-2)のシェル部の欄に記載のモノマー配合からなる混合物を加え乳化物としたものを82℃に保ったガラス製4ツ口フラスコに2時間かけて一定速度で滴下した。滴下終了後、さらに82℃で2時間撹拌した後、40℃まで冷却し、アンモニアでpHを7.5に調整することにより、平均粒子径150nm、樹脂固形分50%の水酸基含有アクリル樹脂(a-2)のコア・シェル型水分散体を得た。該水酸基含有アクリル樹脂の水酸基価は103mgKOH/g、ガラス転移温度は40℃であった。
(製造例3)水酸基含有アクリル樹脂(a-3)
製造例2において、モノマー混合物の配合を表1の水酸基含有アクリル樹脂(a-3)の欄に示す通りとする以外は製造例2と同様にして水酸基含有アクリル樹脂(a-3)のコア・シェル型水分散体を得た。
製造例2において、モノマー混合物の配合を表1の水酸基含有アクリル樹脂(a-3)の欄に示す通りとする以外は製造例2と同様にして水酸基含有アクリル樹脂(a-3)のコア・シェル型水分散体を得た。
(製造例4)水酸基含有アクリル樹脂(a-4)
温度計、撹拌機、還流冷却管、窒素導入口を備えた2リットルのガラス製4ツ口フラスコに「スワゾール1000」(コスモ石油(株)製、炭化水素系有機溶剤)640部、n-ブタノール80部を仕込み、内部の空気を窒素置換した後、撹拌しながら90℃まで昇温した。90℃に達したところで、表1の水酸基含有アクリル樹脂(a-4)の欄に記載のモノマー配合及びアゾビスイソブチロニトリル32部からなる混合溶液を4時間かけて滴下し、滴下終了後さらに90℃で1時間撹拌を続けた。
温度計、撹拌機、還流冷却管、窒素導入口を備えた2リットルのガラス製4ツ口フラスコに「スワゾール1000」(コスモ石油(株)製、炭化水素系有機溶剤)640部、n-ブタノール80部を仕込み、内部の空気を窒素置換した後、撹拌しながら90℃まで昇温した。90℃に達したところで、表1の水酸基含有アクリル樹脂(a-4)の欄に記載のモノマー配合及びアゾビスイソブチロニトリル32部からなる混合溶液を4時間かけて滴下し、滴下終了後さらに90℃で1時間撹拌を続けた。
その後、アゾビスイソブチロニトリル4部を「スワゾール1000」80部に溶解させたものを1時間かけて滴下し、さらに90℃で1時間撹拌を続けた後、40℃まで冷却し、樹脂固形分50%の水酸基含有アクリル樹脂(a-4)の溶液を得た。該アクリル樹脂の水酸基価は103mgKOH/g、ガラス転移温度は39℃、重量平均分子量は15,000であった。
(製造例5)水酸基含有アクリル樹脂(a-5)
温度計、撹拌機、還流冷却管、窒素導入口を備えた2リットルのガラス製4ツ口フラスコに有機溶剤としてプロピレングリコールモノプロピルエーテルを400部入れ、撹拌しながら120℃まで昇温した。120℃に達したところで表1の水酸基含有アクリル樹脂(a-5)の一段階目の欄に記載のモノマー配合及びt-ブチルパーオキシ-2-エチルヘキサノエート12部からなる混合溶液1を4時間かけて滴下し、滴下終了後さらに同温度で1時間撹拌を続けた。
温度計、撹拌機、還流冷却管、窒素導入口を備えた2リットルのガラス製4ツ口フラスコに有機溶剤としてプロピレングリコールモノプロピルエーテルを400部入れ、撹拌しながら120℃まで昇温した。120℃に達したところで表1の水酸基含有アクリル樹脂(a-5)の一段階目の欄に記載のモノマー配合及びt-ブチルパーオキシ-2-エチルヘキサノエート12部からなる混合溶液1を4時間かけて滴下し、滴下終了後さらに同温度で1時間撹拌を続けた。
次に、120℃の温度を保持したまま、上記フラスコ中に、表1の水酸基含有アクリル樹脂(a-5)二段階目の欄に記載のモノマー配合及びt-ブチルパーオキシ-2-エチルヘキサノエート2.4部からなる混合溶液2を1時間かけて滴下し、さらに滴下終了後同温度で1.5時間撹拌を続け、水酸基含有アクリル樹脂(a-5)溶液を得た。
得られた水酸基含有アクリル樹脂溶液(a-5)の樹脂固形分は77.5%であった。続いて、得られた水酸基含有アクリル樹脂溶液から固形分が85%になるまでプロピレングリコールモノプロピルエーテルを減圧下で留去した。
得られた水酸基含有アクリル樹脂溶液(a-5)の樹脂固形分は77.5%であった。続いて、得られた水酸基含有アクリル樹脂溶液から固形分が85%になるまでプロピレングリコールモノプロピルエーテルを減圧下で留去した。
これを95℃まで冷却し、ジメチルエタノールアミン2.8部を添加して30分間撹拌した。さらに、撹拌しながら樹脂固形分が50%となるように脱イオン水を2時間かけて滴下して、水酸基含有アクリル樹脂(a-5)の分散体を得た。該水酸基含有アクリル樹脂の分散体の水酸基価は103mgKOH/g、ガラス転移温度は43℃、重量平均分子量は30,000であった。
(製造例6)比較用樹脂(a’-1)
製造例1において、モノマー混合物の配合を表1のアクリル樹脂(a’-1)の欄に示す通りとする以外は製造例1と同様にして水酸基非含有であり、架橋官能基モノマーとしてダイアセトンアクリルアミドを共重合したアクリル樹脂(a’-1)の水分散体を得た。
製造例1において、モノマー混合物の配合を表1のアクリル樹脂(a’-1)の欄に示す通りとする以外は製造例1と同様にして水酸基非含有であり、架橋官能基モノマーとしてダイアセトンアクリルアミドを共重合したアクリル樹脂(a’-1)の水分散体を得た。
製造例1~6で得られた水酸基含有アクリル樹脂又はアクリル樹脂の樹脂固形分、平均粒子径、水酸基価、酸価及びガラス転移温度を表2に示す。
(製造例7)ポリイソシアネート化合物(b-1)
