[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019048780A1 - Procédé de définition d'une plage de mesure d'un capteur de position inductif - Google Patents

Procédé de définition d'une plage de mesure d'un capteur de position inductif Download PDF

Info

Publication number
WO2019048780A1
WO2019048780A1 PCT/FR2018/052171 FR2018052171W WO2019048780A1 WO 2019048780 A1 WO2019048780 A1 WO 2019048780A1 FR 2018052171 W FR2018052171 W FR 2018052171W WO 2019048780 A1 WO2019048780 A1 WO 2019048780A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sin
winding
cor
cosine
Prior art date
Application number
PCT/FR2018/052171
Other languages
English (en)
Inventor
Alain Fontanet
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to KR1020207010002A priority Critical patent/KR20200051021A/ko
Priority to CN201880057912.9A priority patent/CN111065896B/zh
Priority to US16/643,624 priority patent/US11441925B2/en
Publication of WO2019048780A1 publication Critical patent/WO2019048780A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils
    • G01D5/2275Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils by a movable non-ferromagnetic conductive element

Definitions

  • the present invention relates to a method for defining a measuring range of a non-contact inductive position sensor in order to obtain a measurement window for the largest and most regular sensor possible.
  • the inductive position sensor is adapted for detection of a displacement of at least one target by comprising at least a first receiving winding generating a sine signal during the detection of said at least one target and at least a second receiving winding generating a cosine signal when detecting said at least one target.
  • each receiving winding comprises at least two winding meshes.
  • the parameters of sine and cosine signals in particular the amplitude and the period of the sinusoidal signals, are respectively a function of dimension and positioning parameters of the said at least two winding meshes.
  • an inductive position sensor defines a measurement spatial window, for example an annular or linear sector, which is traversed periodically by one or more moving targets, most frequently in rotation.
  • an inductive position sensor comprises, in known manner, a printed circuit support 22, most frequently in the form of a card.
  • the printed circuit support 22 is configured accordingly.
  • the printed circuit support 22 is represented in a linear manner, that is to say flat.
  • This printed circuit support 22 comprises a primary winding 24 and two secondary windings 25Sa, 26Ca coupled to the primary winding 24.
  • the windings 24, 25Sa, 26Ca can be connected to an electronic module for managing said windings 24, 25Sa, 26Ca, this electronic module not being illustrated in FIG. 1.
  • a primary winding makes it possible to generate a magnetic field during the current flow in said primary winding. The magnetic field thus created is perceived by the secondary windings, and induces a voltage in said secondary windings.
  • One or more targets made of a conductive material to allow the circulation of currents, carried by the element whose displacement is to follow, move relative to the windings 24, 25Sa, 26Ca.
  • the target modifies the magnetic coupling between the primary winding 24 and the two secondary windings 25Sa, 26Ca.
  • the primary winding 24 is designated as the emitter winding while the secondary windings 25Sa, 26Ca are designated as the receiving windings.
  • the electrical voltages at the terminals of the receiving windings 25Sa, 26Ca it is possible to deduce the precise position of the target in said measurement window F. Consequently, the position of the element whose displacement can be deduced can be deduced therefrom. is followed and who carries the target (s).
  • the receiving windings 25Sa, 26Ca placed in the vicinity of said target see a smaller amount of flux of the magnetic field than if the target was absent. If, for example, a receiving winding 25Sa, 26Ca consists of two loops of opposite orientation and the target moves over one then the other of these loops, this receiving winding 25Sa, 26Ca sees, for example, compared to a mean value zero, a relative increase and then a relative decrease in the amount of flux of the magnetic field that passes through it.
  • the receiver windings 25Sa, 26Ca are of different types.
  • a receiver winding called "sinus” 25Sa adapted to deliver a sine signal during a passage of a target in the region, is distinguished on the one hand.
  • measurement window F and a so-called “cosine” receiver winding 26Ca adapted to deliver a cosine signal during the passage of a target in the measurement window F.
  • the sine / cosine signals are correlated temporally, this by a calculation of the arctangent , to accurately determine the position of the target.
  • target forming sine and cosine signals is meant both a single target which interacts with receiving windings and two target parts or at least two consecutive shifted targets during shifting which interact simultaneously with receiving windings.
  • the sinus receiver winding 25Sa comprises an MS-oriented whole mesh and a positively oriented MS + whole mesh while the cosine receiver coil 26Ca comprises a first one. half-mesh positive 1 ⁇ 2 MC +, a whole mesh negative MC- and a second demi-mesh positive 1 ⁇ 2 MC +.
  • the problem underlying the present invention is, for an inductive position sensor having a measuring window for the detection of one or more moving targets, to increase the length of the measuring window and the accuracy of the detection. of the target.
  • the present invention relates to a method of defining a measurement range called useful stroke of an inductive position sensor during its design, the sensor being adapted for detection of a displacement of at least one target comprising at least a first receiving winding generating a sine signal upon detection of said at least one target and at least one second receiving winding generating a cosine signal upon detection of said at least one target, each receiving winding comprising at least one two winding meshes, sinus and cosine signal parameters being respectively a function of dimension and positioning parameters of said at least two winding meshes, remarkable in that the cosine signal is taken as a reference signal between the two sinus signals and cosine for an adaptation of at least one parameter of the sine signal as a function of a corresponding parameter of the cosine signal, at least one of said dimension and positioning parameters of said at least two meshes of said at least one first receiver winding being configured to generate a sine signal having said at least one parameter of the sine signal matched to the cosine signal.
  • the definition of the measurement range consists of its formatting according to parameters of the cosine and sinus receiver windings so that the measuring range is optimal by being as large as possible and having a high linearity with little dependence of the measured measurements. depending on the points of the measuring range.
  • an offset between the receiver windings makes it possible to form sine and cosine signals from a receiver winding form initially defined only for a particular winding. sinus signal.
  • An offset of a quarter period that is to say half a mesh, makes it possible to form a cosine winding by taking advantage of the mathematical relationship that links a sine to a cosine to form a cosine signal.
  • cosine and sine signals are readapted based on a reference sine signal.
  • a sine signal received for an inductive sensor is less deformed than a cosine signal and therefore serves as a correction model during a design stage.
  • the present invention follows the opposite approach. It is the cosine signal that serves as a model for an adaptation of the sine signal. It is possible, however, that this is a corrected cosine signal that can serve as a model for the development of a sine signal.
  • said at least one parameter of the sine signal adapted to the cosine signal is chosen individually or in combination from among the following parameters: a sine wave amplitude, a sine wave period or wavelength and a line deviation basic sinus signal.
  • the period or wavelength of the sine signal is determined to be equal to x times the period or wavelength of the cosine signal, x being between 0.79 and 0.93, the amplitude of the sine signal being equal to the amplitude of the cosine signal and the deviation from the baseline of the sine signal being determined to be merged with the baseline of the cosine signal.
  • the cosine function is the reference function. Having equal amplitudes and baselines combined by taking as a reference the cosine function, as provided by the present invention, is not equivalent to having equal amplitudes and baselines combined by taking as a reference the sinus function, as proposes the state of the art.
  • the respective periods of the two signals or cosine and sinus functions may be different.
  • the period or wavelength of the sine signal is determined to be equal to 0.86 times the period or wavelength of the cosine signal.
  • the amplitude of the sine signal is modified by adapting a width of said at least two meshes of said at least one first receiving winding
  • the period of the sine signal is modified by adaptation of the length of said at least two meshes of said at least one first receiving winding, a smaller width or length respectively corresponding to a decrease of the amplitude or period of the sine signal
  • the deviation from the baseline of the sine signal of said at at least one first receiving winding is obtained by a transverse translation of said at least two meshes of said at least one first receiving winding generating the sine signal with respect to said at least two meshes of said at least one second receiving winding.
  • said at least one first receiving winding generating a sine signal thus modified and said at least one second receiving winding generating a cosine signal are formed on a printed circuit support.
  • the invention also relates to an inductive position sensor adapted to detect a displacement of at least one target, said sensor comprising a printed circuit support supporting at least a first receiver winding adapted to generating a sine signal upon detection of said at least one target and at least a second receiving winding adapted to generate a cosine signal upon detection of said at least one target, each receiving winding having at least two winding meshes formed on the printed circuit support, size and positioning parameters of said at least two winding cells on the printed circuit support defining respective parameters of the sine and cosine signals, the sensor comprising at least one emitter winding adapted to induce a electrical voltage in said receiver windings, the inductive position sensor being remarkable in that at least one parameter of said at least two winding cells of said at least one first receiving winding is adapted to generate the predetermined sine signal according to the corresponding parameter at least two winding meshes said at least one second receiver winding adapted to generate the cosine signal.
  • several parameters of said at least two winding cells of said at least one first receiving winding are adapted to generate the sine signal with a period or wavelength of the sine signal equal to x times the period or wavelength of the cosine signal, x being between 0.79 and 0.93, the amplitude of the sine signal being equal to the amplitude of the cosine signal and the deflection from the signal baseline sinus being determined to be confused with the baseline of the cosine signal.
  • the emitter winding is an angular emitter winding, said at least one first receiving winding and a second receiving winding being angular.
  • the invention also relates to an assembly having a fixed part and a moving part, at least one target being mounted on the movable part, remarkable in that it comprises such an inductive position sensor, the inductive position sensor being mounted on the fixed part and adapted to detect a displacement of said at least one target during a displacement of the movable part.
  • the assembly is mounted in a motor vehicle, the moving part being in the form of one or comprising a movable axis carrying said at least one target.
  • FIG. 1 is a schematic representation of an emitter winding, a sinus winding and a cosine winding in an inductive position sensor according to the prior art
  • FIG. 2 is a diagrammatic representation of cosine and sine signals provided by an inductive position sensor during detection of a moving target according to the prior art, with a theoretical cosine signal, a cosine signal actually obtained, a signal theoretical sine and a sinus signal corrected according to the actually obtained cosine signal,
