[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019049635A1 - 近赤外線吸収有機顔料、樹脂組成物、近赤外線吸収有機顔料の製造方法、近赤外線吸収有機顔料の分光調整方法、膜、積層体、近赤外線カットフィルタ、近赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサ - Google Patents

近赤外線吸収有機顔料、樹脂組成物、近赤外線吸収有機顔料の製造方法、近赤外線吸収有機顔料の分光調整方法、膜、積層体、近赤外線カットフィルタ、近赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサ Download PDF

Info

Publication number
WO2019049635A1
WO2019049635A1 PCT/JP2018/030562 JP2018030562W WO2019049635A1 WO 2019049635 A1 WO2019049635 A1 WO 2019049635A1 JP 2018030562 W JP2018030562 W JP 2018030562W WO 2019049635 A1 WO2019049635 A1 WO 2019049635A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic pigment
near infrared
infrared
group
pigment
Prior art date
Application number
PCT/JP2018/030562
Other languages
English (en)
French (fr)
Inventor
和敬 高橋
峻輔 北島
季彦 松村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019540861A priority Critical patent/JP6976341B2/ja
Publication of WO2019049635A1 publication Critical patent/WO2019049635A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to near infrared absorbing organic pigments. Further, a resin composition, a method of producing a near infrared absorbing organic pigment, a method of adjusting the spectral of the near infrared absorbing organic pigment, a film, a laminate, a near infrared cut filter, a near infrared transmission filter, a solid imaging element, an image display device, and an infrared sensor About.
  • CCDs charge coupled devices
  • CMOS complementary metal oxide semiconductors
  • the near-infrared cut filter is known to be manufactured using a resin composition containing a near-infrared absorber such as a near-infrared absorbing organic pigment in order to enhance near-infrared shielding properties (for example, Patent Documents 1 to 3) .
  • near infrared absorbers such as near infrared absorbing organic pigments, are required to achieve both high visible transparency and near infrared shielding properties.
  • an object of the present invention is to provide a near infrared absorbing organic pigment excellent in visible transparency and near infrared shielding properties. Further, a resin composition, a method of producing a near infrared absorbing organic pigment, a method of adjusting the spectral of the near infrared absorbing organic pigment, a film, a laminate, a near infrared cut filter, a near infrared transmission filter, a solid imaging element, an image display device, and an infrared sensor To provide.
  • the present inventors have found that a specific near infrared absorbing organic pigment is excellent in visible transparency and near infrared shielding properties, and have completed the present invention.
  • the present invention provides the following.
  • a near infrared absorbing organic pigment having a maximum absorption wavelength in a wavelength range of 650 to 1400 nm The near infrared absorbing organic pigment has an A 550 / A max of less than 0.1, which is the ratio of the absorbance A 550 at a wavelength of 550 nm to the absorbance A max at a maximum absorption wavelength,
  • the average primary particle diameter of the near infrared absorbing organic pigment is 1 to 200 nm
  • Ic is the maximum value of the diffraction intensity of the peak derived from the crystal in the powder X-ray diffraction spectrum in the region where the diffraction angle 2 ⁇ is 15 ° or more
  • Ia is the maximum value
  • a 1 / A max is 0.57 which is the ratio between the absorbance A max at the maximum absorption wavelength of the near infrared absorbing organic pigment
  • the near-infrared absorbing organic pigment according to ⁇ 1> which is ⁇ 0.9.
  • a 1 / A max which is the ratio of the absorbance A 1 at a wavelength 50 nm shorter than the maximum absorption wavelength of the near-infrared absorption organic pigment and the absorbance A max at the maximum absorption wavelength of the near-infrared absorption organic pigment is near
  • ⁇ 4> The near-infrared-absorbing organic pigment according to any one of ⁇ 1> to ⁇ 3>, wherein the near-infrared-absorbing organic pigment has a maximum absorption wavelength in a wavelength range of 650 to 780 nm.
  • ⁇ 5> The near-infrared-absorbing organic pigment according to any one of ⁇ 1> to ⁇ 4>, wherein the average long / short side ratio of primary particles of the near-infrared-absorbing organic pigment is 0.3 to 0.99.
  • ⁇ 6> The near-infrared-absorbing organic pigment according to any one of ⁇ 1> to ⁇ 5>, wherein the near-infrared-absorbing organic pigment is at least one selected from a pyrrolopyrrole compound and a squalilium compound.
  • a resin composition comprising the near-infrared-absorbing organic pigment according to any one of ⁇ 1> to ⁇ 6>, and a resin.
  • ⁇ 9> has a maximum absorption wavelength in the wavelength range of 650 ⁇ 1400 nm, near infrared, which is the ratio between the absorbance A max in the absorbance A 550 and the maximum absorption wavelength in the wavelength 550 nm A 550 / A max is less than 0.1
  • An absorbing pigment is milled to give an average primary particle size of 1 to 200 nm, and a near infrared absorbing organic compound having a crystallinity of 0.70 to 0.98 represented by the following formula in a powder X-ray diffraction spectrum.
  • a method of producing a pigment [Ic / (Ia + Ic)]
  • Ic is the maximum value of the diffraction intensity of the peak derived from the crystal in the powder X-ray diffraction spectrum in the region where the diffraction angle 2 ⁇ is 15 ° or more
  • Ia is the maximum value of the diffraction intensity of the peak derived from amorphous in the powder X-ray diffraction spectrum.
  • ⁇ 10> has a maximum absorption wavelength in the wavelength range of 650 ⁇ 1400 nm, near infrared, which is the ratio between the absorbance A max in the absorbance A 550 and the maximum absorption wavelength in the wavelength 550 nm A 550 / A max is less than 0.1
  • An absorbing pigment is milled to give an average primary particle size of 1 to 200 nm, and a near infrared absorbing organic compound having a crystallinity of 0.70 to 0.98 represented by the following formula in a powder X-ray diffraction spectrum.
  • a 1 at 50nm shorter wavelength than the maximum absorption wavelength of the near infrared absorbing organic pigment after milling A 1 / A max is the ratio between the absorbance A max at the maximum absorption wavelength of the near infrared absorbing organic pigment
  • the spectral adjustment method of the near-infrared absorption organic pigment as described in ⁇ 10> which is 5% or more higher than the value of the near-infrared absorption organic pigment before a milling process.
  • the laminated body which has a film as described in ⁇ 12> on a ⁇ 13> support body.
  • the near-infrared cut off filter which has a film
  • the near-infrared penetration filter which has a film as described in ⁇ 16> ⁇ 12>.
  • the solid-state image sensor which has a film
  • the image display apparatus which has a film
  • the near-infrared absorption organic pigment excellent in visible transparency and near-infrared shielding can be provided.
  • a resin composition, a method of producing a near infrared absorbing organic pigment, a method of adjusting the spectral of the near infrared absorbing organic pigment, a film, a laminate, a near infrared cut filter, a near infrared transmission filter, a solid imaging element, an image display device, and an infrared sensor Can be provided.
  • the notation not describing substitution and non-substitution includes a group (atomic group) having a substituent as well as a group (atomic group) having no substituent.
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • exposure includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams, unless otherwise specified.
  • active ray or radiation such as a bright line spectrum of a mercury lamp, far ultraviolet rays represented by an excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams and the like can be mentioned.
  • (meth) acrylate represents both or either of acrylate and methacrylate
  • (meth) acryl” represents both or either of acrylic and methacryl
  • Acryloyl represents either or both of acryloyl and methacryloyl.
  • the weight average molecular weight and the number average molecular weight are defined as polystyrene equivalent values in gel permeation chromatography (GPC) measurement.
  • GPC gel permeation chromatography
  • Me in the chemical formula represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • near-infrared light refers to light (electromagnetic wave) having a wavelength of 700 to 2500 nm.
  • total solids refers to the total mass of all components of the composition excluding the solvent.
  • the term "process” is included in the term if the intended function of the process is achieved, even if it can not be clearly distinguished from other processes, not only the independent process.
  • the term "pigment” as used herein means a compound that is difficult to dissolve in a specific solvent.
  • the pigment preferably has a solubility of 0.1 g or less, more preferably 0.01 g or less, in 100 g of water at 23 ° C. and 100 g of propylene glycol monomethyl ether acetate at 23 ° C.
  • the near-infrared-absorbing organic pigment of the present invention is a near-infrared-absorbing organic pigment having a maximum absorption wavelength in the wavelength range of 650 to 1400 nm,
  • the above-mentioned near infrared absorbing organic pigment has an A 550 / A max of less than 0.1, which is the ratio of the absorbance A 550 at a wavelength of 550 nm to the absorbance A max at a maximum absorption wavelength,
  • the average primary particle diameter of the near infrared absorbing organic pigment is 1 to 200 nm
  • the value of the crystallinity represented by the following formula is characterized to be 0.70 to 0.98.
  • Crystallinity [Ic / (Ia + Ic)]
  • Ic is the maximum value of the diffraction intensity of the peak derived from the crystal in the powder X-ray diffraction spectrum in the region where the diffraction angle 2 ⁇ is 15 ° or more
  • Ia is the maximum value of the diffraction intensity of the peak derived from amorphous in the powder X-ray diffraction spectrum.
  • the average primary particle diameter is 1 to 200 nm, and the value of crystallinity represented by the above formula is 0.70 to 0.98. It has been found that the near infrared absorbing organic pigment has excellent visible transparency, is excellent in absorption in a wide range near the maximum absorption wavelength, and can shield near infrared rays of a wide range of wavelengths. Although the detailed reason is unknown, by adjusting the primary particle diameter and the degree of crystallinity of the near-infrared absorbing organic pigment in the above range, the association of the near-infrared absorbing organic pigment is appropriately broken and the crystallinity is appropriate.
  • the absorption in a wide range near the maximum absorption wavelength is improved without impairing the spectral characteristics in the visible region.
  • the primary particle diameter is in the above range, the influence of scattering and the like is reduced, and the visible transparency can also be improved while improving the near infrared ray shielding property.
  • the near-infrared-absorbing organic pigment of the present invention can block a wider range of near-infrared light while being excellent in visible transparency, and therefore, when the near-infrared-absorbing organic pigment is used for a near-infrared cut filter, A near infrared cut filter capable of blocking a wide range of near infrared rays can be provided. Moreover, when this near-infrared absorption organic pigment is used for a near-infrared transmission filter, it can be set as the near-infrared transmission filter which can permeate
  • the viewing-angle dependency of the near-infrared cut filter or near-infrared transmission filter can be further improved, and the occurrence of defects can be suppressed more effectively.
  • the near-infrared-absorbing organic pigment of the present invention has a crystallinity of 0.70 to 0.98.
  • the upper limit is more preferably 0.96 or less, and still more preferably 0.94 or less.
  • the lower limit is more preferably 0.80 or more, and still more preferably 0.85 or more. If the value of crystallinity degree is the said range, near-infrared shielding can be improved, without impairing the spectral characteristics of the visible region of a near-infrared absorption organic pigment. More specifically, the visible transparency is good, and the absorption in a wide range near the maximum absorption wavelength of the near infrared absorbing organic pigment can be enhanced to shield a wider range of near infrared rays.
  • the crystallinity of the near infrared absorbing organic pigment can be adjusted by a method such as adjusting the milling conditions of the near infrared absorbing organic pigment. For example, if it is desired to increase the degree of crystallinity, the milling temperature may be increased, or the ratio of grinding agent / pigment (mass ratio) may be increased. If the degree of crystallization is desired to be decreased, the milling temperature may be decreased. The ratio (mass ratio) may be lowered.
  • the peak derived from crystals in the present invention means a sharp peak having a full width at half maximum of 1 ° or less at the peak of the diffraction intensity. Moreover, the peak derived from the amorphous means a peak whose full width at half maximum in the peak of the diffraction intensity exceeds 3 °.
  • the values of Ic and Ia are the lowest at the diffraction intensity 2 ⁇ of the powder X-ray diffraction spectrum of the near-infrared absorbing organic pigment in the region of 5 to 15 ° and 25 to 35 °.
  • the powder X-ray diffraction spectrum of the near infrared absorbing organic pigment can be measured by the method described in the examples described later.
  • the average primary particle diameter of the near-infrared-absorbing organic pigment of the present invention is 1 to 200 nm.
  • the lower limit is more preferably 5 nm or more, and further preferably 10 nm or more.
  • the upper limit is more preferably 100 nm or less, and still more preferably 50 nm or less. If the average primary particle diameter of the near-infrared absorbing organic pigment is in the above range, the near-infrared shielding property can be enhanced without impairing the spectral characteristics of the near-infrared absorbing organic pigment in the visible region. More specifically, the visible transparency is good, and the absorptivity of the near-infrared absorbing organic pigment in the vicinity of the maximum absorption wavelength can be increased to shield a wider range of near-infrared light.
  • the variation coefficient of the primary particle diameter of the near-infrared-absorbing organic pigment of the present invention is preferably 20 to 35%.
  • the lower limit is more preferably 21% or more, and still more preferably 22% or more.
  • the upper limit is more preferably 33% or less, further preferably 30% or less, still more preferably 29% or less, and still more preferably 28% or less. If the variation coefficient of the primary particle diameter of the near infrared absorbing organic pigment is in the above range, the visible transparency of the near infrared absorbing organic pigment can be improved.
  • the average long and short side ratio of primary particles of the near-infrared-absorbing organic pigment of the present invention is preferably 0.30 to 0.99.
  • the lower limit is more preferably 0.35 or more, and still more preferably 0.40 or more.
  • the upper limit is more preferably 0.90 or less, still more preferably 0.80 or less. If the average long and short side ratio of the primary particles of the near infrared absorbing organic pigment is in the above range, near infrared shielding properties can be enhanced while maintaining excellent visible transparency.
  • the variation coefficient of the long-short ratio of the near-infrared-absorbing organic pigment of the present invention is preferably 10 to 30%.
  • the lower limit is more preferably 12% or more, and still more preferably 14% or more.
  • the upper limit is more preferably 29% or less, still more preferably 28% or less. If the variation coefficient of the long and short side ratio of the near infrared absorbing organic pigment is in the above range, the visible transparency of the near infrared absorbing organic pigment can be improved.
  • the variation coefficient of the ratio of the long and short sides of the near infrared absorbing organic pigment is defined by the following equation.
  • Coefficient of variation of long / short side ratio of near infrared absorbing organic pigment (standard deviation of long / short side ratio of near infrared absorbing organic pigment / arithmetic mean value of long / short side ratio of near infrared absorbing organic pigment) ⁇ 100
  • the primary particle diameter and the long side ratio of the near infrared absorbing organic pigment can be determined from the obtained photograph by observing the primary particles of the near infrared absorbing organic pigment by a transmission electron microscope. Specifically, the projection area of the primary particles of the near infrared absorbing organic pigment is determined, and the equivalent circle diameter corresponding thereto is calculated as the primary particle diameter of the near infrared absorbing organic pigment. In addition, the ratio of the short side to the long side of the primary particle (short side / long side) is determined from the projected picture to calculate the long / short side ratio.
  • the average primary particle diameter and the average long and short side ratio are taken as the arithmetic mean value of the primary particle diameter and the long and short side ratio of primary particles of 400 near infrared absorbing organic pigments.
  • the longest diameter of the primary particles is called the long side, and the shortest diameter is called the short side. That is, in the case of an ellipse, the major axis is the long side and the minor axis is the short side.
  • primary particles of the near infrared absorbing organic pigment refer to independent particles without aggregation.
  • the near infrared absorbing organic pigment of the present invention has a maximum absorption wavelength in the wavelength range of 650 to 1400 nm.
  • the maximum absorption wavelength of the near infrared absorbing organic pigment is preferably 1200 nm or less, more preferably 1000 nm or less, and still more preferably 780 nm or less.
  • the maximum absorption wavelength of the near infrared absorbing organic pigment is preferably 700 nm or more, and more preferably 720 nm or more. It is particularly preferable that the near infrared absorbing organic pigment have a maximum absorption wavelength in the wavelength range of 650 to 780 nm, because the effect of the present invention is more easily exhibited.
  • a 550 / A max which is the ratio of the absorbance A 550 at a wavelength of 550 nm to the absorbance A max at a maximum absorption wavelength, is less than 0.1 and 0.05 or less Preferably, it is 0.03 or less, more preferably 0.02 or less.
  • the lower limit is preferably low, for example, preferably 0.001 or more. If the above-mentioned ratio is the above-mentioned range, it can be considered as a near-infrared absorption organic pigment excellent in visible transparency and near-infrared shielding.
  • the near infrared absorbing organic pigment of the present invention has an A 1 / A max of 0.5 to 0.9 which is a ratio of the absorbance A 1 at a wavelength 50 nm shorter than the maximum absorption wavelength and the absorbance A max at the maximum absorption wavelength. Is preferred.
  • the above-mentioned ratio is more preferably 0.8 or less, still more preferably 0.7 or less.
  • the above-mentioned ratio is more preferably 0.56 or more, further preferably 0.57 or more. If the above-mentioned ratio is the above-mentioned range, it can be considered as a near-infrared absorption organic pigment which can shield a wider range of near-infrared light.
  • the value of the A 1 / A max is higher than 5% than the value of A 1 / A max if the average primary particle diameter of the near-infrared-absorbing organic pigment is 1500nm Is preferably 7% or more, more preferably 10% or more.
  • the maximum absorption wavelength of the near infrared absorbing organic pigment and the value of the absorbance at each wavelength are values obtained from the absorption spectrum of a film formed using a resin composition containing the near infrared absorbing organic pigment.
  • the compound type of the near infrared light absorbing organic pigment is not particularly limited, but pyrrolopyrrole compounds, rylene compounds, oxonol compounds, squarylium compounds, cyanine compounds, croconium compounds, phthalocyanine compounds, naphthalocyanine compounds, pyrilium compounds, It is preferably at least one selected from azurenium compounds, indigo compounds and pyrromethene compounds, more preferably at least one selected from pyrrolopyrrole compounds, squarylium compounds, cyanine compounds, phthalocyanine compounds and naphthalocyanine compounds, It is further preferable that it is a pyrrole compound or a squarylium compound, and it is particularly preferable that it is a pyrrolopyrrole compound. Particularly in the case of pyrrolopyrrole compounds, near infrared shielding properties can be more effectively improved while having excellent visible transparency.
  • the pyrrolopyrrole compound is preferably a compound represented by the formula (PP).
  • R 1a and R 1b each independently represent an alkyl group, an aryl group or a heteroaryl group
  • R 2 and R 3 each independently represent a hydrogen atom or a substituent
  • R 2 and R 3 represent R 4 may be combined with each other to form a ring
  • each R 4 independently represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, -BR 4A R 4B , or a metal atom
  • R 4 is an R R 4A and R 4B may each independently represent a substituent, which may be covalently bonded or coordinated with at least one selected from 1 a 1 , R 1 b and R 3 .
  • R 4A and R 4B may be bonded to each other to form a ring.
  • Formula (PP) Paragraph No. 0017 of the Unexamined-Japanese-Patent No. 2009-263614, Paragraph No. 0011 of the Unexamined-Japanese-Patent No. 2011-68731, Paragraph No. 0010 of the international publication WO2015 / 166873 The contents of which are incorporated herein by reference.
  • R 1a and R 1b are each independently preferably an aryl group or a heteroaryl group, and more preferably an aryl group.
  • the alkyl group, the aryl group and the heteroaryl group represented by R 1a and R 1b may have a substituent or may be unsubstituted. Examples of the substituent include the substituents described in Paragraph Nos. 0020 to 0022 of JP 2009-263614 A, and the following substituent T.
  • An alkyl group preferably an alkyl group having 1 to 30 carbon atoms
  • an alkenyl group preferably an alkenyl group having 2 to 30 carbon atoms
  • an alkynyl group preferably an alkynyl group having 2 to 30 carbon atoms
  • an aryl group preferably An aryl group having 6 to 30 carbon atoms, an amino group (preferably an amino group having 0 to 30 carbon atoms), an alkoxy group (preferably an alkoxy group having 1 to 30 carbon atoms), an aryloxy group (preferably 6 to carbon atoms 30) aryloxy group), heteroaryloxy group
  • acyl group preferably having 1 to 30 carbon atoms
  • alkoxycarbonyl group preferably having 2 to 30 carbon atoms
  • aryloxycarbonyl group preferably having 2 to 30 carbon atoms
  • an acyloxy group preferably an acylo group having 2 to 30
  • an acylamino group (preferably an acylamino group having 2 to 30 carbon atoms), an alkoxycarbonylamino group (preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms), an aryloxycarbonylamino group (preferably 7 to carbon atoms) 30) aryloxycarbonylamino group), sulfamoyl group (preferably sulfamoyl group having 0 to 30 carbon atoms), carbamoyl group (preferably carbamoyl group having 1 to 30 carbon atoms), alkylthio group (preferably having 1 to 30 carbon atoms) Alkylthio group), arylthio group (preferably arylthio group having 6 to 30 carbon atoms), heteroarylthio group (preferably 1 to 30 carbon atoms), alkylsulfonyl group (preferably 1 to 30 carbon atoms), arylsulfonyl group (preferably 1 to 30 carbon atoms) Preferably having 6 to 30 carbon
  • R 2 and R 3 each independently represent a hydrogen atom or a substituent.
  • the substituent include the above-mentioned substituent T.
  • At least one of R 2 and R 3 is preferably an electron-withdrawing group.
  • a substituent having a positive Hammett's substituent constant ⁇ value acts as an electron-withdrawing group.
  • the substituent constants determined by the Hammett rule include ⁇ p values and ⁇ m values. These values can be found in many general books.
  • a substituent having a Hammett's substituent constant ⁇ value of 0.2 or more can be exemplified as the electron-withdrawing group.
  • the ⁇ value is preferably 0.25 or more, more preferably 0.3 or more, and still more preferably 0.35 or more.
  • the upper limit is not particularly limited, but is preferably 0.80 or less.
  • a cyano group is preferable.
  • Me represents a methyl group
  • Ph represents a phenyl group.
  • the Hammett's substituent constant ⁇ value can be referred to, for example, paragraph Nos. 0017 to 0018 of JP-A-2011-68731, the contents of which are incorporated herein.
  • R 2 preferably represents an electron-withdrawing group (preferably a cyano group), and R 3 preferably represents a heteroaryl group.
  • the heteroaryl group is preferably a 5- or 6-membered ring.
  • the heteroaryl group is preferably a single ring or a fused ring, preferably a single ring or a fused ring having 2 to 8 condensations, and more preferably a single ring or a fused ring having 2 to 4 condensations.
  • the number of heteroatoms constituting the heteroaryl group is preferably 1 to 3, and more preferably 1 to 2.
  • a hetero atom a nitrogen atom, an oxygen atom, and a sulfur atom are illustrated, for example.
  • the heteroaryl group preferably has one or more nitrogen atoms.
  • the heteroaryl group is preferably a group represented by the following formula (A-1) or a group represented by (A-2), and a group represented by preferable.
  • X 1 represents O, S, NR X1 or CR X2 R X3 , R X1 to R X3 each independently represent a hydrogen atom or a substituent, and R a1 and R a2 are Each independently represents a hydrogen atom or a substituent, and R a1 and R a2 may be bonded to each other to form a ring.
  • * represents a connecting hand.
  • substituent represented by R a1 , R a2 and R X1 to R X3 include a substituent T, and an alkyl group, an aryl group and a halogen atom are preferable.
  • the ring formed by combining R a1 and R a2 is preferably an aromatic ring.
  • R a1 and R a2 form a ring, as (A-1), a group represented by (A-1-1) below, a group represented by (A-1-2), etc. It can be mentioned.
  • X 1 represents O, S, NR X1 or CR X2 R X3 , R X1 to R X3 each independently represent a hydrogen atom or a substituent, and R 101a to R 109a each independently represent hydrogen Represents an atom or a substituent. * Represents a connecting hand.
  • the substituent represented by R 101a to R 109a includes a substituent T.
  • X 1 is preferably O or S, more preferably O.
  • Y 1 to Y 4 each independently represent N or CR Y1 , at least two of Y 1 to Y 4 are CR Y1 , and R Y1 is a hydrogen atom or a substituent And adjacent R Y1 may be bonded to each other to form a ring.
  • R Y1 includes a substituent T, and an alkyl group, an aryl group and a halogen atom are preferable.
  • At least two of Y 1 to Y 4 may be CR Y 1 , and adjacent R Y 1 may be bonded to each other to form a ring.
  • the ring formed by bonding adjacent R Y1 is preferably an aromatic ring.
  • examples of (A-2) include groups represented by (A-2-1) to (A-2-5) below.
  • each of R 201a to R 227a independently represents a hydrogen atom or a substituent, and * represents a linking hand.
  • the substituent represented by R 201a to R 227a includes a substituent T.
  • R 4 is preferably a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group or a group represented by —BR 4A R 4B , and a hydrogen atom, an alkyl group, an aryl group or —BR
  • the group represented by 4A R 4B is more preferably a group represented by -BR 4A R 4B .
  • the substituent represented by R 4A and R 4B is preferably a halogen atom, an alkyl group, an alkoxy group, an aryl group or a heteroaryl group, more preferably an alkyl group, an aryl group or a heteroaryl group, and an aryl group Particularly preferred. These groups may further have a substituent.
  • Two R 4 's in the formula (PP) may be the same or different.
  • R 4A and R 4B may be bonded to each other to form a ring.
  • each of A 1 and A 2 independently represents an aryl group, a heteroaryl group or a group represented by formula (A-1);
  • Z 1 represents a nonmetal atomic group forming a nitrogen-containing heterocyclic ring
  • R 2 represents an alkyl group, an alkenyl group or an aralkyl group
  • d represents 0 or 1.
  • the wavy line represents a connecting hand.
  • the squarylium compound is preferably a compound represented by the following formula (SQ-1).
  • Ring A and ring B each independently represent an aromatic ring
  • X A and X B each independently represent a substituent
  • G A and G B each independently represent a substituent
  • kA represents an integer of 0 to n A
  • k B represents an integer of 0 to n B
  • n A and n B each represent the maximum number of groups that can be substituted on ring A or ring B
  • X A and G A , X B and G B , and X A and X B may bond to each other to form a ring, and when there are a plurality of G A and G B respectively, they may be bonded to each other to form a ring structure May be formed.
  • the substituent represented by G A and G B include the substituent T described by the formula (PP) as described above.
  • Examples of the substituent represented by X A and X B preferably a group having an active hydrogen, -OH, -SH, -COOH, -SO 3 H, -NR X1 R X2, -NHCOR X1, -CONR X1 R X2, -NHCONR X1 R X2 , -NHCOOR X1 , -NHSO 2 R X1 , -B (OH) 2 and -PO (OH) 2 are more preferable, and -OH, -SH and -NR X1 R X2 are more preferable.
  • Each of R X1 and R X1 independently represents a hydrogen atom or a substituent.
  • a substituent which X A and X B represent an alkyl group, an aryl group, or heteroaryl group is mentioned, An alkyl group is preferable.
  • Ring A and ring B each independently represent an aromatic ring.
  • the aromatic ring may be a single ring or a fused ring.
  • Specific examples of the aromatic ring include benzene ring, naphthalene ring, pentalene ring, indene ring, azulene ring, heptalene ring, indacene ring, perylene ring, pentacene ring, acenaphthene ring, phenanthrene ring, anthracene ring, naphthacene ring, chrysene ring Triphenylene ring, fluorene ring, biphenyl ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, indolizin
  • X A and G A , X B and G B , and X A and X B may bond to each other to form a ring, and when there are a plurality of G A and G B respectively, they may be bonded to each other to form a ring You may form.
  • the ring is preferably a 5- or 6-membered ring.
  • the ring may be a single ring or may be a fused ring.
  • X A and G A , X B and G B , X A and X B , G A or B B bond together to form a ring, these may be directly bonded to form a ring;
  • the ring may be formed through a divalent linking group consisting of the groups -CO-, -O-, -NH-, -BR- and combinations thereof.
  • R represents a hydrogen atom or a substituent.
  • the substituent T demonstrated by Formula (PP) mentioned above is mentioned, An alkyl group or an aryl group is preferable.
  • kA represents an integer of 0 to n A
  • k B represents an integer of 0 to n B
  • n A represents the number of the largest groups that can be substituted on ring A
  • n B can be substituted on ring B Represents the largest number of groups.
  • Each of kA and kB is preferably independently 0 to 4, more preferably 0 to 2, and particularly preferably 0 to 1.
  • the squarylium compound is also preferably a compound represented by the following formula (SQ-10), formula (SQ-11) or formula (SQ-12).
  • Formula (SQ-10) Formula (SQ-11) Formula (SQ-12)
  • each X is a group of one or more hydrogen atoms optionally substituted with a halogen atom, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group.
  • n1 is 2 or 3.
  • n2 and n3 are each independently an integer of 0 to 2
  • n2 + n3 is 1 or 2.
  • Each of R 1 and R 2 independently represents an alkyl group or an aryl group.
  • the alkyl group and the aryl group may have a substituent or may be unsubstituted.
  • the substituent T demonstrated by the formula (PP) mentioned above is mentioned.
  • R 3 to R 6 each independently represent a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group.
  • n is 2 or 3.
  • the cyanine compound is preferably a compound represented by the formula (C).
  • Formula (C) In the formula, each of Z 1 and Z 2 independently represents a nonmetallic atomic group forming a 5- or 6-membered nitrogen-containing heterocyclic ring which may be condensed.
  • R 101 and R 102 each independently represent an alkyl group, an alkenyl group, an alkynyl group, an aralkyl group or an aryl group
  • L 1 represents a methine chain having an odd number of methine groups
  • a and b are each independently 0 or 1;
  • X 1 represents an anion
  • c represents the number necessary to balance the charge
  • the site represented by Cy in the formula is an anion moiety
  • X 1 represents a cation
  • c represents the number necessary to balance the charge
  • c is a molecule in which the charge at the site represented by Cy in the formula is neutralized within the molecule It is 0.
  • a compound having the following structure and the like can be mentioned.
  • Me is a methyl group and Ph is a phenyl group.
  • (A-1), (A-7) to (A-22), (A-53) to (A-57) are pyrrolopyrrole compounds, and (A-2) is a lylene group.
  • (A-3) is a naphthalocyanine compound,
  • (A-4) is an oxonol compound, and
  • A-5), (A-23) to (A-42) are squarylium compounds.
  • A-6) are zinc phthalocyanine compounds
  • (A-43) and (A-44) are croconium compounds
  • (A-45) to (A-47) are pyrromethene compounds
  • (A-) 48) and (A-49) are indigo compounds
  • (A-50) and (A-51) are pyrylium compounds
  • (A-52) are azulenium compounds.
  • the method for producing the near-infrared-absorbing organic pigment of the present invention has a maximum absorption wavelength in the wavelength range of 650 to 1400 nm, and the ratio of the absorbance A 550 at a wavelength 550 nm to the absorbance A max at the maximum absorption wavelength A 550 / A
  • the near-infrared absorbing pigment having a max of less than 0.1 is milled to an average primary particle diameter of 1 to 200 nm, and the value of crystallinity represented by the above formula in the powder X-ray diffraction spectrum is 0.70 to It is characterized in that it is set to 0.98.
  • the milling process of the near-infrared absorbing organic pigment may be carried out by kneading and polishing the near-infrared-absorbing organic pigment in the presence of a water-soluble organic solvent and a water-soluble inorganic salt.
  • the water-soluble inorganic salt acts as a grinding agent and promotes the refinement of the near-infrared-absorbing organic pigment by being kneaded with the near-infrared-absorbing organic pigment.
  • the water-soluble inorganic salt include sodium chloride, potassium chloride, calcium chloride, sodium sulfate, aluminum sulfate, sodium hydrogen carbonate and the like, with preference given to sodium chloride and sodium sulfate. These water-soluble inorganic salts can be used as ground products. These water-soluble inorganic salts can be used alone or in combination of two or more.
  • the average particle diameter (volume based 50% diameter (D50)) of the water-soluble inorganic salt is preferably 15 ⁇ m or more, and more preferably 18 ⁇ m or more.
  • the upper limit is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the near-infrared-absorbing organic pigment has a hardness lower than that of a chromatic color organic pigment or an inorganic pigment, and when kneading and polishing is performed using a water-soluble inorganic salt having a small particle diameter, the near-infrared-absorbing organic pigment is Or the crystal structure of the near-infrared-absorbing organic pigment may change to lower the visible transparency, etc., but the water-soluble inorganic salt having a suitably large particle size (preferably having an average particle size of By using a water-soluble inorganic salt of 15 ⁇ m or more, the crystallinity (the degree of crystallinity) can be appropriately adjusted while suppressing the distortion of the crystal structure of the near-infrared-absorbing organic pigment and the like. Furthermore, the near infrared absorbing organic pigment can be miniaturized.
  • the amount of the water-soluble inorganic salt is preferably 2.5 to 20 times, more preferably 4 to 18 times, and still more preferably 7 to 18 times the mass of the near infrared absorbing organic pigment.
  • the lower limit is particularly preferably 8 times or more, and most preferably 10 times or more.
  • the upper limit is particularly preferably 17 times or less, and most preferably 16 times or less. If the amount of the water-soluble inorganic salt is in the above-mentioned range, the crystallinity (degree of crystallinity) can be appropriately adjusted while suppressing the distortion of the crystal structure of the near-infrared-absorbing organic pigment and the like. Furthermore, the near infrared absorbing organic pigment can be miniaturized.
  • the water-soluble organic solvent acts as a binder for the near-infrared absorbing organic pigment and the water-soluble inorganic salt, and the hardness and viscosity of the mixture containing the near-infrared absorbing organic pigment, the water-soluble inorganic salt and the water-soluble organic solvent While giving, it can suppress the crystal growth and crystal transition of the near infrared absorption organic pigment.
  • the solubility of the water-soluble organic solvent in 100 g of water at 23 ° C. is preferably 20 g or more, more preferably 50 g or more, and still more preferably 100 g or more. According to this aspect, the water-soluble inorganic salt can be efficiently washed with water.
  • the water-soluble organic solvent examples include alkylene glycols such as ethylene glycol and propylene glycol, condensation products of alkylene glycols such as diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polyethylene-propylene glycol, etc., methoxyethanol, polyethylene glycol Alkyl ethers of (poly) alkylene glycols such as monomethyl ether, glycerin and the like can be mentioned, and the reason is that the mixture containing the near infrared ray absorbing organic pigment, the water soluble inorganic salt and the water soluble organic solvent gives appropriate hardness and viscosity.
  • alkylene glycols such as ethylene glycol and propylene glycol
  • condensation products of alkylene glycols such as diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polyethylene-propylene glycol, etc.
  • methoxyethanol polyethylene glycol Alkyl ethers of (poly) alkylene
  • a highly viscous water-soluble organic solvent such as ethylene glycol, diethylene glycol, polyethylene glycol is preferred.
  • the water-soluble organic solvent can be used singly or in combination of two or more.
  • the optimum amount of the water-soluble organic solvent varies depending on the amount of the near-infrared-absorbing organic pigment, the amount of the water-soluble inorganic salt, the kneading conditions (temperature, kneading speed etc.), the characteristics of the kneader used, etc. 0.10 to 0.35 times is preferable, 0.12 to 0.30 times is more preferable, and 0.15 to 0.25 times is more preferable with respect to the total mass of the water-soluble inorganic salt.
  • the amount of the water-soluble organic solvent is in the above-mentioned range, it is possible to impart appropriate hardness and viscosity to a mixture containing the near-infrared-absorbing organic pigment, the water-soluble inorganic salt and the water-soluble organic solvent.
  • a double-arm kneader As a kneader, a double-arm kneader, a flasher, a planetary mixer or the like may be used as long as it has the ability to knead the above mixture.
  • a double-arm kneader with high shear force is more preferable.
  • the temperature (milling temperature) at the time of kneading is set in accordance with the temperature dependency of the crystal growth rate of the near infrared absorbing organic pigment and the crystal transition property. Generally, the lower the temperature, the smaller the crystal growth rate. On the other hand, the wettability of the water-soluble organic solvent to the pigment surface and the penetration speed of the water-soluble organic solvent into the pigment mass are as fast as high temperature.
  • the sizing of the near infrared absorbing organic pigment is developed by the balance of both miniaturization and crystal growth. For example, 0 to 120 ° C. is preferable.
  • the lower limit is more preferably 5 ° C. or more, further preferably 10 ° C. or more, still more preferably 15 ° C.
  • the milling temperature is in the above range, it is easy to adjust the values of the average primary particle diameter and the degree of crystallinity of the near infrared absorbing organic pigment to the above range. Furthermore, it is easy to produce a near-infrared absorbing organic pigment excellent in visible transparency, near-infrared shielding property and heat resistance.
  • a water-soluble inorganic salt or a water-soluble organic solvent can be added according to the progress of refinement and sizing of the near-infrared-absorbing organic pigment. Further, the discharge and re-kneading of the pigment kneaded material is not limited to one time, and may be performed a plurality of times.
  • the near infrared absorbing organic pigment At the time of kneading and polishing of the near infrared absorbing organic pigment, it is also possible to carry out crystal transition together with the refining of the near infrared absorbing organic pigment. Moreover, a pigment derivative and a surface treatment agent can also be added for refinement
  • the kneaded material after the kneading and polishing is purified by a known purification method such as washing with water, an acid, an alkali or the like to isolate a finely divided near-infrared-absorbing organic pigment. It is preferable to carry out the washing process and to isolate for the reason of environmental load reduction.
  • the near-infrared-absorbing organic pigment in a water-containing state may be used as it is, or it may be dried and used to reduce water content.
  • the drying treatment method is not particularly limited, but it is preferable to carry out by hot air drying from the viewpoint of productivity improvement.
  • the water content of the near infrared absorbing organic pigment is preferably 5% or less, more preferably 2% or less.
  • the ratio of the absorbance A 1 at a wavelength 50 nm shorter than the maximum absorption wavelength of the near infrared absorption organic pigment produced by the present invention to the absorbance A max at the maximum absorption wavelength of the near infrared absorption organic pigment is A 1 / A max It has characteristics higher than the value of the near infrared absorbing organic pigment before the milling treatment. Although the detailed reason is unclear, while the average primary particle diameter is adjusted to 1 to 200 nm by milling and the value of the crystallinity is set to 0.70 to 0.98, the association of the near infrared absorbing organic pigment is appropriate.
  • the value of the above A 1 / A max of the near-infrared-absorbing organic pigment produced according to the present invention is preferably 5% or more higher than the value of the near-infrared-absorbing organic pigment before the milling treatment, and is preferably 7% or more higher Preferably, it is more preferably 10% or more.
  • the spectral adjustment method of the near-infrared-absorbing organic pigment of the present invention has a maximum absorption wavelength in the wavelength range of 650 to 1400 nm, and the ratio of the absorbance A 550 at a wavelength 550 nm to the absorbance A max at the maximum absorption wavelength A 550 /
  • the near-infrared absorbing pigment having an A max of less than 0.1 is milled to an average primary particle diameter of 1 to 200 nm, and the value of crystallinity represented by the above formula in the powder X-ray diffraction spectrum is 0.70.
  • the above-mentioned near-infrared absorbing pigment is milled to give an average primary particle diameter of 1 to 200 nm, and the value of crystallinity represented by the following formula in the powder X-ray diffraction spectrum is 0.70 to By setting it as 0.98, the absorptivity in the vicinity of the maximum absorption wavelength is improved as compared with the state before the milling treatment, and a wider range of near infrared rays can be absorbed.
  • the spectral adjustment method of the near-infrared absorbing organic pigment of the present invention comprises the absorbance A 1 at a wavelength 50 nm shorter than the maximum absorption wavelength of the near-infrared absorbing organic pigment after milling and the absorbance A at the maximum absorption wavelength of the near-infrared absorbing organic pigment the ratio of the max a 1 / a max is preferably higher than 5% than the value of the near-infrared-absorbing organic pigment prior to milling, it is more preferably at least 7% higher, still it is higher than 10% preferable.
  • the resin composition of the present invention comprises the above-described near-infrared-absorbing organic pigment of the present invention and a resin.
  • the resin composition of the present invention contains the above-mentioned near-infrared-absorbing organic pigment of the present invention.
  • the content of the near-infrared-absorbing organic pigment of the present invention is preferably 0.1 to 60% by mass with respect to the total solid content of the resin composition. As for a minimum, 1 mass% or more is more preferable, and 5 mass% or more is still more preferable.
  • the upper limit is more preferably 50% by mass or less and still more preferably 40% by mass or less.
  • the resin composition of the present invention contains a resin.
  • the resin is blended, for example, in applications of dispersing particles such as pigments in a composition and applications of a binder.
  • grains, such as a pigment is also called a dispersing agent.
  • such application of the resin is an example, and the resin can also be used for purposes other than such application.
  • the weight average molecular weight (Mw) of the resin is preferably 2,000 to 2,000,000.
  • the upper limit is preferably 1,000,000 or less, more preferably 500,000 or less.
  • 3,000 or more are preferable and, as for a minimum, 5,000 or more are more preferable.
  • cyclic olefin resin norbornene resin can be preferably used from a viewpoint of heat resistance improvement. Examples of commercially available products of norbornene resin include ARTON series (for example, ARTON F 4520) manufactured by JSR Corporation.
  • Neoprim registered trademark
  • C3450 Mitsubishi Gas Chemical Co., Ltd.
  • the epoxy resin include epoxy resins which are glycidyl ethers of phenol compounds, epoxy resins which are glycidyl ethers of various novolak resins, alicyclic epoxy resins, aliphatic epoxy resins, heterocyclic epoxy resins, glycidyl ester resins
  • Epoxy resin, glycidyl amine epoxy resin, epoxy resin obtained by glycidylating halogenated phenols, condensate of silicon compound having an epoxy group and silicon compound other than the above, polymerizable unsaturated compound having an epoxy group, and others Copolymers with other polymerizable unsaturated compounds may, for example, be mentioned.
  • epoxy resin mer proof G-0150M, G-0105SA, G-0130SP, G-0250SP, G-1005S, G-1005SA, G-1010S, G-2050M, G-01100, G-01758 (day Oil Co., Ltd. product, epoxy group-containing polymer, etc. can also be used.
  • urethane resin 8UH-1006 and 8UH-1012 (manufactured by Taisei Fine Chemical Co., Ltd.) can also be used.
  • a resin described in an example of International Publication WO 2016/088645 a resin described in JP-A-2017-57265, a resin described in JP-A-2017-32685, JP-A-2017 It is also possible to use the resin described in Japanese Patent Application Laid-Open No. 0-75248 and the resin described in JP-A-2017-066240, the contents of which are incorporated herein. Further, a resin having a fluorene skeleton can also be preferably used. As resin which has fluorene frame, resin of the following structure is mentioned.
  • A represents the residue of a carboxylic acid dianhydride selected from pyromellitic dianhydride, benzophenone tetracarboxylic acid dianhydride, biphenyl tetracarboxylic acid dianhydride and diphenyl ether tetracarboxylic acid dianhydride
  • M is a phenyl or benzyl group.
  • the resin having a fluorene skeleton can be referred to the description of US Patent Application Publication No. 2017/0102610, the contents of which are incorporated herein.
  • the resin used in the present invention preferably contains a resin having an acid group and / or a hydroxyl group, and more preferably contains a resin having an acid group.
  • a resin having an acid group a carboxyl group, a phosphoric acid group, a sulfo group, phenolic hydroxyl group etc. are mentioned, for example, A carboxyl group is preferable.
  • These acid groups may be of only one type, or of two or more types.
  • the resin having an acid group can also be used as an alkali-soluble resin.
  • a polymer having a carboxyl group in a side chain is preferable.
  • alkali-soluble polymers such as methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partially esterified maleic acid copolymer, novolac resin, etc.
  • a phenol resin, an acidic cellulose derivative having a carboxyl group in a side chain, and a resin obtained by adding an acid anhydride to a polymer having a hydroxyl group are mentioned.
  • copolymers of (meth) acrylic acid and other monomers copolymerizable therewith are suitable as the alkali-soluble resin.
  • Other monomers copolymerizable with (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, vinyl compounds and the like.
  • alkyl (meth) acrylate and aryl (meth) acrylate methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate, Hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) acrylate, naphthyl (meth) acrylate, cyclohexyl (meth) acrylate, etc., vinyl compounds such as styrene, ⁇ -methylstyrene, vinyl toluene, glycidyl methacrylate, acrylonitrile, vinyl acetate, N-vinyl pyrrolidone, tetrahydrofurfur
  • N-substituted maleimide monomers described in JP-A-10-300922 such as N-phenyl maleimide, N-cyclohexyl maleimide and the like can also be used.
