[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018135654A1 - Radical polymerizable resin composition and injectable agent for structure repair - Google Patents

Radical polymerizable resin composition and injectable agent for structure repair Download PDF

Info

Publication number
WO2018135654A1
WO2018135654A1 PCT/JP2018/001742 JP2018001742W WO2018135654A1 WO 2018135654 A1 WO2018135654 A1 WO 2018135654A1 JP 2018001742 W JP2018001742 W JP 2018001742W WO 2018135654 A1 WO2018135654 A1 WO 2018135654A1
Authority
WO
WIPO (PCT)
Prior art keywords
radical polymerizable
resin composition
polymerizable resin
component
mass
Prior art date
Application number
PCT/JP2018/001742
Other languages
French (fr)
Japanese (ja)
Inventor
小林 健一
絵梨 畠山
一博 黒木
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201880005429.6A priority Critical patent/CN110114378B/en
Priority to JP2018562474A priority patent/JP7033084B2/en
Publication of WO2018135654A1 publication Critical patent/WO2018135654A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Definitions

  • the present invention relates to a radical polymerizable resin composition satisfying both physical properties of low elastic modulus and high specific gravity. Furthermore, the present invention relates to a low-viscosity structure restoration injecting agent containing the radical polymerizable resin composition suitable for repairing cracks generated due to deterioration of concrete structures and the like.
  • Patent Document 1 repair by filling with an injecting agent has been performed as one of the repair methods for crack portions.
  • Patent Document 2 For concrete structures that constantly vibrate, such as high rail walls such as expressways and railways, in addition to the same adhesion strength as conventional injectants, use injectants that have predetermined elastic properties. Therefore, it is necessary to prevent the injection material from being broken after being fixed and dried (Patent Document 2).
  • the present invention has been made in view of the above-described conventional circumstances, and includes a radical polymerizable resin composition satisfying both physical properties of low elastic modulus and high specific gravity, and an injectable for structure repair using the radical polymerizable resin composition The purpose is to provide.
  • the gist of the present invention is the following [1] to [10].
  • [1] It contains (A) a radical polymerizable resin, (B) a radical polymerizable unsaturated monomer, and (C) an amine-based curing accelerator, and (B) a radical polymerizable unsaturated monomer A radical-polymerizable unsaturated monomer (b-1) having an oxyalkylene structure and / or a radical-polymerizable unsaturated monomer (b-2) having a caprolactone ring-opening structure Polymerizable resin composition.
  • the content of the radical polymerizable resin (A) in the total amount of the radical polymerizable resin (A) and the radical polymerizable unsaturated monomer (B) is 5 to 60% by mass, [1] The radically polymerizable resin composition according to any one of [7]. [9] The radical polymerizable resin composition according to any one of [1] to [8] above, wherein the viscosity of the radical polymerizable composition is 10 to 500 mPa ⁇ s / 25 ° C. [10] An injecting agent for repairing a structure comprising the radical polymerizable resin composition according to any one of the above [1] to [9] and having a liquid specific gravity of 1.01 to 1.15.
  • a radical polymerizable resin composition having a low elastic modulus and a high specific gravity (specific gravity at 23 ° C. is greater than 1.00).
  • the injecting agent for repairing a structure containing a radically polymerizable composition having such characteristics has a high specific gravity, and thus penetrates into and adheres to a crack portion generated in the structure, and has a low elastic modulus. Breakage after injection fixed and dried.
  • the structural restoration injecting agent of the present invention it is possible to satisfactorily repair a narrow crack portion with respect to a concrete structure always accompanied by vibration. That is, it is possible to provide an injecting agent for repairing a structure that can maintain the same adhesion strength as that in the past when it is fixed and does not cause breakage after fixing.
  • the radical polymerizable resin composition of the present invention comprises (A) a radical polymerizable resin, (B) a radical polymerizable unsaturated monomer, and (C) an amine-based curing accelerator, and (B) a radical.
  • the polymerizable unsaturated monomer is a radical polymerizable unsaturated monomer (b-1) having an oxyalkylene structure and / or a radical polymerizable unsaturated monomer (b-2) having a caprolactone ring-opening structure. It is a radically polymerizable resin composition characterized by containing.
  • radical polymerizable resin may be called (A) component
  • radical polymerizable unsaturated monomer may be called (B) component
  • the radical polymerizable unsaturated monomer (b-1) having an oxyalkylene structure is sometimes referred to as component (b-1)
  • the radical polymerizable unsaturated monomer having a caprolactone ring-opening structure is sometimes referred to as component (b-2).
  • the monomer (b-2) is sometimes referred to as the component (b-2).
  • the radically polymerizable resin (A) refers to a compound having an ethylenically unsaturated group in the resin and undergoing a polymerization reaction by radicals.
  • the radical polymerizable resin (A) include urethane (meth) acrylate resin, vinyl ester resin, unsaturated polyester resin, polyester (meth) acrylate resin, (meth) acrylate resin, and the like.
  • radical polymerizable resin composition From the viewpoint of lowering the elastic modulus of the cured product, urethane (meth) acrylate resin is preferable.
  • “(meth) acrylate” means “acrylate or methacrylate”.
  • the urethane (meth) acrylate resin was obtained, for example, by introducing a (meth) acryloyl group into a hydroxyl group or an isocyanate group at both ends of a polyurethane obtained by reacting a polyvalent isocyanate and a polyhydric alcohol. Resin can be used.
  • the polyhydric alcohol compounds described as “polyhydroxy compounds” or “polyhydric alcohols” described in JP2009-292890A and WO2016 / 171151 can be used without any particular limitation.
  • polyhydric alcohol for example, polyester polyol, polyether polyol; Dihydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, cyclohexanedimethanol; A dihydric alcohol such as an adduct of a dihydric phenol represented by hydrogenated bisphenol A and the like and an alkylene oxide represented by propylene oxide or ethylene oxide; Examples thereof include trivalent or higher alcohols such as 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane and pentaerythritol.
  • the urethane (meth) acrylate resin is a urethane (meth) acrylate resin containing one or more polyol structures selected from polyester polyol, polyether polyol, and polyoxyalkylene bisphenol A ether. preferable.
  • a urethane (meth) acrylate resin containing a polyol structure of a polyether polyol is more preferable from the viewpoint of lowering the modulus of elasticity when the radical polymerizable resin composition is cured.
  • polyethylene glycol or polypropylene glycol is preferable from the viewpoint of reducing the elastic modulus when the radical polymerizable resin composition is cured.
  • the weight average molecular weight of the polyether polyol is preferably 500 to 4000, and more preferably 500 to 3000. When the weight average molecular weight is within the above range, an appropriate elastic modulus and viscosity can be obtained as an injecting agent for structure repair.
  • the method for measuring the weight average molecular weight is as described in the examples.
  • polyvalent isocyanate examples include those described in JP-A-2009-292890 and those described in WO2016 / 171151, and diphenylmethane diisocyanate is preferred from the viewpoint of reactivity when synthesizing the resin.
  • a (meth) acryloyl group for example, a method of reacting a terminal isocyanate group with a hydroxyl group-containing (meth) acrylic compound described in JP-A-2009-292890, or a terminal hydroxyl group with 2- (meth) acryloyloxy
  • Examples thereof include a method of reacting an isocyanato group-containing (meth) acrylic compound such as ethyl isocyanate, 2- (meth) acryloyloxypropyl isocyanate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate.
  • the hydroxyl group-containing (meth) acrylic compound is selected from 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and caprolactone-modified hydroxyalkyl (meth) acrylate. Hydroxyethyl acrylamide and the like are preferable.
  • the weight average molecular weight of the urethane (meth) acrylate resin is preferably 3000 to 20000, and more preferably 4000 to 11000. When the weight average molecular weight is within the above range, when the radical polymerizable resin composition is blended with the urethane (meth) acrylate resin described later, the radical polymerizable unsaturated monomer, the viscosity is low and the compatibility is high. It is good.
  • Vinyl ester resin is a resin sometimes called an epoxy (meth) acrylate resin.
  • the vinyl ester resin one obtained by reacting an unsaturated monobasic acid with an epoxy resin can be used.
  • the epoxy resin include bisphenol A diglycidyl ether and high molecular weight homologues thereof, novolak glycidyl ethers, and the like.
  • the epoxy resin etc. which are described in WO2016 / 171151 are mentioned.
  • Known unsaturated monobasic acids can be used, and examples thereof include (meth) acrylic acid, crotonic acid, cinnamic acid and the like.
  • a reaction product of a compound having one hydroxy group and one or more (meth) acryloyl groups and a polybasic acid anhydride may be used.
  • (meth) acrylic acid means one or both of “acrylic acid and methacrylic acid”
  • (meth) acryloyl group” means “acryloyl group and methacryloyl group”. Or one of both.
  • the polybasic acid is used to increase the molecular weight of the epoxy resin, and known ones such as those described in WO2016 / 171151 can be used.
  • unsaturated polyester resin what was obtained by esterifying the unsaturated dibasic acid and the dibasic acid component containing a saturated dibasic acid as needed, and a polyhydric alcohol component can be used.
  • unsaturated dibasic acid and the saturated dibasic acid include those described in WO2016 / 171151. These may be used alone or in combination of two or more.
  • WO2016 / 171151 the thing as described in WO2016 / 171151 can be mentioned similarly to the case of urethane (meth) acrylate resin.
  • the unsaturated polyester may be modified with a dicyclopentadiene compound within a range not impairing the effects of the present invention.
  • a dicyclopentadiene compound for example, after obtaining dicyclopentadiene and a maleic acid addition product (sidedecanol monomaleate), this is used as a monobasic acid to introduce a dicyclopentadiene skeleton.
  • Known methods such as An oxidation polymerization (air curing) group such as an allyl group or a benzyl group can be introduced into the vinyl ester resin or unsaturated polyester resin used in the present invention.
  • the introduction method is not particularly limited.
  • an oxidatively polymerizable group-containing polymer condensation of a compound having a hydroxyl group and an allyl ether group, allyl glycidyl ether, 2,6-diglycidyl phenyl allyl ether with a hydroxyl group and allyl ether
  • a method of adding a reaction product of a compound having a group and an acid anhydride refers to cross-linking associated with the generation and decomposition of a peroxide by oxidation of a methylene bond between an ether bond and a double bond, such as found in an allyl ether group. .
  • polyester (meth) acrylate resin for example, a polyester obtained by reacting a polyvalent carboxylic acid and a polyhydric alcohol, specifically, with respect to hydroxyl groups at both ends such as polyethylene terephthalate, ) A resin obtained by reacting acrylic acid can be used.