ポリイソシアネート化合物b〔市販品、ヘキサメチレンジイソシアネートのヌレート体、21.7%のNCO含有率、平均NCO基数=3.5(GPCによる)、モノマーHDI含有量0.1%、粘度(23℃)3000mPa・s〕970g(5.00mol)、3-(シクロヘキシルアミノ)プロパンスルホン酸30g(0.14mol)、ジメチルシクロヘキシルアミン17.4g(0.14mol)及び1-メトキシプロピル-2-アセテート(水酸基を有さないアセテート系水溶性溶剤)254gを、窒素雰囲気下、80℃で5時間撹拌することにより、固形分80%、イソシアネート基含有率16.0%のスルホン酸変性イソシアネート化合物(b-1)を得た。
ポリイソシアネート化合物b〔市販品、ヘキサメチレンジイソシアネートのヌレート体、21.7%のNCO含有率、平均NCO基数=3.5(GPCによる)、モノマーHDI含有量0.1%、粘度(23℃)3000mPa・s〕970g(5.00mol)、3-(シクロヘキシルアミノ)プロパンスルホン酸30g(0.14mol)、ジメチルシクロヘキシルアミン17.4g(0.14mol)及び1-メトキシプロピル-2-アセテート(水酸基を有さないアセテート系水溶性溶剤)254gを、窒素雰囲気下、80℃で5時間撹拌することにより、固形分80%、イソシアネート基含有率16.0%のスルホン酸変性イソシアネート化合物(b-1)を得た。
(製造例8)常温硬化型ウレタンプライマー組成物(A-1)
上記製造例1で得られた水酸基含有アクリル樹脂(a-1)200部(固形分100部)、脱イオン水100部、ジプロピレングリコールジメチルエーテル(水酸基を有さないグリコールエーテル系水溶性溶剤)30部、「サーフロン S-211」(注1)1.4部(固形分0.7部)を混合し、ディスパーで15分間撹拌することにより、主剤を製造した。次に、硬化剤として、前記製造例7で得られたポリイソシアネート化合物(b-1)75部(固形分60部)とジオクチルスズジラウレート0.3部を加え、ディスパーを用いて混合して常温硬化型ウレタンプライマー組成物(A-1)を作製した。
上記製造例1で得られた水酸基含有アクリル樹脂(a-1)200部(固形分100部)、脱イオン水100部、ジプロピレングリコールジメチルエーテル(水酸基を有さないグリコールエーテル系水溶性溶剤)30部、「サーフロン S-211」(注1)1.4部(固形分0.7部)を混合し、ディスパーで15分間撹拌することにより、主剤を製造した。次に、硬化剤として、前記製造例7で得られたポリイソシアネート化合物(b-1)75部(固形分60部)とジオクチルスズジラウレート0.3部を加え、ディスパーを用いて混合して常温硬化型ウレタンプライマー組成物(A-1)を作製した。
常温硬化型ウレタンプライマー組成物(A-1)の固形分含有率及びNCO/OH比を表3に示す。なお、常温硬化型ウレタンプライマー組成物(A-1)の初期乾燥性評価の結果及びマルテンス硬度の値も合わせて表3に示す。
(製造例9~22)
製造例8において、主剤と硬化剤の配合量を表3の通りに変更する以外は、製造例8と同様にして、常温硬化型ウレタンプライマー組成物(A-2)~(A-12)、比較例用常温硬化型ウレタンプライマー組成物(A’-1)~(A’-3)を得た。
製造例8において、主剤と硬化剤の配合量を表3の通りに変更する以外は、製造例8と同様にして、常温硬化型ウレタンプライマー組成物(A-2)~(A-12)、比較例用常温硬化型ウレタンプライマー組成物(A’-1)~(A’-3)を得た。
表中の「-」は算出できないことを示し、注は下記を示す。
(注1)サーフロンS-211:商品名、AGCセイミケミカル社製、パーフルオロアルキルカルボン酸系界面活性剤、有効成分50%。
(注2)ポリイソシアネート化合物(b-2):デュラネート TSA-100、商品名、旭化成株式会社製、ヘキサメチレンジイソシアネートのヌレート体、固形分100質量%、イソシアネート基含有率20.6質量%。
(注3)ポリウレタン樹脂エマルション(第一工業製薬株式会社製スーパーフレックス150、固形分=30質量%)平均粒子径0.03μm
(注4)タルク(日本タルク株式会社製P-3、粒子径D50=5μm)
(注3)ポリウレタン樹脂エマルション(第一工業製薬株式会社製スーパーフレックス150、固形分=30質量%)平均粒子径0.03μm
(注4)タルク(日本タルク株式会社製P-3、粒子径D50=5μm)
表中の試験項目の試験方法及び評価基準は下記の通りである。
(試験項目1.)初期乾燥性:
気温23℃、湿度50%RHの条件下、各常温硬化型ウレタンプライマー組成物(A)を厚さ2mmのガラス板(150×70mm)に乾燥膜厚が10μmになるようにアプリケーターを用いて塗装した。その後、同条件下、指で軽くこすっても跡が付かなくなる、半硬化乾燥状態になるまでの時間(以下半硬化時間という)を測定し、以下の基準で評価した。
◎:半硬化時間が1時間未満、
○:半硬化時間が1時間以上かつ2時間未満
△:半硬化時間が2時間以上かつ4時間未満
×:半硬化時間が4時間以上。
気温23℃、湿度50%RHの条件下、各常温硬化型ウレタンプライマー組成物(A)を厚さ2mmのガラス板(150×70mm)に乾燥膜厚が10μmになるようにアプリケーターを用いて塗装した。その後、同条件下、指で軽くこすっても跡が付かなくなる、半硬化乾燥状態になるまでの時間(以下半硬化時間という)を測定し、以下の基準で評価した。
◎:半硬化時間が1時間未満、
○:半硬化時間が1時間以上かつ2時間未満
△:半硬化時間が2時間以上かつ4時間未満
×:半硬化時間が4時間以上。
(試験項目2.)ポットライフ(可使時間):
主剤に硬化剤を均一に混合した各常温硬化型プライマー組成物を、気温23℃、湿度50%RHの条件下、2時間放置した後の塗料状態を目視にて観察し、以下の基準で評価した。