  • FIGS. 3 and 4 respectively show linearity and drift curves as a function of the gap and the receiver windings configured to generate respectively a sine signal and a cosine signal, these curves being obtained for a sensor according to the prior art and these windings forming part of an inductive position sensor according to the prior art,
  • FIGS. 6 and 7 respectively show linearity and drift curves as a function of the gap and the receiver windings configured to generate a sine signal and a cosine signal respectively, these curves being obtained for a sensor according to an embodiment of FIG. the present invention and these windings forming part of an inductive position sensor according to an embodiment of the present invention,
  • FIGS. 5 and 8 show a measurement window of an inductive position sensor respectively according to the state of the art and according to one embodiment of the present invention, the measurement window for each of these FIGS. 5 and 8 comprising a transmitting winding, sinus and cosine windings, the sinus windings having been modified in FIG. 8 with respect to FIG. 5 as a function of a cosine signal delivered by the cosine windings,
  • FIG. 9 shows a schematic perspective view of an assembly comprising a fixed part and a moving part with at least one target mounted on the moving part and an inductive position sensor mounted on the fixed part, the sensor being able to be a sensor.
  • the present invention relates to a method of defining, during a design of an inductive position sensor 2, a measurement range called the useful travel of the sensor 2.
  • the position sensor 2 inductive is adapted for detecting a displacement of at least one target 3 carried by an element whose displacement is to be detected and measured. This displacement can be linear or rotary or even a combination of several displacements.
  • the assembly 1 may be an electric motor 1 comprising a part of stator 1 1 and a rotor portion 12 connected to an output shaft 13.
  • a position sensor 2 is fixedly mounted relative to the stator portion 1 1 of the engine 1 and is adapted to detect the position of targets 3 fixed to the part rotor 12 of the engine 1. In known manner, the detection of the position of the targets 3 is performed by voltage measurements at the output of the position sensor 2.
  • the inductive position sensor comprises at least a first receiving winding 25S, 25Sa generating a sine signal during the detection of said minus one target 3 and at least one second receiver winding 26C, 26Ca generating a cosine signal COS upon detection of said at least one target 3.
  • Each receiving winding 25S, 25Sa, 26C, 26Ca comprises at least two winding cells MS + , MS, MC +, MC-.
  • FIG. 2 shows four signals including two cosine signals and two sine signals.
  • the COS signal t indicates a theoretical signal giving a perfect cosine signal while the COS signal is the signal actually obtained by the sensor and which is kept as reference.
  • FIG. 2 also shows a theoretical signal giving a perfect sinus signal SIN t and a corrected sine signal SIN cor as a function of the cosine signal actually obtained COS.
  • the respective amplitudes for the sine and cosine signals respectively Asin and Acos are also referenced, as are the half-periods of the sine and cosine signals 1 / 2Psin and 1 / 2Pcos, from which a respective period Psin or Pcos can be extrapolated. It will therefore be mentioned in the present application a sinus signal period Psin and a cosine signal period Pcos although they are half-periods 1 / 2Psin and 1 / 2Pcos which are referenced in the figures. It is also referenced a deflection from a baseline B of the sine signal.
  • parameters Asin, Acos, Psin, Pcos, B of sine and cosine signals are respectively a function of dimension and positioning parameters L, I, B of said at least two winding cells MS +, MS-, MC +, MC-.
  • the cosine signal COS is taken as a signal of reference between the two sine and COS cosine signals for an adaptation of at least one parameter Asin, Psin, B of the sinus signal then said corrected SIN cor as a function of a parameter corresponding to cos, cos B, of the COS cosign signal.
  • At least one of said dimension and positioning parameters L, I, B of said at least two meshes MS +, MS- of said at least one first receive winding 25S is configured to generate a sine signal SIN cor having said at least one parameter Asin, Psin, B of the sine signal SIN adapted to a corresponding parameter Acos, Pcos, B of the cosine signal COS.
  • the invention also relates to an inductive position sensor 2 adapted to detect a displacement of at least one target 3 carried by an element 1 for detecting and measuring the displacement of at least one moving part.
  • the inductive position sensor 2 comprises a printed circuit support 22, for example a flat printed circuit board for a linear or annular inductive sensor 2 for an inductive sensor 2 of angular position.
  • the printed circuit support 22 carries at least a first receiving winding 25S adapted to generate a sine signal SIN during the detection of said at least one target 3 and at least a second receiving winding 26C adapted to generate a cosine signal COS during the detection of said at least one target 3.
  • a first receiving winding 25S adapted to generate a sine signal SIN during the detection of said at least one target 3
  • at least a second receiving winding 26C adapted to generate a cosine signal COS during the detection of said at least one target 3.
  • Figure 8 showing an embodiment according to the invention, as in Figure 5 showing a printed circuit support 22 of the prior art with regard to the receivers 25Sa and 26Ca windings there are several 25S and 25C receiver windings for a respective cosine and sine signal.
  • Each receiving winding 25S, 26C comprises at least two winding meshes MS +, MS-, MC +, MC- formed on the printed circuit support 22, dimension and positioning parameters L, I, B of said at least two d-links.
  • winding MS +, MS-, MC +, MC- on the printed circuit support 22 defining respective parameters A, P, B of the sin signals SIN and cosine COS.
  • the sensor 2 comprises at least one emitter winding 51 adapted to induce an electrical voltage in said receiving windings 25S, 26C.
  • At least one parameter Asin, Psin, B of said at least two winding meshes MS +, MS- of said at least one first winding receiver 25S is adapted to generate the sine signal SIN cor predetermined according to the corresponding parameter of said at least two winding meshes MC +, MC- of said at least one second receiving winding 26C adapted to generate the cosine signal COS.
  • Figures 3 to 5 relate to a sensor 2 of the prior art while Figures 6 to 8 relate to a sensor 2 according to an embodiment of the present invention.
  • These linearity curves make it possible to determine a useful range length for the sensor, which is generally centered symmetrically with respect to the middle of the measurement window F.
  • the acceptable linearity defining the useful range is +/- 1, 2% and from this is deduced a useful stroke or range of 14.75 millimeters in which this value is not exceeded. Even in the useful range of the sensor, there is a large linearity variation of +/- 0.9%.
  • the acceptable linearity defining the useful range is +/- 1% and a useful range or range of 19 mm is deduced therefrom. value is not exceeded. In the useful range of the sensor, there is a small linearity variation of +/- 0.3%.
  • FIGS. 4 and 7 each show two drift curves as a function of the gap with a corrected upper deviation curve Dentr L and a corrected lower drift curve Dentr P, this as a function of a useful stroke length or range of the sensor taken at one end of the measurement window F, the drift of a sensor to be between these two curves.
  • These drift curves make it possible to determine a useful range length for the sensor which is generally centered symmetrically with respect to the middle of the measurement window F.
  • the drift varies from +/- 0.8% in the median zone of the curves between 5 and 20 of distance from one end of the measurement window F while in FIG. 7, for a sensor according to an embodiment of the present invention, the drift practically does not vary in the median zone by being less than +/- 0.2% of the curves between 3 and 20 of a distance of end of the measuring window F.
  • FIGS. 5 and 8 also referring to FIG. 2, show a first receiving winding respectively referenced 25Sa or 25S configured to generate a sinus signal corrected in FIG. 8 and a second receiving winding respectively referenced 26Ca or 26C configured to generate a cosine signal COS.
  • the amplitude Asin and the period Psin of the sine signal SIN cor have been decreased, which corresponds to a decrease in the width and the length of the cells of the first receiver winding 25S.
  • the at least one Asin, Psin, B parameter of the sine signal SIN cor adapted to the cosine signal COS are chosen individually or in combination from the following parameters: an amplitude Asin of the sine signal SIN, a period Psin or wavelength of the sine signal SIN and a deviation from a baseline B of the sine signal.
  • the period Psin or wavelength of the sinus signal SIN is determined to be equal to x times the period P or wavelength of the cosine signal COS, x being between 0, 79 and 0.93.
  • the amplitude Asin of the sinus signal SIN cor corrected can be equal to the amplitude Acos of the cosine signal COS and the deflection from the baseline B of the sinus signal SIN can be determined to be confused with the baseline B of the cosine signal. It is also possible that the amplitude Asin of the sine signal SIN cor and the baseline B of the sine signal SIN cor are adapted differently according to the amplitude Acos and the baseline B of the cosine signal COS.
  • the period Psin or wavelength of the sinus signal SIN cor corrected is determined to be equal to 0.86 times the period Pcos or wavelength cosine signal COS.
  • the previously indicated range therefore extends from this median value of 0.86 of 0.86-0.07 or 0.79 to 0.86 + 0.07 or 0.93.
  • the amplitude Asin of the sinus signal SIN cor corrected can be modified by adapting a width I of said at least two meshes MS +, MS- of said at least one first winding.
  • the Psin period of the sinus signal SIN cor corrected is modified by adaptation of the length L of said at least two meshes MS +, MS- of said at least a first 25S receiver winding.
  • a width I or a smaller length L correspond respectively to a decrease of the amplitude Asin or the period Psin of the sinus signal SIN cor corrected. This can be done in the sense of the preferred embodiment of the present invention with wavelengths of sine and cosine functions having a predetermined ratio ranging from 0.79 to 0.93, preferably 0.86.
  • the deflection from the basic line B of the sinus signal SIN cor corrected from the at least one first 25S receiver winding can be obtained by a transversal translation of said at least two meshes MS +, MS- of said at least one first receiving winding 25S generating the sine signal SIN cor corrected with respect to said at least two meshes MC +, MC- of said at least one second receiving winding 26C.
  • several parameters L, I, B of said at least two winding meshes MS +, MS- of said at least one first winding 25S can be adapted to generate the sin signal SIN cor with a Psin period or wavelength of the sinus signal SIN cor equal to x times the period P or wavelength of the COS cosine signal, x being between 0.79 and 0.93.
  • the amplitude Asin of the sine signal SIN can be equal to the amplitude Acos of the cosine signal COS and the deflection from the base line B of the sinus signal SIN cor being determined to be confused with the baseline B of the cosine signal.
  • the first or the first receiver windings 25S generating a sine signal SIN cor thus modified and the second or the second receiver windings 26C generating a cosine signal COS, advantageously several windings of each type, may be formed on a printed circuit support 22.
  • the type of the first and second receiver windings 25S, 26C may change.
  • the transmitter winding, referenced 51 in FIG. 1 is an angular emitter winding and the first or the first receivers 25S and the second receivers 26C are angular.
  • the invention also relates to an assembly 1 having a fixed portion 1 1 and a movable portion 12, at least one target 3 being mounted on the movable portion 12.
  • an assembly 1 comprises a sensor 2 of inductive position as described above, the inductive position sensor 2 being adapted to detect a displacement of said at least one target 3 during a displacement of the mobile part 12.
  • the assembly 1 is part of a motor vehicle and comprises at least one movable axis 13, advantageously rotating, carrying said at least one target 3.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

