WO2019042884A1 - Verwendung eines palladium-platin-zeolith-basierten katalysators als passiver stickoxid-adsorber zur abgasreinigung - Google Patents
Verwendung eines palladium-platin-zeolith-basierten katalysators als passiver stickoxid-adsorber zur abgasreinigung Download PDFInfo
- Publication number
- WO2019042884A1 WO2019042884A1 PCT/EP2018/072869 EP2018072869W WO2019042884A1 WO 2019042884 A1 WO2019042884 A1 WO 2019042884A1 EP 2018072869 W EP2018072869 W EP 2018072869W WO 2019042884 A1 WO2019042884 A1 WO 2019042884A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zeolite
- palladium
- platinum
- zeolites
- type
- Prior art date
Links
- 239000010457 zeolite Substances 0.000 title claims abstract description 218
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims abstract description 166
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 title claims abstract description 137
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 119
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims abstract description 116
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 114
- 239000003054 catalyst Substances 0.000 title claims abstract description 70
- 229910052763 palladium Inorganic materials 0.000 title claims abstract description 67
- 229910052697 platinum Inorganic materials 0.000 title claims abstract description 53
- 239000007789 gas Substances 0.000 title abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 238000000576 coating method Methods 0.000 claims description 54
- 239000011248 coating agent Substances 0.000 claims description 44
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 33
- 229910052742 iron Inorganic materials 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 13
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 claims description 3
- 150000001768 cations Chemical class 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 20
- 239000011148 porous material Substances 0.000 description 17
- 239000012071 phase Substances 0.000 description 15
- 239000002245 particle Substances 0.000 description 13
- 125000004429 atom Chemical group 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 229910021529 ammonia Inorganic materials 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000011068 loading method Methods 0.000 description 7
- 239000002808 molecular sieve Substances 0.000 description 6
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000004071 soot Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000003795 desorption Methods 0.000 description 4
- -1 for example Chemical class 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- BVCZEBOGSOYJJT-UHFFFAOYSA-N ammonium carbamate Chemical compound [NH4+].NC([O-])=O BVCZEBOGSOYJJT-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 3
- 239000012876 carrier material Substances 0.000 description 3
- 229910052676 chabazite Inorganic materials 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- 239000002657 fibrous material Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229940009859 aluminum phosphate Drugs 0.000 description 2
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000011232 storage material Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- OVGWMUWIRHGGJP-WTODYLRWSA-N (z)-7-[(1r,3s,4s,5r)-3-[(e,3r)-3-hydroxyoct-1-enyl]-6-thiabicyclo[3.1.1]heptan-4-yl]hept-5-enoic acid Chemical group OC(=O)CCC\C=C/C[C@H]1[C@H](/C=C/[C@H](O)CCCCC)C[C@H]2S[C@@H]1C2 OVGWMUWIRHGGJP-WTODYLRWSA-N 0.000 description 1
- LTYUPYUWXRTNFQ-UHFFFAOYSA-N 5,6-diamino-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=C1C=C(N)C(N)=C2 LTYUPYUWXRTNFQ-UHFFFAOYSA-N 0.000 description 1
- 102100037651 AP-2 complex subunit sigma Human genes 0.000 description 1
- 101710204136 Acyl carrier protein 1 Proteins 0.000 description 1
- 101710204139 Acyl carrier protein 2 Proteins 0.000 description 1
- 241000269350 Anura Species 0.000 description 1
- 208000031872 Body Remains Diseases 0.000 description 1
- 101100008638 Caenorhabditis elegans daf-1 gene Proteins 0.000 description 1
- 101100008649 Caenorhabditis elegans daf-5 gene Proteins 0.000 description 1
- 101100386238 Caenorhabditis elegans daf-8 gene Proteins 0.000 description 1
- 101100366889 Caenorhabditis elegans sta-2 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 101710113788 Candidapepsin-1 Proteins 0.000 description 1
- 101710113789 Candidapepsin-2 Proteins 0.000 description 1
- 101710113783 Candidapepsin-3 Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 101000806914 Homo sapiens AP-2 complex subunit sigma Proteins 0.000 description 1
- 101000894789 Lachesana tarabaevi Cytoinsectotoxin-4 Proteins 0.000 description 1
- 101710116852 Molybdenum cofactor sulfurase 1 Proteins 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910014084 Na—B Inorganic materials 0.000 description 1
- 229910014152 Na—P2 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 102100033118 Phosphatidate cytidylyltransferase 1 Human genes 0.000 description 1
- 101710178747 Phosphatidate cytidylyltransferase 1 Proteins 0.000 description 1
- 102100035703 Prostatic acid phosphatase Human genes 0.000 description 1
- 101150081243 STA1 gene Proteins 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910001574 afghanite Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 101150091051 cit-1 gene Proteins 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000002153 concerted effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052675 erionite Inorganic materials 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910001683 gmelinite Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052907 leucite Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021500 melanophlogite Inorganic materials 0.000 description 1
- 229910001723 mesolite Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 229910052674 natrolite Inorganic materials 0.000 description 1
- 229910052664 nepheline Inorganic materials 0.000 description 1
- 239000010434 nepheline Substances 0.000 description 1
- 230000018537 nitric oxide storage Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052662 nosean Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- JRTYPQGPARWINR-UHFFFAOYSA-N palladium platinum Chemical compound [Pd].[Pt] JRTYPQGPARWINR-UHFFFAOYSA-N 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 229910001744 pollucite Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052679 scolecite Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052665 sodalite Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000013316 zoning Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
- B01J29/743—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9422—Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9463—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
- B01D53/9468—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9477—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/068—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/44—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/50—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
- B01J29/52—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing iron group metals, noble metals or copper
- B01J29/54—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/50—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
- B01J29/52—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing iron group metals, noble metals or copper
- B01J29/56—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/65—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
- B01J29/66—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
- B01J29/67—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
- B01J29/7407—A-type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
- B01J29/7415—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
- B01J29/7423—MAZ-type, e.g. Mazzite, Omega, ZSM-4 or LZ-202
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
- B01J29/7476—MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
- B01J29/7492—MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/7615—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/763—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/83—Aluminophosphates [APO compounds]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/84—Aluminophosphates containing other elements, e.g. metals, boron
- B01J29/85—Silicoaluminophosphates [SAPO compounds]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0205—Impregnation in several steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0228—Coating in several steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0236—Drying, e.g. preparing a suspension, adding a soluble salt and drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0242—Coating followed by impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0244—Coatings comprising several layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0246—Coatings comprising a zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0248—Coatings comprising impregnated particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/91—NOx-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/183—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/42—Addition of matrix or binder particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0036—Grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/088—Decomposition of a metal salt
Definitions
- the present invention relates to the use of a palladium and platinum-coated zeolite as a passive nitrogen oxide adsorber for the passive incorporation of nitrogen oxides from the exhaust gas of an internal combustion engine.
- the exhaust of motor vehicles which are operated with lean-burn internal combustion engines, for example with diesel engines, in addition to carbon monoxide (CO) and nitrogen oxides (NO x ) also contains components resulting from the incomplete combustion of the fuel in the combustion chamber of the cylinder.
- HC residual hydrocarbons
- these include particulate emissions, which are also referred to as “diesel soot” or “soot particles”.
- Diesel soot particulate emissions
- These are complex agglomerates of predominantly carbon-containing solid particles and an adhering liquid phase, which mostly consists of relatively long-chain hydrocarbon condensates.
- the liquid phase adhering to the solid components is also referred to as "Soluble Organic Fraction SOP" or "Volatile Organic Fraction VOF”.
- Wall flow filters made of ceramic materials have proven particularly useful. These are composed of a plurality of parallel channels formed by porous walls. The channels are mutually closed at one of the two ends of the filter to form first channels which are open on the first side of the filter and closed on the second side of the filter, and second channels which are closed on the first side of the filter and are open on the second side of the filter. For example, in the first channels incoming exhaust gas can leave the filter only through the second channels again and must flow through the porous walls between the first and second channels for this purpose. As the exhaust passes through the wall, the particles are retained.