◎:粘度上昇やブツの発生などなく、問題なく使用できる
○:わずかに粘度上昇が認められるが、ブツはなく実用上問題なく使用できる
△:粘度上昇やブツが認められる
×:ゲル化する。
主剤に硬化剤を均一に混合した各常温硬化型プライマー組成物を、気温23℃、湿度50%RHの条件下、2時間放置した後の塗料状態を目視にて観察し、以下の基準で評価した。
◎:粘度上昇やブツの発生などなく、問題なく使用できる
○:わずかに粘度上昇が認められるが、ブツはなく実用上問題なく使用できる
△:粘度上昇やブツが認められる
×:ゲル化する。
(試験項目3.)マルテンス硬度:
明細書記載の方法に準じて測定した。
明細書記載の方法に準じて測定した。
(製造例23)ハードコート層形成用コーティング剤(B-1)
エポキシシランオリゴマー(注5)(c-1)62.5部(有効成分として50部)、スノーテックスO-40(注6)125部(有効成分として50部)、KBM-403(注7)15部(有効成分として15部)、硬化触媒としてリン酸2部及び希釈溶剤として3-メトキシ-3-メチル-1-ブタノール40部をディスパーで均一になるまで撹拌することによりハードコート層形成用コーティング剤(B-1)を得た。コーティング剤(B-1)による塗膜のマルテンス硬度は明細書記載の方法で求めたところ170N/mm2であった。
エポキシシランオリゴマー(注5)(c-1)62.5部(有効成分として50部)、スノーテックスO-40(注6)125部(有効成分として50部)、KBM-403(注7)15部(有効成分として15部)、硬化触媒としてリン酸2部及び希釈溶剤として3-メトキシ-3-メチル-1-ブタノール40部をディスパーで均一になるまで撹拌することによりハードコート層形成用コーティング剤(B-1)を得た。コーティング剤(B-1)による塗膜のマルテンス硬度は明細書記載の方法で求めたところ170N/mm2であった。
(製造例24)ハードコート層形成用コーティング剤(B-2)
エポキシシランオリゴマー(注5)(c-1)62.5部(有効成分として50部)、スノーテックスO-40(注6)125部(有効成分として50部)、KBM-403(注7)15部(有効成分として15部)、KBM-13(注8)10部(有効成分として10部)、硬化触媒としてリン酸2部、希釈溶剤として3-メトキシ-3-メチル-1-ブタノール40部を混合し、ディスパーで均一になるまで撹拌することによりハードコート層形成用コーティング剤(B-2)を得た。
コーティング剤(B-2)による塗膜のマルテンス硬度は明細書記載の方法で求めたところ180N/mm2であった。
エポキシシランオリゴマー(注5)(c-1)62.5部(有効成分として50部)、スノーテックスO-40(注6)125部(有効成分として50部)、KBM-403(注7)15部(有効成分として15部)、KBM-13(注8)10部(有効成分として10部)、硬化触媒としてリン酸2部、希釈溶剤として3-メトキシ-3-メチル-1-ブタノール40部を混合し、ディスパーで均一になるまで撹拌することによりハードコート層形成用コーティング剤(B-2)を得た。
コーティング剤(B-2)による塗膜のマルテンス硬度は明細書記載の方法で求めたところ180N/mm2であった。
(製造例25)ハードコート層形成用コーティング剤(B-3)
エポキシシランオリゴマー(注9)(c-2)62.5部(有効成分として50部)、スノーテックスO-40(注6)62.5部(有効成分として25部)、スノーテックスO(注10)125部(有効成分として25部)、KBM-403(注7)15部(有効成分として15部)、硬化触媒としてリン酸2部、希釈溶剤として3-メトキシ-3-メチル-1-ブタノール40部を混合し、ディスパーで均一になるまで撹拌することによりハードコート層形成用コーティング剤(B-3)を得た。
コーティング剤(B-3)による塗膜のマルテンス硬度は明細書記載の方法で求めたところ185N/mm2であった。
エポキシシランオリゴマー(注9)(c-2)62.5部(有効成分として50部)、スノーテックスO-40(注6)62.5部(有効成分として25部)、スノーテックスO(注10)125部(有効成分として25部)、KBM-403(注7)15部(有効成分として15部)、硬化触媒としてリン酸2部、希釈溶剤として3-メトキシ-3-メチル-1-ブタノール40部を混合し、ディスパーで均一になるまで撹拌することによりハードコート層形成用コーティング剤(B-3)を得た。
コーティング剤(B-3)による塗膜のマルテンス硬度は明細書記載の方法で求めたところ185N/mm2であった。
前記製造例23~25において、注は下記を示す。
(注5)エポキシシランオリゴマー(c-1):温度計、撹拌機、還流冷却器及び窒素導入管を取り付けたセパラブルフラスコに、KBM-403(注7)236部(1.0mol)とメタノール32部(1.0mol)を入れ、室温下混合撹拌した。次に撹拌しながら0.05N塩酸水10部を30分かけて滴下し、さらに30分間撹拌した。その後、マントルヒーターを用いて75℃まで昇温させ、副生したメタノールも同時に除去しながら2時間還流させた。室温まで冷却後、ろ過を行い、エポキシシランオリゴマー(c-1)を得た。
生成物(c-1)について120℃で1時間加熱した結果、加熱残分(有効成分)は80%であった。また、重量平均分子量は1,100、エポキシ当量は220g/eqであった。
生成物(c-1)について120℃で1時間加熱した結果、加熱残分(有効成分)は80%であった。また、重量平均分子量は1,100、エポキシ当量は220g/eqであった。
(注6)スノーテックスO-40:商品名、日産化学工業株式会社、平均粒子径23nmの水分散型酸性コロイダルシリカ、pH=3、有効成分40質量%。