  • (Meth) acrylate resin examples include a poly (meth) acrylic resin having one or more functional groups selected from a hydroxyl group, an isocyanato group, a carboxy group, and an epoxy group, a monomer having the above functional group, )
  • a resin obtained by reacting a (meth) acrylic acid ester having a hydroxyl group with a functional group of a copolymer with acrylate can be used.
  • the radically polymerizable unsaturated monomer (B) used in the present invention is important as a role of lowering the viscosity of the radically polymerizable resin composition and achieving both a low elastic modulus and a high specific gravity.
  • the radical polymerizable unsaturated monomer (B) includes a radical polymerizable unsaturated monomer (b-1) having an oxyalkylene structure and / or a radical polymerizable unsaturated monomer (b) having a caprolactone ring-opening structure. -2). By using these components (b-1) and / or (b-2), it is possible to achieve both a low elastic modulus and a high specific gravity of the radical polymerizable composition.
  • the oxyalkylene structure is a structure represented by — (— O—R—) n — (R represents an alkylene group, and n is an integer).
  • the alkylene group preferably has 2 to 6 carbon atoms.
  • n is preferably an integer of 1 to 30.
  • the radical polymerizable unsaturated monomer having an oxyalkylene structure includes (meth) acrylate having an oxyalkylene structure, and the alkylene group portion preferably has 2 to 6 carbon atoms.
  • the component (b-1) is preferably a monomer having a polyalkylene oxide (meth) acrylate structure having an alkylene oxide addition mole number of 1 to 30. The number of moles of alkylene oxide added is more preferably 1-20.
  • alkylene oxide modified (meth) acrylate of phenol such as phenoxyethyl (meth) acrylate
  • alkylene oxide modified di (meth) acrylate of bisphenol A such as ethoxybisphenol A dimethacrylate
  • alkylene oxide modified di ( Alkyl group-terminated polyalkylene glycol (meth) acrylates such as meth) acrylate
  • isocyanuric acid alkylene oxide-modified tri (meth) acrylate methoxypolyethylene glycol (meth) acrylate
  • trimethylolpropane alkylene oxide-modified tri (meth) acrylate can be mentioned.
  • alkyl groups such as alkylene oxide modified di (meth) acrylate of bisphenol A, alkylene oxide modified (meth) acrylate of phenol, and methoxypolyethylene glycol (meth) acrylate.
  • a terminal polyalkylene glycol (meth) acrylate is preferable, and an alkylene oxide-modified di (meth) acrylate of bisphenol A and an alkylene oxide-modified (meth) acrylate of phenol are more preferable.
  • the component (b-1) contains an alkylene oxide-modified di (meth) acrylate of bisphenol A from the viewpoint of the low viscosity, low elastic modulus and high specific gravity balance of the radical polymerizable resin composition of the present invention. It is more preferable that it contains two kinds of alkylene oxide-modified di (meth) acrylate of bisphenol A and alkylene oxide-modified (meth) acrylate of phenol. From the same viewpoint, the total content of these two kinds in the component (b-1) is preferably 60% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and still more preferably 100% by mass.
  • the content of the bisphenol A alkylene oxide-modified di (meth) acrylate in the component (b-1) is preferably 50 to 100% by mass, more preferably 60 to 90% by mass, and still more preferably 65 to 80% by mass.
  • the content of the alkylene oxide-modified (meth) acrylate of phenol in the component (b-1) is preferably 0 to 50% by mass, more preferably 10 to 40% by mass, and further preferably 20 to 35% by mass. .
  • the number of moles of alkylene oxide added in the alkylene oxide-modified di (meth) acrylate of bisphenol A is preferably 1 from the viewpoint of the low viscosity, low elastic modulus, and high specific gravity balance of the radical polymerizable resin composition of the present invention. -30, more preferably 4-30, still more preferably 4-20, and even more preferably 8-20. From the same viewpoint, the number of added moles of alkylene oxide in the alkylene oxide-modified (meth) acrylate of phenol is preferably 1 to 10, more preferably 1 to 4, still more preferably 1 to 2, and still more preferably 1. .
  • the radical polymerizable unsaturated monomer having a caprolactone ring-opening structure is an unsaturated monomer having a structure represented by — (— C 5 H 10 COO—) m —. m is preferably an integer of 1 to 10. Specific examples include (meth) acrylates having a caprolactone ring-opening structure.
  • the number of moles of caprolactone added is more preferably 1 to 3.
  • caprolactone-modified hydroxyalkyl (meth) acrylate caprolactone-modified tris (acryloxyalkyl) isocyanurate and the like can be mentioned. From the viewpoint of reducing the viscosity, caprolactone-modified hydroxyethyl (meth) acrylate is preferable.
  • the component (b-1) and the component (b-2) in combination.
  • the content of the component (b-1) with respect to the total amount of the components (b-1) and (b-2) is preferably 40 to 100% by mass, more preferably 55 to 90% by mass, and still more preferably 60 to 75%. % By mass, more preferably 60 to 70% by mass.
  • radical polymerizable unsaturated monomers include those described in JP-A-2009-292890. From the viewpoint of lowering the elastic modulus, lauryl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate and methyl (meth) acrylate are preferred.
  • the total amount of the component (b-1) and the component (b-2) in the radical polymerizable unsaturated monomer (B) is preferably 20 to 95% by mass, more preferably 30 to 95% by mass. If the content is within the above range, a good balance between low elastic modulus and high specific gravity can be achieved, and the viscosity can be further reduced.
  • the total amount of the component (b-1) and the component (b-2) in the radical polymerizable unsaturated monomer (B) is preferably 20 to 95% by mass, more preferably 40 to 90% by mass. %, More preferably 65 to 85% by mass. In one embodiment, it may be 75 to 95% by mass or 80 to 95% by mass.
  • the content of the radical polymerizable unsaturated monomer having a caprolactone ring-opening structure in the total amount of the radical polymerizable resin (A) and the radical polymerizable unsaturated monomer (B) is preferably 5 to 50% by mass. Is more preferably from 40 to 40% by weight, and particularly preferably from 15 to 35% by weight. If it is in this range, the balance between low elastic modulus and high specific gravity can be improved.
  • the content of the component (A) in the total amount of the component (A) and the component (B) is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, still more preferably 10 to 45% by mass, and even more.
  • the amount is preferably 15 to 45% by mass, more preferably 20 to 45% by mass, still more preferably 25 to 45% by mass, and still more preferably 30 to 40% by mass. If the content is within the above range, the balance between the low elastic modulus and the high specific gravity of the radical polymerizable resin composition can be improved.
  • amine-based curing accelerator (C) As the amine-based curing accelerator (C) used in the present invention, known amines can be used without particular limitation. Specifically, aniline, N, N-dimethylaniline, N, N-diethylaniline, p- Toluidine, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2 -Hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2-hydroxypropyl) -p-toluidine, N-ethyl-m-toluidine, triethanolamine , M-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piper
  • N, N-bis (2-hydroxyethyl) -p-toluidine or N, N-bis (2-hydroxypropyl) -p-toluidine is preferred from the viewpoint of facilitating curing.
  • the content of the amine curing accelerator is preferably 0.01 to 3.0 parts by mass, more preferably 100 parts by mass with respect to the total of 100 parts by mass of the (A) radical polymerizable resin and (B) radical polymerizable unsaturated monomer. Is 0.1 to 1.0 part by mass. If the content is within the above range, the curability can be easily adjusted.
  • the radically polymerizable resin composition of the present invention may contain a curing agent (D).
  • the (D) curing agent used in the present invention is not particularly limited, and a known radical polymerization initiator can be used, and an organic peroxide is preferably used.
  • organic peroxides include dibenzoyl peroxide (also called benzoyl peroxide), ketone peroxide, perbenzoate, hydroperoxide, diacyl peroxide, peroxyketal, hydroperoxide, diallyl peroxide, peroxy Examples thereof include esters and peroxydicarbonates, and azo compounds can also be used.
  • the blending amount of the curing agent (D) is preferably 0.1 to 8 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass in total of the components (A) and (B).
  • the blending amount of the curing agent (D) is 0.1 parts by mass or more, desired curability is easily obtained.
  • the blending amount of the curing agent (D) is 8 parts by mass or less, it is economically advantageous and sufficient working time is easily obtained.
  • the radical polymerizable resin composition of the present invention comprises a polymerization inhibitor from the viewpoint of suppressing excessive polymerization of (A) radical polymerizable resin and (B) radical polymerizable unsaturated monomer, and controlling the reaction rate. May be included.
  • the polymerization inhibitor include known ones such as hydroquinone, methylhydroquinone, phenothiazine, catechol, 4-tert-butylcatechol. [Curing accelerators other than amines]
  • the radical polymerizable resin composition of the present invention may contain a curing accelerator other than the amine-based curing accelerator described above.
  • a well-known organometallic salt can be used.
  • the organic metal salt include copper naphthenate, cobalt octylate, cobalt naphthenate, cobalt hydroxide, zinc hexate, manganese octylate and the like. Among these, cobalt naphthenate and cobalt octylate are preferable.
  • These organometallic salts can be used alone or in combination.
  • the compounding amount of the organic metal salt is preferably 0.02 to 10 parts by mass, and preferably 0.1 to 3.0 parts by mass with respect to 100 parts by mass in total of the components (A) and (B). More preferably.
  • the compounding amount of the organic metal salt is 0.02 parts by mass or more, a desired curing time and a cured state can be easily obtained, and the drying property is improved.
  • the compounding amount of the organic metal salt is 10 parts by mass or less, desired pot life and storage stability are easily obtained.
  • the resin composition of this embodiment may contain a photopolymerization initiator for the purpose of improving curability. As a photoinitiator, radical photopolymerization initiator etc. are mentioned, for example.
  • a radical photopolymerization initiator is used to improve the curability of an acrylic resin or monomer having a double bond.
  • photo radical polymerization initiators include benzoin ethers such as benzoin alkyl ether, benzophenones such as benzophenone, benzyl and methyl orthobenzoylbenzoate, benzyl dimethyl ketal, 2,2-diethoxyacetophenone, 2-hydroxy -2-Methylpropiophenone, 4-isopropyl-2-hydroxy-2-methylpropiophenone, acetophenone series such as 1,1-dichloroacetophenone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, etc.
  • a thioxanthone type is mentioned.
  • the photopolymerization initiator can be added in a range of 0.1 to 10 parts by mass with respect to 100 parts by mass in total of (A) the radical reactive resin and (B) the radical polymerizable unsaturated monomer. .
  • the radically polymerizable resin composition of the present invention may contain a surfactant from the viewpoint of improving the compatibility between the resin and water and facilitating curing in a state where water is embraced in the resin.
  • a surfactant examples include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant. These surfactants may be used alone or in combination of two or more. Among these surfactants, one or more selected from anionic surfactants and nonionic surfactants are preferable.