La présente invention concerne un procédé de définition d'une plage de mesure dite course utile du capteur de position inductif avec émission d'un signal cosinus et sinus par respectivement au moins un premier enroulement récepteur (25S) et au moins un deuxième enroulement récepteur (25C). Le signal cosinus émis par le ou les deuxièmes enroulements récepteurs (26C) est pris comme signal de référence entre les deux signaux sinus et cosinus pour une adaptation d'au moins un paramètre du signal sinus en fonction d'un paramètre correspondant du signal cosinus, au moins un desdits paramètres de dimension et de positionnement (L, l, B) du ou des premiers enroulements récepteurs (25S) étant configuré pour générer un signal sinus présentant ledit au moins un paramètre du signal sinus adapté par rapport au signal cosinus (COS).

Description

Procédé de définition d'une plage de mesure d'un capteur de position inductif
La présente invention concerne un procédé de définition d'une plage de mesure d'un capteur de position inductif sans contact afin d'obtenir une fenêtre de mesure pour le capteur la plus grande et la plus régulière possible. Le capteur de position inductif est adapté pour une détection d'un déplacement d'au moins une cible en comprenant au moins un premier enroulement récepteur générant un signal sinus lors de la détection de ladite au moins une cible et au moins un deuxième enroulement récepteur générant un signal cosinus lors de la détection de ladite au moins une cible.
De manière connue en soi, chaque enroulement récepteur comporte au moins deux mailles d'enroulement. Les paramètres de signaux sinus et cosinus, notamment l'amplitude et la période des signaux sinusoïdaux, sont fonction respectivement de paramètres de dimension et de positionnement desdites au moins deux mailles d'enroulement. Ainsi on peut régler sensiblement par exemple l'amplitude et/ou la période et même la ligne de base en modifiant respectivement la largeur et/ou la longueur des mailles des premier et deuxième enroulements.
De manière générale, un capteur de position inductif définit une fenêtre spatiale de mesure, par exemple un secteur annulaire ou linéaire, qui est traversée périodiquement par une ou des cibles en déplacement, le plus fréquemment en rotation.
Comme montré à la figure 1 , un capteur de position inductif comporte de manière connue un support de circuit imprimé 22, le plus fréquemment sous forme de carte. En pratique, quand le capteur de position inductif définit une fenêtre spatiale de mesure annulaire, le support de circuit imprimé 22 est configuré en conséquence.
A la figure 1 , le support de circuit imprimé 22 est représenté de manière linéaire, c'est-à-dire à plat. Ce support de circuit imprimé 22 comporte un enroulement primaire 24 et deux enroulements secondaires 25Sa, 26Ca couplés à l'enroulement primaire 24. Les enroulements 24, 25Sa, 26Ca peuvent être reliés à un module électronique pour gérer lesdits enroulements 24, 25Sa, 26Ca, ce module électronique n'étant pas illustré à la figure 1. De manière connue, un tel enroulement primaire permet de générer un champ magnétique lors de la circulation de courant dans ledit enroulement primaire. Le champ magnétique ainsi créé est perçu par les enroulements secondaires, et induit une tension dans lesdits enroulements secondaires.
Une ou des cibles, réalisées dans un matériau conducteur pour permettre la circulation de courants, portées par l'élément dont le déplacement est à suivre, se déplacent relativement aux enroulements 24, 25Sa, 26Ca.
Lorsqu'une cible est située en regard de la fenêtre de mesure F, comme illustré à la figure 1 , la cible modifie le couplage magnétique entre l'enroulement primaire 24 et les deux enroulements secondaires 25Sa, 26Ca. De manière connue, l'enroulement primaire 24 est désigné enroulement émetteur tandis que les enroulements secondaires 25Sa, 26Ca sont désignés enroulements récepteurs. Aussi, en mesurant les tensions électriques aux bornes des enroulements récepteurs 25Sa, 26Ca, on peut déduire la position précise de la cible dans ladite fenêtre de mesure F. Par voie de conséquence, on peut en déduire la position de l'élément dont le déplacement est suivi et qui porte la ou les cibles.
De manière plus détaillée, en présence d'une cible dans la fenêtre de mesure F, les enroulements récepteurs 25Sa, 26Ca placés à proximité de ladite cible voient une quantité de flux du champ magnétique plus faible que si la cible était absente. Si par exemple, un enroulement récepteur 25Sa, 26Ca est constitué de deux boucles d'orientation opposée et que la cible se déplace au-dessus de l'une puis de l'autre de ces boucles, cet enroulement récepteur 25Sa, 26Ca voit, par rapport à une valeur moyenne nulle, une augmentation relative puis une diminution relative de la quantité de flux du champ magnétique qui le traverse.
En pratique, les enroulements récepteurs 25Sa, 26Ca sont de différentes natures. En référence à la figure 1 représentant une vue rapprochée de la fenêtre de mesure F, on distingue, d'une part, un enroulement récepteur dit « sinus » 25Sa adapté pour délivrer un signal sinus lors d'un passage d'une cible dans la fenêtre de mesure F et un enroulement récepteur dit « cosinus » 26Ca adapté pour délivrer un signal cosinus lors du passage d'une cible dans la fenêtre de mesure F. Les signaux sinus/cosinus sont corrélés temporellement, ceci par un calcul de l'arctangente, afin de déterminer de manière précise la position de la cible.
Par cible formant des signaux sinus et cosinus, on entend aussi bien une unique cible qui interagit avec des enroulements récepteurs que deux parties de cibles ou au moins deux cibles consécutives décalées lors du déplacement qui interagissent de manière simultanée avec des enroulements récepteurs.
Plus précisément à la figure 1 , afin d'obtenir les signaux sinus et cosinus désirés, l'enroulement récepteur sinus 25Sa comporte une maille entière MS- orientée négativement et une maille entière MS+ orientée positivement tandis que l'enroulement récepteur cosinus 26Ca comporte une première demi-maille positive ½ MC+, une maille entière négative MC- et une deuxième demi-maille positive ½ MC+.
Lorsqu'aucune cible n'est présente dans la fenêtre de mesure F, les tensions aux bornes des enroulements récepteurs 25Sa, 26Ca doivent être nulles (V = 0). Aussi, il est nécessaire que les mailles MS+, MS- de l'enroulement sinus 25Sa soient symétriques afin que le champ positif généré compense le champ négatif généré. Comme les mailles MS-, MS+ d'un enroulement sinus 25Sa sont entières, une telle symétrie est simple à réaliser. Par contre, la symétrie de l'enroulement cosinus 26Ca est complexe à obtenir étant donné que les deux demi-mailles positives ½ MC+ doivent compenser la maille entière négative MC-. En pratique, du fait des tolérances de définition et de fabrication des mailles, la compensation des champs n'est pas optimale et il est nécessaire de recourir à des moyens de compensation qui sont complexes et coûteux à mettre en œuvre, ce qui présente un fort inconvénient.
Il est donc de pratique courante de traiter le signal cosinus qui a plus besoin d'être corrigé que le signal sinus. Il a donc été proposé d'établir un décalage entre les enroulements qui permet de former des signaux sinus et cosinus à partir d'une forme d'enroulement récepteur définie initialement uniquement pour un signal sinus, c'est-à-dire par un enroulement ne comportant pas de demi-maille et générant un signal qui débute avec une valeur nulle. Selon l'état de la technique, quand on veut dimensionner un capteur, on essaie d'avoir pour le sinus et le cosinus la même période et il est de pratique courante de prendre la période du signal sinus comme référence.
Un tel décalage permet de former un enroulement cosinus en tirant avantage de la relation mathématique qui lie un sinus à un cosinus pour former un signal cosinus. Ceci permet d'obtenir des signaux sinus et cosinus similaires à l'art antérieur mais dénués de défauts aux limites de la fenêtre de mesure. Ceci est notamment illustré par le document FR-A-3 023 61 1.
Bien que ces solutions aient donné partiellement satisfaction, elles n'ont pas permis d'augmenter de façon conséquente une course utile correspondant à une fenêtre de mesure pour laquelle la cible est détectée avec une grande précision, cette fenêtre de mesure étant notoirement plus petite que la longueur du capteur.
Le problème à la base de la présente invention est, pour un capteur de position inductif présentant une fenêtre de mesure pour la détection d'une ou de cibles en déplacement, d'augmenter la longueur de la fenêtre de mesure et la précision de la détection de la cible.
