[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019049713A1 - 電力変換装置およびその制御方法 - Google Patents

電力変換装置およびその制御方法 Download PDF

Info

Publication number
WO2019049713A1
WO2019049713A1 PCT/JP2018/031665 JP2018031665W WO2019049713A1 WO 2019049713 A1 WO2019049713 A1 WO 2019049713A1 JP 2018031665 W JP2018031665 W JP 2018031665W WO 2019049713 A1 WO2019049713 A1 WO 2019049713A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
harmonic
unit
voltage
predetermined
Prior art date
Application number
PCT/JP2018/031665
Other languages
English (en)
French (fr)
Inventor
川添 裕成
智道 伊藤
健太 渡邊
康博 今津
一瀬 雅哉
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019049713A1 publication Critical patent/WO2019049713A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the present invention relates to a power converter and a control method thereof.
  • MMC Modular Multilevel Converter
  • cells a plurality of single-phase converters having capacitors individually are connected in series in each of the three-phase arms.
  • MMC in order to output a desired AC voltage to an AC system, it is preferable to balance capacitor voltages of the plurality of cells. For this reason, many MMCs are provided with a control function of adjusting the charge / discharge amount of the capacitor for each cell to balance the voltage of the DC section.
  • each energy storage element (capacitor) in the power converter even if the amount of power interchanged between the AC system and the power converter is small.
  • a power converter comprises a plurality of arms, each having a plurality of cells, wherein one cell includes at least one capacitor and at least one switching element;
  • a gate pulse signal output unit that outputs a gate pulse signal that is a PWM modulation wave for controlling the switching element based on the output current of each of the arms, and modulation of the PWM modulation wave included in the output current
  • a harmonic current extraction unit that extracts a harmonic current that is a harmonic component in a predetermined band including a cycle
  • a current control unit that controls the gate pulse signal output unit to suppress the extracted harmonic current , And is characterized by.
  • the voltage balance of the cell can be properly controlled.
  • FIG. 1 is a block diagram showing an overall configuration of a power conversion device according to an embodiment of the present invention. It is a wave form diagram which shows an example of a PWM carrier wave. It is a block diagram of a harmonic current extraction part.
  • FIG. 6 is a block diagram of a current control unit and a control on / off determination unit. It is operation
  • FIG. 1 is a block diagram showing an entire configuration of a power conversion device S1 according to an embodiment of the present invention.
  • Power conversion device S1 is connected between three-phase AC system 5 and power conversion device S2.
  • the power conversion device S1 includes a power converter 1, a transformer 4, a current sensor 7, a voltage sensor 8, a positive electrode terminal 10P, a negative electrode terminal 10N, and a control device 100.
  • the power converter 1 has arms 3 u, 3 v, 3 w corresponding to three phases of U phase, V phase and W phase. These may be generically referred to as "arm 3".
  • the arm 3 u includes M cells 2 u-1 to 2 u-M connected in series. These cells are provided with capacitors (not labeled), and the terminal voltages of these capacitors are output as capacitor voltages Vcu1 to VcuM. Similarly, arm 3v has M cells 2v-1 to 2v-M connected in series, and these cells output capacitor voltages Vcv1 to VcvM. Similarly, arm 3w has M cells 2w-1 to 2w-M connected in series, and these cells output capacitor voltages Vcw1 to VcwM.
  • capacitor voltage Vc capacitor voltage
  • a chopper circuit or a full bridge circuit can be applied to the cell 2.
  • the cell 2 includes, for example, switching elements such as IGBTs (Insulated Gate Bipolar Transistors), and the control device 100 supplies gate pulse signals for on / off controlling the switching elements.
  • the gate pulse signal is obtained by PWM (Pulse Width Modulation) modulation of a voltage command value.
  • the current sensor 7 detects arm currents Iau, Iav, Iaw (output currents) flowing through the arms 3u, 3v, 3w. Further, voltage sensor 8 detects system voltages Vu, Vv, Vw of AC system 5.
  • the transformer 4 has a primary winding 4a and a secondary winding 4b. A winding structure of delta or star connection is applied to the primary winding 4a, and a winding structure of zigzag connection is applied to the secondary winding 4b.
  • One end of the three-phase arm 3 described above is connected to the positive electrode terminal 10P, and the other end is connected to each phase of the secondary winding 4b via the current sensor 7.
  • the neutral point of the secondary winding 4b is connected to the negative electrode terminal 10N.
  • An external device 50 is connected to the AC system 5.
  • the external device 50 leaks a harmonic current having a period equal to or close to the PWM modulation period to the power conversion device S1 via the AC system 5. That is, among the harmonic components included in the arm currents Iau, Iav and Iaw, the harmonic current corresponds to a component of a predetermined band which is the same as or close to the PWM modulation period.
  • the external device 50 is, for example, a rectifier load or a thyristor-type power converter. When this harmonic current flows into the power conversion device S1, the balance of the capacitor voltage Vc in each cell 2 is affected.
  • the power conversion device S2 is configured in the same manner as the power conversion device S1, and is connected to the positive electrode terminal 10P and the negative electrode terminal 10N, and is also connected to another AC system 15.
  • the AC system 15 is independent of voltage, frequency, and phase with respect to the AC system 5.
  • power conversion device S1, S2 performs mutual conversion of alternating current and direct current, respectively. With this configuration, AC networks 5 and 15 can mutually exchange power via power conversion devices S1 and S2.
  • the control device 100 includes hardware as a general computer, such as a central processing unit (CPU), a digital signal processor (DSP), a random access memory (RAM), and a read only memory (ROM). , A control program executed by the CPU, a microprogram executed by the DSP, various data, and the like are stored.
  • CPU central processing unit
  • DSP digital signal processor
  • RAM random access memory
  • ROM read only memory
  • a control program executed by the CPU, a microprogram executed by the DSP, various data, and the like are stored.
  • FIG. 1 the inside of the control device 100 shows functions implemented by a control program and a microprogram as blocks.
  • the harmonic current extraction unit 101 extracts harmonic currents included in the arm currents Iau, Iav, Iaw detected by the current sensor 7.
  • the harmonic current refers to a component of a predetermined band that is the same as or similar to the PWM modulation period among the arm currents Iau, Iav, and Iaw.
  • the current control unit 102 suppresses the harmonic current extracted by the harmonic current extraction unit 101. The details will be described later.
  • Control on / off determination unit 103 determines whether to execute control of current control unit 102 based on arm currents Iau, Iav, Iaw and grid voltages Vu, Vv, Vw, that is, suppresses harmonic current It is determined whether to do.
  • the coordinate conversion unit 104 converts the output of the current control unit 102 into a three-phase harmonic voltage command.
  • the fundamental wave current control unit 106 outputs a fundamental wave voltage command for controlling the current component of the fundamental wave (for example, 50 Hz or 60 Hz).
