[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019049875A1 - アルカリ蓄電池用正極活物質 - Google Patents

アルカリ蓄電池用正極活物質 Download PDF

Info

Publication number
WO2019049875A1
WO2019049875A1 PCT/JP2018/032814 JP2018032814W WO2019049875A1 WO 2019049875 A1 WO2019049875 A1 WO 2019049875A1 JP 2018032814 W JP2018032814 W JP 2018032814W WO 2019049875 A1 WO2019049875 A1 WO 2019049875A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
cobalt
electrode active
active material
alkaline storage
Prior art date
Application number
PCT/JP2018/032814
Other languages
English (en)
French (fr)
Inventor
太樹 安田
未来夫 畑
Original Assignee
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社田中化学研究所 filed Critical 株式会社田中化学研究所
Priority to US16/637,078 priority Critical patent/US20200251730A1/en
Priority to JP2019540972A priority patent/JP7168572B2/ja
Priority to CN201880059062.6A priority patent/CN111066183B/zh
Publication of WO2019049875A1 publication Critical patent/WO2019049875A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material used for a positive electrode of an alkaline storage battery, in particular, a positive electrode active material for an alkaline storage battery having an excellent utilization factor even under high temperature conditions.
  • alkaline storage batteries have been used in a wide range of fields such as vehicles because of characteristics such as high current discharge and excellent low temperature characteristics and long life.
  • a positive electrode active material of an alkaline storage battery for example, nickel hydroxide particles are used.
  • alkaline storage batteries are also required to have improved utilization as with other storage batteries, and are also required to be able to exhibit excellent utilization even under high-temperature use conditions.
  • Patent Document 1 Moreover, in order to suppress the self-discharge of the alkaline storage battery, the surface of the nickel hydroxide particles is coated with a cobalt oxyhydroxide layer, and the cobalt oxyhydroxide layer has a cobalt valence of 2.1 to 3.0.
  • a positive electrode active material of an alkaline storage battery composed of a compound has been proposed (Patent Document 2).
  • an object of the present invention is to provide a positive electrode active material for an alkaline storage battery having an excellent utilization factor even under high temperature conditions.
  • An aspect of the present invention is a positive electrode active material for an alkaline storage battery, comprising nickel-containing hydroxide particles containing dissolved cobalt and a coating layer containing cobalt that coats the hydroxide particles.
  • X-ray diffraction measurement has a diffraction peak between diffraction angles of 65.degree. And 66.degree. Represented by 2.theta. Of the diffraction pattern, and the content of trivalent cobalt in the solid-solved cobalt is 30%.
  • the cumulative volume percentage of the positive electrode active material for an alkaline storage battery relative to the content of the trivalent cobalt in solid solution of the positive electrode active material for an alkaline storage battery, which is not less than mass%
  • the ratio of the content of trivalent cobalt in solid solution of the positive electrode active material particles for alkaline storage batteries having the following particle diameter ( ⁇ D10) is 0.80 or more and 1.20 or less, and the cumulative volume percentage is 90.0% by volume More than secondary particle diameter (
  • the positive electrode active material particles for an alkaline storage battery of D90) the proportion of the content of solid-dissolved trivalent cobalt is a positive electrode active material for an alkaline storage battery is 0.80 to 1.20.
  • An aspect of the present invention is the positive electrode active material for an alkaline storage battery, wherein the diffraction peak is derived from a trivalent cobalt compound represented by CoHO 2 .
  • An aspect of the present invention is a positive electrode having the above-described positive electrode active material for an alkaline storage battery.
  • An aspect of the present invention is an alkaline storage battery provided with the above-described positive electrode.
  • a secondary volume with a cumulative volume percentage of 10.0% by volume or less of the positive electrode active material for alkaline storage battery relative to the content of trivalent cobalt in solid solution of the positive electrode active material for alkaline storage battery The ratio of the content of trivalent cobalt in solid solution of the particle diameter ( ⁇ D10) of the positive electrode active material particles for alkaline storage batteries is 0.80 to 1.20, and the cumulative volume percentage is 90.0% by volume or more
  • the use of the positive electrode active material particles for alkaline storage batteries having the following particle diameter ( ⁇ D90) is excellent even under high temperature conditions because the ratio of the content of trivalent cobalt in solid solution is 0.80 or more and 1.20 or less
  • the positive electrode active material for an alkaline storage battery having a rate can be obtained.
  • the secondary particle diameter of the positive electrode active material for an alkaline storage battery having a particle diameter] / cumulative volume percentage of 50.0% by volume is 0.85 or more, so that the space between the positive electrode active material for an alkaline storage battery is reduced.
  • the utilization factor at high temperature is excellent, and a good volume capacity can be obtained.
  • the positive electrode active material for an alkaline storage battery of the present invention comprises a plurality of primary particles having nickel-containing hydroxide particles containing solid-dissolved cobalt and a cobalt-containing coating layer covering the hydroxide particles.
  • a plurality of positive electrode active material particles for an alkaline storage battery formed by aggregation of particles are contained.
  • the positive electrode active material for an alkaline storage battery has a diffraction peak between diffraction angles of 65 ° and 66 ° represented by 2 ⁇ of a diffraction pattern obtained by X-ray diffraction measurement.
  • the content of trivalent cobalt in cobalt dissolved in nickel hydroxide particles is 30% by mass or more, and nickel as a positive electrode active material for an alkaline storage battery
  • the ratio of the content of trivalent cobalt dissolved in nickel hydroxide particles in the positive electrode active material particles for use is 0.80 or more and 1.20 or less, and the cumulative volume percentage is 90.0% by volume or more
  • the ratio of the content of trivalent cobalt in solid solution in the nickel-containing hydroxide particles of the positive electrode active material particles for an alkaline storage battery having the next particle diameter ( ⁇ D90) is 0.80 or more and 1.20 or less.
  • the positive electrode active material particles for an alkaline storage battery constituting the positive electrode active material for an alkaline storage battery of the present invention have hydroxide particles containing nickel and a coating layer containing cobalt, which covers the hydroxide particles. And has a diffraction peak between diffraction angles of 65 ° and 66 ° represented by 2 ⁇ of a diffraction pattern obtained by X-ray diffraction measurement. Further, the hydroxide particles containing nickel contain cobalt in solid solution.
  • the positive electrode active material particles for alkaline storage batteries have, as core particles, particles of a hydroxide containing nickel (Ni), and the core particles are coated with a covering layer containing cobalt.
  • a positive electrode active material particle for an alkaline storage battery is a particle having a core-shell structure, and is a cobalt-containing compound-coated nickel-containing hydroxide having a core of hydroxide particles containing nickel and a shell of a compound containing cobalt. It has become a particle.
  • the shape of the said positive electrode active material particle for alkaline storage batteries is not specifically limited, For example, substantially spherical shape can be mentioned.
  • the cobalt-containing compound-coated nickel-containing hydroxide particles which are positive electrode active material particles for alkaline storage batteries, are embodiments of secondary particles formed by aggregation of a plurality of primary particles.
  • the particle size distribution of the positive electrode active material for an alkaline storage battery of the present invention is not particularly limited, for example, the lower limit value of the secondary particle diameter D50 (hereinafter sometimes referred to as "D50") having a cumulative volume percentage of 50 vol. 2.0 ⁇ m is preferable, 3.0 ⁇ m is more preferable, and 4.0 ⁇ m is particularly preferable.
  • the upper limit value of D50 of the cobalt-containing compound-coated nickel-containing hydroxide particles is preferably 10.0 ⁇ m from the viewpoint of the balance between the improvement of density and securing of the contact surface with the electrolyte. In order to further improve the utilization rate of the above, 8.0 ⁇ m is particularly preferable.
  • the lower limit value and the upper limit value described above can be arbitrarily combined.
  • the BET specific surface area of the cobalt-containing compound-coated nickel-containing hydroxide particles is not particularly limited, but, for example, the lower limit value is 5.0 m 2 in terms of the balance between improving the density and securing the contact surface with the electrolyte. / g are preferred, particularly preferably 10.0 m 2 / g, the upper limit is preferably 30.0 m 2 / g, 25.0 m 2 / g is particularly preferred.
  • the lower limit value and the upper limit value described above can be arbitrarily combined.
  • the tap density of the cobalt-containing compound-coated nickel-containing hydroxide particles is not particularly limited, but is preferably 1.5 g / cm 3 or more, for example, from the viewpoint of improving the filling degree when used as a positive electrode active material. 7 g / cm 3 or more is particularly preferable.
  • the bulk density of the cobalt-containing compound-coated nickel-containing hydroxide particles is not particularly limited, but is preferably 0.8 g / cm 3 or more, for example, from the viewpoint of improvement of the filling degree when used as a positive electrode active material Particularly preferred is at least 3 cm 3 .
  • the positive electrode active material particles for an alkaline storage battery are cobalt-containing compound-coated nickel-containing hydroxides in which a cobalt-containing coating layer is formed on the surface of nickel-containing hydroxide particles containing solid-dissolved cobalt. It is an object particle.
  • the coating layer containing cobalt contains a compound containing cobalt. Also, the coating layer containing cobalt may cover the entire surface of the hydroxide particle containing nickel, or may cover a partial region of the surface of the hydroxide particle containing nickel.
  • the mass ratio of cobalt in the coating layer containing cobalt in the cobalt-containing compound-coated nickel-containing hydroxide particles is not particularly limited, but the lower limit thereof is 1 from the viewpoint of further improving the utilization under high temperature conditions.
  • the content is preferably 0% by mass, particularly preferably 2.0% by mass.
  • the upper limit of the mass ratio of cobalt in the coating layer containing cobalt is preferably 5.0 mass%, particularly preferably 4.0 mass%.
