WO2019062481A2 - 随机接入参数确定方法及装置 - Google Patents
随机接入参数确定方法及装置 Download PDFInfo
- Publication number
- WO2019062481A2 WO2019062481A2 PCT/CN2018/103856 CN2018103856W WO2019062481A2 WO 2019062481 A2 WO2019062481 A2 WO 2019062481A2 CN 2018103856 W CN2018103856 W CN 2018103856W WO 2019062481 A2 WO2019062481 A2 WO 2019062481A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- random access
- parameter
- parameters
- basic
- compensation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 140
- 238000013507 mapping Methods 0.000 claims abstract description 63
- 230000008569 process Effects 0.000 claims abstract description 18
- 230000011664 signaling Effects 0.000 claims description 89
- 238000012545 processing Methods 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 16
- 230000009194 climbing Effects 0.000 claims description 13
- 230000000977 initiatory effect Effects 0.000 claims description 9
- 230000007246 mechanism Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 108091006146 Channels Proteins 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 241000760358 Enodes Species 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/006—Transmission of channel access control information in the downlink, i.e. towards the terminal
Definitions
- the present application relates to the field of communications, but is not limited to the field of communications, and in particular, to a method and apparatus for determining random access parameters.
- the UE in the connected state before the UE in the connected state sends data to the base station, it needs to obtain uplink synchronization and downlink synchronization with the base station.
- the UE performs measurement on a certain cell that is, downlink synchronization with the cell has been obtained, otherwise a process similar to cell search needs to be performed.
- Uplink synchronization is obtained by performing a random access procedure.
- the random access procedure may be performed by a physical downlink control channel signaling (PDCCH order) or a medium access control layer of a UE (Medium Access). Control, abbreviated as MAC) or Radio Resource Control (RRC) signaling initiation, as shown in step 0 in FIG. 1, in some embodiments, PDCCH order or RRC signaling may allocate dedicated random to the UE.
- the random access preamble is a non-conflicting mode.
- the dedicated random access preamble can only be allocated by the base station, and can be configured by using a PDCCH order or a handover command; otherwise, the UE needs to select a random access by itself.
- the random access procedure is a conflicting method.
- the 0th step is gone, and the first step is directly performed.
- the UE selects a random access resource, and selects a random access preamble and a physical random access channel (Physical Random Access Channel, PRACH) time-frequency domain resource, and sends a preamble on the selected random access resource, which is called sending.
- Message 1 For the non-conflicting random access procedure, there is no conflict resolution process, and the dedicated preamble is allocated to the terminal through the network side.
- Contention based random access procedure As shown in Figure 1, there are four steps, in which steps 3 and 4 are used to resolve conflicts, and the non-conflicting process has only the first two steps.
- the terminal does not receive the RAR, or the received RAR does not match the transmitted preamble, it needs to be retransmitted. If the terminal receives the backoff indication, it randomly selects a backoff time within the maximum backoff time range corresponding to the backoff indication, and re-initiates the random access procedure after delaying the backoff time.
- the power used in retransmission is transmitted according to the power climbing parameter received by the terminal, and the initial power is increased by a fixed offset.
- New Radio new mobile communication system
- NR will conduct further technical research on greater throughput, more user connections, lower latency, higher reliability, lower power consumption, including network-side devices and user terminals.
- the industry has proposed the NR technology goal: to achieve 1000 times of mobile data traffic growth per region by 2020, 10 to 100 times throughput per user equipment (User Equipment, UE for short), the number of connected devices is 10 A 100-fold increase in battery life over 10 times for low-power devices and a 5x delay for end-to-end.
- User Equipment User Equipment
- NR will adopt a unified technical architecture to support enhanced mobile broadband (eMBB) services, massive machine type communication (MMTC) services and high reliability and low reliability.
- eMBB enhanced mobile broadband
- MMTC massive machine type communication
- URLLC Ultra Reliable and Low Latency
- the NR system will be networked on a carrier frequency higher than that used by the LTE system and previous systems.
- eMBB enhanced mobile broadband
- MMTC massive machine type communication
- URLLC Ultra Reliable and Low Latency
- the NR system will be networked on a carrier frequency higher than that used by the LTE system and previous systems.
- Currently, the industry has widely recognized and internationally recognized frequency bands are mainly 3 GHz to 6 GHz, 6 GHz to 100 GHz.
- the upper part belongs to the centimeter band and the millimeter band, and its propagation characteristics are significantly different from the lower frequency band. Since the propagation loss of the high frequency band is significantly larger than the low frequency band, the coverage of the high frequency band is generally much smaller than the coverage
- the embodiment of the present application provides a method and an apparatus for determining a random access parameter, so as to at least solve the problem of how to determine the introduced RACH parameter in the scenario of multiple services, multiple demands, and multiple wireless environments in the NR in the related art.
- a method for determining a random access parameter including:
- a method for determining a random access parameter including:
- a compensation parameter indicating a random access basic parameter and/or a random access basic parameter to the terminal UE by using signaling, and a compensation parameter of the random access basic parameter and/or the random access basic parameter and a unified access control classification UACC The mapping relationship, wherein the random access basic parameter and/or the compensation parameter of the random access basic parameter and the mapping relationship are used by the UE to determine a RACH parameter used in the current access procedure.
- a random access parameter determining apparatus including:
- the acquiring module is configured to obtain a random access basic parameter and/or a random access basic parameter compensation parameter, and the random access basic parameter and/or the random access basic parameter compensation parameter and the unified access control classification UACC Mapping relations;
- a determining module configured to determine, according to the random access basic parameter and/or the compensation parameter of the random access basic parameter, and the mapping relationship, the RACH parameter used in the current access process.
- a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
- a processor for running a program wherein the program is executed to perform the method of any of the above.
- obtaining a random access basic parameter and/or a random access basic parameter compensation parameter, and a random access basic parameter and/or a random access basic parameter compensation parameter and a unified access control classification UACC mapping The relationship is determined according to the random access basic parameter and/or the compensation parameter of the random access basic parameter and the mapping relationship, and the RACH parameter used in the current access process is determined, and the related technologies are used for multiple services in the NR. Requirements, multiple wireless environment scenarios, how to determine the RACH parameters introduced, meet the NR system, for different services with different needs of different wireless environments, the terminal can determine the RACH parameters to achieve different access effects.
- FIG. 1 is a schematic diagram of a random access procedure in an LTE system in the related art
- FIG. 2 is a block diagram showing a hardware structure of a mobile terminal in a method for determining a random access parameter according to an embodiment of the present application
- FIG. 3 is a flowchart 1 of a method for determining a random access parameter according to an embodiment of the present application
- FIG. 4 is a second flowchart of a method for determining a random access parameter according to an embodiment of the present application
- FIG. 5 is a schematic diagram of a terminal acquiring a BI parameter in a random access procedure according to an embodiment of the present application
- FIG. 6 is a flowchart of a power climbing parameter of a terminal acquiring a random access procedure according to an embodiment of the present application
- FIG. 7 is a flowchart of a power climbing parameter and a backoff compensation parameter of a terminal acquiring a random access procedure according to an embodiment of the present application;
- FIG. 8 is a block diagram of a random access parameter determining apparatus according to an embodiment of the present application.
- the mobile terminal 10 may include one or two (only One is shown processor 102 (processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA), a memory 104 for storing data, and a transmission device 106 for communication functions. It will be understood by those skilled in the art that the structure shown in FIG. 2 is merely illustrative and does not limit the structure of the above electronic device. For example, the mobile terminal 10 may also include more or fewer components than those shown in FIG. 2, or have a different configuration than that shown in FIG. 2.
- the memory 104 can be configured as a software program and a module for storing application software, such as program instructions/modules corresponding to the data transfer method in the embodiment of the present application, and the processor 102 executes each by running a software program and a module stored in the memory 104.
- a functional application and data processing, that is, the above method is implemented.
- Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or two magnetic storage devices, flash memory, or other non-volatile solid state memory.
- memory 104 may further include memory remotely located relative to processor 102, which may be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
- Transmission device 106 is configured to receive or transmit data via a network.
- the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 10.
- the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
- the transmission device 106 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
- NIC Network Interface Controller
- RF Radio Frequency
- FIG. 3 is a flowchart 1 of a method for determining a random access parameter according to an embodiment of the present application. As shown in FIG. 3, the method includes:
- Step S302 Acquire a random access basic parameter and/or a random access basic parameter compensation parameter, and a mapping relationship between the random access basic parameter and/or the random access basic parameter compensation parameter and the unified access control classification UACC ;
- Step S304 determining, according to the random access basic parameter and/or the compensation parameter of the random access basic parameter and the mapping relationship, the RACH parameter used in the current access procedure.
- obtaining a compensation parameter of a random access basic parameter and/or a random access basic parameter, and a mapping of the random access basic parameter and/or the random access basic parameter compensation parameter and the unified access control classification UACC The relationship is determined according to the random access basic parameter and/or the compensation parameter of the random access basic parameter and the mapping relationship, and the RACH parameter used in the current access process is determined, and the related technologies are used for multiple services in the NR.
- the terminal can determine the RACH parameters to achieve different access effects.
- determining the RACH parameters used in the current access procedure according to the random access basic parameters and/or the compensation parameters of the random access basic parameters and the mapping relationship include:
- the actual parameters used in the random access procedure are calculated according to the selected random access basic parameters and/or the compensation parameters of the random access basic parameters.
- the unified access control classification UACC of the current access is determined according to at least one of the following factors:
- the service initiated this time the priority of the terminal UE, the subscription information or classification of the UE, and the slice information of the service initiated this time.
- the network side is configured by using a signaling, where the signaling includes: RRC signaling, MAC signaling, or physical layer signaling, and the RRC signaling is a system message or dedicated signaling.
- mapping relationship between the random access basic parameter and/or the compensation parameter of the random access basic parameter and the unified access control classification UACC is configured by the network side by one or more of the following methods:
- the UACCs Configuring, for different unified access control classifications, the UACCs to configure the same or different random access basic parameters and/or the compensation parameters of the random access basic parameters;
- the basic parameters of the random access are configured, and the basic parameters of the random access are valid for all the unified access control classification UACCs, and the compensation parameters of the basic parameters of the random access are configured for different unified access control classification UACCs.