  • the adder 105 adds the harmonic voltage command output from the coordinate conversion unit 104 and the fundamental voltage command output from the fundamental current control unit 106, and the result is output to the PWM modulator 108 (gate pulse signal output Supply to
  • the voltage balance control unit 107 has a control function to receive capacitor voltages Vcu1 to VcuM, Vcv1 to VcvM, and Vcw1 to VcwM of the respective cells 2 and to balance capacitor voltages of the arms 3u, 3v, 3w and the respective cells 2.
  • a specific voltage balance control method for example, “Technical trend of the Institute of Electrical Engineers of Japan No. 1374“ Technological trend of a new type self-commutated direct-current converter for power system ”-mainly on modular multi-level converter (MMC)- The methods described in pp. 14, 15, 28) may be used.
  • the capacitor voltage calculated by the voltage balance control unit 107 is also supplied to the fundamental wave current control unit 106.
  • the PWM modulation unit 108 generates a gate pulse signal for driving each cell 2 based on the output signal of the adder 105, the output signal of the voltage balance control unit 107, and the PWM carrier wave CR.
  • FIG. 2 is a waveform diagram showing an example of the PWM carrier wave CR.
  • the period of the PWM carrier CR is called a carrier period Tc
  • the period of the fundamental wave is called a fundamental wave period Tf.
  • the fundamental frequency is 50 Hz
  • the fundamental period Tf is 20 ms.
  • the carrier frequency is 250 Hz
  • the carrier period Tc is 4 ms.
  • FIG. 3 is a block diagram of the harmonic current extraction unit 101.
  • the harmonic current extraction unit 101 includes a three-phase / two-phase conversion unit 101A, a dq conversion unit 101B, and a moving average unit 101C.
  • the three-phase / two-phase conversion unit 101A converts the three-phase arm currents Iau, Iav, Iaw into two-phase currents I ⁇ , I ⁇ based on the following equation (1).
  • dq axes that is, d axes and q axes.
  • the dq conversion unit 101B converts the two-phase currents I ⁇ and I ⁇ into currents Idn and Iqn on the dq axis based on the following equation (2).
  • a component having the same frequency as the carrier frequency fn of the PWM carrier CR is converted into a direct current amount in the currents Idn and Iqn.
  • t is time.
  • the moving average unit 101C extracts harmonic currents Idhm and Iqhm in a predetermined band that is the same as or similar to the PWM carrier CR from the currents Idn and Iqn on the dq axis based on the following equations (3) and (4). Execute arithmetic processing.
  • N is a moving average score.
  • the moving average number N may be set to about a value obtained by dividing the sampling frequency at which the currents Idn and Iqn are sampled by the fundamental frequency.
  • Idn (1) to Idn (N-1) are values of the current Idn in the past by 1 to (N-1) sampling periods
  • Iqn (1) to Iqn (N-1) are 1 to N-1) The value of the current Iqn in the past by the sampling period
  • FIG. 4 is a block diagram of the current control unit 102 and the control on / off determination unit 103.
  • the current control unit 102 includes subtractors 102D and 102E, a d-axis current controller 102A, and a q-axis current controller 102B.
  • the subtractor 102D subtracts the harmonic current Idhm from the harmonic current command Idhmr. Further, the subtractor 102E subtracts the harmonic current Iqhm from the harmonic current command Iqhmr.
  • both harmonic current commands Idhmr and Iqhmr should be zero.
  • the d-axis current controller 102A performs integral control or proportional integral control of the output signal of the subtractor 102D to bring the harmonic current Idhm closer to the harmonic current command Idhmr (for example, zero). (Command signal) is output.
  • the q-axis current controller 102B performs integration control or proportional integration control on the output signal of the subtractor 102E to bring the harmonic current Iqhm close to the harmonic current command Iqhmr (eg, zero).
  • the voltage command Vqhmr (command signal) is output.
  • control on / off determination unit 103 includes an effective current extraction unit 103A, a harmonic voltage extraction unit 103B, a system harmonic determination unit 103D, and an AND circuit 103E (on / off state setting unit). There is. As described above, the control on / off determination unit 103 is supplied with the detection results of the arm currents Iau, Iav and Iaw from the current sensor 7 and the detection results of the system voltages Vu, Vv and Vw from the voltage sensor 8. Ru.
  • the effective current extraction unit 103A calculates the effective current Iact output from the power converter 1 based on the following equation (5).
  • harmonic voltage extraction unit 103B uses the equations (6) to (10) described below to determine harmonics within a predetermined band identical to or close to PWM carrier CR. The amplitude value Vhm of the voltage is extracted. Formulas (6) to (10) will be sequentially described below.
  • the harmonic voltage extraction unit 103B first converts the system voltages Vu, Vv, and Vw into two-phase voltages V ⁇ and V ⁇ based on the following equation (6).
  • the harmonic voltage extraction unit 103B converts the voltages V ⁇ and V ⁇ into the voltages Vdn and Vqn on the dq axis based on the following equation (7).
  • a component having the same frequency as the carrier frequency fn of the PWM carrier CR is converted into a direct current amount at the voltages Vdn and Vqn.
  • t is time.
  • the harmonic voltage extraction unit 103B determines from the voltages Vdn and Vqn on the dq axis the harmonic voltage Vdhm in a predetermined band that is the same as or similar to that of the PWM carrier CR. , Vqhm are executed.
  • N is a moving average score.
  • Vdn (1) to Vdn (N-1) are voltages Vdn that are one sampling period to (N-1) sampling periods earlier. The same applies to Vqn (1) to Vqn (N-1).
  • the harmonic voltage extraction unit 103B calculates the amplitude value Vhm based on the following equation (10).
  • the amplitude value Vhm is an amplitude value of a harmonic voltage in a predetermined band which is the same as or similar to that of the PWM carrier CR.
  • converter output determination unit 103C receives effective current Iact from effective current extraction unit 103A, and outputs determination flag signal Scnt1 for turning on / off the function of current control unit 102. Further, the system harmonic determination unit 103D receives the amplitude value Vhm of the harmonic voltage from the harmonic voltage extraction unit 103B, and outputs a determination flag signal Scnt2 for turning on / off the function of the current control unit 102.
  • the AND circuit 103E outputs an AND operation result of the determination flag signals Scnt1 and Scnt2 as a determination flag signal Scnt. That is, the determination flag signal Scnt is "1" (on state) when the determination flag signals Scnt1 and Scnt2 are both "1", and is "0" (off state) otherwise.
  • the functions of the d-axis current controller 102A and the q-axis current controller 102B in the current control unit 102 are turned off when the determination flag signal Scnt becomes "0". More specifically, the d-axis current controller 102A and the q-axis current controller 102B bring the d-axis and q-axis harmonic voltage commands Vdhmr and Vqhmr close to zero at a constant rate of change, and eventually the d-axis and q The axial harmonic voltage commands Vdhmr and Vqhmr are reset to zero.
  • FIG. 5 is an operation explanatory diagram of the converter output determination unit 103C.
  • the horizontal axis in FIG. 5 is the effective current Iact, and the vertical axis is the determination flag signal Scnt1.