  • the lower limit value and the upper limit value described above can be arbitrarily combined.
  • cobalt of the coating layer containing cobalt is trivalent cobalt.
  • cobalt oxyhydroxide CoHO 2
  • cobalt oxyhydroxide may be simply referred to as “cobalt oxyhydroxide” or “CoHO 2 ”. Can be mentioned.
  • the coating layer containing trivalent cobalt has a diffraction peak between diffraction angles of 65 ° and 66 ° represented by 2 ⁇ of a diffraction pattern obtained by X-ray diffraction measurement.
  • the diffraction peak is mainly derived from cobalt oxyhydroxide (CoHO 2 ).
  • the hydroxide particles containing nickel (Ni) containing solid solution cobalt is not particularly limited as long as it contains nickel (Ni) and cobalt solid solution, but, for example, cobalt hydroxide in nickel hydroxide Particles made by solid solution, at least one transition selected from the group consisting of nickel (Ni) and other transition metal elements (eg, magnesium (Mg), manganese (Mn), zinc (Zn) and aluminum (Al))
  • the particle etc. in which cobalt carried out solid solution can be mentioned to the hydroxide containing metal element).
  • the content of nickel in hydroxide particles containing nickel in which cobalt is dissolved in solid solution in the cobalt-containing compound-coated nickel-containing hydroxide particles is not particularly limited, but the lower limit thereof is preferably 40% by mass, 45 % By mass is more preferable, and 50% by mass is particularly preferable.
  • the upper limit value of the content of nickel in hydroxide particles containing nickel in which cobalt is dissolved in solid solution in the cobalt-containing compound-coated nickel-containing hydroxide particles is preferably 60 mass%, particularly 57 mass% preferable.
  • the lower limit value and the upper limit value described above can be arbitrarily combined.
  • the amount of cobalt dissolved in the nickel-containing hydroxide particles in the cobalt-containing compound-coated nickel-containing hydroxide particles is not particularly limited, but the lower limit thereof further improves the utilization factor under high temperature conditions 0.10 mass% is preferable, 0.20 mass% is more preferable, and 0.50 mass% is especially preferable.
  • the upper limit of the amount of cobalt solid-solved in the particles of the nickel-containing hydroxide is preferably 5.0% by mass, more preferably 3.0% by mass Preferably, 2.0% by mass is particularly preferred.
  • the lower limit value and the upper limit value described above can be arbitrarily combined.
  • the positive electrode active material for an alkaline storage battery of the present invention at least 30% by mass of cobalt dissolved in nickel hydroxide particles is trivalent cobalt in view of the utilization factor under high temperature conditions.
  • the lower limit value of the trivalent cobalt content of cobalt dissolved in nickel hydroxide particles is preferably 35% by mass, 40% by mass from the viewpoint of further improving the utilization under high temperature conditions. Is particularly preferred.
  • the upper limit of the content of trivalent cobalt among cobalt dissolved in nickel hydroxide particles is preferably 100% by mass from the viewpoint of obtaining the utilization under further excellent high temperature conditions, 70 mass% is particularly preferable in terms of facilitating the oxidation treatment step from divalent cobalt to trivalent cobalt.
  • the lower limit value and the upper limit value described above can be arbitrarily combined.
  • the hydroxide particles containing nickel are also similar to the coating layer containing cobalt oxyhydroxide (CoHO 2 ) In addition, it has a diffraction peak between diffraction angles of 65 ° and 66 ° represented by 2 ⁇ of a diffraction pattern obtained by X-ray diffraction measurement.
  • cobalts dissolved in hydroxide particles containing nickel examples include divalent cobalt.
  • cobalt hydroxide (Co (OH) 2 ) can be mentioned, for example.
  • the shape of the nickel-containing hydroxide particles in which cobalt is solid-solved is not particularly limited, and may be, for example, substantially spherical.
  • the positive electrode active material for an alkaline storage battery of the present invention having a plurality of cobalt-containing compound-coated nickel-containing hydroxide particles, trivalent cobalt solid-solved in nickel-containing hydroxide particles of a positive electrode active material for an alkaline storage battery
  • ⁇ D10 where cumulative volume percentage is 10.0 volume% or less
  • the ratio of the content of trivalent cobalt solid-solved in hydroxide particles containing nickel is 0.80 or more and 1.20 or less, and it is 0.90 from the viewpoint of obtaining the utilization under excellent high temperature conditions. More than 1.15 is preferred.
  • the cumulative volume percentage of the positive electrode active material for alkaline storage batteries is 90.0% by volume or more with respect to the content of trivalent cobalt solid-solved in hydroxide particles containing nickel, of the positive electrode active material for alkaline storage batteries
  • the ratio of the content of trivalent cobalt solid-solved in the nickel-containing hydroxide particles in secondary particle diameter D D90 (hereinafter sometimes referred to as " ⁇ D90" or “D90 or more”) is 0. It is preferably 80 or more and 1.20 or less, and more preferably 0.90 or more and 1.15 or less from the viewpoint of obtaining an excellent utilization factor under high temperature conditions.
  • the content of trivalent cobalt among cobalt dissolved in nickel hydroxide particles in D10 or less is not particularly limited, but is the same as the content of trivalent cobalt in the positive electrode active material for alkaline storage batteries or Approximately the same degree is preferable, and therefore, the lower limit thereof is preferably 30% by mass, more preferably 35% by mass, and particularly preferably 40% by mass, from the viewpoint of further improving the utilization factor under high temperature conditions.
  • the upper limit thereof is preferably 100% by mass, and particularly preferably 70% by mass from the viewpoint of further facilitating the oxidation treatment step from divalent cobalt to trivalent cobalt.
  • the lower limit value and the upper limit value described above can be arbitrarily combined.
  • the content of trivalent cobalt among cobalt dissolved in nickel hydroxide particles in D90 or more is not particularly limited, but the content of positive electrode active material for alkaline storage batteries and trivalent cobalt in D10 or less
  • the lower limit is preferably 30% by mass, more preferably 35% by mass, and particularly preferably 40% by mass, from the viewpoint of further improving the utilization under high temperature conditions.
  • the upper limit thereof is preferably 100% by mass, and particularly preferably 70% by mass from the viewpoint of further facilitating the oxidation treatment step from divalent cobalt to trivalent cobalt.
  • the lower limit value and the upper limit value described above can be arbitrarily combined.
  • the positive electrode active material for an alkaline storage battery of the present invention is an index showing the spread of particle size distribution [(Secondary particle diameter D90 with cumulative volume percentage of 90% by volume (hereinafter sometimes referred to as "D90")-cumulative volume
  • the secondary particle diameter D10 (hereinafter sometimes referred to as "D10") / D50] having a percentage of 10% by volume is not particularly limited, but when the positive electrode active material for alkaline storage batteries is used as a positive electrode, the positive electrode active material In the alkaline storage battery using the positive electrode active material as a positive electrode by reducing the gap between the positive electrode active material and the positive electrode active material, 0.85 or more is preferable from the viewpoint of being able to obtain excellent utilization at high temperatures and good volume capacity. 90 or more is especially preferable.
  • the upper limit value of [(D90-D10) / D50] is not particularly limited, and an example is 1.20.
  • a hydroxide particle containing nickel in which cobalt is dissolved is prepared, and a suspension containing hydroxide particles containing nickel in which cobalt is dissolved (for example, water suspension)
  • a suspension containing hydroxide particles containing nickel in which cobalt is dissolved for example, water suspension
  • a gas containing oxygen is supplied to the suspension containing the substance particles in a microbubble generator to oxidize cobalt which has dissolved in the solid solution and cobalt contained in the coating layer.
  • a salt solution eg, a sulfate solution
  • nickel, cobalt and another transition metal element eg, magnesium, manganese, zinc and / or aluminum
  • a complexing agent e.g, nickel-containing hydroxide particles
  • nickel and other transition metal elements for example, magnesium, manganese, zinc and / or aluminum
  • particles in which divalent cobalt is solid-solved in a hydroxide containing the (i) and (ii) to obtain a slurry-like suspension containing hydroxide particles containing nickel As mentioned above, water is used as a solvent for the suspension, for example.
  • the complexing agent is not particularly limited as long as it can form a complex with an ion of nickel, cobalt or the other transition metal element in an aqueous solution, and examples thereof include ammonium ion donors (ammonium sulfate, ammonium chloride, Ammonium carbonate, ammonium fluoride, etc.), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracildiacetic acid, and glycine.
  • alkali metal hydroxide for example, sodium hydroxide, potassium hydroxide
  • the complexing agent When the complexing agent is continuously supplied to the reaction vessel in addition to the above-mentioned salt solution, nickel, cobalt and the other transition metal elements are reacted to produce hydroxide particles containing nickel solid-solved in cobalt. .
  • the temperature of the reaction vessel is controlled, for example, in the range of 10 ° C. to 80 ° C., preferably 20 to 70 ° C.
  • the pH value in the reaction vessel is, for example, pH 9 to pH 13 at 25 ° C.
  • the substance in the reaction vessel is appropriately stirred while controlling preferably in the range of pH 11 to 13.
  • the reaction vessel may include, for example, a continuous system that overflows to separate the formed hydroxide particles containing nickel.
  • a cobalt salt solution eg, an aqueous solution of cobalt sulfate, etc.
  • other transition metal elements eg, magnesium,
  • a salt solution of manganese, zinc and / or aluminum for example, a sulfate solution
  • an alkaline solution for example, an aqueous solution of sodium hydroxide or the like
  • cobalt compound such as cobalt hydroxide having a divalent valence of cobalt as a main component is formed.
  • the pH of the step of forming the coating is preferably maintained in the range of pH 9 to 13 on a 25 ° C. basis.
  • hydroxide particles containing nickel on which a coating layer containing cobalt is formed can be obtained.
  • the hydroxide particle containing nickel in which the coating layer containing cobalt was formed can be obtained as a slurry-like suspension.
  • the gas containing oxygen is supplied in the microbubble generator in the presence of the oxidation catalyst to perform the coating
  • the divalent cobalt in the layer-formed nickel-containing hydroxide particles is oxidized to trivalent cobalt.