  • These other monomers copolymerizable with (meth) acrylic acid may be only one type, or two or more types.
  • the resin having an acid group may further have a polymerizable group.
  • the polymerizable group include (meth) allyl group and (meth) acryloyl group.
  • Commercially available products include Dianal NR series (Mitsubishi Rayon Co., Ltd.), Photomer 6173 (Carboxyl group-containing polyurethane acrylate oligomer, manufactured by Diamond Shamrock Co., Ltd.), Biscoat R-264, KS Resist 106 (all are Osaka organic) Chemical Industry Co., Ltd., Cyclomer P series (for example, ACA 230 AA), Plaxcel CF 200 series (all from Daicel Co., Ltd.), Ebecryl 3800 (Daicel UBC Co., Ltd.), Acrycure RD-F8 (Co., Ltd.) Nippon Catalyst Co., Ltd. and the like.
  • Resin having an acid group is benzyl (meth) acrylate / (meth) acrylic acid copolymer, benzyl (meth) acrylate / (meth) acrylic acid / 2-hydroxyethyl (meth) acrylate copolymer, benzyl (meth)
  • a multicomponent copolymer consisting of acrylate / (meth) acrylic acid / other monomers can be preferably used. Further, those obtained by copolymerizing 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer described in JP-A No.
  • the resin having an acid group is a monomer containing a compound represented by the following formula (ED1) and / or a compound represented by the following formula (ED2) (hereinafter, these compounds may be referred to as "ether dimer”). It is also preferable that it is a polymer containing a repeating unit derived from a component.
  • R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
  • R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms.
  • the description in JP-A-2010-168539 can be referred to.
  • the ether dimer may be only one type, or two or more types.
  • the resin having an acid group may contain a repeating unit derived from a compound represented by the following formula (X).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 2 to 10 carbon atoms
  • R 3 has a hydrogen atom or 1 to 20 carbon atoms which may contain a benzene ring.
  • Represents an alkyl group of n represents an integer of 1 to 15.
  • the resin having an acid group is described in JP-A-2012-208494, paragraphs 0558 to 0571 (corresponding US patent application publication No. 2012/0235099, paragraphs 0685 to 0700), JP-A-2012-198408.
  • No. 0076-0099 can be referred to, and the contents thereof are incorporated herein.
  • the resin which has an acidic radical can also use a commercial item.
  • Acrybase FF-426 manufactured by Fujikura Kasei Co., Ltd.
  • the like can be mentioned.
  • the acid value of the resin having an acid group is preferably 30 to 200 mg KOH / g.
  • the lower limit is more preferably 50 mg KOH / g or more, and still more preferably 70 mg KOH / g or more.
  • the upper limit is more preferably 150 mg KOH / g or less, and still more preferably 120 mg KOH / g or less.
  • resin which has an acidic radical resin of the following structure etc. are mentioned, for example.
  • resin of the following structural formulae Me represents a methyl group.
  • the resin composition of the present invention it is also preferable to use a resin having repeating units represented by formulas (A3-1) to (A3-7) as the resin.
  • R 5 represents a hydrogen atom or an alkyl group
  • L 4 to L 7 each independently represent a single bond or a divalent linking group
  • R 10 to R 13 each independently represent an alkyl group or an aryl group
  • Each of R 14 and R 15 independently represents a hydrogen atom or a substituent.
  • the carbon number of the alkyl group represented by R 5 is preferably 1 to 5, more preferably 1 to 3, and particularly preferably 1.
  • R 5 is preferably a hydrogen atom or a methyl group.
  • Examples of the divalent linking group represented by L 4 to L 7 include an alkylene group, an arylene group, -O-, -S-, -CO-, -COO-, -OCO-, -SO 2- , -NR 10- (R 10 represents a hydrogen atom or an alkyl group, preferably a hydrogen atom), or a group consisting of a combination thereof.
  • the carbon number of the alkylene group is preferably 1 to 30, more preferably 1 to 15, and still more preferably 1 to 10.
  • the alkylene group may have a substituent, but is preferably unsubstituted.
  • the alkylene group may be linear, branched or cyclic.
  • the cyclic alkylene group may be either monocyclic or polycyclic.
  • the carbon number of the arylene group is preferably 6 to 18, more preferably 6 to 14, and still more preferably 6 to 10.
  • the alkyl group represented by R 10 to R 13 may be linear, branched or cyclic, preferably cyclic.
  • the alkyl group may have a substituent or may be unsubstituted.
  • the carbon number of the alkyl group is preferably 1 to 30, more preferably 1 to 20, and still more preferably 1 to 10.
  • the carbon number of the aryl group represented by R 10 to R 13 is preferably 6 to 18, more preferably 6 to 12, and still more preferably 6.
  • R 10 is preferably a cyclic alkyl group or an aryl group.
  • R 11 and R 12 are preferably linear or branched alkyl groups.
  • R 13 is preferably a linear alkyl group, a branched alkyl group or an aryl group.
  • the substituent represented by R 14 and R 15 is a halogen atom, cyano group, nitro group, alkyl group, alkenyl group, alkynyl group, alkynyl group, aryl group, heteroaryl group, aralkyl group, alkoxy group, aryloxy group, heteroaryloxy group, Alkylthio group, arylthio group, heteroarylthio group, -NR a1 R a2 , -COR a3 , -COOR a4 , -OCOR a5 , -NHCOR a6 , -CONR a7 R a8 , -NHCONR a9 R a10 , -NHCOOR a11 ,- SO 2 R a12, -SO 2 oR a13, include -NHSO 2 R a14 or -SO 2 NR a15 R a16.
  • Each of R a1 to R a16 independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
  • at least one of R 14 and R 15 preferably represents a cyano group or -COOR a4 .
  • R a4 preferably represents a hydrogen atom, an alkyl group or an aryl group.
  • Examples of commercially available resins having a repeating unit represented by the formula (A3-7) include ARTON F 4520 (manufactured by JSR Corporation).
  • ARTON F 4520 manufactured by JSR Corporation
  • the descriptions in paragraphs “0053” to “0075” and “0127 to 0130” of JP 2011-100084 A can be referred to, and the contents thereof are described in this specification. Incorporated into the book.
  • the resin composition of the present invention can also contain a resin as a dispersant.
  • the dispersant includes an acidic dispersant (acidic resin) and a basic dispersant (basic resin).
  • the acidic dispersant (acidic resin) represents a resin in which the amount of acid groups is larger than the amount of basic groups.
  • the acidic dispersant (acidic resin) is preferably a resin in which the amount of acid groups accounts for 70 mol% or more when the total amount of the amount of acid groups and the amount of basic groups is 100 mol%. Resins consisting only of groups are more preferred.
  • the acid group of the acidic dispersant (acidic resin) is preferably a carboxyl group.
  • the acid value of the acidic dispersant is preferably 40 to 105 mg KOH / g, more preferably 50 to 105 mg KOH / g, and still more preferably 60 to 105 mg KOH / g.
  • a basic dispersing agent represents resin whose quantity of a basic group is larger than the quantity of an acidic radical.
  • the basic dispersant is preferably a resin in which the amount of basic groups exceeds 50% by mole, where the total amount of the amount of acid groups and the amount of basic groups is 100% by mole.
  • the basic group possessed by the basic dispersant is preferably an amino group.
  • the resin used as the dispersant preferably contains a repeating unit having an acid group.
  • the resin used as the dispersing agent contains a repeating unit having an acid group, it is possible to further reduce the residue generated on the base of the pixel when forming a pattern by photolithography.
  • the resin used as the dispersant is a graft copolymer.
  • the graft copolymer is excellent in the dispersibility of the pigment and the dispersion stability after aging since the graft copolymer has affinity with the solvent by the graft chain.
  • the details of the graft copolymer can be referred to the description of Paragraph Nos. 0025 to 0094 of JP-A-2012-255128, the contents of which are incorporated herein.
  • an oligoimine dispersant containing a nitrogen atom in at least one of the main chain and the side chain comprises a structural unit having a partial structure X having a functional group having a pKa of 14 or less and a side chain containing a side chain Y having an atom number of 40 to 10,000, and having a main chain and a side chain
  • the resin which has a basic nitrogen atom in at least one side is preferable.
  • the basic nitrogen atom is not particularly limited as long as it is a nitrogen atom exhibiting basicity.
  • oligoimine dispersant With regard to the oligoimine dispersant, the description in paragraphs [0102] to [0166] of JP 2012-255128 A can be referred to, and the contents thereof are incorporated herein. Specific examples of the oligoimine dispersant include the following.
  • the following resin is also a resin having an acid group (alkali soluble resin). Further, as the oligoimine dispersant, the resins described in paragraph Nos. 0168 to 0174 of JP 2012-255128 A can be used.
  • the dispersant is also available as a commercial product, and as such specific examples, Disperbyk-111 (manufactured by BYK Chemie), Solsparse 76500 (manufactured by Nippon Lubrizol Co., Ltd.) and the like can be mentioned.
  • pigment dispersants described in paragraphs 0041 to 0130 of JP-A-2014-130338 can also be used, the contents of which are incorporated herein.
  • the resin etc. which have an acidic radical mentioned above can also be used as a dispersing agent.
  • the content of the resin is preferably 1 to 80% by mass with respect to the total solid content of the resin composition. As for a minimum, 5 mass% or more is more preferable, and 7 mass% or more is still more preferable.
  • the upper limit is more preferably 50% by mass or less, still more preferably 40% by mass or less, and still more preferably 30% by mass or less.
  • the content of the resin having an acid group is preferably 0.1 to 80% by mass with respect to the total solid content of the resin composition.
  • the upper limit is more preferably 50% by mass or less, still more preferably 40% by mass or less, and still more preferably 30% by mass or less. As for a minimum, 0.5 mass% or more is more preferable, and 1 mass% or more is still more preferable.
  • the content of the resin as the dispersant is preferably 0.1 to 40% by mass with respect to the total solid content of the resin composition. 20 mass% or less is more preferable, and, as for an upper limit, 10 mass% or less is more preferable. As for a minimum, 0.5 mass% or more is more preferable, and 1 mass% or more is further more preferable.
  • the content of the dispersant is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the pigment.
  • the upper limit is more preferably 80 parts by mass or less, and still more preferably 75 parts by mass or less.
  • the lower limit is preferably 2.5 parts by mass or more, and more preferably 5 parts by mass or more.
  • the resin composition of the present invention may further contain a near infrared absorber (also referred to as another near infrared absorber) other than the above-described near infrared absorbing organic pigment.
  • a near infrared absorber also referred to as another near infrared absorber
  • Other near infrared absorbing compounds include dyes.
  • Examples of the compound species include pyrrolopyrrole compounds, cyanine compounds, squarylium compounds, phthalocyanine compounds, naphthalocyanine compounds, rylene compounds, merocyanine compounds, croconium compounds, oxonol compounds, diimmonium compounds, dithiol compounds, triarylmethane compounds, piromethene compounds, Azomethine compounds, anthraquinone compounds, dibenzofuranone compounds, copper compounds and the like can be mentioned.
  • inorganic particles can also be used as another near infrared absorber.
  • the inorganic particles are preferably metal oxide particles or metal particles.
  • metal oxide particles include indium tin oxide (ITO) particles, antimony tin oxide (ATO) particles, zinc oxide (ZnO) particles, Al-doped zinc oxide (Al-doped ZnO) particles, fluorine-doped tin dioxide (F-doped) SnO 2 ) particles, niobium-doped titanium dioxide (Nb-doped TiO 2 ) particles, etc. may be mentioned.
  • metal particles include silver (Ag) particles, gold (Au) particles, copper (Cu) particles, nickel (Ni) particles, and the like.
  • a tungsten oxide type compound can be used as an inorganic particle.
  • the tungsten oxide based compound is preferably cesium tungsten oxide.
  • paragraph 0080 of JP-A-2016-006476 can be referred to, and the contents thereof are incorporated in the present specification.
  • the shape of the inorganic particles is not particularly limited, and may be spherical, non-spherical, sheet-like, wire-like or tube-like.
  • the average particle diameter of the inorganic particles is usually 1 nm or more.
  • the content of the other near infrared absorber is 0.1 to 80 parts by mass with respect to 100 parts by mass of the near infrared absorbing organic pigment of the present invention Is preferable, 5 to 60 parts by mass is more preferable, and 10 to 40 parts by mass is more preferable.
  • the resin composition of the present invention can contain a chromatic coloring agent.
  • a chromatic coloring agent means a coloring agent other than a white coloring agent and a black coloring agent.
  • the chromatic coloring agent is preferably a coloring agent having a maximum absorption wavelength in the range of 400 nm to less than 650 nm.
  • the chromatic coloring agent may be a pigment or a dye. Preferably it is a pigment.
  • the pigment is preferably an organic pigment, and the following can be mentioned. However, the present invention is not limited to these.
  • the dye is not particularly limited, and known dyes can be used.
  • the chemical structure includes pyrazole azo, anilinoazo, triarylmethane, anthraquinone, anthrapyridone, benzylidene, oxonol, pyrazolotriazole azo, pyridone azo, cyanine, phenothiazine, pyrrolopyrazole azomethine, Dyes such as xanthene dyes, phthalocyanine dyes, benzopyran dyes, indigo dyes, and pyromethene dyes can be used. In addition, multimers of these dyes may be used. Further, dyes described in JP-A-2015-028144 and JP-A-2015-34966 can also be used.
  • the content of the chromatic colorant is preferably 0.1 to 70% by mass with respect to the total solid content of the resin composition. 0.5 mass% or more is preferable, and, as for a lower limit, 1.0 mass% or more is more preferable. 60 mass% or less is preferable, and, as for the upper limit, 50 mass% or less is more preferable.
  • the content of the chromatic coloring agent is preferably 10 to 1000 parts by mass, and more preferably 50 to 800 parts by mass with respect to 100 parts by mass of the near infrared absorbing organic pigment.
  • the total amount of the chromatic coloring agent, the near infrared absorbing organic pigment and the other near infrared absorbing agent described above is preferably 1 to 80% by mass with respect to the total solid content of the resin composition. 5 mass% or more is preferable, and, as for a lower limit, 10 mass% or more is more preferable. 70 mass% or less is preferable, and, as for the upper limit, 60 mass% or less is more preferable.
  • the resin composition of the present invention contains two or more types of chromatic coloring agents, the total amount of them is preferably within the above range.
  • the resin composition of this invention does not contain a chromatic coloring agent substantially.
  • Having substantially no chromatic coloring agent means that the content of the chromatic coloring agent is preferably 0.05% by mass or less with respect to the total solid content of the resin composition, and is 0.01% by mass or less Is more preferable, and it is further preferable not to contain a chromatic coloring agent.
  • the resin composition of the present invention can also contain a coloring material that transmits infrared rays and blocks visible light (hereinafter, also referred to as a coloring material that blocks visible light).
  • the color material that blocks visible light is preferably a color material that absorbs light in the violet to red wavelength range.
  • the coloring material for blocking visible light is preferably a coloring material for blocking light having a wavelength of 450 to 650 nm.
  • the coloring material that blocks visible light is a coloring material that transmits light in the wavelength range of 900 to 1300 nm.
  • the coloring material that blocks visible light satisfy at least one of the following requirements (A) and (B).
  • a black color is formed by a combination of two or more chromatic colorants, including two or more chromatic colorants.
  • the organic black colorant examples include bisbenzofuranone compounds, azomethine compounds, perylene compounds, azo compounds and the like, with bisbenzofuranone compounds and perylene compounds being preferred.
  • the bisbenzofuranone compounds those described in JP-A-2010-534726, JP-A-2012-515233, JP-A-2012-515234, International Publication WO 2014/208348, JP-A-2015-525260, etc. Compounds are mentioned.
  • Examples of commercially available products of bisbenzofuranone compounds include "Irgaphor Black” manufactured by BASF.
  • perylene compounds C.I. I. Pigment Black 31, 32 and the like.
  • the azomethine compound include compounds described in JP-A-1-170601, JP-A-2-32664 and the like, and can be obtained, for example, as "Chromofine Black A1103" manufactured by Dainichiseika.
  • Examples of combinations of chromatic colorants in the case of forming a black color by the combination of two or more chromatic colorants include the following. (1) An embodiment containing a yellow colorant, a blue colorant, a purple colorant and a red colorant. (2) An embodiment containing a yellow colorant, a blue colorant and a red colorant. (3) An embodiment containing a yellow colorant, a purple colorant and a red colorant. (4) An embodiment containing a yellow colorant and a purple colorant. (5) An embodiment containing a green coloring agent, a blue coloring agent, a purple coloring agent and a red coloring agent. (6) An embodiment containing a purple colorant and an orange colorant. (7) An embodiment containing a green colorant, a purple colorant and a red colorant. (8) An embodiment containing a green colorant and a red colorant.
  • the content of the coloring material that blocks visible light is preferably 60% by mass or less based on the total solid content of the resin composition, and 50 % By mass or less is more preferable, 30% by mass or less is more preferable, 20% by mass or less is even more preferable, and 15% by mass or less is particularly preferable.
  • the lower limit may be, for example, 0.1% by mass or more and may be 0.5% by mass or more.
  • the resin composition of this invention does not contain the coloring material which shades visible light substantially.
  • the content of the coloring material for blocking visible light is preferably 0.05% by mass or less with respect to the total solid content of the resin composition that substantially no coloring material for blocking visible light is contained, It is more preferable that it is 0.01 mass% or less, and it is still more preferable not to contain the coloring material which shields visible light.
  • the resin composition of the present invention can contain a pigment derivative.
  • the pigment derivative includes a compound in which at least one group selected from an acid group and a basic group is bonded to a dye skeleton.
  • the compound represented by Formula (B1) is preferable.
  • P represents a dye skeleton
  • L represents a single bond or a linking group
  • X represents an acid group or a basic group
  • m represents an integer of 1 or more
  • n represents an integer of 1 or more
  • the plurality of L and X may be different from each other, and when n is 2 or more, the plurality of X may be different from each other.
  • the dye skeleton represented by P includes pyrrolopyrrole dye skeleton, diketopyrrolopyrrole dye skeleton, quinacridone dye skeleton, anthraquinone dye skeleton, dianthraquinone dye skeleton, benzoisoindole dye skeleton, thiazine indigo dye skeleton, azo dye skeleton, quinophthalone Dye skeleton, phthalocyanine dye skeleton, naphthalocyanine dye skeleton, dioxazine dye skeleton, perylene dye skeleton, perinone dye skeleton, benzimidazolone dye skeleton, benzothiazole dye skeleton, benzoimidazole dye skeleton, and at least one selected from benzoimidazole dye skeleton And at least one selected from pyrrolopyrrole dye skeleton, diketopyrrolopyrrole dye skeleton, quinacridone dye skeleton and
  • the linking group represented by L is composed of 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and 0 to 20 sulfur atoms
  • the group is preferable, may be unsubstituted, and may further have a substituent.
  • the substituent T demonstrated by the formula (PP) mentioned above is mentioned.
  • Examples of the acid group represented by X include a carboxyl group, a sulfo group, a carboxylic acid amide group, a sulfonic acid amide group, and an imidic acid group.
  • a group represented by -NHCOR X1 is preferable.
  • the sulfonic acid amide group is preferably a group represented by —NHSO 2 R X2 .
  • the imide group is preferably a group represented by —SO 2 NHSO 2 R X3 , —CONHSO 2 R X4 , —CONHCOR X5 or —SO 2 NHCOR X6 .
  • Each of R X1 to R X6 independently represents a hydrocarbon group or a heterocyclic group.
  • the hydrocarbon group and the heterocyclic group which R X1 to R X6 represent may further have a substituent.
  • the substituent T described in the above-mentioned formula (PP) can be mentioned, and a halogen atom is preferable, and a fluorine atom is more preferable.
  • An amino group is mentioned as a basic group which X represents.
  • the content of the pigment derivative is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the pigment. 3 mass parts or more are more preferable, and 5 mass parts or more are still more preferable.
  • the upper limit value is more preferably 40 parts by mass or less, still more preferably 30 parts by mass or less.
  • a pigment derivative may use only 1 type and may use 2 or more types. When using 2 or more types, it is preferable that a total amount becomes said range.
  • the resin composition of the present invention can contain a solvent.
  • the solvent include water and organic solvents.
  • the solvent is basically not particularly limited as long as the solubility of each component and the coatability of the resin composition are satisfied, but the solvent is preferably selected in consideration of the coatability and safety of the resin composition.
  • organic solvent examples include, for example, esters, ethers, ketones, aromatic hydrocarbons and the like.
  • ester solvents substituted with a cyclic alkyl group and ketone solvents substituted with a cyclic alkyl group can also be preferably used.
  • the organic solvent examples include dichloromethane, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2-heptanone, cyclohexanone, Examples include cyclohexyl acetate, cyclopentanone, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate.
  • the organic solvent may be used singly or in combination of two or more.
  • 3-methoxy-N, N-dimethylpropanamide and 3-butoxy-N, N-dimethylpropanamide are also preferable from the viewpoint of solubility improvement.
  • aromatic hydrocarbons benzene, toluene, xylene, ethylbenzene etc.
  • a solvent having a low metal content it is preferable to use a solvent having a low metal content, and the metal content of the solvent is preferably, for example, 10 parts per billion or less. If necessary, a solvent having a mass ppt (parts per trillion) level may be used, and such a high purity solvent is provided by, for example, Toyo Gosei Co., Ltd. (Chemical Industry Daily, November 13, 2015).
  • a method of removing impurities such as metal from the solvent for example, distillation (molecular distillation, thin film distillation, etc.) and filtration using a filter can be mentioned.
  • distillation molecular distillation, thin film distillation, etc.
  • filtration using a filter As a filter hole diameter of a filter used for filtration, 10 micrometers or less are preferred, 5 micrometers or less are more preferred, and 3 micrometers or less are still more preferred.
  • the material of the filter is preferably polytetrafluoroethylene, polyethylene or nylon.
  • the solvent may contain isomers (compounds having the same number of atoms but different structures). Moreover, only one type of isomer may be contained, or two or more types may be contained.
  • the organic solvent preferably has a peroxide content of 0.8 mmol / L or less, and more preferably contains substantially no peroxide.
  • the content of the solvent is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and still more preferably 25 to 75% by mass, with respect to the total amount of the resin composition.
  • the resin composition of the present invention preferably contains a curable compound.
  • a curable compound known compounds which can be crosslinked by a radical, an acid or heat can be used.
  • a hardenable compound a polymeric compound, a compound which has an epoxy group, etc. are mentioned, for example.
  • the polymerizable compound include compounds having a group having an ethylenically unsaturated bond such as a vinyl group, a (meth) allyl group, and a (meth) acryloyl group.
  • the polymerizable compound is preferably a radical polymerizable compound.
  • the polymerizable compound is preferably a compound having two or more groups having an ethylenically unsaturated bond, and more preferably a compound having three or more groups having an ethylenically unsaturated bond.
  • the upper limit of the number of groups having an ethylenically unsaturated bond in the polymerizable compound is, for example, preferably 15 or less, more preferably 6 or less.
  • the polymerizable compound is preferably a 3 to 15 functional (meth) acrylate compound, and more preferably a 3 to 6 functional (meth) acrylate compound.
  • the polymerizable compound may be in any of chemical forms such as monomers, prepolymers and oligomers, but monomers are preferred.
  • the molecular weight of the polymerizable compound is preferably 100 to 3,000.
  • the upper limit is more preferably 2000 or less, still more preferably 1500 or less.
  • the lower limit is more preferably 150 or more, and still more preferably 250 or more.
  • a polymeric compound is a compound which does not have molecular weight distribution substantially.
  • a compound having a degree of dispersion (weight average molecular weight (Mw) / number average molecular weight (Mn)) of 1.0 to 1.5 is preferable, 1.0 to 1.3 is more preferable.
  • Examples of the polymerizable compound include dipentaerythritol triacrylate (commercially available as KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (commercially available as KAYARAD D-320; Nippon Kayaku (manufactured by Nippon Kayaku Co., Ltd.) ), Dipentaerythritol penta (meth) acrylate (commercially available as KAYARAD D-310; Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (commercially available as KAYARAD DPHA; Nippon Kayaku) (A-DPH-12E; Shin-Nakamura Chemical Co., Ltd.
  • trimethylolpropane tri (meth) acrylate trimethylolpropane propyleneoxy modified tri (meth) acrylate, trimethylolpropane ethyleneoxy modified tri (meth) acrylate, isocyanuric acid ethyleneoxy modified tri (meth) acrylate
  • a trifunctional (meth) acrylate compound such as pentaerythritol tri (meth) acrylate.
  • Commercially available products of trifunctional (meth) acrylate compounds include Alonics M-309, M-310, M-321, M-350, M-360, M-313, M-315, M-306, and M-305.
  • M-303, M-452, M-450 (manufactured by Toagosei Co., Ltd.), NK ester A9300, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3L, A -TMM-3LM-N, A-TMPT, TMPT (manufactured by Shin-Nakamura Chemical Co., Ltd.), KAYARAD GPO-303, TMPTA, THE-330, TPA-330, PET-30 (manufactured by Nippon Kayaku Co., Ltd.) Etc.
  • a polymerizable compound having an acid group can also be used as the polymerizable compound.
  • the polymerizable compound having an acid group By using the polymerizable compound having an acid group, the polymerizable compound in the unexposed area is easily removed at the time of development, and the generation of development residues can be suppressed.
  • an acid group a carboxyl group, a sulfo group, a phosphoric acid group etc. are mentioned, A carboxyl group is preferable.
  • Commercially available products of the polymerizable compound having an acid group include Alonics M-510 and M-520 (manufactured by Toagosei Co., Ltd.).
  • the acid value of the polymerizable compound having an acid group is preferably 0.1 to 40 mg KOH / g, more preferably 5 to 30 mg KOH / g. If the acid value of the polymerizable compound is 0.1 mg KOH / g or more, the solubility in a developer is good, and if 40 mg KOH / g or less, it is advantageous in terms of production and handling. Furthermore, the curability is excellent.
  • a polymerizable compound having a caprolactone structure can also be used as the polymerizable compound.
  • the polymeric compound which has an alkylene oxy group can also be used as a polymeric compound.
  • the polymerizable compound having an alkyleneoxy group is preferably a polymerizable compound having an ethyleneoxy group and / or a propyleneoxy group, more preferably a polymerizable compound having an ethyleneoxy group, and 3 to 4 having 4 to 20 ethyleneoxy groups. Hexafunctional (meth) acrylate compounds are more preferred.
  • SR-494 which is a tetrafunctional (meth) acrylate having four ethyleneoxy groups manufactured by Sartomer, a trifunctional (meth) having three isobutylene oxy groups
  • examples thereof include KAYARAD TPA-330 which is an acrylate.
  • urethane acrylates described in JP-B-48-41708, JP-A-51-37193, JP-B-2-32293 and JP-B-2-16765, and JP-B-58
  • the urethane compounds having an ethylene oxide-based skeleton described in JP-49,860, JP-B-56-17654, JP-B-62-39417, and JP-B-62-39418 are also suitable.
  • use of addition polymerizable compounds having an amino structure or a sulfide structure in the molecule as described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238. Is also preferred.
  • UA-7200 Shin-Nakamura Chemical Co., Ltd. product
  • DPHA-40H made by Nippon Kayaku Co., Ltd.
  • UA-306H, UA-306T, UA-306I, AH-600, T-600 examples include AI-600 (manufactured by Kyoeisha Chemical Co., Ltd.).
  • compounds described in JP-A-2017-48367, JP-A-5605891 and JP-A-6031807 can also be used.
  • 8UH-1006, 8UH-1012 manufactured by Taisei Fine Chemical Co., Ltd.
  • light acrylate POB-A0 manufactured by Kyoeisha Chemical Co., Ltd.
  • the resin composition of the present invention can contain a compound having an epoxy group as a curable compound.
  • the compound having an epoxy group is preferably a compound having two or more epoxy groups in one molecule.
  • the compound having an epoxy group is preferably a compound having 2 to 100 epoxy groups.
  • the upper limit of the epoxy group may be, for example, 10 or less, or 5 or less.
  • the compound having an epoxy group may be a low molecular weight compound (for example, having a molecular weight of less than 1000) or a macromolecular compound (for example, having a molecular weight of 1000 or more, and in the case of a polymer, a weight average molecular weight of 1000 or more).
  • the weight average molecular weight of the compound having an epoxy group is preferably 200 to 100,000, and more preferably 500 to 50,000.
  • the upper limit of the weight average molecular weight is preferably 10000 or less, more preferably 5000 or less, and still more preferably 3000 or less.
  • the content of the curable compound is preferably 0.1 to 50% by mass with respect to the total solid content of the resin composition.
  • the lower limit is, for example, more preferably 0.5% by mass or more, and still more preferably 1% by mass or more.
  • the upper limit is, for example, more preferably 45% by mass or less and still more preferably 40% by mass or less.
  • the curable compounds may be used alone or in combination of two or more. When 2 or more types are used together, it is preferable that the total amount of them becomes the said range.
  • the content of the polymerizable compound is preferably 0.1 to 40% by mass with respect to the total solid content of the resin composition.
  • the lower limit is, for example, more preferably 0.5% by mass or more, and still more preferably 1% by mass or more.
  • the upper limit is, for example, more preferably 30% by mass or less, and still more preferably 20% by mass or less.
  • the polymerizable compounds may be used alone or in combination of two or more. When using 2 or more types of polymeric compounds together, it is preferable that the total amount of them becomes said range.
  • the content of the compound having an epoxy group is preferably 0.1 to 40% by mass with respect to the total solid content of the resin composition.
  • the lower limit is, for example, more preferably 0.5% by mass or more, and still more preferably 1% by mass or more.
  • the upper limit is, for example, more preferably 30% by mass or less, and still more preferably 20% by mass or less.
  • the compound having an epoxy group may be used alone or in combination of two or more. When 2 or more types are used together, it is preferable that the total amount of them becomes the said range.
  • the mass ratio of the polymerizable compound to the compound having an epoxy group is the mass of the polymerizable compound: epoxy group
  • the weight of the compound having the compound is preferably 100: 1 to 100: 400, more preferably 100: 1 to 100: 100, and still more preferably 100: 1 to 100: 50.
  • the resin composition of the present invention can contain a photopolymerization initiator.
  • a photopolymerization initiator there is no restriction
  • the photopolymerization initiator is preferably a photoradical polymerization initiator.
  • a halogenated hydrocarbon derivative for example, a compound having a triazine skeleton, a compound having an oxadiazole skeleton, etc.
  • an acylphosphine compound for example, a hexaarylbiimidazole, an oxime compound, an organic peroxide, Thio compounds, ketone compounds, aromatic onium salts, ⁇ -hydroxy ketone compounds, ⁇ -amino ketone compounds and the like
  • an organic peroxide for example, a compound having a triazine skeleton, a compound having an oxadiazole skeleton, etc.
  • an acylphosphine compound for example, a compound having a triazine skeleton, a compound having an oxadiazole skeleton, etc.
  • an acylphosphine compound for example, a compound having a triazine skeleton, a compound having an oxadiazole skeleton, etc.
  • the photopolymerization initiator is a trihalomethyl triazine compound, a benzyl dimethyl ketal compound, an ⁇ -hydroxy ketone compound, an ⁇ -amino ketone compound, an acyl phosphine compound, a phosphine oxide compound, a metallocene compound, an oxime compound, a triaryl imidazole from the viewpoint of exposure sensitivity.
  • Dimers, onium compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds, cyclopentadiene-benzene-iron complexes, halomethyl oxadiazole compounds and 3-aryl substituted coumarin compounds are preferred, and oxime compounds, ⁇ -hydroxy ketone compounds, ⁇ -hydroxy ketone compounds More preferred are compounds selected from amino ketone compounds and acyl phosphine compounds, and more preferred are oxime compounds.
  • the description in paragraphs 0065 to 0111 of JP-A-2014-130173 can be referred to, and the contents thereof are incorporated in the present specification.
  • Examples of commercially available ⁇ -hydroxy ketone compounds include IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (manufactured by BASF Corporation) and the like.
  • Examples of commercially available ⁇ -amino ketone compounds include IRGACURE-907, IRGACURE-369, IRGACURE-379, and IRGACURE-379EG (manufactured by BASF Corporation).
  • Examples of commercially available products of acyl phosphine compounds include IRGACURE-819, DAROCUR-TPO (all manufactured by BASF Corp.) and the like.
  • oxime compound examples include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2-Acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one, and 2-ethoxycarbonyloxy And imino-1-phenylpropan-1-one and the like.
  • IRGACURE-OXE01, IRGACURE-OXE02, IRGACURE-OXE03, IRGACURE-OXE04 (above, made by BASF Corporation), TR-PBG-304 (made by Changzhou strong electronic new material Co., Ltd.), Adeka Optomer N-1919 (Photopolymerization initiator 2 described in JP-A-2012-14052, manufactured by ADEKA Co., Ltd.).
  • the oxime compound it is also preferable to use a compound having no coloring property or a compound having high transparency and being hard to discolor. Examples of commercially available products include Adeka ARKules NCI-730, NCI-831, NCI-930 (all manufactured by ADEKA Corporation).
  • an oxime compound having a fluorene ring can also be used as a photopolymerization initiator.
  • the oxime compound having a fluorene ring compounds described in JP-A-2014-137466 can be mentioned. This content is incorporated herein.
  • an oxime compound having a fluorine atom can also be used as a photopolymerization initiator.
  • Specific examples of the oxime compound having a fluorine atom include the compounds described in JP-A-2010-262028, the compounds 24 and 36 to 40 described in JP-A-2014-500852, and JP-A-2013-164471. And the like (C-3) and the like. The contents of these are incorporated herein.
  • an oxime compound having a nitro group can be used as a photopolymerization initiator.
  • the oxime compound having a nitro group is also preferably a dimer.
  • specific examples of the oxime compound having a nitro group compounds described in paragraphs 0031 to 0047 of JP2013-114249A and paragraphs 0008 to 0012 and 0070 to 0079 of JP2014-137466A, The compounds described in Paragraph Nos. 0007 to 0025 of Patent No. 4223071, Adeka ARKLS NCI-831 (manufactured by ADEKA Co., Ltd.) can be mentioned.
  • an oxime compound having a benzofuran skeleton can also be used as a photopolymerization initiator.
  • Specific examples include OE-01 to OE-75 described in International Publication WO 2015/036910.
  • oxime compounds preferably used in the present invention are shown below, but the present invention is not limited thereto.
  • the oxime compound is preferably a compound having a maximum absorption wavelength in the range of 350 to 500 nm, and more preferably a compound having a maximum absorption wavelength in the range of 360 to 480 nm.
  • the molar absorption coefficient of the oxime compound at a wavelength of 365 nm or at a wavelength of 405 nm is preferably high, more preferably 1,000 to 300,000, and 2,000 to 300,000. Is more preferable, and 5,000 to 200,000 is particularly preferable.
  • the molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure at a concentration of 0.01 g / L using an ethyl acetate solvent with a spectrophotometer (Cary-5 spectrophotometer manufactured by Varian).
  • a bifunctional or trifunctional or higher functional photopolymerization initiator may be used as the photopolymerization initiator.
  • a photopolymerization initiator paragraph Nos. 0417 to 0412 of JP-A-2010-527339, JP-A-2011-524436, International Publication WO2015 / 004565, JP-A-2016-532675.
  • the photopolymerization initiator contains an oxime compound and an ⁇ -amino ketone compound.
  • the amount of the ⁇ -amino ketone compound is preferably 50 to 600 parts by mass, and more preferably 150 to 400 parts by mass with respect to 100 parts by mass of the oxime compound.
  • the content of the photopolymerization initiator is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and still more preferably 1 to 20% by mass, with respect to the total solid content of the resin composition.
  • the resin composition of the present invention may contain only one type of photopolymerization initiator, or may contain two or more types. When two or more photopolymerization initiators are contained, the total amount thereof is preferably in the above range.
  • the resin composition of the present invention can contain a polymerization inhibitor.
  • a polymerization inhibitor hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butyl catechol, benzoquinone, 4,4'-thiobis (3-methyl-6-tert-butylphenol), Examples include 2,2′-methylenebis (4-methyl-6-t-butylphenol) and N-nitrosophenylhydroxyamine salts (ammonium salts, cerous salts and the like). Among them, p-methoxyphenol is preferred.
  • the content of the polymerization inhibitor is preferably 0.01 to 5% by mass with respect to the total solid content of the resin composition.
  • the content of the polymerization inhibitor is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the polymerizable compound.
  • the upper limit is more preferably 0.5 parts by mass or less, still more preferably 0.2 parts by mass or less.
  • the lower limit is more preferably 0.01 parts by mass or more, and still more preferably 0.03 parts by mass or more.
  • the resin composition of the present invention may contain only one type of polymerization inhibitor, or may contain two or more types. When two or more types of polymerization inhibitors are contained, the total amount thereof is preferably in the above range.
  • the resin composition of the present invention can contain an ultraviolet absorber.
  • an ultraviolet absorber conjugated diene compounds, aminobutadiene compounds, methyldibenzoyl compounds, coumarin compounds, salicylate compounds, benzophenone compounds, benzotriazole compounds, acrylonitrile compounds, hydroxyphenyl triazine compounds and the like can be used. The details of these can be referred to the descriptions of paragraphs 0052 to 0072 of JP 2012-208374 A and paragraphs 0317 to 0334 of JP 2013-68814 A, the contents of which are incorporated herein.
  • Examples of commercially available conjugated diene compounds include UV-503 (manufactured by Daito Kagaku Co., Ltd.).
  • UV-1-Formula (UV-3) the compound represented by Formula (UV-1) or Formula (UV-3) is more preferable, and a formula The compound represented by (UV-1) is more preferable.
  • R 101 and R 102 each independently represent a substituent
  • m1 and m2 each independently represent 0 to 4.
  • R 201 and R 202 each independently represent a hydrogen atom or an alkyl group
  • R 203 and R 204 each independently represent a substituent.
  • each of R 301 to R 303 independently represents a hydrogen atom or an alkyl group
  • R 304 and R 305 each independently represent a substituent.
  • the content of the ultraviolet light absorber is preferably 0.01 to 10% by mass, and more preferably 0.01 to 5% by mass, with respect to the total solid content of the resin composition.
  • the ultraviolet absorber may be used alone or in combination of two or more. When using 2 or more types, it is preferable that a total amount becomes said range.
  • the resin composition of the present invention can contain a silane coupling agent.
  • the silane coupling agent means a silane compound having a hydrolyzable group and other functional groups.
  • the hydrolyzable group is a substituent which is directly bonded to a silicon atom and can form a siloxane bond by at least one of a hydrolysis reaction and a condensation reaction.
  • a hydrolysable group a halogen atom, an alkoxy group, an acyloxy group etc. are mentioned, for example, An alkoxy group is preferable. That is, the silane coupling agent is preferably a compound having an alkoxysilyl group.
  • functional groups other than hydrolyzable groups are preferably groups that form an interaction or bond with the resin to exhibit affinity.
  • a vinyl group, a (meth) acryloyl group, a mercapto group, an epoxy group, an oxetanyl group, an amino group, a ureido group, a sulfide group, an isocyanate group etc. are mentioned, and a (meth) acryloyl group and an epoxy group are preferable.
  • the silane coupling agent include compounds described in paragraphs 0018 to 0036 of JP 2009-288703, and compounds described in paragraphs 0056 to 0066 of JP 2009-242604, the contents of which are It is incorporated in the specification.
  • the content of the silane coupling agent is preferably 0.01 to 15.0% by mass, and more preferably 0.05 to 10.0% by mass, with respect to the total solid content of the resin composition. Only one type of silane coupling agent may be used, or two or more types may be used. In the case of two or more types, it is preferable that the total amount of them is in the above range.
  • the resin composition of the present invention can contain a surfactant.
  • a surfactant various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone surfactant can be used.
  • the surfactant can be referred to in paragraphs [0238 to 0245] of International Publication WO 2015/166779, the content of which is incorporated herein.
  • the surfactant is preferably a fluorine-based surfactant.
  • the liquid properties in particular, the fluidity
  • the liquid saving property can be further improved.
  • a film with small thickness unevenness can also be manufactured.
  • the fluorine content in the fluorine-based surfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 7 to 25% by mass.
  • the fluorine-based surfactant having a fluorine content in this range is effective in terms of the uniformity of the thickness of the coating film and the liquid saving property, and the solubility in the composition is also good.
  • fluorine-based surfactant examples include the surfactants described in paragraph Nos. 0060 to 0064 of JP-A-2014-41318 (paragraph Nos. 0060 to 0064 of corresponding international publication 2014/17669) and the like, and the like. Examples thereof include the surfactants described in paragraphs 0117 to 0132 of JP2011-132503A, the contents of which are incorporated herein.
  • the fluorine-based surfactant is a molecular structure having a functional group containing a fluorine atom, and an acrylic compound in which a portion of the functional group containing a fluorine atom is cleaved when heat is applied to volatilize the fluorine atom is also preferable. It can be used.
  • a fluorochemical surfactant Megafuck DS series (Chemical Chemical Daily, February 22, 2016) manufactured by DIC Corporation (Nikkei Sangyo Shimbun, February 23, 2016), for example, Megafuck DS -21 can be mentioned.
  • fluorinated surfactant it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound as the fluorinated surfactant.
  • fluorine-based surfactants can be referred to the description of JP-A-2016-216602, the contents of which are incorporated herein.
  • the fluorine-based surfactant a block polymer can also be used.
  • the fluorine-based surfactant has a repeating unit derived from a (meth) acrylate compound having a fluorine atom and two or more (preferably five or more) alkyleneoxy groups (preferably ethyleneoxy and propyleneoxy) (meth)
  • a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used.
  • the following compounds are also exemplified as the fluorinated surfactant used in the present invention.
  • the weight average molecular weight of the above-mentioned compounds is preferably 3,000 to 50,000, for example, 14,000. In the above compounds,% indicating the proportion of repeating units is mol%.
  • a fluorine-based surfactant a fluorine-containing polymer having an ethylenically unsaturated group in the side chain can also be used.
  • compounds described in paragraph Nos. 0050 to 0090 and paragraphs 0289 to 0295 of JP-A-2010-164965 for example, Megaface RS-101, RS-102, RS-718K manufactured by DIC Corporation. , RS-72-K and the like.
  • the fluorine-based surfactant compounds described in Paragraph Nos. 0015 to 0158 of JP-A-2015-117327 can also be used.
  • nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane and ethoxylates and propoxylates thereof (eg, glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, pluronic L10, L31, L61, L62, 10R5, 17R2, 25R2 (BASF Company company), Tetronics 304, 701, 704, 901, 904, 150R1 (BAS).
  • glycerol trimethylolpropane
  • organosiloxane polymer KP341 manufactured by Shin-Etsu Chemical Co., Ltd.
  • (meth) acrylic acid (co) polymer polyflow No. 1 is used. 75, no. 90, no. 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.), and the like.
  • anionic surfactant examples include W004, W005, W017 (manufactured by Yusho Co., Ltd.), and Sandet BL (manufactured by Sanyo Kasei Co., Ltd.).
  • silicone type surfactant for example, Toray silicone DC3PA, Toray silicone SH7PA, Toray silicone DC11PA, Toray silicone SH21PA, Toray silicone SH28PA, Toray silicone SH29PA, Toray silicone SH30PA, Toray silicone SH8400 (more than Toray Dow Corning ), TSF-4440, TSF-4300, TSF-4445, TSF-4460, TSF-4452 (above, Momentive Performance Materials Inc.), KP341, KF6001, KF6002 (above, Shin-Etsu Silicone Co., Ltd.) , BYK 307, BYK 323, BYK 330 (above, manufactured by Big Chemie Co., Ltd.), and the like.
  • the content of the surfactant is preferably 0.001% by mass to 2.0% by mass, and more preferably 0.005% to 1.0% by mass, with respect to the total solid content of the resin composition.
  • the surfactant may be only one type, or two or more types. In the case of two or more types, it is preferable that the total amount of them is in the above range.
  • the resin composition of the present invention can contain an antioxidant.
  • an antioxidant a phenol compound, a phosphite compound, a thioether compound etc. are mentioned.
  • the phenolic compound any phenolic compound known as a phenolic antioxidant can be used.
  • a preferable phenol compound a hindered phenol compound is mentioned.
  • part (ortho position) adjacent to phenolic hydroxyl group is preferable.
  • the aforementioned substituent is preferably a substituted or unsubstituted alkyl group having 1 to 22 carbon atoms.
  • the antioxidant is also preferably a compound having a phenol group and a phosphite group in the same molecule.
  • a phosphorus antioxidant can also be used conveniently for antioxidant.
  • a phosphorus antioxidant tris [2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d, f] [1,3,2] dioxaphosphepin-6 -Yl] oxy] ethyl] amine, tris [2-[(4,6,9,11-tetra-tert-butyldibenzo [d, f] [1,3,2] dioxaphosphepin-2-yl And the like]) oxy] ethyl] amine, ethyl phosphite bis (2,4-di-tert-butyl-6-methylphenyl) and the like.
  • antioxidants examples include Adekastab AO-20, Adekastab AO-30, Adekastab AO-40, Adekastab AO-50, Adekastab AO-50F, Adekastab AO-60, Adekastab AO-60G, Adekastab AO-80. And Adekastab AO-330 (above, ADEKA Co., Ltd.) and the like.
  • the polyfunctional hindered amine antioxidant described in International Publication WO17 / 006600 can also be used as an antioxidant.