  • IactnL (first threshold), IactnH, IactpL (second threshold), IactpH are thresholds for determining on / off of the determination flag signal Scnt1, and the thresholds IactnL and IactnH are negative values, the threshold IactpL, IactpH is a positive value. That is, when the effective current Iact changes from a value less than the threshold IactnL to a value equal to or more than the threshold IactnL, the determination flag signal Scnt1 changes from "0" (off state) to "1" (on state).
  • the determination flag signal Scnt1 changes from “1” (on state) to “0” (off state). Further, when the effective current Iact changes from a value exceeding the threshold IactpL to a value less than the threshold IactpL, the determination flag signal Scnt1 changes from “0” (off state) to “1” (on state). When the effective current Iact changes from a value equal to or less than the threshold value IactpH to a value exceeding the threshold value IactpH, the determination flag signal Scnt1 changes from "1" (on state) to "0” (off state).
  • the determination flag signal Scnt1 is "0" (off state) when the absolute value of the effective current Iact is relatively large, and is "1" (on state) when the effective current Iact is relatively small. .
  • the absolute value of the effective current Iact is large, even if some harmonic current flows from the external device 50 (see FIG. 1) through the AC system 5 to the power converter 1, the capacitor voltage Vc It is because it is thought that the influence given is small.
  • FIG. 5 by providing the determination condition with a hysteresis characteristic, frequent on / off determination fluctuations near the threshold are prevented.
  • FIG. 6 is an operation explanatory diagram of the system harmonics determination unit 103D.
  • the horizontal axis of FIG. 6 is the amplitude value Vhm of the harmonic voltage, and the vertical axis is the determination flag signal Scnt2.
  • VhmL and VhmH in the figure are thresholds for determining on / off of the determination flag signal Scnt2. That is, when the amplitude value Vhm changes from a value greater than or equal to the threshold value VhmL to a value smaller than the threshold value VhmL, the determination flag signal Scnt2 changes from “1” (on state) to “0” (off state).
  • the determination flag signal Scnt2 changes from “0” (off state) to “1” (on state).
  • the determination flag signal Scnt2 is “1” (on state) when the amplitude value Vhm of the harmonic voltage is relatively large, and is “0” (off state) when the amplitude value Vhm is relatively small.
  • the system harmonic determination unit 103D also applies the hysteresis characteristics to the determination conditions to prevent frequent on / off determination fluctuations near the threshold value. .
  • FIG. 7 is a block diagram of the coordinate conversion unit 104.
  • the coordinate conversion unit 104 includes an inverse dq conversion unit 104A, a phase compensation unit 104B, and a two-phase three-phase conversion unit 104C.
  • the inverse dq conversion unit 104A converts the d-axis and q-axis harmonic voltage commands Vdhmr and Vqhmr into two-phase ( ⁇ -phase and ⁇ -phase) harmonic voltage commands V ⁇ hmr and V ⁇ hmr based on the following equation (11) .
  • fn is the carrier frequency of the PWM carrier CR and t is time.
  • the phase compensation unit 104B is a block that compensates for the delay in the moving average unit 101C (see FIG. 3) described above. That is, phase compensation section 104B outputs harmonic voltage commands V ⁇ hmr1 and V ⁇ hmr1 obtained by advancing the phases of harmonic voltage commands V ⁇ hmr and V ⁇ hmr by the phase angle ⁇ based on the following equation (12).
  • the two-phase / three-phase conversion unit 104C converts the harmonic voltage commands V ⁇ hmr1 and V ⁇ hmr1 into three-phase harmonic voltage commands Vuhmr, Vvhmr and Vwhmr, based on the following equation (13).
  • FIG. 8 is a waveform diagram of the capacitor voltage in the present embodiment, in which the horizontal axis represents time and the vertical axis represents voltage level.
  • the waveform Vcu in FIG. 8 is obtained by superposing the waveforms of the capacitor voltages Vcu1 to VcuM.
  • the waveform Vcv is a superposition of the waveforms of the capacitor voltages Vcv1 to VcvM.
  • the waveform Vcw is obtained by superposing the waveforms of the capacitor voltages Vcw1 to VcwM.
  • the number M of series connection of the cells 2 is “21”.
  • Each waveform shown in FIG. 8 is a waveform when a harmonic current having the same cycle as that of the PWM carrier CR (see FIG. 2) flows from the alternating current system 5 into the power conversion device S1.
  • the waveforms of the respective capacitor voltages Vcu1 to VcuM, Vcv1 to VcvM, and Vcw1 to VcwM are unbalanced, the variations of these waveforms remain at relatively low levels.
  • FIG. 9 is a waveform diagram of a capacitor voltage in the present comparative example.
  • the waveforms Vcu, Vcv and Vcw in FIG. 9 are waveforms obtained by superposing the waveforms of the capacitor voltages Vcu1 to VcuM, Vcv1 to VcvM, and Vcw1 to VcwM, as in the case of FIG. It can be seen that the waveform in FIG. 9 has larger variations in waveforms of the capacitor voltages Vcu1 to VcuM, Vcv1 to VcvM, and Vcw1 to VcwM, as compared with FIG.
  • the power conversion device (S1) of the present embodiment includes the harmonic current, which is a harmonic component within a predetermined band including the modulation period of the PWM modulation wave, included in the output current (Iau, Iav, Iaw). It has a harmonic current extraction part (101) to extract, and a current control part (102) which controls a gate pulse signal output part (108) so that the extracted harmonic current may be suppressed.
  • the harmonic current affecting the voltage balance of the cell (2) can be reduced, and the variation of the capacitor voltage waveform can be reduced as compared with the comparative example. In other words, it is possible to control the voltage balance of the cell appropriately.
  • the current control unit (102) controls the gate pulse signal output unit (108) so that the extracted harmonic current approaches zero. Thereby, the variation in the waveform of the capacitor voltage can be further reduced.
  • an on / off state setting unit (103E) for setting the on / off state of the function of the current control unit (102).
  • the on / off state of the function of the current control unit (102) can be set based on the magnitude of the effective current (Iact) or the harmonic voltage (Vhm).
  • the on / off state setting unit (103E) is equal to or higher than a predetermined first threshold (IactnL) in which the effective current (Iact) is a negative value, and the effective current (Iact) is a positive value. If it is less than or equal to a predetermined second threshold (IactpL) and the harmonic voltage (Vhm) is greater than or equal to a predetermined third threshold (VhmH), the function of the current control unit (102) is turned on. Thereby, the function of the current control unit (102) can be turned on when the absolute value of the effective current (Iact) is relatively small and the harmonic voltage (Vhm) is relatively large.
  • the hardware of the control device 100 in the above embodiment can be realized by a general computer, so the control device 100 in FIG. 1 and programs etc. for realizing the functions shown in FIGS. 3, 4 and 7 are stored. It may be stored in a medium or distributed via a transmission line.
  • control apparatus 100 in FIG. 1 and the functions shown in FIGS. 3, 4 and 7 have been described as software processing using a program in the above embodiment, but some or all of them may be ASICs
  • the processing may be replaced by hardware processing using (Application Specific Integrated Circuit; IC for specific application) or FPGA (field-programmable gate array) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