A cet effet, la présente invention concerne un procédé de définition d'une plage de mesure dite course utile d'un capteur de position inductif lors de sa conception, le capteur étant adapté pour une détection d'un déplacement d'au moins une cible en comprenant au moins un premier enroulement récepteur générant un signal sinus lors de la détection de ladite au moins une cible et au moins un deuxième enroulement récepteur générant un signal cosinus lors de la détection de ladite au moins une cible, chaque enroulement récepteur comportant au moins deux mailles d'enroulement, des paramètres de signaux sinus et cosinus étant fonction respectivement de paramètres de dimension et de positionnement desdites au moins deux mailles d'enroulement, remarquable en ce que le signal cosinus est pris comme signal de référence entre les deux signaux sinus et cosinus pour une adaptation d'au moins un paramètre du signal sinus en fonction d'un paramètre correspondant du signal cosinus, au moins un desdits paramètres de dimension et de positionnement desdites au moins deux mailles dudit au moins un premier enroulement récepteur étant configuré pour générer un signal sinus présentant ledit au moins un paramètre du signal sinus adapté par rapport au signal cosinus.
La définition de la plage de mesure consiste en sa mise en forme en fonction de paramètres des enroulements récepteurs cosinus et sinus afin que la plage de mesure soit optimale en étant la plus grande possible et en possédant une linéarité élevée avec peu de dépendance des mesures relevées en fonction des points de la plage de mesure.
Selon l'état de la technique le plus proche illustré par FR-A-3 023 61 1 , un décalage entre les enroulements récepteurs permet de former des signaux sinus et cosinus à partir d'une forme d'enroulement récepteur définie initialement uniquement pour un signal sinus. Un décalage d'un quart de période, c'est-à-dire d'une demi-maille, permet de former un enroulement cosinus en tirant avantage de la relation mathématique qui lie un sinus à un cosinus pour former un signal cosinus.
Ce document enseigne que les signaux cosinus et sinus sont réadaptés en se basant sur un signal sinus de référence. En général, un tel signal sinus reçu pour un capteur inductif est moins déformé qu'un signal cosinus et sert donc de modèle de correction lors d'un stade de conception.
La présente invention suit la démarche inverse. C'est le signal cosinus qui sert de modèle pour une adaptation du signal sinus. Il est cependant possible que cela soit un signal cosinus corrigé qui puisse servir de modèle pour l'élaboration d'un signal sinus.
A partir des corrections à effectuer au signal sinus, il est possible de modifier en conséquence les paramètres des mailles du ou des premiers enroulements récepteurs délivrant un signal sinus. On obtient ainsi une fenêtre de mesure agrandie avec une faible variation de mesures équivalentes quand prises en différents points de la fenêtre de mesure.
Avantageusement, ledit au moins un paramètre du signal sinus adapté au signal cosinus est choisi unitairement ou en combinaison parmi les paramètres suivants : une amplitude du signal sinus, une période ou longueur d'onde du signal sinus et une déviation à partir d'une ligne de base du signal sinus.
Avantageusement, la période ou longueur d'onde du signal sinus est déterminée pour être égale à x fois la période ou longueur d'onde du signal cosinus, x étant compris entre 0,79 et 0,93, l'amplitude du signal sinus étant égale à l'amplitude du signal cosinus et la déviation à partir de la ligne de base du signal sinus étant déterminée pour être confondue avec la ligne de base du signal cosinus. Selon l'état de la technique le plus proche, il était recherché d'avoir des paramètres similaires pour les fonctions sinus et cosinus, ce qui n'est plus le cas dans la présente invention, au moins un des paramètres n'étant plus similaires mais présentant une relation mathématique respective avec le paramètre de la fonction cosinus prise en référence et le paramètre équivalent de la fonction cosinus.
De plus, selon l'état de la technique, il était recherché à avoir des paramètres similaires en partant de la fonction sinus tandis que, selon la présente invention, la fonction cosinus est la fonction de référence. Avoir des amplitudes égales et des lignes de base confondues en prenant comme référence la fonction cosinus, comme le prévoit la présente invention, n'est pas équivalent à avoir des amplitudes égales et des lignes de base confondues en prenant comme référence la fonction sinus, comme le propose l'état de la technique. De plus, les périodes respectives des deux signaux ou fonctions cosinus et sinus peuvent être différentes.
En effet, selon la présente invention, il n'est plus recherché d'avoir des périodes équivalentes pour les signaux sinus et cosinus mais d'avoir un rapport spécifique entre ces périodes. Il s'est avéré que l'imposition d'un rapport spécifique entre des paramètres équivalents des signaux sinus et cosinus permettait d'avoir une fenêtre de mesure plus longue avec plus de précision et moins de dispersion pour les résultats.
Avantageusement, la période ou longueur d'onde du signal sinus est déterminée pour être égale à 0,86 fois la période ou longueur d'onde du signal cosinus.
Avantageusement, lors de la conception du capteur, l'amplitude du signal sinus est modifiée par adaptation d'une largeur desdites au moins deux mailles dudit au moins un premier enroulement récepteur, la période du signal sinus est modifiée par adaptation de la longueur des desdites au moins deux mailles dudit au moins un premier enroulement récepteur, une largeur ou une longueur plus petite correspondant respectivement à une diminution de l'amplitude ou de la période du signal sinus et la déviation à partir de la ligne de base du signal sinus dudit au moins un premier enroulement récepteur est obtenue par une translation transversale desdites au moins deux mailles dudit au moins un premier enroulement récepteur générant le signal sinus par rapport auxdites au moins deux mailles dudit au moins un deuxième enroulement récepteur.
Avantageusement, ledit au moins un premier enroulement récepteur générant un signal sinus ainsi modifié et ledit au moins un deuxième enroulement récepteur générant un signal cosinus sont formés sur un support de circuit imprimé.
L'invention concerne aussi un capteur de position inductif adapté pour détecter un déplacement d'au moins une cible, ledit capteur comprenant un support de circuit imprimé supportant au moins un premier enroulement récepteur adapté pour générer un signal sinus lors de la détection de ladite au moins une cible et au moins un deuxième enroulement récepteur adapté pour générer un signal cosinus lors de la détection de ladite au moins une cible, chaque enroulement récepteur comportant au moins deux mailles d'enroulement formées sur le support de circuit imprimé, des paramètres de dimension et de positionnement desdites au moins deux mailles d'enroulement sur le support de circuit imprimé définissant des paramètres respectifs des signaux sinus et cosinus, le capteur comprenant au moins un enroulement émetteur adapté pour induire une tension électrique dans lesdits enroulements récepteurs, le capteur de position inductif étant remarquable en ce qu'au moins un paramètre desdites au moins deux mailles d'enroulement dudit au moins un premier enroulement récepteur est adapté pour générer le signal sinus prédéterminé en fonction du paramètre correspondant desdites au moins deux mailles d'enroulement dudit au moins un deuxième enroulement récepteur adapté pour générer le signal cosinus.
Dans un mode préférentiel du capteur selon la présente invention, plusieurs paramètres desdites au moins deux mailles d'enroulement dudit au moins un premier enroulement récepteur sont adaptés pour générer le signal sinus avec une période ou longueur d'onde du signal sinus égale à x fois la période ou longueur d'onde du signal cosinus, x étant compris entre 0,79 et 0,93, l'amplitude du signal sinus étant égale à l'amplitude du signal cosinus et la déviation à partir de la ligne de base du signal sinus étant déterminée pour être confondue avec la ligne de base du signal cosinus.
Avantageusement, l'enroulement émetteur est un enroulement émetteur angulaire, lesdits au moins un premier enroulement récepteur et un deuxième enroulement récepteur étant angulaires.