- particle filters can be provided with catalytically active coatings.
- EP1820561 Al describes the coating of a diesel particulate filter with a catalyst layer, which facilitates the burning of the filtered soot particles.
- One known method of removing nitrogen oxides from exhaust gases in the presence of oxygen is the selective catalytic reduction by means of ammonia on a suitable catalyst (SCR process). In this method, the nitrogen oxides to be removed from the exhaust gas are reacted with ammonia as a reducing agent to nitrogen and water.
- iron and in particular copper-exchanged zeolites can be used as SCR catalysts, see, for example, WO2008 / 106519 A1, WO2008 / 118434 A1 and WO2008 / 132452 A2.
- SCR catalysts for the conversion of nitrogen oxides with ammonia contain no noble metals, in particular no platinum and no palladium. Namely, in the presence of these metals, the oxidation of ammonia with oxygen to nitrogen oxides would proceed preferentially and the SCR reaction
- ammonia used as a reducing agent can be prepared by metering in an ammonia precursor compound, such as, for example, urea,
- Storage material of the storage catalyst are stored mainly in the form of nitrates and this decomposed in a subsequent rich phase of operation of the engine again and the thus released nitrogen oxides are reacted with the reducing exhaust gas components on the storage catalyst to nitrogen, carbon dioxide and water. This procedure is described for example in SAE SAE 950809.
- storage materials are in particular oxides, carbonates or
- Hydroxides of magnesium, calcium, strontium, barium, the alkali metals, the rare earth metals or mixtures thereof in question Due to their basic properties, these compounds are capable of forming nitrates with the acidic nitrogen oxides of the exhaust gas and of storing them in this way. They are deposited to produce a large interaction surface with the exhaust gas in the highest possible dispersion on suitable carrier materials.
- nitrogen oxide storage catalysts usually contain precious metals such as platinum, palladium and / or rhodium
- the US2014 / 322112 describes a zoning of the coating of the particulate filter with nitrogen oxide storage catalyst such that a zone, starting from the upstream end of the particulate filter in the
- nitrogen oxides are stored in a first temperature range and released again in a second temperature range, wherein the second temperature range at higher
- Temperatures are the first temperature range.
- passive nitrogen oxide storage catalysts are used, which are also referred to as PNA (for "passive NOx adsorber").
- a zeolite containing, for example, palladium and another metal, such as iron is known to use as a passive nitrogen oxide storage catalyst.
- WO2015 / 085303 AI discloses passive nitrogen oxide storage catalysts containing a noble metal and a small pore molecular sieve with a maximum ring size of eight tetrahedral atoms.
- Modern and future diesel engines are becoming increasingly efficient, as a result of which exhaust gas temperatures are also falling.
- legislation on nitrogen oxide sales is becoming increasingly stringent.
- SCR catalysts alone are no longer sufficient to meet the nitrogen oxide limits.
- technical solutions which ensure that nitrogen oxides formed in the cold start phase of the engine do not escape into the environment.
- technical solutions must ensure that stored nitrogen oxides are as completely as possible released (desorbed) in the operating window of a downstream SCR catalytic converter.
- the present invention accordingly relates to the use of a
- Catalyst comprising a carrier substrate of length L and a coating A comprising a zeolite, palladium and platinum, wherein palladium in amounts of 0.01 to 10 wt .-%, based on the sum of the weights of zeolite, platinum and palladium and calculated as palladium metal, and Platinum in amounts of 0.1 to 10 wt .-%, based on the weight of palladium and calculated as platinum metal present, as a passive nitrogen oxide adsorber which stores nitrogen oxides in a first temperature range and releases again in a second temperature range, wherein the second temperature range is at higher temperatures than the first
- Zeolites are two- or three-dimensional structures whose smallest structures Si0 4 and Al0 4 tetrahedra can be considered. These tetrahedra combine to form larger structures, with two each connected via a common oxygen atom.
- rings of different sizes can be formed, for example rings of four, six or even nine tetrahedrally coordinated silicon or aluminum atoms.
- the different zeolite types are often defined by the largest ring size, because this size determines which guest molecules can and can not penetrate into the zeolite structure. It is common to distinguish large pore zeolites with a maximum ring size of 12, medium pore zeolites with a maximum ring size of 10 and small pore zeolites with a maximum ring size of 8.
- the use according to the invention comprises a zeolite which may be large pore, medium pore or small pore.
- the use according to the invention comprises a zeolite whose largest channels are formed by 6 tetrahedrally coordinated atoms and which contains, for example, the structure types AFG, AST, DOH, FAR, FRA, GIU, LIO, LOS, MAR, MEP, MSO, MTN, NON RUT, SGT, SOD, SVV, TOL or UOZ.
- a zeolite of the structural type AFG isrielite.
- Structure-type zeolites AST are AIPO-16 and octadecasil.
- a zeolite of the structural type DOH is
- a zeolite of the structural type FAR is farneseite.
- a zeolite of the structural type FRA is Franzinit.
- a zeolite of the structural type GIU is
- a zeolite of the structural type LIO is Liottit. Zeolites from
- Structure type LOS are Losod and Bystrit.
- a zeolite of the structural type MAR is marinellite.
- a zeolite of the structural type MEP is melanophlogite.
- MSO-type zeolites are MCM-61 and Mu-13.
- Structure-type zeolites MTN are ZSM-39, CF-4, Docecasil-3C and Holdstit.
- NON-type zeolites are Nonasil, CF-3 and ZSM-51.
- Structure type RUT zeolites are RUB-10 and Nu-1.
- a zeolite of the structural type SGT is Sigma-2.
- Zeolites of the structural type SOD are sodalite, AIPO-20, biculonite, danalite, G,
- a zeolite of the structural type UOZ is IM-10.
- the use according to the invention preferably comprises a zeolite whose largest channels are formed by 6 tetrahedrally coordinated atoms and which belongs to the structural type SOD.
- a zeolite whose largest channels are formed by 8 tetrahedrally coordinated atoms and which are of the structural types ABW, ACO, AEI, AEN, AFN, AFT, AFV, AFX, ANA, APC, APD, ATN, ATT, ATV, AVL, AWO, AWW, BCT, BIK, BRE, CAS, CDO, CHA, GDR, DFT, EAB, EDI, EEI, EPI, ERI, ESV, ETL, GIS, GOO, IFY, IHW, IRN, ITE, ITW, JBW, JNT, JOZ, JSN, JSW, KFI, LEV, -LIT, LTA, LTJ, LTN, MER, MON, MTF, MWF, NPT, NSI, OWE, PAU, PHI, RHO, RTH, RWR, SAS, SAT, SAV, SBN , SIV, THO
- a zeolite of the structural type ABW is Li-A.
- a zeolite of the structural type ACO is ACP-1.
- Zeolites of the structure type AEI are SAPO-18, SIZ-8 and SSZ-39.
- AEN-type zeolites are AIPO-53, IST-2, JDF-2, MCS-1, Mu-10 and UiO-12-500.
- a zeolite of the structural type AFT is AIPO-52.
- Structure-type zeolites AFX are SAPO-56 and SSZ-16.
- Structure type ANA zeolites are Analcim, AIPO-24, Leucite, Na-B, Pollucite and Wairakite.
- Structure-type zeolites APC are AIPO-C and AIPO-H3.
- Structure-type zeolites APD are AIPO-D and APO-CJ3.
- Structure-type zeolites ATN are MAPO-39 and SAPO-39.
- Structure-type zeolites ATT are AIPO-33 and RMA-3.
- An ATV-type zeolite is AIPO-25.
- a zeolite of the structure type AWO is AIPO-21.
- An AWW-type zeolite is AIPO-22.
- Structure-type zeolites BCT are Metavariscite and Svyatoslavit. A zeolite from
- CHA Structural types CHA are AIPO-34, chabazite, DAF-5, Linde-D, Linde-R, LZ-218, Phi, SAPO-34, SAPO-47, SSZ-13, UiO-21, Willherson soonite, ZK-14 and ZYT - 6.