(注7)KBM-403:商品名、信越化学工業社製、3-グリシドキシプロピルトリメトキシシラン、分子量236.34。
(注8)KBM-13:商品名、信越化学工業製、メチルトリメトキシシラン。
(注9)エポキシシランオリゴマー(c-2):温度計、撹拌機、還流冷却器及び窒素導入管を取り付けたセパラブルフラスコに、KBM-403(注7)236部(1.0mol)とメタノール32部(1.0mol)入れ、室温下混合撹拌した。次に撹拌しながら0.05N塩酸水3部を30分かけて滴下し、さらに30分間撹拌した。その後、マントルヒーターを用いて75℃まで昇温させ、副生したメタノールも同時に除去しながら2時間還流させた。室温まで冷却後、ろ過を行い、エポキシシランオリゴマー(c-2)を得た。
生成物(c-2)について120℃で1時間加熱した結果、加熱残分(有効成分)は80%であった。また、重量平均分子量は500、エポキシ当量は167g/eqであった。
(注10)スノーテックスO:商品名、日産化学工業株式会社、スノーテックスは登録商標、平均一次粒子径12.5nmの水分散型酸性コロイダルシリカ、有効成分20質量%。
(注8)KBM-13:商品名、信越化学工業製、メチルトリメトキシシラン。
(注9)エポキシシランオリゴマー(c-2):温度計、撹拌機、還流冷却器及び窒素導入管を取り付けたセパラブルフラスコに、KBM-403(注7)236部(1.0mol)とメタノール32部(1.0mol)入れ、室温下混合撹拌した。次に撹拌しながら0.05N塩酸水3部を30分かけて滴下し、さらに30分間撹拌した。その後、マントルヒーターを用いて75℃まで昇温させ、副生したメタノールも同時に除去しながら2時間還流させた。室温まで冷却後、ろ過を行い、エポキシシランオリゴマー(c-2)を得た。
生成物(c-2)について120℃で1時間加熱した結果、加熱残分(有効成分)は80%であった。また、重量平均分子量は500、エポキシ当量は167g/eqであった。
(注10)スノーテックスO:商品名、日産化学工業株式会社、スノーテックスは登録商標、平均一次粒子径12.5nmの水分散型酸性コロイダルシリカ、有効成分20質量%。
(実施例1~9、15~19)
305×305×2mmのコンポジションビニル床タイル(商品名「PタイルP-60」、タジマ製、塩化ビニル樹脂系床材)上に、表4に記載の各常温硬化型ウレタンプライマー組成物を、床用モップを用いて塗装し、気温23℃、湿度50%RHの条件下で、2時間乾燥させ各プライマー硬化塗膜層(I)を形成した。乾燥膜厚は表4に示すとおりとした。このときの次工程の重ね塗りまでの間隔は乾燥時間の2時間とした。
この上にハードコート層形成用コーティング剤(B-1)または(B-3)を、床用モップを用いて乾燥膜厚15μmになるように1回塗装し、気温23℃、湿度50%RHの条件下で4日間乾燥させハードコート層(II)を形成して各塗装タイルを得た。
305×305×2mmのコンポジションビニル床タイル(商品名「PタイルP-60」、タジマ製、塩化ビニル樹脂系床材)上に、表4に記載の各常温硬化型ウレタンプライマー組成物を、床用モップを用いて塗装し、気温23℃、湿度50%RHの条件下で、2時間乾燥させ各プライマー硬化塗膜層(I)を形成した。乾燥膜厚は表4に示すとおりとした。このときの次工程の重ね塗りまでの間隔は乾燥時間の2時間とした。
この上にハードコート層形成用コーティング剤(B-1)または(B-3)を、床用モップを用いて乾燥膜厚15μmになるように1回塗装し、気温23℃、湿度50%RHの条件下で4日間乾燥させハードコート層(II)を形成して各塗装タイルを得た。
(実施例10)
305×305×2mmのコンポジションビニル床タイル(商品名「PタイルP-60」、タジマ製、塩化ビニル樹脂系床材)上に、表4に記載の各常温硬化型ウレタンプライマー組成物(A-1)を、床用モップを用いて塗装し、気温23℃、湿度50%RHの条件下で、24時間乾燥させプライマー硬化塗膜層(I)を形成した。乾燥膜厚は表4に示すとおりとした。このときの次工程の重ね塗りまでの間隔は乾燥時間の24時間とした。
305×305×2mmのコンポジションビニル床タイル(商品名「PタイルP-60」、タジマ製、塩化ビニル樹脂系床材)上に、表4に記載の各常温硬化型ウレタンプライマー組成物(A-1)を、床用モップを用いて塗装し、気温23℃、湿度50%RHの条件下で、24時間乾燥させプライマー硬化塗膜層(I)を形成した。乾燥膜厚は表4に示すとおりとした。このときの次工程の重ね塗りまでの間隔は乾燥時間の24時間とした。
この上にハードコート層形成用コーティング剤(B-1)を、床用モップを用いて乾燥膜厚25μmになるように1回塗装し、気温23℃、湿度50%RHの条件下で4日間乾燥させハードコート層(II)を形成して塗装タイルを得た。
(実施例11)
305×305×2mmのコンポジションビニル床タイル(商品名「PタイルP-60」、タジマ製、塩化ビニル樹脂系床材)上に、表4に記載の各常温硬化型ウレタンプライマー組成物を、床用モップを用いて塗装し、気温23℃、湿度50%RHの条件下で、2時間乾燥させ各プライマー硬化塗膜層(I)を形成した。乾燥膜厚は表4に示すとおりとした。このときの次工程の重ね塗りまでの間隔は乾燥時間の2時間とした。
305×305×2mmのコンポジションビニル床タイル(商品名「PタイルP-60」、タジマ製、塩化ビニル樹脂系床材)上に、表4に記載の各常温硬化型ウレタンプライマー組成物を、床用モップを用いて塗装し、気温23℃、湿度50%RHの条件下で、2時間乾燥させ各プライマー硬化塗膜層(I)を形成した。乾燥膜厚は表4に示すとおりとした。このときの次工程の重ね塗りまでの間隔は乾燥時間の2時間とした。