L'invention concerne aussi un ensemble présentant une partie fixe et une partie mobile, au moins une cible étant montée sur la partie mobile, remarquable en ce qu'il comprend un tel capteur de position inductif, le capteur de position inductif étant monté sur la partie fixe et adapté pour détecter un déplacement de ladite au moins une cible lors d'un déplacement de la partie mobile.
Avantageusement, l'ensemble est monté dans un véhicule automobile, la partie mobile étant sous la forme d'un ou comprenant un axe mobile portant ladite au moins une cible.
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre et au regard des dessins annexés donnés à titre d'exemples non limitatifs et sur lesquels :
- la figure 1 est une représentation schématique d'un enroulement émetteur, d'un enroulement sinus et d'un enroulement cosinus dans un capteur de position inductif selon l'art antérieur, - la figure 2 est une représentation schématique de signaux cosinus et sinus fournis par un capteur de position inductif lors d'une détection d'une cible mobile selon l'art antérieur, avec un signal cosinus théorique, un signal cosinus effectivement obtenu, un signal sinus théorique et un signal sinus corrigé en fonction du signal cosinus effectivement obtenu,
- les figures 3 et 4 montrent respectivement des courbes de linéarité et de dérive en fonction de l'entrefer et des enroulements récepteurs configurés pour générer respectivement un signal sinus et un signal cosinus, ces courbes étant obtenues pour un capteur selon l'art antérieur et ces enroulements faisant partie d'un capteur de position inductif selon l'art antérieur,
- les figures 6 et 7 montrent respectivement des courbes de linéarité et de dérive en fonction de l'entrefer et des enroulements récepteurs configurés pour générer respectivement un signal sinus et un signal cosinus, ces courbes étant obtenues pour un capteur selon un mode de réalisation de la présente invention et ces enroulements faisant partie d'un capteur de position inductif selon un mode de réalisation de la présente invention,
- les figures 5 et 8 montrent une fenêtre de mesure d'un capteur de position inductif respectivement selon l'état de la technique et selon un mode de réalisation de la présente invention, la fenêtre de mesure pour chacune de ces figures 5 et 8 comprenant un enroulement émetteur, des enroulements récepteurs sinus et cosinus, les enroulements sinus ayant été modifiés à la figure 8 par rapport à la figure 5 en fonction d'un signal cosinus délivré par les enroulements cosinus,
- la figure 9 montre une vue schématique en perspective d'un ensemble comprenant une partie fixe et une partie mobile avec au moins une cible montée sur la partie mobile et un capteur de position inductif monté sur la partie fixe, le capteur pouvant être un capteur selon la présente invention. En se référant aux figures 1 à 9, la présente invention concerne un procédé de définition, lors d'une conception d'un capteur 2 de position inductif, d'une plage de mesure dite course utile du capteur 2. Le capteur 2 de position inductif est adapté pour une détection d'un déplacement d'au moins une cible 3 portée par un élément dont il convient de détecter et de mesurer le déplacement. Ce déplacement peut être linéaire ou rotatif ou même une combinaison de plusieurs déplacements.
Comme exemple non limitatif d'un capteur 2 et d'un ensemble 1 dont une partie mobile 12 est destinée à être suivie par un capteur 2 de position inductif montré à la figure 9, l'ensemble 1 peut être un moteur électrique 1 comportant une partie de stator 1 1 et une partie de rotor 12 reliée à un arbre de sortie 13. Un capteur 2 de position est monté de manière fixe par rapport à la partie de stator 1 1 du moteur 1 et est adapté pour détecter la position de cibles 3 fixées à la partie de rotor 12 du moteur 1 . De manière connue, la détection de la position des cibles 3 est réalisée par des mesures de tension en sortie du capteur 2 de position.
Comme particulièrement bien visible aux figures 1 , 5 et 8 en se référant aussi à la figure 2, de manière générale, le capteur de position inductif comprend au moins un premier enroulement récepteur 25S, 25Sa générant un signal sinus lors de la détection de ladite au moins une cible 3 et au moins un deuxième enroulement récepteur 26C, 26Ca générant un signal cosinus COS lors de la détection de ladite au moins une cible 3. Chaque enroulement récepteur 25S, 25Sa, 26C, 26Ca comporte au moins deux mailles d'enroulement MS+, MS, MC+, MC-. Comme montré aux figures 5 et 8, il peut y avoir plusieurs mailles d'enroulement de signal sinus ou cosinus COS se chevauchant avec un décalage entre elles.
La figure 2 montre quatre signaux dont deux signaux cosinus et deux signaux sinus. Le signal COS t indique un signal théorique donnant un signal cosinus parfait tandis que le signal COS est le signal effectivement obtenu par le capteur et que l'on garde comme référence. La figure 2 montre aussi un signal théorique donnant un signal sinus parfait SIN t et un signal sinus corrigé SIN cor en fonction du signal cosinus effectivement obtenu COS.
Il est aussi référencé des amplitudes respectives pour les signaux sinus et cosinus respectivement Asin et Acos ainsi que des demi-périodes des signaux sinus et cosinus 1/2Psin et 1/2Pcos d'où une période respective Psin ou Pcos est extrapolable. Il sera donc mentionné dans la présente demande une période de signal sinus Psin et une période de signal cosinus Pcos bien que ce soient des demi-périodes 1/2Psin et 1/2Pcos qui sont référencées aux figures. Il est également référencé une déviation à partir d'une ligne de base B du signal sinus.
L'association d'un signal cosinus COS avec un signal sinus théorique SIN t ayant les mêmes longueurs d'ondes et amplitude qu'un signal cosinus parfait COS t donne une linéarité peu performante.
Il a été constaté que le signal sinus corrigé SIN cor en fonction du signal cosinus effectivement obtenu COS s'écarte du sinus théorique SIN t parfait mais donne une très bonne linéarité et une faible dérive en entrefer.
Comme montré notamment aux figures 1 et 2, des paramètres Asin, Acos, Psin, Pcos, B de signaux sinus et cosinus sont fonction respectivement de paramètres de dimension et de positionnement L, I, B desdites au moins deux mailles d'enroulement MS+, MS-, MC+, MC-. Selon l'invention, le signal cosinus COS est pris comme signal de référence entre les deux signaux sinus et cosinus COS pour une adaptation d'au moins un paramètre Asin, Psin, B du signal sinus alors dit corrigé SIN cor en fonction d'un paramètre correspondant A cos, P cos, B du signal cosinus COS.
Ceci est obtenu du fait qu'au moins un desdits paramètres de dimension et de positionnement L, I, B desdites au moins deux mailles MS+, MS- dudit au moins un premier enroulement récepteur 25S est configuré pour générer un signal sinus SIN cor présentant ledit au moins un paramètre Asin, Psin, B du signal sinus SIN adapté à un paramètre correspondant Acos, Pcos, B du signal cosinus COS.
En se référant à toutes les figures, l'invention concerne aussi un capteur 2 de position inductif adapté pour détecter un déplacement d'au moins une cible 3 portée par un élément 1 dont on détecte et mesure le déplacement d'au moins une partie mobile 12. Le capteur 2 de position inductif comprend un support de circuit imprimé 22, par exemple une carte de circuit imprimé plane pour un capteur 2 inductif linéaire ou annulaire pour un capteur 2 inductif de position angulaire.
Le support de circuit imprimé 22 porte au moins un premier enroulement récepteur 25S adapté pour générer un signal sinus SIN lors de la détection de ladite au moins une cible 3 et au moins un deuxième enroulement récepteur 26C adapté pour générer un signal cosinus COS lors de la détection de ladite au moins une cible 3. A la figure 8 représentant un mode de réalisation selon l'invention, comme à la figure 5 montrant un support de circuit imprimé 22 de l'art antérieur en ce qui concerne les enroulements récepteurs 25Sa et 26Ca, il y a plusieurs enroulements récepteurs 25S et 25C pour un signal respectif cosinus et sinus.
Chaque enroulement récepteur 25S, 26C comporte au moins deux mailles d'enroulement MS+, MS-, MC+, MC- formées sur le support de circuit imprimé 22, des paramètres de dimension et de positionnement L, I, B desdites au moins deux mailles d'enroulement MS+, MS-, MC+, MC- sur le support de circuit imprimé 22 définissant des paramètres respectifs A, P, B des signaux sinus SIN et cosinus COS. Le capteur 2 comprend au moins un enroulement émetteur 51 adapté pour induire une tension électrique dans lesdits enroulements récepteurs 25S, 26C.