- zeolites of the structure type DDR are Sigma-1 and ZSM-58.
- Structure-type zeolites DFT are DAF-2 and ACP-3.
- EAB-type zeolites are TMA-E and Bellbergite.
- EDI-type zeolites are Edingtonite, K-F, Linde F and Zeolite N.
- ERI-type zeolites are erionite, AIPO-17, Linde T, LZ-220, SAPO-17 and ZSM-34.
- a zeolite of the structural type ESV is ERS-7.
- Structure-type zeolites GIS are gismondine, amicite, garronite, gobbinsite, MAPO-43, Na-Pl, Na-P2 and SAPO-43.
- Structure type IHW is ITQ-3.
- ITE-type zeolites are ITQ-3, Mu-14 and SSZ-36.
- An ITW-type zeolite is ITQ-12.
- Structure-type zeolites JBW are Na-J and Nepheline.
- Zeolites of the structural type KFI are ZK-5, P and Q.
- LEV structural type zeolites are Levyne, Levynit, AIP-35, LZ-132, NU-3, SAPO-35 and ZK-20.
- a zeolite of the structural type -LIT is Lithosit.
- LTA-type zeolites are Linde type A, alpha, ITQ-29, LZ-215, N-A, UZM-9, SAPO-42, ZK-21, ZK-22 and ZK-4. Zeolites from
- Structure type LTN are Linde type N and NaZ-21.
- MER-type zeolites are Merlinoite, KM, Linde W, and Zeolite W.
- MTF-type zeolites are MCM-35 and UTM-1.
- NSI-type zeolites are Nu-6 (2) and EU-20.
- Zeolites of the structural type OWE are UiO-28 and ACP-2.
- Zeolites of the structural type PAU are Paulimgit and ECR-18.
- Zeolites of the structural type PHI are Philippsit, DAF-8, Harmotom, Wellsit and ZK-19.
- Structure-type zeolites RHO are Rho and LZ-214.
- Structure-type zeolites RTH are RUB-13, SSZ-36 and SSZ-50.
- a structural type zeolite RWR is RUB-24.
- Structural type zeolites are STA-6 and SSZ-73.
- a zeolite of the structure type SAT is STA-2.
- Structure-type zeolites SBN are UCSB-89 and SU-46.
- a zeolite of the structural type SIV is SIZ-7.
- a zeolite from RUB-24 is RUB-24.
- Structural type zeolites are STA-6 and SSZ-73.
- a zeolite of the structure type SAT is STA-2.
- Structure-type zeolites SBN are UCSB-89 and SU-46.
- a zeolite of the structural type SIV is SIZ-7.
- Structure type THO is thomsonite.
- a zeolite of the structure type UEI is Mu-18.
- a zeolite of the structural type UFI is UZM-5.
- a zeolite of the structural type VNI is VPI-9.
- Structure-type zeolites YUG are Yugawaralit and Sr-Q.
- ZON-type zeolites are ZAPO-M1 and UiO-7.
- the use according to the invention preferably comprises a zeolite whose largest channels are formed by 8 tetrahedrally coordinated atoms and which belongs to the structure type ABW, AEI, AFX, CHA, ERI, ESV, KFI, LEV or LTA.
- zeolites of the structure type AEI is described, for example, in US 2015/118150, that of SSZ-39 in US Pat. No. 5,958,370.
- Structure-type zeolites AFX are known from WO2016 / 077667 AI.
- Structure-type zeolites CHA are extensively described in the literature, see for example US 4,544,538 for SSZ-13.
- ZK-5 which belongs to the structural type KFI is described for example in EP288293 A2.
- Structure-type zeolites LEV are described, for example, in EP40016 AI, EP255770A2 and EP3009400A1
- a zeolite of the structural type -CHI is Chiavennite.
- Structure type LOV is Lovdarit.
- a zeolite of the structural type NAB is nabesite.
- NAT-type zeolites include Natrolite, Gonnardite, Mesolite, Metanatrolite, Paranatrolite, Tetranatrolite and Scolecite.
- a zeolite of the structural type RSN is RUB-17.
- a zeolite of the structural type STT is SSZ-23. Zeolites from
- VSV Structural type VSV are Gaultit, VPI-7 and VSV-7.
- the use according to the invention preferably comprises a zeolite whose largest channels are formed by 9 tetrahedrally coordinated atoms and which belongs to the structural type STT.
- a particularly suitable zeolite of the structural type STT is SSZ-23.
- SSZ-23 is described in US Pat. No. 4,859,442 and can be obtained according to the preparation processes specified there.
- Zeolites belonging to the structure type MTT are known from the literature. Thus, ZSM-23 is described in US 4,076,842, EU-13 in US 4,705,674 and ISI-4 in US 4,657,750. In addition, US 5,314,674 deals with the synthesis of zeolites of the structure type MTT.
- Zeolites belonging to the structure type MFI are, for example, under the names ZSM-5, ZS-4, AZ-1, FZ-1, LZ-105, NU-4, NU-5, TS-1, TS, USC-4 and ZBH known from the literature.
- ZSM-5 is described in US 3,702,886 and US 4,139,600.
- Zeolites belonging to the structure type MWW are known from the literature.
- SSZ-25 is described in US 4,826,667, MCM-22 in Zeolites 15, Issue 1, 2-8, 1995, ITQ-1 in US 6,077,498 and PSH-3 in US 4,439,409.
- the use according to the invention preferably comprises a zeolite whose largest channels are formed by 10 tetrahedrally coordinated atoms and which belongs to the structural type FER.
- Structural types AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPH, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, IWR, IWV , IWW, LTL, MAZ, MEI, MOR, MOZ, MSE, MTW, NPO, OFF, OSI, -RON, RWY, SAO, SBE, SBS, SBT, SFE, SFO, SOS, SSY, USI or VET.
- Structure-type zeolites AFI are AIPO-5, SSZ-24 and SAPO-5.
- Structure-type zeolites AFR are SAPO-40 and AIPO-40.
- Structure type AFS is MAPO-46.
- a zeolite of the structure type ASV is ASU-7.
- Structure-type zeolites ATO are SAPO-31 and AIPO-31.
- Structure-type zeolites ATS are SSZ-55 and AIPO-36.
- Zeolites of the structural type BEA are beta and CIT-6.
- Structure-type zeolites BPH are Linde Q, STA-5 and UZM-4.
- Structure-type zeolites are ECR-5, Davyn, Microsommit, Tiptopit and Vishnevit.
- Structure-type zeolites CON are CIT-1, SS-26 and SSZ-33.
- a zeolite of the structure type DFO is DAF-1. Zeolites from
- Structure types EMT are EMC-2, CSZ-1, ECR-30, ZSM-20 and ZSM-3.
- EON structural type zeolites are ECR-1 and TUN-7.
- a zeolite of the structure type EZT is EMM-3.
- Structural-type zeolites are faujasite, LZ-210, SAPO-37, CSZ-1, ECR-30, ZSM-20 and ZSM-3.
- a zeolite of the structural type GME is gmelinite.
- a zeolite of the structure type GON is GUS-1.
- Structure-type zeolites IFR are ITQ-4, MCM-58 and SSZ-42.
- Structure type ISV is ITQ-7.
- a zeolite of the structure type IWR is ITQ-24.
- a zeolite of the structure type IWV is ITQ-27.
- a zeolite of the structure type IWW is ITQ-22.
- LTL-type zeolites are Linde type L and LZ-212.
- MAZ-type zeolites are Mazzit, LZ-202, Omega, and ZSM-4.
- Structure-type zeolites MEI are ZSM-18 and ECR-40.
- Morphite zeolites MOR are mordenite, LZ-211 and Na-D.
- the use according to the invention preferably comprises a zeolite whose largest channels are formed by 12 tetrahedrally coordinated atoms and which belongs to the structural type BEA or FAU.