  • anionic surfactant examples include alkyl sulfate esters such as sodium lauryl sulfate and triethanolamine lauryl sulfate; polyoxyethylene alkyl such as polyoxyethylene lauryl ether sodium sulfate and polyoxyethylene alkyl ether sulfate triethanolamine.
  • Ether sulfate salts such as dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, sodium alkylnaphthalene sulfonate, sodium dialkylsulfosuccinate; fatty acid salts such as sodium stearate soap, potassium oleate soap, castor oil potassium soap A naphthalene sulfonic acid formalin condensate, a special polymer system and the like.
  • sulfonates are preferable, sodium dialkylsulfosuccinate is more preferable, and sodium dioctylsulfosuccinate is still more preferable.
  • Nonionic surfactants include, for example, polyoxyethylene alkyl ethers such as polyoxylauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene distyrenated phenyl ether, polyoxyethylene Polyoxyethylene derivatives such as oxyethylene tribenzylphenyl ether and polyoxyethylene polyoxypropylene glycol; sorbitan fatty acid esters such as polyoxyalkylene alkyl ether, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate; polyoxyethylene Sorbitan monolaurate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate Polyoxyethylene sorbitan fatty acid esters; polyoxyethylene sorbit tetraoleate and the like of the polyoxyethylene sorbitol fatty acid esters; glycerol monostearate, glycerine fatty
  • polyoxyethylene lauryl ether polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, and polyoxyethylene alkyl ether are preferable.
  • the nonionic surfactant HLB Hydrophil Balance
  • the amount thereof is preferably 0 with respect to a total of 100 parts by mass of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer. 0.01 to 10 parts by mass, more preferably 0.05 to 7 parts by mass, and still more preferably 0.1 to 5 parts by mass.
  • the radically polymerizable resin composition of the present invention may contain a wetting and dispersing agent, for example, in order to improve the permeability to a repaired site that has been wetted or submerged.
  • a wetting and dispersing agent examples include a fluorine-based wetting and dispersing agent and a silicone-based wetting and dispersing agent, and these may be used alone or in combination of two or more.
  • fluorine-based wetting and dispersing agents include Megafac (registered trademark) F176, Megafac (registered trademark) R08 (manufactured by Dainippon Ink and Chemicals, Inc.), PF656, PF6320 (manufactured by OMNOVA), Troisol S- 366 (manufactured by Troy Chemical Co., Ltd.), Florard FC430 (manufactured by 3M Japan Co., Ltd.), polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
  • silicone-based wetting and dispersing agents include BYK (registered trademark) -322, BYK (registered trademark) -377, BYK (registered trademark) -UV3570, BYK (registered trademark) -330, BYK (registered trademark) -302.
  • the radical polymerizable resin composition of the present invention contains a dispersant
  • the amount thereof is 100 parts by mass in total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer.
  • it is 0.01 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass.
  • the radical polymerizable resin composition of the present invention may contain a thixotropic agent for the purpose of adjusting the viscosity for ensuring workability on a vertical surface or a ceiling surface.
  • thixotropic agents include inorganic thixotropic agents and organic thixotropic agents.
  • organic thixotropic agents include hydrogenated castor oil-based, amide-based, polyethylene oxide-based, vegetable oil-polymerized oil-based, and surface activity.
  • DISPARLON registered trademark
  • 6900-20X Enomoto Kasei Co., Ltd.
  • examples of inorganic thixotropic agents include silica and bentonite
  • hydrophobic ones include Leolosil (registered trademark) PM-20L (gas phase method silica manufactured by Tokuyama Corporation) and Aerosil (registered trademark) AEROSIL. R-106 (Nippon Aerosil Co., Ltd.) and the like
  • examples of hydrophilic ones include Aerosil (registered trademark) AEROSIL-200 (Nippon Aerosil Co., Ltd.).
  • radical polymerizable resin composition of the present invention contains a thixotropic agent, the amount thereof is based on 100 parts by mass in total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer. Preferably, it is 0.01 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass.
  • the radical polymerizable resin composition of the present invention may contain a curing retardant for the purpose of adjusting the curing time.
  • the curing retarder include free radical curing retarders such as 2,2,6,6-tetramethylpiperidine 1-oxyl free radical (TEMPO), 4-hydroxy-2,2,6,6- Examples thereof include TEMPO derivatives such as tetramethylpiperidine 1-oxyl free radical (4H-TEMPO) and 4-oxo-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (4-Oxo-TEMPO).
  • TEMPO 2,2,6,6-tetramethylpiperidine 1-oxyl free radical
  • 4-oxo-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (4-Oxo-TEMPO 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (4H-TEMPO) is preferable from the viewpoint of cost and ease of handling.
  • the radical polymerizable resin composition contains a polymerization inhibitor and a curing retarder
  • the amount thereof is 100 parts by mass in total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer.
  • Each is preferably 0.0001 to 10 parts by mass, and more preferably 0.001 to 10 parts by mass.
  • the radical polymerizable resin composition of the present invention may contain an antifoaming agent for the purpose of improving foam generation during molding and foam residue of the molded product.
  • antifoaming agents include silicone-based antifoaming agents and polymer-based antifoaming agents.
  • the amount of the antifoaming agent used is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass in total of (A) radical polymerizable resin and (B) radical polymerizable unsaturated monomer. More preferably, it is 0.1 to 1 part by mass.
  • the radically polymerizable resin composition of the present invention may contain a coupling agent for the purpose of improving the adhesion to a substrate that is a restoration target.
  • the coupling agent include known silane coupling agents, titanate coupling agents, aluminum coupling agents, and the like.
  • An example of such a coupling agent is a silane coupling agent represented by R 3 —Si (OR 4 ) 3 .
  • R 3 include an aminopropyl group, a glycidyloxy group, a methacryloxy group, an N-phenylaminopropyl group, a mercapto group, and a vinyl group.
  • R 4 include a methyl group and an ethyl group. Etc.
  • the amount thereof is preferably 0 with respect to 100 parts by mass in total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer. 0.001 to 10% by mass, more preferably 0.01 to 5% by mass.
  • the radically polymerizable resin composition of the present invention may use a light stabilizer for the purpose of improving the long-term durability of the molded product.
  • a light stabilizer include an ultraviolet absorber and a hindered amine light stabilizer. These may be used alone or in combination of two or more.
  • examples of the ultraviolet absorber include benzotriazole, triazine, benzophenone, cyanoacrylate, salicylate, and the like
  • hindered amine light stabilizers include NH type and N—CH 3 type. , N-O alkyl type and the like.
  • the amount of the light stabilizer used is in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass in total of the (A) radical polymerizable resin and the (B) radical polymerizable unsaturated monomer.
  • the amount is preferably 0.05 to 2 parts by mass.
  • the radical polymerizable resin composition of the present invention may contain a wax.
  • a wax paraffin waxes, polar waxes and the like can be used alone or in combination, and known ones having various melting points can be used.
  • polar waxes include those having both a polar group and a nonpolar group in the structure. Specific examples include NPS-8070, NPS-9125 (manufactured by Nippon Seiwa Co., Ltd.), Emanon 3199, 3299 (manufactured by Kao Corporation), and the like.
  • the wax is preferably contained in an amount of 0.05 to 4 parts by mass with respect to a total of 100 parts by mass of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer, It is more preferable to contain 0.0 part by mass.
  • the radical polymerizable resin composition of the present invention may contain a flame retardant.
  • a flame retardant a brominated flame retardant, a chlorine flame retardant, a phosphorus flame retardant, an inorganic flame retardant, an intimate flame retardant, a silicone flame retardant, or the like can be used alone or in combination, and publicly known Things can be used.
  • halogen-based flame retardants such as brominated flame retardants can be used in combination with antimony trioxide for the purpose of further improving flame retardancy.
  • the amount of the flame retardant added varies depending on the system, it may be contained in an amount of 1 to 100 parts by mass with respect to a total of 100 parts by mass of (A) radical polymerizable resin and (B) radical polymerizable unsaturated monomer. preferable.
  • the resin composition of the present invention may contain a plasticizer for the purpose of adjusting viscosity and elastic modulus.
  • Plasticizers include epoxies, polyesters, phthalates, adipates, trimellitic esters, phosphate esters, citrate esters, sebacate esters, azelain Acid esters, maleates, benzoates and the like can be used alone or in combination, and known ones can be used.
  • the amount of the plasticizer added varies depending on the system, but is 0.01 to 20 parts by mass with respect to 100 parts by mass in total of (A) radical polymerizable resin and (B) radical polymerizable unsaturated monomer. It is preferable. More preferably, the content is 0.1 to 10 parts by mass.
  • the total amount of the components (A), (B), and (C) in the radical polymerizable composition of the present invention is preferably 30 to 100% by mass, more preferably 60 to 100% by mass, More preferably, it is 90 to 100% by mass.
  • the radically polymerizable composition of the present invention contains (D) a curing agent, the (A) component, the (B) component, the (C) component, and (D) in the radically polymerizable composition of the present invention.
  • the total content of the curing agent is preferably 30 to 100% by mass, more preferably 60 to 100% by mass, and still more preferably 90 to 100% by mass.
  • the viscosity of the radically polymerizable composition is preferably 10 to 500 mPa ⁇ s / 25 ° C., more preferably 10 to 350 mPa ⁇ s / 25 ° C., more preferably from the viewpoint of ease of injection into the cracks of the inorganic structure. Is 10 to 250 mPa ⁇ s / 25 ° C.
  • the measuring method of a viscosity is as having described in the Example.
  • the liquid specific gravity of the radically polymerizable composition is preferably 1.01 to 1.15, more preferably 1.03 to 1.15, and more preferably 1.05 to 1.15 from the viewpoint of improving adhesion. Particularly preferred is 1.15.
  • the method for measuring the liquid specific gravity is as described in the examples.
  • the volume shrinkage of the radical polymerizable composition is preferably 3 to 12%, more preferably 4 to 11%, and still more preferably 5 to 10% from the viewpoint of adhesion after injection into the crack of the inorganic structure. is there.
  • the method for measuring the volumetric shrinkage is as described in the examples.
  • the elastic modulus of the radical polymerizable composition is preferably 1 to 900 N / mm 2 , more preferably 3 to 600 N / mm 2 , and further preferably 5 to 200 N / mm 2 from the viewpoint of durability against vibration.
  • the measuring method of the elastic modulus is as described in the examples.
  • the order of mixing the components is not particularly limited, but from the viewpoint of workability for efficiently obtaining a uniform mixture, and workability when adjusting the composition within the target physical property range such as liquid specific gravity as a radical polymerizable composition. From the viewpoint of (A), after synthesizing the component (A), a part of the component (B) is added and mixed. After the viscosity of the component (A) is reduced, the remaining component (B) and other components are added and mixed. Is preferred.