  • the content of the antioxidant is preferably 0.01 to 20% by mass, and more preferably 0.3 to 15% by mass, with respect to the total solid content of the resin composition of the present invention.
  • One type of antioxidant may be used or two or more types may be used. When using 2 or more types, it is preferable that a total amount becomes said range.
  • the resin composition of the present invention may, if necessary, be a sensitizer, a curing accelerator, a filler, a thermosetting accelerator, a plasticizer and other auxiliary agents (eg, conductive particles, a filler, an antifoamer, Flame retardants, leveling agents, release accelerators, perfumes, surface tension modifiers, chain transfer agents, etc.) may be contained. Properties such as film physical properties can be adjusted by appropriately containing these components. These components are described, for example, in JP-A-2012-003225, paragraph No. 0183 or later (corresponding to US Patent Application Publication No. 2013/0034812, paragraph No.
  • the resin composition of the present invention may contain a latent antioxidant, if necessary.
  • a latent antioxidant is a compound in which the site that functions as an antioxidant is protected with a protecting group, and is heated at 100 to 250 ° C., or heated at 80 to 200 ° C. in the presence of an acid / base catalyst. In some cases, compounds in which the protective group is eliminated to function as an antioxidant can be mentioned.
  • Examples of the latent antioxidant include compounds described in International Publication WO 2014/021023, International Publication WO 2017/030005, and Japanese Unexamined Patent Publication No. 2017-008219. Examples of commercially available products include Adeka ARKRUZ GPA-5001 (manufactured by ADEKA Co., Ltd.) and the like.
  • the viscosity (23 ° C.) of the resin composition of the present invention is preferably in the range of 1 to 3000 mPa ⁇ s, for example, when a film is formed by coating.
  • the lower limit is more preferably 3 mPa ⁇ s or more, and still more preferably 5 mPa ⁇ s or more.
  • the upper limit is more preferably 2000 mPa ⁇ s or less, and still more preferably 1000 mPa ⁇ s or less.
  • the thixotropic property of the resin composition of the present invention is preferably low.
  • the thixotropic property can be represented by an index of Ti value.
  • an index of Ti value For example, in the viscosity measured using an E-type viscometer (RE 85L manufactured by Toki Sangyo Co., Ltd.), ⁇ (20 rpm) / ⁇ when the viscosities of rotation are 20 rpm and 50 rpm are ⁇ (20 rpm) and ⁇ (50 rpm), respectively.
  • the value of (50 rpm) is taken as the Ti value.
  • the Ti value at 23 ° C. is preferably 0.8 to 1.4, more preferably 0.9 to 1.2, and 0.9 More preferably, it is -1.1.
  • the container for containing the resin composition of the present invention there is no particular limitation on the container for containing the resin composition of the present invention, and a known container can be used.
  • a storage container a multi-layered bottle in which the inner wall of the container is made of a resin of six types and six layers, and a bottle having a seven-layer structure of six types of resin for the purpose of suppressing contamination with impurities in raw materials and resin compositions. It is also preferred to use As such a container, for example, the container described in JP-A-2015-123351 can be mentioned.
  • the application of the resin composition of the present invention is not particularly limited.
  • it can be preferably used for forming a near infrared cut filter or the like.
  • the resin composition of this invention can also form the near-infrared penetration filter which can permeate
  • the resin composition of the present invention can be prepared by mixing the above-mentioned components.
  • all components may be simultaneously dissolved or dispersed in a solvent to prepare a resin composition, and if necessary, two or more solutions or dispersions in which each component is appropriately blended. May be prepared in advance and mixed at the time of use (at the time of application) to prepare a resin composition.
  • the resin composition of the present invention contains a pigment
  • mechanical force used to disperse the pigment includes compression, squeezing, impact, shearing, cavitation and the like.
  • Specific examples of these processes include bead mills, sand mills, roll mills, ball mills, paint shakers, microfluidizers, high speed impellers, sand grinders, flow jet mixers, high pressure wet atomization, ultrasonic dispersion and the like.
  • the process and the dispersing machine for dispersing the pigment are the dispersion technology and industrial application centering on “Dispersion Technology Complete, Information Technology Co., Ltd. issued July 15, 2005” and “suspension (solid / liquid dispersion system)”
  • the process and the dispersing machine described in Paragraph No. 0022 of JP-A-2015-157893, published on October 10, 1978, can be suitably used.
  • a filter for the purpose of removing foreign substances and reducing defects.
  • a filter if it is a filter conventionally used for filtration applications etc., it can be used, without being limited in particular.
  • a fluorocarbon resin such as polytetrafluoroethylene (PTFE), a polyamide-based resin such as nylon (for example, nylon-6, nylon-6, 6), or a polyolefin resin such as polyethylene or polypropylene (PP)
  • Filters made of materials such as polyolefin resins of Among these materials, polypropylene (including high density polypropylene) and nylon are preferable.
  • the pore diameter of the filter is suitably about 0.01 to 7.0 ⁇ m, preferably about 0.01 to 3.0 ⁇ m, and more preferably about 0.05 to 0.5 ⁇ m. If the pore diameter of the filter is in the above range, fine foreign particles can be reliably removed. It is also preferable to use a fibrous filter medium.
  • the fibrous filter medium include polypropylene fiber, nylon fiber, glass fiber and the like. Specifically, filter cartridges of SBP type series (SBP 008 and the like), TPR type series (TPR 002, TPR 005 and the like), and SHPX type series (SHPX 003 and the like) manufactured by Loki Techno, Inc. can be mentioned.
  • filters different filters (eg, a first filter, a second filter, etc.) may be combined. In that case, filtration with each filter may be performed only once or may be performed twice or more. Moreover, you may combine the filter of a different hole diameter within the range mentioned above.
  • the pore size here can refer to the nominal value of the filter manufacturer. As a commercially available filter, for example, it is selected from various filters provided by Nippon Pall Co., Ltd. (DFA4201 NXEY etc.), Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (old Japan Microlith Co., Ltd.) or Kitz Micro Filter Co., Ltd. can do.
  • the second filter can be made of the same material as the first filter.
  • the filtration with the first filter may be performed only on the dispersion liquid, and after mixing other components, the filtration may be performed with the second filter.
  • the film of the present invention is formed using the above-described resin composition of the present invention.
  • the film of the present invention can be preferably used for near infrared cut filters, near infrared transmission filters, and the like.
  • the film of the present invention may have a pattern or may be a film having no pattern (flat film).
  • the thickness of the film of the present invention can be appropriately adjusted according to the purpose.
  • the film thickness is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and still more preferably 5 ⁇ m or less.
  • the lower limit of the film thickness is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and still more preferably 0.3 ⁇ m or more.
  • the film of the present invention When the film of the present invention is used as a near infrared cut filter, the film of the present invention preferably has a maximum absorption wavelength in the wavelength range of 650 to 1400 nm.
  • the maximum absorption wavelength is preferably 1200 nm or less, more preferably 1000 nm or less, and still more preferably 780 nm or less. 700 nm or more is preferable and, as for a maximum absorption wavelength, 720 nm or more is more preferable. It is particularly preferred that the film of the present invention has a maximum absorption wavelength in the range of 650 to 780 nm.
  • the film of the present invention When the film of the present invention is used as a near infrared cut filter, the film of the present invention preferably has an average transmittance of 70% or more, more preferably 80% or more, and still more preferably 85% or more. , 90% or more is particularly preferable.
  • the transmittance is preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more in the whole range of wavelengths of 400 to 550 nm.
  • the transmittance at at least one point in the wavelength range of 650 to 1400 nm is preferably 20% or less, more preferably 15% or less, and still more preferably 10% or less.
  • the films of the present invention can also be used in combination with color filters containing chromatic colorants.
  • a color filter can be manufactured using a coloring composition containing a chromatic coloring agent.
  • the chromatic coloring agents include the above-mentioned chromatic coloring agents.
  • the coloring composition can further contain a resin, a curable compound, a photopolymerization initiator, a surfactant, a solvent, a polymerization inhibitor, an ultraviolet light absorber, and the like. The details of these include the materials mentioned above, which can be used.
  • the film of the present invention When the film of the present invention is used as a near infrared cut filter and is used in combination with the film of the present invention and a color filter, it is preferable that a color filter be disposed on the optical path of the film of the present invention.
  • the film of the present invention and a color filter can be laminated and used as a laminate.
  • the film of the present invention and the color filter may or may not be adjacent in the thickness direction.
  • the film of the present invention When the film of the present invention and the color filter are not adjacent in the thickness direction, the film of the present invention may be formed on a support other than the support on which the color filter is formed.
  • another member for example, a microlens, a flattening layer, etc.
  • the film of the present invention can also be used by laminating on a support.
  • semiconductor base materials such as a silicon
  • the transparent substrate is not particularly limited as long as it is made of a material that can transmit at least visible light.
  • Glass is preferred as the material of the transparent substrate. That is, the transparent substrate is preferably a glass substrate. Examples of the glass include soda lime glass, borosilicate glass, non-alkali glass, quartz glass, copper-containing glass and the like. Examples of the copper-containing glass include copper-containing phosphate glass and copper-containing fluorophosphate glass.
  • the base layer etc. may be provided in the surface of a support body.
  • the near-infrared cut filter means a filter that transmits light in the visible region (visible light) and blocks at least part of light in the near-infrared region (near infrared). .
  • the near infrared cut filter may transmit all light of wavelengths in the visible region, and among light of wavelengths in the visible region, transmits light of a specific wavelength region and blocks light of a specific wavelength region
  • the color filter means a filter that transmits light in a specific wavelength range and blocks light in a specific wavelength range, out of light of wavelengths in the visible range.
  • the near-infrared transmission filter means a filter that shields visible light and transmits at least a part of near-infrared light.
  • the film of the present invention can be used in various devices such as solid-state imaging devices such as CCD (charge coupled device) and CMOS (complementary metal oxide semiconductor), infrared sensors, and image display devices.
  • solid-state imaging devices such as CCD (charge coupled device) and CMOS (complementary metal oxide semiconductor)
  • infrared sensors and image display devices.
  • the laminate of the present invention has the film of the present invention on a support.
  • a transparent base material is mentioned, It is preferable that it is a glass base material, and it is more preferable that it is a glass base material containing copper.
  • the film of the present invention is used as a near infrared cut filter, a wide range of near infrared light can be blocked by laminating the film of the present invention on a copper-containing glass substrate.
  • the near infrared cut filter of the present invention has the above-described film of the present invention.
  • the above-mentioned film of the present invention may be laminated on a support.
  • This near infrared cut filter can be preferably used for the application of a solid-state imaging device.
  • the support includes a transparent substrate.
  • the base layer etc. may be provided in the surface of a support body.
  • the film of the present invention is a film formed by using a composition containing a silane coupling agent and / or a compound having an epoxy group. Is preferred. According to this aspect, the adhesion between the glass substrate and the film of the present invention can be further strengthened.
  • the near-infrared cut filter of the present invention when the above-mentioned film of the present invention is laminated on a support, the near-infrared cut filter may further have a dielectric multilayer film in addition to the film of the present invention. preferable. According to this aspect, it is possible to provide a near-infrared cut filter having a wide viewing angle and excellent near-infrared shielding properties.
  • the dielectric multilayer film may be provided on one side or both sides of the support. When the dielectric multilayer film is provided on one side of the support, the manufacturing cost can be reduced.
  • the dielectric multilayer film is provided on both sides of the support, it is possible to obtain a near infrared cut filter which has high strength and is less likely to be warped.
  • the dielectric multilayer film may or may not be in contact with the support.
  • the near infrared cut filter of the present invention preferably has the film of the present invention between the transparent substrate and the dielectric multilayer film, and the film of the present invention is in contact with the dielectric multilayer film.
  • the film of the present invention is shielded from oxygen and humidity by the dielectric multilayer film, and the light resistance and the moisture resistance of the near infrared cut filter are improved.
  • a near-infrared cut filter having a wide viewing angle and excellent near-infrared shielding properties can be easily obtained.
  • the dielectric multilayer film is a film that shields infrared rays by utilizing the effect of light interference. Specifically, it is a film formed by alternately laminating two or more dielectric layers (high refractive index material layers and low refractive index material layers) having different refractive indexes.
  • a material forming the high refractive index material layer it is preferable to use a material having a refractive index of 1.7 or more (preferably 1.7 to 2.5).
  • titanium oxide, tin oxide and / or cerium oxide, etc. containing titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide or indium oxide as a main component
  • a material forming the low refractive index material layer it is preferable to use a material having a refractive index of 1.6 or less (preferably 1.2 to 1.6).
  • silica, alumina, lanthanum fluoride, magnesium fluoride and sodium aluminum hexafluoride can be mentioned.
  • each of the high refractive index material layer and the low refractive index material layer is preferably a thickness of 0.1 ⁇ to 0.5 ⁇ of the wavelength ⁇ (nm) of infrared light to be blocked.
  • the total number of laminations of the high refractive index material layer and the low refractive index material layer in the dielectric multilayer film is preferably 2 to 100, more preferably 2 to 60, and still more preferably 2 to 40.
  • the details of the dielectric multilayer film can be referred to the description in paragraph Nos. 0255 to 0259 of JP-A-2014-41318, the contents of which are incorporated herein.
  • the order of lamination of the layers is not particularly limited.
  • the support is referred to as layer A
  • the film of the present invention as layer B
  • the dielectric multilayer film as layer C.
  • Layer A / layer B / layer C (2) Layer A / layer C / layer B (3) Layer C / layer A / layer B (4) Layer B / layer A / layer B / layer C (5) Layer C / layer A / layer B / layer C (6) Layer B / layer A / layer C / layer B (7) Layer C / layer A / layer C / layer B (8) Layer C / layer B / layer A / layer B / layer C (9) layer C / layer B / layer A / layer C / layer B (10) Layer B / layer C / layer A / layer C / layer B
  • the near-infrared cut filter of the present invention may further have a copper-containing layer, an ultraviolet absorbing layer, and the like in addition to the film of the present invention.
  • the near infrared cut filter further includes a copper-containing layer, a near infrared cut filter having a wide viewing angle and excellent near infrared shielding properties can be easily obtained.
  • the near infrared cut filter further has an ultraviolet absorbing layer, whereby the near infrared cut filter having excellent ultraviolet shielding properties can be obtained.
  • the ultraviolet absorbing layer for example, the absorbing layers described in paragraphs 0040 to 0070 and 0119 to 0145 of International Publication WO 2015/099060 can be referred to, the contents of which are incorporated herein.
  • the layer containing copper include a layer formed using a composition containing a copper complex.
  • the near infrared ray transmission filter of the present invention has the above-described film of the present invention.
  • transmission filter the filter which light-shields visible light and permeate
  • the spectral characteristic in which the maximum value of the transmittance of light in the wavelength range of 400 to 830 nm is 20% or less and the minimum value of the transmittance of light in the wavelength range of 1000 to 1300 nm is 80% or more
  • the filter which it has is mentioned.
  • the above-mentioned film of the present invention may be laminated on a support.
  • semiconductor base materials such as a silicon
  • the near infrared ray transmission filter of the present invention has a pixel using the film of the present invention and a pixel selected from red, green, blue, magenta, yellow, cyan, black and colorless.
  • the above-mentioned film of the present invention may have a pattern or may be a film having no pattern (flat film).
  • the film of the present invention can be produced through the step of applying the resin composition of the present invention.
  • the resin composition of the present invention is preferably coated on a support.
  • the support include semiconductor substrates such as silicon and the above-mentioned transparent substrates.
  • An organic film, an inorganic film, etc. may be formed in these base materials.
  • Examples of the material of the organic film include the above-mentioned resins.
  • a charge coupled device (CCD), a complementary metal oxide semiconductor (CMOS), a transparent conductive film, or the like may be formed on the support.
  • CMOS complementary metal oxide semiconductor
  • a black matrix may be formed on the support to separate each pixel.
  • the support may be provided with a subbing layer, if necessary, for the purpose of improving the adhesion with the upper layer, preventing the diffusion of substances or flattening the surface of the substrate.
  • a subbing layer if necessary, for the purpose of improving the adhesion with the upper layer, preventing the diffusion of substances or flattening the surface of the substrate.
  • a known method can be used as a method of applying the resin composition.
  • dropping method drop casting
  • slit coating method spraying method
  • roll coating method spin coating method
  • cast coating method slit and spin method
  • pre-wet method for example, JP 2009-145395A
  • Ink jet for example, on-demand method, piezo method, thermal method
  • discharge system printing such as nozzle jet, flexographic printing, screen printing, gravure printing, reverse offset printing, metal mask printing method, etc.
  • the application method in the inkjet is not particularly limited, and for example, the method (in particular, page 115-) disclosed in "Spread and usable inkjet-unlimited possibilities in patents-published in February 2005, resident Betechno Research" Methods described in JP-A-2003-262716, JP-A-2003-185831, JP-A-2003-261827, JP-A-2012-126830, JP-A-2006-169325, etc. It can be mentioned. Moreover, regarding the coating method of the resin composition, the descriptions of International Publication WO 2017/030174 and International Publication WO 2017/018419 can be referred to, and the contents thereof are incorporated in the present specification.
  • the composition layer formed by applying the resin composition may be dried (prebaked). In the case of forming a pattern by a low temperature process, the prebaking may not be performed.
  • the prebaking temperature is preferably 150 ° C. or less, more preferably 120 ° C. or less, and still more preferably 110 ° C. or less.
  • the lower limit may be, for example, 50 ° C. or more, and may be 80 ° C. or more.
  • the pre-bake time is preferably 10 seconds to 3000 seconds, more preferably 40 to 2500 seconds, and still more preferably 80 to 220 seconds. Prebaking can be performed with a hot plate, an oven, or the like.
  • postbaking After prebaking, heat treatment (postbaking) may be further performed.
  • the post-baking temperature is preferably, for example, 100 to 240.degree. From the viewpoint of film curing, 180 to 240 ° C. is more preferable.
  • the post-baking time is preferably 2 to 10 minutes, more preferably 4 to 8 minutes. Post baking can be performed with a hot plate, an oven or the like.
  • the method for producing a film of the present invention may further include the step of forming a pattern.
  • the pattern formation method include a pattern formation method using a photolithography method and a pattern formation method using a dry etching method.
  • the step of forming a pattern may not be performed.
  • the process of forming a pattern will be described in detail.
  • a step of exposing the composition layer formed by applying the resin composition of the present invention in a pattern exposure step
  • developing and removing the composition layer of the unexposed area developing and removing the composition layer of the unexposed area
  • the composition layer is exposed in a pattern.
  • the composition layer can be pattern-exposed by exposing the composition layer through a mask having a predetermined mask pattern using an exposure apparatus such as a stepper. Thereby, the exposed portion can be cured.
  • radiation which can be used at the time of exposure, ultraviolet rays such as g-line and i-line are preferable, and i-line is more preferable.
  • Irradiation dose exposure dose
  • exposure dose for example, preferably 0.03 ⁇ 2.5J / cm 2, more preferably 0.05 ⁇ 1.0J / cm 2, most preferably 0.08 ⁇ 0.5J / cm 2 .
  • the oxygen concentration at the time of exposure can be appropriately selected, and in addition to being performed under the atmosphere, for example, under a low oxygen atmosphere having an oxygen concentration of 19% by volume or less (eg, 15% by volume, 5% by volume, substantially oxygen free , And may be exposed in a high oxygen atmosphere (for example, 22% by volume, 30% by volume, 50% by volume) in which the oxygen concentration exceeds 21% by volume.
  • the exposure illuminance can be set appropriately, and can usually be selected from the range of 1000 W / m 2 to 100000 W / m 2 (for example, 5000 W / m 2 , 15000 W / m 2 , 35000 W / m 2 ) .
  • Oxygen concentration and exposure illuminance may appropriately combined conditions, for example, illuminance 10000 W / m 2 at an oxygen concentration of 10 vol%, oxygen concentration of 35 vol% can be such illuminance 20000W / m 2.
  • the composition layer in the unexposed area of the composition layer after exposure is developed and removed to form a pattern.
  • the development removal of the composition layer in the unexposed area can be carried out using a developer.
  • the composition layer in the unexposed area in the exposure step is eluted into the developer, and only the photocured area remains on the support.
  • a developing solution an alkaline developing solution which does not damage the solid-state imaging device or circuit of the base is desirable.
  • the temperature of the developing solution is preferably, for example, 20 to 30.degree.
  • the development time is preferably 20 to 180 seconds.
  • the process of shaking off the developer every 60 seconds and further supplying the developer anew may be repeated several times.
  • alkaline agent used for a developing solution for example, ammonia water, ethylamine, diethylamine, dimethylethanolamine, diglycolamine, diethanolamine, hydroxyamine, ethylenediamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, Tetrabutylammonium hydroxide, ethyltrimethylammonium hydroxide, benzyltrimethylammonium hydroxide, dimethylbis (2-hydroxyethyl) ammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7 -Organic alkaline compounds such as undecene, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate Um, sodium silicate, and inorganic alkaline compound such as sodium metasilicate.
  • the alkaline agent is preferably a compound having a large molecular weight in terms of the environment and safety.
  • an alkaline aqueous solution obtained by diluting such an alkaline agent with pure water is preferably used.
  • the concentration of the alkaline agent in the alkaline aqueous solution is preferably 0.001 to 10% by mass, and more preferably 0.01 to 1% by mass.
  • a surfactant may be used in the developer.
  • surfactant the surfactant mentioned above is mentioned and nonionic surfactant is preferable.
  • the developer may be prepared once as a concentrate and diluted to a concentration required for use, from the viewpoint of transportation and storage convenience.
  • the dilution ratio is not particularly limited, but can be set, for example, in the range of 1.5 to 100 times.
  • Post-baking is a post-development heat treatment to complete film curing.
  • the post-baking temperature is preferably 100 to 240 ° C., for example. From the viewpoint of film curing, 180 to 230 ° C. is more preferable.
  • Patterning by the dry etching method cures the composition layer on the support to form a cured layer, and then forms a patterned photoresist layer on the cured layer, and then is patterned. It can carry out by methods, such as dry-etching using etching gas with respect to a hardened
  • the solid-state imaging device of the present invention has the above-described film of the present invention.
  • the configuration of the solid-state imaging device of the present invention is the configuration having the film of the present invention, and is not particularly limited as long as it is a configuration that functions as a solid-state imaging device. For example, the following configuration may be mentioned.
  • a light shield comprising a plurality of photodiodes constituting the light receiving area of the solid-state imaging device and transfer electrodes made of polysilicon and the like on the support, light shielding made of tungsten or the like in which only the light receiving portion of the photodiode and the transfer electrodes are opened.
  • a device protection film made of silicon nitride or the like which has a film formed on the light shielding film so as to cover the entire surface of the light shielding film and the light receiving portion of the photodiode, and has the film of the present invention on the device protection film is there. Furthermore, a configuration having a condensing means (for example, a micro lens etc.
  • the color filter may have a structure in which a film forming each pixel is embedded in a space partitioned into, for example, a grid shape by partition walls.
  • the partition walls in this case preferably have a lower refractive index than each pixel.
  • the image display apparatus of the present invention includes the film of the present invention.
  • the image display device include a liquid crystal display device and an organic electroluminescence (organic EL) display device.
  • organic EL organic electroluminescence
  • the image display device for example, “Electronic display device (authored by Akio Sasaki, published by Industry Research Association, 1990)", “Display device (authored by Ibuki Jun, industrial book, Ltd.) Etc.).
  • the liquid crystal display device is described, for example, in “Next-generation liquid crystal display technology (edited by Tatsuo Uchida, published by Industry Research Association, 1994)”.
  • the image display device may have a white organic EL element. It is preferable that it is a tandem structure as a white organic EL element.
  • JP-A-2003-45676 supervised by Akiyoshi Mikami, "The forefront of organic EL technology development-High luminance, high accuracy, long life, know-how collection", about the tandem structure of organic EL elements, Technical Information Association, It is described on pages 326-328, 2008, etc.
  • the spectrum of white light emitted by the organic EL element is preferably one having strong maximum emission peaks in the blue region (430 to 485 nm), the green region (530 to 580 nm) and the yellow region (580 to 620 nm). In addition to these emission peaks, those having a maximum emission peak in the red region (650 to 700 nm) are more preferable.
  • the infrared sensor of the present invention has the above-described film of the present invention.
  • the configuration of the infrared sensor of the present invention is the configuration having the film of the present invention, and there is no particular limitation as long as the configuration functions as an infrared sensor.
  • reference numeral 110 denotes a solid-state imaging device.
  • a near-infrared cut filter 111 and a near-infrared transmission filter 114 are disposed on the imaging region of the solid-state imaging device 110. Further, on the near infrared cut filter 111, a color filter 112 is laminated.
  • a microlens 115 is disposed on the incident light h ⁇ side of the color filter 112 and the near infrared ray transmission filter 114.
  • a planarization layer 116 is formed to cover the microlenses 115.
  • the near infrared cut filter 111 can be formed using the resin composition of the present invention.
  • the spectral characteristics of the near infrared cut filter 111 are selected according to the emission wavelength of the infrared light emitting diode (infrared LED) to be used.
  • the color filter 112 is a color filter in which a pixel for transmitting and absorbing light of a specific wavelength in the visible region is formed, and is not particularly limited, and a conventionally known color filter for forming a pixel can be used.
  • a color filter in which red (R), green (G), and blue (B) pixels are formed is used.
  • R red
  • G green
  • B blue
  • the description in paragraph Nos. 0214 to 0263 of JP-A-2014-043556 can be referred to, the contents of which are incorporated herein.
  • the characteristic of the near infrared ray transmission filter 114 is selected in accordance with the emission wavelength of the infrared LED to be used. For example, when the emission wavelength of the infrared LED is 850 nm, the near-infrared transmission filter 114 has a maximum light transmittance of 20% or less (preferably 15% or less) in the wavelength range of 400 to 750 nm. More preferably, it is 10% or less, and the minimum value of light transmittance in the thickness direction in the wavelength range of 900 to 1300 nm is 70% or more (preferably 75% or more, more preferably 80% or more) preferable.
  • the near-infrared transmission filter 114 has a maximum value of 20% or less (preferably 15%) in the wavelength range of 400 to 830 nm of the light transmittance in the thickness direction. Or less, more preferably 10% or less), and the minimum value of light transmittance in the thickness direction in the wavelength range of 1000 to 1300 nm is 70% or more (preferably 75% or more, more preferably 80% or more) Is preferred.
  • a near infrared cut filter (another near infrared cut filter) different from the near infrared cut filter 111 may be further disposed on the planarization layer 116.
  • Other near infrared cut filters include those having a copper-containing layer and / or a dielectric multilayer film. The details of these may be mentioned above.
  • a dual band pass filter may be used as another near infrared cut filter.
  • the positions of the near infrared cut filter 111 and the color filter 112 may be interchanged.
  • another layer may be disposed between the solid-state imaging device 110 and the near-infrared cut filter 111 and / or between the solid-state imaging device 110 and the near-infrared transmission filter 114.
  • the organic substance layer etc. which were formed using the composition containing a polymeric compound, resin, and a photoinitiator are mentioned.
  • a planarization layer may be formed on the color filter 112.
  • Example 1 Comparative Example 1 is a near-infrared-absorbing organic pigment not subjected to milling treatment.
  • Pigment 1 Compound of the following structure (it is a near infrared absorbing organic pigment)
  • Pigment 2 Compound of the following structure (it is a near infrared absorbing organic pigment)
  • the primary particles of the near-infrared-absorbing organic pigment of Examples 1 to 5 and Comparative Example 1 were observed by a transmission electron microscope, and the average long / short side ratio was determined from the obtained photograph. Specifically, the ratio (short side / long side) of the short side to the long side of the primary particle of the near-infrared-absorbing organic pigment was determined from the projected photograph to calculate the long side ratio.
  • Crystallinity [Ic / (Ia + Ic)]
  • Ic is the maximum value of the diffraction intensity of the peak derived from crystals in the powder X-ray diffraction spectrum in the region where the diffraction angle 2 ⁇ is 15 ° or more
  • Ia is derived from amorphous in the powder X-ray diffraction spectrum It is the maximum value of the peak diffraction intensity. Note that a peak having a full width at half maximum of 1 ° or less is defined as a peak derived from a crystal. Further, a peak whose full width at half maximum exceeds 3 ° is taken as a peak derived from amorphous.
  • maximum absorption wavelength, absorbance A max at maximum absorption wavelength, absorbance A 550 at wavelength 550 nm, maximum absorption using a spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corp.) absorbance a 1 in 50nm shorter wavelength were respectively measured than the wavelength, which is the ratio between the absorbance a 550 and the absorbance a max a 550 / a max, which is the ratio between the absorbance a 1 and absorbance a max a 1 / a max Were calculated respectively.
  • the value of A 1 / A max is closer to 1, it means that the absorptivity in a wide range near the maximum absorption wavelength is excellent, and the near infrared ray shielding properties are excellent.
  • the near-infrared-absorbing organic pigment of the example has characteristics that the absorbance ratio A 550 / A max is smaller than that of Comparative Example 1, and the absorbance ratio A 1 / A max is high,
  • the near infrared absorbing organic pigment of the example was also excellent in near infrared shielding while having excellent visible transparency.
  • Pigment dispersion liquid A-1 The following raw materials are mixed and dispersed for 3 hours in a bead mill (high pressure disperser NANO-3000-10 (manufactured by Nippon Bei E.)) using zirconia beads of 0.3 mm in diameter for 3 hours to obtain a pigment Dispersion A-1 was prepared.
  • Near-infrared absorbing organic pigment of Example 1 5.35 parts by mass Pigment derivative 1 2.15 parts by mass Dispersing agent 1 6.0 parts by mass Propylene glycol methyl ether acetate (PGMEA) ⁇ 86.5 parts by mass
  • Pigment dispersion liquid A-2 A pigment dispersion A-2 was prepared in the same manner as the pigment dispersion A-1, except that the near infrared absorbing organic pigment of Example 2 was used instead of the near infrared absorbing organic pigment of Example 1.
  • Pigment dispersion liquid A-3 A pigment dispersion A-3 was prepared in the same manner as the pigment dispersion A-1, except that the near infrared absorbing organic pigment of Example 3 was used instead of the near infrared absorbing organic pigment of Example 1.
  • Pigment dispersion A-4 A pigment dispersion A-4 was prepared in the same manner as the pigment dispersion A-1, except that the near infrared absorbing organic pigment of Example 4 was used instead of the near infrared absorbing organic pigment of Example 1.
  • Pigment Dispersion A-5 A pigment dispersion A-5 was prepared in the same manner as the pigment dispersion A-1, except that the near infrared absorbing organic pigment of Example 5 was used instead of the near infrared absorbing organic pigment of Example 1.
  • Pigment dispersion liquid A-6 A pigment dispersion A-6 was prepared in the same manner as the pigment dispersion A-1, except that the near infrared absorbing organic pigment of Comparative Example 1 was used instead of the near infrared absorbing organic pigment of Example 1.
  • the resin composition was prepared by mixing the raw materials described in the following table.
  • Pigment Dispersion Solutions A-1 to A-6 Pigment Dispersion Solutions A-1 to A-6 Described Above Color materials B-1 and B-2: compounds of the following structures
  • Resin 1 Resin synthesized by the following method (a propylene glycol monomethyl ether acetate solution having a solid concentration of 35% by mass) 14 g of benzyl methacrylate, 12 g of N-phenylmaleimide, 15 g of 2-hydroxyethyl methacrylate, 10 g of styrene and 20 g of methacrylic acid are dissolved in 200 g of propylene glycol monomethyl ether acetate, and further 3 g of 2,2'-azoisobutyronitrile and ⁇ -methyl 5 g of styrene dimer was charged.
  • the resin composition was applied on a glass substrate by spin coating so that the film thickness after application was 0.3 ⁇ m, and then heated at 100 ° C. for 2 minutes using a hot plate. Next, exposure was performed at 1000 mJ / cm 2 using an i-line stepper exposure apparatus FPA-3000i5 + (manufactured by Canon Co., Ltd.). Furthermore, it heated at 220 degreeC for 5 minutes using the hotplate, and formed the film.
  • Examples 101 to 105 and Comparative Example 101 had the maximum absorption wavelength in the range of 650 to 780 nm.
  • the incident angle is changed to be vertical (angle 0 degree) and 40 degrees with respect to the film surface, and in the visible region to the near infrared region of wavelengths of 600 nm or more,
  • the shift amount was evaluated according to the following criteria.
  • the example had a value of A 550 / A max smaller than that of the comparative example, and A 1 / A max had a value closer to one. For this reason, the example was higher in visible transparency than the comparative example, and was excellent in near-infrared shielding properties. Furthermore, the viewing angle dependency was also good.
  • Pigment dispersion liquid B-4 Yellow pigment (CI Pigment Yellow 139) ... 11.0 parts by mass Dispersant 2 ... 4.4 parts Pigment derivative 2 ... 1.59 parts by mass PGMEA ... 83.01 Parts by mass
  • Dispersant 1 Dispersant 1 described above
  • Alkali-soluble resin 2 Alkali-soluble resin 2 described later
  • Pigment derivative 2 compound of the following structure
  • the resin composition was prepared by mixing the raw materials described in the following table.
  • Pigment dispersions A-1, A-6, B-1 to B-7 the above-mentioned pigment dispersions A-1, A-6, B-1 to B-7
  • Polymerizable compound 1 A mixture of compounds of the following structure (a mixture of a left compound and a right compound in a molar ratio of 7: 3)
  • Polymerizable compound 2 Compound of the following structure
  • Silane coupling agent 1 Compound of the following structure (Et in the following structural formula is an ethyl group)
  • Polymerization inhibitor p-methoxyphenol UV absorber: UV-503 (made by Daito Chemical Co., Ltd.)
  • Photoinitiator 1 Compound of the following structure
  • Photopolymerization initiator 2 IRGACURE-OXE04 (manufactured by BASF)
  • Photopolymerization initiator 3 IRGACURE-OXE02 (manufactured by BASF)
  • Photopolymerization initiator 4 Compound of the following structure
  • Surfactant 1 Surfactant 1 described above
  • Organic solvent 1 Propylene glycol
  • the resin composition was applied on a glass substrate by spin coating so that the film thickness after application was 0.3 ⁇ m, and then heated at 100 ° C. for 2 minutes using a hot plate. Next, exposure was performed at 1000 mJ / cm 2 using an i-line stepper exposure apparatus FPA-3000i5 + (manufactured by Canon Co., Ltd.). Furthermore, it heated at 220 degreeC for 5 minutes using the hotplate, and formed the film.
  • the transmittance of light in the wavelength range of 400 to 1400 nm and the light transmittance of wavelength 700 nm, using a spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corporation) was measured.
  • a resist CT-2000L solution (Fuji Film Electronics Materials Co., Ltd. product) is coated on a silicon wafer using a spin coater to a film thickness of 2 ⁇ m, dried by heating at 220 ° C for 1 hour, and transparent cured. A film (subbed layer) was formed.
  • the resin composition is applied on the undercoating layer of the obtained silicon wafer with undercoating layer using a spin coater so that the dry film thickness is 1.0 ⁇ m, prebaked at 100 ° C. for 120 seconds, and then on the silicon wafer. A film was formed.
  • Foreign matter contained in this film is detected using foreign matter evaluation apparatus COMPLAS III (Applied Materials Co., Ltd.), and from all detected foreign matter, foreign matter having a maximum width of 1.0 ⁇ m or more, which causes yield reduction ( Coarse particles were classified visually.
  • the number of foreign substances classified into the maximum width of 1.0 ⁇ m or more was counted, and the defect performance was evaluated using the obtained value as an index.
  • the maximum value of the transmittance of light in the wavelength range of 400 to 830 nm was 20% or less, and the minimum value of the transmittance of light in the wavelength range of 1000 to 1300 nm was 80% or more.
  • the example was superior to the comparative example in the light shielding property at a wavelength of 700 nm. For this reason, the example was able to transmit near infrared rays with less noise than the comparative example. Further, in the example, the number of foreign matter was smaller than in the comparative example, and the defect performance was good.
  • Example 4 The resin compositions of Examples 101 to 108 were applied by spin coating on a silicon wafer such that the film thickness after film formation was 1.0 ⁇ m. Subsequently, it heated at 100 degreeC for 2 minutes using the hotplate. Next, using an i-line stepper exposure apparatus FPA-3000i5 + (Canon Co., Ltd.), exposure was performed at a dose of 1000 mJ / cm 2 through a mask having a 2 ⁇ m square Bayer pattern. Subsequently, paddle development was performed at 23 ° C. for 60 seconds using a 0.3% by mass aqueous solution of tetramethylammonium hydroxide (TMAH). Then, it rinsed by spin shower and was further rinsed with pure water.
  • TMAH tetramethylammonium hydroxide
  • a 2 ⁇ m square Bayer pattern (near infrared cut filter) was formed by heating at 200 ° C. for 5 minutes using a hot plate.
  • the red composition was applied by spin coating so that the film thickness after film formation was 1.0 ⁇ m. Subsequently, it heated at 100 degreeC for 2 minutes using the hotplate.
  • FPA-3000i5 + (Canon Co., Ltd.) exposure was performed at a dose of 1000 mJ / cm 2 through a mask having a 2 ⁇ m square Bayer pattern. Subsequently, paddle development was performed at 23 ° C.
  • TMAH tetramethylammonium hydroxide
  • the red composition was patterned on the Bayer pattern of the near infrared cut filter by heating at 200 ° C. for 5 minutes using a hot plate.
  • the Green composition and the Blue composition were sequentially patterned to form colored patterns of red, green and blue.
  • a composition for forming a near infrared ray transmission filter was applied on the film on which the color pattern was formed by a spin coating method so that the film thickness after film formation was 2.0 ⁇ m. Subsequently, it heated at 100 degreeC for 2 minutes using the hotplate.
  • the obtained solid-state imaging device was irradiated with light from an infrared light emitting diode (infrared LED) light source under a low illuminance environment (0.001 Lux), an image was captured, and the image performance was evaluated. The subject was clearly recognized on the image. In addition, the incident angle dependency was good.
  • infrared LED infrared LED
  • the Red composition, the Green composition, the Blue composition and the composition for forming a near infrared ray transmission filter used in Test Example 4 are as follows.
  • Red composition The following components were mixed and stirred, and then filtered through a nylon filter with a pore size of 0.45 ⁇ m (manufactured by Nippon Pall Co., Ltd.) to prepare a red composition.
  • Red pigment dispersion liquid 51.7 parts by mass
  • Resin 11 0.6 parts by mass
  • Polymerizable compound 2 0.6 parts by mass
  • Photopolymerization initiator 11 0.4 parts by mass
  • Green composition The following components were mixed and stirred, followed by filtration using a nylon filter with a pore size of 0.45 ⁇ m (manufactured by Nippon Pall Co., Ltd.) to prepare a Green composition.
  • Green pigment dispersion ⁇ 73.7 parts by mass Resin 11 ⁇ ⁇ ⁇ 0.3 parts by mass Polymerizable compound 11 ⁇ ⁇ ⁇ 1.2 parts by mass Photopolymerization initiator 11 ⁇ ⁇ ⁇ 0.6 parts by mass Surfactant 11 ... 4.2 parts by mass UV absorber (UV-503, manufactured by Daito Chemical Industries, Ltd.) ... 0.5 parts by mass PGMEA ... 19.5 parts by mass
  • Blue composition The following components were mixed and stirred, and then filtered through a nylon filter with a pore size of 0.45 ⁇ m (manufactured by Nippon Pall Co., Ltd.) to prepare a Blue composition.
  • composition for near infrared ray transmission filter formation The following components were mixed and stirred, followed by filtration using a nylon filter with a pore size of 0.45 ⁇ m (manufactured by Nippon Pall Co., Ltd.) to prepare a composition for forming a near infrared ray transmission filter.
  • the raw materials used for the Red composition, the Green composition, the Blue composition, and the composition for forming a near infrared ray transmission filter are as follows.
  • Red pigment dispersion C.I. I. Pigment Red 254, 9.6 parts by mass
  • C.I. I. A mixed solution of 4.3 parts by mass of Pigment Yellow 139, 6.8 parts by mass of a dispersing agent (Disperbyk-161, manufactured by BYK Chemie), and 79.3 parts by mass of PGMEA was used as a bead mill (zirconia beads 0. 2). Mix and disperse for 3 hours according to 3 mm diameter). Thereafter, dispersion treatment was carried out at a flow rate of 500 g / min under a pressure of 2000 kg / cm 3 using a high pressure disperser NANO-3000-10 (manufactured by Nippon Bei Co., Ltd.) with a pressure reducing mechanism. This dispersion process was repeated 10 times to obtain a red pigment dispersion.
  • a mixed solution of 5.3 parts by mass of Pigment Yellow 150, 5.2 parts by mass of a dispersing agent (Disperbyk-161, manufactured by BYK Chemie), and 83.1 parts by mass of PGMEA was added to a bead mill (zirconia beads 0. 2). Mix and disperse for 3 hours according to 3 mm diameter). Thereafter, dispersion treatment was carried out at a flow rate of 500 g / min under a pressure of 2000 kg / cm 3 using a high pressure disperser NANO-3000-10 (manufactured by Nippon Bei Co., Ltd.) with a pressure reducing mechanism. This dispersion process was repeated 10 times to obtain a green pigment dispersion.
  • Blue pigment dispersion C.I. I. Pigment Blue 15: 6, 9.7 parts by mass
  • C.I. I. A mixed solution consisting of 2.4 parts by mass of Pigment Violet 23, 5.5 parts by mass of a dispersing agent (Disperbyk-161, manufactured by BYK Chemie), and 82.4 parts by mass of PGMEA is a bead mill (zirconia beads 0. 2). Mix and disperse for 3 hours according to 3 mm diameter). Thereafter, dispersion treatment was carried out at a flow rate of 500 g / min under a pressure of 2000 kg / cm 3 using a high pressure disperser NANO-3000-10 (manufactured by Nippon Bei Co., Ltd.) with a pressure reducing mechanism. This dispersion process was repeated 10 times to obtain a blue pigment dispersion.
  • Pigment dispersion liquid 1-1 A mixed solution of the following composition is mixed and dispersed for 3 hours with a bead mill (high pressure disperser NANO-3000-10 (manufactured by Nippon Bei E.)) using zirconia beads of 0.3 mm diameter. Pigment dispersion liquid 1-1 was prepared. Mixed pigment consisting of red pigment (CI Pigment Red 254) and yellow pigment (CI Pigment Yellow 139) 11.8 parts by mass Resin (Disperbyk-111, manufactured by BYK Chemie): 9.1 parts by mass PGMEA ... 79.1 parts by mass
  • Pigment dispersion liquid 1-2 A mixed solution of the following composition is mixed and dispersed for 3 hours with a bead mill (high pressure disperser NANO-3000-10 (manufactured by Nippon Bei E.)) using zirconia beads of 0.3 mm diameter. Pigment dispersion liquid 1-2 was prepared.
  • Polymerizable compound 1 The above-mentioned polymerizable compound 1
  • Polymerizable compound 2 The above-mentioned polymerizable compound 2
  • Polymerizable compound 11 KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.)
  • Resin 11 Alkali-soluble resin 2 described above
  • Photopolymerization initiator 11 IRGACURE-OXE01 (manufactured by BASF)
  • Photopolymerization initiator 12 compound of the following structure
  • -Silane coupling agent 1 The above-mentioned silane coupling agent 1.
  • 110 solid-state imaging device
  • 111 near infrared cut filter
  • 112 color filter
  • 114 near infrared transmission filter
  • 115 microlens
  • 116 flattening layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optical Filters (AREA)
  • Materials For Photolithography (AREA)