電力変換装置において、セルの電圧バランスを適切に制御できるようにする。そのため、各々が複数のセル(2)を有し、一のセル(2)は少なくとも一のコンデンサと少なくとも一のスイッチング素子とを有するものである、複数のアーム(3)と、各々のアーム3の出力電流(Iau,Iav,Iaw)に基づいて、スイッチング素子を制御するためのPWM変調波であるゲートパルス信号を出力するゲートパルス信号出力部(108)と、出力電流(Iau,Iav,Iaw)に含まれる、PWM変調波の変調周期を含む所定帯域内の高調波成分である高調波電流を抽出する高調波電流抽出部(101)と、抽出した高調波電流を抑制するように、ゲートパルス信号出力部(108)を制御する電流制御部(102)と、を電力変換装置S1に設けた。

Description

電力変換装置およびその制御方法
 本発明は、電力変換装置およびその制御方法に関する。
 MMC(Modular Multilevel Converter;マルチモジュラーコンバータ)と称される電力変換装置においては、3相の各アームにおいて、個別にコンデンサを有する複数の単相コンバータ(以下、セルと称す)が直列接続されている。MMCにおいては、交流系統に対して所望の交流電圧を出力するために、これら複数セルのコンデンサ電圧をバランスさせることが好ましい。このため、多くのMMCには、セル毎にコンデンサの充放電量を調整して直流部の電圧をバランスさせる制御機能が設けられている。
 ここで、例えば下記特許文献1等に記載されているように、交流系統と電力変換装置との間の電力融通量が小さい場合であっても、電力変換装置内の各エネルギー貯蔵要素(コンデンサ)のエネルギー貯蔵量(電圧)のバランスを保つ技術が知られている。
特開2016-197940号公報
 ところで、MMCが接続される交流系統には、種々の外部機器も接続されている。そして、これら外部機器が、MMCにおけるPWM(Pulse Width Modulation)搬送波と同一または近似する周期の高調波電流を発生させる場合がある。上述した特許文献1の技術では、交流系統を介してこの種の高調波電流がMMCに流入すると、セルの電圧バランスを確保するための制御が適切に実行できなくなるという問題がある。
 この発明は上述した事情に鑑みてなされたものであり、セルの電圧バランスを適切に制御できる電力変換装置およびその制御方法を提供することを目的とする。
 上記課題を解決するため本発明の電力変換装置は、各々が複数のセルを有し、一の前記セルは少なくとも一のコンデンサと少なくとも一のスイッチング素子とを有するものである、複数のアームと、各々の前記アームの出力電流に基づいて、前記スイッチング素子を制御するためのPWM変調波であるゲートパルス信号を出力するゲートパルス信号出力部と、前記出力電流に含まれる、前記PWM変調波の変調周期を含む所定帯域内の高調波成分である高調波電流を抽出する高調波電流抽出部と、抽出した前記高調波電流を抑制するように、前記ゲートパルス信号出力部を制御する電流制御部と、を有することを特徴とする。
 本発明によれば、セルの電圧バランスを適切に制御できる。
本発明の一実施形態による電力変換装置の全体構成を示すブロック図である。 PWM搬送波の一例を示す波形図である。 高調波電流抽出部のブロック図である。 電流制御部と制御オン・オフ判定部のブロック図である。 変換器出力判定部の動作説明図である。 系統高調波判定部の動作説明図である。 座標変換部のブロック図である。 一実施形態におけるコンデンサ電圧の波形図である。 比較例におけるコンデンサ電圧の波形図である。
〈実施形態の構成〉
 図1は本発明の一実施形態による電力変換装置S1の全体構成を示すブロック図である。
 電力変換装置S1は、3相の交流系統5と電力変換装置S2との間に接続される。電力変換装置S1は、電力変換器1と、変圧器4と、電流センサ7と、電圧センサ8と、正極端子10Pと、負極端子10Nと、制御装置100と、を有している。そして、電力変換器1は、U相、V相、W相の3相に対応したアーム3u,3v,3wを有している。なお、これらを「アーム3」と総称することがある。
 アーム3uは、直列接続されたM台のセル2u-1~2u-Mを有している。これらのセルはコンデンサ(符号なし)を備えており、これらコンデンサの端子電圧をコンデンサ電圧Vcu1~VcuMとして出力する。同様に、アーム3vは、直列接続されたM台のセル2v-1~2v-Mを有し、これらセルはコンデンサ電圧Vcv1~VcvMを出力する。同様に、アーム3wは、直列接続されたM台のセル2w-1~2w-Mを有し、これらセルはコンデンサ電圧Vcw1~VcwMを出力する。
 これらのセル2u-1~2u-M,2v-1~2v-M,2w-1~2w-Mを「セル2」と総称することがある。また、コンデンサ電圧Vcu1~VcuM,Vcv1~VcvM,Vcw1~VcwMを「コンデンサ電圧Vc」と総称することがある。セル2には、例えば、チョッパ回路やフルブリッジ回路等を適用することができる。セル2には、例えばIGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子が含まれており、制御装置100は、これらスイッチング素子をオン・オフ制御するゲートパルス信号を供給する。このゲートパルス信号は、電圧指令値をPWM(Pulse Width Modulation)変調したものである。
 電流センサ7は、アーム3u,3v,3wを流れるアーム電流Iau,Iav,Iaw(出力電流)を検出する。また、電圧センサ8は、交流系統5の系統電圧Vu,Vv,Vwを検出する。変圧器4は、1次巻線4aと2次巻線4bとを有している。1次巻線4aには、デルタまたはスター結線の巻線構造が適用され、2次巻線4bには千鳥結線の巻線構造が適用されている。上述した3相のアーム3は、その一端が正極端子10Pに接続され、他端は電流センサ7を介して、2次巻線4bの各相に接続されている。また、2次巻線4bの中性点は、負極端子10Nに接続されている。
 交流系統5には、外部機器50が接続されている。この外部機器50は、PWM変調周期と同一または近似する周期の高調波電流を、交流系統5を介して電力変換装置S1に漏洩する。すなわち、高調波電流は、アーム電流Iau,Iav,Iawに含まれる高調波成分のうち、PWM変調周期と同一または近似する所定帯域の成分に相当する。外部機器50は、例えば、整流器負荷やサイリスタ式の電力変換装置等である。この高調波電流が電力変換装置S1に流入すると、各セル2におけるコンデンサ電圧Vcのバランスに影響を与える。