  • a part of the component (B) is used as a diluent during the synthesis of the component (A) to obtain a mixture of the component (A) and a part of the component (B), and then the remaining component (B) and other components. It is preferable to add and mix.
  • the mixing ratio (mass ratio) of the component (A) and the part (B) component at the time of lowering the viscosity is not particularly limited, but is preferably 95: 5 to 20:80, more preferably 85:15 to 30:70. It is.
  • the viscosity of the mixture of the component (A) and the component (B) is preferably 100 to 2000 mPa ⁇ s, more preferably 100 to 1500 mPa ⁇ s, and still more preferably 100 to 1000 mPa ⁇ s.
  • the measuring method of a viscosity is as having described in the Example. If the viscosity is adjusted in the above range in advance, the remaining components can be mixed uniformly in a short time when the radical polymerizable resin composition of the present invention is mixed.
  • the liquid specific gravity of the mixture of component (A) and part (B) is preferably 0.95 to 1.15, more preferably 1.00 to 1.10. By adjusting the liquid specific gravity within the above range to mix the remaining components into the radical polymerizable resin composition of the present invention, the target liquid is adjusted by adjusting the type and amount of component (B). It becomes easy to adjust the specific gravity.
  • the radical polymerizable resin composition of the present invention is preferably used as an injecting agent for repairing a structure containing the radical polymerizable resin composition.
  • the structure include inorganic structures such as concrete, asphalt concrete, mortar, wood, and metal.
  • the injecting agent for repairing a structure may be produced only from the radical polymerizable resin composition, or may contain an optional additive such as aggregate separately in the radical polymerizable composition.
  • the aggregate include silica sand, silica, talc, alumina, aluminum hydroxide, calcium carbonate, aluminum, and titanium. Among these, silica sand, silica, and calcium carbonate are preferable from the viewpoint of cost and material availability.
  • the injecting agent for structure repair of the present invention does not contain an aggregate.
  • an injecting agent containing aggregate is poorly permeable and difficult to adhere to the object to be repaired.
  • the injectable for repairing a structure of the present invention having a high specific gravity can be used particularly preferably.
  • the liquid specific gravity of the injecting agent for repairing a structure is preferably 1.01 to 1.15, more preferably 1.03 to 1.15, from the viewpoint of improving adhesion. It is particularly preferred that it is ⁇ 1.15.
  • the method for measuring the liquid specific gravity is as described in the examples.
  • the method for repairing the structure is not particularly limited.
  • the structure repairing injecting agent according to the present invention is applied to a repair site such as concrete, asphalt concrete, mortar, wood, metal, etc., and dried and cured. be able to.
  • the method for applying the injecting agent for repairing a structure is not particularly limited.
  • a coating method by dipping, a spraying method, a roller coating method, a coating method using a tool such as a brush, a brush or a spatula can be applied. .
  • the application amount of the injecting agent for structure repair is not particularly limited, but is appropriately determined in consideration of the size of the repaired part, the adhesion of the injecting agent for repairing the structure, the strength of the cured product of the injecting agent for structure repair, and the like. adjust.
  • coating the injection for structure restoration is not specifically limited, The method of heating naturally and the method of heating in the range which the characteristic of the hardening body of the injection for structure restoration does not deteriorate are used.
  • the raw materials for the urethane (meth) acrylate resins (UM1) to (UM8) are shown below.
  • (Polyhydric alcohol) (1) Polypropylene glycol 1 (weight average molecular weight 1000), manufactured by Mitsui Chemicals, Inc., product name: Actcol D-1000 (2) Polypropylene glycol 2 (weight average molecular weight 2000), manufactured by Mitsui Chemicals, Inc., product name: Actcol D-2000 (3) Polyethylene glycol 1 (weight average molecular weight 600), manufactured by Toho Chemical Industry Co., Ltd., product name: Toho polyethylene glycol 600 (4) Polyethylene glycol 2 (weight average molecular weight 1540), manufactured by Toho Chemical Co., Ltd., product name: Toho polyethylene glycol 1540 (5) Polyester polyol (weight average molecular weight 2000), manufactured by DIC Corporation, product name: Polylite OD-X-2420 (6) Polyoxyalkylene bisphenol A ether 1 (weight average molecular weight 800), manufactured by ADEKA Corporation, product
  • urethane methacrylate resin (UM1) The raw materials used for the production of the urethane methacrylate resin (UM1) are shown in Table 1.
  • 850 g of methyl methacrylate was added to this urethane methacrylate resin (UM1) to obtain a mixture (U-1) of the component (A) and the component (B).
  • the weight average molecular weight of the urethane methacrylate resin (UM1) was 7300. Further, the viscosity of the mixture (U-1) at 25 ° C.
  • Synthesis Examples 2 to 8 For Synthesis Examples 2 to 8, synthesis was performed in the same manner as in Synthesis Example 1 except that the raw materials used were changed as shown in Table 1, and urethane methacrylate resins (UM2) to (UM8) were obtained. Further, as shown in Table 2, methyl methacrylate was added to 70 parts by mass of each of the urethane methacrylate resins (UM2) to (UM8) so as to be 30 parts by mass, and the mixtures (U-2) to (U -8) was obtained. The weight average molecular weights of the urethane methacrylate resins (UM2) to (UM8) are shown in Table 1. The liquid specific gravity and viscosity values of the mixtures (U-2) to (U-8) are shown in Table 2.
  • Ethoxybisphenol A dimethacrylate (methylene oxide addition mole number 10), manufactured by Shin-Nakamura Chemical Co., Ltd., product name: NK ester BPE-500
  • Methoxypolyethylene glycol methacrylate manufactured by NOF Corporation: BLEMMER PME-400 (number of moles of ethylene oxide added 9)
  • Phenoxyethyl methacrylate (number of moles of ethylene oxide added 1), manufactured by Kyoeisha Chemical Co., Ltd., product name: Light Ester PO (4) Phenoxyethyl acrylate (1 mole added ethylene oxide), manufactured by Kyoeisha Chemical Co., Ltd., product name: Light acrylate PO-A [(B-2) component] (5)
  • Caprolactone-modified (addition mole number 1) hydroxyethyl methacrylate, manufactured by Daicel Corporation, product name: Plaxel FM1 In
  • Caprolactone-modified (addition mole number 2) hydroxyethyl methacrylate, manufactured by Daicel Corporation, product name: Plaxel FM2D In Table 3, it was expressed as caprolactone-modified (2 mol) methacrylate.
  • Caprolactone-modified (added mole number 2) hydroxyethyl acrylate, manufactured by Daicel Corporation, product name: Plaxel FA2D In Table 3, it was expressed as caprolactone-modified (2 mol) acrylate.
  • ((C) amine curing accelerator) (1) N, N-bis (2-hydroxyethyl) -p-toluidine, manufactured by Wako Pure Chemical Industries, Ltd., product name: Accelerator A (2) N, N-bis (2-hydroxypropyl) -p-toluidine, manufactured by Morin Chemical Industry Co., Ltd., product name: PT-2HE ((D) curing agent) Dibenzoyl peroxide, manufactured by Kayaku Akzo Co., Ltd., product name: Perkadox CH-50L
  • a radical polymerizable resin composition was obtained in the same manner as in the Example except that the component (b-1) and the component (b-2) were not included.
  • Table 3 shows the content of each component of the radical polymerizable resin composition.
  • the radical polymerizable resin composition thus obtained was measured and evaluated for viscosity, liquid specific gravity, volume shrinkage, and elastic modulus by the following methods. The results are shown in Table 3.
  • ⁇ Viscosity measurement> Using a RE-85 type viscometer manufactured by Toki Sangyo Co., Ltd., cone plate type, cone rotor 1 ° 34 ′ ⁇ R24, the viscosity under an environment of 25 ° C. was measured at a rotation speed of 100 rpm.
  • the prepared specimen was tested in a test environment at a temperature of 23 ° C. and a humidity of 50% using an Instron 5900R at a grip length of 120 mm and a test speed of 50 mm / min.
  • the elastic modulus was measured three times for each specimen. And the average value of the measurement result of 3 times was used for evaluation of an elasticity modulus.
  • Table 3 it contains a radical polymerizable unsaturated monomer (b-1) having an oxyalkylene structure and / or a radical polymerizable unsaturated monomer (b-2) having a caprolactone ring-opening structure.
  • the radical polymerizable resin composition of the present invention was found to have a high specific gravity and a low elastic modulus.
  • Examples 8 and 10 having a large total amount of the component (b-1) and the component (b-2) were found to have very good high specific gravity and low elastic modulus.
  • Comparative Example 1 containing neither the radically polymerizable unsaturated monomer (b-1) having an oxyalkylene structure nor the radically polymerizable unsaturated monomer (b-2) having a caprolactone ring-opening structure It was found that the radical polymerizable resin compositions of 9 to 9 cannot achieve both high specific gravity and low elastic modulus as compared with the resin compositions of Examples 1 to 16.
  • radical polymerizable resin composition and the structure repairing injecting agent of the present invention have a high specific gravity and a low elastic modulus, they can be suitably used for repairing cracks in concrete structures and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

A radical polymerizable resin composition characterized by containing (A) a radical polymerizable resin, (B) a radical polymerizable unsaturated monomer, and (C) an amine-based curing accelerator, the (B) radical polymerizable unsaturated monomer containing a radical polymerizable unsaturated monomer (b-1) that has an oxyalkylene structure and/or a radical polymerizable unsaturated monomer (b-2) that has a caprolactone open-ring structure.

Description

ラジカル重合性樹脂組成物及び構造物修復用注入剤Radical polymerizable resin composition and injectable for structure repair
 本発明は、低弾性率と高比重の両物性を満たすラジカル重合性樹脂組成物に関する。さらには、コンクリート構造物の劣化等により発生したクラックの修復に適した前記ラジカル重合性樹脂組成物を含む低粘度の構造物修復用注入剤に関する。 The present invention relates to a radical polymerizable resin composition satisfying both physical properties of low elastic modulus and high specific gravity. Furthermore, the present invention relates to a low-viscosity structure restoration injecting agent containing the radical polymerizable resin composition suitable for repairing cracks generated due to deterioration of concrete structures and the like.
 従来より、コンクリート構造物の経年劣化等によるクラックの発生に対し、クラック部分の修復方法の一つとして注入剤の充填による修復が行われている(特許文献1)。
 中でも高速道路や鉄道等の高欄壁のように、常に振動が伴うコンクリート構造物に対しては、従来の注入剤と同等の付着強度に加えて、所定の弾性物性を兼ね備えた注入剤を用いることにより、注入材の固着・乾燥後の破断が生じないようにする必要がある(特許文献2)。
Conventionally, with respect to the occurrence of cracks due to aging deterioration of concrete structures, repair by filling with an injecting agent has been performed as one of the repair methods for crack portions (Patent Document 1).