Abstract

近赤外線遮蔽性に優れた近赤外線吸収有機顔料を提供する。また、樹脂組成物、近赤外線吸収有機顔料の製造方法、近赤外線吸収有機顔料の分光調整方法、膜、積層体、近赤外線カットフィルタ、近赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサを提供する。近赤外線吸収有機顔料は、波長650~1400nmの範囲に極大吸収波長を有し、波長550nmにおける吸光度A550と極大吸収波長における吸光度Amaxとの比であるA550/Amaxが0.1未満であり、平均一次粒子径が1~200nmであり、粉末X線回折スペクトルによって測定される結晶化度の値が0.70~0.98である。

Description

近赤外線吸収有機顔料、樹脂組成物、近赤外線吸収有機顔料の製造方法、近赤外線吸収有機顔料の分光調整方法、膜、積層体、近赤外線カットフィルタ、近赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサ
 本発明は、近赤外線吸収有機顔料に関する。また、樹脂組成物、近赤外線吸収有機顔料の製造方法、近赤外線吸収有機顔料の分光調整方法、膜、積層体、近赤外線カットフィルタ、近赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサに関する。
 ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などには、カラー画像の固体撮像素子である、CCD(電荷結合素子)や、CMOS(相補型金属酸化膜半導体)が用いられている。これら固体撮像素子は、その受光部において赤外線に感度を有するシリコンフォトダイオードを使用しているために、近赤外線カットフィルタを使用して視感度補正を行うことがある。
 近赤外線カットフィルタは、近赤外線遮蔽性を高めるため、近赤外線吸収有機顔料などの近赤外線吸収剤を含む樹脂組成物を用いて製造する方法が知られている(例えば、特許文献1~3)。
国際公開WO2016/035695号公報 特開2014-191190号公報 特開2014-224921号公報
 近年、近赤外線吸収有機顔料などの近赤外線吸収剤は、可視透明性と近赤外線遮蔽性との両立を高い水準で達成することが求められている。
 よって、本発明の目的は、可視透明性および近赤外線遮蔽性に優れた近赤外線吸収有機顔料を提供することにある。また、樹脂組成物、近赤外線吸収有機顔料の製造方法、近赤外線吸収有機顔料の分光調整方法、膜、積層体、近赤外線カットフィルタ、近赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサを提供することにある。
 かかる状況のもと、本発明者が鋭意検討を行った結果、特定の近赤外線吸収有機顔料が可視透明性および近赤外線遮蔽性に優れることを見出し、本発明を完成するに至った。本発明は以下を提供する。
 <1> 波長650~1400nmの範囲に極大吸収波長を有する近赤外線吸収有機顔料であって、
 近赤外線吸収有機顔料は、波長550nmにおける吸光度A550と極大吸収波長における吸光度Amaxとの比であるA550/Amaxが0.1未満であり、
 近赤外線吸収有機顔料の平均一次粒子径が1~200nmであり、
 近赤外線吸収有機顔料の粉末X線回折スペクトルにおいて下記式で表される結晶化度の値が0.70~0.98である、近赤外線吸収有機顔料;
 結晶化度=[Ic/(Ia+Ic)]
 式中、Icは、回折角度2θが15°以上の領域において、粉末X線回折スペクトルにおける結晶に由来するピークの回折強度の最大値であり、
 Iaは、粉末X線回折スペクトルにおけるアモルファスに由来するピークの回折強度の最大値である。
 <2> 近赤外線吸収有機顔料の極大吸収波長よりも50nm短い波長における吸光度A1と、近赤外線吸収有機顔料の極大吸収波長における吸光度Amaxとの比であるA1/Amaxが0.57~0.9である、<1>に記載の近赤外線吸収有機顔料。
 <3> 上記近赤外線吸収有機顔料の極大吸収波長よりも50nm短い波長における吸光度A1と、近赤外線吸収有機顔料の極大吸収波長における吸光度Amaxとの比であるA1/Amaxは、近赤外線吸収有機顔料の平均一次粒子径が1500nmである場合の値よりも5%以上高い、<1>または<2>に記載の近赤外線吸収有機顔料。
 <4> 近赤外線吸収有機顔料は、波長650~780nmの範囲に極大吸収波長を有する、<1>~<3>のいずれか1つに記載の近赤外線吸収有機顔料。
 <5> 近赤外線吸収有機顔料の一次粒子の平均長短辺比が0.3~0.99である、<1>~<4>のいずれか1つに記載の近赤外線吸収有機顔料。
 <6> 近赤外線吸収有機顔料が、ピロロピロール化合物およびスクアリリウム化合物から選ばれる少なくとも1種である、<1>~<5>のいずれか1つに記載の近赤外線吸収有機顔料。
 <7> <1>~<6>のいずれか1つに記載の近赤外線吸収有機顔料と、樹脂とを含む樹脂組成物。
 <8> 更に、赤外線を透過させて可視光を遮光する色材を含む、<7>に記載の樹脂組成物。
 <9> 波長650~1400nmの範囲に極大吸収波長を有し、波長550nmにおける吸光度A550と極大吸収波長における吸光度Amaxとの比であるA550/Amaxが0.1未満である近赤外線吸収顔料をミリング処理して、平均一次粒子径を1~200nmとし、粉末X線回折スペクトルにおいて下記式で表される結晶化度の値を0.70~0.98とする、近赤外線吸収有機顔料の製造方法;
 結晶化度=[Ic/(Ia+Ic)]
 式中、Icは、回折角度2θが15°以上の領域において、粉末X線回折スペクトルにおける結晶に由来するピークの回折強度の最大値であり、
 Iaは、粉末X線回折スペクトルにおけるアモルファスに由来するピークの回折強度の最大値である。
 <10> 波長650~1400nmの範囲に極大吸収波長を有し、波長550nmにおける吸光度A550と極大吸収波長における吸光度Amaxとの比であるA550/Amaxが0.1未満である近赤外線吸収顔料をミリング処理して、平均一次粒子径を1~200nmとし、粉末X線回折スペクトルにおいて下記式で表される結晶化度の値を0.70~0.98とする、近赤外線吸収有機顔料の分光調整方法;
 結晶化度=[Ic/(Ia+Ic)]
 式中、Icは、回折角度2θが15°以上の領域において、粉末X線回折スペクトルにおける結晶に由来するピークの回折強度の最大値であり、
 Iaは、粉末X線回折スペクトルにおけるアモルファスに由来するピークの回折強度の最大値である。
 <11> ミリング処理後の近赤外線吸収有機顔料の極大吸収波長よりも50nm短い波長における吸光度A1と、近赤外線吸収有機顔料の極大吸収波長における吸光度Amaxとの比であるA1/Amaxは、ミリング処理前の近赤外線吸収有機顔料の値よりも5%以上高い、<10>に記載の近赤外線吸収有機顔料の分光調整方法。
 <12> <7>または<8>に記載の樹脂組成物を用いて得られる膜。
 <13> 支持体上に<12>に記載の膜を有する積層体。
 <14> 支持体が銅を含有するガラス基材である、<13>に記載の積層体。
 <15> <12>に記載の膜を有する近赤外線カットフィルタ。
 <16> <12>に記載の膜を有する近赤外線透過フィルタ。
 <17> <12>に記載の膜を有する固体撮像素子。
 <18> <12>に記載の膜を有する画像表示装置。
 <19> <12>に記載の膜を有する赤外線センサ。
 本発明によれば、可視透明性および近赤外線遮蔽性に優れた近赤外線吸収有機顔料を提供することができる。また、樹脂組成物、近赤外線吸収有機顔料の製造方法、近赤外線吸収有機顔料の分光調整方法、膜、積層体、近赤外線カットフィルタ、近赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサを提供することができる。
赤外線センサの一実施形態を示す概略図である。
 以下において、本発明の内容について詳細に説明する。
 本明細書において、「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も露光に含める。また、露光に用いられる光としては、水銀灯の輝線スペクトル、エキシマレーザに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線または放射線が挙げられる。
 本明細書において、「(メタ)アクリレート」は、アクリレートおよびメタクリレートの双方、または、いずれかを表し、「(メタ)アクリル」は、アクリルおよびメタクリルの双方、または、いずれかを表し、「(メタ)アクリロイル」は、アクリロイルおよびメタクリロイルの双方、または、いずれかを表す。
 本明細書において、重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)測定でのポリスチレン換算値として定義される。
 本明細書において、化学式中のMeはメチル基を表し、Etはエチル基を表し、Buはブチル基を表し、Phはフェニル基を表す。
 本明細書において、近赤外線とは、波長700~2500nmの光(電磁波)をいう。
 本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の総質量をいう。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において顔料とは、特定の溶剤に対して溶解しにくい化合物を意味する。例えば、顔料は、23℃の水100gおよび23℃のプロピレングリコールモノメチルエーテルアセテート100gに対する溶解度が0.1g以下であることが好ましく、0.01g以下であることがより好ましい。
<近赤外線吸収有機顔料>
 本発明の近赤外線吸収有機顔料は、波長650~1400nmの範囲に極大吸収波長を有する近赤外線吸収有機顔料であって、
 上記近赤外線吸収有機顔料は、波長550nmにおける吸光度A550と極大吸収波長における吸光度Amaxとの比であるA550/Amaxが0.1未満であり、
 上記近赤外線吸収有機顔料の平均一次粒子径が1~200nmであり、
 上記近赤外線吸収有機顔料の粉末X線回折スペクトルにおいて下記式で表される結晶化度の値が0.70~0.98であることを特徴とする。
 結晶化度=[Ic/(Ia+Ic)]
 式中、Icは、回折角度2θが15°以上の領域において、粉末X線回折スペクトルにおける結晶に由来するピークの回折強度の最大値であり、
 Iaは、粉末X線回折スペクトルにおけるアモルファスに由来するピークの回折強度の最大値である。
 本発明者が近赤外線吸収有機顔料について鋭意検討を行った結果、平均一次粒子径が1~200nmで、かつ、上記式で表される結晶化度の値が0.70~0.98である近赤外線吸収有機顔料は、優れた可視透明性を有しつつ、極大吸収波長近傍の広範囲における吸収性に優れ、広範囲の波長の近赤外線を遮光することができることを見出した。詳細な理由は不明であるが、近赤外線吸収有機顔料の一次粒子径および結晶化度の値を上記の範囲に調整することにより、近赤外線吸収有機顔料の会合が適度に崩れて結晶性を適度に乱すことができ、その結果、可視領域の分光特性を損なうことなく、極大吸収波長近傍の広範囲における吸収性が向上したと推測される。また、一次粒子径が上記の範囲であるため、散乱などによる影響が小さくなり、近赤外線遮蔽性を向上させつつ、可視透明性も向上させることができる。
 本発明の近赤外線吸収有機顔料は、可視透明性に優れつつ、より広い範囲の近赤外線を遮光することができるので、この近赤外線吸収有機顔料を近赤外線カットフィルタに用いた場合には、より広い範囲の近赤外線を遮光できる近赤外線カットフィルタとすることができる。また、この近赤外線吸収有機顔料を近赤外線透過フィルタに用いた場合には、ノイズの少ない近赤外線を透過させることができる近赤外線透過フィルタとすることができる。なお、近赤外線透過フィルタにおいて、近赤外線吸収有機顔料は透過させる近赤外領域の光をより長波長側に限定する役割を有している。
 また、本発明の近赤外線吸収有機顔料を用いることで、近赤外線カットフィルタや、近赤外線透過フィルタの視野角依存性をより向上させたり、欠陥の発生をより効果的に抑制することができる。
 本発明の近赤外線吸収有機顔料は、上記式で表される結晶化度の値が0.70~0.98である。上限は、0.96以下であることがより好ましく、0.94以下であることが更に好ましい。下限は、0.80以上であることがより好ましく、0.85以上であることが更に好ましい。結晶化度の値が上記範囲であれば、近赤外線吸収有機顔料の可視領域の分光特性を損なうことなく、近赤外線遮蔽性を高めることができる。より具体的には、可視透明性が良好であり、かつ、近赤外線吸収有機顔料の極大吸収波長近傍の広範囲における吸収性を高めて、より広い範囲の近赤外線を遮光することができる。近赤外線吸収有機顔料の結晶化度は、近赤外線吸収有機顔料のミリング条件を調整するなどの方法で調整することができる。たとえば、結晶化度を高めたい場合はミリング温度を高めたり、摩砕剤/顔料比(質量比)を高めればよく、結晶化度を下げたい場合はミリング温度を下げたり、摩砕剤/顔料比(質量比)を下げればよい。
 なお、本発明における結晶に由来するピークとは、回折強度のピークにおける半値全幅が1°以下の鋭いピークを意味する。また、アモルファスに由来するピークとは、回折強度のピークにおける半値全幅が3°を超えるピークを意味する。また、本発明において、IcおよびIaの値は、近赤外線吸収有機顔料の粉末X線回折スペクトルの回折角度2θが5~15°の領域での回折強度が最も低い点と、25~35°の領域で回折強度が最も低い点とを結んだ直線をベースラインとし、粉末X線回折スペクトルのスペクトル実測値からベースラインの値を引いたスペクトル補正値を用いて計算した値である。近赤外線吸収有機顔料の粉末X線回折スペクトルは、後述する実施例に記載の方法で測定することができる。
 本発明の近赤外線吸収有機顔料の平均一次粒子径は、1~200nmである。下限は、5nm以上がより好ましく、10nm以上が更に好ましい。上限は、100nm以下がより好ましく、50nm以下が更に好ましい。近赤外線吸収有機顔料の平均一次粒子径が上記範囲であれば、近赤外線吸収有機顔料の可視領域の分光特性を損なうことなく、近赤外線遮蔽性を高めることができる。より具体的には、可視透明性が良好であり、かつ、近赤外線吸収有機顔料の極大吸収波長近傍における吸収性を高めて、より広い範囲の近赤外線を遮光することができる。
 本発明の近赤外線吸収有機顔料の一次粒子径の変動係数は、20~35%であることが好ましい。下限は21%以上がより好ましく、22%以上が更に好ましい。上限は33%以下がより好ましく、30%以下が更に好ましく、29%以下が更により好ましく、28%以下が一層好ましい。近赤外線吸収有機顔料の一次粒子径の変動係数が上記範囲であれば、近赤外線吸収有機顔料の可視透明性を向上させることができる。なお、近赤外線吸収有機顔料の一次粒子径の変動係数は、下記式にて定義される。
 近赤外線吸収有機顔料の一次粒子径の変動係数=(近赤外線吸収有機顔料の一次粒子径の標準偏差/近赤外線吸収有機顔料の一次粒子径の算術平均値)×100
 本発明の近赤外線吸収有機顔料の一次粒子の平均長短辺比は、0.30~0.99であることが好ましい。下限は0.35以上がより好ましく、0.40以上が更に好ましい。上限は0.90以下がより好ましく、0.80以下が更に好ましい。近赤外線吸収有機顔料の一次粒子の平均長短辺比が上記範囲であれば、優れた可視透明性を維持しつつ、近赤外線遮蔽性を高めることができる。
 本発明の近赤外線吸収有機顔料の長短辺比の変動係数は、10~30%であることが好ましい。下限は12%以上がより好ましく、14%以上が更に好ましい。上限は29%以下がより好ましく、28%以下が更に好ましい。近赤外線吸収有機顔料の長短辺比の変動係数が上記範囲であれば、近赤外線吸収有機顔料の可視透明性を向上させることができる。なお、近赤外線吸収有機顔料の長短辺比の変動係数は、下記式にて定義される。
 近赤外線吸収有機顔料の長短辺比の変動係数=(近赤外線吸収有機顔料の長短辺比の標準偏差/近赤外線吸収有機顔料の長短辺比の算術平均値)×100
 本発明において、近赤外線吸収有機顔料の一次粒子径および長短辺比は、近赤外線吸収有機顔料の一次粒子を透過型電子顕微鏡により観察し、得られた写真から求めることができる。具体的には、近赤外線吸収有機顔料の一次粒子の投影面積を求め、それに対応する円相当径を近赤外線吸収有機顔料の一次粒子径として算出する。また、投影された写真から、一次粒子の短辺と長辺の比(短辺/長辺)を求めて長短辺比を算出する。また、本発明における平均一次粒子径および平均長短辺比は、400個の近赤外線吸収有機顔料の一次粒子についての一次粒子径および長短辺比の算術平均値とする。また、一次粒子の最も長い直径を長辺といい、最も短い直径を短辺という。すなわち、楕円の場合は長軸が長辺であり、短軸が短辺である。また、近赤外線吸収有機顔料の一次粒子とは、凝集のない独立した粒子をいう。
 本発明の近赤外線吸収有機顔料は、波長650~1400nmの範囲に極大吸収波長を有する。近赤外線吸収有機顔料の極大吸収波長は、1200nm以下であることが好ましく、1000nm以下であることがより好ましく、780nm以下であることが更に好ましい。近赤外線吸収有機顔料の極大吸収波長は、700nm以上であることが好ましく、720nm以上であることがより好ましい。本発明の効果がより顕著に発揮されやすいという理由から、近赤外線吸収有機顔料は、波長650~780nmの範囲に極大吸収波長を有することが特に好ましい。
 本発明の近赤外線吸収有機顔料は、波長550nmにおける吸光度A550と極大吸収波長における吸光度Amaxとの比であるA550/Amaxが0.1未満であり、0.05以下であることが好ましく、0.03以下であることがより好ましく、0.02以下であることが更に好ましい。下限は、低いことが好ましく、例えば、0.001以上であることが好ましい。上述の比が上記範囲であれば、可視透明性および近赤外線遮蔽性に優れた近赤外線吸収有機顔料とすることができる。
 本発明の近赤外線吸収有機顔料は、極大吸収波長よりも50nm短い波長における吸光度A1と、極大吸収波長における吸光度Amaxとの比であるA1/Amaxが0.5~0.9であることが好ましい。上述の比は、0.8以下であることがより好ましく、0.7以下であることが更に好ましい。また、上述の比は、0.56以上であることがより好ましく、0.57以上であることが更に好ましい。上述の比が上記範囲であれば、より広い範囲の近赤外線を遮光することができる近赤外線吸収有機顔料とすることができる。
 本発明の近赤外線吸収有機顔料は、上記A1/Amaxの値が、近赤外線吸収有機顔料の平均一次粒子径が1500nmである場合のA1/Amaxの値よりも5%以上高いことが好ましく、7%以上高いことがより好ましく、10%以上高いことが更に好ましい。
 なお、本発明において、近赤外線吸収有機顔料の極大吸収波長および各波長における吸光度の値は、近赤外線吸収有機顔料を含む樹脂組成物を用いて形成した膜の吸収スペクトルから求めた値である。
 本発明において、近赤外線吸収有機顔料の化合物種としては、特に限定はないが、ピロロピロール化合物、リレン化合物、オキソノール化合物、スクアリリウム化合物、シアニン化合物、クロコニウム化合物、フタロシアニン化合物、ナフタロシアニン化合物、ピリリウム化合物、アズレニウム化合物、インジゴ化合物およびピロメテン化合物から選ばれる少なくとも1種であることが好ましく、ピロロピロール化合物、スクアリリウム化合物、シアニン化合物、フタロシアニン化合物およびナフタロシアニン化合物から選ばれる少なくとも1種であることがより好ましく、ピロロピロール化合物またはスクアリリウム化合物であることが更に好ましく、ピロロピロール化合物であることが特に好ましい。特にピロロピロール化合物の場合においては、優れた可視透明性を有しつつ、近赤外線遮蔽性をより効果的に向上させることができる。
 ピロロピロール化合物としては、式(PP)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000001