- obtaining a compensation parameter of a random access basic parameter and/or a random access basic parameter, and a compensation parameter of the random access basic parameter and/or the random access basic parameter and a unified access control classification UACC includes:
- Determining a user category for initiating a service and determining, according to a correspondence between the pre-configured user category and a random access basic parameter and/or a compensation parameter of the random access basic parameter, a basic parameter of the random access corresponding to the user category of the service, and/or The compensation parameter of the basic parameter of the random access and the signaling sent by the network side are obtained, wherein the compensation parameter of the basic parameter of the random access includes one of the following: a compensation parameter, a compensation parameter index value, and a compensation The weighted value of the parameter; or,
- the signaling sent by the network side is received, and the compensation parameters of the random access basic parameter and/or the random access basic parameter and the mapping relationship are obtained according to the signaling.
- the determining the user category for initiating the service comprises:
- the UACC determines the user category for initiating the service according to the unified access control classification
- the signaling sent by the base station is received, and the user category of the originating service is determined according to the signaling.
- the signaling is radio resource control RRC signaling, medium access control layer MAC signaling, physical layer signaling, and random access reply RAR signaling, where the RRC signaling is a system message. Or dedicated signaling.
- the user category includes: a radio resource control RRC connection reject processing policy, an RRC connection release processing policy, a UE-based access barring mechanism, a state in which the UE is located, and different service quality of service QoS requirements.
- the actual parameters used by the random access procedure are calculated according to one of the following methods according to the selected random access basic parameters and/or the compensation parameters of the random access basic parameters:
- the actual parameters used in the random access procedure basic parameter configuration + compensation parameters
- the actual parameters used in the random access procedure basic parameter configuration + weighting value * compensation parameters
- the actual parameters used in the random access procedure basic parameter configuration * compensation parameters.
- the actual parameter comprises at least one of the following:
- Fallback parameters power ramping parameters, maximum number of preamble Preamble attempts, RAR window size, RACH initial transmit power.
- the method further includes:
- the transmission power of the next random access procedure retransmission is determined according to the power climbing parameter.
- the method further includes:
- the time-frequency domain resource of the transmitted message and the power used are selected according to the determined RACH parameters.
- FIG. 4 is a second flowchart of a method for determining a random access parameter according to an embodiment of the present application. As shown in FIG. 4, the method includes:
- Step S402 indicating, to the terminal UE, the random access basic parameter and/or the random access basic parameter compensation parameter, and the random access basic parameter and/or the random access basic parameter compensation parameter and unified access
- the mapping relationship of the classification UACC is controlled, wherein the random access basic parameter and/or the compensation parameter of the random access basic parameter and the mapping relationship are used by the UE to determine the RACH parameter used in the current access procedure.
- mapping relationship between the random access basic parameter and/or the random access basic parameter compensation parameter and the unified access control classification UACC is configured in at least one of the following manners:
- the UACCs Configuring, for different unified access control classifications, the UACCs to configure the same or different random access basic parameters and/or the compensation parameters of the random access basic parameters;
- the basic parameters of the random access are configured, and the basic parameters of the random access are valid for all the unified access control classification UACCs, and the compensation parameters of the basic parameters of the random access are configured for different unified access control classification UACCs.
- the method before the signaling of the random access basic parameter and/or the random access basic parameter is indicated to the terminal UE by signaling, the method further includes:
- the user category includes: a radio resource control RRC connection reject processing policy, an RRC connection release processing policy, a UE-based access barring mechanism, a state in which the UE is located, and different service quality of service QoS requirements.
- the signaling is radio resource control RRC signaling, medium access control layer MAC signaling, physical layer signaling, and random access reply RAR signaling, where the RRC signaling is a system message. Or dedicated signaling.
- 3GPP decided to introduce a new user category for access control.
- This category can include many factors, such as the type of call used for access control in LTE, and new content in the NR, such as RRC connection rejection processing policy, RRC connection release processing policy, UE-based access prohibition. Mechanism, UE's state, different service quality of service QoS requirements, etc.
- 3GPP sets different user categories according to these factors, each category can contain the same or different call types, RRC connection rejection processing policy, RRC connection release processing The policy is based on the UE's access barring mechanism, the state of the UE, different service QoS requirements, and the like.
- the RACH parameters that is, one or more user categories, may have one or more sets of RACH parameters, and the terminal may be Which set of parameters is selected for selection based on its own user category and the configuration and/or indication of the base station.
- the present application mainly describes a method for utilizing the unified access control classification Unified Access Control Category (UACC) configured in advance, and implementing different classification criteria for different classification categories by controlling the network side signaling.
- UACC Unified Access Control Category
- the UACC has a certain number of parameter configurations as compensation parameters.
- the network side provides a basic parameter configuration according to the current network environment, and may also include a compensation parameter index number.
- the terminal configures and/or compensates the parameter index number according to the received basic parameter, and obtains the corresponding RACH parameter by the specified calculation.
- the UACC has a determined number of parameter configurations, and the base station notifies the terminal by using RRC signaling or a system message.
- the network side specifies a basic parameter configuration by using signaling, and may also include a compensation parameter index number, and the base station may notify the terminal by using existing signaling, such as RAR, or system message.
- the specified calculations include but are not limited to the following calculation methods:
- RACH Parameters Basic parameters + compensation parameters
- RACH Parameters Basic Parameter Configuration* Compensation Parameters.
- a limited number of RACH parameter configurations are configured in the UACC, and the terminal can select a set of suitable terminals and meet the base station among multiple sets of RACH parameters, such as backoff and power parameters, through a small network side signaling overhead.
- the required parameters satisfy the NR system, and the terminals in different wireless environments can meet different access effects for different services.
- FIG. 5 is a schematic diagram of a terminal acquiring a BI parameter in a random access process according to an embodiment of the present application. As shown in FIG. 5, the method includes:
- Step 1 After the terminal is normally camped in the cell of the NR, or after entering the connected state in the cell of the NR, the configuration of the user class and the BI related parameter is obtained through a system message or an RRC message, and the unit is ms, such as the following table.
- the configuration in Table 1 may be configured by using different access control types to configure different random access parameters, or different access control categories may be configured for different random access parameters, and the values of Table 1 are different, so that different UACCs are used.
- the terminal performs the backoff algorithm, the probability of an access collision between different types of terminals is reduced.
- the value of Table 1 is only one of the examples, and other values may be used. As long as the backoff value is designed according to the principle of the present application.
- Step 2 When the terminal needs to initiate a random access procedure, the terminal determines the category of the initiated service according to the Unifier Access Control Category (UACC), and obtains the corresponding RACH according to the corresponding category category.
- UACC Unifier Access Control Category
- the parameter here is the backoff (hereinafter referred to as BackOff) compensation parameter.
- the terminal receives the access network element, where is the eNode B (eNB) or the gNode B (gNB) command to learn the access category, and the terminal obtains the corresponding RACH parameter according to the corresponding category, where is the BackOff compensation parameter.
- the access network element where is the eNode B (eNB) or the gNode B (gNB) command to learn the access category
- the terminal obtains the corresponding RACH parameter according to the corresponding category, where is the BackOff compensation parameter.
- Step 3 The terminal selects the time-frequency domain resource for sending msg1 according to the selected RACH parameter, and the power used.
- Step 4 The terminal waits to receive the RAR, and detects that the eNB or the gNB informs the terminal to roll back the basic parameter BI and the backoff compensation parameter BI delta through the RAR signaling RAR MAC PDU; in this embodiment, the backoff basic value BI information and the compensation parameter The information BI delta is included in the RAR MAC PDU sent to the terminal.
- the base parameter BI and the compensation parameter BI delta may be configured together in Table 1. As long as the terminal does not detect the RAR and needs to perform retransmission, the terminal itself acquires the RACH parameter according to the class indicated by itself or the previous base station.
- BI delta 5
- Step 6 The terminal schedules the next preamble retransmission by using the backoff value BackOff value obtained in step 5.
- the BackOff value is equal to 0, the user can immediately arrange the Preamble retransmission.
- the terminal randomly selects a certain time point from the 0 to the BackOff time span to arrange the preamble retransmission.
- Step 7 The terminal re-initiates a RACH procedure.
- Step 1 After the terminal normally camps in the cell of the NR, or enters the connection state in the cell of the NR, the configuration of the user class and/or the BI-related parameter is obtained through a system message or an RRC message, such as the following table, including the BI index. Value, according to the index value, you can find the corresponding BI specific time in the relevant regulations.
- Table 2 The values in Table 2 are only one of the examples, and there are other ways to take them.
- Step 2 When the terminal needs to initiate the random access procedure, the terminal determines the category of the initiated service according to the unified access control classification (hereinafter referred to as Unifier Access Control Category, UACC for short), and obtains the corresponding RACH according to the corresponding category.
- the parameter here is the backoff (hereinafter referred to as BackOff) compensation parameter.
- the terminal receives the access network element, where is the eNode B (eNB) or the gNode B (gNB) command to learn the access category, and the terminal obtains the corresponding RACH parameter according to the corresponding category, where is the BackOff compensation parameter.
- the access network element where is the eNode B (eNB) or the gNode B (gNB) command to learn the access category
- the terminal obtains the corresponding RACH parameter according to the corresponding category, where is the BackOff compensation parameter.
- Step 3 The terminal selects the time-frequency domain resource for sending msg1 according to the selected RACH parameter, and the power used.
- Step 5 According to the access category determined in step 2, the terminal obtains the BI value required for the access process through Table 2.
- Step 6 The terminal schedules the next preamble retransmission by using the BackOff value obtained in step 5.
- the BackOff value is equal to 0, the user can immediately arrange the Preamble retransmission.
- the terminal randomly selects a certain time point from the 0 to the BackOff time span to arrange the preamble retransmission.
- Step 7 The terminal re-initiates a RACH procedure.
- Step 1 After the terminal is normally camped in the cell of the NR, or after entering the connected state in the cell of the NR, the configuration of the user class and/or the BI-related parameter is obtained through a system message or an RRC message, such as Table 3-1.
- a system message or an RRC message such as Table 3-1.