In particular, for concrete structures that constantly vibrate, such as high rail walls such as expressways and railways, in addition to the same adhesion strength as conventional injectants, use injectants that have predetermined elastic properties. Therefore, it is necessary to prevent the injection material from being broken after being fixed and dried (Patent Document 2).
特開2005-002687号公報JP 2005-002687 A 特開2009-019354号公報JP 2009-019354 A
 コンクリート構造物の劣化部分の体積が広範囲に及ぶ場合には、修復箇所の強度を確保するため、珪砂等の骨材を配合した注入剤を用いるのが一般的である。しかしながら、クラック幅の狭い箇所に対しては、骨材入りの注入剤を十分に浸透させることが難しく、骨材を配合せずに樹脂組成物のみを注入して修復する方法が検討されている。特許文献2のように、常に振動を伴う箇所のクラック修復に対して骨材無しの注入剤で低弾性率を実現しようとした場合、注入剤が低比重となる傾向にあり、所定の付着強度が得られない問題が発生する。すなわち、修復箇所のコンクリートが水分を含有していた場合、注入剤の比重が低いと、修復箇所の水分で注入剤が浮いてしまい、良好な付着強度が得られない。
 本発明は上記従来の実情を鑑みてなされたものであり、低弾性率かつ高比重の両物性を満たすラジカル重合性樹脂組成物、該ラジカル重合性樹脂組成物を用いた構造物修復用注入剤を提供することを目的とする。
When the volume of the deteriorated portion of the concrete structure covers a wide range, it is common to use an injection compounded with an aggregate such as silica sand in order to ensure the strength of the repaired portion. However, it is difficult to sufficiently permeate the filler containing the aggregate into a narrow crack width, and a method of repairing by injecting only the resin composition without mixing the aggregate has been studied. . As in Patent Document 2, when trying to achieve a low elastic modulus with an injectable agent without an aggregate for repairing cracks always accompanied by vibration, the injecting agent tends to have a low specific gravity and a predetermined adhesion strength. The problem that cannot be obtained occurs. That is, when the concrete at the restoration site contains moisture, if the specific gravity of the injection agent is low, the injection agent floats due to the moisture at the restoration site, and good adhesion strength cannot be obtained.
The present invention has been made in view of the above-described conventional circumstances, and includes a radical polymerizable resin composition satisfying both physical properties of low elastic modulus and high specific gravity, and an injectable for structure repair using the radical polymerizable resin composition The purpose is to provide.
 すなわち、本発明は、下記[1]~[10]を要旨とする。
[1](A)ラジカル重合性樹脂と、(B)ラジカル重合性不飽和単量体と、(C)アミン系硬化促進剤とを含有し、(B)ラジカル重合性不飽和単量体が、オキシアルキレン構造を有するラジカル重合性不飽和単量体(b-1)及び/又はカプロラクトン開環構造を有するラジカル重合性不飽和単量体(b-2)を含有することを特徴とするラジカル重合性樹脂組成物。
[2]前記(b-1)成分が、アルキレンオキサイド付加モル数1~30のポリアルキレンオキサイド(メタ)アクリレート構造を有する、上記[1]に記載のラジカル重合性樹脂組成物。
[3]前記(b-2)成分が、カプロラクトン付加モル数1~5のポリカプロラクトン(メタ)アクリレート構造を有する、上記[1]又は[2]に記載のラジカル重合性樹脂組成物。
[4]前記(b-1)成分及び(b-2)成分の合計量が、前記(B)成分中において20~95質量%である、上記[1]~[3]のいずれかに記載のラジカル重合性樹脂組成物。
[5]前記(A)成分が、ポリエステルポリオール、ポリエーテルポリオール、ポリオキシアルキレンビスフェノールAエーテルから選ばれるポリオール構造を含むウレタン(メタ)アクリレート樹脂である上記[1]~[4]のいずれかに記載のラジカル重合性樹脂組成物。
[6]さらに(D)硬化剤を含有する、上記[1]~[5]のいずれかに記載のラジカル重合性樹脂組成物。
[7]前記(b-1)成分と前記(b-2)成分の総量に対する前記(b-1)成分の含有量が、40~100質量%である、上記[1]~[6]のいずれかに記載のラジカル重合性樹脂組成物。
[8]前記ラジカル重合性樹脂(A)と前記ラジカル重合性不飽和単量体(B)の総量における前記ラジカル重合性樹脂(A)の含有量が、5~60質量%である、上記[1]~[7]のいずれかに記載のラジカル重合性樹脂組成物。
[9]ラジカル重合性組成物の粘度が、10~500mPa・s/25℃である、上記[1]~[8]のいずれかに記載のラジカル重合性樹脂組成物。
[10]上記[1]~[9]のいずれかに記載のラジカル重合性樹脂組成物を含み、液比重が1.01~1.15である構造物修復用注入剤。
That is, the gist of the present invention is the following [1] to [10].
[1] It contains (A) a radical polymerizable resin, (B) a radical polymerizable unsaturated monomer, and (C) an amine-based curing accelerator, and (B) a radical polymerizable unsaturated monomer A radical-polymerizable unsaturated monomer (b-1) having an oxyalkylene structure and / or a radical-polymerizable unsaturated monomer (b-2) having a caprolactone ring-opening structure Polymerizable resin composition.
[2] The radical polymerizable resin composition according to the above [1], wherein the component (b-1) has a polyalkylene oxide (meth) acrylate structure having an alkylene oxide addition mole number of 1 to 30.
[3] The radical polymerizable resin composition according to the above [1] or [2], wherein the component (b-2) has a polycaprolactone (meth) acrylate structure having 1 to 5 moles of caprolactone added.
[4] Any of [1] to [3] above, wherein the total amount of the component (b-1) and the component (b-2) is 20 to 95% by mass in the component (B). Radical polymerizable resin composition.
[5] The above (1) to [4], wherein the component (A) is a urethane (meth) acrylate resin containing a polyol structure selected from polyester polyol, polyether polyol, and polyoxyalkylene bisphenol A ether The radically polymerizable resin composition described.
[6] The radical polymerizable resin composition according to any one of [1] to [5], further comprising (D) a curing agent.
[7] In the above [1] to [6], the content of the component (b-1) with respect to the total amount of the component (b-1) and the component (b-2) is 40 to 100% by mass. The radically polymerizable resin composition according to any one of the above.
[8] The content of the radical polymerizable resin (A) in the total amount of the radical polymerizable resin (A) and the radical polymerizable unsaturated monomer (B) is 5 to 60% by mass, [1] The radically polymerizable resin composition according to any one of [7].
[9] The radical polymerizable resin composition according to any one of [1] to [8] above, wherein the viscosity of the radical polymerizable composition is 10 to 500 mPa · s / 25 ° C.
[10] An injecting agent for repairing a structure comprising the radical polymerizable resin composition according to any one of the above [1] to [9] and having a liquid specific gravity of 1.01 to 1.15.
 本発明によれば、低弾性率であり、かつ高比重(23℃での比重が1.00より大)のラジカル重合性樹脂組成物を提供することができる。このような特性を有するラジカル重合性組成物を含む構造物修復用注入剤は、高比重であるため、構造物に生じたクラック部分に浸透し、付着しやすく、かつ、低弾性率であるため注入剤の固着・乾燥後の破断が生じ難い。本発明の構造物修復用注入剤を用いると、常に振動を伴うようなコンクリート構造物に対して、幅の狭いクラック部分の修復を良好に行うことができる。すなわち、固着する際に従来と同程度の付着強度を維持することができ、且つ固着後の破断等が生じない構造物修復用注入剤を提供することができる。 According to the present invention, it is possible to provide a radical polymerizable resin composition having a low elastic modulus and a high specific gravity (specific gravity at 23 ° C. is greater than 1.00). The injecting agent for repairing a structure containing a radically polymerizable composition having such characteristics has a high specific gravity, and thus penetrates into and adheres to a crack portion generated in the structure, and has a low elastic modulus. Breakage after injection fixed and dried. When the structural restoration injecting agent of the present invention is used, it is possible to satisfactorily repair a narrow crack portion with respect to a concrete structure always accompanied by vibration. That is, it is possible to provide an injecting agent for repairing a structure that can maintain the same adhesion strength as that in the past when it is fixed and does not cause breakage after fixing.
[ラジカル重合性樹脂組成物]
 本発明のラジカル重合性樹脂組成物は、(A)ラジカル重合性樹脂と、(B)ラジカル重合性不飽和単量体と、(C)アミン系硬化促進剤とを含有し、(B)ラジカル重合性不飽和単量体が、オキシアルキレン構造を有するラジカル重合性不飽和単量体(b-1)及び/又はカプロラクトン開環構造を有するラジカル重合性不飽和単量体(b-2)を含有することを特徴とするラジカル重合性樹脂組成物である。
 なお、(A)ラジカル重合性樹脂を(A)成分ということがあり、(B)ラジカル重合性不飽和単量体を(B)成分ということがあり、(C)アミン系硬化促進剤を(C)成分ということがあり、オキシアルキレン構造を有するラジカル重合性不飽和単量体(b-1)を(b-1)成分ということがあり、カプロラクトン開環構造を有するラジカル重合性不飽和単量体(b-2)を(b-2)成分ということがある。
[Radically polymerizable resin composition]
The radical polymerizable resin composition of the present invention comprises (A) a radical polymerizable resin, (B) a radical polymerizable unsaturated monomer, and (C) an amine-based curing accelerator, and (B) a radical. The polymerizable unsaturated monomer is a radical polymerizable unsaturated monomer (b-1) having an oxyalkylene structure and / or a radical polymerizable unsaturated monomer (b-2) having a caprolactone ring-opening structure. It is a radically polymerizable resin composition characterized by containing.
In addition, (A) radical polymerizable resin may be called (A) component, (B) radical polymerizable unsaturated monomer may be called (B) component, and (C) amine type hardening accelerator ( C) component, and the radical polymerizable unsaturated monomer (b-1) having an oxyalkylene structure is sometimes referred to as component (b-1), and the radical polymerizable unsaturated monomer having a caprolactone ring-opening structure. The monomer (b-2) is sometimes referred to as the component (b-2).