 式中、R1aおよびR1bは、各々独立にアルキル基、アリール基またはヘテロアリール基を表し、R2およびR3は、各々独立に水素原子または置換基を表し、R2およびR3は、互いに結合して環を形成してもよく、R4は、各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、-BR4A4B、または金属原子を表し、R4は、R1a、R1bおよびR3から選ばれる少なくとも一つと共有結合もしくは配位結合していてもよく、R4AおよびR4Bは、各々独立に置換基を表す。R4AおよびR4Bは互いに結合して環を形成していてもよい。式(PP)の詳細については、特開2009-263614号公報の段落番号0017~0047、特開2011-68731号公報の段落番号0011~0036、国際公開WO2015/166873号公報の段落番号0010~0024の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 式(PP)において、R1aおよびR1bは、各々独立に、アリール基またはヘテロアリール基が好ましく、アリール基がより好ましい。また、R1aおよびR1bが表すアルキル基、アリール基およびヘテロアリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、特開2009-263614号公報の段落番号0020~0022に記載された置換基や、以下の置換基Tが挙げられる。
(置換基T)
 アルキル基(好ましくは炭素数1~30のアルキル基)、アルケニル基(好ましくは炭素数2~30のアルケニル基)、アルキニル基(好ましくは炭素数2~30のアルキニル基)、アリール基(好ましくは炭素数6~30のアリール基)、アミノ基(好ましくは炭素数0~30のアミノ基)、アルコキシ基(好ましくは炭素数1~30のアルコキシ基)、アリールオキシ基(好ましくは炭素数6~30のアリールオキシ基)、ヘテロアリールオキシ基、アシル基(好ましくは炭素数1~30のアシル基)、アルコキシカルボニル基(好ましくは炭素数2~30のアルコキシカルボニル基)、アリールオキシカルボニル基(好ましくは炭素数7~30のアリールオキシカルボニル基)、アシルオキシ基(好ましくは炭素数2~30のアシルオキシ基)、アシルアミノ基(好ましくは炭素数2~30のアシルアミノ基)、アルコキシカルボニルアミノ基(好ましくは炭素数2~30のアルコキシカルボニルアミノ基)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30のアリールオキシカルボニルアミノ基)、スルファモイル基(好ましくは炭素数0~30のスルファモイル基)、カルバモイル基(好ましくは炭素数1~30のカルバモイル基)、アルキルチオ基(好ましくは炭素数1~30のアルキルチオ基)、アリールチオ基(好ましくは炭素数6~30のアリールチオ基)、ヘテロアリールチオ基(好ましくは炭素数1~30)、アルキルスルホニル基(好ましくは炭素数1~30)、アリールスルホニル基(好ましくは炭素数6~30)、ヘテロアリールスルホニル基(好ましくは炭素数1~30)、アルキルスルフィニル基(好ましくは炭素数1~30)、アリールスルフィニル基(好ましくは炭素数6~30)、ヘテロアリールスルフィニル基(好ましくは炭素数1~30)、ウレイド基(好ましくは炭素数1~30)、水酸基、カルボキシル基、スルホ基、リン酸基、カルボン酸アミド基、スルホン酸アミド基、イミド酸基、メルカプト基、ハロゲン原子、シアノ基、アルキルスルフィノ基、アリールスルフィノ基、ヒドラジノ基、イミノ基、ヘテロアリール基(好ましくは炭素数1~30)。これらの基は、さらに置換可能な部位を有する基である場合、さらに置換基を有してもよい。さらなる置換基としては、上述した置換基Tで説明した基が挙げられる。
 式(PP)において、R2およびR3は、各々独立に水素原子または置換基を表す。置換基としては上述した置換基Tが挙げられる。R2およびR3の少なくとも一方は電子求引性基が好ましい。ハメットの置換基定数σ値(シグマ値)が正の置換基は、電子求引性基として作用する。ここで、ハメット則で求められた置換基定数にはσp値とσm値がある。これらの値は多くの一般的な成書に見出すことができる。本発明においては、ハメットの置換基定数σ値が0.2以上の置換基を電子求引性基として例示することができる。σ値は、0.25以上が好ましく、0.3以上がより好ましく、0.35以上が更に好ましい。上限は特に制限はないが、好ましくは0.80以下である。電子求引性基の具体例としては、シアノ基(σp値=0.66)、カルボキシル基(-COOH:σp値=0.45)、アルコキシカルボニル基(例えば、-COOMe:σp値=0.45)、アリールオキシカルボニル基(例えば、-COOPh:σp値=0.44)、カルバモイル基(例えば、-CONH2:σp値=0.36)、アルキルカルボニル基(例えば、-COMe:σp値=0.50)、アリールカルボニル基(例えば、-COPh:σp値=0.43)、アルキルスルホニル基(例えば、-SO2Me:σp値=0.72)、アリールスルホニル基(例えば、-SO2Ph:σp値=0.68)などが挙げられ、シアノ基が好ましい。ここで、Meはメチル基を、Phはフェニル基を表す。なお、ハメットの置換基定数σ値については、例えば、特開2011-68731号公報の段落番号0017~0018を参酌でき、この内容は本明細書に組み込まれる。
 式(PP)において、R2は電子求引性基(好ましくはシアノ基)を表し、R3はヘテロアリール基を表すことが好ましい。ヘテロアリール基は、5員環または6員環が好ましい。また、ヘテロアリール基は、単環または縮合環が好ましく、単環または縮合数が2~8の縮合環が好ましく、単環または縮合数が2~4の縮合環がより好ましい。ヘテロアリール基を構成するヘテロ原子の数は、1~3が好ましく、1~2がより好ましい。ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子が例示される。ヘテロアリール基は、窒素原子を1個以上有することが好ましい。ヘテロアリール基は、下記式(A-1)で表される基または(A-2)で表される基であることが好ましく、式(A-1)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(A-1)において、X1は、O、S、NRX1またはCRX2X3を表し、RX1~RX3は、各々独立に水素原子または置換基を表し、Ra1およびRa2は、各々独立に水素原子または置換基を表し、Ra1とRa2は、互いに結合して環を形成していてもよい。*は連結手を表す。
 Ra1、Ra2およびRX1~RX3が表す置換基としては、置換基Tが挙げられ、アルキル基、アリール基およびハロゲン原子が好ましい。
 Ra1とRa2が結合して形成する環は、芳香族環が好ましい。Ra1とRa2とが環を形成する場合、(A-1)としては、下記の(A-1-1)で表される基、(A-1-2)で表される基などが挙げられる。
Figure JPOXMLDOC01-appb-C000003

 式中、X1は、O、S、NRX1またはCRX2X3を表し、RX1~RX3は、各々独立に水素原子または置換基を表し、R101a~R109aは、各々独立に水素原子または置換基を表す。*は連結手を表す。R101a~R109aが表す置換基としては、置換基Tが挙げられる。X1は、OまたはSであることが好ましく、Oであることがより好ましい。
 式(A-2)において、Y1~Y4は、各々独立にNまたはCRY1を表し、Y1~Y4の少なくとも2つはCRY1であり、RY1は、水素原子または置換基を表し、隣接するRY1同士は互いに結合して環を形成していてもよい。*は連結手を表す。RY1が表す置換基としては、置換基Tが挙げられ、アルキル基、アリール基およびハロゲン原子が好ましい。
 Y1~Y4の少なくとも2つはCRY1であり、隣接するRY1同士は互いに結合して環を形成していてもよい。隣接するRY1同士が結合して形成する環は、芳香族環が好ましい。隣接するRY1同士が環を形成する場合、(A-2)としては、下記の(A-2-1)~(A-2-5)で表される基などが挙げられる。
Figure JPOXMLDOC01-appb-C000004

 式中、R201a~R227aは、各々独立して、水素原子または置換基を表し、*は連結手を表す。R201a~R227aが表す置換基としては、置換基Tが挙げられる。
 式(PP)において、R4は、水素原子、アルキル基、アリール基、ヘテロアリール基または-BR4A4Bで表される基であることが好ましく、水素原子、アルキル基、アリール基または-BR4A4Bで表される基であることがより好ましく、-BR4A4Bで表される基であることが更に好ましい。R4AおよびR4Bが表す置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アリール基、または、ヘテロアリール基が好ましく、アルキル基、アリール基、または、ヘテロアリール基がより好ましく、アリール基が特に好ましい。これらの基はさらに置換基を有していてもよい。式(PP)における2個のR4同士は同一であってもよく、異なっていてもよい。R4AおよびR4Bは互いに結合して環を形成していてもよい。
 スクアリリウム化合物としては、下記式(SQ)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005

 式(SQ)中、A1およびA2は、それぞれ独立に、アリール基、ヘテロアリール基または式(A-1)で表される基を表す;
Figure JPOXMLDOC01-appb-C000006

 式(A-1)中、Z1は、含窒素複素環を形成する非金属原子団を表し、R2は、アルキル基、アルケニル基またはアラルキル基を表し、dは、0または1を表し、波線は連結手を表す。式(SQ)の詳細については、特開2011-208101号公報の段落番号0020~0049、特許第6065169号公報の段落番号0043~0062、国際公開WO2016/181987号公報の段落番号0024~0040の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 なお、式(SQ)においてカチオンは、以下のように非局在化して存在している。
Figure JPOXMLDOC01-appb-C000007
 スクアリリウム化合物は、下記式(SQ-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000008

 環Aおよび環Bは、それぞれ独立に芳香族環を表し、
 XAおよびXBはそれぞれ独立に置換基を表し、
 GAおよびGBはそれぞれ独立に置換基を表し、
 kAは0~nAの整数を表し、kBは0~nBの整数を表し、
 nAおよびnBはそれぞれ環Aまたは環Bに置換可能な最大の基の数を表し、
 XAとGA、XBとGB、XAとXBは、互いに結合して環を形成しても良く、GAおよびGBがそれぞれ複数存在する場合は、互いに結合して環構造を形成していても良い。
 GAおよびGBが表す置換基としては、上述した式(PP)で説明した置換基Tが挙げられる。
 XAおよびXBが表す置換基としては、活性水素を有する基が好ましく、-OH、-SH、-COOH、-SO3H、-NRX1X2、-NHCORX1、-CONRX1X2、-NHCONRX1X2、-NHCOORX1、-NHSO2X1、-B(OH)2および-PO(OH)2がより好ましく、-OH、-SHおよび-NRX1X2が更に好ましい。RX1およびRX1は、それぞれ独立に水素原子または置換基を表す。XAおよびXBが表す置換基としてはアルキル基、アリール基、または、ヘテロアリール基が挙げられ、アルキル基が好ましい。
 環Aおよび環Bは、それぞれ独立に、芳香族環を表す。芳香族環は単環であってもよく、縮合環であってもよい。芳香族環の具体例としては、ベンゼン環、ナフタレン環、ペンタレン環、インデン環、アズレン環、ヘプタレン環、インダセン環、ペリレン環、ペンタセン環、アセナフテン環、フェナントレン環、アントラセン環、ナフタセン環、クリセン環、トリフェニレン環、フルオレン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、および、フェナジン環が挙げられ、ベンゼン環またはナフタレン環が好ましい。芳香族環は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述した式(PP)で説明した置換基Tが挙げられる。
 XAとGA、XBとGB、XAとXBは、互いに結合して環を形成しても良く、GAおよびGBがそれぞれ複数存在する場合は、互いに結合して環を形成していても良い。環としては、5員環または6員環が好ましい。環は単環であってもよく、縮合環であってもよい。XAとGA、XBとGB、XAとXB、GA同士またはGB同士が結合して環を形成する場合、これらが直接結合して環を形成してもよく、アルキレン基、-CO-、-O-、-NH-、-BR-およびそれらの組み合わせからなる2価の連結基を介して結合して環を形成してもよい。Rは、水素原子または置換基を表す。置換基としては、上述した式(PP)で説明した置換基Tが挙げられ、アルキル基またはアリール基が好ましい。
 kAは0~nAの整数を表し、kBは0~nBの整数を表し、nAは、環Aに置換可能な最大の基の数を表し、nBは、環Bに置換可能な最大の基の数を表す。kAおよびkBは、それぞれ独立に0~4が好ましく、0~2がより好ましく、0~1が特に好ましい。
 スクアリリウム化合物は、下記式(SQ-10)、式(SQ-11)または式(SQ-12)で表される化合物であることも好ましい。
式(SQ-10)
Figure JPOXMLDOC01-appb-C000009

式(SQ-11)
Figure JPOXMLDOC01-appb-C000010

式(SQ-12)
Figure JPOXMLDOC01-appb-C000011
 式(SQ-10)~(SQ-12)中、Xは、独立して、1つ以上の水素原子がハロゲン原子、炭素数1~12のアルキル基またはアルコキシ基で置換されていてもよい式(1)または式(2)で示される2価の有機基である。
 -(CH2n1-   ・・・(1)
 式(1)中、n1は2または3である。
 -(CH2n2-O-(CH2n3-   ・・・(2)
 式(2)中、n2とn3はそれぞれ独立して0~2の整数であり、n2+n3は1または2である。
 R1およびR2は、それぞれ独立して、アルキル基またはアリール基を表す。アルキル基およびアリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、上述した式(PP)で説明した置換基Tが挙げられる。
 R3~R6は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基またはアルコキシ基を表す。
 nは2または3である。
 シアニン化合物は、式(C)で表される化合物が好ましい。
式(C)
Figure JPOXMLDOC01-appb-C000012

 式中、Z1およびZ2は、それぞれ独立に、縮環してもよい5員または6員の含窒素複素環を形成する非金属原子団であり、
 R101およびR102は、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アラルキル基またはアリール基を表し、
 L1は、奇数個のメチン基を有するメチン鎖を表し、
 aおよびbは、それぞれ独立に、0または1であり、
 aが0の場合は、炭素原子と窒素原子とが二重結合で結合し、bが0の場合は、炭素原子と窒素原子とが単結合で結合し、
 式中のCyで表される部位がカチオン部である場合、X1はアニオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位がアニオン部である場合、X1はカチオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位の電荷が分子内で中和されている場合、cは0である。
 近赤外線吸収有機顔料の具体例としては、下記構造の化合物などが挙げられる。以下の構造式中、Meはメチル基であり、Phはフェニル基である。下記の化合物のうち、(A-1)、(A-7)~(A-22)、(A-53)~(A-57)はピロロピロール化合物であり、(A-2)は、リレン化合物であり、(A-3)はナフタロシアニン化合物であり、(A-4)は、オキソノール化合物であり、(A-5)、(A-23)~(A-42)はスクアリリウム化合物であり、(A-6)は亜鉛フタロシアニン化合物であり、(A-43)、(A-44)はクロコニウム化合物であり、(A-45)~(A-47)はピロメテン化合物であり、(A-48)、(A-49)はインジゴ化合物であり、(A-50)、(A-51)はピリリウム化合物であり、(A-52)はアズレニウム化合物である。
Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014

Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016
<近赤外線吸収有機顔料の製造方法>
 次に、本発明の近赤外線吸収有機顔料の製造方法について説明する。
 本発明の近赤外線吸収有機顔料の製造方法は、波長650~1400nmの範囲に極大吸収波長を有し、波長550nmにおける吸光度A550と極大吸収波長における吸光度Amaxとの比であるA550/Amaxが0.1未満である近赤外線吸収顔料をミリング処理して、平均一次粒子径を1~200nmとし、粉末X線回折スペクトルにおいて上記式で表される結晶化度の値が0.70~0.98となるようにすることを特徴とする。
 近赤外線吸収有機顔料のミリング処理は、近赤外線吸収有機顔料を、水溶性有機溶剤および水溶性無機塩の存在下にて混練研磨して処理する方法が挙げられる。
 水溶性無機塩は、摩砕剤の役目をし、近赤外線吸収有機顔料と共に混練されることにより近赤外線吸収有機顔料の微細化を進める。水溶性無機塩としては、塩化ナトリウム、塩化カリウム、塩化カルシウム、硫酸ナトリウム、硫酸アルミニウム、炭酸水素ナトリウム等が挙げられ、好ましくは塩化ナトリウムおよび硫酸ナトリウムである。これらの水溶性無機塩は、その粉砕物を用いることができる。また、これらの水溶性無機塩は、1種類単独でも使用できるし、2種類以上の混合物でも使用することができる。
 水溶性無機塩の平均粒子径(体積基準の50%径(D50))は、15μm以上であることが好ましく、18μm以上であることが更に好ましい。上限は、50μm以下であることが好ましく、30μm以下であることが更に好ましい。近赤外線吸収有機顔料は、有彩色系の有機顔料や、無機顔料と比較して硬度が低く、粒子径の小さい水溶性無機塩を用いて混練研磨を行うと、混練研磨時に近赤外線吸収有機顔料の構造にゆがみが生じたり、近赤外線吸収有機顔料の結晶構造などが変化して可視透明性などが低下することがあるが、粒子径が適度に大きい水溶性無機塩(好ましくは平均粒子径が15μm以上の水溶性無機塩)を用いることで、近赤外線吸収有機顔料の結晶構造の歪みなどを抑制しつつ、結晶性(結晶化度)を適度に調整できる。更には、近赤外線吸収有機顔料を微細化できる。
 水溶性無機塩の量は、近赤外線吸収有機顔料の質量に対して2.5~20倍が好ましく、4~18倍がより好ましく、7~18倍が更に好ましい。下限は、8倍以上が特に好ましく、10倍以上が最も好ましい。上限は17倍以下が特に好ましく、16倍以下が最も好ましい。水溶性無機塩の量が上述した範囲であれば、近赤外線吸収有機顔料の結晶構造の歪みなどを抑制しつつ、結晶性(結晶化度)を適度に調整できる。更には、近赤外線吸収有機顔料を微細化できる。
 水溶性有機溶剤は、近赤外線吸収有機顔料および水溶性無機塩に対し粘結剤の役目をし、近赤外線吸収有機顔料、水溶性無機塩および水溶性有機溶剤を含む混合物に固さ、粘り気を与えると共に、近赤外線吸収有機顔料の結晶成長や結晶転移を抑制し得る。水溶性有機溶剤は、23℃の水100gに対する溶解度が20g以上であることが好ましく、50g以上であることがより好ましく、100g以上であることが更に好ましい。この態様によれば、水溶性無機塩を効率よく水洗できる。水溶性有機溶剤の具体例としては、エチレングリコール、プロピレングリコール等のアルキレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリエチレン-プロピレングリコール等のアルキレングリコールの縮合物、メトキシエタノール、ポリエチレングリコールモノメチルエーテル等の(ポリ)アルキレングリコールのアルキルエーテル、グリセリン等が挙げられ、近赤外線吸収有機顔料、水溶性無機塩および水溶性有機溶剤を含む混合物に適度な固さ、粘り気を与えるという理由から、エチレングリコール、ジエチレングリコール、ポリエチレングリコール等の粘性の高い水溶性有機溶剤が好ましい。水溶性有機溶剤は、1種類単独でも使用できるし、2種類以上の混合物でも使用することができる。水溶性有機溶剤の最適な量は、近赤外線吸収有機顔料の量、水溶性無機塩の量、混練条件(温度、混練速度など)、用いる混練機の特性等により変わるが、近赤外線吸収有機顔料と水溶性無機塩の合計質量に対して0.10~0.35倍が好ましく、0.12~0.30倍がより好ましく、0.15~0.25倍がさらに好ましい。水溶性有機溶剤の量が上記範囲であれば、近赤外線吸収有機顔料、水溶性無機塩および水溶性有機溶剤を含む混合物に適度な固さ、粘り気を与えることができる。
 混練機としては、上記の混合物を混練しうる能力があればよく、双腕型ニーダー、フラッシャー、プラネタリーミキサー等を用いることができる。微細化に対しては剪断力の強い双腕型ニーダーがより好ましい。
 混練時の温度(ミリング温度)は、近赤外線吸収有機顔料の結晶成長速度の温度依存性や結晶転移性に応じて設定される。一般に低温な程、結晶成長速度は小さい。一方、水溶性有機溶剤の顔料表面への濡れやすさ、顔料塊への水溶性有機溶剤の浸透速度は、高温な程早い。近赤外線吸収有機顔料の整粒は、微細化と結晶成長の両方のバランスによって進展する。例えば、0~120℃が好ましい。下限は5℃以上がより好ましく、10℃以上が更に好ましく、15℃以上が更により好ましく、20℃以上が特に好ましい。上限は、100℃以下がより好ましく、80℃以下が更に好ましく、60℃以下が更により好ましく、50℃以下が特に好ましい。ミリング温度が上記範囲であれば、近赤外線吸収有機顔料の平均一次粒子径および結晶化度の値を上記範囲に調整しやすい。更には、可視透明性、近赤外線遮蔽性および耐熱性に優れた近赤外線吸収有機顔料を製造しやすい。
 近赤外線吸収有機顔料の混練研磨時において、近赤外線吸収有機顔料の微細化、整粒化の進展に応じて、水溶性無機塩や水溶性有機溶剤を追加することができる。また、顔料混練物の排出、再混練は1回に限らず、複数回行っても良い。
 近赤外線吸収有機顔料の混練研磨時において、近赤外線吸収有機顔料の微細化と共に結晶転移を行うこともできる。また近赤外線吸収有機顔料の微細化や結晶型制御などのために、顔料誘導体や表面処理剤を添加することもできる。
 混練研磨後の混練物は、水、酸、アルカリなどによる洗浄等、公知の精製法によって精製することで、微細化された近赤外線吸収有機顔料が単離される。環境負荷低減という理由から水洗処理を行って単離することが好ましい。水洗処理後は水を含んだ状態の近赤外線吸収有機顔料をそのまま使用してもよく、乾燥処理を行って、水分を低減させたものを用いてもよい。乾燥処理方法は特に限定はないが、生産性向上の観点から熱風乾燥で行うことが好ましい。また、乾燥処理を行う場合、近赤外線吸収有機顔料の含水率を5%以下とすることが好ましく、2%以下とすることがより好ましい。
 本発明によって製造された近赤外線吸収有機顔料の極大吸収波長よりも50nm短い波長における吸光度A1と、近赤外線吸収有機顔料の極大吸収波長における吸光度Amaxとの比であるA1/Amaxは、ミリング処理前の近赤外線吸収有機顔料の値よりも高い特性を有している。詳細な理由は不明であるが、ミリング処理によって平均一次粒子径を1~200nmとしつつ、結晶化度の値を0.70~0.98としたことにより、近赤外線吸収有機顔料の会合が適度に崩れて結晶性を適度に乱すことができ、その結果、極大吸収波長近傍における吸収性がミリング処理前の状態に比べて向上したと推測される。本発明によって製造された近赤外線吸収有機顔料の上記A1/Amaxの値は、ミリング処理前の近赤外線吸収有機顔料の値よりも5%以上高いことが好ましく、7%以上高いことがより好ましく、10%以上高いことが更に好ましい。
<分光調整方法>
 次に、本発明の近赤外線吸収有機顔料の分光調整方法について説明する。本発明の近赤外線吸収有機顔料の分光調整方法は、波長650~1400nmの範囲に極大吸収波長を有し、波長550nmにおける吸光度A550と極大吸収波長における吸光度Amaxとの比であるA550/Amaxが0.1未満である近赤外線吸収顔料をミリング処理して、平均一次粒子径を1~200nmとし、粉末X線回折スペクトルにおいて上記式で表される結晶化度の値が0.70~0.98となるようにすることを特徴とする。
 本発明によれば、上述の近赤外線吸収顔料をミリング処理して、平均一次粒子径を1~200nmとし、粉末X線回折スペクトルにおいて下記式で表される結晶化度の値を0.70~0.98とすることにより、極大吸収波長近傍における吸収性がミリング処理前の状態に比べて向上し、より広い範囲の近赤外線を吸収させることができる。
 本発明の近赤外線吸収有機顔料の分光調整方法は、ミリング処理後の近赤外線吸収有機顔料の極大吸収波長よりも50nm短い波長における吸光度A1と、近赤外線吸収有機顔料の極大吸収波長における吸光度Amaxとの比であるA1/Amaxが、ミリング処理前の近赤外線吸収有機顔料の値よりも5%以上高いことが好ましく、7%以上高いことがより好ましく、10%以上高いことが更に好ましい。
<樹脂組成物>
 次に、本発明の樹脂組成物について説明する。本発明の樹脂組成物は、上述した本発明の近赤外線吸収有機顔料と、樹脂とを含む。
<<近赤外線吸収有機顔料>>
 本発明の樹脂組成物は、上述した本発明の近赤外線吸収有機顔料を含有する。本発明の近赤外線吸収有機顔料の含有量は、樹脂組成物の全固形分に対して、0.1~60質量%が好ましい。下限は、1質量%以上がより好ましく、5質量%以上が更に好ましい。上限は、50質量%以下がより好ましく、40質量%以下が更に好ましい。
<<樹脂>>
 本発明の樹脂組成物は、樹脂を含有する。樹脂は、例えば、顔料などの粒子を組成物中で分散させる用途やバインダーの用途で配合される。なお、主に顔料などの粒子を分散させるために用いられる樹脂を分散剤ともいう。ただし、樹脂のこのような用途は一例であって、このような用途以外の目的で樹脂を使用することもできる。
 樹脂の重量平均分子量(Mw)は、2,000~2,000,000が好ましい。上限は、1,000,000以下が好ましく、500,000以下がより好ましい。下限は、3,000以上が好ましく、5,000以上がより好ましい。
 樹脂としては、(メタ)アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレン樹脂、ポリアリーレンエーテルホスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂、スチレン樹脂、シロキサン樹脂、ウレタン樹脂などが挙げられる。環状オレフィン樹脂としては、耐熱性向上の観点からノルボルネン樹脂が好ましく用いることができる。ノルボルネン樹脂の市販品としては、例えば、JSR(株)製のARTONシリーズ(例えば、ARTON F4520)などが挙げられる。ポリイミド樹脂の市販品としては、三菱ガス化学(株)製のネオプリム(登録商標)シリーズ(例えば、C3450)などが挙げられる。エポキシ樹脂としては、例えばフェノール化合物のグリシジルエーテル化物であるエポキシ樹脂、各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂、複素環式エポキシ樹脂、グリシジルエステル系エポキシ樹脂、グリシジルアミン系エポキシ樹脂、ハロゲン化フェノール類をグリシジル化したエポキシ樹脂、エポキシ基をもつケイ素化合物とそれ以外のケイ素化合物との縮合物、エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体等が挙げられる。また、エポキシ樹脂としては、マープルーフG-0150M、G-0105SA、G-0130SP、G-0250SP、G-1005S、G-1005SA、G-1010S、G-2050M、G-01100、G-01758(日油(株)製、エポキシ基含有ポリマー)などを用いることもできる。ウレタン樹脂としては、8UH-1006、8UH-1012(大成ファインケミカル(株)製)を用いることもできる。
 また、樹脂は、国際公開WO2016/088645号公報の実施例に記載された樹脂、特開2017-57265号公報に記載された樹脂、特開2017-32685号公報に記載された樹脂、特開2017-075248号公報に記載された樹脂、特開2017-066240号公報に記載された樹脂を用いることもでき、これらの内容は本明細書に組み込まれる。また、フルオレン骨格を有する樹脂を好ましく用いることもできる。フルオレン骨格を有する樹脂としては、下記構造の樹脂が挙げられる。以下の構造式中、Aは、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物およびジフェニルエーテルテトラカルボン酸二無水物から選択されるカルボン酸二無水物の残基であり、Mはフェニル基またはベンジル基である。フルオレン骨格を有する樹脂については、米国特許出願公開第2017/0102610号公報の記載を参酌でき、この内容は本明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000017
 本発明で用いる樹脂は、酸基および/または水酸基を有する樹脂を含むことが好ましく、酸基を有する樹脂を含むことがより好ましい。酸基としては、例えば、カルボキシル基、リン酸基、スルホ基、フェノール性水酸基などが挙げられ、カルボキシル基が好ましい。これら酸基は、1種のみであってもよいし、2種以上であってもよい。酸基を有する樹脂はアルカリ可溶性樹脂として用いることもできる。
 酸基を有する樹脂としては、側鎖にカルボキシル基を有するポリマーが好ましい。具体例としては、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体、ノボラック樹脂などのアルカリ可溶性フェノール樹脂、側鎖にカルボキシル基を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させた樹脂が挙げられる。特に、(メタ)アクリル酸と、これと共重合可能な他のモノマーとの共重合体が、アルカリ可溶性樹脂として好適である。(メタ)アクリル酸と共重合可能な他のモノマーとしては、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物などが挙げられる。アルキル(メタ)アクリレートおよびアリール(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等、ビニル化合物としては、スチレン、α-メチルスチレン、ビニルトルエン、グリシジルメタクリレート、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、テトラヒドロフルフリルメタクリレート、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー等が挙げられる。また他のモノマーは、特開平10-300922号公報に記載のN位置換マレイミドモノマー、例えば、N-フェニルマレイミド、N-シクロヘキシルマレイミド等を用いることもできる。なお、これらの(メタ)アクリル酸と共重合可能な他のモノマーは1種のみであってもよいし、2種以上であってもよい。
 酸基を有する樹脂は、更に重合性基を有していてもよい。重合性基としては、(メタ)アリル基、(メタ)アクリロイル基等が挙げられる。市販品としては、ダイヤナールNRシリーズ(三菱レイヨン(株)製)、Photomer6173(カルボキシル基含有ポリウレタンアクリレートオリゴマー、Diamond Shamrock Co.,Ltd.製)、ビスコートR-264、KSレジスト106(いずれも大阪有機化学工業株式会社製)、サイクロマーPシリーズ(例えば、ACA230AA)、プラクセル CF200シリーズ(いずれも(株)ダイセル製)、Ebecryl3800(ダイセルユーシービー(株)製)、アクリキュアーRD-F8((株)日本触媒製)などが挙げられる。
 酸基を有する樹脂は、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/2-ヒドロキシエチル(メタ)アクリレート共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体が好ましく用いることができる。また、2-ヒドロキシエチル(メタ)アクリレートを共重合したもの、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体なども好ましく用いることができる。
 酸基を有する樹脂は、下記式(ED1)で示される化合物および/または下記式(ED2)で表される化合物(以下、これらの化合物を「エーテルダイマー」と称することもある。)を含むモノマー成分に由来する繰り返し単位を含むポリマーであることも好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(ED1)中、R1およびR2は、それぞれ独立して、水素原子または置換基を有していてもよい炭素数1~25の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000019

 式(ED2)中、Rは、水素原子または炭素数1~30の有機基を表す。式(ED2)の具体例としては、特開2010-168539号公報の記載を参酌できる。
 エーテルダイマーの具体例としては、特開2013-29760号公報の段落番号0317を参酌することができ、この内容は本明細書に組み込まれる。エーテルダイマーは、1種のみであってもよいし、2種以上であってもよい。
 酸基を有する樹脂は、下記式(X)で示される化合物に由来する繰り返し単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000020