  • Examples of the oxidation catalyst may include, for example, compounds containing at least one metal selected from the group consisting of iron, nickel and chromium and / or ions of the metal, and specific examples include stainless steel. Can.
  • the average diameter of the oxygen-containing gas (bubbles) supplied by the microbubble generator is not particularly limited, but is, for example, preferably 1.0 ⁇ m or more and 50 ⁇ m or less, and particularly preferably 2.0 ⁇ m or more and 30 ⁇ m or less.
  • the average diameter of the bubbles within the above range, it is possible not only to oxidize divalent cobalt contained in the coating layer to trivalent cobalt, but also to form a solid solution in nickel hydroxide particles. Cobalt can also be oxidized to trivalent cobalt more reliably.
  • the gas containing oxygen include a gas containing oxygen, and a gas containing oxygen such as air and other elements.
  • YJ nozzle of Enviro-Vision, Inc. can be mentioned, for example.
  • the amount of oxygen (volume) of the oxygen-containing gas supplied to the suspension containing the hydroxide particles in which the coating layer is formed relative to the volume of the suspension containing hydroxide particles in which the coating layer is formed
  • the ratio of is not particularly limited, but is adjusted to, for example, 1.00 or more and 2.55 or less. By setting it as the said range, bivalent cobalt solid-solved in the hydroxide particle containing nickel can be oxidized to trivalent cobalt efficiently and reliably.
  • the suspension containing the oxidized hydroxide-containing nickel-containing hydroxide particles on which the covering layer is formed is separated into a solid phase and a liquid phase to obtain a liquid phase.
  • the method may further include the step of drying the solid phase separated therefrom.
  • the solid phase may be washed with weakly alkaline water, if necessary.
  • other transition metal elements for example, ytterbium, yttrium, zirconium, tungsten, molybdenum, niobium, titanium, magnesium, etc., as needed.
  • Compounds of manganese, zinc and / or aluminum e.g. oxides
  • An alkaline storage battery is provided with the positive electrode using the positive electrode active material for alkaline storage batteries of this invention mentioned above, a negative electrode, alkaline electrolyte solution, and a separator.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the surface of the positive electrode current collector.
  • the positive electrode active material layer has a positive electrode active material for an alkaline storage battery, a binder (binding agent), and, as needed, a conductive aid.
  • the conductive additive is not particularly limited as long as it can be used for, for example, an alkaline storage battery, and metallic cobalt, cobalt oxide, etc. can be used.
  • the binder is not particularly limited, and polymer resins such as polyvinylidene fluoride (PVdF), butadiene rubber (BR), polyvinyl alcohol (PVA), carboxymethylcellulose (CMC), polytetrafluoroethylene (PTFE), etc., and A combination of these can be mentioned.
  • the positive electrode current collector include, but are not particularly limited to, punching metal, expanded metal, wire mesh, foam metal such as foam nickel, reticulated metal fiber sintered body, metal plated resin plate and the like.
  • a positive electrode active material for an alkaline storage battery for example, first, a positive electrode active material for an alkaline storage battery, a conductive support agent, a binder and water are mixed to prepare a positive electrode active material slurry. Next, the positive electrode active material slurry is filled in a positive electrode current collector by a known filling method, dried, and then rolled and fixed by a press or the like.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material formed on the surface of the negative electrode current collector.
  • the negative electrode active material is not particularly limited as long as it is usually used, and, for example, hydrogen storage alloy particles, cadmium oxide particles, cadmium hydroxide particles and the like can be used.
  • As the negative electrode current collector a conductive metal material such as nickel, aluminum, stainless steel, or the like, which is the same material as the positive electrode current collector, can be used.
  • a conductive support agent, a binder, etc. may be further added to the negative electrode active material layer as needed.
  • a conductive support agent and a binder the thing similar to what is used for the said positive electrode active material layer is mentioned.
  • the negative electrode for example, first, a negative electrode active material, and if necessary, a conductive auxiliary agent and a binder, and water are mixed to prepare a negative electrode active material slurry. Next, the negative electrode active material slurry is filled into a negative electrode current collector by a known filling method, dried, and then rolled and fixed by a press or the like.
  • water can be mentioned as a solvent, for example.
  • a solute dissolved in a solvent potassium hydroxide, sodium hydroxide, lithium hydroxide can be mentioned, for example.
  • the above solutes may be used alone or in combination of two or more.
  • the separator is not particularly limited, and examples thereof include polyolefin non-woven fabrics such as polyethylene non-woven fabrics, polypropylene non-woven fabrics, polyamide non-woven fabrics, and those obtained by subjecting them to hydrophilic treatment.
  • a suspension of cobalt hydroxide particles having no coating layer and a suspension of nickel hydroxide particles having a coating layer of cobalt hydroxide are each brought into contact with an oxidation catalyst, stainless steel, while being stirred. Further, air was supplied to carry out oxidation treatment, and cobalt hydroxide was changed to cobalt oxyhydroxide. In addition, although it becomes (gamma) -cobalt oxyhydroxide in the oxidation process which heats by adding an alkali to the said suspension, it is set as cobalt oxyhydroxide represented by chemical formula CoHO 2 by performing the said oxidation process. Can.
  • the X-ray diffraction measurement was performed on the samples of Experimental Example 1 and Experimental Example 2 and cobalt oxyhydroxide to analyze diffraction peaks.
  • the X-ray diffraction measurement was performed under the following conditions using an X-ray diffraction apparatus (Rigaku, Ultima IV).
  • X-ray CuK ⁇ / 40kV / 40mA
  • light reception open
  • scattering 8.0 mm
  • Sampling width 0.03
  • Scan speed 20 ° / min
  • Example 1 Synthesis of hydroxide particles containing nickel in solid solution of cobalt An aqueous solution of ammonium sulfate (complexing agent) and an aqueous solution of sodium hydroxide are dropped into an aqueous solution in which magnesium sulfate, cobalt sulfate and nickel sulfate are dissolved at a predetermined ratio, Stirring was continuously performed with a stirrer while maintaining the pH in the reaction vessel at 12.2 at 25 ° C. The formed hydroxide overflowed from the overflow pipe of the reaction vessel and was taken out. Each of the removed hydroxides was subjected to water washing, dehydration, and drying to obtain hydroxide particles containing nickel in which cobalt is dissolved.
  • the suspension of substance particles is brought into contact with the oxidation catalyst, stainless steel, while being stirred, and air is further supplied to the suspension in a microbubble generator (Enviro Vision Inc., “YJ nozzle”) to oxidize it. I did the processing. Further, the ratio of the volume of oxygen contained in the air to the volume of the suspension of hydroxide particles containing cobalt in which solid solution of cobalt is covered with cobalt hydroxide is 1.28, Air was supplied to the above suspension. In the above oxidation treatment, cobalt dissolved in nickel hydroxide particles and cobalt hydroxide in the covering layer were oxidized to form cobalt oxyhydroxide which is trivalent cobalt.
  • Comparative Example 1 By replacing the pH in the reaction tank with 12.2 at a liquid temperature of 25 ° C. in Example 1, the pH in the reaction tank was maintained at 12.0 with a liquid temperature of 25 ° C. A cobalt-containing compound-coated nickel-containing hydroxide particle of Comparative Example 1 having a particle size distribution different from that of Example 1 was obtained. The physical properties of the cobalt-containing compound-coated nickel-containing hydroxide particles of Comparative Example 1 are shown in Table 2 below.
  • the component composition was analyzed using an ICP emission analyzer (Perkin-Elmer, Optima (registered trademark) 8300). The value obtained by subtracting the Co content of cobalt-containing nickel-containing hydroxide particles from the Co content of the cobalt-containing compound-coated nickel-containing hydroxide particles is taken as the Co content of the coating layer.
  • the BET specific surface area was measured by a one-point BET method using a specific surface area measuring device (Muntech Inc., Macsorb (registered trademark)).
  • the classification edge distance M is 41.0 mm
  • the classification edge distance F is 30.0 mm
  • the air pressure is 0.5 Mpa.
  • the measurement particles were fed by feed air and classified.
  • D5, D10, D50, D90, and D95 were measured by a particle size distribution analyzer (Horiba, Ltd., LA-950) (the principle is a laser diffraction / scattering method). Further, the value of the particle size distribution width (D90-D10) / D50 was calculated from the measured values of D10, D50, D90.
  • the diffraction peak was analyzed by performing X-ray diffraction measurement on Example 1 and Comparative Example 1 and cobalt oxyhydroxide.
  • the X-ray diffraction measurement was performed in the same manner as in Experimental Example 1 and Experimental Example 2 above.
  • Example 1 and Comparative Example 1 As shown in FIGS. 3 and 4, in each of Example 1 and Comparative Example 1, a diffraction peak was observed between diffraction angles of 65 ° to 66 ° represented by 2 ⁇ of the diffraction pattern. Therefore, in Example 1 and Comparative Example 1, at least a part of cobalt dissolved in nickel hydroxide particles is dissolved as cobalt oxyhydroxide which is trivalent cobalt, and the coating layer is oxidized It was confirmed to have cobalt.
  • the content of trivalent cobalt in the solid solution cobalt is 30% by mass or more, and as shown in Tables 3 and 4 above, the solid content of the positive electrode active material for alkaline storage batteries
  • the ratio of the content of trivalent cobalt in solid solution of the positive electrode active material particles for alkaline storage batteries of D10 or less to the content of dissolved trivalent cobalt in the positive electrode active material for alkaline storage batteries is 0.981 (that is, , 0.80 or more and 1.20 or less)
  • the ratio of the content rate of trivalent cobalt in solid solution among the positive electrode active material particles for alkaline storage batteries of D90 or more is 1.111 (that is, 0.80 or more and 1.20 or less)
  • Example 1 which is), it was possible to obtain excellent utilization at high temperature (60 ° C.) while having excellent utilization at normal temperature (25 ° C.).
  • the value of the particle size distribution width (D90-D10) / D50 was 0.91.
  • the positive electrode active material for an alkaline storage battery of the present invention exerts an excellent utilization factor even under high temperature conditions, and thus has high utility value in the field of a positive electrode active material of an alkaline storage battery that can be used in high temperature environments such as vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