- different random access parameters may be configured by different access control types, for example, Table 3-1, or different access control categories may be configured for different random access parameters, for example, Table 3-2.
- Step 2 When the terminal needs to initiate the random access procedure, the terminal determines the category of the initiated service according to the unified access control classification (hereinafter referred to as Unifier Access Control Category, UACC for short), and obtains the corresponding RACH according to the corresponding category.
- the parameter here is the backoff (hereinafter referred to as BackOff) compensation parameter.
- the terminal receives the access network element, where is the eNode B (eNB) or the gNode B (gNB) command to learn the access category, and the terminal obtains the corresponding RACH parameter according to the corresponding category, where is the BackOff compensation parameter.
- the access network element where is the eNode B (eNB) or the gNode B (gNB) command to learn the access category
- the terminal obtains the corresponding RACH parameter according to the corresponding category, where is the BackOff compensation parameter.
- Step 3 The terminal selects the time-frequency domain resource for sending msg1 according to the selected RACH parameter, and the power used.
- Step 5 According to the access category determined in step 2, the terminal passes the indication in the RAR, for example, 2, and obtains the backoff time by checking the relevant provisions, which is 20 ms at this time, and obtains the BI weighting value required for the access process through Table 3. ,
- Step 6 The terminal schedules the next preamble retransmission by using the BackOff value obtained in step 5.
- the BackOff value is equal to 0, the user can immediately arrange the Preamble retransmission.
- the terminal randomly selects a certain time point from the 0 to the BackOff time span to arrange the preamble retransmission.
- Step 7 The terminal re-initiates a RACH procedure.
- FIG. 6 is a flowchart of a power climbing parameter of a terminal acquiring a random access procedure according to an embodiment of the present application. As shown in FIG. 6, the method includes:
- Step 1 After the terminal is normally camped in the cell of the NR, or after entering the connected state in the cell of the NR, the configuration of the user class and/or the PowerRamping related parameter is obtained through a system message or an RRC message, and the unit is dB, such as the following table.
- the terminal also obtains an initial transmission power configuration such as preambleInitialReceivedTargetPower through the base station.
- preambleInitialReceivedTargetPower through the base station.
- different PowerRamping parameters are configured for each category to distinguish the access priorities.
- the values in Table 4-1 are only one of the examples. You can have other values. Just design the PowerRampin value according to the principles of this application.
- Step 2 When the terminal needs to initiate the random access procedure, the terminal determines the category of the initiated service according to the unified access control classification (hereinafter referred to as Unifier Access Control Category, UACC for short), and obtains the corresponding RACH according to the corresponding category.
- UACC Unifier Access Control Category
- Parameters here is the PowerRamping compensation parameter.
- the terminal receives the access network element, where is the command of the eNode B (eNB) or the gNode B (gNB) to learn the access category, and the terminal obtains the corresponding RACH parameter according to the corresponding category, where is the PowerRamping compensation parameter.
- the access network element where is the command of the eNode B (eNB) or the gNode B (gNB) to learn the access category
- the terminal obtains the corresponding RACH parameter according to the corresponding category, where is the PowerRamping compensation parameter.
- Step 3 The terminal selects the time-frequency domain resource for sending msg1 according to the selected RACH parameter, and the power used. among them,
- the path loss Pathloss is the path loss estimated by the terminal according to the downlink reference signal, and b is a fixed weight value, which can be specified in advance.
- the UE is upgraded in power for the first transmission, and the access success rate of the access class with higher priority is improved.
- Step 4 The terminal waits to receive the RAR, and detects that the eNB or the gNB informs the terminal that the terminal needs to roll back through the RAR MAC PDU.
- the processing of the fallback refer to the foregoing examples 1, 2, and 3. Or, if the terminal does not receive the RAR MAC PDU in the RAR response window. Both of the above enter the resend step.
- Step 5 When the terminal determines that the power climbing condition is met, the terminal climbs the next Preamble transmission power according to the corresponding powerRamping according to the access category determined in step 2. For this example, assume that a terminal belonging to category 2 is resending, when When the PowerRamping condition is met, the next Preamble retransmission uses the transmission power P* as:
- the power can be upgraded for each retransmission according to the PowerRamping of the corresponding access category in the UACC.
- Step 6 The terminal arranges the next preamble retransmission by the power value obtained in step 5.
- Step 7 The terminal re-initiates a RACH procedure.
- FIG. 7 is a flowchart of a power climbing parameter and a backoff compensation parameter of a terminal acquiring a random access procedure according to an embodiment of the present application. As shown in FIG. 7, the method includes:
- Step 1 After the terminal is normally camped in the cell of the NR, or after entering the connected state in the cell of the NR, the user class and/or the RACH parameter index configuration is obtained through a system message or an RRC message, such as Table 5-1, Table 5 -2, according to different network environments, configure different RACH parameters for each category, and adapt to different network environments according to different RACH parameters of different index mappings.
- Table 5-1, Table 5-2 includes, but is not limited to, the number of indexes and the type of mapping. The value is only one of the examples. Other values may be used.
- the RACH parameter value may be designed according to the principles of the present application.
- Step 2 When the terminal needs to initiate the random access procedure, the terminal determines the category of the initiated service according to the unified access control classification (hereinafter referred to as Unifier Access Control Category, UACC for short), and assumes that the terminal belongs to the unified access control category. Category2, according to the corresponding category to obtain the corresponding RACH parameter Index.
- UACC Unifier Access Control Category
- Step 3 Select the time-frequency domain resource for sending msg1 according to the selected RACH parameter, and the power used. among them,
- the path loss Pathloss is the path loss estimated by the terminal according to the downlink reference signal, and b is a fixed weight value, which can be specified in advance.
- the UE is upgraded in power for the first transmission, and the access success rate of the access class with higher priority is improved.
- Step 4 The terminal waits to receive the RAR, and detects that the eNB or the gNB informs the terminal to roll back the index of the basic parameter BI and the RACH parameter through the RAR signaling RAR MAC PDU; in this embodiment, the Backoff basic value BI information and the RACH parameter value It is included in the RAR MAC PDU sent to the terminal.
- Step 5 The RACH parameter index is obtained by the terminal through the RACH parameter value carried in the RAR MAC PDU, and the RACH parameter index is obtained through Table 5-2, and then the corresponding BI delta and RAR MAC PDUs are obtained through Table 5-1.
- the BI base indicator value is used to calculate the Preamble Retransmission backoff time.
- the BackOff value is the BI delta value corresponding to the index of the default RACH Paramete 2 mapping in step 3, that is, 2 ms or 2*a ms, where a is a certain Fixed weighted value.
- Step 6 When the terminal determines that the power climbing condition is met, the terminal climbs the next Preamble transmission power according to the corresponding powerRamping according to the access category determined in step 2. For this example, assume that a terminal belonging to category 2 is resending, when When the PowerRamping condition is met, the next Preamble retransmission uses the transmission power P* as:
- the power can be upgraded for each retransmission according to the PowerRamping of the corresponding access category in the UACC.
- Step 6 The terminal arranges the next preamble retransmission by the power value and the backoff time obtained in step 5.
- Step 7 The terminal re-initiates a RACH procedure.
- FIG. 8 is a block diagram of a random access parameter determining apparatus according to an embodiment of the present application. As shown in FIG. 8, the method includes:
- the obtaining module 82 is configured to obtain a random access basic parameter and/or a random access basic parameter compensation parameter, and the random access basic parameter and/or the random access basic parameter compensation parameter and the unified access control classification UACC Mapping relationship;
- the determining module 84 is configured to determine, according to the random access basic parameter and/or the compensation parameter of the random access basic parameter, and the mapping relationship, the RACH parameter used in the current access procedure.
- the determining module 84 is further configured to determine a unified access control classification UACC of the current access
- the actual parameters used in the random access procedure are calculated according to the selected random access basic parameters and/or the compensation parameters of the random access basic parameters.
- the obtaining module 82 includes:
- a determining unit configured to determine a user category for initiating a service, and determining a random access corresponding to the user category of the service according to a correspondence between a pre-configured user category and a random access basic parameter and/or a compensation parameter of a random access basic parameter
- the receiving unit is configured to receive the signaling sent by the network side, and obtain the compensation parameter of the random access basic parameter and/or the random access basic parameter according to the signaling, and the mapping relationship.
- the determining unit is further configured to determine, according to the unified access control classification UACC, a user category for initiating a service when a random access procedure needs to be initiated; or
- the signaling sent by the base station is received, and the user category of the originating service is determined according to the signaling.
- the determining module 84 is further configured to calculate an actual parameter used by the random access procedure according to the selected random access basic parameter and/or the compensation parameter of the random access basic parameter in one of the following manners:
- the actual parameters used in the random access procedure basic parameter configuration + compensation parameters
- the actual parameters used in the random access procedure basic parameter configuration + weighting value * compensation parameters
- the actual parameters used in the random access procedure basic parameter configuration * compensation parameters.
- a random access parameter determining apparatus including:
- the indication module is configured to indicate to the terminal UE, by using signaling, a random access basic parameter and/or a random access basic parameter compensation parameter, and the random access basic parameter and/or the random access basic parameter compensation parameter and the unified parameter
- the access control classifies the mapping relationship of the UACC, wherein the random access basic parameter and/or the compensation parameter of the random access basic parameter and the mapping relationship are used by the UE to determine the RACH parameter used in the current access process. .
- the apparatus further includes:
- the first configuration module is configured to configure a mapping relationship between the random access basic parameter and/or the random access basic parameter compensation parameter and the unified access control classification UACC in at least one of the following manners:
- the UACCs Configuring, for different unified access control classifications, the UACCs to configure the same or different random access basic parameters and/or the compensation parameters of the random access basic parameters;
- the basic parameters of the random access are configured, and the basic parameters of the random access are valid for all the unified access control classification UACCs, and the compensation parameters of the basic parameters of the random access are configured for different unified access control classification UACCs.
- the apparatus further includes:
- a second configuration module configured to configure a correspondence between a user category and a random access basic parameter and/or a compensation parameter of a random access basic parameter, where the corresponding relationship is used by the UE to determine a random corresponding to the user category of the service Access parameters for accessing basic parameters and/or random access basic parameters.