 式(X)において、R1は、水素原子またはメチル基を表し、R2は炭素数2~10のアルキレン基を表し、R3は、水素原子またはベンゼン環を含んでもよい炭素数1~20のアルキル基を表す。nは1~15の整数を表す。
 酸基を有する樹脂については、特開2012-208494号公報の段落番号0558~0571(対応する米国特許出願公開第2012/0235099号明細書の段落番号0685~0700)の記載、特開2012-198408号公報の段落番号0076~0099の記載を参酌でき、これらの内容は本明細書に組み込まれる。また、酸基を有する樹脂は市販品を用いることもできる。例えば、アクリベースFF-426(藤倉化成(株)製)などが挙げられる。
 酸基を有する樹脂の酸価は、30~200mgKOH/gが好ましい。下限は、50mgKOH/g以上がより好ましく、70mgKOH/g以上が更に好ましい。上限は、150mgKOH/g以下がより好ましく、120mgKOH/g以下が更に好ましい。
 酸基を有する樹脂としては、例えば下記構造の樹脂などが挙げられる。以下の構造式中、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000021
 本発明の樹脂組成物は、樹脂として、式(A3-1)~(A3-7)で表される繰り返し単位を有する樹脂を用いることも好ましい。
Figure JPOXMLDOC01-appb-C000022
 式中、R5は水素原子またはアルキル基を表し、L4~L7は各々独立に単結合または2価の連結基を表し、R10~R13は各々独立にアルキル基またはアリール基を表す。R14およびR15は、各々独立に水素原子または置換基を表す。
 R5が表すアルキル基の炭素数は、1~5が好ましく、1~3がさらに好ましく、1が特に好ましい。R5は、水素原子またはメチル基が好ましい。
 L4~L7が表す2価の連結基としては、アルキレン基、アリーレン基、-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NR10-(R10は水素原子あるいはアルキル基を表し、水素原子が好ましい)、または、これらの組み合わせからなる基が挙げられる。アルキレン基の炭素数は、1~30が好ましく、1~15がより好ましく、1~10がさらに好ましい。アルキレン基は、置換基を有していてもよいが、無置換が好ましい。アルキレン基は、直鎖、分岐、環状のいずれであってもよい。また、環状のアルキレン基は、単環、多環のいずれであってもよい。アリーレン基の炭素数は、6~18が好ましく、6~14がより好ましく、6~10がさらに好ましい。
 R10~R13が表すアルキル基は、直鎖状、分岐状または環状のいずれでもよく、環状が好ましい。アルキル基は置換基を有していてもよく、無置換であってもよい。アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10がさらに好ましい。R10~R13が表すアリール基の炭素数は6~18が好ましく、6~12がより好ましく、6がさらに好ましい。R10は、環状のアルキル基またはアリール基が好ましい。R11、R12は、直鎖状または分岐状のアルキル基が好ましい。R13は、直鎖状のアルキル基、分岐状のアルキル基、または、アリール基が好ましい。
 R14およびR15が表す置換基は、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、アルコキシ基、アリーロキシ基、ヘテロアリーロキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、-NRa1a2、-CORa3、-COORa4、-OCORa5、-NHCORa6、-CONRa7a8、-NHCONRa9a10、-NHCOORa11、-SO2a12、-SO2ORa13、-NHSO2a14または-SO2NRa15a16が挙げられる。Ra1~Ra16は、各々独立に水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、または、ヘテロアリール基を表す。なかでも、R14およびR15の少なくとも一方は、シアノ基または-COORa4を表すことが好ましい。Ra4は、水素原子、アルキル基またはアリール基を表すことが好ましい。
 式(A3-7)で表される繰り返し単位を有する樹脂の市販品としては、ARTON F4520(JSR(株)製)などが挙げられる。また、式(A3-7)で表される繰り返し単位を有する樹脂の詳細については、特開2011-100084号公報の段落番号0053~0075、0127~0130の記載を参酌でき、この内容は本明細書に組み込まれる。
 本発明の樹脂組成物は、分散剤としての樹脂を含むこともできる。分散剤は、酸性分散剤(酸性樹脂)、塩基性分散剤(塩基性樹脂)が挙げられる。ここで、酸性分散剤(酸性樹脂)とは、酸基の量が塩基性基の量よりも多い樹脂を表す。酸性分散剤(酸性樹脂)は、酸基の量と塩基性基の量の合計量を100モル%としたときに、酸基の量が70モル%以上を占める樹脂が好ましく、実質的に酸基のみからなる樹脂がより好ましい。酸性分散剤(酸性樹脂)が有する酸基は、カルボキシル基が好ましい。酸性分散剤(酸性樹脂)の酸価は、40~105mgKOH/gが好ましく、50~105mgKOH/gがより好ましく、60~105mgKOH/gがさらに好ましい。また、塩基性分散剤(塩基性樹脂)とは、塩基性基の量が酸基の量よりも多い樹脂を表す。塩基性分散剤(塩基性樹脂)は、酸基の量と塩基性基の量の合計量を100モル%としたときに、塩基性基の量が50モル%を超える樹脂が好ましい。塩基性分散剤が有する塩基性基は、アミノ基であることが好ましい。
 分散剤として用いる樹脂は、酸基を有する繰り返し単位を含むことが好ましい。分散剤として用いる樹脂が酸基を有する繰り返し単位を含むことにより、フォトリソグラフィ法によりパターン形成する際、画素の下地に発生する残渣をより低減することができる。
 分散剤として用いる樹脂は、グラフト共重合体であることも好ましい。グラフト共重合体は、グラフト鎖によって溶剤との親和性を有するために、顔料の分散性、及び、経時後の分散安定性に優れる。グラフト共重合体の詳細は、特開2012-255128号公報の段落番号0025~0094の記載を参酌でき、この内容は本明細書に組み込まれる。
 また、本発明において、樹脂として主鎖及び側鎖の少なくとも一方に窒素原子を含むオリゴイミン系分散剤を用いることも好ましい。オリゴイミン系分散剤としては、pKa14以下の官能基を有する部分構造Xを有する構造単位と、原子数40~10,000の側鎖Yを含む側鎖とを有し、かつ主鎖及び側鎖の少なくとも一方に塩基性窒素原子を有する樹脂が好ましい。塩基性窒素原子とは、塩基性を呈する窒素原子であれば特に制限はない。オリゴイミン系分散剤については、特開2012-255128号公報の段落番号0102~0166の記載を参酌でき、この内容は本明細書に組み込まれる。オリゴイミン系分散剤の具体例としては、例えば、以下が挙げられる。以下の樹脂は酸基を有する樹脂(アルカリ可溶性樹脂)でもある。また、オリゴイミン系分散剤としては、特開2012-255128号公報の段落番号0168~0174に記載の樹脂を用いることができる。
Figure JPOXMLDOC01-appb-C000023
 分散剤は、市販品としても入手可能であり、そのような具体例としては、Disperbyk-111(BYKChemie社製)、ソルスパース76500(日本ルーブリゾール(株)製)などが挙げられる。また、特開2014-130338号公報の段落番号0041~0130に記載された顔料分散剤を用いることもでき、この内容は本明細書に組み込まれる。また、上述した酸基を有する樹脂などを分散剤として用いることもできる。
 樹脂の含有量は、樹脂組成物の全固形分に対し、1~80質量%が好ましい。下限は、5質量%以上がより好ましく、7質量%以上が更に好ましい。上限は、50質量%以下がより好ましく、40質量%以下が更に好ましく、30質量%以下が更により好ましい。
 また、酸基を有する樹脂の含有量は、樹脂組成物の全固形分に対して、0.1~80質量%が好ましい。上限は、50質量%以下がより好ましく、40質量%以下が更に好ましく、30質量%以下が更により好ましい。下限は、0.5質量%以上がより好ましく、1質量%以上が更に好ましい。
 また、分散剤としての樹脂の含有量は、樹脂組成物の全固形分に対して、0.1~40質量%が好ましい。上限は、20質量%以下がより好ましく、10質量%以下がさらに好ましい。下限は、0.5質量%以上がより好ましく、1質量%以上がさらに好ましい。また、分散剤の含有量は、顔料100質量部に対して、1~100質量部が好ましい。上限は、80質量部以下がより好ましく、75質量部以下が更に好ましい。下限は、2.5質量部以上がより好ましく、5質量部以上が更に好ましい。
<<他の近赤外線吸収化合物>>
 本発明の樹脂組成物は、上述した近赤外線吸収有機顔料以外の近赤外線吸収剤(他の近赤外線吸収剤ともいう)をさらに含んでもよい。他の近赤外線吸収化合物としては染料が挙げられる。化合物種としては、例えば、ピロロピロール化合物、シアニン化合物、スクアリリウム化合物、フタロシアニン化合物、ナフタロシアニン化合物、リレン化合物、メロシアニン化合物、クロコニウム化合物、オキソノール化合物、ジイモニウム化合物、ジチオール化合物、トリアリールメタン化合物、ピロメテン化合物、アゾメチン化合物、アントラキノン化合物、ジベンゾフラノン化合物、銅化合物などが挙げられる。他の近赤外線吸収剤の市販品としては、例えば、SDO-C33(有本化学工業(株)製)、イーエクスカラーIR-14、イーエクスカラーIR-10A、イーエクスカラーTX-EX-801B、イーエクスカラーTX-EX-805K((株)日本触媒製)、ShigenoxNIA-8041、ShigenoxNIA-8042、ShigenoxNIA-814、ShigenoxNIA-820ShigenoxNIA-839(ハッコーケミカル社製)、EpoliteV-63、Epolight3801、Epolight3036(EPOLIN社製)、PRO-JET825LDI(富士フイルム(株)製)、NK-3027、NK-5060((株)林原製)、YKR-3070(三井化学(株)製)などが挙げられる。
 また、他の近赤外線吸収剤として、無機粒子を用いることもできる。無機粒子は、金属酸化物粒子または金属粒子が好ましい。金属酸化物粒子としては、例えば、酸化インジウムスズ(ITO)粒子、酸化アンチモンスズ(ATO)粒子、酸化亜鉛(ZnO)粒子、Alドープ酸化亜鉛(AlドープZnO)粒子、フッ素ドープ二酸化スズ(FドープSnO2)粒子、ニオブドープ二酸化チタン(NbドープTiO2)粒子などが挙げられる。金属粒子としては、例えば、銀(Ag)粒子、金(Au)粒子、銅(Cu)粒子、ニッケル(Ni)粒子など挙げられる。また、無機粒子としては酸化タングステン系化合物が使用できる。酸化タングステン系化合物は、セシウム酸化タングステンであることが好ましい。酸化タングステン系化合物の詳細については、特開2016-006476号公報の段落番号0080を参酌でき、この内容は本明細書に組み込まれる。無機粒子の形状は特に制限されず、球状、非球状を問わず、シート状、ワイヤー状、チューブ状であってもよい。
 無機粒子の平均粒子径は、800nm以下が好ましく、400nm以下がより好ましく、200nm以下が更に好ましい。無機粒子の平均粒子径がこのような範囲であることによって、可視透明性が良好である。光散乱を回避する観点からは、平均粒子径は小さいほど好ましいが、製造時における取り扱い容易性などの理由から、無機粒子の平均粒子径は、通常、1nm以上である。
 本発明の樹脂組成物が他の近赤外線吸収剤を含有する場合、他の近赤外線吸収剤の含有量は、本発明の近赤外線吸収有機顔料の100質量部に対し0.1~80質量部が好ましく、5~60質量部がより好ましく、10~40質量部がさらに好ましい。
<<有彩色着色剤>>
 本発明の樹脂組成物は、有彩色着色剤を含有することができる。本発明において、有彩色着色剤とは、白色着色剤および黒色着色剤以外の着色剤を意味する。有彩色着色剤は、極大吸収波長が400nm以上650nm未満の範囲にある着色剤が好ましい。有彩色着色剤は、顔料であってもよく、染料であってもよい。好ましくは顔料である。
 顔料は、有機顔料であることが好ましく、以下のものを挙げることができる。但し本発明は、これらに限定されるものではない。
 カラーインデックス(C.I.)Pigment Yellow 1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,20,24,31,32,34,35,35:1,36,36:1,37,37:1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97,98,100,101,104,106,108,109,110,113,114,115,116,117,118,119,120,123,125,126,127,128,129,137,138,139,147,148,150,151,152,153,154,155,156,161,162,164,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214等(以上、黄色顔料)、
 C.I.Pigment Orange 2,5,13,16,17:1,31,34,36,38,43,46,48,49,51,52,55,59,60,61,62,64,71,73等(以上、オレンジ色顔料)、
 C.I.Pigment Red 1,2,3,4,5,6,7,9,10,14,17,22,23,31,38,41,48:1,48:2,48:3,48:4,49,49:1,49:2,52:1,52:2,53:1,57:1,60:1,63:1,66,67,81:1,81:2,81:3,83,88,90,105,112,119,122,123,144,146,149,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,270,272,279等(以上、赤色顔料)、
 C.I.Pigment Green 7,10,36,37,58,59等(以上、緑色顔料)、
 C.I.Pigment Violet 1,19,23,27,32,37,42等(以上、紫色顔料)、
 C.I.Pigment Blue 1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,60,64,66,79,80等(以上、青色顔料)、
 これら有機顔料は、単独で用いる、あるいは、2種以上を組合せて用いることができる。
 染料としては特に制限はなく、公知の染料が使用できる。化学構造としては、ピラゾールアゾ系、アニリノアゾ系、トリアリールメタン系、アントラキノン系、アントラピリドン系、ベンジリデン系、オキソノール系、ピラゾロトリアゾールアゾ系、ピリドンアゾ系、シアニン系、フェノチアジン系、ピロロピラゾールアゾメチン系、キサンテン系、フタロシアニン系、ベンゾピラン系、インジゴ系、ピロメテン系等の染料が使用できる。また、これらの染料の多量体を用いてもよい。また、特開2015-028144号公報、特開2015-34966号公報に記載の染料を用いることもできる。
 本発明の樹脂組成物が有彩色着色剤を含有する場合、有彩色着色剤の含有量は、樹脂組成物の全固形分に対して0.1~70質量%が好ましい。下限は、0.5質量%以上が好ましく、1.0質量%以上がより好ましい。上限は、60質量%以下が好ましく、50質量%以下がより好ましい。
 有彩色着色剤の含有量は、近赤外線吸収有機顔料の100質量部に対し、10~1000質量部が好ましく、50~800質量部がより好ましい。
 また、有彩色着色剤と近赤外線吸収有機顔料と上述した他の近赤外線吸収剤との合計量は、樹脂組成物の全固形分に対して1~80質量%が好ましい。下限は、5質量%以上が好ましく、10質量%以上がより好ましい。上限は、70質量%以下が好ましく、60質量%以下がより好ましい。本発明の樹脂組成物が、有彩色着色剤を2種以上含む場合、それらの合計量が上記範囲内であることが好ましい。
 また、本発明の樹脂組成物は、有彩色着色剤を実質的に含有しないことも好ましい。有彩色着色剤を実質的に含有しないとは、有彩色着色剤の含有量が、樹脂組成物の全固形分に対して0.05質量%以下であることが好ましく、0.01質量%以下であることがより好ましく、有彩色着色剤を含有しないことがさらに好ましい。
<<赤外線を透過させて可視光を遮光する色材>>
 本発明の樹脂組成物は、赤外線を透過させて可視光を遮光する色材(以下、可視光を遮光する色材ともいう)を含有することもできる。
 本発明において、可視光を遮光する色材は、紫色から赤色の波長領域の光を吸収する色材であることが好ましい。また、本発明において、可視光を遮光する色材は、波長450~650nmの範囲の光を遮光する色材であることが好ましい。また、可視光を遮光する色材は、波長900~1300nmの範囲の光を透過する色材であることが好ましい。
 本発明において、可視光を遮光する色材は、以下の(A)および(B)の少なくとも一方の要件を満たすことが好ましい。
(A):2種類以上の有彩色着色剤を含み、2種以上の有彩色着色剤の組み合わせで黒色を形成している。
(B):有機系黒色着色剤を含む。
 有彩色着色剤としては、上述したものが挙げられる。有機系黒色着色剤としては、例えば、ビスベンゾフラノン化合物、アゾメチン化合物、ペリレン化合物、アゾ化合物などが挙げられ、ビスベンゾフラノン化合物、ペリレン化合物が好ましい。ビスベンゾフラノン化合物としては、特表2010-534726号公報、特表2012-515233号公報、特表2012-515234号公報、国際公開WO2014/208348号公報、特表2015-525260号公報などに記載の化合物が挙げられる。ビスベンゾフラノン化合物の市販品としては、BASF社製の「Irgaphor Black」などが挙げられる。ペリレン化合物としては、C.I.Pigment Black 31、32などが挙げられる。アゾメチン化合物としては、特開平1-170601号公報、特開平2-34664号公報などに記載の化合物が挙げられ、例えば、大日精化社製の「クロモファインブラックA1103」として入手できる。
 2種以上の有彩色着色剤の組み合わせで黒色を形成する場合の、有彩色着色剤の組み合わせとしては、例えば以下が挙げられる。
(1)黄色着色剤、青色着色剤、紫色着色剤および赤色着色剤を含有する態様。
(2)黄色着色剤、青色着色剤および赤色着色剤を含有する態様。
(3)黄色着色剤、紫色着色剤および赤色着色剤を含有する態様。
(4)黄色着色剤および紫色着色剤を含有する態様。
(5)緑色着色剤、青色着色剤、紫色着色剤および赤色着色剤を含有する態様。
(6)紫色着色剤およびオレンジ色着色剤を含有する態様。
(7)緑色着色剤、紫色着色剤および赤色着色剤を含有する態様。
(8)緑色着色剤および赤色着色剤を含有する態様。
 本発明の樹脂組成物が、可視光を遮光する色材を含有する場合、可視光を遮光する色材の含有量は、樹脂組成物の全固形分に対して60質量%以下が好ましく、50質量%以下がより好ましく、30質量%以下がさらに好ましく、20質量%以下がより一層好ましく、15質量%以下が特に好ましい。下限は、例えば、0.1質量%以上とすることができ、0.5質量%以上とすることもできる。
 また、本発明の樹脂組成物は、可視光を遮光する色材を実質的に含有しないことも好ましい。可視光を遮光する色材を実質的に含有しないとは、可視光を遮光する色材の含有量が、樹脂組成物の全固形分に対して0.05質量%以下であることが好ましく、0.01質量%以下であることがより好ましく、可視光を遮光する色材を含有しないことがさらに好ましい。
<<顔料誘導体>>
 本発明の樹脂組成物は、顔料誘導体を含有することができる。顔料誘導体としては、色素骨格に、酸基および塩基性基から選ばれる少なくとも1種の基が結合した化合物が挙げられる。顔料誘導体としては、式(B1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000024

 式(B1)中、Pは色素骨格を表し、Lは単結合または連結基を表し、Xは酸基または塩基性基を表し、mは1以上の整数を表し、nは1以上の整数を表し、mが2以上の場合は複数のLおよびXは互いに異なっていてもよく、nが2以上の場合は複数のXは互いに異なっていてもよい。
 Pが表す色素骨格としては、ピロロピロール色素骨格、ジケトピロロピロール色素骨格、キナクリドン色素骨格、アントラキノン色素骨格、ジアントラキノン色素骨格、ベンゾイソインドール色素骨格、チアジンインジゴ色素骨格、アゾ色素骨格、キノフタロン色素骨格、フタロシアニン色素骨格、ナフタロシアニン色素骨格、ジオキサジン色素骨格、ペリレン色素骨格、ペリノン色素骨格、ベンゾイミダゾロン色素骨格、ベンゾチアゾール色素骨格、ベンゾイミダゾール色素骨格およびベンゾオキサゾール色素骨格から選ばれる少なくとも1種が好ましく、ピロロピロール色素骨格、ジケトピロロピロール色素骨格、キナクリドン色素骨格およびベンゾイミダゾロン色素骨格から選ばれる少なくとも1種が更に好ましく、ピロロピロール色素骨格が特に好ましい。
 Lが表す連結基としては、1~100個の炭素原子、0~10個の窒素原子、0~50個の酸素原子、1~200個の水素原子、および0~20個の硫黄原子から成り立つ基が好ましく、無置換でもよく、置換基を更に有していてもよい。置換基としては、上述した式(PP)で説明した置換基Tが挙げられる。
 Xが表す酸基としては、カルボキシル基、スルホ基、カルボン酸アミド基、スルホン酸アミド基、イミド酸基等が挙げられる。カルボン酸アミド基としては、-NHCORX1で表される基が好ましい。スルホン酸アミド基としては、-NHSO2X2で表される基が好ましい。イミド酸基としては、-SO2NHSO2X3、-CONHSO2X4、-CONHCORX5または-SO2NHCORX6で表される基が好ましい。RX1~RX6は、それぞれ独立に、炭化水素基または複素環基を表す。RX1~RX6が表す、炭化水素基および複素環基は、さらに置換基を有してもよい。さらなる置換基としては、上述した式(PP)で説明した置換基Tが挙げられ、ハロゲン原子であることが好ましく、フッ素原子であることがより好ましい。
 Xが表す塩基性基としてはアミノ基が挙げられる。
 顔料誘導体としては、下記構造の化合物が挙げられる。また、特開昭56-118462号公報、特開昭63-264674号公報、特開平1-217077号公報、特開平3-9961号公報、特開平3-26767号公報、特開平3-153780号公報、特開平3-45662号公報、特開平4-285669号公報、特開平6-145546号公報、特開平6-212088号公報、特開平6-240158号公報、特開平10-30063号公報、特開平10-195326号公報、国際公開WO2011/024896号公報の段落番号0086~0098、国際公開WO2012/102399号公報の段落番号0063~0094等に記載の化合物、国際公開WO2016/035695号公報の段落番号0053に記載の化合物、特許第5299151号公報に記載の化合物を用いることもでき、これらの内容は本明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000025
 本発明の樹脂組成物が顔料誘導体を含有する場合、顔料誘導体の含有量は、顔料100質量部に対し、1~50質量部が好ましい。下限値は、3質量部以上がより好ましく、5質量部以上が更に好ましい。上限値は、40質量部以下がより好ましく、30質量部以下が更に好ましい。顔料誘導体の含有量が上記範囲であれば、顔料の分散性を高めて、顔料の凝集を効率よく抑制できる。顔料誘導体は1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、合計量が上記範囲となることが好ましい。
<<溶剤>>
 本発明の樹脂組成物は、溶剤を含有することができる。溶剤としては、水、有機溶剤が挙げられる。溶剤は、各成分の溶解性や樹脂組成物の塗布性を満足すれば基本的には特に制限はないが、樹脂組成物の塗布性、安全性を考慮して選ばれることが好ましい。
 有機溶剤の例としては、例えば、エステル類、エーテル類、ケトン類、芳香族炭化水素類などが挙げられる。これらの詳細については、国際公開WO2015/166779号公報の段落番号0223を参酌でき、この内容は本明細書に組み込まれる。また、環状アルキル基が置換したエステル系溶剤、環状アルキル基が置換したケトン系溶剤を好ましく用いることもできる。有機溶剤の具体例としては、ジクロロメタン、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、酢酸シクロヘキシル、シクロペンタノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテル、及びプロピレングリコールモノメチルエーテルアセテートなどが挙げられる。本発明において有機溶剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミドも溶解性向上の観点から好ましい。ただし溶剤としての芳香族炭化水素類(ベンゼン、トルエン、キシレン、エチルベンゼン等)は、環境面等の理由により低減したほうがよい場合がある(例えば、有機溶剤全量に対して、50質量ppm(parts per million)以下とすることもでき、10質量ppm以下とすることもでき、1質量ppm以下とすることもできる)。
 本発明においては、金属含有量の少ない溶剤を用いることが好ましく、溶剤の金属含有量は、例えば10質量ppb(parts per billion)以下であることが好ましい。必要に応じて質量ppt(parts per trillion)レベルの溶剤を用いてもよく、そのような高純度溶剤は例えば東洋合成社が提供している(化学工業日報、2015年11月13日)。
 溶剤から金属等の不純物を除去する方法としては、例えば、蒸留(分子蒸留や薄膜蒸留等)やフィルタを用いたろ過を挙げることができる。ろ過に用いるフィルタのフィルタ孔径としては、10μm以下が好ましく、5μm以下がより好ましく、3μm以下が更に好ましい。フィルタの材質は、ポリテトラフロロエチレン、ポリエチレンまたはナイロンが好ましい。
 溶剤は、異性体(原子数が同じであるが構造が異なる化合物)が含まれていてもよい。また、異性体は、1種のみが含まれていてもよいし、複数種含まれていてもよい。
 本発明において、有機溶剤は、過酸化物の含有率が0.8mmol/L以下であることが好ましく、過酸化物を実質的に含まないことがより好ましい。
 溶剤の含有量は、樹脂組成物の全量に対し、10~90質量%であることが好ましく、20~80質量%であることがより好ましく、25~75質量%であることが更に好ましい。
<<硬化性化合物>>
 本発明の樹脂組成物は、硬化性化合物を含有することが好ましい。硬化性化合物としては、ラジカル、酸、熱により架橋可能な公知の化合物を用いることができる。硬化性化合物としては、例えば、重合性化合物、エポキシ基を有する化合物などが挙げられる。重合性化合物としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基などのエチレン性不飽和結合を有する基を有する化合物が挙げられる。重合性化合物は、ラジカル重合性化合物であることが好ましい。
(重合性化合物)
 重合性化合物は、エチレン性不飽和結合を有する基を2個以上有する化合物であることが好ましく、エチレン性不飽和結合を有する基を3個以上有する化合物であることがより好ましい。重合性化合物におけるエチレン性不飽和結合を有する基の個数の上限は、たとえば、15個以下が好ましく、6個以下がより好ましい。重合性化合物は、3~15官能の(メタ)アクリレート化合物であることが好ましく、3~6官能の(メタ)アクリレート化合物であることがより好ましい。重合性化合物は、モノマー、プレポリマー、オリゴマーなどの化学的形態のいずれであってもよいが、モノマーが好ましい。重合性化合物の分子量は、100~3000が好ましい。上限は、2000以下がより好ましく、1500以下が更に好ましい。下限は、150以上がより好ましく、250以上が更に好ましい。また、重合性化合物は、分子量分布を実質的に有さない化合物であることも好ましい。ここで、分子量分布を実質的に有さない化合物としては、化合物の分散度(重量平均分子量(Mw)/数平均分子量(Mn))が、1.0~1.5である化合物が好ましく、1.0~1.3がより好ましい。重合性化合物については、特開2009-288705号公報の段落番号0095~0108、特開2013-29760号公報の段落0225~0258、特開2008-292970号公報の段落番号0254~0257の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 重合性化合物としては、ジペンタエリスリトールトリアクリレート(市販品としてはKAYARAD D-330;日本化薬(株)製)、ジペンタエリスリトールテトラアクリレート(市販品としてはKAYARAD D-320;日本化薬(株)製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としてはKAYARAD D-310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としてはKAYARAD DPHA;日本化薬(株)製、A-DPH-12E;新中村化学工業(株)製)、およびこれらの(メタ)アクリロイル基がエチレングリコールおよび/またはプロピレングリコール残基を介して結合している構造の化合物(例えば、サートマー社から市販されている、SR454、SR499)が好ましい。これらのオリゴマータイプも使用できる。また、重合性化合物として、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシ変性トリ(メタ)アクリレート、トリメチロールプロパンエチレンオキシ変性トリ(メタ)アクリレート、イソシアヌル酸エチレンオキシ変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどの3官能の(メタ)アクリレート化合物を用いることも好ましい。3官能の(メタ)アクリレート化合物の市販品としては、アロニックスM-309、M-310、M-321、M-350、M-360、M-313、M-315、M-306、M-305、M-303、M-452、M-450(東亞合成(株)製)、NKエステル A9300、A-GLY-9E、A-GLY-20E、A-TMM-3、A-TMM-3L、A-TMM-3LM-N、A-TMPT、TMPT(新中村化学工業(株)製)、KAYARAD GPO-303、TMPTA、THE-330、TPA-330、PET-30(日本化薬(株)製)などが挙げられる。
 重合性化合物として、酸基を有する重合性化合物を用いることもできる。酸基を有する重合性化合物を用いることで、現像時に未露光部の重合性化合物が除去されやすく、現像残渣の発生を抑制できる。酸基としては、カルボキシル基、スルホ基、リン酸基等が挙げられ、カルボキシル基が好ましい。酸基を有する重合性化合物の市販品としては、アロニックスM-510、M-520(東亞合成(株)製)等が挙げられる。
 酸基を有する重合性化合物の好ましい酸価としては、0.1~40mgKOH/gであり、より好ましくは5~30mgKOH/gである。重合性化合物の酸価が0.1mgKOH/g以上であれば、現像液に対する溶解性が良好であり、40mgKOH/g以下であれば、製造や取扱い上、有利である。さらには、硬化性に優れる。
 重合性化合物として、カプロラクトン構造を有する重合性化合物を用いることもできる。また、重合性化合物として、アルキレンオキシ基を有する重合性化合物を用いることもできる。アルキレンオキシ基を有する重合性化合物は、エチレンオキシ基および/またはプロピレンオキシ基を有する重合性化合物が好ましく、エチレンオキシ基を有する重合性化合物がより好ましく、エチレンオキシ基を4~20個有する3~6官能(メタ)アクリレート化合物がさらに好ましい。アルキレンオキシ基を有する重合性化合物の市販品としては、例えばサートマー社製のエチレンオキシ基を4個有する4官能(メタ)アクリレートであるSR-494、イソブチレンオキシ基を3個有する3官能(メタ)アクリレートであるKAYARAD TPA-330などが挙げられる。
 重合性化合物として、特公昭48-41708号公報、特開昭51-37193号公報、特公平2-32293号公報、特公平2-16765号公報に記載されているウレタンアクリレート類や、特公昭58-49860号公報、特公昭56-17654号公報、特公昭62-39417号公報、特公昭62-39418号公報に記載されているエチレンオキサイド系骨格を有するウレタン化合物類も好適である。また、特開昭63-277653号公報、特開昭63-260909号公報、特開平1-105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する付加重合性化合物類を用いることも好ましい。市販品としては、UA-7200(新中村化学工業(株)製)、DPHA-40H(日本化薬社製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(共栄社化学(株)製)などが挙げられる。
 また、重合性化合物としては、特開2017-48367号公報、特許第6057891号公報、特許第6031807号公報に記載されている化合物を用いることもできる。
 また、重合性化合物としては、8UH-1006、8UH-1012(以上、大成ファインケミカル(株)製)、ライトアクリレートPOB-A0(共栄社化学(株)製)などを用いることもできる。
(エポキシ基を有する化合物)
 本発明の樹脂組成物は、硬化性化合物としてエポキシ基を有する化合物を含有することができる。エポキシ基を有する化合物としては、1分子内にエポキシ基を2つ以上有する化合物が好ましい。エポキシ基を有する化合物は、エポキシ基を2~100個有する化合物であることが好ましい。エポキシ基の上限は、例えば、10個以下とすることもでき、5個以下とすることもできる。
 エポキシ基を有する化合物は、エポキシ当量(=エポキシ基を有する化合物の分子量/エポキシ基の数)が500g/当量以下であることが好ましく、100~400g/当量であることがより好ましく、100~300g/当量であることがさらに好ましい。
 エポキシ基を有する化合物は、低分子化合物(例えば、分子量1000未満)でもよいし、高分子化合物(macromolecule)(例えば、分子量1000以上、ポリマーの場合は、重量平均分子量が1000以上)のいずれでもよい。エポキシ基を有する化合物の重量平均分子量は、200~100000が好ましく、500~50000がより好ましい。重量平均分子量の上限は、10000以下が好ましく、5000以下がより好ましく、3000以下が更に好ましい。
 エポキシ基を有する化合物は、特開2013-011869号公報の段落番号0034~0036、特開2014-043556号公報の段落番号0147~0156、特開2014-089408号公報の段落番号0085~0092に記載された化合物を用いることもできる。これらの内容は、本明細書に組み込まれる。エポキシ基を有する化合物の市販品としては、EHPE3150((株)ダイセル製)、EPICLON N-695(DIC(株)製)、アデカグリシロール ED-505((株)ADEKA製、エポキシ基含有モノマー)などが挙げられる。
 本発明の樹脂組成物において、硬化性化合物の含有量は、樹脂組成物の全固形分に対し、0.1~50質量%が好ましい。下限は、例えば0.5質量%以上がより好ましく、1質量%以上が更に好ましい。上限は、例えば、45質量%以下がより好ましく、40質量%以下が更に好ましい。硬化性化合物は、1種単独であってもよいし、2種以上を併用してもよい。2種以上を併用する場合は、それらの合計量が上記範囲となることが好ましい。
 本発明の樹脂組成物が硬化性化合物として重合性化合物を含有する場合、重合性化合物の含有量は、樹脂組成物の全固形分に対して、0.1~40質量%が好ましい。下限は、例えば0.5質量%以上がより好ましく、1質量%以上が更に好ましい。上限は、例えば、30質量%以下がより好ましく、20質量%以下が更に好ましい。重合性化合物は1種単独であってもよいし、2種以上を併用してもよい。重合性化合物を2種以上併用する場合は、それらの合計量が上記範囲となることが好ましい。
 本発明の樹脂組成物が硬化性化合物としてエポキシ基を有する化合物を含有する場合、エポキシ基を有する化合物の含有量は、樹脂組成物の全固形分に対し、0.1~40質量%が好ましい。下限は、例えば0.5質量%以上がより好ましく、1質量%以上が更に好ましい。上限は、例えば、30質量%以下がより好ましく、20質量%以下が更に好ましい。エポキシ基を有する化合物は、1種単独であってもよいし、2種以上を併用してもよい。2種以上を併用する場合は、それらの合計量が上記範囲となることが好ましい。
 本発明の樹脂組成物が硬化性化合物として重合性化合物と、エポキシ基を有する化合物を含有する場合、重合性化合物とエポキシ基を有する化合物との質量比は、重合性化合物の質量:エポキシ基を有する化合物の質量=100:1~100:400が好ましく、100:1~100:100がより好ましく、100:1~100:50がさらに好ましい。
<<光重合開始剤>>
 本発明の樹脂組成物は、光重合開始剤を含有することができる。特に、本発明の樹脂組成物が重合性化合物を含む場合、光重合開始剤を含有することが好ましい。光重合開始剤としては、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外領域から可視領域の光線に対して感光性を有する化合物が好ましい。光重合開始剤は、光ラジカル重合開始剤であることが好ましい。
 光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物など)、アシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、α-ヒドロキシケトン化合物、α-アミノケトン化合物などが挙げられる。光重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物、シクロペンタジエン-ベンゼン-鉄錯体、ハロメチルオキサジアゾール化合物および3-アリール置換クマリン化合物が好ましく、オキシム化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、および、アシルホスフィン化合物から選ばれる化合物がより好ましく、オキシム化合物が更に好ましい。光重合開始剤としては、特開2014-130173号公報の段落0065~0111の記載を参酌でき、この内容は本明細書に組み込まれる。
 α-ヒドロキシケトン化合物の市販品としては、IRGACURE-184、DAROCUR-1173、IRGACURE-500、IRGACURE-2959、IRGACURE-127(以上、BASF社製)などが挙げられる。α-アミノケトン化合物の市販品としては、IRGACURE-907、IRGACURE-369、IRGACURE-379、及び、IRGACURE-379EG(以上、BASF社製)などが挙げられる。アシルホスフィン化合物の市販品としては、IRGACURE-819、DAROCUR-TPO(以上、BASF社製)などが挙げられる。
 オキシム化合物としては、特開2001-233842号公報に記載の化合物、特開2000-80068号公報に記載の化合物、特開2006-342166号公報に記載の化合物、J.C.S.Perkin II(1979年、pp.1653-1660)に記載の化合物、J.C.S.Perkin II(1979年、pp.156-162)に記載の化合物、Journal of Photopolymer Science and Technology(1995年、pp.202-232)に記載の化合物、特開2000-66385号公報に記載の化合物、特開2000-80068号公報に記載の化合物、特表2004-534797号公報に記載の化合物、特開2006-342166号公報に記載の化合物、特開2017-19766号公報に記載の化合物、特許第6065596号公報に記載の化合物、国際公開WO2015/152153号公報に記載の化合物、国際公開WO2017/051680公報に記載の化合物などがあげられる。オキシム化合物の具体例としては、3-ベンゾイルオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、及び2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オンなどが挙げられる。市販品としては、IRGACURE-OXE01、IRGACURE-OXE02、IRGACURE-OXE03、IRGACURE-OXE04(以上、BASF社製)、TR-PBG-304(常州強力電子新材料有限公司製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-14052号公報に記載の光重合開始剤2)が挙げられる。また、オキシム化合物としては、着色性が無い化合物や、透明性が高く変色し難い化合物を用いることも好ましい。市販品としては、アデカアークルズNCI-730、NCI-831、NCI-930(以上、(株)ADEKA製)などが挙げられる。
 本発明において、光重合開始剤として、フルオレン環を有するオキシム化合物を用いることもできる。フルオレン環を有するオキシム化合物の具体例としては、特開2014-137466号公報に記載の化合物が挙げられる。この内容は本明細書に組み込まれる。
 本発明において、光重合開始剤として、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010-262028号公報に記載の化合物、特表2014-500852号公報に記載の化合物24、36~40、特開2013-164471号公報に記載の化合物(C-3)などが挙げられる。これらの内容は本明細書に組み込まれる。
 本発明において、光重合開始剤として、ニトロ基を有するオキシム化合物を用いることができる。ニトロ基を有するオキシム化合物は、二量体とすることも好ましい。ニトロ基を有するオキシム化合物の具体例としては、特開2013-114249号公報の段落番号0031~0047、特開2014-137466号公報の段落番号0008~0012、0070~0079に記載されている化合物、特許4223071号公報の段落番号0007~0025に記載されている化合物、アデカアークルズNCI-831((株)ADEKA製)が挙げられる。
 本発明において、光重合開始剤として、ベンゾフラン骨格を有するオキシム化合物を用いることもできる。具体例としては、国際公開WO2015/036910号公報に記載されるOE-01~OE-75が挙げられる。
 本発明において好ましく使用されるオキシム化合物の具体例を以下に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000026

Figure JPOXMLDOC01-appb-C000027
 オキシム化合物は、波長350~500nmの範囲に極大吸収波長を有する化合物が好ましく、波長360~480nmの範囲に極大吸収波長を有する化合物がより好ましい。また、オキシム化合物の波長365nm又は波長405nmにおけるモル吸光係数は、感度の観点から、高いことが好ましく、1,000~300,000であることがより好ましく、2,000~300,000であることが更に好ましく、5,000~200,000であることが特に好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶媒を用い、0.01g/Lの濃度で測定することが好ましい。
 本発明は、光重合開始剤として、2官能あるいは3官能以上の光重合開始剤を用いてもよい。そのような光重合開始剤の具体例としては、特表2010-527339号公報、特表2011-524436号公報、国際公開WO2015/004565号公報、特表2016-532675号公報の段落番号0417~0412、国際公開WO2017/033680号公報の段落番号0039~0055に記載されているオキシム化合物の2量体や、特表2013-522445号公報に記載されている化合物(E)および化合物(G)、国際公開WO2016/034963号公報に記載されているCmpd1~7などが挙げられる。
 光重合開始剤は、オキシム化合物とα-アミノケトン化合物とを含むことも好ましい。両者を併用することで、現像性が向上し、矩形性に優れたパターンを形成しやすい。オキシム化合物とα-アミノケトン化合物とを併用する場合、オキシム化合物100質量部に対して、α-アミノケトン化合物が50~600質量部であることが好ましく、150~400質量部がより好ましい。
 光重合開始剤の含有量は、樹脂組成物の全固形分に対し0.1~50質量%が好ましく、0.5~30質量%がより好ましく、1~20質量%が更に好ましい。本発明の樹脂組成物は、光重合開始剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。光重合開始剤を2種類以上含む場合は、それらの合計量が上記範囲となることが好ましい。
<<重合禁止剤>>
 本発明の樹脂組成物は、重合禁止剤を含有することができる。重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、ベンゾキノン、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン塩(アンモニウム塩、第一セリウム塩等)が挙げられる。中でも、p-メトキシフェノールが好ましい。重合禁止剤の含有量は、樹脂組成物の全固形分に対して、0.01~5質量%が好ましい。また、重合禁止剤の含有量は、重合性化合物の100質量部に対し、0.001~1質量部であることが好ましい。上限は、0.5質量部以下がより好ましく、0.2質量部以下が更に好ましい。下限は、0.01質量部以上がより好ましく、0.03質量部以上が更に好ましい。本発明の樹脂組成物は、重合禁止剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。重合禁止剤を2種類以上含む場合は、それらの合計量が上記範囲となることが好ましい。
<<紫外線吸収剤>>
 本発明の樹脂組成物は、紫外線吸収剤を含有することができる。紫外線吸収剤としては、共役ジエン化合物、アミノブタジエン化合物、メチルジベンゾイル化合物、クマリン化合物、サリシレート化合物、ベンゾフェノン化合物、ベンゾトリアゾール化合物、アクリロニトリル化合物、ヒドロキシフェニルトリアジン化合物などを用いることができる。これらの詳細については、特開2012-208374号公報の段落番号0052~0072、特開2013-68814号公報の段落番号0317~0334の記載を参酌でき、これらの内容は本明細書に組み込まれる。共役ジエン化合物の市販品としては、例えば、UV-503(大東化学(株)製)などが挙げられる。また、ベンゾトリアゾール化合物としてはミヨシ油脂製のMYUAシリーズ(化学工業日報、2016年2月1日)を用いてもよい。紫外線吸収剤としては、式(UV-1)~式(UV-3)で表される化合物が好ましく、式(UV-1)または式(UV-3)で表される化合物がより好ましく、式(UV-1)で表される化合物が更に好ましい。
Figure JPOXMLDOC01-appb-C000028
 式(UV-1)において、R101及びR102は、各々独立に、置換基を表し、m1およびm2は、それぞれ独立して0~4を表す。
 式(UV-2)において、R201及びR202は、各々独立に、水素原子またはアルキル基を表し、R203及びR204は、各々独立に、置換基を表す。
 式(UV-3)において、R301~R303は、各々独立に、水素原子またはアルキル基を表し、R304及びR305は、各々独立に、置換基を表す。
 式(UV-1)~式(UV-3)で表される化合物の具体例としては、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000029
 紫外線吸収剤の含有量は、樹脂組成物の全固形分に対して、0.01~10質量%が好ましく、0.01~5質量%がより好ましい。本発明において、紫外線吸収剤は1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、合計量が上記範囲となることが好ましい。
<<シランカップリング剤>>
 本発明の樹脂組成物は、シランカップリング剤を含有することができる。本発明において、シランカップリング剤は、加水分解性基とそれ以外の官能基とを有するシラン化合物を意味する。また、加水分解性基とは、ケイ素原子に直結し、加水分解反応及び縮合反応の少なくともいずれかによってシロキサン結合を生じ得る置換基をいう。加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基などが挙げられ、アルコキシ基が好ましい。すなわち、シランカップリング剤は、アルコキシシリル基を有する化合物が好ましい。また、加水分解性基以外の官能基は、樹脂との間で相互作用もしくは結合を形成して親和性を示す基が好ましい。例えば、ビニル基、(メタ)アクリロイル基、メルカプト基、エポキシ基、オキセタニル基、アミノ基、ウレイド基、スルフィド基、イソシアネート基などが挙げられ、(メタ)アクリロイル基およびエポキシ基が好ましい。シランカップリング剤は、特開2009-288703号公報の段落番号0018~0036に記載の化合物、特開2009-242604号公報の段落番号0056~0066に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。
 シランカップリング剤の含有量は、樹脂組成物の全固形分に対して、0.01~15.0質量%が好ましく、0.05~10.0質量%がより好ましい。シランカップリング剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、それらの合計量が上記範囲となることが好ましい。
<<界面活性剤>>
 本発明の樹脂組成物は、界面活性剤を含有することができる。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用することができる。界面活性剤は、国際公開WO2015/166779号公報の段落番号0238~0245を参酌でき、この内容は本明細書に組み込まれる。
 本発明において、界面活性剤はフッ素系界面活性剤であることが好ましい。本発明の樹脂組成物にフッ素系界面活性剤を含有させることで液特性(特に、流動性)がより向上し、省液性をより改善することができる。また、厚みムラの小さい膜を製造することもできる。
 フッ素系界面活性剤中のフッ素含有率は、3~40質量%が好適であり、より好ましくは5~30質量%であり、特に好ましくは7~25質量%である。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性や省液性の点で効果的であり、組成物中における溶解性も良好である。
 フッ素系界面活性剤として具体的には、特開2014-41318号公報の段落番号0060~0064(対応する国際公開2014/17669号公報の段落番号0060~0064)等に記載の界面活性剤、特開2011-132503号公報の段落番号0117~0132に記載の界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。フッ素系界面活性剤の市販品としては、例えば、メガファックF171、F172、F173、F176、F177、F141、F142、F143、F144、R30、F437、F475、F479、F482、F554、F780、EXP、MFS-330(以上、DIC(株)製)、フロラードFC430、FC431、FC171(以上、住友スリーエム(株)製)、サーフロンS-382、SC-101、SC-103、SC-104、SC-105、SC-1068、SC-381、SC-383、S-393、KH-40(以上、旭硝子(株)製)、PolyFox PF636、PF656、PF6320、PF6520、PF7002(以上、OMNOVA社製)等が挙げられる。
 また、フッ素系界面活性剤は、フッ素原子を含有する官能基を持つ分子構造で、熱を加えるとフッ素原子を含有する官能基の部分が切断されてフッ素原子が揮発するアクリル系化合物も好適に使用できる。このようなフッ素系界面活性剤としては、DIC(株)製のメガファックDSシリーズ(化学工業日報、2016年2月22日)(日経産業新聞、2016年2月23日)、例えばメガファックDS-21が挙げられる。
 また、フッ素系界面活性剤は、フッ素化アルキル基またはフッ素化アルキレンエーテル基を有するフッ素原子含有ビニルエーテル化合物と、親水性のビニルエーテル化合物との重合体を用いることも好ましい。このようなフッ素系界面活性剤は、特開2016-216602号公報の記載を参酌でき、この内容は本明細書に組み込まれる。
 フッ素系界面活性剤は、ブロックポリマーを用いることもできる。例えば特開2011-89090号公報に記載された化合物が挙げられる。フッ素系界面活性剤は、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位と、を含む含フッ素高分子化合物も好ましく用いることができる。下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。
Figure JPOXMLDOC01-appb-C000030