この上に表4のハードコート層形成用コーティング剤1回目の欄に記載のものを、床用モップを用いて乾燥膜厚15μmになるように1回塗装し、気温23℃、湿度50%RHの条件下で18時間静置、その後さらにその上にハードコート層形成用コーティング剤2回目の欄に記載のものを、床用モップを用いて乾燥膜厚15μmになるように1回塗装し、同条件下で4日間乾燥させ、プライマー硬化塗膜層(I)上に2層のハードコート層(II)が形成された塗装タイルを得た。2層目のハードコート剤を塗布するまでの、重ね塗りまでの間隔は乾燥時間の18時間である。
(実施例12~14)
実施例11において、常温硬化型プライマー組成物、ハードコート層形成用コーティング剤及び重ね塗間隔(時間:h)を表4に示すものとする以外は実施例1と同様の工程で行い、各プライマー層(I)上に、2層のハードコート層(II)が形成された塗装タイルを得た。
実施例11において、常温硬化型プライマー組成物、ハードコート層形成用コーティング剤及び重ね塗間隔(時間:h)を表4に示すものとする以外は実施例1と同様の工程で行い、各プライマー層(I)上に、2層のハードコート層(II)が形成された塗装タイルを得た。
(比較例1~3)
実施例1において、常温硬化型プライマー組成物、ハードコート層形成用コーティング剤及び重ね塗間隔(時間:h)を表4に示すものとする以外は実施例1と同様の工程で行い、プライマー層(I)上に、1層のハードコート層(II)が形成された塗装タイルを得た。
実施例1において、常温硬化型プライマー組成物、ハードコート層形成用コーティング剤及び重ね塗間隔(時間:h)を表4に示すものとする以外は実施例1と同様の工程で行い、プライマー層(I)上に、1層のハードコート層(II)が形成された塗装タイルを得た。
(比較例4)
305×305×2mmのコンポジションビニル床タイル(商品名「PタイルP-60」、タジマ製、塩化ビニル樹脂系床材)上に、常温硬化型ウレタンプライマー組成物を、塗装せず、ハードコート層形成用コーティング剤(B-1)を、床用モップを用いて乾燥膜厚15μmになるように1回塗装し、気温23℃、湿度50%RHの条件下で4日間乾燥させハードコート層を形成しプライマー硬化塗膜層(I)を有さない塗装タイルを得た。
305×305×2mmのコンポジションビニル床タイル(商品名「PタイルP-60」、タジマ製、塩化ビニル樹脂系床材)上に、常温硬化型ウレタンプライマー組成物を、塗装せず、ハードコート層形成用コーティング剤(B-1)を、床用モップを用いて乾燥膜厚15μmになるように1回塗装し、気温23℃、湿度50%RHの条件下で4日間乾燥させハードコート層を形成しプライマー硬化塗膜層(I)を有さない塗装タイルを得た。
(比較例5)
305×305×2mmのコンポジションビニル床タイル(商品名「PタイルP-60」、タジマ製、塩化ビニル樹脂系床材)上に、常温硬化型ウレタンプライマー組成物(A-2)を、床用モップを用いて塗装して、気温23℃、湿度50%RHの条件下で、24時間乾燥させ各プライマー硬化塗膜層(I)を形成し、ハードコート層(II)を有さない塗装タイルを得た。
305×305×2mmのコンポジションビニル床タイル(商品名「PタイルP-60」、タジマ製、塩化ビニル樹脂系床材)上に、常温硬化型ウレタンプライマー組成物(A-2)を、床用モップを用いて塗装して、気温23℃、湿度50%RHの条件下で、24時間乾燥させ各プライマー硬化塗膜層(I)を形成し、ハードコート層(II)を有さない塗装タイルを得た。
(比較例6)
305×305×2mmのコンポジションビニル床タイル(商品名「PタイルP-60」、タジマ製、塩化ビニル樹脂系床材)上に、常温硬化型ウレタンプライマー組成物を、塗装せず、ハードコート層形成用コーティング剤(B-2)を、床用モップを用いて乾燥膜厚15μmになるように1回塗装し、気温23℃、湿度50%RHの条件下で18時間静置、その後さらにその上にハードコート層形成用コーティング剤(B-2)を、床用モップを用いて乾燥膜厚15μmになるように1回塗装し、同条件下で4日間乾燥させ、プライマー硬化塗膜層(I)上に2層のハードコート層(II)が形成された塗装タイルを得た。2層目のハードコート剤を塗布するまでの、重ね塗りまでの間隔は乾燥時間の18時間である。
305×305×2mmのコンポジションビニル床タイル(商品名「PタイルP-60」、タジマ製、塩化ビニル樹脂系床材)上に、常温硬化型ウレタンプライマー組成物を、塗装せず、ハードコート層形成用コーティング剤(B-2)を、床用モップを用いて乾燥膜厚15μmになるように1回塗装し、気温23℃、湿度50%RHの条件下で18時間静置、その後さらにその上にハードコート層形成用コーティング剤(B-2)を、床用モップを用いて乾燥膜厚15μmになるように1回塗装し、同条件下で4日間乾燥させ、プライマー硬化塗膜層(I)上に2層のハードコート層(II)が形成された塗装タイルを得た。2層目のハードコート剤を塗布するまでの、重ね塗りまでの間隔は乾燥時間の18時間である。
上記のようにして得られた各塗装タイルを試験板とし、各種試験に供した。
<性能評価>
各試験項目の試験方法及び評価基準は下記の通りである。
(試験項目4.)仕上がり性〔塗膜外観(目視)〕:
各試験板について、塗膜外観を目視にて確認し、下記基準にて評価した。
◎:平滑であり、均一な光沢感が認められる
○:平滑であるが、ごくわずかな艶ムラが認められる
△:ユズ肌や艶ムラが少し認められる
×:顕著なユズ肌や艶ムラが認められる。
各試験項目の試験方法及び評価基準は下記の通りである。
(試験項目4.)仕上がり性〔塗膜外観(目視)〕:
各試験板について、塗膜外観を目視にて確認し、下記基準にて評価した。
◎:平滑であり、均一な光沢感が認められる
○:平滑であるが、ごくわずかな艶ムラが認められる
△:ユズ肌や艶ムラが少し認められる
×:顕著なユズ肌や艶ムラが認められる。
(試験項目5.)密着性:
各試験板上の塗膜を素地に達するようにクロスカットし、その塗面に粘着セロハンテープを貼り付け強く剥離した後の塗膜面を目視にて確認し、タイルからの剥離に関して下記基準にて評価した。なお、塗膜が剥離した際の界面は、すべて、塩化ビニル樹脂素材/プライマー層間であった。
◎:剥離が認められない
○:クロスカットの線上に、ごくわずかに剥離が認められる
△:クロスカットの周辺もあわせて部分的に剥離が認められる
×:クロスカットの周辺もあわせて全面に剥離が認められる。
各試験板上の塗膜を素地に達するようにクロスカットし、その塗面に粘着セロハンテープを貼り付け強く剥離した後の塗膜面を目視にて確認し、タイルからの剥離に関して下記基準にて評価した。なお、塗膜が剥離した際の界面は、すべて、塩化ビニル樹脂素材/プライマー層間であった。
◎:剥離が認められない
○:クロスカットの線上に、ごくわずかに剥離が認められる
△:クロスカットの周辺もあわせて部分的に剥離が認められる
×:クロスカットの周辺もあわせて全面に剥離が認められる。
(試験項目6.)耐ワレ性:
各試験板の塗膜外観を、下記基準にて評価した。
◎:塗膜全体にワレの発生が全く認められない
○:塗膜の一部分に微細なワレの発生が認められる
△:塗膜全体に微細なワレの発生が認められる
×:塗膜全体に著しいワレの発生が認められる。
各試験板の塗膜外観を、下記基準にて評価した。
◎:塗膜全体にワレの発生が全く認められない
○:塗膜の一部分に微細なワレの発生が認められる
△:塗膜全体に微細なワレの発生が認められる
×:塗膜全体に著しいワレの発生が認められる。
(試験項目7.)耐擦り傷性:
得られた各試験板を気温23℃、湿度50%RHの条件下、4日放置してスチールウール#0000を用い、塗膜表面を300g/cm2荷重で100mmの移動距離で10往復させ、擦り傷を付けたときの塗膜外観を目視で評価した。
◎:傷が認められない
○:傷がわずかに認められるが、傷の本数は10本未満である
△:傷が認められ、傷の本数が10本以上ある
×:著しい傷がはっきりと認められる。
得られた各試験板を気温23℃、湿度50%RHの条件下、4日放置してスチールウール#0000を用い、塗膜表面を300g/cm2荷重で100mmの移動距離で10往復させ、擦り傷を付けたときの塗膜外観を目視で評価した。
◎:傷が認められない
○:傷がわずかに認められるが、傷の本数は10本未満である
△:傷が認められ、傷の本数が10本以上ある
×:著しい傷がはっきりと認められる。
(試験項目8.)耐水性:
得られた各試験板を気温23℃、湿度50%RHの条件下、4日放置した後、20℃の水に24時間浸漬した後、水洗いした試験板の外観を下記基準にて評価した。
◎:試験前の塗膜に対して、全く外観の変化のないもの
○:試験前の塗膜に対して、白化が見られるが、製品とした時に問題ないレベル
△:試験前の塗膜に対して、若干白化が見られる
×:試験前の塗膜に対して、著しく白化が見られる。
得られた各試験板を気温23℃、湿度50%RHの条件下、4日放置した後、20℃の水に24時間浸漬した後、水洗いした試験板の外観を下記基準にて評価した。
◎:試験前の塗膜に対して、全く外観の変化のないもの
○:試験前の塗膜に対して、白化が見られるが、製品とした時に問題ないレベル
△:試験前の塗膜に対して、若干白化が見られる
×:試験前の塗膜に対して、著しく白化が見られる。
本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2017年10月10日出願の日本特許出願(特願2017-196596)に基づくものであり、その内容はここに参照として取り込まれる。
本出願は、2017年10月10日出願の日本特許出願(特願2017-196596)に基づくものであり、その内容はここに参照として取り込まれる。
Claims (9)
- 床面に、常温硬化型ウレタンプライマー組成物(A)を塗装し、該組成物による硬化塗膜層(I)を形成する工程、次いでハードコート層形成用コーティング剤(B)を塗布し、少なくとも1層のハードコート層(II)を形成する工程、を含む床面の表面保護被膜形成方法であって、
前記常温硬化型ウレタンプライマー組成物(A)が、
水酸基含有アクリル樹脂(a)を含む主剤と、ポリイソシアネート化合物(b)を含む硬化剤とを含有し、
前記硬化剤中に含まれるポリイソシアネート化合物(b)のイソシアネート基と主剤中に含まれる水酸基含有アクリル樹脂(a)の水酸基との比率(NCO/OH)が、0.7~2.0の範囲内であることを特徴とする床面の表面保護被膜形成方法。 - 前記ハードコート層形成用コーティング剤(B)が、エポキシシランオリゴマー(c)と、平均粒子径が1~100nmの範囲内のコロイダルシリカ(d)と、硬化触媒(e)と、を含む請求項1に記載の床面の表面保護被膜形成方法。
- 前記水酸基含有アクリル樹脂(a)のガラス転移温度が、20~90℃の範囲である請求項1又は2に記載の床面の表面保護被膜形成方法。
- 前記水酸基含有アクリル樹脂(a)の水酸基価が、15~200mgKOH/gの範囲内である請求項1~3のいずれか1項に記載の床面の表面保護被膜形成方法。
- 前記常温硬化型ウレタンプライマー組成物(A)が、充填剤及び/又はポリウレタン樹脂を含む請求項1~4のいずれか1項に記載の床面の表面保護被膜形成方法。