高温条件下でも優れた利用率を有するアルカリ蓄電池用正極活物質を提供する。 固溶したコバルトを含んだ、ニッケルを含む水酸化物粒子と、該水酸化物粒子を被覆する、コバルトを含む被覆層と、を有する、アルカリ蓄電池用正極活物質であって、X線回折測定で得られる回折パターンの2θで表される回折角度65°~66°の間に回折ピークを有し、前記固溶したコバルトのうち、3価のコバルトの含有率が30質量%以上であり、前記アルカリ蓄電池用正極活物質の、固溶した前記3価のコバルトの含有率に対する、前記アルカリ蓄電池用正極活物質のうち、累積体積百分率が10.0体積%以下の二次粒子径(≦D10)のアルカリ蓄電池用正極活物質粒子の、固溶した前記3価のコバルトの含有率の割合が、0.80以上1.20以下、累積体積百分率が90.0体積%以上の二次粒子径(≧D90以上)のアルカリ蓄電池用正極活物質粒子の、固溶した前記3価のコバルトの含有率の割合が、0.80以上1.20以下であるアルカリ蓄電池用正極活物質。

Description

アルカリ蓄電池用正極活物質
 本発明は、アルカリ蓄電池の正極に用いる正極活物質、特に、高温条件下でも優れた利用率を有するアルカリ蓄電池用正極活物質に関するものである。
 近年、大電流放電や低温特性に優れ、長寿命である等の特徴から、車両等、広汎な分野でアルカリ蓄電池が使用されている。アルカリ蓄電池の正極活物質としては、例えば、水酸化ニッケル粒子が使用されている。
 一方で、アルカリ蓄電池にも、他の蓄電池と同様に、利用率の向上が要求されており、また、高温の使用条件下であっても、優れた利用率を発揮できることも要求されている。
 そこで、アルカリ蓄電池の利用率を向上させるために、水酸化ニッケル粒子の表面が水酸化コバルト層で被覆され、該水酸化コバルト層のコバルトが主に2価のコバルトからなるアルカリ蓄電池の正極活物質が提案されている(特許文献1)。また、アルカリ蓄電池の自己放電を抑制するために、水酸化ニッケル粒子の表面がオキシ水酸化コバルト層で被覆され、該オキシ水酸化コバルト層のコバルト価数が2.1~3.0価のコバルト化合物からなるアルカリ蓄電池の正極活物質が提案されている(特許文献2)。
 しかし、特許文献1や特許文献2の正極活物質にて、良好な利用率と自己放電特性を有するアルカリ蓄電池は得られるものの、高温の環境下では十分な利用率が得られない場合があるという改良の余地があった。
特開平7-320735号公報 特開2014-169201号公報
 上記事情に鑑み、本発明は、高温条件下でも優れた利用率を有するアルカリ蓄電池用正極活物質を提供することを目的とする。
 本発明の態様は、固溶したコバルトを含んだ、ニッケルを含む水酸化物粒子と、該水酸化物粒子を被覆する、コバルトを含む被覆層と、を有する、アルカリ蓄電池用正極活物質であって、X線回折測定で得られる回折パターンの2θで表される回折角度65°~66°の間に回折ピークを有し、前記固溶したコバルトのうち、3価のコバルトの含有率が30質量%以上であり、前記アルカリ蓄電池用正極活物質の、固溶した前記3価のコバルトの含有率に対する、前記アルカリ蓄電池用正極活物質のうち、累積体積百分率が10.0体積%以下の二次粒子径(≦D10)のアルカリ蓄電池用正極活物質粒子の、固溶した前記3価のコバルトの含有率の割合が、0.80以上1.20以下、累積体積百分率が90.0体積%以上の二次粒子径(≧D90)のアルカリ蓄電池用正極活物質粒子の、固溶した前記3価のコバルトの含有率の割合が、0.80以上1.20以下であるアルカリ蓄電池用正極活物質である。
 本発明の態様は、前記回折ピークが、CoHOで表される3価のコバルト化合物由来であるアルカリ蓄電池用正極活物質である。
 本発明の態様は、[累積体積百分率が90.0体積%の前記アルカリ蓄電池用正極活物質の二次粒子径(D90)-累積体積百分率が10.0体積%の前記アルカリ蓄電池用正極活物質の二次粒子径(D10)]/累積体積百分率が50.0体積%の前記アルカリ蓄電池用正極活物質の二次粒子径(D50)が、0.85以上であるアルカリ蓄電池用正極活物質である。
 本発明の態様は、上記したアルカリ蓄電池用正極活物質を有する正極である。
 本発明の態様は、上記した正極を備えたアルカリ蓄電池である。
 本発明の態様によれば、アルカリ蓄電池用正極活物質の、固溶した3価のコバルトの含有率に対する、アルカリ蓄電池用正極活物質のうち、累積体積百分率が10.0体積%以下の二次粒子径(≦D10)のアルカリ蓄電池用正極活物質粒子の、固溶した3価のコバルトの含有率の割合が0.80以上1.20以下、累積体積百分率が90.0体積%以上の二次粒子径(≧D90)のアルカリ蓄電池用正極活物質粒子の、固溶した3価のコバルトの含有率の割合が0.80以上1.20以下であることにより、高温条件下でも優れた利用率を有するアルカリ蓄電池用正極活物質を得ることができる。
 本発明の態様によれば、[累積体積百分率が90.0体積%のアルカリ蓄電池用正極活物質の二次粒子径-累積体積百分率が10.0体積%のアルカリ蓄電池用正極活物質の二次粒子径]/累積体積百分率が50.0体積%のアルカリ蓄電池用正極活物質の二次粒子径が0.85以上であることにより、アルカリ蓄電池用正極活物質間の空隙が減少するので、該正極活物質を正極に用いたアルカリ蓄電池では、高温での利用率に優れ、良好な体積容量を得ることができる。
実験例1、実験例2及びオキシ水酸化コバルトの、X線回折測定の回折パターンを示すグラフである。 図1の回折パターンを示すグラフの部分拡大図である。 実施例、比較例及びオキシ水酸化コバルトの、X線回折測定の回折パターンを示すグラフである。 図3の回折パターンを示すグラフの部分拡大図である。
 以下に、本発明のアルカリ蓄電池用正極活物質について、詳細を説明する。
 本発明のアルカリ蓄電池用正極活物質は、固溶したコバルトを含んだ、ニッケルを含む水酸化物粒子と、該水酸化物粒子を被覆する、コバルトを含む被覆層と、を有する、複数の一次粒子が凝集して形成されたアルカリ蓄電池用正極活物質粒子を、複数個含有している。前記アルカリ蓄電池用正極活物質は、X線回折測定で得られる回折パターンの2θで表される回折角度65°~66°の間に回折ピークを有している。
 また、前記アルカリ蓄電池用正極活物質は、ニッケルを含む水酸化物粒子に固溶したコバルトのうち、3価のコバルトの含有率が30質量%以上であり、アルカリ蓄電池用正極活物質の、ニッケルを含む水酸化物粒子に固溶した3価のコバルトの含有率に対する、アルカリ蓄電池用正極活物質のうち、累積体積百分率が10.0体積%以下の二次粒子径(≦D10)のアルカリ蓄電池用正極活物質粒子の、ニッケルを含む水酸化物粒子に固溶した3価のコバルトの含有率の割合が、0.80以上1.20以下、累積体積百分率が90.0体積%以上の二次粒子径(≧D90)のアルカリ蓄電池用正極活物質粒子の、ニッケルを含む水酸化物粒子に固溶した3価のコバルトの含有率の割合が、0.80以上1.20以下である。
 本発明のアルカリ蓄電池用正極活物質を構成するアルカリ蓄電池用正極活物質粒子は、ニッケルを含む水酸化物粒子と、該水酸化物粒子を被覆する、コバルトを含む被覆層と、を有しており、X線回折測定で得られる回折パターンの2θで表される回折角度65°~66°の間に回折ピークを有する。また、ニッケルを含む水酸化物粒子中には、固溶したコバルトが含まれている。アルカリ蓄電池用正極活物質粒子は、コア粒子として、ニッケル(Ni)を含む水酸化物の粒子を有し、前記コア粒子がコバルトを含む被覆層で被覆されている。従って、アルカリ蓄電池用正極活物質粒子は、コア・シェル構造を有した粒子であり、ニッケルを含む水酸化物粒子のコアとコバルトを含む化合物のシェルを有する、コバルト含有化合物被覆ニッケル含有水酸化物粒子となっている。
 前記アルカリ蓄電池用正極活物質粒子の形状は、特に限定されないが、例えば、略球形を挙げることができる。
 また、アルカリ蓄電池用正極活物質粒子であるコバルト含有化合物被覆ニッケル含有水酸化物粒子は、複数の一次粒子が凝集して形成された二次粒子の態様である。本発明のアルカリ蓄電池用正極活物質の粒度分布は、特に限定されないが、例えば、累積体積百分率が50体積%の二次粒子径D50(以下、「D50」ということがある。)の下限値は、2.0μmが好ましく、3.0μmがより好ましく、4.0μmが特に好ましい。一方で、コバルト含有化合物被覆ニッケル含有水酸化物粒子のD50の上限値は、密度の向上と電解液との接触面を確保することのバランスの点から、10.0μmが好ましく、高温条件下での利用率をさらに向上させる点から、8.0μmが特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。
 コバルト含有化合物被覆ニッケル含有水酸化物粒子のBET比表面積は、特に限定されないが、例えば、密度の向上と電解液との接触面を確保することのバランスの点から、下限値は5.0m/gが好ましく、10.0m/gが特に好ましく、上限値は30.0m/gが好ましく、25.0m/gが特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。