 上記の化合物の重量平均分子量は、好ましくは3,000~50,000であり、例えば、14,000である。上記の化合物中、繰り返し単位の割合を示す%はモル%である。
 また、フッ素系界面活性剤は、エチレン性不飽和基を側鎖に有する含フッ素重合体を用いることもできる。具体例としては、特開2010-164965号公報の段落番号0050~0090および段落番号0289~0295に記載された化合物、例えばDIC(株)製のメガファックRS-101、RS-102、RS-718K、RS-72-K等が挙げられる。フッ素系界面活性剤は、特開2015-117327号公報の段落番号0015~0158に記載の化合物を用いることもできる。
 ノニオン系界面活性剤としては、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセロールエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル、プルロニックL10、L31、L61、L62、10R5、17R2、25R2(BASF社製)、テトロニック304、701、704、901、904、150R1(BASF社製)、ソルスパース20000(日本ルーブリゾール(株)製)、NCW-101、NCW-1001、NCW-1002(和光純薬工業(株)製)、パイオニンD-6112、D-6112-W、D-6315(竹本油脂(株)製)、オルフィンE1010、サーフィノール104、400、440(日信化学工業(株)製)などが挙げられる。
 カチオン系界面活性剤としては、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社化学(株)製)、W001(裕商(株)製)等が挙げられる。
 アニオン系界面活性剤として具体的には、W004、W005、W017(裕商(株)製)、サンデットBL(三洋化成(株)製)等が挙げられる。
 シリコーン系界面活性剤としては、例えば、トーレシリコーンDC3PA、トーレシリコーンSH7PA、トーレシリコーンDC11PA、トーレシリコーンSH21PA、トーレシリコーンSH28PA、トーレシリコーンSH29PA、トーレシリコーンSH30PA、トーレシリコーンSH8400(以上、東レ・ダウコーニング(株)製)、TSF-4440、TSF-4300、TSF-4445、TSF-4460、TSF-4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、KP341、KF6001、KF6002(以上、信越シリコーン株式会社製)、BYK307、BYK323、BYK330(以上、ビックケミー社製)等が挙げられる。
 界面活性剤の含有量は、樹脂組成物の全固形分に対して、0.001質量%~2.0質量%が好ましく、0.005~1.0質量%がより好ましい。界面活性剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、それらの合計量が上記範囲となることが好ましい。
<<酸化防止剤>>
 本発明の樹脂組成物は、酸化防止剤を含有することができる。酸化防止剤としては、フェノール化合物、亜リン酸エステル化合物、チオエーテル化合物などが挙げられる。フェノール化合物としては、フェノール系酸化防止剤として知られる任意のフェノール化合物を使用することができる。好ましいフェノール化合物としては、ヒンダードフェノール化合物が挙げられる。フェノール性水酸基に隣接する部位(オルト位)に置換基を有する化合物が好ましい。前述の置換基としては炭素数1~22の置換又は無置換のアルキル基が好ましい。また、酸化防止剤は、同一分子内にフェノール基と亜リン酸エステル基を有する化合物も好ましい。また、酸化防止剤は、リン系酸化防止剤も好適に使用することができる。リン系酸化防止剤としてはトリス[2-[[2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル]オキシ]エチル]アミン、トリス[2-[(4,6,9,11-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-2-イル)オキシ]エチル]アミン、亜リン酸エチルビス(2,4-ジ-tert-ブチル-6-メチルフェニル)などが挙げられる。酸化防止剤の市販品としては、例えば、アデカスタブ AO-20、アデカスタブ AO-30、アデカスタブ AO-40、アデカスタブ AO-50、アデカスタブ AO-50F、アデカスタブ AO-60、アデカスタブ AO-60G、アデカスタブ AO-80、アデカスタブ AO-330(以上、(株)ADEKA)などが挙げられる。また、酸化防止剤として、国際公開WO17/006600号公報に記載された多官能ヒンダードアミン酸化防止剤を用いることもできる。
 酸化防止剤の含有量は、本発明の樹脂組成物の全固形分に対して、0.01~20質量%であることが好ましく、0.3~15質量%であることがより好ましい。酸化防止剤は1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、合計量が上記範囲となることが好ましい。
<<その他成分>>
 本発明の樹脂組成物は、必要に応じて、増感剤、硬化促進剤、フィラー、熱硬化促進剤、可塑剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、香料、表面張力調整剤、連鎖移動剤など)を含有してもよい。これらの成分を適宜含有させることにより、膜物性などの性質を調整することができる。これらの成分は、例えば、特開2012-003225号公報の段落番号0183以降(対応する米国特許出願公開第2013/0034812号明細書の段落番号0237)の記載、特開2008-250074号公報の段落番号0101~0104、0107~0109等の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 また、本発明の樹脂組成物は、必要に応じて、潜在酸化防止剤を含有してもよい。潜在酸化防止剤としては、酸化防止剤として機能する部位が保護基で保護された化合物であって、100~250℃で加熱するか、又は酸/塩基触媒存在下で80~200℃で加熱することにより保護基が脱離して酸化防止剤として機能する化合物が挙げられる。潜在酸化防止剤としては、国際公開WO2014/021023号公報、国際公開WO2017/030005号公報、特開2017-008219号公報に記載された化合物が挙げられる。市販品としては、アデカアークルズGPA-5001((株)ADEKA製)等が挙げられる。
 本発明の樹脂組成物の粘度(23℃)は、例えば、塗布により膜を形成する場合、1~3000mPa・sの範囲にあることが好ましい。下限は、3mPa・s以上がより好ましく、5mPa・s以上が更に好ましい。上限は、2000mPa・s以下がより好ましく、1000mPa・s以下が更に好ましい。
 本発明の樹脂組成物のチキソトロピー性は、低いことが好ましい。チキソトロピー性とはTi値の指標で表すことができる。例えばE型粘度計(東機産業製RE85L)を用いて測定される粘度において、回転数が20rpmと50rpmの粘度をそれぞれη(20rpm)、η(50rpm)とする時のη(20rpm)/η(50rpm)の値をTi値とする。Ti値が1に近いほどチキソトロピー性が低いことを意味する。このような測定方法で得られたTi値に関して、23℃におけるTi値は、0.8~1.4であることが好ましく、0.9~1.2であることがより好ましく、0.9~1.1であることが更に好ましい。
 本発明の樹脂組成物の収容容器としては、特に限定はなく、公知の収容容器を用いることができる。また、収納容器として、原材料や樹脂組成物中への不純物混入を抑制することを目的に、容器内壁を6種6層の樹脂で構成する多層ボトルや6種の樹脂を7層構造にしたボトルを使用することも好ましい。このような容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。
 本発明の樹脂組成物の用途は、特に限定されない。例えば、近赤外線カットフィルタなどの形成に好ましく用いることができる。また、本発明の樹脂組成物において、さらに、可視光を遮光する色材を含有させることで、特定の波長以上の近赤外線のみを透過可能な近赤外線透過フィルタを形成することもできる。したがって、本発明の樹脂組成物は、近赤外線透過フィルタなどの形成に好ましく用いることもできる。
<樹脂組成物の調製方法>
 本発明の樹脂組成物は、前述の成分を混合して調製できる。樹脂組成物の調製に際しては、全成分を同時に溶剤に溶解または分散して樹脂組成物を調製してもよいし、必要に応じては、各成分を適宜配合した2つ以上の溶液または分散液をあらかじめ調製し、使用時(塗布時)にこれらを混合して樹脂組成物として調製してもよい。
 また、本発明の樹脂組成物は顔料を含むため、顔料を分散させるプロセスを含むことが好ましい。顔料を分散させるプロセスにおいて、顔料の分散に用いる機械力としては、圧縮、圧搾、衝撃、剪断、キャビテーションなどが挙げられる。これらプロセスの具体例としては、ビーズミル、サンドミル、ロールミル、ボールミル、ペイントシェーカー、マイクロフルイダイザー、高速インペラー、サンドグラインダー、フロージェットミキサー、高圧湿式微粒化、超音波分散などが挙げられる。また、顔料を分散させるプロセスおよび分散機は、「分散技術大全、株式会社情報機構発行、2005年7月15日」や「サスペンション(固/液分散系)を中心とした分散技術と工業的応用の実際 総合資料集、経営開発センター出版部発行、1978年10月10日」、特開2015-157893号公報の段落番号0022に記載のプロセス及び分散機を好適に使用出来る。
 樹脂組成物の調製にあたり、異物の除去や欠陥の低減などの目的で、樹脂組成物をフィルタでろ過することが好ましい。フィルタとしては、従来からろ過用途等に用いられているフィルタであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ナイロン(例えばナイロン-6、ナイロン-6,6)等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量のポリオレフィン樹脂を含む)等の素材を用いたフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)およびナイロンが好ましい。
 フィルタの孔径は、0.01~7.0μm程度が適しており、好ましくは0.01~3.0μm程度であり、さらに好ましくは0.05~0.5μm程度である。フィルタの孔径が上記範囲であれば、微細な異物を確実に除去できる。また、ファイバ状のろ材を用いることも好ましい。ファイバ状のろ材としては、例えばポリプロピレンファイバ、ナイロンファイバ、グラスファイバ等が挙げられる。具体的には、ロキテクノ社製のSBPタイプシリーズ(SBP008など)、TPRタイプシリーズ(TPR002、TPR005など)、SHPXタイプシリーズ(SHPX003など)のフィルタカートリッジが挙げられる。
 フィルタを使用する際、異なるフィルタ(例えば、第1のフィルタと第2のフィルタなど)を組み合わせてもよい。その際、各フィルタでのろ過は、1回のみでもよいし、2回以上行ってもよい。
 また、上述した範囲内で異なる孔径のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社(DFA4201NXEYなど)、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)または株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
 第2のフィルタは、第1のフィルタと同様の素材で形成されたものを使用することができる。
 また、第1のフィルタでのろ過は、分散液のみに対して行い、他の成分を混合した後で、第2のフィルタでろ過を行ってもよい。
<膜>
 次に、本発明の膜について説明する。本発明の膜は、上述した本発明の樹脂組成物を用いてなるものである。本発明の膜は、近赤外線カットフィルタや、近赤外線透過フィルタなどに好ましく用いることができる。本発明の膜は、パターンを有していてもよく、パターンを有さない膜(平坦膜)であってもよい。
 本発明の膜の厚さは、目的に応じて適宜調整できる。膜厚は20μm以下が好ましく、10μm以下がより好ましく、5μm以下がさらに好ましい。膜厚の下限は、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上が更に好ましい。
 本発明の膜を近赤外線カットフィルタとして用いる場合は、本発明の膜は、波長650~1400nmの範囲に極大吸収波長を有することが好ましい。極大吸収波長は1200nm以下が好ましく、1000nm以下がより好ましく、780nm以下が更に好ましい。極大吸収波長は700nm以上が好ましく、720nm以上がより好ましい。本発明の膜は、波長650~780nmの範囲に極大吸収波長を有することが特に好ましい。
 本発明の膜を近赤外線カットフィルタとして用いる場合は、本発明の膜は波長400~550nmの平均透過率が70%以上であることが好ましく、80%以上がより好ましく、85%以上がさらに好ましく、90%以上が特に好ましい。また、波長400~550nmの全ての範囲で透過率が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。また、波長650~1400nmの範囲の少なくとも1点での透過率が20%以下であることが好ましく、15%以下がより好ましく、10%以下がさらに好ましい。
 本発明の膜は、有彩色着色剤を含むカラーフィルタと組み合わせて用いることもできる。カラーフィルタは、有彩色着色剤を含む着色組成物を用いて製造できる。有彩色着色剤としては、上述した有彩色着色剤が挙げられる。着色組成物は、樹脂、硬化性化合物、光重合開始剤、界面活性剤、溶剤、重合禁止剤、紫外線吸収剤などをさらに含有することができる。これらの詳細については、上述した材料が挙げられ、これらを用いることができる。
 本発明の膜を近赤外線カットフィルタとして用い、かつ、本発明の膜とカラーフィルタと組み合わせて用いる場合、本発明の膜の光路上にカラーフィルタが配置されていることが好ましい。例えば、本発明の膜とカラーフィルタとを積層して積層体として用いることができる。積層体においては、本発明の膜とカラーフィルタとは、両者が厚み方向で隣接していてもよく、隣接していなくてもよい。本発明の膜とカラーフィルタとが厚み方向で隣接していない場合は、カラーフィルタが形成された支持体とは別の支持体に、本発明の膜が形成されていてもよく、本発明の膜とカラーフィルタとの間に、固体撮像素子を構成する他の部材(例えば、マイクロレンズ、平坦化層など)が介在していてもよい。
 本発明の膜は、支持体に積層して用いることもできる。支持体としては、シリコンなどの半導体基材や、透明基材が挙げられる。透明基材は、少なくとも可視光を透過できる材料で構成されたものであれば特に限定されない。例えば、ガラス、結晶、樹脂などの材質で構成された基材が挙げられる。透明基材の材質としてはガラスが好ましい。すなわち、透明基材はガラス基材であることが好ましい。ガラスとしては、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス、銅含有ガラスなどが挙げられる。銅含有ガラスとしては、銅を含有するリン酸塩ガラス、銅を含有するフツリン酸塩ガラスなどが挙げられる。銅を含有するガラスの市販品としては、NF-50(AGCテクノグラス(株)製)等が挙げられる。結晶としては、例えば、水晶、ニオブ酸リチウム、サファイヤ等が挙げられる。樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂、ノルボルネン樹脂、ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂等が挙げられる。また、支持体と本発明の膜との密着性を高めるため、支持体の表面には下地層などが設けられていてもよい。
 なお、本発明において、近赤外線カットフィルタとは、可視領域の波長の光(可視光)を透過させ、近赤外領域の波長の光(近赤外線)の少なくとも一部を遮光するフィルタを意味する。近赤外線カットフィルタは、可視領域の波長の光をすべて透過するものであってもよく、可視領域の波長の光のうち、特定の波長領域の光を透過させ、特定の波長領域の光を遮光するものであってもよい。また、本発明において、カラーフィルタとは、可視領域の波長の光のうち、特定の波長領域の光を透過させ、特定の波長領域の光を遮光するフィルタを意味する。また、本発明において、近赤外線透過フィルタとは、可視光を遮光し、近赤外線の少なくとも一部を透過させるフィルタを意味する。
 本発明の膜は、CCD(電荷結合素子)やCMOS(相補型金属酸化膜半導体)などの固体撮像素子や、赤外線センサ、画像表示装置などの各種装置に用いることができる。
<積層体>
 本発明の積層体は、支持体上に本発明の膜を有する。支持体としては、透明基材が挙げられ、ガラス基材であることが好ましく、銅を含有するガラス基材であることがより好ましい。特に本発明の膜を近赤外線カットフィルタとして用いる場合、本発明の膜を、銅を含有するガラス基材に積層することで、幅広い範囲の近赤外線を遮光することができる。
<近赤外線カットフィルタ>
 次に、本発明の近赤外線カットフィルタについて説明する。本発明の近赤外線カットフィルタは、上述した本発明の膜を有する。本発明の近赤外線カットフィルタにおいて、上述した本発明の膜は、支持体上に積層されていてもよい。この近赤外線カットフィルタは、固体撮像素子の用途に好ましく用いることができる。支持体としては、透明基材が挙げられる。また、支持体と本発明の膜との密着性を高めるため、支持体の表面には下地層などが設けられていてもよい。また、本発明の膜をガラス基材に積層して用いる場合においては、本発明の膜は、シランカップリング剤および/またはエポキシ基を有する化合物を含む組成物を用いて形成してなる膜であることが好ましい。この態様によれば、ガラス基材と本発明の膜との密着性をより強固にすることができる。
 本発明の近赤外線カットフィルタにおいて、上述した本発明の膜を支持体上に積層して用いる場合、近赤外線カットフィルタは、本発明の膜の他に、更に、誘電体多層膜を有することも好ましい。この態様によれば、視野角が広く、近赤外線遮蔽性に優れた近赤外線カットフィルタとすることができる。誘電体多層膜は、支持体の片面に設けてもよいし、両面に設けてもよい。誘電体多層膜を支持体の片面に設ける場合には、製造コストを抑えることができる。誘電体多層膜を支持体の両面に設ける場合には、高い強度を有し、反りの生じにくい近赤外線カットフィルタを得ることができる。また、誘電体多層膜は、支持体と接していてもよく、接していなくてもよい。本発明の近赤外線カットフィルタは、透明基材と誘電体多層膜との間に、本発明の膜を有し、本発明の膜と誘電体多層膜とが接していることが好ましい。このような構成とすることにより、本発明の膜が、誘電体多層膜により酸素や湿度から遮断され、近赤外線カットフィルタの耐光性や耐湿性が良化する。更には、視野角が広く、近赤外線遮蔽性に優れた近赤外線カットフィルタが得られ易い。
 なお、本発明において、誘電体多層膜とは、光の干渉の効果を利用して赤外線を遮光する膜である。具体的には、屈折率の異なる誘電体層(高屈折率材料層と低屈折率材料層)を、交互に2層以上積層してなる膜である。高屈折率材料層を構成する材料としては、屈折率が1.7以上(好ましくは1.7~2.5)の材料を用いることが好ましい。例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛または酸化インジウムを主成分とし酸化チタン、酸化錫および/または酸化セリウムなどを少量含有させたものが挙げられる。低屈折率材料層を構成する材料としては、屈折率が1.6以下(好ましくは1.2~1.6)の材料を用いることが好ましい。例えば、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウムおよび六フッ化アルミニウムナトリウムが挙げられる。高屈折率材料層および低屈折率材料層の各層の厚みは、遮断しようとする赤外線の波長λ(nm)の0.1λ~0.5λの厚みであることが好ましい。また、誘電体多層膜における高屈折率材料層と低屈折率材料層の合計の積層数は、2~100層が好ましく、2~60層がより好ましく、2~40層が更に好ましい。誘電体多層膜の詳細については、特開2014-41318号公報の段落番号0255~0259の記載を参酌でき、この内容は本明細書に組み込まれる。
 本発明の近赤外線カットフィルタが、本発明の膜と、支持体と、誘電体多層膜とを有する場合において、各層の積層の順序は特に限定はないが、例えば、以下の(1)~(10)の層構成が挙げられる。以下において、支持体を層A、本発明の膜を層B、誘電体多層膜を層Cと記載する。
(1)層A/層B/層C
(2)層A/層C/層B
(3)層C/層A/層B
(4)層B/層A/層B/層C
(5)層C/層A/層B/層C
(6)層B/層A/層C/層B
(7)層C/層A/層C/層B
(8)層C/層B/層A/層B/層C
(9)層C/層B/層A/層C/層B
(10)層B/層C/層A/層C/層B
 本発明の近赤外線カットフィルタは、本発明の膜の他に、更に、銅を含有する層、紫外線吸収層などを有していてもよい。近赤外線カットフィルタが、更に、銅を含有する層を有することで、視野角が広く、近赤外線遮蔽性に優れた近赤外線カットフィルタが得られ易い。また、近赤外線カットフィルタが、更に、紫外線吸収層を有することで、紫外線遮蔽性に優れた近赤外線カットフィルタとすることができる。紫外線吸収層としては、例えば、国際公開WO2015/099060号公報の段落番号0040~0070、0119~0145に記載の吸収層を参酌でき、この内容は本明細書に組み込まれる。銅を含有する層としては、銅錯体を含む組成物を用いて形成してなる層が挙げられる。
<近赤外線透過フィルタ>
 次に、本発明の近赤外線透過フィルタについて説明する。本発明の近赤外線透過フィルタは、上述した本発明の膜を有する。近赤外線透過フィルタとしては、例えば、可視光を遮光し、波長900nm以上の光を透過するフィルタが挙げられる。具体的な一例として、波長400~830nmの範囲の光の透過率の最大値が20%以下であり、波長1000~1300nmの範囲の光の透過率の最小値が80%以上である分光特性を有するフィルタが挙げられる。本発明の近赤外線カットフィルタにおいて、上述した本発明の膜は、支持体上に積層されていてもよい。支持体としては、上述したシリコンなどの半導体基材や、透明基材が挙げられる。本発明の近赤外線透過フィルタは、本発明の膜を用いた画素と、赤、緑、青、マゼンタ、黄、シアン、黒および無色から選ばれる画素とを有する態様も好ましい。本発明の近赤外線透過フィルタにおいて、上述した本発明の膜はパターンを有していてもよく、パターンを有さない膜(平坦膜)であってもよい。
<膜の製造方法>
 次に、本発明の膜の製造方法について説明する。本発明の膜は、本発明の樹脂組成物を塗布する工程を経て製造できる。
 本発明の膜の製造方法において、本発明の樹脂組成物は支持体上に塗布することが好ましい。支持体としては、シリコンなどの半導体基材や上述した透明基材が挙げられる。これらの基材には、有機膜や無機膜などが形成されていてもよい。有機膜の材料としては、例えば上述した樹脂が挙げられる。また、支持体には、電荷結合素子(CCD)、相補型金属酸化膜半導体(CMOS)、透明導電膜などが形成されていてもよい。また、支持体には、各画素を隔離するブラックマトリクスが形成されている場合もある。また、支持体には、必要により、上部の層との密着性改良、物質の拡散防止或いは基板表面の平坦化のために下塗り層が設けられていてもよい。また、支持体としてガラス基材を用いる場合においては、ガラス基材上に無機膜を形成したり、ガラス基材を脱アルカリ処理して用いることが好ましい。
 樹脂組成物の塗布方法としては、公知の方法を用いることができる。例えば、滴下法(ドロップキャスト);スリットコート法;スプレー法;ロールコート法;回転塗布法(スピンコーティング);流延塗布法;スリットアンドスピン法;プリウェット法(たとえば、特開2009-145395号公報に記載されている方法);インクジェット(例えばオンデマンド方式、ピエゾ方式、サーマル方式)、ノズルジェット等の吐出系印刷、フレキソ印刷、スクリーン印刷、グラビア印刷、反転オフセット印刷、メタルマスク印刷法などの各種印刷法;金型等を用いた転写法;ナノインプリント法などが挙げられる。インクジェットでの適用方法としては、特に限定されず、例えば「広がる・使えるインクジェット-特許に見る無限の可能性-、2005年2月発行、住ベテクノリサーチ」に示された方法(特に115ページ~133ページ)や、特開2003-262716号公報、特開2003-185831号公報、特開2003-261827号公報、特開2012-126830号公報、特開2006-169325号公報などに記載の方法が挙げられる。また、樹脂組成物の塗布方法については、国際公開WO2017/030174号公報、国際公開WO2017/018419号公報の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 樹脂組成物を塗布して形成した組成物層は、乾燥(プリベーク)してもよい。低温プロセスによりパターンを形成する場合は、プリベークを行わなくてもよい。プリベークを行う場合、プリベーク温度は、150℃以下が好ましく、120℃以下がより好ましく、110℃以下が更に好ましい。下限は、例えば、50℃以上とすることができ、80℃以上とすることもできる。プリベーク温度を150℃以下で行うことにより、例えば、イメージセンサの光電変換膜を有機素材で構成した場合において、有機素材の特性をより効果的に維持することができる。プリベーク時間は、10秒~3000秒が好ましく、40~2500秒がより好ましく、80~220秒がさらに好ましい。プリベークは、ホットプレート、オーブン等で行うことができる。
 プリベーク後、更に加熱処理(ポストベーク)を行ってもよい。ポストベークを行う場合、ポストベーク温度としては、例えば100~240℃が好ましい。膜硬化の観点から、180~240℃がより好ましい。ポストベーク時間としては、2~10分が好ましく、4~8分がより好ましい。ポストベークは、ホットプレート、オーブン等で行うことができる。
 本発明の膜の製造方法においては、更にパターンを形成する工程を含んでいてもよい。パターン形成方法としては、フォトリソグラフィ法を用いたパターン形成方法や、ドライエッチング法を用いたパターン形成方法が挙げられる。なお、本発明の膜を平坦膜として用いる場合には、パターンを形成する工程を行わなくてもよい。以下、パターンを形成する工程について詳細に説明する。
(フォトリソグラフィ法でパターン形成する場合)
 フォトリソグラフィ法でのパターン形成方法は、本発明の樹脂組成物を塗布して形成した組成物層に対しパターン状に露光する工程(露光工程)と、未露光部の組成物層を現像除去してパターンを形成する工程(現像工程)と、を含むことが好ましい。
<<露光工程>>
 露光工程では組成物層をパターン状に露光する。例えば、組成物層に対し、ステッパー等の露光装置を用いて、所定のマスクパターンを有するマスクを介して露光することで、組成物層をパターン露光することができる。これにより、露光部分を硬化することができる。露光に際して用いることができる放射線(光)としては、g線、i線等の紫外線が好ましく、i線がより好ましい。照射量(露光量)は、例えば、0.03~2.5J/cm2が好ましく、0.05~1.0J/cm2がより好ましく、0.08~0.5J/cm2が最も好ましい。露光時における酸素濃度については適宜選択することができ、大気下で行う他に、例えば酸素濃度が19体積%以下の低酸素雰囲気下(例えば、15体積%、5体積%、実質的に無酸素)で露光してもよく、酸素濃度が21体積%を超える高酸素雰囲気下(例えば、22体積%、30体積%、50体積%)で露光してもよい。また、露光照度は適宜設定することが可能であり、通常1000W/m2~100000W/m2(例えば、5000W/m2、15000W/m2、35000W/m2)の範囲から選択することができる。酸素濃度と露光照度は適宜条件を組み合わせてよく、例えば、酸素濃度10体積%で照度10000W/m2、酸素濃度35体積%で照度20000W/m2などとすることができる。
<<現像工程>>
 次に、露光後の組成物層における未露光部の組成物層を現像除去してパターンを形成する。未露光部の組成物層の現像除去は、現像液を用いて行うことができる。これにより、露光工程における未露光部の組成物層が現像液に溶出し、光硬化した部分だけが支持体上に残る。現像液としては、下地の固体撮像素子や回路などにダメージを与えない、アルカリ現像液が望ましい。現像液の温度は、例えば、20~30℃が好ましい。現像時間は、20~180秒が好ましい。また、残渣除去性を向上するため、現像液を60秒ごとに振り切り、更に新たに現像液を供給する工程を数回繰り返してもよい。
 現像液に用いるアルカリ剤としては、例えば、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、ジグリコールアミン、ジエタノールアミン、ヒドロキシアミン、エチレンジアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、エチルトリメチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド、コリン、ピロール、ピペリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンなどの有機アルカリ性化合物や、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウムなどの無機アルカリ性化合物が挙げられる。アルカリ剤は、分子量が大きい化合物の方が環境面および安全面で好ましい。現像液は、これらのアルカリ剤を純水で希釈したアルカリ性水溶液が好ましく使用される。アルカリ性水溶液のアルカリ剤の濃度は、0.001~10質量%が好ましく、0.01~1質量%がより好ましい。また、現像液には、界面活性剤を用いてもよい。界面活性剤の例としては、上述した界面活性剤が挙げられ、ノニオン系界面活性剤が好ましい。現像液は、移送や保管の便宜などの観点より、一旦濃縮液として製造し、使用時に必要な濃度に希釈してもよい。希釈倍率は特に限定されないが、例えば1.5~100倍の範囲に設定することができる。なお、このようなアルカリ性水溶液からなる現像液を使用した場合には、現像後純水で洗浄(リンス)することが好ましい。
 現像後、乾燥を施した後に加熱処理(ポストベーク)を行うこともできる。ポストベークは、膜の硬化を完全なものとするための現像後の加熱処理である。ポストベークを行う場合、ポストベーク温度は、例えば100~240℃が好ましい。膜硬化の観点から、180~230℃がより好ましい。
(ドライエッチング法でパターン形成する場合)
 ドライエッチング法でのパターン形成は、支持体上の組成物層を硬化して硬化物層を形成し、次いで、この硬化物層上にパターニングされたフォトレジスト層を形成し、次いで、パターニングされたフォトレジスト層をマスクとして硬化物層に対してエッチングガスを用いてドライエッチングするなどの方法で行うことができる。フォトレジスト層の形成においては、更にプリベーク処理を施すことが好ましい。特に、フォトレジスト層の形成プロセスとしては、露光後の加熱処理、現像後の加熱処理(ポストベーク処理)を実施する形態が望ましい。ドライエッチング法でのパターン形成については、特開2013-064993号公報の段落番号0010~0067の記載を参酌でき、この内容は本明細書に組み込まれる。
<固体撮像素子>
 本発明の固体撮像素子は、上述した本発明の膜を有する。本発明の固体撮像素子の構成としては、本発明の膜を有する構成であり、固体撮像素子として機能する構成であれば特に限定はない。例えば、以下のような構成が挙げられる。
 支持体上に、固体撮像素子の受光エリアを構成する複数のフォトダイオードおよびポリシリコン等からなる転送電極を有し、フォトダイオードおよび転送電極上にフォトダイオードの受光部のみ開口したタングステン等からなる遮光膜を有し、遮光膜上に遮光膜全面およびフォトダイオード受光部を覆うように形成された窒化シリコン等からなるデバイス保護膜を有し、デバイス保護膜上に、本発明の膜を有する構成である。さらに、デバイス保護膜上であって、本発明の膜の下(支持体に近い側)に集光手段(例えば、マイクロレンズ等。以下同じ)を有する構成や、本発明の膜上に集光手段を有する構成等であってもよい。また、カラーフィルタは、隔壁により例えば格子状に仕切られた空間に、各画素を形成する膜が埋め込まれた構造を有していてもよい。この場合の隔壁は各画素よりも低屈折率であることが好ましい。このような構造を有する撮像装置の例としては、特開2012-227478号公報、特開2014-179577号公報に記載の装置が挙げられる。
<画像表示装置>
 本発明の画像表示装置は、本発明の膜を含む。画像表示装置としては、液晶表示装置や有機エレクトロルミネッセンス(有機EL)表示装置などが挙げられる。画像表示装置の定義や詳細については、例えば「電子ディスプレイデバイス(佐々木 昭夫著、(株)工業調査会 1990年発行)」、「ディスプレイデバイス(伊吹 順章著、産業図書(株)平成元年発行)」などに記載されている。また、液晶表示装置については、例えば「次世代液晶ディスプレイ技術(内田 龍男編集、(株)工業調査会 1994年発行)」に記載されている。本発明が適用できる液晶表示装置に特に制限はなく、例えば、上記の「次世代液晶ディスプレイ技術」に記載されている色々な方式の液晶表示装置に適用できる。画像表示装置は、白色有機EL素子を有するものであってもよい。白色有機EL素子としては、タンデム構造であることが好ましい。有機EL素子のタンデム構造については、特開2003-45676号公報、三上明義監修、「有機EL技術開発の最前線-高輝度・高精度・長寿命化・ノウハウ集-」、技術情報協会、326-328ページ、2008年などに記載されている。有機EL素子が発光する白色光のスペクトルは、青色領域(430~485nm)、緑色領域(530~580nm)および黄色領域(580~620nm)に強い極大発光ピークを有するものが好ましい。これらの発光ピークに加えさらに赤色領域(650~700nm)に極大発光ピークを有するものがより好ましい。
<赤外線センサ>
 本発明の赤外線センサは、上述した本発明の膜を有する。本発明の赤外線センサの構成としては、本発明の膜を有する構成であり、赤外線センサとして機能する構成であれば特に限定はない。
 以下、本発明の赤外線センサの一実施形態について、図面を用いて説明する。
 図1において、符号110は、固体撮像素子である。固体撮像素子110の撮像領域上には、近赤外線カットフィルタ111と、近赤外線透過フィルタ114が配置されている。また、近赤外線カットフィルタ111上には、カラーフィルタ112が積層している。カラーフィルタ112および近赤外線透過フィルタ114の入射光hν側には、マイクロレンズ115が配置されている。マイクロレンズ115を覆うように平坦化層116が形成されている。
 近赤外線カットフィルタ111は本発明の樹脂組成物を用いて形成することができる。近赤外線カットフィルタ111の分光特性は、使用する赤外発光ダイオード(赤外LED)の発光波長に応じて選択される。
 カラーフィルタ112は、可視領域における特定波長の光を透過および吸収する画素が形成されたカラーフィルタであって、特に限定はなく、従来公知の画素形成用のカラーフィルタを用いることができる。例えば、赤色(R)、緑色(G)、青色(B)の画素が形成されたカラーフィルタなどが用いられる。例えば、特開2014-043556号公報の段落番号0214~0263の記載を参酌することができ、この内容は本明細書に組み込まれる。
 近赤外線透過フィルタ114は、使用する赤外LEDの発光波長に応じてその特性が選択される。例えば、赤外LEDの発光波長が850nmである場合、近赤外線透過フィルタ114は、厚み方向における光の透過率の、波長400~750nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、厚み方向における光の透過率の、波長900~1300nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であることが好ましい。また、例えば、赤外LEDの発光波長が940nmである場合、近赤外線透過フィルタ114は、厚み方向における光の透過率の、波長400~830nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、厚み方向における光の透過率の、波長1000~1300nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であることが好ましい。
 図1に示す赤外線センサにおいて、平坦化層116上には、近赤外線カットフィルタ111とは別の近赤外線カットフィルタ(他の近赤外線カットフィルタ)がさらに配置されていてもよい。他の近赤外線カットフィルタとしては、銅を含有する層および/または誘電体多層膜を有するものなどが挙げられる。これらの詳細については、上述したものが挙げられる。また、他の近赤外線カットフィルタとしては、デュアルバンドパスフィルタを用いてもよい。また、図1に示す赤外線センサにおいて、近赤外線カットフィルタ111とカラーフィルタ112の位置が入れ替わっても良い。また、固体撮像素子110と近赤外線カットフィルタ111との間、および/または、固体撮像素子110と近赤外線透過フィルタ114との間に他の層が配置されていてもよい。他の層としては、重合性化合物、樹脂および光重合開始剤とを含む組成物を用いて形成された有機物層などが挙げられる。また、カラーフィルタ112上に平坦化層が形成されていてもよい。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は、質量基準である。
[試験例1]
<近赤外線吸収有機顔料の製造>
 下記の表に記載の顔料、摩砕剤および粘結剤をラボプラストミル((株)東洋精機製作所製)に投入し、装置中の混練物の温度が下記表に記載の温度(ミリング温度)になるように温度コントロールして、下記表に記載のミリング時間にて混練した。
 混練研磨後の混練物を、24℃の水10Lで水洗処理して摩砕剤および粘結剤を取り除き、加熱オーブンで80℃24時間の乾燥処理を行って、ミリング顔料である近赤外線吸収有機顔料(実施例1~5)を得た。
 なお、比較例1は、ミリング処理を行っていない近赤外線吸収有機顔料である。
Figure JPOXMLDOC01-appb-T000031
 上記表に記載の材料は以下の通りである。
(顔料)
 顔料1:下記構造の化合物(近赤外線吸収有機顔料である)
Figure JPOXMLDOC01-appb-C000032