- Zeolites of the structural types BEA and FAU, as well as their preparation are described in detail in the literature.
- the use according to the invention very particularly preferably comprises a zeolite belonging to the structure type ABW, AEI, AFX, BEA, CHA, ERI, ESV, FAU, FER, KFI, LEV, LTA, MFI, SOD or STT.
- the use according to the invention very particularly preferably comprises a zeolite belonging to the structure type MWW.
- the catalyst used in the invention comprises palladium and platinum. Both are preferably present as a cation in the zeolite structure, that is in ion-exchanged form. But they can also be wholly or partly as metal and / or oxide in the zeolite structure and / or on the
- the palladium is preferably present in amounts of 0.1 to 5 wt .-% and particularly preferably 0.5 to 3 wt .-%, based on the sum of the weights of zeolite, platinum and palladium and calculated as palladium metal, before.
- Platinum is preferably present in amounts of 1 to 5 wt .-% and most preferably from 0.5 to 1.5 wt .-%, based on the weight of palladium and calculated as platinum metal before.
- the catalyst used in the invention comprises in one
- Embodiment other than palladium and platinum no more metal, especially neither copper, nor iron.
- the catalyst used according to the invention comprises one with 0.5 to 3 wt .-% palladium, based on the sum of the weights of zeolite, platinum and palladium and calculated as palladium metal, and 0.5 to 5 wt. % Platinum, based on the weight of palladium and calculated as platinum metal, occupied, in particular ion-exchanged, zeolites of the structure type ABW, AEI, AFX, BEA, CHA, ERI, ESV, FAU, FER, KFI, LEV, LTA, MFI, SOD or STT.
- the catalyst used in the invention comprises a support body. This may be a flow-through substrate or a wall-flow filter.
- a wall-flow filter is a support body comprising channels of length L extending in parallel between a first and a second end of the channel
- Wall flow filters which are alternately closed either at the first or at the second end and which are separated by porous walls.
- a flow-through substrate differs from a wall-flow filter in that the channels of length L are open at both ends.
- Their average pore size when uncoated for example, 5 to 30 microns.
- the pores of the wall-flow filter are so-called open pores, that is to say they have a connection to the channels. Furthermore, the pores are usually interconnected. This allows, on the one hand, the slight coating of the inner pore surfaces and, on the other hand, an easy passage of the exhaust gas through the porous walls of the wall-flow filter.
- Flow substrates are known in the art as well as wall flow filters and are available on the market. They consist for example of silicon carbide, aluminum titanate or cordierite.
- support substrates constructed of corrugated sheets of inert materials may also be used.
- Suitable inert materials are for example fibrous materials with a
- fibrous materials are heat-resistant and consist of silicon dioxide, in particular of glass fibers.
- structured body shaped with body passing channels.
- a monolithic structured body having a criss-cross corrugation structure is formed.
- undulating i.e. be arranged flat leaves.
- the coating A may be on the surfaces of the input channels, on the surfaces of the output channels and / or in the porous wall between input and output channels.
- Carrier substrate can be prepared by the skilled worker methods, such as by the usual dip coating or pumping and suction coating process with it
- Materials can be coordinated so that they are on the porous walls that form the channels of the wall flow filter (on-wall coating).
- the average particle size of the materials to be coated can also be chosen so that they are in the porous walls that form the channels of the wall flow filter, so that a coating of the inner pore surfaces takes place (in-wall coating).
- the mean particle size of the materials to be coated must be small enough to penetrate the pores of the material
- the zeolite and the palladium and platinum are coated over the entire length L of the carrier substrate, with no further catalytically active coating on the carrier substrate.
- the carrier substrate may also carry one or more further catalytically active coatings.
- the carrier substrate may comprise a further coating B which is active in oxidation-catalytically.
- the oxidation-catalytically active coating B comprises, for example, platinum, palladium or platinum and palladium on a carrier material.
- the mass ratio of platinum to palladium is, for example, 2: 1 to 14: 1.
- Suitable carrier materials are all those familiar to the person skilled in the art for this purpose. They have a BET surface area of 30 to 250 m 2 / g, preferably from 100 to 200 m 2 / g (determined according to DIN 66132) and are in particular alumina, silica, magnesia, titania, zirconia, and mixtures or mixed oxides of at least two of these materials.
- the coating A contains only a single zeolite.
- the coating B is free of platinum and / or palladium-containing zeolites.
- the coating A contains only a single zeolite and the coating B is free of platinum and / or palladium-containing zeolites.
- the coating comprising the zeolites and the palladium and platinum (coating A) and the oxidation-catalytically active coating
- the coatings A and B may also both be coated over the entire length L.
- the coatings A and B may also both be coated over the entire length L.
- Coating B directly on the carrier substrate and the coating A on coating B are present.
- the coating A may also be present directly on the carrier substrate and the coating B on the coating A.
- a coating extends over the entire length of the support body and the other only over a part thereof.
- the lower layer is present in an amount of 50 to 250 g / l of carrier substrate and the upper layer in an amount of 50 to 100 g / l of carrier substrate.
- the carrier substrate is a wall-flow filter
- the coatings may be on the walls of the input channels, on the walls of the output channels, or in the walls between input and output channels.
- catalyst substrates used inert materials can be used. These are, for example, silicates, oxides, nitrides or carbides, with particular preference being given to magnesium-aluminum silicates.
- the extruded carrier substrate comprising the zeolite, as well as palladium and platinum, in embodiments of the present invention may be coated with one or more catalytically active coatings, for example, with the oxidation-catalytically active coating described above.
- the catalyst is excellently suited for use as a passive nitrogen oxide storage catalyst, i. it is able to store nitrogen oxides at temperatures below 200 ° C and to recycle them at temperatures above 200 ° C.
- a downstream SCR catalyst it is possible to effectively convert nitrogen oxides over the entire temperature range of the exhaust gas, including cold start temperatures.
- the catalyst is part of an exhaust system comprising an SCR catalyst.
- the SCR catalyst can in principle be selected from all catalysts active in the SCR reaction of nitrogen oxides with ammonia,
- Catalysts of mixed oxide type as well as catalysts based on zeolites, in particular of transition metal-exchanged
- Zeolites for example with copper, iron or copper and iron
- SCR catalysts are described, for example, in WO2008 / 106519 A1, WO2008 / 118434 A1 and WO2008 / 132452 A2.
- zeolites can be used, in particular those of the structure type BEA come into question.
- iron BEA and copper BEA are of interest.
- Particularly preferred zeolites belong to the framework types BEA, AEI, CHA, KFI, ERI, LEV, MER or DDR and are particularly preferably exchanged with copper, iron or copper and iron.
- zeolites also includes molecular sieves, which are sometimes referred to as "zeolite-like" compounds Molecular sieves are preferred if they belong to one of the abovementioned types of skeletons Examples are silica-aluminum-phosphate zeolites, which are known by the term SAPO Aluminum phosphate zeolites known by the term AIPO.
- zeolites are furthermore those which have a SAR (silica-to-alumina ratio) value of from 2 to 100, in particular from 5 to 50.
- the zeolites or molecular sieves contain transition metal, in particular in amounts of 1 to 10 wt .-%, in particular 2 to 5 wt .-%, calculated as metal oxide, that is, for example, as Fe 2 C> 3 or CuO.
- Preferred embodiments of the present invention include SCR catalysts with copper, iron or copper and iron exchanged zeolites or beta-type molecular sieves (BEA), chabazite type (CHA) or Levyne type (LEV). Corresponding zeolites or molecular sieves are
- an SCR catalyst is between the catalyst, which is a carrier substrate of length L, a zeolite, palladium and platinum includes and the SCR catalyst injector for reducing agent.
- the injection device can be chosen arbitrarily by the person skilled in the art, suitable devices being able to be taken from the literature (see, for example, T. Mayer, Solid-SCR System Based on Ammonium Carbamate, Dissertation, TU Kaiserslautern, 2005).
- the ammonia can be introduced via the injection device as such or in the form of a compound in the exhaust stream from which ammonia is formed at ambient conditions.