<ラジカル重合性樹脂(A)>
 本発明において、ラジカル重合性樹脂(A)は、樹脂中にエチレン性不飽和基を有し、ラジカルによって重合反応が進行する化合物を指す。
 ラジカル重合性樹脂(A)としては、ウレタン(メタ)アクリレート樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ポリエステル(メタ)アクリレート樹脂、(メタ)アクリレート樹脂等が挙げられ、中でもラジカル重合性樹脂組成物の硬化物の低弾性率化の観点からウレタン(メタ)アクリレート樹脂が好ましい。なお、本明細書において、「(メタ)アクリレート」とは、「アクリレート又はメタクリレート」を意味する。
<Radically polymerizable resin (A)>
In the present invention, the radically polymerizable resin (A) refers to a compound having an ethylenically unsaturated group in the resin and undergoing a polymerization reaction by radicals.
Examples of the radical polymerizable resin (A) include urethane (meth) acrylate resin, vinyl ester resin, unsaturated polyester resin, polyester (meth) acrylate resin, (meth) acrylate resin, and the like. Among them, radical polymerizable resin composition From the viewpoint of lowering the elastic modulus of the cured product, urethane (meth) acrylate resin is preferable. In the present specification, “(meth) acrylate” means “acrylate or methacrylate”.
〔ウレタン(メタ)アクリレート樹脂〕
 ウレタン(メタ)アクリレート樹脂としては、例えば、多価イソシアネートと多価アルコールとを反応させて得られるポリウレタンの両末端の水酸基又はイソシアナト基に対して、(メタ)アクリロイル基を導入して得られた樹脂を用いることができる。
 多価アルコールとしては、特開2009-292890号公報、WO2016/171151号公報に記載の「ポリヒドロキシ化合物」又は「多価アルコール類」として記載されている化合物を特に制限なく使用することができる。
 多価アルコールに特に制限はないが、例えば、ポリエステルポリオール、ポリエーテルポリオール;
 エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、シクロヘキサンジメタノール等の2価アルコール;
 水素化ビスフェノールA等に代表される2価フェノールとプロピレンオキシド又はエチレンオキシドに代表されるアルキレンオキサイドとの付加物等の2価アルコール;
 1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の3価以上のアルコール等を挙げることができる。
 上記した2価フェノールとアルキレンオキサイドとの付加物としては、例えばポリオキシアルキレンビスフェノールAエーテルが挙げられる。
 これらの中でも、ウレタン(メタ)アクリレート樹脂としては、ポリエステルポリオール、ポリエーテルポリオール、ポリオキシアルキレンビスフェノールAエーテルから選ばれる1種又は2種以上のポリオール構造を含むウレタン(メタ)アクリレート樹脂であることが好ましい。
 中でもラジカル重合性樹脂組成物を硬化させた際の低弾性率化の観点から、ポリエーテルポリオールのポリオール構造を含むウレタン(メタ)アクリレート樹脂がより好ましい。ポリエーテルポリオールとしては、ラジカル重合性樹脂組成物を硬化させた際の低弾性率化の観点から、ポリエチレングリコール又はポリプロピレングリコールが好ましい。
 ポリエーテルポリオールの重量平均分子量は、500~4000が好ましく、500~3000がより好ましい。重量平均分子量が上記範囲内であれば、構造物修復用注入剤として適正な弾性率と粘度のものが得られる。重量平均分子量の測定方法は、実施例に記載のとおりである。
[Urethane (meth) acrylate resin]
The urethane (meth) acrylate resin was obtained, for example, by introducing a (meth) acryloyl group into a hydroxyl group or an isocyanate group at both ends of a polyurethane obtained by reacting a polyvalent isocyanate and a polyhydric alcohol. Resin can be used.
As the polyhydric alcohol, compounds described as “polyhydroxy compounds” or “polyhydric alcohols” described in JP2009-292890A and WO2016 / 171151 can be used without any particular limitation.
Although there is no restriction | limiting in particular in a polyhydric alcohol, For example, polyester polyol, polyether polyol;
Dihydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, cyclohexanedimethanol;
A dihydric alcohol such as an adduct of a dihydric phenol represented by hydrogenated bisphenol A and the like and an alkylene oxide represented by propylene oxide or ethylene oxide;
Examples thereof include trivalent or higher alcohols such as 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane and pentaerythritol.
Examples of the adduct of the dihydric phenol and alkylene oxide include polyoxyalkylene bisphenol A ether.
Among these, the urethane (meth) acrylate resin is a urethane (meth) acrylate resin containing one or more polyol structures selected from polyester polyol, polyether polyol, and polyoxyalkylene bisphenol A ether. preferable.
Among these, a urethane (meth) acrylate resin containing a polyol structure of a polyether polyol is more preferable from the viewpoint of lowering the modulus of elasticity when the radical polymerizable resin composition is cured. As the polyether polyol, polyethylene glycol or polypropylene glycol is preferable from the viewpoint of reducing the elastic modulus when the radical polymerizable resin composition is cured.
The weight average molecular weight of the polyether polyol is preferably 500 to 4000, and more preferably 500 to 3000. When the weight average molecular weight is within the above range, an appropriate elastic modulus and viscosity can be obtained as an injecting agent for structure repair. The method for measuring the weight average molecular weight is as described in the examples.
 多価イソシアネートとしては、特開2009-292890号公報に記載のものやWO2016/171151号公報に記載のものを挙げることができ、樹脂を合成する際の反応性の観点からジフェニルメタンジイソシアネートが好ましい。
 (メタ)アクリロイル基を導入する際には、例えば末端イソシアナト基に特開2009-292890号公報に記載の水酸基含有(メタ)アクリル化合物を反応させる方法や、末端水酸基に2-(メタ)アクリロイルオキシエチルイソシアネート、2-(メタ)アクリロイルオキシプロピルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート等のイソシアナト基含有(メタ)アクリル化合物を反応させる方法が挙げられる。この中でも、ラジカル重合性樹脂組成物の高比重化の観点から、末端イソシアナト基に水酸基含有(メタ)アクリル化合物を反応させる方法が好ましい。
 ラジカル重合性樹脂組成物の高比重化の観点からは、水酸基含有(メタ)アクリル化合物は、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、カプロラクトン変性ヒドロキシアルキル(メタ)アクリレート、ヒドロキシエチルアクリルアミド等が好ましく、この中でも2-ヒドロキシエチル(メタ)アクリレート、又は2-ヒドロキシプロピル(メタ)アクリレートがより好ましく、2-ヒドロキシエチルメタクリレート又は2-ヒドロキシプロピルメタクリレートが更に好ましい。
 ウレタン(メタ)アクリレート樹脂の重量平均分子量としては、好ましくは3000~20000、より好ましくは4000~11000である。重量平均分子量が上記範囲内であれば、ウレタン(メタ)アクリレート樹脂に後述するラジカル重合性不飽和単量体等を配合したラジカル重合性樹脂組成物とした場合に、低粘度、かつ相溶性が良好である。
Examples of the polyvalent isocyanate include those described in JP-A-2009-292890 and those described in WO2016 / 171151, and diphenylmethane diisocyanate is preferred from the viewpoint of reactivity when synthesizing the resin.
When a (meth) acryloyl group is introduced, for example, a method of reacting a terminal isocyanate group with a hydroxyl group-containing (meth) acrylic compound described in JP-A-2009-292890, or a terminal hydroxyl group with 2- (meth) acryloyloxy Examples thereof include a method of reacting an isocyanato group-containing (meth) acrylic compound such as ethyl isocyanate, 2- (meth) acryloyloxypropyl isocyanate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate. Among these, from the viewpoint of increasing the specific gravity of the radical polymerizable resin composition, a method in which a hydroxyl group-containing (meth) acrylic compound is reacted with a terminal isocyanate group is preferable.
From the viewpoint of increasing the specific gravity of the radical polymerizable resin composition, the hydroxyl group-containing (meth) acrylic compound is selected from 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and caprolactone-modified hydroxyalkyl (meth) acrylate. Hydroxyethyl acrylamide and the like are preferable. Among them, 2-hydroxyethyl (meth) acrylate or 2-hydroxypropyl (meth) acrylate is more preferable, and 2-hydroxyethyl methacrylate or 2-hydroxypropyl methacrylate is more preferable.
The weight average molecular weight of the urethane (meth) acrylate resin is preferably 3000 to 20000, and more preferably 4000 to 11000. When the weight average molecular weight is within the above range, when the radical polymerizable resin composition is blended with the urethane (meth) acrylate resin described later, the radical polymerizable unsaturated monomer, the viscosity is low and the compatibility is high. It is good.
 〔ビニルエステル樹脂〕
 ビニルエステル樹脂は、エポキシ(メタ)アクリレート樹脂と呼ばれることもある樹脂である。
 ビニルエステル樹脂としては、エポキシ樹脂に対して不飽和一塩基酸を反応させて得られたものを用いることができる。
 前記エポキシ樹脂としては、ビスフェノールAジグリシジルエーテル及びその高分子量同族体、ノボラック型グリシジルエーテル類等が挙げられる。
 具体的には、WO2016/171151号公報に記載されるエポキシ樹脂等が挙げられる。
 前記不飽和一塩基酸は公知のものが使用でき、例えば(メタ)アクリル酸、クロトン酸、桂皮酸等を挙げることができる。また、1個のヒドロキシ基と1個以上の(メタ)アクリロイル基を有する化合物と多塩基酸無水物との反応物を使用してもよい。なお、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸及びメタクリル酸」の一方又は両方を意味し、また、「(メタ)アクリロイル基」とは、「アクリロイル基及びメタクリロイル基」の一方又は両方を意味する。
 前記多塩基酸は、前記エポキシ樹脂の分子量を増大させるために使用するものでありWO2016/171151号公報に記載のものなど公知のものを使用できる。
[Vinyl ester resin]
Vinyl ester resin is a resin sometimes called an epoxy (meth) acrylate resin.
As the vinyl ester resin, one obtained by reacting an unsaturated monobasic acid with an epoxy resin can be used.
Examples of the epoxy resin include bisphenol A diglycidyl ether and high molecular weight homologues thereof, novolak glycidyl ethers, and the like.
Specifically, the epoxy resin etc. which are described in WO2016 / 171151 are mentioned.
Known unsaturated monobasic acids can be used, and examples thereof include (meth) acrylic acid, crotonic acid, cinnamic acid and the like. Further, a reaction product of a compound having one hydroxy group and one or more (meth) acryloyl groups and a polybasic acid anhydride may be used. In the present specification, “(meth) acrylic acid” means one or both of “acrylic acid and methacrylic acid”, and “(meth) acryloyl group” means “acryloyl group and methacryloyl group”. Or one of both.
The polybasic acid is used to increase the molecular weight of the epoxy resin, and known ones such as those described in WO2016 / 171151 can be used.