- the user category includes: a radio resource control RRC connection reject processing policy, an RRC connection release processing policy, a UE-based access barring mechanism, a state in which the UE is located, and different service quality of service QoS requirements.
- the signaling is radio resource control RRC signaling, medium access control layer MAC signaling, physical layer signaling, and random access reply RAR signaling, where the RRC signaling is a system message. Or dedicated signaling.
- the embodiment of the present application further provides a storage medium including a stored program, wherein the program runs to perform the method described in any of the above.
- the above storage medium may be configured to store program code for performing the following steps:
- the above storage medium may also be configured to store program code for performing the following steps:
- S21 Indicate, by using signaling, a compensation parameter of a random access basic parameter and/or a random access basic parameter, and a compensation parameter and a unified access control of the random access basic parameter and/or the random access basic parameter.
- the mapping relationship of the UACC is classified, wherein the random access basic parameter and/or the compensation parameter of the random access basic parameter and the mapping relationship are used by the UE to determine the RACH parameter used in the current access procedure.
- the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
- ROM Read-Only Memory
- RAM Random Access Memory
- Embodiments of the present application also provide a processor for running a program, wherein the program executes the steps of any of the above methods when executed.
- S41 Indicate, by using signaling, a compensation parameter of a random access basic parameter and/or a random access basic parameter, and a compensation parameter and a unified access control of the random access basic parameter and/or the random access basic parameter.
- the mapping relationship of the UACC is classified, wherein the random access basic parameter and/or the compensation parameter of the random access basic parameter and the mapping relationship are used by the UE to determine the RACH parameter used in the current access procedure.
- modules or steps of the present application can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in a network composed of two computing devices.
- they may be implemented by program code executable by a computing device such that they may be stored in a storage device for execution by the computing device and, in some cases, may differ from this
- the steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or two of them are fabricated as a single integrated circuit module.
- the application is not limited to any particular combination of hardware and software.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种随机接入参数确定方法及装置,其中,该随机接入参数确定方法包括:获取随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系;根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的RACH参数。
Description
相关申请的交叉引用
本申请基于申请号为201710901419.8、申请日为2017年09月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请涉及通信领域但不限于通信领域,尤其涉及一种随机接入参数确定方法及装置。
LTE系统中,处于连接态的UE给基站发送数据前,需要获得与基站的上行同步和下行同步。当UE对某个小区执行过测量即已经取得与该小区的下行同步,否则需要执行类似小区搜索的过程。上行同步是通过执行随机接入过程来获取的。
图1是相关技术中LTE系统中的随机接入过程的示意图,如图1所示,随机接入过程可以由物理下行控制信道信令(PDCCH order)或者UE的媒体接入控制层(Medium Access Control,简称为MAC)或者无线资源控制(Radio Resource Control,简称为RRC)信令发起,见图1中的第0步骤,在一些实施例中,PDCCH order或者RRC信令可以为UE分配专用随机接入前导(Random Access Preamble),则随机接入过程为非冲突的方式,专用随机接入前导只能由基站来分配,可以通过PDCCH order或者切换命令来配置;否则UE需要自行选择随机接入前导,则随机接入过程为冲突的方式,此时第0步骤就没有了,直接进行第1步。UE选择随机接入资源包括选择随机接入前导和物理随机接入信道(Physical Random Access Channel,简称为PRACH)的时频域资源等,在选择的随机接入资源上发送前导码,称 为发送消息1。对于非冲突的随机接入过程,没有冲突解决过程,通过网络侧分配专用前导码给终端来实现的。基于冲突(Contention based)的随机接入过程图1所示,包括四个步骤,其中步骤3和4是用来解决冲突的,非冲突的过程只有前面两步。如果终端没有收到RAR,或者收到的RAR与发送的前导不匹配,则需要重发。如果终端收到回退指示,则根据规定在回退指示对应的最大回退时间范围内随机选择一个回退时间,延时回退时间后重新发起随机接入过程。重发时采用的功率,根据终端收到的功率攀升参数,将初始功率增加固定的偏移进行发送。
为了满足可以预测到的未来更高、更快、更新的通信需求,业界已经着手展开对未来新一代移动通信系统(New Radio,简称为NR)技术的研究。NR将在更大的吞吐量,更多的用户连接,更低时延,更高可靠性,更低功耗(包括网络侧设备和用户终端)方面进行进一步的技术研究。目前,业界提出了NR技术目标:到2020年左右,实现每区域1000倍的移动数据流量增长,每用户设备(User Equipment,简称为UE)10到100倍的吞吐量增长,连接设备数10到100倍的增长,低功率设备10倍的电池寿命延长,以及端到端5倍延迟的下降。从应用场景的角度而言,NR将采用一个统一的技术架构来支持增强移动宽带(enhanced Mobile broadband,简称为eMBB)业务,海量机器类(massive Machine Type Communication,简称为mMTC)业务和高可靠低时延(Ultra Reliable and Low Latency,简称为URLLC)业务。NR系统将会在比LTE系统以及之前的系统所用频率更高的载波频率上进行系统组网,目前得到业界广泛共识和国际组织认定的频段主要是3GHz~6GHz,6GHz~100GHz,这一频段基本上属于厘米波段和毫米波段,其传播特性与较低频段有明显区别,由于高频段的传播损耗明显大于低频段,因此高频段的覆盖一般远小于低频段的覆盖范围。
但是在NR中多业务、多需求等多种无线环境的场景,导致无线接入场景的冲突进一步加剧,故如何解决无线接入场景的无线冲突剧烈的问题。
发明内容
本申请实施例提供了一种随机接入参数确定方法及装置,以至少解决 相关技术中对于NR中多业务、多需求、多种无线环境的场景,如何确定引入的RACH参数的问题。
根据本申请的一个实施例,提供了一种随机接入参数确定方法,包括:
获取随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类(Unifier Access Control Category,简称为UACC)的映射关系;
根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的RACH参数。
根据本申请的另一个实施例,还提供了一种随机接入参数确定方法,包括:
通过信令向终端UE指示随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系用于所述UE确定本次接入过程中使用的RACH参数。
根据本申请的另一个实施例,还提供了一种随机接入参数确定装置,包括:
获取模块,配置为获取随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系;
确定模块,配置为根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的RACH参数。
根据本申请的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本申请的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本申请,获取随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一 接入控制分类UACC的映射关系;根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的RACH参数,解决了相关技术中对于NR中多业务、多需求、多种无线环境的场景,如何确定引入的RACH参数的问题,满足了NR系统中,针对不同业务不同需求不同无线环境的终端可以确定RACH参数达到不同接入效果的目的。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是相关技术中LTE系统中的随机接入过程的示意图;
图2是本申请实施例的随机接入参数确定方法的移动终端的硬件结构框图;
图3是根据本申请实施例的随机接入参数确定方法的流程图一;
图4是根据本申请实施例的随机接入参数确定方法的流程图二;
图5是根据本申请实施例的终端在随机接入过程中获取BI参数的示意图;
图6是根据本申请实施例的终端获取随机接入过程的功率攀升参数流程图;
图7是根据本申请实施例的终端获取随机接入过程的功率攀升参数和回退补偿参数的流程图;
图8是根据本申请实施例的随机接入参数确定装置的框图。