- the reducing agent or a precursor thereof is kept in stock in an entrained container which is connected to the injection device.
- the SCR catalyst is preferably in the form of a coating on a supporting body, which may be a flow-through substrate or a wall-flow filter and may consist, for example, of silicon carbide, aluminum titanate or cordierite.
- the support body itself may consist of the SCR catalyst and a matrix component as described above, that is, in extruded form.
- the powder thus obtained is
- Example 1 is repeated with the difference that in step c) the amount of platinum applied corresponds to 0.1% by weight of the amount of palladium applied in step b).
- the platinum loading is thus 0.085 g / ft 3 .
- Example 1 is repeated with the difference that step c) was omitted.
- Example 3 is repeated with the difference that step c) was omitted.
- Example 3 is repeated with the difference that step c) was omitted.
- Example 1 is repeated with the difference that a zeolite of the structure type AEI is used.
- Example 5 The catalyst obtained according to Example 1 is also coated in a further step by a conventional method also over its entire length with a washcoat containing platinum supported on alumina.
- the washcoat loading of the second layer is 75 g / L, the platinum loading is 20 g / ft 3 .
- the catalyst according to Example 5 is combined with a second coated flow-through substrate to form an exhaust system.
- the second flow-through substrate is exchanged with a zeolite of the structure type chabazite exchanged with 3% by weight of copper (calculated as CuO).
- the washcoat loading of the second flow substrate is 150 g / L.
- the catalysts according to Examples 1, 2 and Comparative Example 1, and Example 3 and Comparative Example 2 are subjected to a NOx storage test with subsequent temperature-programmed desorption (TPD). This is done in a suitable model gas reactor by means of a so-called drill core with the dimensions 1 "x 3" (diameter x length) and a cell density of 400 cpsi and a wall thickness of 4.3 mil.
- TPD temperature-programmed desorption
- Lean phase a) is characterized in that at a
- Storage phase b) differs from lean phase a) in that at a space velocity of 30,000 1 / h in addition to the three first-mentioned gases additionally 500 ppm of nitrogen oxide is present.
- the core is baked for a period of 15 minutes at a temperature of 550 ° C under gas condition a) to give a begin empty level of the catalyst, then cooled to a temperature of 100 ° C.
- gas condition b) for a period of 40 minutes at a temperature of 100 ° C.
- gas condition a) is restored, simultaneously the temperature is increased at a rate of 60 K / min (temperature programmed desorption) until a final temperature of 550 ° C has been reached. This final temperature is maintained for an additional 15 minutes.
- Example 3 and Comparative Example 2 store nitrogen oxide almost identically at 100 ° C. (storage phase). In contrast desorbed in the desorption of the catalyst of Example 3 at a temperature of about 150 ° C already the largest part of the nitrogen oxide, while the catalyst of Comparative Example 2 desorbs a significant proportion of the stored nitrogen only at about 400 ° C. In a following cycle, therefore, less storage capacity is available in the case of the catalyst of Comparative Example 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/641,876 US11161100B2 (en) | 2017-08-31 | 2018-08-24 | Use of a palladium/platinum/zeolite-based catalyst as passive nitrogen oxide adsorber for purifying exhaust gas |
JP2019571738A JP2020531241A (ja) | 2017-08-31 | 2018-08-24 | 排気ガスを浄化するための受動的窒素酸化物吸着剤としてのパラジウム/白金/ゼオライト系触媒の使用 |
CN201880038995.7A CN110740810A (zh) | 2017-08-31 | 2018-08-24 | 钯/铂/沸石基催化剂作为用于净化废气的被动氮氧化物吸附剂的用途 |
EP18758623.5A EP3676001A1 (de) | 2017-08-31 | 2018-08-24 | Verwendung eines palladium-platin-zeolith-basierten katalysators als passiver stickoxid-adsorber zur abgasreinigung |
KR1020207009403A KR20200047651A (ko) | 2017-08-31 | 2018-08-24 | 배기 가스 정화용 수동적 질소 산화물 흡착제로서의 팔라듐/백금/제올라이트 기반 촉매의 용도 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17188771.4 | 2017-08-31 | ||
EP17188771 | 2017-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019042884A1 true WO2019042884A1 (de) | 2019-03-07 |
Family
ID=59923221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/072869 WO2019042884A1 (de) | 2017-08-31 | 2018-08-24 | Verwendung eines palladium-platin-zeolith-basierten katalysators als passiver stickoxid-adsorber zur abgasreinigung |
Country Status (6)
Country | Link |
---|---|
US (1) | US11161100B2 (de) |
EP (1) | EP3676001A1 (de) |
JP (1) | JP2020531241A (de) |
KR (1) | KR20200047651A (de) |
CN (1) | CN110740810A (de) |
WO (1) | WO2019042884A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019042883A1 (de) | 2017-08-31 | 2019-03-07 | Umicore Ag & Co. Kg | Palladium-zeolith-basierter passiver stickoxid-adsorber-katalysator zur abgasreinigung |
EP3616792A1 (de) * | 2018-08-28 | 2020-03-04 | Umicore Ag & Co. Kg | Stickoxid-speicherkatalysator |
EP4048875A4 (de) * | 2019-10-21 | 2023-10-25 | BASF Corporation | Niedertemperatur-nox-adsorber mit verbesserter regenerationseffizienz |
KR20220069375A (ko) * | 2020-11-20 | 2022-05-27 | 현대자동차주식회사 | 탄화수소 산화용 제올라이트 촉매 및 이의 제조방법 |
FR3123006B1 (fr) * | 2021-05-21 | 2023-06-02 | Ifp Energies Now | Synthese d’un catalyseur a base de zeolithe afx contenant du palladium pour l’adsorption des nox |
Citations (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3355246A (en) | 1966-07-18 | 1967-11-28 | Mobil Oil Corp | Crystalline zeolite zk-21 |
US3702886A (en) | 1969-10-10 | 1972-11-14 | Mobil Oil Corp | Crystalline zeolite zsm-5 and method of preparing the same |
US3933974A (en) | 1975-02-18 | 1976-01-20 | Shell Oil Company | Process for the preparation of ferrierite |
US4000248A (en) | 1974-03-18 | 1976-12-28 | The British Petroleum Company Limited | Synthesis of zeolites |
US4076842A (en) | 1975-06-10 | 1978-02-28 | Mobil Oil Corporation | Crystalline zeolite ZSM-23 and synthesis thereof |
US4107196A (en) | 1977-12-07 | 1978-08-15 | Dow Corning Corporation | N-tertiarybutyl organosilylamides |
US4139600A (en) | 1977-04-22 | 1979-02-13 | Mobil Oil Corporation | Synthesis of zeolite ZSM-5 |
US4251499A (en) | 1978-12-14 | 1981-02-17 | Shell Oil Company | Process for the preparation of ferrierite |
EP0040016A1 (de) | 1980-05-13 | 1981-11-18 | Imperial Chemical Industries Plc | Zeolith Nu-3 |
US4310440A (en) | 1980-07-07 | 1982-01-12 | Union Carbide Corporation | Crystalline metallophosphate compositions |