 ところで、電力変換装置S2は、電力変換装置S1と同様に構成され、正極端子10Pおよび負極端子10Nに接続されるとともに、他の交流系統15にも接続されている。この交流系統15は、交流系統5に対して、電圧、周波数、位相が独立している。そして、電力変換装置S1,S2は、それぞれ交流・直流の相互変換を行う。かかる構成により、交流系統5,15は、電力変換装置S1,S2を介して、相互に電力を融通することができる。
 制御装置100は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、RAM(Random Access Memory)、ROM(Read Only Memory)等、一般的なコンピュータとしてのハードウエアを備えており、ROMには、CPUによって実行される制御プログラム、DSPによって実行されるマイクロプログラムおよび各種データ等が格納されている。図1において、制御装置100の内部は、制御プログラムおよびマイクロプログラム等によって実現される機能を、ブロックとして示している。
 制御装置100の内部において、高調波電流抽出部101は、電流センサ7によって検出されたアーム電流Iau,Iav,Iawに含まれる高調波電流を抽出する。ここで、高調波電流とは、アーム電流Iau,Iav,Iawのうち、PWM変調周期と同一または近似する所定帯域の成分を指す。電流制御部102は、高調波電流抽出部101で抽出した高調波電流を抑制する。その詳細については後述する。
 制御オン・オフ判定部103は、アーム電流Iau,Iav,Iawと、系統電圧Vu,Vv,Vwと、に基づいて、電流制御部102の制御を実行するか否か、すなわち高調波電流を抑制するか否かを判定する。座標変換部104は、電流制御部102の出力を3相の高調波電圧指令に変換する。基本波電流制御部106は、基本波(例えば50Hzまたは60Hz)の電流成分を制御するための基本波電圧指令を出力する。加算器105は、座標変換部104から出力された高調波電圧指令と、基本波電流制御部106から出力された基本波電圧指令とを加算し、その結果をPWM変調部108(ゲートパルス信号出力部)に供給する。
 電圧バランス制御部107は、各セル2のコンデンサ電圧Vcu1~VcuM,Vcv1~VcvM,Vcw1~VcwMを入力とし、アーム3u,3v,3w間および各セル2のコンデンサ電圧をバランスさせる制御機能を有する。具体的な電圧バランスの制御方法については、例えば、『電気学会技術報告 第1374号「電力系統用新方式自励交直変換器の技術動向」~モジュラーマルチレベル変換器(MMC)を中心として~(pp.14、15、28)』に記載の方法を用いるとよい。電圧バランス制御部107にて計算されたコンデンサ電圧は、基本波電流制御部106にも供給される。PWM変調部108は、加算器105の出力信号と、電圧バランス制御部107の出力信号と、PWM搬送波CRと、に基づいて、各セル2を駆動するためのゲートパルス信号を生成する。
 図2は、PWM搬送波CRの一例を示す波形図である。PWM搬送波CRの周期を搬送波周期Tcと呼び、基本波の周期を基本波周期Tfと呼ぶ。図示の例において、基本波周波数は50Hzであり、基本波周期Tfは20msになる。また、搬送波周波数は250Hzであり、搬送波周期Tcは4msになる。
 図3は、高調波電流抽出部101のブロック図である。高調波電流抽出部101は、3相2相変換部101Aと、dq変換部101Bと、移動平均部101Cと、を備えている。3相2相変換部101Aは、下式(1)に基づいて、3相のアーム電流Iau,Iav,Iawを2相の電流Iα,Iβに変換する。
Figure JPOXMLDOC01-appb-M000001
 ここで、PWM搬送波CRの搬送波周波数fn(上記例では250Hz)と同一周波数で回転する回転座標を想定し、この回転座標において直交する軸をdq軸(すなわちd軸およびq軸)と呼ぶ。dq変換部101Bは、下式(2)に基づいて、2相の電流Iα,Iβを、dq軸上の電流Idn,Iqnに変換する。これにより、PWM搬送波CRの搬送波周波数fnと同一周波数の成分は、電流Idn,Iqnにおける直流量に変換される。なお、tは時間である。
Figure JPOXMLDOC01-appb-M000002
 移動平均部101Cは、下式(3),(4)に基づいて、dq軸上の電流Idn,Iqnから、PWM搬送波CRと同一または近似する所定帯域内の高調波電流Idhm,Iqhmを抽出する演算処理を実行する。下式(3),(4)においてNは移動平均点数である。移動平均点数Nは、電流Idn,Iqnをサンプリングするサンプリング周波数を基本波周波数で除算した値程度にするとよい。例えば、電流Idn,Iqnのサンプリング周波数を5kHzとし、基本波周波数を50Hzとすると、移動平均点数Nは、100(=5kHz/50Hz)程度に設定するとよい。また、Idn(1)~Idn(N-1)は、1~(N-1)サンプリング周期だけ過去の電流Idnの値であり、Iqn(1)~Iqn(N-1)は、1~(N-1)サンプリング周期だけ過去の電流Iqnの値であり、
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 図4は、電流制御部102と制御オン・オフ判定部103のブロック図である。
 電流制御部102は、減算器102D,102Eと、d軸電流制御器102Aと、q軸電流制御器102Bと、を備えている。減算器102Dは、高調波電流指令Idhmrから高調波電流Idhmを減算する。また、減算器102Eは、高調波電流指令Iqhmrから高調波電流Iqhmを減算する。
 ここで、高調波電流指令Idhmr,Iqhmrは、共に零にするとよい。d軸電流制御器102Aは、減算器102Dの出力信号を積分制御または比例積分制御することにより、高調波電流Idhmを高調波電流指令Idhmr(例えば零)に近づけるようにd軸高調波電圧指令Vdhmr(指令信号)を出力する。同様に、q軸電流制御器102Bは、減算器102Eの出力信号を積分制御または比例積分制御することにより、高調波電流Iqhmを高調波電流指令Iqhmr(例えば零)に近づけるようにq軸高調波電圧指令Vqhmr(指令信号)を出力する。
 また、制御オン・オフ判定部103は、有効電流抽出部103Aと、高調波電圧抽出部103Bと、系統高調波判定部103Dと、AND回路103E(オン・オフ状態設定部)と、を備えている。上述したように、制御オン・オフ判定部103には、電流センサ7からアーム電流Iau,Iav,Iawの検出結果が供給され、電圧センサ8から系統電圧Vu,Vv,Vwの検出結果が供給される。有効電流抽出部103Aは、下式(5)に基づいて、電力変換器1が出力する有効電流Iactを算出する。