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图2是本申请实施例的随机接入参数确定方法的移动终端的硬件结构框图,如图2所示,移动终端10可以包括一个或两个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输装置106。本领域普通技术人员可以理解,图2所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端10还可包括比图2中所示更多或者更少的组件,或者具有与图2所示不同的配置。
存储器104可配置为存储应用软件的软件程序以及模块,如本申请实施例中的数据传输方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者两个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106配置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
基于上述的移动终端,本申请实施例,提供了一种随机接入参数确定方法,图3是根据本申请实施例的随机接入参数确定方法的流程图一,如 图3所示,包括:
步骤S302,获取随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系;
步骤S304,根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的RACH参数。
通过上述步骤,获取随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系;根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的RACH参数,解决了相关技术中对于NR中多业务、多需求、多种无线环境的场景,如何确定引入的RACH参数的问题,满足了NR系统中,针对不同业务不同需求不同无线环境的终端可以确定RACH参数达到不同接入效果的目的。
在一些实施例中,根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的RACH参数包括:
确定本次接入的统一接入控制分类UACC;
根据确定的统一接入控制分类UACC以及所述映射关系选择对应的随机接入基本参数和/或随机接入基本参数的补偿参数;
根据选择的随机接入基本参数和/或随机接入基本参数的补偿参数计算随机接入过程使用的实际参数。
在一些实施例中,根据以下因素至少之一确定本次接入的统一接入控制分类UACC:
本次发起的业务,终端UE的优先级,UE的签约信息或分类,本次发起的业务所属切片信息。
网络侧通过信令进行配置,,其中,所述信令包括:RRC信令,MAC信令或物理层信令,RRC信令为系统消息或专用信令。
在一些实施例中,所述随机接入基本参数和/或随机接入基本参数的补 偿参数与统一接入控制分类UACC的映射关系是网络侧通过以下之一方式或多种方式配置的:
为不同的统一接入控制分类UACC配置相同或不同的随机接入基本参数和/或随机接入基本参数的补偿参数;
配置一套或多套随机接入基本参数和/或随机接入基本参数的补偿参数,并且针对每套随机接入基本参数和/或随机接入基本参数的补偿参数配置适用的统一接入控制分类UACC标识;
为不同的统一接入控制分类UACC配置相同或不同的随机接入基本参数和/或随机接入基本参数的补偿参数配置标识,其中,所述配置标识用于索引到随机接入基本参数和/或随机接入基本参数的补偿参数;
配置一套基本参数和/或补偿参数,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数适用于所有统一接入控制分类UACC;
配置一套随机接入基本参数,所述随机接入基本参数对所有统一接入控制分类UACC有效,同时,为不同的统一接入控制分类UACC配置不同的随机接入基本参数的补偿参数。
在一些实施例中,获取随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系包括:
确定发起业务的用户类别,根据预先配置的用户类别与随机接入基本参数和/或随机接入基本参数的补偿参数的对应关系确定所述业务的用户类别对应的随机接入基本参数和/或随机接入基本参数的补偿参数,以及通过网络侧下发的信令获取所述映射关系,其中,所述随机接入基本参数的补偿参数包括以下之一:补偿参数、补偿参数索引值、补偿参数的加权值;或者,
接收网络侧下发的信令,根据所述信令获取所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系。
在一些实施例中,所述确定发起业务的用户类别包括:
在需要发起随机接入过程时,根据统一接入控制分类UACC确定发起业 务的用户类别;或者,
接收基站下发的信令,根据所述信令确定发起业务的用户类别。
在一些实施例中,所述信令为无线资源控制RRC信令、媒体接入控制层MAC信令、物理层信令、随机接入回复RAR信令,其中,所述RRC信令为系统消息或专用信令。
在一些实施例中,所述用户类别包括:无线资源控制RRC连接拒绝处理策略,RRC连接释放处理策略,基于UE的接入禁止机制,UE所处的状态,不同的业务服务质量QoS需求。
在一些实施例中,通过以下方式之一根据选择的随机接入基本参数和/或随机接入基本参数的补偿参数计算随机接入过程使用的实际参数:
随机接入过程使用的实际参数=基本参数配置+补偿参数;
随机接入过程使用的实际参数=基本参数配置+加权值*补偿参数;
随机接入过程使用的实际参数=基本参数配置*补偿参数。
在一些实施例中,所述实际参数包括以下至少之一:
回退参数,功率攀升参数,前导Preamble最大尝试次数,RAR窗口大小,RACH初始发射功率。
在一些实施例中,所述方法还包括:
接收基站下发的信令,根据所述信令获取随机接入过程的功率攀升参数,其中,所述功率攀升参数用于指示接入的优先级;
根据所述功率攀升参数确定下一次随机接入过程重传的传输功率。
在一些实施例中,在根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的RACH参数之后,所述方法还包括:
根据确定的RACH参数选择发送消息的时频域资源以及使用的功率。
根据本申请的另一个实施例,还提供了一种随机接入参数确定方法,,图4是根据本申请实施例的随机接入参数确定方法的流程图二,如图4所示,包括:
步骤S402,通过信令向终端UE指示随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系用于所述UE确定本次接入过程中使用的RACH参数。
在一些实施例中,在通过信令向终端UE指示随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系之前,所述方法还包括:
通过以下至少之一方式配置所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系:
为不同的统一接入控制分类UACC配置相同或不同的随机接入基本参数和/或随机接入基本参数的补偿参数;
配置一套或多套随机接入基本参数和/或随机接入基本参数的补偿参数,并且针对每套随机接入基本参数和/或随机接入基本参数的补偿参数配置适用的统一接入控制分类UACC标识;
为不同的统一接入控制分类UACC配置相同或不同的随机接入基本参数和/或随机接入基本参数的补偿参数配置标识,其中,所述配置标识用于索引到随机接入基本参数和/或随机接入基本参数的补偿参数;
配置一套基本参数和/或补偿参数,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数适用于所有统一接入控制分类UACC;
配置一套随机接入基本参数,所述随机接入基本参数对所有统一接入控制分类UACC有效,同时,为不同的统一接入控制分类UACC配置不同的随机接入基本参数的补偿参数。
在一些实施例中,在通过信令向终端UE指示随机接入基本参数和/或随机接入基本参数的补偿参数之前,所述方法还包括:
配置用户类别与随机接入基本参数和/或随机接入基本参数的补偿参数的对应关系,其中,所述对应关系用于所述UE确定业务的用户类别对应 的随机接入基本参数和/或随机接入基本参数的补偿参数。
在一些实施例中,所述用户类别包括:无线资源控制RRC连接拒绝处理策略,RRC连接释放处理策略,基于UE的接入禁止机制,UE所处的状态,不同的业务服务质量QoS需求。
在一些实施例中,所述信令为无线资源控制RRC信令、媒体接入控制层MAC信令、物理层信令、随机接入回复RAR信令,其中,所述RRC信令为系统消息或专用信令。
新一代移动通信系统(New Radio,简称为NR)中,3GPP确定引入一个全新的用户类别来进行接入控制。这个类别可以包含很多方面的因素,比如LTE中用于接入控制的呼叫类型等,以及NR中新的内容比如无线资源控制RRC连接拒绝处理策略,RRC连接释放处理策略,基于UE的接入禁止机制,UE所处的状态,不同的业务服务质量QoS需求等,3GPP根据这些因素设置不同的用户类别,每个类别都可以包含相同或不同的呼叫类型,RRC连接拒绝处理策略,RRC连接释放处理策略,基于UE的接入禁止机制,UE所处的状态,不同的业务QoS需求等。由此,引入一种实现多套随机接入信道RACH参数的设置方法,根据这个全新的用户类别,来设置RACH参数,即一种或多种用户类别,可以有一套或多套RACH参数,终端根据自身的用户类别,以及基站的配置和/或指示来进行选择采用哪一套参数。
,本申请主要描述了一种利用提前配置的统一接入控制分类Unified Access Control Category(UACC),并通过网络侧信令的控制来实现不同的分类category具有不同的RACH参数parameters的方法。
在本设计中,不同的分类Category具有不同的RACH参数,来满足不同业务的QoS需求,不同的终端类型需要不同的接入控制和处理策略等。因为UACC相对比较固定,而对于一个小区来说,每一个业务终端接入的数量,和业务总数是不断变化的,所以引入网络侧增加信令来控制接入控制分类Access Control Category里的随机接入信道参数RACH Parameter来满足变化的网络环境。
根据网络需求UACC有确定数量的数套参数配置作为补偿参数,网络侧根据当前网络环境通过信令给出一个基本参数配置,还可以包含一个补偿 参数索引号。终端根据所收到的基本参数配置和/或补偿参数索引号,通过指定的计算来获得相应RACH参数。
其中,UACC有确定数量的数套参数配置,基站通过RRC信令或者系统消息通知终端。
其中,网络侧通过信令指定一个基本参数配置,还可以包含一个补偿参数索引号,基站可以通过现有的信令比如RAR,或者系统消息通知终端,
其中,指定的计算包括但不仅限于以下计算方式:
RACH Parameters=基本参数+补偿参数;
RACH Parameters=基本参数+加权值*补偿参数
RACH Parameters=基本参数配置*补偿参数。
通过本申请实施例,在UACC中配置有限数个RACH参数配置,通过很少的网络侧信令开销,使得终端可以在多套RACH参数比如回退和功率参数中选择一套适合终端并且符合基站要求的参数,满足NR系统中,针对不同业务不同需求不同无线环境的终端可以达到不同接入效果的目的。
下面通过具体示例对本申请实施例进行详细说明。
示例1
图5是根据本申请实施例的终端在随机接入过程中获取BI参数的示意图,如图5所示,包括:
步骤1:终端在NR的小区中正常驻留后,或者在NR的小区中进入连接态以后,通过系统消息或者RRC消息获取用户类别和BI相关参数的配置,单位是ms,比如下表。其中表1的配置可以是通过不同接入控制种类来分别配置不同随机接入参数,也可以是为不同随机接入参数配置不同的接入控制类别,其表1的取值,使得不同UACC的终端在进行退避算法时,降低了不同类终端相互之间发生接入冲突的概率。表1的取值仅为例子之一,可以有其他取值方式,只要按照本申请的原则设计backoff取值即可。
表1
步骤2:终端需要发起随机接入过程时,终端自行根据统一接入控制分类(Unifier Access Control Category,简称为UACC)来确定此次发起业务的类别,根据相应所属的分类category来获取相应的RACH参数,这里是回退(以下称为BackOff)补偿参数。
或者,终端接收接入网网元,这里是eNode B(eNB)或者是gNode B(gNB)的命令获知接入类别,终端根据相应的category来获取相应的RACH参数,在这里是BackOff补偿参数。
步骤3:终端根据选择的RACH参数选择发送msg1的时频域资源,以及使用的功率。
步骤4:终端等待接收RAR,检测到eNB或gNB通过RAR信令RAR MAC PDU告知终端回退基础参数BI和回退补偿参数BI delta;在本实施例中,Backoff基础值BI的信息和补偿参数的信息BI delta包含在向终端发送的RAR MAC PDU中。
步骤5:终端通过RAR MAC PDU中携带的BI和BI delta值来计算Preamble Retransmission回退时间。此时,如果终端在RAR response window内没有收到RAR MAC PDU时,BackOff值=0。
或者,基础参数BI和补偿参数BI delta可以一起配置在表1中,只要终端没有检测到RAR,需要进行重发时,终端自行根据自身的或者之前基 站指示的类别来获取RACH参数。
当BI,BI delta为空,所有接入种类的Backoff值=NULL+NULL=0;
当BI指示为10ms,BI delta为空,所有接入种类的BackOff值=10+NULL=10;
当BI指示为空,BI delta=5,不同接入种类的业务的BackOff值选择对应的类,进行相加获得,例如Category 1的BackOff=NULL+0=0;Category 2的BackOff=Null+8=8;以此类推;或是Category 1的BackOff=NULL+a*0=0,Category 2的BackOff=Null+a*8=8a,其中a为某固定值,以此类推;