EP0055529A1 (de) | 1980-12-19 | 1982-07-07 | Imperial Chemical Industries Plc | Zeolithe |
US4439409A (en) | 1981-04-30 | 1984-03-27 | Bayer Aktiengesellschaft | Crystalline aluminosilicate PSH-3 and its process of preparation |
EP0103981A1 (de) | 1982-09-03 | 1984-03-28 | Imperial Chemical Industries Plc | Zeolithe |
US4544538A (en) | 1982-07-09 | 1985-10-01 | Chevron Research Company | Zeolite SSZ-13 and its method of preparation |
US4657750A (en) | 1982-07-30 | 1987-04-14 | Research Association For Petroleum Alternatives Development | Process for the production of crystalline silicate ISI-4 using ethylene glycol |
US4695440A (en) | 1983-03-07 | 1987-09-22 | Research Association For Petroleum Alternatives Development | Crystalline aluminosilicate ISI-6 |
US4705674A (en) | 1982-10-05 | 1987-11-10 | Imperial Chemical Industries Plc | Synthesis of zeolite EU-13 from a reaction mixture containing tetramethylammonium compound |
EP0255770A2 (de) | 1986-07-31 | 1988-02-10 | Imperial Chemical Industries Plc | Synthese eines Zeoliths |
EP0288293A2 (de) | 1987-04-22 | 1988-10-26 | Exxon Chemical Patents Inc. | ZK-5 Zeolith |
US4826667A (en) | 1986-01-29 | 1989-05-02 | Chevron Research Company | Zeolite SSZ-25 |
BE1001038A7 (fr) | 1988-03-23 | 1989-06-20 | Eniricerche Spa | Procede pour la preparation de materiaux synthetiques cristallins poreux constitues d'oxydes de silicium et de titane. |
US4859442A (en) | 1986-01-29 | 1989-08-22 | Chevron Research Company | Zeolite SSZ-23 |
EP0427970A2 (de) * | 1989-10-18 | 1991-05-22 | Toyota Jidosha Kabushiki Kaisha | Verfahren zum Reinigen von NOx in Abgasen mittels eines Edelmetall/ZSM-5 Katalysators |
US5314674A (en) | 1991-11-08 | 1994-05-24 | Societe Nationale Elf Aquitaine | Process for the synthesis of a zeolite of MTT type, products obtained and their application in adsorption and catalysts |
EP0885650A2 (de) | 1997-06-20 | 1998-12-23 | Degussa Aktiengesellschaft | Abgasreinigungskatalysator für Verbrennungsmotoren mit zwei katalytisch aktiven Schichten auf einem Tragkörper |
US5958370A (en) | 1997-12-11 | 1999-09-28 | Chevron U.S.A. Inc. | Zeolite SSZ-39 |
US5968474A (en) | 1994-09-30 | 1999-10-19 | Chevron U.S.A. Inc. | Pure phase titanium-containing zeolite having MEL structure, process for preparing same, and oxidation processes using same as catalyst |
US6077498A (en) | 1995-11-23 | 2000-06-20 | Consejo Superior Investigaciones Cientificas | Zeolite ITQ-1 |
EP1393069A1 (de) | 2001-05-24 | 2004-03-03 | The University Of Florida | Verfahren und vorrichtung zur rauchaussetzungfeststellung |
US6709644B2 (en) | 2001-08-30 | 2004-03-23 | Chevron U.S.A. Inc. | Small crystallite zeolite CHA |
EP1420149A2 (de) | 2002-11-14 | 2004-05-19 | Hitachi, Ltd. | Abgasreinigungsgerät |
EP1433519A1 (de) | 2002-12-27 | 2004-06-30 | Volkswagen Aktiengesellschaft | Partikelfilter mit NOx-Speicherkatalysatorfunktion |
EP1820561A1 (de) | 2006-02-20 | 2007-08-22 | Mazda Motor Corporation | Dieselpartikelfilter enthaltend eine katalytische Beschichtung |
WO2008047170A1 (en) | 2006-10-20 | 2008-04-24 | Johnson Matthey Public Limited Company | Thermally regenerable nitric oxide adsorbent |
US20080141661A1 (en) | 2006-12-01 | 2008-06-19 | Kenneth Voss | Zone Coated Filter, Emission Treatment Systems and Methods |
US20080159936A1 (en) * | 2006-12-27 | 2008-07-03 | Chevron U.S.A. Inc. | Treatment of cold start engine exhaust |
WO2008106519A1 (en) | 2007-02-27 | 2008-09-04 | Basf Catalysts Llc | Copper cha zeolite catalysts |
WO2008118434A1 (en) | 2007-03-26 | 2008-10-02 | Pq Corporation | Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same |
WO2008132452A2 (en) | 2007-04-26 | 2008-11-06 | Johnson Matthey Public Limited Company | Transition metal/zeolite scr catalysts |
DE102008010388A1 (de) * | 2008-02-21 | 2009-09-24 | Umicore Ag & Co. Kg | Verfahren zur Beschichtung eines Dieselpartikelfilters und damit hergestelltes Dieselpartikelfilter |
US20090320457A1 (en) | 2008-06-27 | 2009-12-31 | Wan Chung Z | NOx Adsorber Catalyst with Superior Low Temperature Performance |
WO2012029050A1 (en) | 2010-09-02 | 2012-03-08 | Basf Se | Catalyst for gasoline lean burn engines with improved no oxidation activity |
WO2012071421A2 (en) | 2010-11-24 | 2012-05-31 | Basf Corporation | Diesel oxidation catalyst articles and methods of making and using |
EP2505803A2 (de) | 2011-03-30 | 2012-10-03 | Caterpillar Inc. | Kompressionszündungsmotorsystem mit Dieselpartikelfilter mit NOx-Reduktionskatalysatorbeschichtung und stabiles Betriebsverfahren |
WO2012156883A1 (en) | 2011-05-13 | 2012-11-22 | Basf Se | Catalyzed soot filter with layered design |
WO2012166868A1 (en) | 2011-06-01 | 2012-12-06 | Johnson Matthey Public Limited Company | Cold start catalyst and its use in exhaust systems |
US8617474B2 (en) | 2008-01-31 | 2013-12-31 | Basf Corporation | Systems utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure |
US20140170062A1 (en) | 2012-12-14 | 2014-06-19 | Uop Llc | Low silicon sapo-42 and method of making |
US20140322112A1 (en) | 2013-04-24 | 2014-10-30 | Johnson Matthey Public Limited Company | Positive Ignition Engine and Exhaust System Comprising Catalysed Zone-Coated Filter Substrate |
WO2014184568A1 (en) | 2013-05-17 | 2014-11-20 | Johnson Matthey Public Limited Company | Oxidation catalyst for a compression ignition engine |
US20150118150A1 (en) | 2013-10-31 | 2015-04-30 | Johnson Matthey Public Limited Company | Aei zeolite synthesis |
WO2015085303A1 (en) | 2013-12-06 | 2015-06-11 | Johnson Matthey Public Limited Company | Passive nox adsorber comprising noble metal and small pore molecular sieve |
DE102014118096A1 (de) * | 2013-12-06 | 2015-06-11 | Johnson Matthey Public Limited Company | Edelmetall-molekularsieb-katalysatoren |
US20150217282A1 (en) * | 2011-06-05 | 2015-08-06 | Johnson Matthey Public Limited Company | Pgm catalyst for treating exhaust gas |
WO2016020351A1 (de) | 2014-08-05 | 2016-02-11 | Umicore Ag & Co. Kg | Katalysator zur reduktion von stickoxiden |
DE102015113415A1 (de) * | 2014-08-15 | 2016-02-18 | Johnson Matthey Public Limited Company | Zonen-Katalysator zum Behandeln von Abgas |
EP3009400A1 (de) | 2013-06-14 | 2016-04-20 | Tosoh Corporation | Lev-zeolith und herstellungsverfahren dafür |
DE102015119913A1 (de) * | 2014-11-19 | 2016-05-19 | Johnson Matthey Public Limited Company | Kombination von SCR mit PNA zur Niedrigtemperaturemissionssteuerung |
WO2016077667A1 (en) | 2014-11-14 | 2016-05-19 | Johnson Matthey Public Limited Company | Afx zeolite |