- 前記常温硬化型ウレタンプライマー組成物(A)の塗装時における固形分含有率が、15~70質量%である請求項1~5のいずれか1項に記載の床面の表面保護被膜形成方法。
- 前記ハードコート層形成用コーティング剤(B)が、加水分解性シラン及び/又はその縮合物、並びにシリカを含む、請求項1~6のいずれか1項に記載の床面の表面保護被膜形成方法。
- 前記硬化塗膜層(I)のマルテンス硬度が30N/mm2以上、ハードコート層のマルテンス硬度が100~300N/mm2にある請求項1~7のいずれか1項に記載の床面の表面保護被膜形成方法。
- 前記床面が、塩化ビニル樹脂系である請求項1~8いずれか1項に記載の床面の表面保護被膜形成方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MYPI2020001746A MY195486A (en) | 2017-10-10 | 2018-08-22 | Method For Forming Surface Protective Coating Film For Floor Surfaces |
JP2019547936A JP7060609B2 (ja) | 2017-10-10 | 2018-08-22 | 床面の表面保護被膜形成方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-196596 | 2017-10-10 | ||
JP2017196596 | 2017-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019073698A1 true WO2019073698A1 (ja) | 2019-04-18 |
Family
ID=66101339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/031007 WO2019073698A1 (ja) | 2017-10-10 | 2018-08-22 | 床面の表面保護被膜形成方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7060609B2 (ja) |
MY (1) | MY195486A (ja) |
WO (1) | WO2019073698A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113930148A (zh) * | 2021-11-23 | 2022-01-14 | 广东科鼎功能材料有限公司 | 一种木器封闭底漆及其制备方法与应用 |
KR102583913B1 (ko) * | 2022-09-27 | 2023-09-27 | 김소중 | 작업 공기 단축이 가능한 지하 주차장 바닥 에폭시 재시공 공법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004292798A (ja) * | 2003-03-07 | 2004-10-21 | Sk Kaken Co Ltd | 塗床材組成物 |
JP2005200497A (ja) * | 2004-01-14 | 2005-07-28 | Dainippon Ink & Chem Inc | 水性硬化性組成物、前記水性硬化性組成物を含む塗料及び接着剤 |
JP2005343924A (ja) * | 2004-05-31 | 2005-12-15 | Tostem Corp | 建材用セルフクリーング剤及びセルフクリーニング塗膜を有する建材 |
JP2007126623A (ja) * | 2005-10-05 | 2007-05-24 | Dainippon Ink & Chem Inc | 床用水性塗料および床塗工方法 |
JP2007224261A (ja) * | 2006-01-30 | 2007-09-06 | Dainippon Ink & Chem Inc | 床用水性塗料および床塗工方法 |
WO2008050756A1 (fr) * | 2006-10-23 | 2008-05-02 | Kansai Paint Co., Ltd. | Composition de revêtement transparente aqueuse à deux composants et procédé destiné à former un film de revêtement de finition multicouche |
JP2010247069A (ja) * | 2009-04-16 | 2010-11-04 | Kansai Paint Co Ltd | 塗装方法 |
-
2018
- 2018-08-22 WO PCT/JP2018/031007 patent/WO2019073698A1/ja active Application Filing
- 2018-08-22 MY MYPI2020001746A patent/MY195486A/en unknown
- 2018-08-22 JP JP2019547936A patent/JP7060609B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004292798A (ja) * | 2003-03-07 | 2004-10-21 | Sk Kaken Co Ltd | 塗床材組成物 |
JP2005200497A (ja) * | 2004-01-14 | 2005-07-28 | Dainippon Ink & Chem Inc | 水性硬化性組成物、前記水性硬化性組成物を含む塗料及び接着剤 |