当BI指示为10ms,BI delta=5,不同接入种类的业务的BackOff补偿值选择相应的BI delta,与BI进行相加获得,例如Category 1的BackOff=10+0=10;Category 2的BackOff=10+8=18;以此类推;或Category1的BackOff=10+a*0=10,Category 2的BackOff=10+a*8=10+8a,其中a为某固定值,以此类推。
步骤6:终端通过步骤5获得的回退值BackOff值来安排下一次preamble重传。当BackOff值等于0时,用户可以立即安排Preamble重传,当BackOff不等于0时,终端从0到BackOff时间跨度中等概率随机选择某一个时间点安排preamble重传。
步骤7:终端重新发起一次RACH过程。
示例2
步骤1:终端在NR的小区中正常驻留后,或者在NR的小区中进入连接态以后,通过系统消息或者RRC消息获取用户类别和/或BI相关参数的配置,比如下表,包含BI索引值,根据索引值,可以到相关规定中查到对应的BI具体时间。表2的取值仅为例子之一,可以有其他取值方式。
表2
BI index | |
Category 1 | 1 |
Category 2 | 2 |
Category 3 | 4 |
Category 4 | 7 |
Category 5 | 8 |
步骤2:终端需要发起随机接入过程时,终端自行根据统一接入控制分类(以下成为Unifier Access Control Category,简称UACC)来确定此次发起业务的类别,根据相应所属的category来获取相应的RACH参数,这里是回退(以下称为BackOff)补偿参数。
或者,终端接收接入网网元,这里是eNode B(eNB)或者是gNode B(gNB)的命令获知接入类别,终端根据相应的category来获取相应的RACH参数,在这里是BackOff补偿参数。
步骤3:终端根据选择的RACH参数选择发送msg1的时频域资源,以及使用的功率。
步骤4:终端等待接收RAR,检测到eNB或gNB通过RAR MAC PDU告知终端需要回退,可以只包含一个比特的指示信息。此时,如果终端在RAR response window内没有收到RAR MAC PDU时,BackOff值=0。或者,只要终端没有检测到RAR,需要进行重发时,终端自行根据自身的或者之前基站指示的类别来获取RACH参数,此时,包含BI的RAR则可以不用发送。
步骤5:终端根据步骤2确定的接入类别,通过表2获得这次接入过程需要的BI值,
例如Category 1的BI index是1,查相关规定对应10ms,因此,category1的用户,BackOff=10ms;Category 3的BI index是4,查相关规定对应40ms,因此,category3的用户,BackOff=40ms。
步骤6:终端通过步骤5获得的BackOff值来安排下一次preamble重传。当BackOff值等于0时,用户可以立即安排Preamble重传,当BackOff不等于0时,终端从0到BackOff时间跨度中等概率随机选择某一个时间点安排preamble重传。
步骤7:终端重新发起一次RACH过程。
示例3
步骤1:终端在NR的小区中正常驻留后,或者在NR的小区中进入连接态以后,通过系统消息或者RRC消息获取用户类别和/或BI相关参数的配置,比如表3-1,表3-2其中可以是通过不同接入控制种类来分别配置不同随机接入参数,例如表3-1,也可以是为不同随机接入参数配置不同的接入控制类别,例如表3-2,包含BI加权值。表3的取值仅为例子之一,可以有其他取值方式。
表3-1
表3-2
步骤2:终端需要发起随机接入过程时,终端自行根据统一接入控制分类(以下成为Unifier Access Control Category,简称UACC)来确定此次发起业务的类别,根据相应所属的category来获取相应的RACH参数,这里是回退(以下称为BackOff)补偿参数。
或者,终端接收接入网网元,这里是eNode B(eNB)或者是gNode B(gNB)的命令获知接入类别,终端根据相应的category来获取相应的RACH参数,在这里是BackOff补偿参数。
步骤3:终端根据选择的RACH参数选择发送msg1的时频域资源,以及使用的功率。
步骤4:终端等待接收RAR,检测到eNB或gNB通过RAR MAC PDU告知终端需要回退,可以只包含一个BI指示信息。此时,如果终端在RAR response window内没有收到RAR MAC PDU时,BackOff值=0。
步骤5:终端根据步骤2确定的接入类别,通过RAR中的指示比如此时为2,通过查相关规定获得backoff时间此时为20ms,通过表3获得这次接入过程需要的BI加权值,
例如Category 2的BI delta是2,因此,category2的用户,BackOff=20ms*2=40ms;Category 3的BI delta是4,因此,category3的用户,BackOff=20ms*4=80ms。
步骤6:终端通过步骤5获得的BackOff值来安排下一次preamble重传。当BackOff值等于0时,用户可以立即安排Preamble重传,当BackOff不等于0时,终端从0到BackOff时间跨度中等概率随机选择某一个时间点安排preamble重传。
步骤7:终端重新发起一次RACH过程。
示例4
图6是根据本申请实施例的终端获取随机接入过程的功率攀升参数流程图,如图6所示,包括:
步骤1:终端在NR的小区中正常驻留后,或者在NR的小区中进入连接 态以后,通过系统消息或者RRC消息获取用户类别和/或PowerRamping相关参数的配置,单位是dB,比如下表,另外,终端还通过基站获取初始传输功率配置比如preambleInitialReceivedTargetPower。根据不同category的QoS等要求,为每个category配置不同的PowerRamping参数,来区分接入的优先级。表4-1的取值仅为例子之一,可以有其他取值方式,只要按照本申请的原则设计PowerRampin取值即可。
表4-1
步骤2:终端需要发起随机接入过程时,终端自行根据统一接入控制分类(以下成为Unifier Access Control Category,简称UACC)来确定此次发起业务的类别,根据相应所属的category来获取相应的RACH参数,这里是PowerRamping补偿参数。
或者,终端接收接入网网元,这里是eNode B(eNB)或者是gNode B(gNB)的命令获知接入类别,终端根据相应的category来获取相应的RACH参数,在这里是PowerRamping补偿参数。
步骤3:终端根据选择的RACH参数选择发送msg1的时频域资源,以及使用的功率。其中,
终端根据目标接收功率preambleInitialReceivedTargetPower和 PowerRamping参数计算初始随机接入发送前导Preamble功率。假设目标接收功率preambleInitialReceivedTargetPower=-110dBm,PowerRamping采用默认的功率攀升2(也可以为功率攀升1)时,其默认参数可以通过系统消息或RRC信令告知终端机,那么各个种类终端的初始传输Preamble功率计算结果为下表4-2:
表4-2
其中,路损Pathloss是终端根据下行参考信号估计的路损,b为某固定加权值,可以事先指定。另外,将UE在首次传输就进行了功率攀升,提高了优先级高的接入种类的接入成功率。
步骤4:终端等待接收RAR,检测到eNB或gNB通过RAR MAC PDU告知终端需要回退,回退的处理参见上述实例1,2,3。或者,如果终端在RAR response window内没有收到RAR MAC PDU时。以上两种都进入重发步骤。
步骤5:终端判断符合功率攀升条件时,终端根据步骤2确定的接入类别根据对应PowerRamping对下次Preamble发射功率进行攀升,对于本实例,假设某一属于category 2的终端在重发时,当符合PowerRamping条件时,那么下一次的Preamble重传使用传输功率P*为:
P*=-110dBm+Pathloss+8+8或者P*=-110dBm+Pathloss+b*8+b*8
当终端没有超过最大重传次数,并且符合Power Ramping的条件,都可以根据UACC中对应的接入种类的PowerRamping对每次重传进行功率攀升。
步骤6:终端通过步骤5获得的功率值来安排下一次preamble重传。
步骤7:终端重新发起一次RACH过程。
示例5
图7是根据本申请实施例的终端获取随机接入过程的功率攀升参数和回退补偿参数的流程图,如图7所示,包括:
步骤1:终端在NR的小区中正常驻留后,或者在NR的小区中进入连接态以后,通过系统消息或者RRC消息获取用户类别和/或RACH parameter index配置,比如表5-1,表5-2,根据适应不同网络环境,为每个category配置不同的RACH parameters index,根据不同的index映射的不同的RACH参数,来适应不同的网络环境。表5-1,表5-2包含但不限于索引个数和映射种类,其取值仅为例子之一,可以有其他取值方式,只要按照本申请的原则设计RACH参数取值即可。
表5-1
表5-2
步骤2:终端需要发起随机接入过程时,终端自行根据统一接入控制分类(以下成为Unifier Access Control Category,简称UACC)来确定此次发起业务的类别,假设此终端属于统一接入控制分类里的Category2,根据相应所属的category来获取相应的RACH参数Index。
步骤3:根据选择的RACH参数选择发送msg1的时频域资源,以及使用的功率。其中,
终端根据目标接收功率preambleInitialReceivedTargetPower和PowerRamping参数计算初始随机接入发送前导Preamble功率。假设目标接收功率preambleInitialReceivedTargetPower=-110dBm,PowerRamping采用默认的RACH parameters 2(也可以为RACH parameter 1)时,其默认值可以通过系统消息告知用户,通过表5-2可知,对应的终端接入参数可知属于Index 2,那么通过Index 2映射的PowerRampingStep,Category2的终端preamble首次发射功率为:
-110dBm+Pathloss+10或-110dBm+Pathloss+b*10
其中路损Pathloss是终端根据下行参考信号估计的路损,b为某固定加权值,可以事先指定。另外,将UE在首次传输就进行了功率攀升,提高了优先级高的接入种类的接入成功率。
步骤4:终端等待接收RAR,检测到eNB或gNB通过RAR信令RAR MAC PDU告知终端回退基础参数BI和RACH参数所索引值;在本实施例中,Backoff基础值BI的信息和RACH parameter值包含在向终端发送的RAR MAC PDU中。
步骤5:终端通过RAR MAC PDU中携带的RACH parameter值用户所属接入控制种类通过表5-2来获取RACH parameter index,然后通过表5-1 来获得对应的BI delta和RAR MAC PDU中携带的BI基础指示值来计算Preamble Retransmission回退时间。此时,如果终端在RAR response window内没有收到RAR MAC PDU时,BackOff值为步骤3默认的RACH Paramete 2映射的index所对应的BI delta值,即2ms或2*a ms,其中a为某固定加权值。
当BI,RACH参数值为空,则终端实际的Backoff值=NULL+BI delta=2ms或Backoff=NULL+a*BI delta=2a;其中BI delta是步骤3默认RACH parameter 2的取值。
当BI指示为10ms,RACH参数值为空,终端实际的BackOff值=10+BI delta=12或Backoff=NULL+a*BI delta=2a;其中BI delta是步骤3默认RACH parameter Index 2的取值。
当BI指示为空,RACH parameter=3,终端查表5-2可知,应当采用Index为3的RACH参数,通过表5-1的映射关系可得到BI delta=4ms,则终端的实际Backoff值=Null+4=4ms,或者Backoff值=NULL+a*4=4a ms
当BI指示为10ms,RACH parameter=3,终端查表5-2可知,应当采用Index为3的RACH参数,通过表5-1的映射关系可得到BI delta=4ms,则终端的实际Backoff值=10+4=14ms,或者Backoff值=10+a*4=10+4a ms
步骤6:终端判断符合功率攀升条件时,终端根据步骤2确定的接入类别根据对应PowerRamping对下次Preamble发射功率进行攀升,对于本实例,假设某一属于category 2的终端在重发时,当符合PowerRamping条件时,那么下一次的Preamble重传使用传输功率P*为:
当终端未接收到RAR或者RAR中RACHparameterindex为空时,按步骤3默认的powerramping的取值,即RACH参数索引2映射的Pstep=10dB;
P*=-110dBm+Pathloss+10+10或者P*=-110dBm+Pathloss+b*10+b*10
当终端接收到RAR,并且被指示RACH parameterindex=3时,即RACH参数索引3映射的Pstep=12dB
P*=-110dBm+Pathloss+12+12或者P*=-110dBm+Pathloss+b*12+b*12
当终端没有超过最大重传次数,并且符合Power Ramping的条件,都 可以根据UACC中对应的接入种类的PowerRamping对每次重传进行功率攀升。
步骤6:终端通过步骤5获得的功率值和回退时间来安排下一次preamble重传。
步骤7:终端重新发起一次RACH过程。
根据本申请的另一个实施例,还提供了一种随机接入参数确定装置,图8是根据本申请实施例的随机接入参数确定装置的框图,如图8所示,包括:
获取模块82,用于获取随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系;
确定模块84,用于根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的RACH参数。
在一些实施例中,所述确定模块84,还配置为确定本次接入的统一接入控制分类UACC;
根据确定的统一接入控制分类UACC以及所述映射关系选择对应的随机接入基本参数和/或随机接入基本参数的补偿参数;
根据选择的随机接入基本参数和/或随机接入基本参数的补偿参数计算随机接入过程使用的实际参数。
在一些实施例中,所述获取模块82,包括:
确定单元,配置为确定发起业务的用户类别,根据预先配置的用户类别与随机接入基本参数和/或随机接入基本参数的补偿参数的对应关系确定所述业务的用户类别对应的随机接入基本参数和/或随机接入基本参数的补偿参数,以及通过网络侧下发的信令获取所述映射关系,其中,所述随机接入基本参数的补偿参数包括以下之一:补偿参数、补偿参数索引值、补偿参数的加权值;或者,
接收单元,用于接收网络侧下发的信令,根据所述信令获取所述随机 接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系。
在一些实施例中,所述确定单元,还配置为在需要发起随机接入过程时,根据统一接入控制分类UACC确定发起业务的用户类别;或者,
接收基站下发的信令,根据所述信令确定发起业务的用户类别。
在一些实施例中,所述确定模块84,还配置为通过以下方式之一根据选择的随机接入基本参数和/或随机接入基本参数的补偿参数计算随机接入过程使用的实际参数:
随机接入过程使用的实际参数=基本参数配置+补偿参数;
随机接入过程使用的实际参数=基本参数配置+加权值*补偿参数;
随机接入过程使用的实际参数=基本参数配置*补偿参数。
根据本申请的另一个实施例,还提供了一种随机接入参数确定装置,包括:
指示模块,配置为通过信令向终端UE指示随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系用于所述UE确定本次接入过程中使用的RACH参数。
在一些实施例中,所述装置还包括:
第一配置模块,配置为通过以下至少之一方式配置所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系:
为不同的统一接入控制分类UACC配置相同或不同的随机接入基本参数和/或随机接入基本参数的补偿参数;
配置一套或多套随机接入基本参数和/或随机接入基本参数的补偿参数,并且针对每套随机接入基本参数和/或随机接入基本参数的补偿参数配置适用的统一接入控制分类UACC标识;
为不同的统一接入控制分类UACC配置相同或不同的随机接入基本参数和/或随机接入基本参数的补偿参数配置标识,其中,所述配置标识用于索引到随机接入基本参数和/或随机接入基本参数的补偿参数;
配置一套基本参数和/或补偿参数,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数适用于所有统一接入控制分类UACC;
配置一套随机接入基本参数,所述随机接入基本参数对所有统一接入控制分类UACC有效,同时,为不同的统一接入控制分类UACC配置不同的随机接入基本参数的补偿参数。
在一些实施例中,所述装置还包括:
第二配置模块,配置为配置用户类别与随机接入基本参数和/或随机接入基本参数的补偿参数的对应关系,其中,所述对应关系用于所述UE确定业务的用户类别对应的随机接入基本参数和/或随机接入基本参数的补偿参数。
在一些实施例中,所述用户类别包括:无线资源控制RRC连接拒绝处理策略,RRC连接释放处理策略,基于UE的接入禁止机制,UE所处的状态,不同的业务服务质量QoS需求。
在一些实施例中,所述信令为无线资源控制RRC信令、媒体接入控制层MAC信令、物理层信令、随机接入回复RAR信令,其中,所述RRC信令为系统消息或专用信令。
本申请的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S11,获取随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系;
S12,根据所述随机接入基本参数和/或随机接入基本参数的补偿参数 以及所述映射关系确定本次接入过程中使用的RACH参数。
在本实施例中,上述存储介质还可以被设置为存储用于执行以下步骤的程序代码:
S21,通过信令向终端UE指示随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系用于所述UE确定本次接入过程中使用的RACH参数。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本申请的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
在本实施例中,上述程序用于执行以下步骤:
S31,获取随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系;
S32,根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的RACH参数。
在本实施例中,上述程序还用于执行以下步骤:
S41,通过信令向终端UE指示随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系用于所述UE确定本次接入过程中使用的RACH参数。
本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在两个计算装置所组成的网络上,在一些实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的两个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (27)
- 一种随机接入参数确定方法,包括:获取随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系;根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的随机接入信道RACH参数。
- 根据权利要求1所述的方法,其中,根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的RACH参数包括:确定本次接入的统一接入控制分类UACC;根据确定的统一接入控制分类UACC以及所述映射关系选择对应的随机接入基本参数和/或随机接入基本参数的补偿参数;根据选择的随机接入基本参数和/或随机接入基本参数的补偿参数计算随机接入过程使用的实际参数。
- 根据权利要求2所述的方法,其中,根据以下因素至少之一确定本次接入的统一接入控制分类UACC:本次发起的业务,终端UE的优先级,UE的签约信息或分类,本次发起的业务所属切片信息。
- 根据权利要求3所述的方法,其中,所述信令为无线资源控制RRC信令、媒体接入控制层MAC信令、物理层信令、随机接入回复RAR信令,其中,所述RRC信令为系统消息或专用信令。
- 根据权利要求2所述的方法,其中,通过以下方式之一根据选择的随机接入基本参数和/或随机接入基本参数的补偿参数计算随 机接入过程使用的实际参数:随机接入过程使用的实际参数=基本参数配置+补偿参数;随机接入过程使用的实际参数=基本参数配置+加权值*补偿参数;随机接入过程使用的实际参数=基本参数配置*补偿参数。
- 根据权利要求1所述的方法,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系是网络侧通过以下之一方式或多种方式配置的:为不同的统一接入控制分类UACC配置相同或不同的随机接入基本参数和/或随机接入基本参数的补偿参数;配置一套或多套随机接入基本参数和/或随机接入基本参数的补偿参数,并且针对每套随机接入基本参数和/或随机接入基本参数的补偿参数配置适用的统一接入控制分类UACC标识;为不同的统一接入控制分类UACC配置相同或不同的随机接入基本参数和/或随机接入基本参数的补偿参数配置标识,其中,所述配置标识用于索引到随机接入基本参数和/或随机接入基本参数的补偿参数;配置一套基本参数和/或补偿参数,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数适用于所有统一接入控制分类UACC;配置一套随机接入基本参数,所述随机接入基本参数对所有统一接入控制分类UACC有效,同时,为不同的统一接入控制分类UACC配置不同的随机接入基本参数的补偿参数。
- 根据权利要求1所述的方法,其中,获取随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系包括:确定发起业务的用户类别,根据预先配置的用户类别与随机接入基本参数和/或随机接入基本参数的补偿参数的对应关系确定所述业务的用户类别对应的随机接入基本参数和/或随机接入基本参数的补偿参数,以及通过网络侧下发的信令获取所述映射关系,其中,所述随机接入基本参数的补偿参数包括以下之一:补偿参数、补偿参数索引值、补偿参数的加权值;或者,接收网络侧下发的信令,根据所述信令获取所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系。
- 根据权利要求7所述的方法,其中,所述确定发起业务的用户类别包括:在需要发起随机接入过程时,根据统一接入控制分类UACC确定发起业务的用户类别;或者,接收基站下发的信令,根据所述信令确定发起业务的用户类别。
- 根据权利要求8所述的方法,其中,所述用户类别包括:无线资源控制RRC连接拒绝处理策略,RRC连接释放处理策略,基于UE的接入禁止机制,UE所处的状态,不同的业务服务质量QoS需求。
- 根据权利要求1所述的方法,其中,所述实际参数包括以下至少之一:回退参数,功率攀升参数,前导Preamble最大尝试次数,RAR窗口大小,RACH初始发射功率。
- 根据权利要求10所述的方法,其中,所述方法还包括:接收基站下发的信令,根据所述信令获取随机接入过程的功率攀升参数,其中,所述功率攀升参数用于指示接入的优先级;根据所述功率攀升参数确定下一次随机接入过程重传的传输功率。
- 根据权利要求1至11中任一项所述的方法,其中,在根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的RACH参数之后,所述方法还包括:根据确定的RACH参数选择发送消息的时频域资源以及使用的功率。
- 一种随机接入参数确定方法,包括:通过信令向终端UE指示随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系用于所述UE确定本次接入过程中使用的随机接入信道RACH参数。
- 根据权利要求13所述的方法,其中,在通过信令向终端UE指示随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系之前,所述方法还包括:通过以下至少之一方式配置所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系:为不同的统一接入控制分类UACC配置相同或不同的随机接入基本参数和/或随机接入基本参数的补偿参数;配置一套或多套随机接入基本参数和/或随机接入基本参数的补偿参数,并且针对每套随机接入基本参数和/或随机接入基本参数的补偿参数配置适用的统一接入控制分类UACC标识;为不同的统一接入控制分类UACC配置相同或不同的随机接入基本参数和/或随机接入基本参数的补偿参数配置标识,其中,所述配置标识用于索引到随机接入基本参数和/或随机接入基本参数的补偿参数;配置一套基本参数和/或补偿参数,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数适用于所有统一接入控制分类UACC;配置一套随机接入基本参数,所述随机接入基本参数对所有统一接入控制分类UACC有效,同时,为不同的统一接入控制分类UACC配置不同的随机接入基本参数的补偿参数。
- 根据权利要求13所述的方法,其中,在通过信令向终端UE指示随机接入基本参数和/或随机接入基本参数的补偿参数之前,所述方法还包括:配置用户类别与随机接入基本参数和/或随机接入基本参数的补偿参数的对应关系,其中,所述对应关系用于所述UE确定业务的用户类别对应的随机接入基本参数和/或随机接入基本参数的补偿参数。
- 根据权利要求15所述的方法,其中,所述用户类别包括:无线资源控制RRC连接拒绝处理策略,RRC连接释放处理策略,基于UE的接入禁止机制,UE所处的状态,不同的业务服务质量QoS需求。
- 根据权利要求13至16中任一项所述的方法,其中,所述信令为无线资源控制RRC信令、媒体接入控制层MAC信令、物理层信令、随机接入回复RAR信令,其中,所述RRC信令为系统消息或专用信令。
- 一种随机接入参数确定装置,包括:获取模块,用于获取随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系;确定模块,用于根据所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系确定本次接入过程中使用的随机接入信道RACH参数。
- 根据权利要求18所述的装置,其中,所述确定模块,还用于确定本次接入的统一接入控制分类UACC;根据确定的统一接入控制分类UACC以及所述映射关系选择对应的随机接入基本参数和/或随机接入基本参数的补偿参数;根据选择的随机接入基本参数和/或随机接入基本参数的补偿参数计算随机接入过程使用的实际参数。
- 根据权利要求19所述的装置,其中,所述确定模块,还用于通过以下方式之一根据选择的随机接入基本参数和/或随机接入基本参数的补偿参数计算随机接入过程使用的实际参数:随机接入过程使用的实际参数=基本参数配置+补偿参数;随机接入过程使用的实际参数=基本参数配置+加权值*补偿参数;随机接入过程使用的实际参数=基本参数配置*补偿参数。