Figure JPOXMLDOC01-appb-M000005
 また、高調波電圧抽出部103Bは、系統電圧Vu,Vv,Vwに基づいて、以下に述べる式(6)~(10)を用いて、PWM搬送波CRと同一または近似する所定帯域内の高調波電圧の振幅値Vhmを抽出する。以下、式(6)~(10)について順次説明する。高調波電圧抽出部103Bは、まず、下式(6)に基づいて、系統電圧Vu,Vv,Vwを、2相の電圧Vα,Vβに変換する。
Figure JPOXMLDOC01-appb-M000006
 次に、高調波電圧抽出部103Bは、下式(7)に基づいて、電圧Vα,Vβを、dq軸上の電圧Vdn,Vqnに変換する。これにより、PWM搬送波CRの搬送波周波数fnと同一周波数の成分は、電圧Vdn,Vqnにおける直流量に変換される。なお、tは時間である。
Figure JPOXMLDOC01-appb-M000007
 次に、高調波電圧抽出部103Bは、下式(8),(9)に基づいて、dq軸上の電圧Vdn,Vqnから、PWM搬送波CRと同一または近似する所定帯域内の高調波電圧Vdhm,Vqhmを抽出する演算処理を実行する。下式(8),(9)においてNは移動平均点数である。また、Vdn(1)~Vdn(N-1)は、1サンプリング周期~(N-1)サンプリング周期だけ前の電圧Vdnである。Vqn(1)~Vqn(N-1)についても同様である。上述した移動平均部101Cと同様に、電圧Vdn,Vqnをサンプリングするサンプリング周波数を5kHzとし、基本波の周波数を50Hzとすると、移動平均点数Nは、100(=5kHz/50Hz)程度に設定するとよい。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 次に、高調波電圧抽出部103Bは、下式(10)に基づいて、振幅値Vhmを算出する。この振幅値Vhmは、PWM搬送波CRと同一または近似する所定帯域内の高調波電圧の振幅値である。
Figure JPOXMLDOC01-appb-M000010
 また、変換器出力判定部103Cは、有効電流抽出部103Aから有効電流Iactを受信し、電流制御部102の機能をオン・オフするための判定フラグ信号Scnt1を出力する。また、系統高調波判定部103Dは、高調波電圧抽出部103Bから高調波電圧の振幅値Vhmを受信し、電流制御部102の機能をオン・オフするための判定フラグ信号Scnt2を出力する。
 判定フラグ信号Scnt1,Scnt2においては、オン状態を“1”、オフ状態を“0”とする。なお、変換器出力判定部103Cおよび系統高調波判定部103Dの判定方法の詳細は後述する。AND回路103Eは、判定フラグ信号Scnt1,Scnt2のAND演算結果を判定フラグ信号Scntとして出力する。すなわち、判定フラグ信号Scntは、判定フラグ信号Scnt1,Scnt2が共に“1”である場合に“1”(オン状態)になり、それ以外の場合に“0”(オフ状態)になる。
 電流制御部102内のd軸電流制御器102Aおよびq軸電流制御器102Bは、判定フラグ信号Scntが“0”になると、その機能がオフ状態にされる。より具体的には、d軸電流制御器102Aおよびq軸電流制御器102Bは、d軸およびq軸高調波電圧指令Vdhmr,Vqhmrを一定の変化率で零に近づけてゆき、やがてd軸およびq軸高調波電圧指令Vdhmr,Vqhmrを零にリセットする。
 図5は、変換器出力判定部103Cの動作説明図である。図5の横軸は、有効電流Iactであり、縦軸は判定フラグ信号Scnt1である。図中のIactnL(第1の閾値)、IactnH、IactpL(第2の閾値)、IactpHは、判定フラグ信号Scnt1のオン・オフを判定する閾値であり、閾値IactnL,IactnHは負値、閾値IactpL,IactpHは正値である。すなわち、有効電流Iactが閾値IactnL未満の値から閾値IactnL以上の値に変化すると、判定フラグ信号Scnt1は“0”(オフ状態)から“1”(オン状態)に変化する。
 また、有効電流Iactが閾値IactnH以上の値から閾値IactnH未満の値に変化すると、判定フラグ信号Scnt1は“1”(オン状態)から“0”(オフ状態)に変化する。また、有効電流Iactが閾値IactpLを超える値から閾値IactpL以下の値に変化すると、判定フラグ信号Scnt1は“0”(オフ状態)から“1”(オン状態)に変化する。また、有効電流Iactが閾値IactpH以下の値から閾値IactpHを超える値に変化すると、判定フラグ信号Scnt1は“1”(オン状態)から“0”(オフ状態)に変化する。
 換言すれば、判定フラグ信号Scnt1は、有効電流Iactの絶対値が比較的大きい場合に“0”(オフ状態)になり、有効電流Iactが比較的小さい場合に“1”(オン状態)になる。これは、有効電流Iactの絶対値が大きい場合には、外部機器50(図1参照)から交流系統5を介して電力変換器1に多少の高調波電流が流れたとしても、コンデンサ電圧Vcに与える影響が小さいと考えられるためである。但し、図5に示すように、判定条件にヒステリシス特性を持たせることにより、閾値付近での頻繁なオン・オフ判定の変動を防止している。
 図6は、系統高調波判定部103Dの動作説明図である。図6の横軸は、高調波電圧の振幅値Vhmであり、縦軸は判定フラグ信号Scnt2である。図中のVhmL、VhmHは、判定フラグ信号Scnt2のオン・オフを判定する閾値である。すなわち、振幅値Vhmが閾値VhmL以上の値から閾値VhmL未満の値に変化すると、判定フラグ信号Scnt2は“1”(オン状態)から“0”(オフ状態)に変化する。また、振幅値Vhmが閾値VhmH(第3の閾値)未満の値から閾値VhmH以上の値に変化すると、判定フラグ信号Scnt2は“0”(オフ状態)から“1”(オン状態)に変化する。
 換言すれば、判定フラグ信号Scnt2は、高調波電圧の振幅値Vhmが比較的大きい場合に“1”(オン状態)になり、振幅値Vhmが比較的小さい場合に“0”(オフ状態)になる。これは、高調波電圧の振幅値Vhmが小さい場合には、外部機器50(図1参照)から交流系統5を介して電力変換器1に流入する高調波電流が小さく、コンデンサ電圧Vcに与える影響も小さいと考えられるためである。そして、系統高調波判定部103Dも、上述した変換器出力判定部103Cと同様に、判定条件にヒステリシス特性を付与することにより、閾値付近での頻繁なオン・オフ判定の変動を防止している。