Selon l'invention, au moins un paramètre Asin, Psin, B desdites au moins deux mailles d'enroulement MS+, MS- dudit au moins un premier enroulement récepteur 25S est adapté pour générer le signal sinus SIN cor prédéterminé en fonction du paramètre correspondant desdites au moins deux mailles d'enroulement MC+, MC- dudit au moins un deuxième enroulement récepteur 26C adapté pour générer le signal cosinus COS. Les figures 3 à 5 sont relatives à un capteur 2 de l'art antérieur tandis que les figures 6 à 8 sont relatives à un capteur 2 selon un mode de réalisation de la présente invention.
Les figures 3 et 6, en se référant aussi à la figure 1 , montrent chacune trois courbes de linéarité avec une courbe de linéarité supérieure lin L, une courbe de linéarité médiane lin M et une courbe de linéarité inférieure Lin P, ceci en fonction d'une longueur de course utile ou plage du capteur 2 prise à une extrémité de la fenêtre de mesure F précédemment mentionnée dans la partie introductive de la présente demande. Ces courbes de linéarité permettent de déterminer une longueur de plage utile pour le capteur qui est en général centrée symétriquement par rapport au milieu de la fenêtre de mesure F.
Pour un capteur de l'art antérieur, comme montré à la figure 3, la linéarité acceptable définissant la plage utile est de +/- 1 ,2% et il en est déduit une course ou plage utile de 14,75 millimètres dans laquelle cette valeur n'est pas dépassée. Même dans la plage utile du capteur, il y a une forte variation de la linéarité variant de +/- 0,9%.
Pour un capteur selon un mode de réalisation de la présente invention, comme montré à la figure 6, la linéarité acceptable définissant la plage utile est de +/- 1 % et il en est déduit une course ou plage utile de 19 mm dans laquelle cette valeur n'est pas dépassée. Dans la plage utile du capteur, il y a une faible variation de la linéarité variant de +/- 0,3%.
Les figures 4 et 7 montrent chacune deux courbes de dérive en fonction de l'entrefer avec une courbe de dérive supérieure corrigée Dentr L et une courbe de dérive inférieure corrigée Dentr P, ceci en fonction d'une longueur de course utile ou plage du capteur prise à une extrémité de la fenêtre de mesure F, la dérive d'un capteur devant être comprise entre ces deux courbes. Ces courbes de dérive permettent de déterminer une longueur de plage utile pour le capteur qui est en général centrée symétriquement par rapport au milieu de la fenêtre de mesure F.
A la figure 4, pour un capteur de l'art antérieur, la dérive varie de +/- 0,8% dans la zone médiane des courbes entre 5 et 20 de distance d'une extrémité de la fenêtre de mesure F tandis qu'à la figure 7, pour un capteur selon un mode de réalisation de la présente invention, la dérive ne varie pratiquement pas dans la zone médiane en étant inférieure à +/- 0,2 % des courbes entre 3 et 20 de distance d'une extrémité de la fenêtre de mesure F.
A la lumière des figures 3, 4, 6 et 7, il est visible que la course utile a été augmentée pour un capteur selon la présente invention et que les performances de linéarité et de dérive d'entrefer ont été augmentées de plus de 30 % par rapport à celles d'un capteur de l'état de la technique, ce qui est appréciable. Les figures 5 et 8, en se référant aussi à la figure 2, montrent un premier enroulement récepteur respectivement référencé 25Sa ou 25S configuré pour générer un signal sinus corrigé à la figure 8 et un deuxième enroulement récepteur respectivement référencé 26Ca ou 26C configuré pour générer un signal cosinus COS. A la figure 8 en tenant compte de la figure 2, l'amplitude Asin et la période Psin du signal sinus SIN cor ont été diminuées, ce qui correspond à une diminution de la largeur et de la longueur des mailles du premier enroulement récepteur 25S.
En se référant à nouveau au procédé d'augmentation et plus particulièrement à la figure 2, le ou les paramètres Asin, Psin, B du signal sinus SIN cor adapté au signal cosinus COS sont choisis unitairement ou en combinaison parmi les paramètres suivants : une amplitude Asin du signal sinus SIN, une période Psin ou longueur d'onde du signal sinus SIN et une déviation à partir d'une ligne de base B du signal sinus.
Dans une forme de réalisation préférentielle de la présente invention, la période Psin ou longueur d'onde du signal sinus SIN est déterminée pour être égale à x fois la période P ou longueur d'onde du signal cosinus COS, x étant compris entre 0,79 et 0,93. Dans cette forme de réalisation, l'amplitude Asin du signal sinus SIN cor corrigé peut être égale à l'amplitude Acos du signal cosinus COS et la déviation à partir de la ligne de base B du signal sinus SIN peut être déterminée pour être confondue avec la ligne de base B du signal cosinus. Il est aussi possible que l'amplitude Asin du signal sinus SIN cor et la ligne de base B du signal sinus SIN cor soient adaptées différemment en fonction de l'amplitude Acos et de la ligne de base B du signal cosinus COS.
Avantageusement, la période Psin ou longueur d'onde du signal sinus SIN cor corrigé est déterminée pour être égale à 0,86 fois la période Pcos ou longueur d'onde du signal cosinus COS. La plage précédemment indiquée s'étend donc à partir de cette valeur médiane de 0,86 de 0,86 - 0,07 soit 0,79 vers 0,86 + 0,07 soit 0,93.
Comme montré aux figures 2 et 8, lors de la conception du capteur, l'amplitude Asin du signal sinus SIN cor corrigé peut être modifiée par adaptation d'une largeur I desdites au moins deux mailles MS+, MS- dudit au moins un premier enroulement récepteur 25S, la période Psin du signal sinus SIN cor corrigé est modifiée par adaptation de la longueur L desdites au moins deux mailles MS+, MS- dudit au moins un premier enroulement récepteur 25S. Une largeur I ou une longueur L plus petite correspondent respectivement à une diminution de l'amplitude Asin ou de la période Psin du signal sinus SIN cor corrigé. Ceci peut être fait dans le sens de la forme de réalisation préférentielle de la présente invention avec des longueurs d'ondes des fonctions sinus et cosinus présentant un rapport prédéterminé variant de 0,79 à 0,93, de préférence 0,86.
Enfin, la déviation à partir de la ligne de base B du signal sinus SIN cor corrigé dudit au moins un premier enroulement récepteur 25S peut être obtenue par une translation transversale desdites au moins deux mailles MS+, MS- dudit au moins un premier enroulement récepteur 25S générant le signal sinus SIN cor corrigé par rapport auxdites au moins deux mailles MC+, MC- dudit au moins un deuxième enroulement récepteur 26C.
Selon la forme de réalisation préférentielle de la présente invention, plusieurs paramètres L, I, B desdites au moins deux mailles d'enroulement MS+, MS- dudit au moins un premier enroulement récepteur 25S peuvent être adaptés pour générer le signal sinus SIN cor avec une période Psin ou longueur d'onde du signal sinus SIN cor égale à x fois la période P ou longueur d'onde du signal cosinus COS, x étant compris entre 0,79 et 0,93.
Dans ce cas, l'amplitude Asin du signal sinus SIN peut être égale à l'amplitude Acos du signal cosinus COS et la déviation à partir de la ligne de base B du signal sinus SIN cor étant déterminée pour être confondue avec la ligne de base B du signal cosinus. En se référant notamment aux figures 2 et 8, le ou les premiers enroulements récepteurs 25S générant un signal sinus SIN cor ainsi modifiés et le ou les deuxièmes enroulements récepteurs 26C générant un signal cosinus COS, avantageusement plusieurs enroulements de chaque type, peuvent être formés sur un support de circuit imprimé 22.
Selon le type de capteur de position inductif sélectionné, par exemple un capteur linéaire ou un capteur rotatif, le type des premiers et deuxièmes enroulements récepteurs 25S, 26C peut changer. Par exemple pour un capteur rotatif, l'enroulement émetteur, référencé 51 à la figure 1 , est un enroulement émetteur angulaire et le ou les premiers enroulements récepteurs 25S et deuxièmes enroulements récepteurs 26C sont angulaires.
En se référant principalement à la figure 9, l'invention concerne aussi un ensemble 1 présentant une partie fixe 1 1 et une partie mobile 12, au moins une cible 3 étant montée sur la partie mobile 12. Un tel ensemble 1 comprend un capteur 2 de position inductif tel que décrit précédemment, le capteur 2 de position inductif étant adapté pour détecter un déplacement de ladite au moins une cible 3 lors d'un déplacement de la partie mobile 12.
Pour une application préférentielle mais non limitative, l'ensemble 1 fait partie d'un véhicule automobile et comporte au moins un axe mobile 13, avantageusement tournant, portant ladite au moins une cible 3.