 コバルト含有化合物被覆ニッケル含有水酸化物粒子のタップ密度は、特に限定されないが、例えば、正極活物質として使用した際における充填度の向上の点から、1.5g/cm以上が好ましく、1.7g/cm以上が特に好ましい。
 コバルト含有化合物被覆ニッケル含有水酸化物粒子のバルク密度は、特に限定されないが、例えば、正極活物質として使用した際における充填度の向上の点から0.8g/cm以上が好ましく、1.0g/cm以上が特に好ましい。
 アルカリ蓄電池用正極活物質粒子は、上記の通り、固溶したコバルトを含んだ、ニッケルを含む水酸化物粒子の表面に、コバルトを含む被覆層が形成された、コバルト含有化合物被覆ニッケル含有水酸化物粒子である。コバルトを含む被覆層は、コバルトを含む化合物を含有している。また、コバルトを含む被覆層は、ニッケルを含む水酸化物粒子の表面全体を被覆してもよく、ニッケルを含む水酸化物粒子の表面の一部領域を被覆していてもよい。
 コバルト含有化合物被覆ニッケル含有水酸化物粒子中における、コバルトを含む被覆層のコバルトの質量割合は、特に限定されないが、その下限値は、高温条件下での利用率をさらに向上させる点から、1.0質量%が好ましく、2.0質量%が特に好ましい。一方で、コバルト含有化合物被覆ニッケル含有水酸化物粒子中における、コバルトを含む被覆層のコバルトの質量割合の上限値は、5.0質量%が好ましく、4.0質量%が特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。
 また、コバルトを含む被覆層のコバルトは3価のコバルトである。
 3価のコバルトの化学構造としては、例えば、オキシ水酸化コバルト(CoHO)(本明細書では、オキシ水酸化コバルトを単に、「オキシ水酸化コバルト」または「CoHO」と表記することがある。)を挙げることができる。
 3価のコバルトを含む被覆層は、X線回折測定で得られる回折パターンの2θで表される回折角度65°~66°の間に回折ピークを有する。前記回折ピークは、主に、オキシ水酸化コバルト(CoHO)に由来するものである。
 固溶したコバルトを含んだ、ニッケル(Ni)を含む水酸化物粒子としては、ニッケル(Ni)と固溶したコバルトとを含むものであれば、特に限定されないが、例えば、水酸化ニッケルにコバルトが固溶した粒子、ニッケル(Ni)と他の遷移金属元素(例えば、マグネシウム(Mg)、マンガン(Mn)、亜鉛(Zn)及びアルミニウム(Al)からなる群から選択された少なくとも1種の遷移金属元素)とを含む水酸化物にコバルトが固溶した粒子等を挙げることができる。
 コバルト含有化合物被覆ニッケル含有水酸化物粒子中における、コバルトの固溶したニッケルを含む水酸化物粒子中のニッケルの含有量は、特に限定されないが、その下限値は、40質量%が好ましく、45質量%がより好ましく、50質量%が特に好ましい。一方で、コバルト含有化合物被覆ニッケル含有水酸化物粒子中における、コバルトの固溶したニッケルを含む水酸化物粒子中のニッケルの含有量の上限値は、60質量%が好ましく、57質量%が特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。
 コバルト含有化合物被覆ニッケル含有水酸化物粒子中における、ニッケルを含む水酸化物粒子に固溶したコバルト量は、特に限定されないが、その下限値は、高温条件下での利用率をさらに向上させる点から、0.10質量%が好ましく、0.20質量%がより好ましく、0.50質量%が特に好ましい。一方で、コバルト含有化合物被覆ニッケル含有水酸化物粒子中における、ニッケルを含む水酸化物の粒子に固溶したコバルト量の上限値は、5.0質量%が好ましく、3.0質量%がより好ましく、2.0質量%が特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。
 また、本発明のアルカリ蓄電池用正極活物質では、ニッケルを含む水酸化物粒子に固溶したコバルトのうち、高温条件下での利用率の点から、少なくとも30質量%は3価のコバルトである。ニッケルを含む水酸化物粒子に固溶したコバルトのうち、3価のコバルトの含有率の下限値は、高温条件下での利用率をより向上させる点から、35質量%が好ましく、40質量%が特に好ましい。一方で、ニッケルを含む水酸化物粒子に固溶したコバルトのうち、3価のコバルトの含有率の上限値は、さらに優れた高温条件下での利用率を得る点から100質量%が好ましく、2価のコバルトから3価のコバルトへの酸化処理工程を容易化する点から70質量%が特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。
 ニッケルを含む水酸化物粒子に固溶した3価のコバルトの化学構造としては、例えば、オキシ水酸化コバルト(CoHO)を挙げることができる。
 上記のように、ニッケルを含む水酸化物粒子にオキシ水酸化コバルトが固溶している場合には、ニッケルを含む水酸化物粒子も、オキシ水酸化コバルト(CoHO)を含む被覆層と同様に、X線回折測定で得られる回折パターンの2θで表される回折角度65°~66°の間に回折ピークを有する。
 ニッケルを含む水酸化物粒子に固溶したコバルトのうち、3価のコバルト以外のコバルトとしては、例えば、2価のコバルトを挙げることができる。2価のコバルトの化学構造としては、例えば、水酸化コバルト(Co(OH))を挙げることができる。
 コバルトの固溶した、ニッケルを含む水酸化物粒子の形状は、特に限定されないが、例えば、略球形を挙げることができる。
 コバルト含有化合物被覆ニッケル含有水酸化物粒子を複数個有する、本発明のアルカリ蓄電池用正極活物質について、アルカリ蓄電池用正極活物質の、ニッケルを含む水酸化物粒子に固溶した3価のコバルトの含有率に対する、アルカリ蓄電池用正極活物質のうち、累積体積百分率が10.0体積%以下の二次粒子径≦D10(以下、「≦D10」または「D10以下」ということがある。)における、ニッケルを含む水酸化物粒子に固溶した3価のコバルトの含有率の割合は、0.80以上1.20以下であり、さらに優れた高温条件下での利用率を得る点から0.90以上1.15以下が好ましい。さらに、アルカリ蓄電池用正極活物質の、ニッケルを含む水酸化物粒子に固溶した3価のコバルトの含有率に対する、アルカリ蓄電池用正極活物質のうち、累積体積百分率が90.0体積%以上の二次粒子径≧D90(以下、「≧D90」または「D90以上」ということがある。)における、ニッケルを含む水酸化物粒子に固溶した3価のコバルトの含有率の割合は、0.80以上1.20以下であり、さらに優れた高温条件下での利用率を得る点から0.90以上1.15以下が好ましい。
 上記から、本発明のアルカリ蓄電池用正極活物質は、それぞれのコバルト含有化合物被覆ニッケル含有水酸化物粒子において、ニッケルを含む水酸化物粒子に固溶した3価のコバルトの含有率が、均一化されている。
 D10以下における、ニッケルを含む水酸化物粒子に固溶したコバルトのうち、3価のコバルトの含有率は、特に限定されないが、アルカリ蓄電池用正極活物質における3価のコバルトの含有率と同じまたは略同程度が好ましく、従って、その下限値は、高温条件下での利用率をより向上させる点から、30質量%が好ましく、35質量%がより好ましく、40質量%が特に好ましい。一方で、その上限値は、100質量%が好ましく、2価のコバルトから3価のコバルトへの酸化処理工程をさらに容易化する点から70質量%が特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。
 D90以上における、ニッケルを含む水酸化物粒子に固溶したコバルトのうち、3価のコバルトの含有率は、特に限定されないが、アルカリ蓄電池用正極活物質及びD10以下における3価のコバルトの含有率と同じまたは略同程度が好ましく、従って、その下限値は、高温条件下での利用率をより向上させる点から、30質量%が好ましく、35質量%がより好ましく、40質量%が特に好ましい。一方で、その上限値は、100質量%が好ましく、2価のコバルトから3価のコバルトへの酸化処理工程をさらに容易化する点から70質量%が特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。
 本発明のアルカリ蓄電池用正極活物質は、粒度分布の広がりを示す指標である〔(累積体積百分率が90体積%の二次粒子径D90(以下、「D90」ということがある。)-累積体積百分率が10体積%の二次粒子径D10(以下、「D10」ということがある。))/D50〕は、特に限定されないが、アルカリ蓄電池用正極活物質を正極とした際に該正極活物質間の空隙を低減して、該正極活物質を正極に用いたアルカリ蓄電池において、高温での利用率に優れ、かつ良好な体積容量を得ることができる点から0.85以上が好ましく、0.90以上が特に好ましい。一方で、〔(D90-D10)/D50〕の上限値は、特に限定されず、例えば、1.20を挙げることができる。
 次に、本発明のアルカリ蓄電池用正極活物質の製造方法例について説明する。