JP2005343924A (ja) * | 2004-05-31 | 2005-12-15 | Tostem Corp | 建材用セルフクリーング剤及びセルフクリーニング塗膜を有する建材 |
JP2007126623A (ja) * | 2005-10-05 | 2007-05-24 | Dainippon Ink & Chem Inc | 床用水性塗料および床塗工方法 |
JP2007224261A (ja) * | 2006-01-30 | 2007-09-06 | Dainippon Ink & Chem Inc | 床用水性塗料および床塗工方法 |
WO2008050756A1 (fr) * | 2006-10-23 | 2008-05-02 | Kansai Paint Co., Ltd. | Composition de revêtement transparente aqueuse à deux composants et procédé destiné à former un film de revêtement de finition multicouche |
JP2010247069A (ja) * | 2009-04-16 | 2010-11-04 | Kansai Paint Co Ltd | 塗装方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113930148A (zh) * | 2021-11-23 | 2022-01-14 | 广东科鼎功能材料有限公司 | 一种木器封闭底漆及其制备方法与应用 |
KR102583913B1 (ko) * | 2022-09-27 | 2023-09-27 | 김소중 | 작업 공기 단축이 가능한 지하 주차장 바닥 에폭시 재시공 공법 |
Also Published As
Publication number | Publication date |
---|---|
MY195486A (en) | 2023-01-26 |
JPWO2019073698A1 (ja) | 2020-11-05 |
JP7060609B2 (ja) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3298891B2 (ja) | 塗料組成物、塗料組成物の製造方法及び無機酸化物ゾルの分散体の製造方法 | |
US9120916B1 (en) | Acrylic polymers, curable film-forming compositions prepared therefrom, and method of mitigating dirt build-up on a substrate | |
JP6866007B2 (ja) | 水性2液型クリヤ塗料組成物及びこれを用いた塗装体の補修塗装方法。 | |
JP2003251269A (ja) | 高耐久複層塗膜及びその形成方法並びに外装用建材 | |
JP2021126655A (ja) | 被膜形成方法 | |
US9187670B1 (en) | Curable film-forming compositions and method of mitigating dirt build-up on a substrate | |
CN108727955A (zh) | 多成分型的水性底漆涂料组合物以及涂装方法 | |
EP3191536B1 (en) | Curable film-forming compositions and method of mitigating dirt build-up on a substrate | |
JP7060609B2 (ja) | 床面の表面保護被膜形成方法 | |
JP6393016B1 (ja) | コーティング組成物及び表面保護被膜形成方法 | |
JP4674815B2 (ja) | 旧塗膜の補修方法 | |
JP2002097368A (ja) | 水性硬化性樹脂組成物、それを含んでなる水性塗料及びその塗装物 | |
JP2004250560A (ja) | 水系塗料組成物 | |
JPH10219190A (ja) | 多液型水性塗料組成物 | |
JP2008274242A (ja) | 水性塗料組成物、有機無機複合塗膜、シラン縮合物分散体及びその製造方法 | |
JP4826008B2 (ja) | 水性塗料用組成物 | |
JP4484260B2 (ja) | 水性塗料組成物 | |
JP5710178B2 (ja) | 硬化性樹脂組成物およびハードコートフィルムまたはシート | |
JP4117992B2 (ja) | 塗料組成物 | |
KR100254534B1 (ko) | 산화규소졸의 분산체의 제조방법 | |
JP2004300196A (ja) | 水性塗料組成物 | |
JP5124893B2 (ja) | 水性塗料用組成物 | |
JP2001181556A (ja) | 水性塗料組成物 | |
JP7528887B2 (ja) | 塗料組成物、被覆物品および硬化膜の形成方法 | |
JP5241076B2 (ja) | 塗膜の形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18865522 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019547936 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18865522 Country of ref document: EP Kind code of ref document: A1 |