Claims

REVENDICATIONS
1. Procédé de définition d'une plage de mesure dite course utile d'un capteur (2) de position inductif lors de sa conception, le capteur (2) étant adapté pour une détection d'un déplacement d'au moins une cible (3) en comprenant au moins un premier enroulement récepteur (25S) générant un signal sinus (SIN cor) lors de la détection de ladite au moins une cible (3) et au moins un deuxième enroulement récepteur (26C) générant un signal cosinus (COS) lors de la détection de ladite au moins une cible (3), chaque enroulement récepteur (25S, 26C) comportant au moins deux mailles d'enroulement (MS+, MS, MC+, MC-), des paramètres (Acos, Asin, Pcos, Psin , B) de signaux sinus (SIN cor) et cosinus (COS) étant fonction respectivement de paramètres de dimension et de positionnement (L, I, B) desdites au moins deux mailles d'enroulement (MS+, MS-, MC+, MC-), caractérisé en ce que le signal cosinus (COS) est pris comme signal de référence entre les deux signaux sinus (SIN cor) et cosinus (COS) pour une adaptation d'au moins un paramètre (Asin, Psin, B) du signal sinus (SIN cor) en fonction d'un paramètre (Acos, Pcos, B) correspondant du signal cosinus (COS), au moins un desdits paramètres de dimension et de positionnement (L, I, B) desdites au moins deux mailles (MS+, MS-) dudit au moins un premier enroulement récepteur (25S) étant configuré pour générer un signal sinus (SIN cor) présentant ledit au moins un paramètre (Asin, Psin, B) du signal sinus (SIN cor) adapté par rapport au signal cosinus (COS).
2. Procédé selon la revendication précédente, caractérisé en ce que ledit au moins un paramètre (Asin, Psin, B) du signal sinus (SIN cor) adapté au signal cosinus (COS) est choisi unitairement ou en combinaison parmi les paramètres suivants : une amplitude (Asin) du signal sinus (SIN cor), une période (Psin) ou longueur d'onde du signal sinus (SIN cor) et une déviation à partir d'une ligne de base (B) du signal sinus.
3. Procédé selon la revendication précédente, caractérisé en ce que la période (Psin) ou longueur d'onde du signal sinus (SIN cor) est déterminée pour être égale à x fois la période (Pcos) ou longueur d'onde du signal cosinus (COS), x étant compris entre 0,79 et 0,93, l'amplitude (Asin) du signal sinus (SIN cor) étant égale à l'amplitude (Acos) du signal cosinus (COS) et la déviation à partir de la ligne de base (B) du signal sinus (SIN cor) étant déterminée pour être confondue avec la ligne de base (B) du signal cosinus (COS).
4. Procédé selon la revendication précédente, caractérisé en ce que la période (Psin) ou longueur d'onde du signal sinus (SIN cor) est déterminée pour être égale à 0,86 fois la période (Pcos) ou longueur d'onde du signal cosinus (COS).
5. Procédé selon l'une quelconque des trois revendications précédentes, caractérisé en ce que, lors de la conception du capteur (2), l'amplitude (Asin) du signal sinus (SIN cor) est modifiée par adaptation d'une largeur (I) desdites au moins deux mailles (MS+, MS-) dudit au moins un premier enroulement récepteur (25S), la période (Psin) du signal sinus (SIN cor) est modifiée par adaptation de la longueur (L) desdites au moins deux mailles (MS+, MS-) dudit au moins un premier enroulement récepteur (25S), une largeur (I) ou une longueur (L) plus petite correspondant respectivement à une diminution de l'amplitude (Asin) ou de la période (Psin) du signal sinus (SIN cor) et la déviation à partir de la ligne de base (B) du signal sinus (SIN cor) dudit au moins un premier enroulement récepteur (25S) est obtenue par une translation transversale desdites au moins deux mailles (MS+, MS-) dudit au moins un premier enroulement récepteur (25S) générant le signal sinus (SIN cor) par rapport auxdites au moins deux mailles (MC+, MC-) dudit au moins un deuxième enroulement récepteur (26C).
6. Procédé selon la revendication précédente, dans lequel ledit au moins un premier enroulement récepteur (25S) générant un signal sinus (SIN cor) ainsi modifié et ledit au moins un deuxième enroulement récepteur (26C) générant un signal cosinus (COS) sont formés sur un support de circuit imprimé (22).
7. Capteur (2) de position inductif adapté pour détecter un déplacement d'au moins une cible (3), ledit capteur (2) comprenant un support de circuit imprimé (22) supportant au moins un premier enroulement récepteur (25S) adapté pour générer un signal sinus (SIN cor) lors de la détection de ladite au moins une cible (3) et au moins un deuxième enroulement récepteur (26C) adapté pour générer un signal cosinus (COS) lors de la détection de ladite au moins une cible (3), chaque enroulement récepteur (25S, 26C) comportant au moins deux mailles d'enroulement (MS+, MS-, MC+, MC-) formées sur le support de circuit imprimé (22), des paramètres de dimension et de positionnement (L, I, B) desdites au moins deux mailles d'enroulement (MS+, MS-, MC+, MC-) sur le support de circuit imprimé (22) définissant des paramètres respectifs (Asin, Acos, Psin, Pcos, B) des signaux sinus (SIN cor) et cosinus (COS), le capteur (2) comprenant au moins un enroulement émetteur (51 ) adapté pour induire une tension électrique dans lesdits enroulements récepteurs (25S, 26C), le capteur (2) de position inductif étant caractérisé en ce qu'au moins un paramètre (L, I, B) desdites au moins deux mailles d'enroulement (MS+, MS-) dudit au moins un premier enroulement récepteur (25S) est adapté pour générer le signal sinus (SIN cor) prédéterminé en fonction d'un paramètre (Asin, Psin, B) du signal sinus (SIN cor) adapté par rapport au signal cosinus (COS), le signal cosinus (COS) étant pris comme signal de référence entre les deux signaux sinus (SIN cor) et cosinus (COS) pour une adaptation d'au moins un paramètre (Asin, Psin, B) du signal sinus (SIN cor) en fonction d'un paramètre (Acos, Pcos, B) correspondant du signal cosinus (COS), desdites au moins deux mailles d'enroulement (MC+, MC-) dudit au moins un deuxième enroulement récepteur (26C) adapté pour générer le signal cosinus (COS).
8. Capteur (2) selon la revendication précédente, caractérisé en ce que plusieurs paramètres (L, I, B) desdites au moins deux mailles d'enroulement (MS+, MS-) dudit au moins un premier enroulement récepteur (25S) sont adaptés pour générer le signal sinus (SIN cor) avec une période (Psin) ou longueur d'onde du signal sinus (SIN cor) égale à x fois la période (Pcos) ou longueur d'onde du signal cosinus (COS), x étant compris entre 0,79 et 0,93, l'amplitude (Asin) du signal sinus (SIN cor) étant égale à l'amplitude (Acos) du signal cosinus (COS) et la déviation à partir de la ligne de base (B) du signal sinus (SIN cor) étant déterminée pour être confondue avec la ligne de base (B) du signal cosinus.
9. Capteur (2) selon l'une quelconque des deux revendications précédentes, caractérisé en ce que l'enroulement émetteur (51 ) est un enroulement émetteur angulaire, lesdits au moins un premier enroulement récepteur (25S) et un deuxième enroulement récepteur (26C) étant angulaires.
10. Ensemble (1 ) présentant une partie fixe (1 1 ) et une partie mobile (12), au moins une cible (3) étant montée sur la partie mobile (12), caractérisé en ce qu'il comprend un capteur (2) de position inductif selon l'une quelconque des revendications 7 à 9, le capteur (2) de position inductif étant monté sur la partie fixe (1 1 ) et adapté pour détecter une variation de position de ladite au moins une cible (3) lors d'un déplacement de la partie mobile (12).
11. Ensemble (1 ) selon la revendication précédente, caractérisé en ce que l'ensemble (1 ) est monté dans un véhicule automobile, la partie mobile (12) étant sous la forme d'un ou comprenant un axe mobile (13) portant ladite au moins une cible (3).
PCT/FR2018/052171 2017-09-07 2018-09-06 Procédé de définition d'une plage de mesure d'un capteur de position inductif WO2019048780A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207010002A KR20200051021A (ko) 2017-09-07 2018-09-06 유도형 위치 센서의 측정 범위를 한정하기 위한 방법
CN201880057912.9A CN111065896B (zh) 2017-09-07 2018-09-06 限定感应位置传感器的测量范围的方法
US16/643,624 US11441925B2 (en) 2017-09-07 2018-09-06 Method for defining a measurement range of an inductive position sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1758264A FR3070759B1 (fr) 2017-09-07 2017-09-07 Procede de definition d'une plage de mesure d'un capteur de position inductif
FR1758264 2017-09-07