 上記製造方法としては、例えば、コバルトの固溶したニッケルを含む水酸化物粒子を用意し、コバルトの固溶したニッケルを含む水酸化物粒子を含有する懸濁物(例えば、水懸濁物)にコバルト塩溶液とアルカリ溶液とを供給して、コバルトの固溶したニッケルを含む水酸化物粒子の表面にコバルトを含む被覆を形成して、被覆が形成されたニッケルを含む水酸化物粒子を得る被覆工程と、被覆が形成されたニッケルを含む水酸化物粒子を含有する懸濁物(例えば、水懸濁物)に、酸化触媒を接触させながら、被覆が形成されたニッケルを含む水酸化物粒子を含有する懸濁物に、マイクロバブル発生装置にて酸素を含む気体を供給して、固溶したコバルトと被覆層に含まれるコバルトを酸化する酸化工程と、を含む。
 以下に、上記した製造方法例の詳細を説明する。先ず、共沈法により、ニッケルとコバルトと他の遷移金属元素(例えば、マグネシウム、マンガン、亜鉛及び/またはアルミニウム)の塩溶液(例えば、硫酸塩溶液)と錯化剤を反応させて、固溶したコバルトを含んだ、ニッケルを含む水酸化物粒子(例えば、水酸化ニッケルに2価のコバルトが固溶した粒子、ニッケルと他の遷移金属元素(例えば、マグネシウム、マンガン、亜鉛及び/またはアルミニウム)とを含む水酸化物に2価のコバルトが固溶した粒子)を製造して、ニッケルを含む水酸化物粒子を含むスラリー状の懸濁物を得る。上記の通り、懸濁物の溶媒としては、例えば、水が使用される。
 錯化剤としては、水溶液中で、ニッケル、コバルトや上記他の遷移金属元素のイオンと錯体を形成可能なものであれば、特に限定されず、例えば、アンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。なお、沈殿に際しては、水溶液のpH値を調整するため、必要に応じて、アルカリ金属水酸化物(例えば、水酸化ナトリウム、水酸化カリウム)を添加してもよい。
 上記塩溶液に加えて、錯化剤を反応槽に連続して供給すると、ニッケル、コバルト及び上記他の遷移金属元素が反応し、コバルトの固溶したニッケルを含む水酸化物粒子が製造される。反応に際しては、反応槽の温度を、例えば、10℃~80℃、好ましくは20~70℃の範囲内で制御し、反応槽内のpH値を、例えば、25℃基準におけるpHがpH9~pH13、好ましくはpH11~13の範囲内で制御しつつ、反応槽内の物質を、適宜、撹拌する。反応槽としては、例えば、形成されたニッケルを含む水酸化物粒子を分離するためにオーバーフローさせる、連続式を挙げることができる。
 次に、コバルトの固溶したニッケルを含む水酸化物粒子を含む懸濁物に、コバルト塩溶液(例えば、硫酸コバルトの水溶液等)と、必要に応じて他の遷移金属元素(例えば、マグネシウム、マンガン、亜鉛及び/またはアルミニウム)の塩溶液(例えば、硫酸塩溶液)と、アルカリ溶液(例えば、水酸化ナトリウム水溶液等)とを撹拌しながら添加して、中和晶析により、コバルトの固溶したニッケルを含む水酸化物粒子の表面に、水酸化コバルト等、コバルトの価数が2価であるコバルト化合物を主成分とする被覆を形成する。上記被覆を形成させる工程のpHは、25℃基準でpH9~13の範囲に維持することが好ましい。上記被覆工程により、コバルトを含む被覆層が形成されたニッケルを含む水酸化物粒子を得ることができる。コバルトを含む被覆層が形成されたニッケルを含む水酸化物粒子は、スラリー状の懸濁物として得ることができる。
 次に、被覆層が形成されたニッケルを含む水酸化物粒子を含有する懸濁物を撹拌しながら、酸化触媒の存在下で、マイクロバブル発生装置にて酸素を含む気体を供給して、被覆層が形成されたニッケルを含む水酸化物粒子中の2価のコバルトを酸化し、3価のコバルトとする。
 酸化触媒としては、例えば、鉄、ニッケル及びクロムからなる群から選択された少なくとも1種の金属及び/または該金属のイオンを含む化合物を挙げることができ、具体例としては、ステンレス鋼を挙げることができる。
 マイクロバブル発生装置にて供給される酸素を含む気体(気泡)の平均直径は、特に限定されないが、例えば、1.0μm以上50μm以下が好ましく、2.0μm以上30μm以下が特に好ましい。気泡の平均直径を上記範囲に制御することにより、被覆層に含まれる2価のコバルトを3価のコバルトに酸化することができるだけではなく、ニッケルを含む水酸化物粒子に固溶した2価のコバルトも、より確実に3価のコバルトに酸化することができる。酸素を含む気体としては、酸素からなる気体、空気等の酸素と他の元素とを含む気体を挙げることができる。
 マイクロバブル発生装置としては、例えば、エンバイロ・ビジョン社のYJノズルを挙げることができる。
 被覆層が形成された水酸化物粒子を含有する懸濁物の体積に対する、被覆層が形成された水酸化物粒子を含有する懸濁物に供給される酸素を含む気体の酸素量(体積)の割合は、特に限定されないが、例えば、1.00以上2.55以下に調整する。上記範囲とすることにより、ニッケルを含む水酸化物粒子に固溶した2価のコバルトを、効率よく且つ確実に3価のコバルトに酸化することができる。
 また、必要に応じて、上記酸化工程後に、酸化処理された、被覆層が形成されたニッケルを含む水酸化物粒子を含有する懸濁物を、固相と液相に分離して、液相から分離された固相を乾燥する工程を、さらに含んでもよい。また、固相を乾燥する前に、必要に応じて、固相を弱アルカリ水で洗浄してもよい。また、所望の効果(高温特性や導電性向上、導電ネットワークの維持)を得るため、必要に応じて、他の遷移金属元素(例えば、イッテルビウム、イットリウム、ジルコニウム、タングステン、モリブデン、ニオブ、チタン、マグネシウム、マンガン、亜鉛及び/またはアルミニウム)の化合物(例えば、酸化物)を公知の方法で加えてもよい。
 次に、本発明のアルカリ蓄電池用正極活物質を用いた正極、該正極を用いたアルカリ蓄電池について説明する。アルカリ蓄電池は、上記した本発明のアルカリ蓄電池用正極活物質を用いた正極と、負極と、アルカリ性の電解液と、セパレータとを備える。
 正極は、正極集電体と、正極集電体表面に形成された正極活物質層を備える。正極活物質層は、アルカリ蓄電池用正極活物質とバインダー(結着剤)、必要に応じて導電助剤とを有する。導電助剤としては、例えば、アルカリ畜電池のために使用できるものであれば特に限定されないが、金属コバルトや酸化コバルト等を用いることができる。バインダーとしては、特に限定されないが、ポリマー樹脂、例えば、ポリフッ化ビニリデン(PVdF)、ブタジエンゴム(BR)、ポリビニルアルコール(PVA)、及びカルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)等、並びにこれらの組み合わせを挙げることができる。正極集電体としては、例えば、特に限定されないが、パンチングメタル、エキスパンドメタル、金網、発泡金属、例えば発泡ニッケル、網状金属繊維焼結体、金属メッキ樹脂板などを挙げることが出来る。
 正極の製造方法としては、例えば、先ず、アルカリ蓄電池用正極活物質と導電助剤と結着剤と水とを混合して正極活物質スラリーを調製する。次いで、上記正極活物質スラリーを正極集電体に、公知の充填方法で充填して乾燥後、プレス等にて圧延・固着する。
 負極は、負極集電体と負極集電体表面に形成された負極活物質を含む負極活物質層を備える。負極活物質としては、通常使用されるものであれば特に限定されないが、例えば、水素吸蔵合金粒子、酸化カドミウム粒子、水酸化カドミウム粒子等を使用することができる。負極集電体としては、正極集電体と同じ材料である、ニッケル、アルミニウム、ステンレス等の導電性の金属材料を使用することができる。
 また、負極活物質層には、必要に応じて、導電助剤、バインダー等がさらに添加されてもよい。導電助剤、バインダーとしては、上記正極活物質層に使用されるものと同様のものが挙げられる。
 負極の製造方法としては、例えば、先ず、負極活物質と、必要に応じて導電助剤と結着剤と、水とを混合して負極活物質スラリーを調製する。次いで、上記負極活物質スラリーを負極集電体に、公知の充填方法で充填し、乾燥後、プレス等にて圧延・固着する。
 アルカリ性の電解液としては、例えば、溶媒としては水を挙げることができ、溶媒に溶解させる溶質としては、例えば、水酸化カリウム、水酸化ナトリウム、水酸化リチウムを挙げることができる。上記溶質は、単独で使用してもよく、2種以上を併用してもよい。
 セパレータとしては、特に限定されないが、ポリオレフィン不織布、例えばポリエチレン不織布及びポリプロピレン不織布、ポリアミド不織布、並びにそれらを親水性処理したものを挙げることができる。
 次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの例に限定されるものではない。