- 根据权利要求18所述的装置,其中,所述获取模块,包括:确定单元,用于确定发起业务的用户类别,根据预先配置的用户类别与随机接入基本参数和/或随机接入基本参数的补偿参数的对应关系确定所述业务的用户类别对应的随机接入基本参数和/或随机接入基本参数的补偿参数,以及通过网络侧下发的信令获取所述映射关系,其中,所述随机接入基本参数的补偿参数包括以下之一:补偿参数、补偿参数索引值、补偿参数的加权值;或者,接收单元,用于接收网络侧下发的信令,根据所述信令获取所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系。
- 根据权利要求21所述的装置,其中,所述确定单元,还用于在需要发起随机接入过程时,根据统一接入控制分类UACC确定发起业务的用户类别;或者,接收基站下发的信令,根据所述信令确定发起业务的用户类别。
- 一种随机接入参数确定装置,包括:指示模块,配置为通过信令向终端UE指示随机接入基本参数和/或随机接入基本参数的补偿参数,以及所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数以及所述映射关系用于所述UE确定本次接入过程中使用的随机接入信道RACH参数。
- 根据权利要求23所述的装置,其中,所述装置还包括:第一配置模块,配置为通过以下至少之一方式配置所述随机接入基本参数和/或随机接入基本参数的补偿参数与统一接入控制分类UACC的映射关系:为不同的统一接入控制分类UACC配置相同或不同的随机接入基本参数和/或随机接入基本参数的补偿参数;配置一套或多套随机接入基本参数和/或随机接入基本参数的补偿参数,并且针对每套随机接入基本参数和/或随机接入基本参数的补偿参数配置适用的统一接入控制分类UACC标识;为不同的统一接入控制分类UACC配置相同或不同的随机接入基本参数和/或随机接入基本参数的补偿参数配置标识,其中,所述配置标识用于索引到随机接入基本参数和/或随机接入基本参数的补偿参数;配置一套基本参数和/或补偿参数,其中,所述随机接入基本参数和/或随机接入基本参数的补偿参数适用于所有统一接入控制分类UACC;配置一套随机接入基本参数,所述随机接入基本参数对所有统一接入控制分类UACC有效,同时,为不同的统一接入控制分类UACC配 置不同的随机接入基本参数的补偿参数。
- 根据权利要求23所述的装置,其中,所述装置还包括:第二配置模块,配置为配置用户类别与随机接入基本参数和/或随机接入基本参数的补偿参数的对应关系,其中,所述对应关系用于所述UE确定业务的用户类别对应的随机接入基本参数和/或随机接入基本参数的补偿参数。
- 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至12、13至17中任一项所述的方法。
- 一种处理器,其中,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至12、13至17中任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18862762.4A EP3691393A4 (en) | 2017-09-28 | 2018-09-03 | DIRECT ACCESS PARAMETER DETERMINATION METHOD AND DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710901419.8 | 2017-09-28 | ||
CN201710901419.8A CN109587812B (zh) | 2017-09-28 | 2017-09-28 | 随机接入参数确定方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2019062481A2 true WO2019062481A2 (zh) | 2019-04-04 |
WO2019062481A3 WO2019062481A3 (zh) | 2019-05-23 |
Family
ID=65900666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/103856 WO2019062481A2 (zh) | 2017-09-28 | 2018-09-03 | 随机接入参数确定方法及装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3691393A4 (zh) |
CN (1) | CN109587812B (zh) |
WO (1) | WO2019062481A2 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111786848A (zh) * | 2020-06-02 | 2020-10-16 | 北京电信技术发展产业协会 | 5g终端统一接入控制的协议一致性测试方法和系统 |
US20210076303A1 (en) * | 2018-05-17 | 2021-03-11 | Huawei Technologies Co., Ltd. | Access control method, communications device, and base station |
WO2023220910A1 (en) * | 2022-05-17 | 2023-11-23 | Qualcomm Incorporated | Four-step rach procedure for energy harvesting user equipment |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113038585B (zh) * | 2019-12-24 | 2022-01-25 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
CN113079580B (zh) * | 2020-01-03 | 2022-11-25 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
WO2022006828A1 (zh) * | 2020-07-09 | 2022-01-13 | Oppo广东移动通信有限公司 | 无线通信方法和设备 |
CN117675149A (zh) * | 2020-09-27 | 2024-03-08 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
CN114698061A (zh) * | 2020-12-31 | 2022-07-01 | 展讯通信(上海)有限公司 | 一种网络接入的方法、通信装置、芯片及模组设备 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2663162A1 (en) * | 2006-10-03 | 2008-04-10 | Qualcomm Incorporated | Random access signaling transmission for system access in wireless communication |
MY164719A (en) * | 2010-02-12 | 2018-01-30 | Interdigital Patent Holdings Inc | Method and apparatus for optimizing uplink random access channel transmission |
KR101449823B1 (ko) * | 2010-05-02 | 2014-10-08 | 엘지전자 주식회사 | 무선 통신 시스템에서 랜덤접속 절차를 수행하는 방법 및 장치 |
CN102291836B (zh) * | 2010-06-21 | 2016-01-20 | 中兴通讯股份有限公司 | 一种随机接入控制方法及系统 |
CN102378389B (zh) * | 2010-08-20 | 2015-09-16 | 中兴通讯股份有限公司 | 一种物理随机接入信道的接入方法和装置 |
CN102761933B (zh) * | 2011-04-29 | 2018-04-10 | 中兴通讯股份有限公司 | Eab处理方法及装置、接入处理方法、装置及系统 |
CN107041014A (zh) * | 2016-02-03 | 2017-08-11 | 中国移动通信集团公司 | 一种随机接入方法、基站和终端 |
-
2017
- 2017-09-28 CN CN201710901419.8A patent/CN109587812B/zh active Active
-
2018
- 2018-09-03 WO PCT/CN2018/103856 patent/WO2019062481A2/zh unknown
- 2018-09-03 EP EP18862762.4A patent/EP3691393A4/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210076303A1 (en) * | 2018-05-17 | 2021-03-11 | Huawei Technologies Co., Ltd. | Access control method, communications device, and base station |
US11641616B2 (en) * | 2018-05-17 | 2023-05-02 | Huawei Technologies Co., Ltd. | Access control method, communications device, and base station |
CN111786848A (zh) * | 2020-06-02 | 2020-10-16 | 北京电信技术发展产业协会 | 5g终端统一接入控制的协议一致性测试方法和系统 |
WO2023220910A1 (en) * | 2022-05-17 | 2023-11-23 | Qualcomm Incorporated | Four-step rach procedure for energy harvesting user equipment |
Also Published As
Publication number | Publication date |
---|---|
CN109587812A (zh) | 2019-04-05 |
WO2019062481A3 (zh) | 2019-05-23 |
EP3691393A4 (en) | 2021-07-07 |
EP3691393A2 (en) | 2020-08-05 |
CN109587812B (zh) | 2022-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10750506B2 (en) | Re-contention-based co-existence on a shared communication medium | |
EP3205137B1 (en) | Mixed-mode medium access control (mac) on a shared communication medium | |
EP3338504B1 (en) | Re-contention-based co-existence on a shared communication medium | |
US10581572B2 (en) | Autonomous uplink transmissions on a shared communication medium | |
WO2019062481A2 (zh) | 随机接入参数确定方法及装置 | |
AU2016308372B2 (en) | Re-contention-based co-existence on a shared communication medium | |
US11134514B2 (en) | Random access method, network device, and terminal device | |
US9445407B2 (en) | Dynamic setting of transmission time in a contention based wireless system | |
US20240251421A1 (en) | Systems and methods for slot offset information management | |
US20220369388A1 (en) | Method and device for random access in wireless communication system | |
CN118104344A (zh) | 通信方法、装置、设备、芯片、存储介质、产品及程序 | |
US12108449B2 (en) | System and method for multiple parallel messaging indication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018862762 Country of ref document: EP Effective date: 20200428 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18862762 Country of ref document: EP Kind code of ref document: A2 |