 顔料2:下記構造の化合物(近赤外線吸収有機顔料である)
Figure JPOXMLDOC01-appb-C000033

(摩砕剤)
 摩砕剤1:中性無水芒硝E(平均粒子径(体積基準の50%径(D50))=20μm、三田尻化学製)
 摩砕剤2:ナクルUM(平均粒子径(体積基準の50%径(D50))=50μm、ナイカイ塩業製)
(粘結剤)
 DEG:ジエチレングリコール
<評価>
(近赤外線吸収有機顔料の平均一次粒子径の測定)
 実施例1~5、比較例1の近赤外線吸収有機顔料の一次粒子を透過型電子顕微鏡により観察し、得られた写真から平均一次粒子径を求めた。具体的には、近赤外線吸収有機顔料の一次粒子の投影面積を求め、それに対応する円相当径を近赤外線吸収有機顔料の一次粒子径とした。400個の近赤外線吸収有機顔料の一次粒子についての一次粒子径の算術平均値を平均一次粒子径とした。
 (近赤外線吸収有機顔料の一次粒子の平均長短辺比)
 実施例1~5、比較例1の近赤外線吸収有機顔料の一次粒子を透過型電子顕微鏡により観察し、得られた写真から平均長短辺比を求めた。具体的には、投影された写真から、近赤外線吸収有機顔料の一次粒子の短辺と長辺との比(短辺/長辺)を求めて、長短辺比を算出した。
(近赤外線吸収有機顔料の粉末X線回折スペクトルの測定)
 測定装置として、リガク製 試料水平型強力X線回折装置 RINT-TTR IIIを使用し、回折角度2θ=5°~55°、電圧50kV、電流300mA、スキャンスピード4°/min、ステップ間隔0.1、スリット(散乱0.05mm、発散10mm、受光0.15mm)の条件で、実施例1~5、比較例1の近赤外線吸収有機顔料の粉末X線回折スペクトルを測定した。
(結晶化度の測定)
 粉末X線回折スペクトルにおいて、回折角度2θが5~15°の領域で最も低い点と、25~35°の領域で最も低い点を結んだ直線をベースラインとし、粉末X線回折スペクトルの実測値からベースラインの値を引いたスペクトル補正値を用いて、下記式を用いて結晶化度を測定した。
 結晶化度=[Ic/(Ia+Ic)]
 式中、Icは、回折角度2θが15°以上の領域において、粉末X線回折スペクトルにおける結晶に由来するピークの回折強度の最大値であり、Iaは、粉末X線回折スペクトルにおけるアモルファスに由来するピークの回折強度の最大値である。
 なお、半値全幅が1°以下のピークを結晶に由来するピークとする。また半値全幅が3°を超えるピークをアモルファスに由来するピークとする。
(分光特性)
 実施例および比較例の近赤外線吸収有機顔料の3.13質量部と、顔料誘導体1の0.63質量部と、分散剤1の2.25質量部と、プロピレングリコールモノメチルエーテルアセテート(PGMEA)の44質量部と、直径0.5mm径のジルコニアビーズの66質量部とを混合し、ペイントシェーカーで120分間分散処理を行った後、ジルコニアビーズをデカンテーションで分離して、分散液を調製した。
 顔料誘導体1:下記化合物
Figure JPOXMLDOC01-appb-C000034

 分散剤1:下記構造の樹脂(重量平均分子量=21000)。主鎖に付記した数値は繰り返し単位のモル比を表し、側鎖に付記した数値は、繰り返し単位の数を表す。
Figure JPOXMLDOC01-appb-C000035
 上記で得られた実施例および比較例の近赤外線吸収有機顔料を用いた分散液10質量部と、樹脂A((株)ダイセル製サイクロマーP (ACA)230AA)の10質量部とを混合して試料溶液を作製した。
 この試料溶液を、塗布後の膜厚が0.3μmになるように、ガラス基材上にスピンコート法で塗布し、その後ホットプレートを用いて、100℃で2分間加熱した。次にi線ステッパー露光装置FPA-3000i5+(Canon(株)製)を用い1000mJ/cm2で露光した。さらに、ホットプレートを用いて220℃で5分間加熱し、膜を形成した。膜が形成された基板に対して、分光光度計U-4100(日立ハイテクノロジーズ(株)製)を用いて、極大吸収波長、極大吸収波長における吸光度Amax、波長550nmにおける吸光度A550、極大吸収波長よりも50nm短い波長における吸光度A1をそれぞれ測定し、吸光度A550と吸光度Amaxとの比であるA550/Amax、吸光度A1と吸光度Amaxとの比であるA1/Amaxをそれぞれ算出した。A550/Amaxの値が小さいほど可視透明性に優れることを意味する。また、A1/Amaxの値が1に近いほど極大吸収波長近傍の広い範囲における吸収性に優れ、近赤外線遮蔽性に優れることを意味する。
Figure JPOXMLDOC01-appb-T000036
 上記表に示す通り、実施例の近赤外線吸収有機顔料は、比較例1よりも吸光度比A550/Amaxが小さく、かつ、吸光度比A1/Amaxが高い特性を有しており、実施例の近赤外線吸収有機顔料は、優れた可視透明性を有しつつ、近赤外線遮蔽性にも優れていた。
[試験例2]
<顔料分散液の調製>
(顔料分散液A-1)
 下記原料を、0.3mm径のジルコニアビーズを使用して、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))で、3時間、混合、分散して、顔料分散液A-1を調製した。
 実施例1の近赤外線吸収有機顔料・・・5.35質量部
 顔料誘導体1・・・2.15質量部
 分散剤1・・・6.0質量部
 プロピレングリコールメチルエーテルアセテート(PGMEA)・・・・86.5質量部
(顔料分散液A-2)
 実施例1の近赤外線吸収有機顔料の代わりに、実施例2の近赤外線吸収有機顔料を用いた以外は顔料分散液A-1と同様の方法で顔料分散液A-2を調製した。
(顔料分散液A-3)
 実施例1の近赤外線吸収有機顔料の代わりに、実施例3の近赤外線吸収有機顔料を用いた以外は顔料分散液A-1と同様の方法で顔料分散液A-3を調製した。
(顔料分散液A-4)
 実施例1の近赤外線吸収有機顔料の代わりに、実施例4の近赤外線吸収有機顔料を用いた以外は顔料分散液A-1と同様の方法で顔料分散液A-4を調製した。
(顔料分散液A-5)
 実施例1の近赤外線吸収有機顔料の代わりに、実施例5の近赤外線吸収有機顔料を用いた以外は顔料分散液A-1と同様の方法で顔料分散液A-5を調製した。
(顔料分散液A-6)
 実施例1の近赤外線吸収有機顔料の代わりに、比較例1の近赤外線吸収有機顔料を用いた以外は顔料分散液A-1と同様の方法で顔料分散液A-6を調製した。
<樹脂組成物の調製>
 下記表に記載の原料を混合して樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000037
 上記表に記載の原料は以下の通りである。
 顔料分散液A-1~A-6:上述した顔料分散液A-1~A-6
 色材B-1、B-2:下記構造の化合物
Figure JPOXMLDOC01-appb-C000038

 アルカリ可溶性樹脂1:下記構造の樹脂(Mw=41000、主鎖に付記した数値はモル比である。)
Figure JPOXMLDOC01-appb-C000039

 樹脂1:以下の方法で合成した樹脂(固形分濃度35質量%のプロピレングリコールモノメチルエーテルアセテート溶液)
 ベンジルメタクリレート14g、N-フェニルマレイミド12g、2-ヒドロキシエチルメタクリレート15g、スチレン10g 及びメタクリル酸20gをプロピレングリコールモノメチルエーテルアセテート200gに溶解し、更に2,2’-アゾイソブチロニトリル3g及びα-メチルスチレンダイマー5gを投入した。反応容器内を窒素パージ後、攪拌及び窒素バブリングしながら80℃で5時間加熱して樹脂1を合成した。
 添加剤1:ビス-(4-tert-ブチルフェニル)ヨードニウムノナフルオロブタンスルホナート
 エポキシ化合物1:EPICLON N-695(DIC(株)製)
 重合性化合物4:群栄化学工業社製レヂトップC-357(固形分濃度20質量%のプロピレングリコールモノメチルエーテルアセテート溶液)
 界面活性剤1:下記化合物(Mw=14000)。下記の式中、繰り返し単位の割合を示す%はモル%である。
Figure JPOXMLDOC01-appb-C000040

 界面活性剤2:FTX‐218D((株)ネオス製)
 有機溶剤1:プロピレングリコールメチルエーテルアセテート
 有機溶剤2:シクロヘキサノン
<膜の作製>
 樹脂組成物を、塗布後の膜厚が0.3μmになるように、ガラス基材上にスピンコート法で塗布し、その後ホットプレートを用いて、100℃で2分間加熱した。次にi線ステッパー露光装置FPA-3000i5+(Canon(株)製)を用い1000mJ/cm2で露光した。さらに、ホットプレートを用いて220℃で5分間加熱し、膜を形成した。
<分光特性の評価>
 膜が形成された基板に対して、分光光度計U-4100(日立ハイテクノロジーズ(株)製)を用いて、極大吸収波長、極大吸収波長における吸光度Amax、波長550nmにおける吸光度A550、極大吸収波長よりも50nm短い波長における吸光度A1をそれぞれ測定し、吸光度A550と吸光度Amaxとの比であるA550/Amax、吸光度A1と吸光度Amaxとの比であるA1/Amaxをそれぞれ算出した。A550/Amaxの値が小さいほど可視透明性に優れることを意味する。また、A1/Amaxの値が1に近いほど極大吸収波長近傍の広い範囲における吸収性に優れ、近赤外線遮蔽性に優れることを意味する。なお、実施例101~105、比較例101は、いずれも波長650~780nmの範囲に極大吸収波長を有していた。
<視野角依存性の評価>
 入射角を膜面に対し垂直(角度0度)及び40度に変化させ、波長600nm以上の可視領域から近赤外領域における、分光透過率の低下によるスロープの透過率が50%となる波長のシフト量を、下記基準に従って評価した。
 A:波長のシフト量が5nm未満
 B:波長のシフト量が5nm以上20nm未満
 C:波長のシフト量が20nm以上
Figure JPOXMLDOC01-appb-T000041
 上記表に示す通り、実施例は、比較例よりもA550/Amaxが小さく、かつ、A1/Amaxがより1に近い値を有していた。このため、実施例は、比較例よりも可視透明性が高く、近赤外線遮蔽性に優れていた。更には視野角依存性も良好であった。
[試験例3]
<顔料分散液の調製>
 下記の原料を、0.3mm径のジルコニアビーズを使用して、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))で、3時間、混合、分散して、顔料分散液B-1~B-7を調製した。
 (顔料分散液B-1)
 赤色顔料(C.I.Pigment Red 254)と黄色顔料(C.I.Pigment Yellow 139との混合顔料(赤色顔料:黄色顔料=12.5:5.5(質量比))・・・18.0質量部
 分散剤1・・・8.1質量部
 プロピレングリコールメチルエーテルアセテート(PGMEA)・・・73.1質量部
 (顔料分散液B-2)
 青色顔料(C.I.Pigment Blue 15:6)と紫色顔料(C.I.Pigment Violet 23)との混合顔料(青色顔料:紫色顔料=14.3:3.7(質量比))・・・18.0質量部
 分散剤1・・・3.1質量部
 アルカリ可溶性樹脂2・・・5.0質量部
 シクロヘキサノン・・・31.2質量部
 PGMEA・・・42.7質量部
 (顔料分散液B-3〕
 青色顔料(C.I.Pigment Blue 15:6)・・・12.5質量部
・分散剤2・・・4.4質量部
・PGMEA・・・83.01質量部
 (顔料分散液B-4)
 黄色顔料(C.I.Pigment Yellow 139)・・・11.0質量部
・分散剤2・・・4.4部
・顔料誘導体2・・・1.59質量部
・PGMEA・・・83.01質量部
 (顔料分散液B-5)
 青色顔料(C.I.Pigment Blue 15:6)・・・10.0質量部
 紫色顔料(C.I.Pigment Violet 23)・・・2.5質量部
 分散剤2・・・4.4質量部
 PGMEA・・83.01質量部
 (顔料分散液B-6)
 黒色顔料(Irgaphor Black)・・・12.59質量部
 分散剤3・・・4.4質量部
 PGMEA・・・83.01質量部
 (顔料分散液B-7)
 黒色顔料(C.I.Pigment Black 32)・・・12.59質量部
 分散剤2・・・4.4質量部
 PGMEA・・・83.01質量部
 顔料分散液B-1~B-7に用いた原料は以下の通りである。
 分散剤1:上述した分散剤1
 分散剤2:下記構造の樹脂(Mw=24000、主鎖に付記した数値はモル比であり、側鎖に付記した数値は繰り返し単位の数である)
Figure JPOXMLDOC01-appb-C000042

 分散剤3:下記構造の樹脂(Mw=20000、主鎖に付記した数値はモル比であり、側鎖に付記した数値は繰り返し単位の数である)
Figure JPOXMLDOC01-appb-C000043

 アルカリ可溶性樹脂2:後述するアルカリ可溶性樹脂2
 顔料誘導体2:下記構造の化合物
Figure JPOXMLDOC01-appb-C000044
<樹脂組成物の調製>
 下記表に記載の原料を混合して樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000045
 上記表に記載の原料は以下の通りである。
 顔料分散液A-1、A-6、B-1~B-7:上述した顔料分散液A-1、A-6、B-1~B-7
 アルカリ可溶性樹脂2:下記構造の樹脂(酸価:70mgKOH/g、Mw=11000、主鎖に付記した数値はモル比である。構造式中のMeはメチル基である。)
Figure JPOXMLDOC01-appb-C000046

 重合性化合物1:下記構造の化合物の混合物(左側化合物と右側化合物とのモル比が7:3の混合物)
Figure JPOXMLDOC01-appb-C000047

 重合性化合物2:下記構造の化合物
Figure JPOXMLDOC01-appb-C000048

 重合性化合物3:下記構造の化合物(a+b+c=3)
Figure JPOXMLDOC01-appb-C000049

 シランカップリング剤1:下記構造の化合物(以下の構造式中のEtはエチル基である)
Figure JPOXMLDOC01-appb-C000050

 重合禁止剤:p-メトキシフェノール
 紫外線吸収剤:UV-503(大東化学(株)製)
 光重合開始剤1:下記構造の化合物
Figure JPOXMLDOC01-appb-C000051

 光重合開始剤2:IRGACURE-OXE04(BASF社製)
 光重合開始剤3:IRGACURE-OXE02(BASF社製)
 光重合開始剤4:下記構造の化合物
Figure JPOXMLDOC01-appb-C000052

 界面活性剤1:上述した界面活性剤1
 有機溶剤1:プロピレングリコールメチルエーテルアセテート
<分光特性の評価>
 樹脂組成物を、塗布後の膜厚が0.3μmになるように、ガラス基材上にスピンコート法で塗布し、その後ホットプレートを用いて、100℃で2分間加熱した。次にi線ステッパー露光装置FPA-3000i5+(Canon(株)製)を用い1000mJ/cm2で露光した。さらに、ホットプレートを用いて220℃で5分間加熱し、膜を形成した。膜が形成された基板に対して、分光光度計U-4100(日立ハイテクノロジーズ(株)製)を用いて、波長400~1400nmの光の範囲の透過率、および、波長700nmの光の透過率を測定した。
<欠陥の評価>
 レジストCT-2000L溶液(富士フイルムエレクトロニクスマテリアルズ(株)製)を、シリコンウエハの上に膜厚2μmになるようにスピンコーターを用いて塗布し、220℃で1時間加熱乾燥させて、透明硬化膜(下塗り層)を形成した。
 得られた下塗り層付きシリコンウエハの下塗り層の上に、樹脂組成物を、乾燥膜厚が1.0μmになるようスピンコーターを用いて塗布し、100℃で120秒プリベークし、シリコンウエハ上に膜を形成した。この膜に含まれる異物を、異物評価装置コンプラスIII(アプライドマテリアルズ社製)を用いて検出し、検出された全ての異物から、歩留まり低下の原因となる最大幅1.0μm以上の異物(粗大粒子)を目視で分類した。分類された最大幅1.0μm以上の異物の数(1cm2あたりの数)をカウントし、得られた値を指標として欠陥性能の評価を行なった。
Figure JPOXMLDOC01-appb-T000053
 実施例は、波長400~830nmの範囲の光の透過率の最大値が20%以下であり、波長1000~1300nmの範囲の光の透過率の最小値が80%以上であった。また、上記表に示すように、実施例は、比較例よりも波長700nmにおける遮光性に優れていた。このため、実施例は、比較例よりもノイズの少ない近赤外線を透過させることができた。また、実施例は、比較例よりも異物が少なく、欠陥性能が良好であった。
[試験例4]
 実施例101~108の樹脂組成物を、製膜後の膜厚が1.0μmになるように、シリコンウエハ上にスピンコート法で塗布した。次いで、ホットプレートを用いて、100℃で2分間加熱した。次いで、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を用い、1000mJ/cm2の露光量にて、2μm四方のベイヤーパターンを有するマスクを介して露光した。
 次いで、水酸化テトラメチルアンモニウム(TMAH)0.3質量%水溶液を用い、23℃で60秒間パドル現像を行った。その後、スピンシャワーにてリンスを行い、さらに純水にて水洗した。次いで、ホットプレートを用いて、200℃で5分間加熱することで2μm四方のベイヤーパターン(近赤外線カットフィルタ)を形成した。
 次に、近赤外線カットフィルタのベイヤーパターン上に、Red組成物を製膜後の膜厚が1.0μmになるようにスピンコート法で塗布した。次いで、ホットプレートを用い、100℃で2分間加熱した。次いで、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を用い、1000mJ/cm2の露光量にて、2μm四方のベイヤーパターンを有するマスクを介して露光した。次いで、水酸化テトラメチルアンモニウム(TMAH)0.3質量%水溶液を用い、23℃で60秒間パドル現像を行った。その後、スピンシャワーにてリンスを行い、さらに純水にて水洗した。次いで、ホットプレートを用い、200℃で5分間加熱することで、近赤外線カットフィルタのベイヤーパターン上にRed組成物をパターニングした。同様にGreen組成物、Blue組成物を順次パターニングし、赤、緑および青の着色パターンを形成した。
 次に、上記着色パターン形成した膜上に、近赤外線透過フィルタ形成用組成物を、製膜後の膜厚が2.0μmになるようにスピンコート法で塗布した。次いで、ホットプレートを用いて100℃で2分間加熱した。次いで、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を用い、1000mJ/cm2の露光量にて、2μm四方のベイヤーパターンを有するマスクを介して露光した。次いで、水酸化テトラメチルアンモニウム(TMAH)0.3質量%水溶液を用い、23℃で60秒間パドル現像を行った。その後、スピンシャワーにてリンスを行い、さらに純水にて水洗した。次いで、ホットプレートを用いて、200℃で5分間加熱することで、近赤外線カットフィルタのパターンの抜け部分に、近赤外線透過フィルタのパターニングを行った。これを公知の方法に従い固体撮像素子に組み込んだ。
 得られた固体撮像素子について、低照度の環境下(0.001Lux)で赤外発光ダイオード(赤外LED)光源から光を照射し、画像の取り込みを行い、画像性能を評価した。画像上で被写体をはっきりと認識できた。また、入射角依存性が良好であった。
 試験例4で使用したRed組成物、Green組成物、Blue組成物および近赤外線透過フィルタ形成用組成物は以下の通りである。
(Red組成物)
 下記成分を混合し、撹拌した後、孔径0.45μmのナイロン製フィルタ(日本ポール(株)製)でろ過して、Red組成物を調製した。
 Red顔料分散液  ・・51.7質量部
 樹脂11  ・・・0.6質量部
 重合性化合物2  ・・・0.6質量部
 光重合開始剤11  ・・・0.4質量部
 界面活性剤11  ・・・4.2質量部
 紫外線吸収剤(UV-503、大東化学(株)製)  ・・・0.3質量部
 プロピレングリコールモノメチルエーテルアセテート(PGMEA)  ・・・42.6質量部
(Green組成物)
 下記成分を混合し、撹拌した後、孔径0.45μmのナイロン製フィルタ(日本ポール(株)製)でろ過して、Green組成物を調製した。
 Green顔料分散液  ・・・73.7質量部
 樹脂11  ・・・0.3質量部
 重合性化合物11  ・・・1.2質量部
 光重合開始剤11  ・・・0.6質量部
 界面活性剤11  ・・・4.2質量部
 紫外線吸収剤(UV-503、大東化学(株)製)  ・・・0.5質量部
 PGMEA  ・・・19.5質量部
(Blue組成物)
 下記成分を混合し、撹拌した後、孔径0.45μmのナイロン製フィルタ(日本ポール(株)製)でろ過して、Blue組成物を調製した。
 Blue顔料分散液  44.9質量部
 樹脂11  ・・・2.1質量部
 重合性化合物11  ・・・1.5質量部
 重合性化合物2  ・・・0.7質量部
 光重合開始剤11  ・・・0.8質量部
 界面活性剤11  ・・・4.2質量部
 紫外線吸収剤(UV-503、大東化学(株)製)  ・・・0.3質量部
 PGMEA  ・・・45.8質量部
(近赤外線透過フィルタ形成用組成物)
 下記成分を混合し、撹拌した後、孔径0.45μmのナイロン製フィルタ(日本ポール(株)製)でろ過して、近赤外線透過フィルタ形成用組成物を調製した。
 顔料分散液1-1  ・・・46.5質量部
 顔料分散液1-2  ・・・37.1質量部
 重合性化合物1  ・・・1.8質量部
 樹脂11  ・・・1.1質量部
 光重合開始剤12  ・・・0.9質量部
 界面活性剤11  ・・・4.2質量部
 重合禁止剤(p-メトキシフェノール)  ・・・0.001質量部
 シランカップリング剤1  ・・・0.6質量部
 PGMEA  ・・・7.8質量部
 Red組成物、Green組成物、Blue組成物および近赤外線透過フィルタ形成用組成物に使用した原料は以下の通りである。
・Red顔料分散液
 C.I.Pigment Red 254の9.6質量部と、C.I.Pigment Yellow 139の4.3質量部と、分散剤(Disperbyk-161、BYKChemie社製)の6.8質量部と、PGMEAの79.3質量部とからなる混合液を、ビーズミル(ジルコニアビーズ0.3mm径)により3時間混合および分散した。その後さらに、減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製)を用いて、2000kg/cm3の圧力下で流量500g/minとして分散処理を行なった。この分散処理を10回繰り返し、Red顔料分散液を得た。
・Green顔料分散液
 C.I.Pigment Green 36の6.4質量部と、C.I.Pigment Yellow 150の5.3質量部と、分散剤(Disperbyk-161、BYKChemie社製)の5.2質量部と、PGMEAの83.1質量部とからなる混合液を、ビーズミル(ジルコニアビーズ0.3mm径)により3時間混合および分散した。その後さらに、減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製)を用いて、2000kg/cm3の圧力下で流量500g/minとして分散処理を行なった。この分散処理を10回繰り返し、Green顔料分散液を得た。
・Blue顔料分散液
 C.I.Pigment Blue 15:6の9.7質量部と、C.I.Pigment Violet 23の2.4質量部と、分散剤(Disperbyk-161、BYKChemie社製)の5.5質量部と、PGMEAの82.4質量部とからなる混合液を、ビーズミル(ジルコニアビーズ0.3mm径)により3時間混合および分散した。その後さらに、減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製)を用いて、2000kg/cm3の圧力下で流量500g/minとして分散処理を行なった。この分散処理を10回繰り返し、Blue顔料分散液を得た。
・顔料分散液1-1
 下記組成の混合液を、0.3mm径のジルコニアビーズを使用して、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))で、3時間、混合、分散して、顔料分散液1-1を調製した。
・赤色顔料(C.I.Pigment Red 254)及び黄色顔料(C.I.Pigment Yellow 139)からなる混合顔料  ・・・11.8質量部
・樹脂(Disperbyk-111、BYKChemie社製)  ・・・9.1質量部
・PGMEA  ・・・79.1質量部
・顔料分散液1-2
 下記組成の混合液を、0.3mm径のジルコニアビーズを使用して、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))で、3時間、混合、分散して、顔料分散液1-2を調製した。
・青色顔料(C.I.Pigment Blue 15:6)及び紫色顔料(C.I.Pigment Violet 23)からなる混合顔料  ・・・12.6質量部
・樹脂(Disperbyk-111、BYKChemie社製)  ・・・2.0質量部
・樹脂A  ・・・3.3質量部
・シクロヘキサノン  ・・・31.2質量部
・PGMEA  ・・・50.9質量部
 樹脂A:下記構造の樹脂(Mw=14,000、構造単位における比はモル比である)
Figure JPOXMLDOC01-appb-C000054
・重合性化合物1:上述した重合性化合物1
・重合性化合物2:上述した重合性化合物2
・重合性化合物11:KAYARAD DPHA(日本化薬(株)製)
・樹脂11:上述したアルカリ可溶性樹脂2
・光重合開始剤11:IRGACURE-OXE01(BASF社製)
・光重合開始剤12:下記構造の化合物
Figure JPOXMLDOC01-appb-C000055

・界面活性剤11:下記混合物(Mw=14000)の1質量%PGMEA溶液。下記の式中、繰り返し単位の割合を示す%は質量%である。
Figure JPOXMLDOC01-appb-C000056
・シランカップリング剤1:上述したシランカップリング剤1。
110:固体撮像素子、111:近赤外線カットフィルタ、112:カラーフィルタ、114:近赤外線透過フィルタ、115:マイクロレンズ、116:平坦化層
 

Claims (19)

  1.  波長650~1400nmの範囲に極大吸収波長を有する近赤外線吸収有機顔料であって、
     前記近赤外線吸収有機顔料は、波長550nmにおける吸光度A550と前記極大吸収波長における吸光度Amaxとの比であるA550/Amaxが0.1未満であり、
     前記近赤外線吸収有機顔料の平均一次粒子径が1~200nmであり、
     前記近赤外線吸収有機顔料の粉末X線回折スペクトルにおいて下記式で表される結晶化度の値が0.70~0.98である、近赤外線吸収有機顔料;
     結晶化度=[Ic/(Ia+Ic)]
     式中、Icは、回折角度2θが15°以上の領域において、粉末X線回折スペクトルにおける結晶に由来するピークの回折強度の最大値であり、
     Iaは、粉末X線回折スペクトルにおけるアモルファスに由来するピークの回折強度の最大値である。
  2.  前記近赤外線吸収有機顔料の極大吸収波長よりも50nm短い波長における吸光度A1と、前記近赤外線吸収有機顔料の極大吸収波長における吸光度Amaxとの比であるA1/Amaxが0.57~0.9である、請求項1に記載の近赤外線吸収有機顔料。
  3.  前記近赤外線吸収有機顔料の極大吸収波長よりも50nm短い波長における吸光度A1と、前記近赤外線吸収有機顔料の極大吸収波長における吸光度Amaxとの比であるA1/Amaxは、前記近赤外線吸収有機顔料の平均一次粒子径が1500nmである場合の値よりも5%以上高い、請求項1または2に記載の近赤外線吸収有機顔料。
  4.  前記近赤外線吸収有機顔料は、波長650~780nmの範囲に極大吸収波長を有する、請求項1~3のいずれか1項に記載の近赤外線吸収有機顔料。
  5.  前記近赤外線吸収有機顔料の一次粒子の平均長短辺比が0.3~0.99である、請求項1~4のいずれか1項に記載の近赤外線吸収有機顔料。
  6.  前記近赤外線吸収有機顔料が、ピロロピロール化合物およびスクアリリウム化合物から選ばれる少なくとも1種である、請求項1~5のいずれか1項に記載の近赤外線吸収有機顔料。
  7.  請求項1~6のいずれか1項に記載の近赤外線吸収有機顔料と、樹脂とを含む樹脂組成物。
  8.  更に、赤外線を透過させて可視光を遮光する色材を含む、請求項7に記載の樹脂組成物。
  9.  波長650~1400nmの範囲に極大吸収波長を有し、波長550nmにおける吸光度A550と前記極大吸収波長における吸光度Amaxとの比であるA550/Amaxが0.1未満である近赤外線吸収顔料をミリング処理して、平均一次粒子径を1~200nmとし、粉末X線回折スペクトルにおいて下記式で表される結晶化度の値を0.70~0.98とする、近赤外線吸収有機顔料の製造方法;
     結晶化度=[Ic/(Ia+Ic)]
     式中、Icは、回折角度2θが15°以上の領域において、粉末X線回折スペクトルにおける結晶に由来するピークの回折強度の最大値であり、
     Iaは、粉末X線回折スペクトルにおけるアモルファスに由来するピークの回折強度の最大値である。
  10.  波長650~1400nmの範囲に極大吸収波長を有し、波長550nmにおける吸光度A550と前記極大吸収波長における吸光度Amaxとの比であるA550/Amaxが0.1未満である近赤外線吸収顔料をミリング処理して、平均一次粒子径を1~200nmとし、粉末X線回折スペクトルにおいて下記式で表される結晶化度の値を0.70~0.98とする、近赤外線吸収有機顔料の分光調整方法;
     結晶化度=[Ic/(Ia+Ic)]
     式中、Icは、回折角度2θが15°以上の領域において、粉末X線回折スペクトルにおける結晶に由来するピークの回折強度の最大値であり、
     Iaは、粉末X線回折スペクトルにおけるアモルファスに由来するピークの回折強度の最大値である。
  11.  前記ミリング処理後の近赤外線吸収有機顔料の極大吸収波長よりも50nm短い波長における吸光度A1と、前記近赤外線吸収有機顔料の極大吸収波長における吸光度Amaxとの比であるA1/Amaxは、前記ミリング処理前の近赤外線吸収有機顔料の値よりも5%以上高い、請求項10に記載の近赤外線吸収有機顔料の分光調整方法。
  12.  請求項7または8に記載の樹脂組成物を用いて得られる膜。
  13.  支持体上に請求項12に記載の膜を有する積層体。
  14.  前記支持体が銅を含有するガラス基材である、請求項13に記載の積層体。
  15.  請求項12に記載の膜を有する近赤外線カットフィルタ。
  16.  請求項12に記載の膜を有する近赤外線透過フィルタ。
  17.  請求項12に記載の膜を有する固体撮像素子。
  18.  請求項12に記載の膜を有する画像表示装置。
  19.  請求項12に記載の膜を有する赤外線センサ。
     
PCT/JP2018/030562 2017-09-11 2018-08-17 近赤外線吸収有機顔料、樹脂組成物、近赤外線吸収有機顔料の製造方法、近赤外線吸収有機顔料の分光調整方法、膜、積層体、近赤外線カットフィルタ、近赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサ WO2019049635A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019540861A JP6976341B2 (ja) 2017-09-11 2018-08-17 近赤外線吸収有機顔料、樹脂組成物、近赤外線吸収有機顔料の製造方法、近赤外線吸収有機顔料の分光調整方法、膜、積層体、近赤外線カットフィルタ、近赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017174051 2017-09-11
JP2017-174051 2017-09-11

Publications (1)

Publication Number Publication Date
WO2019049635A1 true WO2019049635A1 (ja) 2019-03-14

Family

ID=65633883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030562 WO2019049635A1 (ja) 2017-09-11 2018-08-17 近赤外線吸収有機顔料、樹脂組成物、近赤外線吸収有機顔料の製造方法、近赤外線吸収有機顔料の分光調整方法、膜、積層体、近赤外線カットフィルタ、近赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサ

Country Status (3)

Country Link
JP (1) JP6976341B2 (ja)
TW (1) TW201912757A (ja)
WO (1) WO2019049635A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772902B (zh) * 2019-09-25 2022-08-01 日商日本電信電話股份有限公司 攝像元件及攝像裝置
WO2023095828A1 (ja) * 2021-11-25 2023-06-01 三菱ケミカル株式会社 着色樹脂組成物、着色樹脂組成物セット、及びカラーフィルタ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071356A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 赤外線カットフィルム、赤外線カット合わせガラスおよび赤外線カット部材
WO2016052091A1 (ja) * 2014-10-03 2016-04-07 富士フイルム株式会社 近赤外線吸収組成物、硬化性組成物、硬化膜、近赤外線カットフィルタ、固体撮像素子、赤外線センサ、カメラモジュール、加工色素および加工色素の製造方法
WO2017038252A1 (ja) * 2015-09-04 2017-03-09 富士フイルム株式会社 材料、組成物、硬化性組成物、硬化膜、光学フィルタ、固体撮像素子、赤外線センサ、カメラモジュールおよび材料の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133099A1 (ja) * 2015-02-18 2016-08-25 旭硝子株式会社 光学フィルタおよび撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071356A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 赤外線カットフィルム、赤外線カット合わせガラスおよび赤外線カット部材
WO2016052091A1 (ja) * 2014-10-03 2016-04-07 富士フイルム株式会社 近赤外線吸収組成物、硬化性組成物、硬化膜、近赤外線カットフィルタ、固体撮像素子、赤外線センサ、カメラモジュール、加工色素および加工色素の製造方法
WO2017038252A1 (ja) * 2015-09-04 2017-03-09 富士フイルム株式会社 材料、組成物、硬化性組成物、硬化膜、光学フィルタ、固体撮像素子、赤外線センサ、カメラモジュールおよび材料の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772902B (zh) * 2019-09-25 2022-08-01 日商日本電信電話股份有限公司 攝像元件及攝像裝置
WO2023095828A1 (ja) * 2021-11-25 2023-06-01 三菱ケミカル株式会社 着色樹脂組成物、着色樹脂組成物セット、及びカラーフィルタ

Also Published As

Publication number Publication date
JP6976341B2 (ja) 2021-12-08
TW201912757A (zh) 2019-04-01
JPWO2019049635A1 (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6731475B2 (ja) 感光性組成物、カラーフィルタ、パターン形成方法、固体撮像素子および画像表示装置
WO2018043185A1 (ja) 組成物、膜、近赤外線カットフィルタ、パターン形成方法、積層体、固体撮像素子、画像表示装置、カメラモジュールおよび赤外線センサ
JP7037568B2 (ja) 樹脂組成物、膜、近赤外線カットフィルタ、赤外線透過フィルタ、固体撮像素子、画像表示装置、赤外線センサおよびカメラモジュール
JPWO2016158114A1 (ja) 着色感光性組成物、硬化膜、パターン形成方法、遮光膜付き赤外光カットフィルタ、固体撮像素子、画像表示装置および赤外線センサ
WO2018043218A1 (ja) 感光性組成物、硬化膜、光学フィルタ、積層体、パターン形成方法、固体撮像素子、画像表示装置および赤外線センサ
JP7142740B2 (ja) 硬化性組成物、硬化膜、硬化膜の製造方法、近赤外線カットフィルタ、固体撮像素子、画像表示装置および赤外線センサ
JP6745329B2 (ja) 感放射線性組成物、光学フィルタ、積層体、パターン形成方法、固体撮像素子、画像表示装置および赤外線センサ
WO2019065021A1 (ja) 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置および赤外線センサ
WO2018047584A1 (ja) 組成物、膜の製造方法、近赤外線カットフィルタの製造方法、固体撮像素子の製造方法、画像表示装置の製造方法および赤外線センサの製造方法
WO2019107015A1 (ja) 組成物、膜、赤外線透過フィルタ、固体撮像素子および光センサ
WO2019013108A1 (ja) 組成物、膜、赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサ
JP7011722B2 (ja) 組成物、膜、光学フィルタ、積層体、固体撮像素子、画像表示装置および赤外線センサ
WO2019059075A1 (ja) 着色組成物、硬化膜、パターン形成方法、カラーフィルタ、固体撮像素子及び画像表示装置
WO2018101189A1 (ja) 顔料分散液、硬化性組成物、膜、近赤外線カットフィルタ、固体撮像素子、画像表示装置、および、赤外線センサ
WO2019150833A1 (ja) 組成物、膜、赤外線透過フィルタおよび固体撮像素子
WO2018139534A1 (ja) 組成物、膜、赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサ
WO2018163702A1 (ja) 積層体、光学フィルタ、固体撮像素子、画像表示装置、赤外線センサおよびキット
JP7113907B2 (ja) 組成物、膜、光学フィルタ、固体撮像素子、赤外線センサ、光学フィルタの製造方法、カメラモジュール、化合物、及び、分散組成物
WO2017170339A1 (ja) 組成物、膜、光学フィルタ、積層体、固体撮像素子、画像表示装置および赤外線センサ
JPWO2018034082A1 (ja) 組成物、硬化膜、赤外線透過フィルタ、固体撮像素子および赤外線センサ
WO2018163986A1 (ja) フィルタ、光センサ、固体撮像素子および画像表示装置
WO2019054281A1 (ja) 組成物、膜、積層体、赤外線透過フィルタ、固体撮像素子および赤外線センサ
WO2018056127A1 (ja) 近赤外線吸収有機顔料、顔料分散液、硬化性組成物、膜、近赤外線カットフィルタ、積層体、固体撮像素子、画像表示装置および赤外線センサ
KR20200043453A (ko) 착색 감광성 조성물 및 광학 필터의 제조 방법
JP6976341B2 (ja) 近赤外線吸収有機顔料、樹脂組成物、近赤外線吸収有機顔料の製造方法、近赤外線吸収有機顔料の分光調整方法、膜、積層体、近赤外線カットフィルタ、近赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540861

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853794

Country of ref document: EP

Kind code of ref document: A1