 先ず、被覆層を有さない水酸化コバルト粒子の懸濁液、水酸化コバルトの被覆層を有する水酸化ニッケル粒子の懸濁液を、それぞれ、撹拌しながら、酸化触媒であるステンレス鋼に接触させ、さらに空気を供給して、酸化処理を行い、水酸化コバルトをオキシ水酸化コバルトとした。なお、上記懸濁液にアルカリを添加して加熱する酸化処理では、γ-オキシ水酸化コバルトとなるところ、上記酸化処理を行うことにより、化学式CoHOで表されるオキシ水酸化コバルトとすることができる。酸化処理された、被覆層を有さない水酸化コバルト粒子(実験例1)、酸化処理された、水酸化コバルトの被覆層を有する水酸化ニッケル粒子(実験例2)の物性を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実験例1、実験例2のサンプルとオキシ水酸化コバルトについて、X線回折測定を行って回折ピークを分析した。
 X線回折測定は、X線回折装置(リガク社、UltimaIV)を用い、下記条件にて測定を行った。
X線:CuKα/40kV/40mA
スリット:発散=1/2°,受光=開放,散乱=8.0mm
サンプリング幅:0.03
スキャンスピード:20°/min
 実験例1、実験例2のサンプルとオキシ水酸化コバルトについて、X線回折測定の結果を図1、図2に示す。
 図1、図2に示すように、実験例1、実験例2のサンプル及びオキシ水酸化コバルトでは、いずれも、回折パターンの2θで表される回折角度65°~66°の間に回折ピークが認められた。従って、2θで表される回折角度65°~66°の間における回折ピークは、オキシ水酸化コバルト(すなわち、化学式CoHOで表される3価のコバルト)特有のピークであることが確認できた。
 実施例1
 コバルトの固溶したニッケルを含む水酸化物粒子の合成
 硫酸マグネシウムと硫酸コバルトと硫酸ニッケルとを所定割合にて溶解した水溶液に、硫酸アンモニウム水溶液(錯化剤)と水酸化ナトリウム水溶液を滴下して、反応槽内のpHを25℃基準で12.2に維持しながら、攪拌機により連続的に攪拌した。生成した水酸化物は反応槽のオーバーフロー管からオーバーフローさせて取り出した。取り出した上記水酸化物に、水洗、脱水、乾燥の各処理を施して、コバルトの固溶したニッケルを含む水酸化物粒子を得た。
 コバルトを含む被覆層の形成
 上記のようにして得られたコバルトの固溶したニッケルを含む水酸化物粒子を、水酸化ナトリウムでpHを液温25℃基準で9~13の範囲に維持した反応浴中のアルカリ水溶液に投入した。投入後、該溶液を撹拌しながら、濃度90g/Lの硫酸コバルト水溶液を滴下した。この間、水酸化ナトリウム水溶液を適宜滴下して、反応浴のpHを液温25℃基準で9~13の範囲に維持して、前記水酸化物粒子の表面に水酸化コバルトの被覆層を形成させて、水酸化コバルトで被覆された、コバルトの固溶したニッケルを含む水酸化物粒子の懸濁液を得た。
 水酸化コバルトで被覆された、コバルトの固溶したニッケルを含む水酸化物粒子の酸化処理
 上記のようにして得られた、水酸化コバルトで被覆された、コバルトの固溶したニッケルを含む水酸化物粒子の懸濁液を撹拌しながら、酸化触媒であるステンレス鋼と接触させ、マイクロバブル発生装置(エンバイロ・ビジョン社、「YJノズル」)にて空気をさらに懸濁液に供給して、酸化処理を行った。また、水酸化コバルトで被覆された、コバルトの固溶したニッケルを含む水酸化物粒子の懸濁液の体積に対する、空気中に含まれる酸素の体積の割合が、1.28となるように、空気を上記懸濁液に供給した。上記酸化処理にて、ニッケルを含む水酸化物粒子に固溶したコバルトと被覆層の水酸化コバルトを酸化して、それぞれ、3価のコバルトであるオキシ水酸化コバルトとした。
 固液分離及び乾燥処理
 次に、酸化処理された懸濁液に、水洗、脱水、乾燥の各処理を施して、実施例1のコバルト含有化合物被覆ニッケル含有水酸化物粒子を得た。実施例1のコバルト含有化合物被覆ニッケル含有水酸化物粒子の物性について、下記表2に示す。なお、表2の実施例及び比較例においては、被覆層のコバルトが全て3価のコバルトに酸化された後に、ニッケルを含む水酸化物粒子に固溶したコバルトが酸化されるものとして「水酸化物粒子中に固溶した酸化されたコバルト(Co(III))」の量を特定した。実施例1のコバルト含有化合物被覆ニッケル含有水酸化物粒子の物性について、下記表2に示す。
 比較例1
 実施例1にて反応槽内のpHを液温25℃基準で12.2に維持したことに代えて、反応槽内のpHを液温25℃基準で12.0に維持したことで、実施例1の粒度分布とは異なる粒度分布を有する比較例1のコバルト含有化合物被覆ニッケル含有水酸化物粒子を得た。比較例1のコバルト含有化合物被覆ニッケル含有水酸化物粒子の物性について、下記表2に示す。
 表2中、
 成分組成は、ICP発光分析装置(パーキンエルマ―社、Optima(登録商標)8300)を用いて分析した。コバルト含有化合物被覆ニッケル含有水酸化物粒子のCo含量からコバルトの固溶したニッケルを含む水酸化物粒子のCo含量を差し引いた値を被覆層のCo含量とした。
 BET比表面積は、比表面積測定装置(マウンテック社、Macsorb(登録商標))を用い、1点BET法によって測定した。
 分級機として、分級装置(日鉄鉱業社、エルボージェット分級装置EJ-L-3)を用い、分級エッジ距離Mを41.0mm、分級エッジ距離Fを30.0mm、エアー圧力を0.5Mpaで設定し、測定粒子をフィードエアで送り、分級した。
 D5、D10、D50、D90、D95は、粒度分布測定装置(堀場製作所社、LA-950)で測定した(原理はレーザ回折・散乱法)。また、粒度分布幅(D90-D10)/D50の値は、D10、D50、D90の前記測定値から算出した。
Figure JPOXMLDOC01-appb-T000002
 実施例1、比較例1及びオキシ水酸化コバルトについて、X線回折測定を行って回折ピークを分析した。X線回折測定は、上記実験例1、実験例2と同様に行った。
 実施例1、比較例1及びオキシ水酸化コバルトについて、X線回折測定の結果を図3、図4に示す。
 図3、図4に示すように、実施例1、比較例1では、いずれも、回折パターンの2θで表される回折角度65°~66°の間に回折ピークが認められた。従って、実施例1、比較例1では、ニッケルを含む水酸化物粒子に固溶したコバルトの少なくとも一部は、3価のコバルトであるオキシ水酸化コバルトとして固溶し、被覆層がオキシ水酸化コバルトを有することが確認できた。
 実施例1、比較例1のうち、D10以下、D50、D90以上のサンプルの物性について、下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 正極の作製
 固形分質量比で、正極活物質である各実施例または比較例の粒子:バインダーとしてのPTFE(ポリテトラフルオロエチレン):水=80:10:10となる量にて、正極活物質とPTFEと水とを混合することにより、スラリー状の組成物を作製した。こうして作製したスラリー状の組成物を、発泡ニッケル(集電体)に充填して乾燥後に圧延することにより、各正極を作製した。
 評価セルの作製
 上記各実施例または各比較例のサンプルを添加した正極を用い、負極に水素吸蔵合金を、セパレータにポリエチレン及びポリプロピレンから構成されているポリオレフィン不織布を、それぞれ用いた。さらに、電解液として6mol/LのKOHを含む電解液を用い、評価セルを組み上げ、下記項目を評価した。
 (1)常温(25℃)充放電容量試験
 上記評価セルを25℃にて12時間保管の後、0.2Cにて6時間充電し、その後、0.2Cで1.0Vまで放電した。この操作を10回繰り返して活性化した。活性化10回目の放電容量を常温充放電容量とした。
 (2)高温(60℃)充放電容量試験
 活性化後のセルを60℃にて4時間保管した後、温度を60℃に保ったまま0.2Cにて5時間充電し、0.2Cで1.0Vまで放電した時の放電容量を測定した。
 実施例1、比較例1のサンプルを正極に使用したアルカリ蓄電池の評価結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
 上記表2に示すように、固溶したコバルトのうち、3価のコバルトの含有率が30質量%以上であって、上記表3、4に示すように、アルカリ蓄電池用正極活物質の、固溶した3価のコバルトの含有率に対する、アルカリ蓄電池用正極活物質のうち、D10以下のアルカリ蓄電池用正極活物質粒子の、固溶した3価のコバルトの含有率の割合が0.981(すなわち、0.80以上1.20以下)、D90以上のアルカリ蓄電池用正極活物質粒子の、固溶した3価のコバルトの含有率の割合が1.111(すなわち、0.80以上1.20以下)である実施例1では、常温(25℃)にて優れた利用率を有しつつ、高温(60℃)にても優れた利用率を得ることができた。また、表2に示すように、実施例1では、粒度分布幅(D90-D10)/D50の値は、0.91であった。
 一方で、アルカリ蓄電池用正極活物質の、固溶した3価のコバルトの含有率に対する、アルカリ蓄電池用正極活物質のうち、D10以下のアルカリ蓄電池用正極活物質粒子の、固溶した3価のコバルトの含有率の割合が1.615である比較例1では、常温(25℃)では良好な利用率を有したが、高温(60℃)では良好な利用率を得ることができなかった。
 本発明のアルカリ蓄電池用正極活物質は、高温条件下でも優れた利用率を発揮するので、例えば、車両等、高温環境で使用され得るアルカリ蓄電池の正極活物質の分野で利用価値が高い。