DE102016112065A1 (de) * | 2015-07-02 | 2017-01-05 | Johnson Matthey Public Limited Company | PASSIVER NOx-ADSORBER |
DE112016000032T5 (de) * | 2015-02-13 | 2017-03-02 | Johnson Matthey Public Limited Company | Katalysator zum oxidieren von methan und ethan in einem abgas von erdgasmotoren |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160044541A1 (en) | 2013-04-05 | 2016-02-11 | Nokia Technologies Oy | Relaxed performance requirements for offloading measurements |
WO2015143225A1 (en) * | 2014-03-21 | 2015-09-24 | SDCmaterials, Inc. | Compositions for passive nox adsorption (pna) systems |
BR112017018010A2 (pt) * | 2015-02-26 | 2018-04-10 | Johnson Matthey Plc | adsorvedor passivo de nox, sistema de escape para motores de combustão interna, e, processo para reduzir nox. |
BR112017020208A2 (pt) * | 2015-03-25 | 2018-06-05 | Johnson Matthey Plc | ?adsorvedor de nox passivo, sistema de escape para motores de combustão interna, e, método para reduzir nox em um gás de escape? |
US9657626B2 (en) | 2015-05-18 | 2017-05-23 | Ford Global Technologies, Llc | Emissions reduction system |
CN108367241A (zh) | 2015-10-30 | 2018-08-03 | 优美科股份公司及两合公司 | 用于被动nox吸附(pna)体系的组合物及其制备和使用方法 |
WO2018183604A1 (en) * | 2017-03-30 | 2018-10-04 | Johnson Matthey Public Limited Company | Platinum group metal and base metal on a molecular sieve for pna-scr-asc close-coupled systems |
-
2018
- 2018-08-24 EP EP18758623.5A patent/EP3676001A1/de not_active Withdrawn
- 2018-08-24 US US16/641,876 patent/US11161100B2/en active Active
- 2018-08-24 CN CN201880038995.7A patent/CN110740810A/zh active Pending
- 2018-08-24 JP JP2019571738A patent/JP2020531241A/ja active Pending
- 2018-08-24 WO PCT/EP2018/072869 patent/WO2019042884A1/de unknown
- 2018-08-24 KR KR1020207009403A patent/KR20200047651A/ko unknown
Patent Citations (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3355246A (en) | 1966-07-18 | 1967-11-28 | Mobil Oil Corp | Crystalline zeolite zk-21 |
US3702886A (en) | 1969-10-10 | 1972-11-14 | Mobil Oil Corp | Crystalline zeolite zsm-5 and method of preparing the same |
US4000248A (en) | 1974-03-18 | 1976-12-28 | The British Petroleum Company Limited | Synthesis of zeolites |
US3933974A (en) | 1975-02-18 | 1976-01-20 | Shell Oil Company | Process for the preparation of ferrierite |
US4076842A (en) | 1975-06-10 | 1978-02-28 | Mobil Oil Corporation | Crystalline zeolite ZSM-23 and synthesis thereof |
US4139600A (en) | 1977-04-22 | 1979-02-13 | Mobil Oil Corporation | Synthesis of zeolite ZSM-5 |
US4107196A (en) | 1977-12-07 | 1978-08-15 | Dow Corning Corporation | N-tertiarybutyl organosilylamides |
US4251499A (en) | 1978-12-14 | 1981-02-17 | Shell Oil Company | Process for the preparation of ferrierite |
EP0040016A1 (de) | 1980-05-13 | 1981-11-18 | Imperial Chemical Industries Plc | Zeolith Nu-3 |
US4310440A (en) | 1980-07-07 | 1982-01-12 | Union Carbide Corporation | Crystalline metallophosphate compositions |
EP0055529A1 (de) | 1980-12-19 | 1982-07-07 | Imperial Chemical Industries Plc | Zeolithe |
US4439409A (en) | 1981-04-30 | 1984-03-27 | Bayer Aktiengesellschaft | Crystalline aluminosilicate PSH-3 and its process of preparation |
US4544538A (en) | 1982-07-09 | 1985-10-01 | Chevron Research Company | Zeolite SSZ-13 and its method of preparation |
US4657750A (en) | 1982-07-30 | 1987-04-14 | Research Association For Petroleum Alternatives Development | Process for the production of crystalline silicate ISI-4 using ethylene glycol |
EP0103981A1 (de) | 1982-09-03 | 1984-03-28 | Imperial Chemical Industries Plc | Zeolithe |
US4705674A (en) | 1982-10-05 | 1987-11-10 | Imperial Chemical Industries Plc | Synthesis of zeolite EU-13 from a reaction mixture containing tetramethylammonium compound |
US4695440A (en) | 1983-03-07 | 1987-09-22 | Research Association For Petroleum Alternatives Development | Crystalline aluminosilicate ISI-6 |
US4826667A (en) | 1986-01-29 | 1989-05-02 | Chevron Research Company | Zeolite SSZ-25 |
US4859442A (en) | 1986-01-29 | 1989-08-22 | Chevron Research Company | Zeolite SSZ-23 |
EP0255770A2 (de) | 1986-07-31 | 1988-02-10 | Imperial Chemical Industries Plc | Synthese eines Zeoliths |
EP0288293A2 (de) | 1987-04-22 | 1988-10-26 | Exxon Chemical Patents Inc. | ZK-5 Zeolith |
BE1001038A7 (fr) | 1988-03-23 | 1989-06-20 | Eniricerche Spa | Procede pour la preparation de materiaux synthetiques cristallins poreux constitues d'oxydes de silicium et de titane. |
EP0427970A2 (de) * | 1989-10-18 | 1991-05-22 | Toyota Jidosha Kabushiki Kaisha | Verfahren zum Reinigen von NOx in Abgasen mittels eines Edelmetall/ZSM-5 Katalysators |
US5314674A (en) | 1991-11-08 | 1994-05-24 | Societe Nationale Elf Aquitaine | Process for the synthesis of a zeolite of MTT type, products obtained and their application in adsorption and catalysts |
US5968474A (en) | 1994-09-30 | 1999-10-19 | Chevron U.S.A. Inc. | Pure phase titanium-containing zeolite having MEL structure, process for preparing same, and oxidation processes using same as catalyst |
US6077498A (en) | 1995-11-23 | 2000-06-20 | Consejo Superior Investigaciones Cientificas | Zeolite ITQ-1 |
EP0885650A2 (de) | 1997-06-20 | 1998-12-23 | Degussa Aktiengesellschaft | Abgasreinigungskatalysator für Verbrennungsmotoren mit zwei katalytisch aktiven Schichten auf einem Tragkörper |
US5958370A (en) | 1997-12-11 | 1999-09-28 | Chevron U.S.A. Inc. | Zeolite SSZ-39 |
EP1393069A1 (de) | 2001-05-24 | 2004-03-03 | The University Of Florida | Verfahren und vorrichtung zur rauchaussetzungfeststellung |
US6709644B2 (en) | 2001-08-30 | 2004-03-23 | Chevron U.S.A. Inc. | Small crystallite zeolite CHA |
EP1420149A2 (de) | 2002-11-14 | 2004-05-19 | Hitachi, Ltd. | Abgasreinigungsgerät |
EP1433519A1 (de) | 2002-12-27 | 2004-06-30 | Volkswagen Aktiengesellschaft | Partikelfilter mit NOx-Speicherkatalysatorfunktion |
EP1820561A1 (de) | 2006-02-20 | 2007-08-22 | Mazda Motor Corporation | Dieselpartikelfilter enthaltend eine katalytische Beschichtung |
WO2008047170A1 (en) | 2006-10-20 | 2008-04-24 | Johnson Matthey Public Limited Company | Thermally regenerable nitric oxide adsorbent |
US20080141661A1 (en) | 2006-12-01 | 2008-06-19 | Kenneth Voss | Zone Coated Filter, Emission Treatment Systems and Methods |
US20080159936A1 (en) * | 2006-12-27 | 2008-07-03 | Chevron U.S.A. Inc. | Treatment of cold start engine exhaust |
WO2008106519A1 (en) | 2007-02-27 | 2008-09-04 | Basf Catalysts Llc | Copper cha zeolite catalysts |
WO2008118434A1 (en) | 2007-03-26 | 2008-10-02 | Pq Corporation | Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same |
WO2008132452A2 (en) | 2007-04-26 | 2008-11-06 | Johnson Matthey Public Limited Company | Transition metal/zeolite scr catalysts |