 図7は、座標変換部104のブロック図である。座標変換部104は、逆dq変換部104Aと、位相補償部104Bと、2相3相変換部104Cと、を備えている。逆dq変換部104Aは、下式(11)に基づいて、d軸およびq軸高調波電圧指令Vdhmr,Vqhmrを、2相(α相,β相)の高調波電圧指令Vαhmr,Vβhmrに変換する。式(11)において、fnはPWM搬送波CRの搬送波周波数であり、tは時間である。
Figure JPOXMLDOC01-appb-M000011
 位相補償部104Bは、前述した移動平均部101C(図3参照)における遅れを補償するブロックである。すなわち、位相補償部104Bは、下式(12)に基づいて、高調波電圧指令Vαhmr,Vβhmrの各々の位相を位相角θだけ進めた高調波電圧指令Vαhmr1,Vβhmr1を出力する。
Figure JPOXMLDOC01-appb-M000012
 2相3相変換部104Cは、下式(13)に基づいて、高調波電圧指令Vαhmr1,Vβhmr1を、3相の高調波電圧指令Vuhmr,Vvhmr,Vwhmrに変換する。
Figure JPOXMLDOC01-appb-M000013
〈実施形態の動作〉
 図8は、本実施形態におけるコンデンサ電圧の波形図であり、各波形は横軸が時間、縦軸が電圧レベルになっている。図8における波形Vcuは、コンデンサ電圧Vcu1~VcuMの波形を重ねたものである。同様に、波形Vcvは、コンデンサ電圧Vcv1~VcvMの波形を重ねたものである。同様に、波形Vcwは、コンデンサ電圧Vcw1~VcwMの波形を重ねたものである。なお、図示の例において、セル2の直列接続数Mは、「21」としている。
 図8に示す各波形は、交流系統5から、PWM搬送波CR(図2参照)と同一周期の高調波電流が電力変換装置S1に流入した場合の波形である。これにより、各コンデンサ電圧Vcu1~VcuM,Vcv1~VcvM,Vcw1~VcwMの波形はアンバランスになっているが、これら波形のバラツキは、比較的低いレベルに留まっている。
〈比較例〉
 次に、本実施形態の効果を明らかにするため、比較例の構成について説明する。本比較例の全体構成は、上記実施形態のもの(図1参照)と同様であるが、電流制御部102の機能は常にオフ状態にされている点で、上記実施形態とは相違する。
 図9は、本比較例におけるコンデンサ電圧の波形図である。図9における波形Vcu,Vcv,Vcwは、図8のものと同様に、各コンデンサ電圧Vcu1~VcuM,Vcv1~VcvM,Vcw1~VcwMの波形を重ねたものである。図9における波形は、図8と比較して、各コンデンサ電圧Vcu1~VcuM,Vcv1~VcvM,Vcw1~VcwMの波形のバラツキが、大きくなっていることが解る。
〈実施形態の効果〉
 以上のように本実施形態の電力変換装置(S1)は、出力電流(Iau,Iav,Iaw)に含まれる、PWM変調波の変調周期を含む所定帯域内の高調波成分である高調波電流を抽出する高調波電流抽出部(101)と、抽出した高調波電流を抑制するように、ゲートパルス信号出力部(108)を制御する電流制御部(102)と、を有する。
 これにより、セル(2)の電圧バランスに影響を与える高調波電流を低減させることができ、比較例と比較すると、コンデンサ電圧の波形のバラツキを小さくすることができる。換言すれば、セルの電圧バランスを適切に制御することが可能である。
 より具体的には、電流制御部(102)は、抽出した高調波電流を零に近づけるようにゲートパルス信号出力部(108)を制御する。
 これにより、コンデンサ電圧の波形のバラツキを、より小さくすることができる。
 さらに、本実施形態の電力変換装置(S1)は、出力電流(Iau,Iav,Iaw)に含まれる有効電流(Iact)を抽出する有効電流抽出部(103A)と、所定の交流電圧から、PWM変調波の変調周期を含む所定帯域内の高調波成分である高調波電圧(Vhm)を抽出する高調波電圧抽出部(103B)と、有効電流(Iact)または高調波電圧(Vhm)の大きさに基づいて、電流制御部(102)の機能のオン・オフ状態を設定するオン・オフ状態設定部(103E)と、をさらに有する。
 これにより、有効電流(Iact)または高調波電圧(Vhm)の大きさに基づいて、電流制御部(102)の機能のオン・オフ状態を設定することができる。
 より具体的には、オン・オフ状態設定部(103E)は、有効電流(Iact)が負値である所定の第1の閾値(IactnL)以上であり、有効電流(Iact)が正値である所定の第2の閾値(IactpL)以下であり、かつ、高調波電圧(Vhm)が所定の第3の閾値(VhmH)以上であれば、電流制御部(102)の機能をオン状態にする。
 これにより、有効電流(Iact)の絶対値が比較的小さく、かつ、高調波電圧(Vhm)が比較的大きい場合に電流制御部(102)の機能をオン状態にすることができる。
〈変形例〉
 本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記実施形態の構成に他の構成を追加してもよく、構成の一部について他の構成に置換をすることも可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
(1)上記実施形態における制御装置100のハードウエアは一般的なコンピュータによって実現できるため、図1内の制御装置100、図3、図4、図7に示した機能を実現するプログラム等を記憶媒体に格納し、または伝送路を介して頒布してもよい。
(2)図1内の制御装置100、図3、図4、図7に示した機能は、上記実施形態ではプログラムを用いたソフトウエア的な処理として説明したが、その一部または全部をASIC(Application Specific Integrated Circuit;特定用途向けIC)、あるいはFPGA(field-programmable gate array)等を用いたハードウエア的な処理に置き換えてもよい。
S1 電力変換装置
Iact 有効電流
Iau,Iav,Iaw アーム電流(出力電流)
Vdhmr d軸高調波電圧指令(指令信号)
Vqhmr q軸高調波電圧指令(指令信号)
2,2u-1~2u-M,2v-1~2v-M,2w-1~2w-M セル
3,3u,3v,3w アーム
1 電力変換器
100 制御装置
101 高調波電流抽出部
102 電流制御部
103 制御オン・オフ判定部
103A 有効電流抽出部
103B 高調波電圧抽出部
103E AND回路(オン・オフ状態設定部)
108 PWM変調部(ゲートパルス信号出力部)