 〔不飽和ポリエステル樹脂〕
 不飽和ポリエステル樹脂としては、不飽和二塩基酸、及び必要に応じて飽和二塩基酸を含む二塩基酸成分と、多価アルコール成分とをエステル化反応させて得られたものを用いることができる。
 前記不飽和二塩基酸や前記飽和二塩基酸としては、例えば、WO2016/171151号公報に記載のものなどを挙げることができ、これらは単独でも、2種以上を組み合わせて用いてもよい。
 前記多価アルコールに特に制限はないが、例えば、ウレタン(メタ)アクリレート樹脂の場合と同様、WO2016/171151号公報に記載のものを挙げることができる。
[Unsaturated polyester resin]
As unsaturated polyester resin, what was obtained by esterifying the unsaturated dibasic acid and the dibasic acid component containing a saturated dibasic acid as needed, and a polyhydric alcohol component can be used. .
Examples of the unsaturated dibasic acid and the saturated dibasic acid include those described in WO2016 / 171151. These may be used alone or in combination of two or more.
Although there is no restriction | limiting in particular in the said polyhydric alcohol, For example, the thing as described in WO2016 / 171151 can be mentioned similarly to the case of urethane (meth) acrylate resin.
 不飽和ポリエステルは、本発明の効果を損なわない範囲で、ジシクロペンタジエン系化合物により変性したものを用いてもよい。ジシクロペンタジエン系化合物による変性方法については、例えば、ジシクロペンタジエンとマレイン酸付加生成物(シデカノールモノマレート)を得た後、これを一塩基酸として用いてジシクロペンタジエン骨格を導入する方法等の公知の方法が挙げられる。
 本発明で使用するビニルエステル樹脂又は不飽和ポリエステル樹脂には、アリル基またはベンジル基などの酸化重合(空気硬化)基を導入することができる。導入方法に特に制限はないが、例えば、酸化重合基含有ポリマーの添加や、水酸基とアリルエーテル基とを有する化合物の縮合、アリルグリシジルエーテル、2,6-ジグリシジルフェニルアリルエーテルに水酸基とアリルエーテル基を有する化合物と酸無水物との反応物を付加させる方法等が挙げられる。
 なお、本発明での酸化重合(空気硬化)とは、例えばアリルエーテル基などに見られる、エーテル結合と二重結合との間にあるメチレン結合の酸化によるパーオキシドの生成と分解に伴う架橋を指す。
The unsaturated polyester may be modified with a dicyclopentadiene compound within a range not impairing the effects of the present invention. As for the modification method using a dicyclopentadiene compound, for example, after obtaining dicyclopentadiene and a maleic acid addition product (sidedecanol monomaleate), this is used as a monobasic acid to introduce a dicyclopentadiene skeleton. Known methods such as
An oxidation polymerization (air curing) group such as an allyl group or a benzyl group can be introduced into the vinyl ester resin or unsaturated polyester resin used in the present invention. The introduction method is not particularly limited. For example, addition of an oxidatively polymerizable group-containing polymer, condensation of a compound having a hydroxyl group and an allyl ether group, allyl glycidyl ether, 2,6-diglycidyl phenyl allyl ether with a hydroxyl group and allyl ether And a method of adding a reaction product of a compound having a group and an acid anhydride.
Incidentally, the oxidative polymerization (air curing) in the present invention refers to cross-linking associated with the generation and decomposition of a peroxide by oxidation of a methylene bond between an ether bond and a double bond, such as found in an allyl ether group. .
〔ポリエステル(メタ)アクリレート樹脂〕
 本発明におけるポリエステル(メタ)アクリレート樹脂としては、例えば、多価カルボン酸と多価アルコールとを反応させて得られるポリエステル、具体的には、ポリエチレンテレフタレート等の両末端の水酸基に対して、(メタ)アクリル酸を反応させて得られた樹脂を用いることができる。
[Polyester (meth) acrylate resin]
As the polyester (meth) acrylate resin in the present invention, for example, a polyester obtained by reacting a polyvalent carboxylic acid and a polyhydric alcohol, specifically, with respect to hydroxyl groups at both ends such as polyethylene terephthalate, ) A resin obtained by reacting acrylic acid can be used.
〔(メタ)アクリレート樹脂〕
 (メタ)アクリレート樹脂としては、例えば、水酸基、イソシアナト基、カルボキシ基及びエポキシ基から選ばれる1種以上の官能基を有するポリ(メタ)アクリル樹脂や、前記官能基を有する単量体と(メタ)アクリレートとの共重合体の官能基に対して、水酸基を有する(メタ)アクリル酸エステル類を反応させて得られた樹脂を用いることができる。
[(Meth) acrylate resin]
Examples of the (meth) acrylate resin include a poly (meth) acrylic resin having one or more functional groups selected from a hydroxyl group, an isocyanato group, a carboxy group, and an epoxy group, a monomer having the above functional group, ) A resin obtained by reacting a (meth) acrylic acid ester having a hydroxyl group with a functional group of a copolymer with acrylate can be used.
<ラジカル重合性不飽和単量体(B)>
 本発明で使用するラジカル重合性不飽和単量体(B)は、ラジカル重合性樹脂組成物の粘度を下げ、低弾性率と高比重を両立する役割として重要である。ラジカル重合性不飽和単量体(B)は、オキシアルキレン構造を有するラジカル重合性不飽和単量体(b-1)及び/又はカプロラクトン開環構造を有するラジカル重合性不飽和単量体(b-2)を含有する。これら(b-1)成分及び/又は(b-2)成分を使用することにより、ラジカル重合性組成物の低弾性率と高比重を両立させることができる。
<Radically polymerizable unsaturated monomer (B)>
The radically polymerizable unsaturated monomer (B) used in the present invention is important as a role of lowering the viscosity of the radically polymerizable resin composition and achieving both a low elastic modulus and a high specific gravity. The radical polymerizable unsaturated monomer (B) includes a radical polymerizable unsaturated monomer (b-1) having an oxyalkylene structure and / or a radical polymerizable unsaturated monomer (b) having a caprolactone ring-opening structure. -2). By using these components (b-1) and / or (b-2), it is possible to achieve both a low elastic modulus and a high specific gravity of the radical polymerizable composition.
 オキシアルキレン構造とは―(―O-R―)― (Rはアルキレン基を表し、nは整数である)で示される構造である。アルキレン基の炭素数は2~6が好ましい。nは1~30の整数が好ましい。
 (b-1)オキシアルキレン構造を有するラジカル重合性不飽和単量体としては、オキシアルキレン構造を有する(メタ)アクリレートが挙げられ、アルキレン基部分の炭素数は2~6がより好ましい。
 また、前記(b-1)成分は、アルキレンオキサイド付加モル数1~30のポリアルキレンオキサイド(メタ)アクリレート構造を有する単量体であることが好ましい。アルキレンオキサイドの付加モル数は、より好ましくは1~20である。アルキレンオキサイドの付加モル数が上記範囲であれば、ラジカル重合性樹脂組成物の粘度と比重の観点からバランスが良い。
 具体的には、フェノキシエチル(メタ)アクリレート等のフェノールのアルキレンオキサイド変性(メタ)アクリレート、エトキシビスフェノールAジメタクリレート等のビスフェノールAのアルキレンオキサイド変性ジ(メタ)アクリレート、ビスフェノールFのアルキレンオキサイド変性ジ(メタ)アクリレート、イソシアヌル酸のアルキレンオキサイド変性トリ(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート等のアルキル基末端ポリアルキレングリコール(メタ)アクリレート、トリメチロールプロパンのアルキレンオキサイド変性トリ(メタ)アクリレートなどが挙げられる。これらは1種を単独で用いても2種以上を混合して用いても良い。中でも、ラジカル重合性樹脂組成物の粘度を低減する観点から、ビスフェノールAのアルキレンオキサイド変性ジ(メタ)アクリレート、フェノールのアルキレンオキサイド変性(メタ)アクリレート、及びメトキシポリエチレングリコール(メタ)アクリレート等のアルキル基末端ポリアルキレングリコール(メタ)アクリレートが好ましく、ビスフェノールAのアルキレンオキサイド変性ジ(メタ)アクリレート、フェノールのアルキレンオキサイド変性(メタ)アクリレートがより好ましい。
 前記(b-1)成分は、本発明のラジカル重合性樹脂組成物の低粘度化、低弾性率化、高比重のバランスの観点から、ビスフェノールAのアルキレンオキサイド変性ジ(メタ)アクリレートを含むことが好ましく、ビスフェノールAのアルキレンオキサイド変性ジ(メタ)アクリレート及びフェノールのアルキレンオキサイド変性(メタ)アクリレートの2種を含むことがより好ましい。(b-1)成分中におけるこれら2種の含有量の総量は、同様の観点から、好ましくは60質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、よりさらに好ましくは100質量%である。(b-1)成分中における、ビスフェノールAのアルキレンオキサイド変性ジ(メタ)アクリレートの含有量は、同様の観点から、好ましくは50~100質量%、より好ましくは60~90質量%、さらに好ましくは65~80質量%である。(b-1)成分中における、フェノールのアルキレンオキサイド変性(メタ)アクリレートの含有量は、好ましくは0~50質量%、より好ましくは10~40質量%、さらに好ましくは20~35質量%である。
 ビスフェノールAのアルキレンオキサイド変性ジ(メタ)アクリレートにおけるアルキレンオキサイドの付加モル数は、本発明のラジカル重合性樹脂組成物の低粘度化、低弾性率化、高比重のバランスの観点から、好ましくは1~30、より好ましくは4~30、さらに好ましくは4~20、よりさらに好ましくは8~20である。
 フェノールのアルキレンオキサイド変性(メタ)アクリレートにおけるアルキレンオキサイドの付加モル数は、同様の観点から、好ましくは1~10、より好ましくは1~4、さらに好ましくは1~2、よりさらに好ましくは1である。
The oxyalkylene structure is a structure represented by — (— O—R—) n — (R represents an alkylene group, and n is an integer). The alkylene group preferably has 2 to 6 carbon atoms. n is preferably an integer of 1 to 30.
(B-1) The radical polymerizable unsaturated monomer having an oxyalkylene structure includes (meth) acrylate having an oxyalkylene structure, and the alkylene group portion preferably has 2 to 6 carbon atoms.
The component (b-1) is preferably a monomer having a polyalkylene oxide (meth) acrylate structure having an alkylene oxide addition mole number of 1 to 30. The number of moles of alkylene oxide added is more preferably 1-20. When the added mole number of the alkylene oxide is within the above range, a good balance is obtained from the viewpoint of the viscosity and specific gravity of the radical polymerizable resin composition.