US8617474B2 (en) | 2008-01-31 | 2013-12-31 | Basf Corporation | Systems utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure |
DE102008010388A1 (de) * | 2008-02-21 | 2009-09-24 | Umicore Ag & Co. Kg | Verfahren zur Beschichtung eines Dieselpartikelfilters und damit hergestelltes Dieselpartikelfilter |
US20090320457A1 (en) | 2008-06-27 | 2009-12-31 | Wan Chung Z | NOx Adsorber Catalyst with Superior Low Temperature Performance |
WO2012029050A1 (en) | 2010-09-02 | 2012-03-08 | Basf Se | Catalyst for gasoline lean burn engines with improved no oxidation activity |
WO2012071421A2 (en) | 2010-11-24 | 2012-05-31 | Basf Corporation | Diesel oxidation catalyst articles and methods of making and using |
EP2505803A2 (de) | 2011-03-30 | 2012-10-03 | Caterpillar Inc. | Kompressionszündungsmotorsystem mit Dieselpartikelfilter mit NOx-Reduktionskatalysatorbeschichtung und stabiles Betriebsverfahren |
WO2012156883A1 (en) | 2011-05-13 | 2012-11-22 | Basf Se | Catalyzed soot filter with layered design |
WO2012166868A1 (en) | 2011-06-01 | 2012-12-06 | Johnson Matthey Public Limited Company | Cold start catalyst and its use in exhaust systems |
US20150217282A1 (en) * | 2011-06-05 | 2015-08-06 | Johnson Matthey Public Limited Company | Pgm catalyst for treating exhaust gas |
US20140170062A1 (en) | 2012-12-14 | 2014-06-19 | Uop Llc | Low silicon sapo-42 and method of making |
US20140322112A1 (en) | 2013-04-24 | 2014-10-30 | Johnson Matthey Public Limited Company | Positive Ignition Engine and Exhaust System Comprising Catalysed Zone-Coated Filter Substrate |
WO2014184568A1 (en) | 2013-05-17 | 2014-11-20 | Johnson Matthey Public Limited Company | Oxidation catalyst for a compression ignition engine |
EP3009400A1 (de) | 2013-06-14 | 2016-04-20 | Tosoh Corporation | Lev-zeolith und herstellungsverfahren dafür |
US20150118150A1 (en) | 2013-10-31 | 2015-04-30 | Johnson Matthey Public Limited Company | Aei zeolite synthesis |
DE102014118096A1 (de) * | 2013-12-06 | 2015-06-11 | Johnson Matthey Public Limited Company | Edelmetall-molekularsieb-katalysatoren |
DE102014118092A1 (de) * | 2013-12-06 | 2015-06-11 | Johnson Matthey Public Limited Company | PASSIVER NOx-ADSORBER |
WO2015085303A1 (en) | 2013-12-06 | 2015-06-11 | Johnson Matthey Public Limited Company | Passive nox adsorber comprising noble metal and small pore molecular sieve |
WO2016020351A1 (de) | 2014-08-05 | 2016-02-11 | Umicore Ag & Co. Kg | Katalysator zur reduktion von stickoxiden |
DE102015113415A1 (de) * | 2014-08-15 | 2016-02-18 | Johnson Matthey Public Limited Company | Zonen-Katalysator zum Behandeln von Abgas |
WO2016077667A1 (en) | 2014-11-14 | 2016-05-19 | Johnson Matthey Public Limited Company | Afx zeolite |
DE102015119913A1 (de) * | 2014-11-19 | 2016-05-19 | Johnson Matthey Public Limited Company | Kombination von SCR mit PNA zur Niedrigtemperaturemissionssteuerung |
DE112016000032T5 (de) * | 2015-02-13 | 2017-03-02 | Johnson Matthey Public Limited Company | Katalysator zum oxidieren von methan und ethan in einem abgas von erdgasmotoren |
DE102016112065A1 (de) * | 2015-07-02 | 2017-01-05 | Johnson Matthey Public Limited Company | PASSIVER NOx-ADSORBER |
Non-Patent Citations (6)
Title |
---|
"Atlas of Zeolite Framework Types, 5th ed.", 2001, ELSEVIER |
"Chem. Commun.", J.CHEM.SOC., 1993, pages 894 - 896 |
LEIGGENER ET AL.: "Material Syntheses", 2008, SPRINGER VIENNA, pages: 21 - 28 |
NATURE, vol. 275, 1978, pages 119 - 120 |
T. MAYER: "Feststoff-SCR-System auf Basis von Ammoniumcarbamat", 2005, DISSERTATION, TU KAISERSLAUTERN |
ZEOLITES, vol. 15, no. 1, 1995, pages 2 - 8 |
Also Published As
Publication number | Publication date |
---|---|
US11161100B2 (en) | 2021-11-02 |
JP2020531241A (ja) | 2020-11-05 |
CN110740810A (zh) | 2020-01-31 |
KR20200047651A (ko) | 2020-05-07 |
US20200246784A1 (en) | 2020-08-06 |
EP3676001A1 (de) | 2020-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019042884A1 (de) | Verwendung eines palladium-platin-zeolith-basierten katalysators als passiver stickoxid-adsorber zur abgasreinigung | |
WO2019134958A1 (de) | Passiver stickoxid-adsorber | |
DE102018106415A1 (de) | Katalytisches wandstromfilter mit einem ammoniak-slip-katalysator | |
DE102016118542A1 (de) | Einen russkatalysator und einen scr-katalysator aufweisendes katalytisches filter | |
DE102016111000A1 (de) | Gegen NH3-Überdosierung toleranter SCR-Katalysator | |
DE102018107779A1 (de) | Auf einem einzelnen Ziegel befindlicher, eng gekoppelter SCR/ASC/PNA/DOC-Katalysator | |
DE102016111147A1 (de) | Abgassystem ohne einen DOC, das einen als einen DOC wirkenden ASC in einem System mit einem SCR-Katalysator vor dem ASC aufweist | |
DE102015209987A1 (de) | Nicht-PGM-Ammoniakschlupfkatalysator | |
DE102016111151A1 (de) | Einzel- oder doppelschicht-ammoniaksperrkatalysator | |
DE102016111148A1 (de) | Ammoniak-Sperrkatalysator, ausgestaltet um der Erste in einem SCR-System zu sein | |
DE102015212356A1 (de) | Perowskit mit einer Deckschicht-SCR-Komponente als Ammoniakoxidationskatalysator und System zur Abgasreinigung bei Dieselmotoren | |
DE102010027883A1 (de) | Verfahren zur Verwendung eines Katalysators mit Kupfer und einem kleinporigen molekularen Sieb in einem chemischen Prozess | |
DE102017125040A1 (de) | Kohlenwasserstoffinjektion durch kleinporigen cu-zeolith-katalysator | |
EP3296009B1 (de) | Partikelfilter mit scr-aktiver beschichtung | |
WO2017178576A1 (de) | Partikelfilter mit scr-aktiver beschichtung | |
EP3676000A1 (de) | Palladium-zeolith-basierter passiver stickoxid-adsorber-katalysator zur abgasreinigung | |
DE102018106329A1 (de) | SCRF mit rückwärtigem Auf-Wand-Design | |
EP3695902B1 (de) | Katalysator zur reduktion von stickoxiden | |
WO2017178575A1 (de) | Katalysator mit scr-aktiver beschichtung | |
EP3449999A1 (de) | Passiver stickoxid-adsorber | |
EP3843896B1 (de) | Stickoxid-speicherkatalysator | |
DE102017119513A1 (de) | Verringerte Sulfatierungsauswirkung auf Cu-SCRs | |
WO2021099361A1 (en) | Catalyst for reducing nitrogen oxides | |
WO2020144195A1 (de) | Passiver stickoxid-adsorber mit oxidationskatalytisch aktiver funktion | |
EP3450015A1 (de) | Palladium-zeolith-basierter passiver stickoxid-adsorber-katalysator zur abgasreinigung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18758623 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019571738 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207009403 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018758623 Country of ref document: EP Effective date: 20200331 |