Claims (5)

  1.  各々が複数のセルを有し、一の前記セルは少なくとも一のコンデンサと少なくとも一のスイッチング素子とを有するものである、複数のアームと、
     各々の前記アームの出力電流に基づいて、前記スイッチング素子を制御するためのPWM変調波であるゲートパルス信号を出力するゲートパルス信号出力部と、
     前記出力電流に含まれる、前記PWM変調波の変調周期を含む所定帯域内の高調波成分である高調波電流を抽出する高調波電流抽出部と、
     抽出した前記高調波電流を抑制するように、前記ゲートパルス信号出力部を制御する電流制御部と、
     を有することを特徴とする電力変換装置。
  2.  前記電流制御部は、抽出した前記高調波電流を零に近づけるように前記ゲートパルス信号出力部を制御する
     ことを特徴とする請求項1に記載の電力変換装置。
  3.  前記出力電流に含まれる有効電流を抽出する有効電流抽出部と、
     所定の交流電圧から、前記PWM変調波の変調周期を含む所定帯域内の高調波成分である高調波電圧を抽出する高調波電圧抽出部と、
     前記有効電流または前記高調波電圧の大きさに基づいて、前記電流制御部の機能のオン・オフ状態を設定するオン・オフ状態設定部と、
     をさらに有することを特徴とする請求項2に記載の電力変換装置。
  4.  前記オン・オフ状態設定部は、前記有効電流が負値である所定の第1の閾値以上であり、前記有効電流が正値である所定の第2の閾値以下であり、かつ、前記高調波電圧が所定の第3の閾値以上であれば、前記電流制御部の機能をオン状態にする
     ことを特徴とする請求項3に記載の電力変換装置。
  5.  各々が複数のセルを有し、一の前記セルは少なくとも一のコンデンサと少なくとも一のスイッチング素子とを有するものである、複数のアームと、
     各々の前記アームの出力電流に基づいて、前記スイッチング素子を制御するためのPWM変調波であるゲートパルス信号を出力するゲートパルス信号出力部と、
     前記出力電流に含まれる、前記PWM変調波の変調周期を含む所定帯域内の高調波成分である高調波電流を抽出する高調波電流抽出部と、
     抽出した前記高調波電流を抑制するように、前記ゲートパルス信号出力部を制御する電流制御部と、
     を有する電力変換装置を制御する電力変換装置の制御方法であって、
     前記出力電流に含まれる有効電流が負値である所定の第1の閾値以上であり、前記有効電流が正値である所定の第2の閾値以下であり、かつ、所定の交流電圧において前記PWM変調波の変調周期を含む所定帯域内の高調波成分である高調波電圧が所定の第3の閾値以上である場合に前記電流制御部の機能をオン状態にする
     ことを特徴とする電力変換装置の制御方法。
PCT/JP2018/031665 2017-09-07 2018-08-28 電力変換装置およびその制御方法 WO2019049713A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017171735A JP6851291B2 (ja) 2017-09-07 2017-09-07 電力変換装置およびその制御方法
JP2017-171735 2017-09-07

Publications (1)

Publication Number Publication Date
WO2019049713A1 true WO2019049713A1 (ja) 2019-03-14

Family

ID=65634836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031665 WO2019049713A1 (ja) 2017-09-07 2018-08-28 電力変換装置およびその制御方法

Country Status (2)

Country Link
JP (1) JP6851291B2 (ja)
WO (1) WO2019049713A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082477A1 (zh) * 2019-11-01 2021-05-06 中车永济电机有限公司 一种电力机车四象限变流器电流低次谐波抑制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170849A4 (en) 2020-06-17 2023-08-02 Mitsubishi Electric Corporation POWER CONVERSION SYSTEM
EP4354725A4 (en) * 2021-06-10 2024-08-07 Mitsubishi Electric Corp POWER CONVERTER

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100618A (ja) * 2007-10-19 2009-05-07 Fuji Electric Holdings Co Ltd 無停電電源装置
JP2016197940A (ja) * 2015-04-02 2016-11-24 株式会社日立製作所 電力変換システムおよび電力変換システムの制御方法
WO2017046910A1 (ja) * 2015-09-17 2017-03-23 三菱電機株式会社 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100618A (ja) * 2007-10-19 2009-05-07 Fuji Electric Holdings Co Ltd 無停電電源装置
JP2016197940A (ja) * 2015-04-02 2016-11-24 株式会社日立製作所 電力変換システムおよび電力変換システムの制御方法
WO2017046910A1 (ja) * 2015-09-17 2017-03-23 三菱電機株式会社 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082477A1 (zh) * 2019-11-01 2021-05-06 中车永济电机有限公司 一种电力机车四象限变流器电流低次谐波抑制方法

Also Published As

Publication number Publication date
JP6851291B2 (ja) 2021-03-31
JP2019047701A (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
JP5452330B2 (ja) 電力変換装置
KR20160122923A (ko) 3상 인버터의 옵셋 전압 생성 장치 및 방법
KR101688649B1 (ko) 중성점 전압의 불평형 제어에 의한 고효율 3 레벨 태양광 인버터
JP2002315343A (ja) Pwmコンバータ装置
US11218107B2 (en) Control device for power converter
JP6681476B2 (ja) 電力変換装置および電力変換装置の制御方法
JP6538544B2 (ja) 自励式無効電力補償装置
JP2016208820A (ja) 三相インバータのオフセット電圧生成装置及び三相インバータ制御装置
US20150188454A1 (en) Inverter device, control circuit for inverter device, and method for controlling inverter device
WO2019049713A1 (ja) 電力変換装置およびその制御方法
JP2009201248A (ja) クランプ式電力変換装置
JP6131360B1 (ja) 電力変換装置
JP2018088750A (ja) 電力変換装置
JP5270272B2 (ja) インバータ制御回路、このインバータ制御回路を備えた系統連系インバータシステム、このインバータ制御回路を実現するためのプログラム、及びこのプログラムを記録した記録媒体
JP4556108B2 (ja) 電力変換器の制御装置
JP6211377B2 (ja) Pwmコンバータの制御装置及びそのデッドタイム補償方法並びにpwmインバータの制御装置及びそのデッドタイム補償方法
JP6892812B2 (ja) 電力変換装置
JP6437807B2 (ja) インバータ回路を制御する制御回路、および、当該制御回路を備えたインバータ装置
JP3674323B2 (ja) 電力変換器の制御装置
JP2016063687A (ja) 電力変換装置
JP5787053B2 (ja) 3相v結線コンバータの制御装置
EP3432461A1 (en) Power conversion device
JP7078869B2 (ja) 電力変換システム
JP7040077B2 (ja) 電力変換装置
JP2017153277A (ja) 自励式無効電力補償装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854395

Country of ref document: EP

Kind code of ref document: A1