Publications (1)

Publication Number Publication Date
WO2019048780A1 true WO2019048780A1 (fr) 2019-03-14

Family

ID=60081056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/052171 WO2019048780A1 (fr) 2017-09-07 2018-09-06 Procédé de définition d'une plage de mesure d'un capteur de position inductif

Country Status (5)

Country Link
US (1) US11441925B2 (fr)
KR (1) KR20200051021A (fr)
CN (1) CN111065896B (fr)
FR (1) FR3070759B1 (fr)
WO (1) WO2019048780A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11698275B2 (en) * 2018-05-29 2023-07-11 Kyocera Avx Components (Werne) Gmbh Rotary position sensing apparatus and method
DE102020209601A1 (de) * 2020-07-30 2022-02-03 SUMIDA Components & Modules GmbH Erfassungsvorrichtung für einen Lagegeber und Erfassungssystem mit einer solchen Erfassungsvorrichtung
US20220205814A1 (en) * 2020-12-31 2022-06-30 Mitutoyo Corporation Sensing winding configuration for inductive position encoder
KR20240107174A (ko) 2022-01-14 2024-07-08 콘티넨탈 오토모티브 테크놀로지스 게엠베하 유도 위치 센서 장치, 및 유도 위치 센서 장치를 구비한 브레이크 시스템
DE102022202500B3 (de) 2022-01-14 2023-07-13 Continental Automotive Technologies GmbH Induktive Positionssensoreinrichtung und Bremsanlage mit einer induktiven Positionssensoreinrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483295B2 (en) * 2000-05-25 2002-11-19 Hella Kg Hueck & Co. Inductive linear position sensor including exciting and receiving coils and a movable induction coupling element
FR3023369A1 (fr) * 2014-07-04 2016-01-08 Continental Automotive France Ensemble comportant au moins un premier moteur, un deuxieme moteur et un capteur de position angulaire
FR3023611A1 (fr) 2014-07-08 2016-01-15 Continental Automotive France Ensemble comprenant un moteur de vehicule automobile comportant des cibles et un capteur de position angulaire
FR3027103A1 (fr) * 2014-10-08 2016-04-15 Continental Automotive France Ensemble de capteur de position angulaire pour moteur hybride de vehicule automobile a arbre commun
FR3043197A1 (fr) * 2015-10-28 2017-05-05 Continental Automotive France Dispositif a double cible pour la determination de la position d'un axe mobile d'un vehicule automobile

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249234B1 (en) * 1994-05-14 2001-06-19 Absolute Sensors Limited Position detector
GB0427761D0 (en) * 2004-12-20 2005-01-19 Kreit Darran Position encoder for a rotor
ES2700948T3 (es) * 2012-11-14 2019-02-20 Baumueller Nuernberg Gmbh Procedimiento para calibrar un codificador rotatorio
FR3028942B1 (fr) 2014-11-26 2016-12-23 Continental Automotive France Capteur inductif de mesure de la position d'un arbre d'un vehicule
FR3036790B1 (fr) * 2015-05-27 2017-06-02 Continental Automotive France Procede de determination de la position d'une piece mobile le long d'un axe a l'aide d'un capteur inductif
US10585149B2 (en) * 2017-11-01 2020-03-10 Integrated Device Technology, Inc. Sensor coil optimization
FR3085749B1 (fr) * 2018-09-12 2021-02-26 Electricfil Automotive Capteur inductif de position a decalage d'offset

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483295B2 (en) * 2000-05-25 2002-11-19 Hella Kg Hueck & Co. Inductive linear position sensor including exciting and receiving coils and a movable induction coupling element
FR3023369A1 (fr) * 2014-07-04 2016-01-08 Continental Automotive France Ensemble comportant au moins un premier moteur, un deuxieme moteur et un capteur de position angulaire
FR3023611A1 (fr) 2014-07-08 2016-01-15 Continental Automotive France Ensemble comprenant un moteur de vehicule automobile comportant des cibles et un capteur de position angulaire
FR3027103A1 (fr) * 2014-10-08 2016-04-15 Continental Automotive France Ensemble de capteur de position angulaire pour moteur hybride de vehicule automobile a arbre commun
FR3043197A1 (fr) * 2015-10-28 2017-05-05 Continental Automotive France Dispositif a double cible pour la determination de la position d'un axe mobile d'un vehicule automobile

Also Published As

Publication number Publication date
US11441925B2 (en) 2022-09-13
CN111065896B (zh) 2021-10-22
FR3070759B1 (fr) 2020-09-11
CN111065896A (zh) 2020-04-24
FR3070759A1 (fr) 2019-03-08
KR20200051021A (ko) 2020-05-12
US20200400465A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
WO2019048780A1 (fr) Procédé de définition d'une plage de mesure d'un capteur de position inductif
EP1269133B1 (fr) Capteur de position, notamment destine a la detection de la torsion d'une colonne de direction
EP1949036B1 (fr) Capteur de position angulaire magnetique pour une course allant jusqu'a 360°
EP1989505B1 (fr) Capteur de position a direction d'aimantation variable et procede de realisation
EP1549910B1 (fr) Capteur de position a reluctance variable
FR3051552A1 (fr) Capteur de position inductif lineaire pour une mesure angulaire d'une piece mecanique en rotation
EP3245484B1 (fr) Capteurs inductifs de deplacement
WO2009101270A2 (fr) Capteur de position magnetique angulaire ou lineaire presentant une insensibilite aux champs exterieurs
EP3245483B1 (fr) Capteurs inductifs de deplacement
EP2338030A1 (fr) Capteur de position magnetique a mesure de direction de champ et a collecteur de flux
FR2909170A1 (fr) Capteur de position linaire ou rotatif a profil d'aimant variable preferentiellement de maniere quasi sinusoidal.
FR3077880A1 (fr) Capteur de couple integrant un capteur de position angulaire d'un element en rotation
FR3055961A1 (fr) Capteur d'angle de rotation et stator equipe d'un tel capteur
FR3036790A1 (fr) Procede de determination de la position d'une piece mobile le long d'un axe a l'aide d'un capteur inductif
WO2017212151A1 (fr) Dispositif de mesure de position angulaire d'un arbre ou similaire
WO2011038893A2 (fr) Capteur de position lineaire
FR3023611A1 (fr) Ensemble comprenant un moteur de vehicule automobile comportant des cibles et un capteur de position angulaire
WO2012031616A1 (fr) Capteur de position lineaire
FR2801969A1 (fr) Capteur analogique de decalage angulaire sans contact
WO2017212150A1 (fr) Capteur de position inductif destiné à une mesure de position angulaire d'un arbre ou similaire
FR2776064A1 (fr) Dispositif de mesure de position angulaire utilisant un capteur magnetique
WO2020193344A1 (fr) Capteur de position inductif de largeur réduite
EP2446228B1 (fr) Capteur de position angulaire
WO2016169645A1 (fr) Capteur de mesure du couple d'un arbre d'entrainement
FR3027103A1 (fr) Ensemble de capteur de position angulaire pour moteur hybride de vehicule automobile a arbre commun

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010002

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18778960

Country of ref document: EP

Kind code of ref document: A1