Claims (5)

  1.  固溶したコバルトを含んだ、ニッケルを含む水酸化物粒子と、該水酸化物粒子を被覆する、コバルトを含む被覆層と、を有する、アルカリ蓄電池用正極活物質であって、
    X線回折測定で得られる回折パターンの2θで表される回折角度65°~66°の間に回折ピークを有し、
    前記固溶したコバルトのうち、3価のコバルトの含有率が30質量%以上であり、
    前記アルカリ蓄電池用正極活物質の、固溶した前記3価のコバルトの含有率に対する、前記アルカリ蓄電池用正極活物質のうち、累積体積百分率が10.0体積%以下の二次粒子径(≦D10)のアルカリ蓄電池用正極活物質粒子の、固溶した前記3価のコバルトの含有率の割合が、0.80以上1.20以下、累積体積百分率が90.0体積%以上の二次粒子径(≧D90)のアルカリ蓄電池用正極活物質粒子の、固溶した前記3価のコバルトの含有率の割合が、0.80以上1.20以下であるアルカリ蓄電池用正極活物質。
  2.  前記回折ピークが、CoHOで表される3価のコバルト化合物由来である請求項1に記載のアルカリ蓄電池用正極活物質。
  3.  [累積体積百分率が90.0体積%の前記アルカリ蓄電池用正極活物質の二次粒子径(D90)-累積体積百分率が10.0体積%の前記アルカリ蓄電池用正極活物質の二次粒子径(D10)]/累積体積百分率が50.0体積%の前記アルカリ蓄電池用正極活物質の二次粒子径(D50)が、0.85以上である請求項1または2に記載のアルカリ蓄電池用正極活物質。
  4.  請求項1乃至3のいずれか1項に記載のアルカリ蓄電池用正極活物質を有する正極。
  5.  請求項4に記載の正極を備えたアルカリ蓄電池。
PCT/JP2018/032814 2017-09-11 2018-09-05 アルカリ蓄電池用正極活物質 WO2019049875A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/637,078 US20200251730A1 (en) 2017-09-11 2018-09-05 Positive electrode active material for alkaline storage battery
JP2019540972A JP7168572B2 (ja) 2017-09-11 2018-09-05 アルカリ蓄電池用正極活物質
CN201880059062.6A CN111066183B (zh) 2017-09-11 2018-09-05 碱性蓄电池用正极活性物质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017173897 2017-09-11
JP2017-173897 2017-09-11

Publications (1)

Publication Number Publication Date
WO2019049875A1 true WO2019049875A1 (ja) 2019-03-14

Family

ID=65634180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032814 WO2019049875A1 (ja) 2017-09-11 2018-09-05 アルカリ蓄電池用正極活物質

Country Status (4)

Country Link
US (1) US20200251730A1 (ja)
JP (1) JP7168572B2 (ja)
CN (1) CN111066183B (ja)
WO (1) WO2019049875A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052462B (zh) * 2017-09-11 2023-06-02 株式会社田中化学研究所 碱性蓄电池用正极活性物质及其制造方法
JP6806943B1 (ja) * 2020-06-18 2021-01-06 株式会社田中化学研究所 コバルト被覆ニッケル含有水酸化物粒子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197008A (ja) * 1996-12-24 1999-04-09 Matsushita Electric Ind Co Ltd アルカリ蓄電池とその正極活物質およびその製造方法
JP2005519021A (ja) * 2002-03-04 2005-06-30 ザ ジレット カンパニー オゾンを使用するオキシ水酸化ニッケルの製造
JP2005243602A (ja) * 2003-06-09 2005-09-08 Hitachi Maxell Ltd アルカリ電池用正極およびアルカリ電池
JP2011071125A (ja) * 2010-11-10 2011-04-07 Toyota Motor Corp アルカリ蓄電池用正極活物質の製造方法
JP2011201764A (ja) * 2010-03-02 2011-10-13 Sumitomo Metal Mining Co Ltd ニッケルコバルト複合水酸化物およびその製造方法、ならびに該複合水酸化物を用いて得られる非水系電解質二次電池用正極活物質
JP2016190784A (ja) * 2015-03-30 2016-11-10 株式会社田中化学研究所 コバルト化合物被覆水酸化ニッケル粒子及びコバルト化合物被覆水酸化ニッケル粒子の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315850A (ja) * 1995-05-18 1996-11-29 Toshiba Battery Co Ltd アルカリ二次電池及びその製造方法
JPH10326617A (ja) * 1997-05-26 1998-12-08 Furukawa Battery Co Ltd:The アルカリ二次電池用正極活物質の製造法、ペースト式ニッケル極並びにアルカリ二次電池
JP3661045B2 (ja) * 1997-05-30 2005-06-15 松下電器産業株式会社 アルカリ蓄電池
JP4736372B2 (ja) * 2004-07-30 2011-07-27 トヨタ自動車株式会社 アルカリ蓄電池用正極活物質、アルカリ蓄電池用正極、及び、アルカリ蓄電池
JP5134213B2 (ja) * 2006-06-13 2013-01-30 株式会社田中化学研究所 アルカリ電池用正極活物質
CN101117243B (zh) * 2006-08-04 2010-10-13 比亚迪股份有限公司 碱性二次电池正极活性物质的制备方法
JP5686700B2 (ja) * 2011-08-10 2015-03-18 プライムアースEvエナジー株式会社 アルカリ蓄電池用正極活物質、アルカリ蓄電池用正極活物質の製造方法、アルカリ蓄電池用正極及びアルカリ蓄電池
WO2015182665A1 (ja) * 2014-05-29 2015-12-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197008A (ja) * 1996-12-24 1999-04-09 Matsushita Electric Ind Co Ltd アルカリ蓄電池とその正極活物質およびその製造方法
JP2005519021A (ja) * 2002-03-04 2005-06-30 ザ ジレット カンパニー オゾンを使用するオキシ水酸化ニッケルの製造
JP2005243602A (ja) * 2003-06-09 2005-09-08 Hitachi Maxell Ltd アルカリ電池用正極およびアルカリ電池
JP2011201764A (ja) * 2010-03-02 2011-10-13 Sumitomo Metal Mining Co Ltd ニッケルコバルト複合水酸化物およびその製造方法、ならびに該複合水酸化物を用いて得られる非水系電解質二次電池用正極活物質
JP2011071125A (ja) * 2010-11-10 2011-04-07 Toyota Motor Corp アルカリ蓄電池用正極活物質の製造方法
JP2016190784A (ja) * 2015-03-30 2016-11-10 株式会社田中化学研究所 コバルト化合物被覆水酸化ニッケル粒子及びコバルト化合物被覆水酸化ニッケル粒子の製造方法

Also Published As

Publication number Publication date
CN111066183B (zh) 2023-04-04
JP7168572B2 (ja) 2022-11-09
US20200251730A1 (en) 2020-08-06
CN111066183A (zh) 2020-04-24
JPWO2019049875A1 (ja) 2020-08-27

Similar Documents

Publication Publication Date Title
JP6090673B2 (ja) アルカリ蓄電池とアルカリ蓄電池用の正極材
US20210175502A1 (en) Positive electrode active material particle for secondary battery and method for producing positive electrode active material particle for secondary battery
JP7290626B2 (ja) 正極用化合物及び正極活物質の製造方法
JP7168572B2 (ja) アルカリ蓄電池用正極活物質
JP7431914B2 (ja) アルカリ蓄電池用正極活物質及びアルカリ蓄電池用正極活物質の製造方法
JP6654068B2 (ja) コバルト化合物被覆水酸化ニッケル粒子及びコバルト化合物被覆水酸化ニッケル粒子の製造方法
JP5743185B2 (ja) アルカリ蓄電池用正極活物質およびアルカリ蓄電池
CN115697913B (zh) 钴包覆含镍氢氧化物粒子
JP6213316B2 (ja) アルカリ蓄電池用の水酸化ニッケル水酸化ニッケルおよびアルカリ蓄電池
KR102028849B1 (ko) 정극 활물질 및 알칼리 전지
JP7079870B1 (ja) ニッケル水素二次電池用正極材料及びニッケル水素二次電池用正極材料の製造方法
JPWO2018043447A1 (ja) ナトリウムイオン二次電池用正極活物質
JP6299294B2 (ja) アルカリ蓄電池用の水酸化ニッケルおよびアルカリ蓄電池
JPWO2019181787A1 (ja) 正極用化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853416

Country of ref document: EP

Kind code of ref document: A1