Specifically, alkylene oxide modified (meth) acrylate of phenol such as phenoxyethyl (meth) acrylate, alkylene oxide modified di (meth) acrylate of bisphenol A such as ethoxybisphenol A dimethacrylate, alkylene oxide modified di ( Alkyl group-terminated polyalkylene glycol (meth) acrylates such as meth) acrylate, isocyanuric acid alkylene oxide-modified tri (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, and trimethylolpropane alkylene oxide-modified tri (meth) acrylate Can be mentioned. These may be used alone or in combination of two or more. Among these, from the viewpoint of reducing the viscosity of the radical polymerizable resin composition, alkyl groups such as alkylene oxide modified di (meth) acrylate of bisphenol A, alkylene oxide modified (meth) acrylate of phenol, and methoxypolyethylene glycol (meth) acrylate. A terminal polyalkylene glycol (meth) acrylate is preferable, and an alkylene oxide-modified di (meth) acrylate of bisphenol A and an alkylene oxide-modified (meth) acrylate of phenol are more preferable.
The component (b-1) contains an alkylene oxide-modified di (meth) acrylate of bisphenol A from the viewpoint of the low viscosity, low elastic modulus and high specific gravity balance of the radical polymerizable resin composition of the present invention. It is more preferable that it contains two kinds of alkylene oxide-modified di (meth) acrylate of bisphenol A and alkylene oxide-modified (meth) acrylate of phenol. From the same viewpoint, the total content of these two kinds in the component (b-1) is preferably 60% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and still more preferably 100% by mass. From the same viewpoint, the content of the bisphenol A alkylene oxide-modified di (meth) acrylate in the component (b-1) is preferably 50 to 100% by mass, more preferably 60 to 90% by mass, and still more preferably 65 to 80% by mass. The content of the alkylene oxide-modified (meth) acrylate of phenol in the component (b-1) is preferably 0 to 50% by mass, more preferably 10 to 40% by mass, and further preferably 20 to 35% by mass. .
The number of moles of alkylene oxide added in the alkylene oxide-modified di (meth) acrylate of bisphenol A is preferably 1 from the viewpoint of the low viscosity, low elastic modulus, and high specific gravity balance of the radical polymerizable resin composition of the present invention. -30, more preferably 4-30, still more preferably 4-20, and even more preferably 8-20.
From the same viewpoint, the number of added moles of alkylene oxide in the alkylene oxide-modified (meth) acrylate of phenol is preferably 1 to 10, more preferably 1 to 4, still more preferably 1 to 2, and still more preferably 1. .
 (b-2)カプロラクトン開環構造を有するラジカル重合性不飽和単量体とは、―(―C10COO-)-で示される構造を有する不飽和単量体である。mは1~10の整数であることが好ましい。具体的には、カプロラクトン開環構造を有する(メタ)アクリレートが挙げられる。前記カプロラクトン開環構造を有するラジカル重合性不飽和単量体(b-2)は、カプロラクトン付加モル数1~5(m=1~5)のポリカプロラクトン(メタ)アクリレート構造を有する単量体であることが好ましい。カプロラクトンの付加モル数は1~3のものがより好ましい。付加モル数が上記範囲内であると、ラジカル重合性樹脂組成物の低弾性率化と高比重化のバランスを良好にとることができ、さらに低粘度化できる。より具体的にはカプロラクトン変性ヒドロキシアルキル(メタ)アクリレート、カプロラクトン変性トリス(アクリロキシアルキル)イソシアヌレートなどが挙げられる。粘度を低減する観点からはカプロラクトン変性ヒドロキシエチル(メタ)アクリレートが好ましい。
 また、本発明のラジカル重合性樹脂組成物を低弾性率化し、かつ高比重化する観点から、(b-1)成分と(b-2)成分を併用することが好ましい。
 (b-1)成分と(b-2)成分の総量に対する(b-1)成分の含有量は、好ましくは40~100質量%、より好ましくは55~90質量%、さらに好ましくは60~75質量%であり、よりさらに好ましくは60~70質量%である。
(B-2) The radical polymerizable unsaturated monomer having a caprolactone ring-opening structure is an unsaturated monomer having a structure represented by — (— C 5 H 10 COO—) m —. m is preferably an integer of 1 to 10. Specific examples include (meth) acrylates having a caprolactone ring-opening structure. The radically polymerizable unsaturated monomer (b-2) having a caprolactone ring-opening structure is a monomer having a polycaprolactone (meth) acrylate structure having caprolactone addition moles of 1 to 5 (m = 1 to 5). Preferably there is. The number of moles of caprolactone added is more preferably 1 to 3. When the number of added moles is within the above range, it is possible to satisfactorily balance the reduction in elastic modulus and the increase in specific gravity of the radical polymerizable resin composition, and it is possible to further reduce the viscosity. More specifically, caprolactone-modified hydroxyalkyl (meth) acrylate, caprolactone-modified tris (acryloxyalkyl) isocyanurate and the like can be mentioned. From the viewpoint of reducing the viscosity, caprolactone-modified hydroxyethyl (meth) acrylate is preferable.
Further, from the viewpoint of reducing the elastic modulus and increasing the specific gravity of the radical polymerizable resin composition of the present invention, it is preferable to use the component (b-1) and the component (b-2) in combination.
The content of the component (b-1) with respect to the total amount of the components (b-1) and (b-2) is preferably 40 to 100% by mass, more preferably 55 to 90% by mass, and still more preferably 60 to 75%. % By mass, more preferably 60 to 70% by mass.
 その他のラジカル重合性不飽和単量体としては、具体的には、特開2009-292890に記載のものなどが挙げられ、低弾性率化の観点からはラウリル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、及びメチル(メタ)アクリレートが好ましい。
 ラジカル重合性不飽和単量体(B)中における、(b-1)成分及び(b-2)成分の総量は、好ましくは20~95質量%、より好ましくは30~95質量%である。含有量が上記範囲内であれば、低弾性率化と高比重化のバランスを良好にとることができ、さらに低粘度化できる。一態様として、ラジカル重合性不飽和単量体(B)中における、(b-1)成分及び(b-2)成分の総量は、好ましくは20~95質量%、より好ましくは40~90質量%、さらに好ましくは65~85質量%である。また、一態様として、75~95質量%または80~95質量%であってもよい。
 ラジカル重合性樹脂(A)とラジカル重合性不飽和単量体(B)の総量におけるカプロラクトン開環構造を有するラジカル重合性不飽和単量体の含有量は、5~50質量%が好ましく、10~40質量%がより好ましく、15~35質量%が特に好ましい。この範囲内であれば、低弾性率化と高比重化のバランスを良好にすることができる。
Specific examples of other radical polymerizable unsaturated monomers include those described in JP-A-2009-292890. From the viewpoint of lowering the elastic modulus, lauryl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate and methyl (meth) acrylate are preferred.
The total amount of the component (b-1) and the component (b-2) in the radical polymerizable unsaturated monomer (B) is preferably 20 to 95% by mass, more preferably 30 to 95% by mass. If the content is within the above range, a good balance between low elastic modulus and high specific gravity can be achieved, and the viscosity can be further reduced. In one embodiment, the total amount of the component (b-1) and the component (b-2) in the radical polymerizable unsaturated monomer (B) is preferably 20 to 95% by mass, more preferably 40 to 90% by mass. %, More preferably 65 to 85% by mass. In one embodiment, it may be 75 to 95% by mass or 80 to 95% by mass.
The content of the radical polymerizable unsaturated monomer having a caprolactone ring-opening structure in the total amount of the radical polymerizable resin (A) and the radical polymerizable unsaturated monomer (B) is preferably 5 to 50% by mass. Is more preferably from 40 to 40% by weight, and particularly preferably from 15 to 35% by weight. If it is in this range, the balance between low elastic modulus and high specific gravity can be improved.
 (A)成分と(B)成分の総量中における(A)成分の含有量は、好ましくは5~60質量%、より好ましくは10~50質量%、さらに好ましくは10~45質量%、よりさらに好ましくは15~45質量%、よりさらに好ましくは20~45質量%、よりさらに好ましくは25~45質量%、よりさらに好ましくは30~40質量%である。当該含有量が上記範囲内であれば、ラジカル重合性樹脂組成物の低弾性率化と高比重化のバランスを良好にすることができる。 The content of the component (A) in the total amount of the component (A) and the component (B) is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, still more preferably 10 to 45% by mass, and even more. The amount is preferably 15 to 45% by mass, more preferably 20 to 45% by mass, still more preferably 25 to 45% by mass, and still more preferably 30 to 40% by mass. If the content is within the above range, the balance between the low elastic modulus and the high specific gravity of the radical polymerizable resin composition can be improved.
<アミン系硬化促進剤(C)>
 本発明に用いるアミン系硬化促進剤(C)は、公知のアミン類を特に制限なく用いることができ、具体的には、アニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、p-トルイジン、N,N-ジメチル-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、4-(N,N-ジメチルアミノ)ベンズアルデヒド、4-[N,N-ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4-(N-メチル-N-ヒドロキシエチルアミノ)ベンズアルデヒド、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニリモルホリン、ピペリジン、N,N-ビス(ヒドロキシエチル)アニリン、ジエタノールアニリン等のN,N-置換アニリン、N,N-置換-p-トルイジン、4-(N,N-置換アミノ)ベンズアルデヒド等のアミン類等を使用できる。中でも硬化を促進させ易い観点から、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、又はN,N-ビス(2-ヒドロキシプロピル)-p-トルイジンが好ましい。
 アミン系硬化促進剤の含有量は(A)ラジカル重合性樹脂及び(B)ラジカル重合性不飽和単量体の合計100質量部に対し、好ましくは0.01~3.0質量部、より好ましくは0.1~1.0質量部である。含有量が上記範囲内であると硬化性の調整が容易である。
<Amine-based curing accelerator (C)>
As the amine-based curing accelerator (C) used in the present invention, known amines can be used without particular limitation. Specifically, aniline, N, N-dimethylaniline, N, N-diethylaniline, p- Toluidine, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2 -Hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2-hydroxypropyl) -p-toluidine, N-ethyl-m-toluidine, triethanolamine , M-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, N, N-bis (hydroxyethyl) a Phosphorus, N, such as diethanol aniline, N- substituted aniline, N, N- substituted -p- toluidine, 4-(N, N- disubstituted amino) amines, such as benzaldehyde can be used. Of these, N, N-bis (2-hydroxyethyl) -p-toluidine or N, N-bis (2-hydroxypropyl) -p-toluidine is preferred from the viewpoint of facilitating curing.
The content of the amine curing accelerator is preferably 0.01 to 3.0 parts by mass, more preferably 100 parts by mass with respect to the total of 100 parts by mass of the (A) radical polymerizable resin and (B) radical polymerizable unsaturated monomer. Is 0.1 to 1.0 part by mass. If the content is within the above range, the curability can be easily adjusted.
<硬化剤(D)>
 本発明のラジカル重合性樹脂組成物は、硬化剤(D)を含んでもよい。本発明で用いられる(D)硬化剤としては特に限定されず、公知のラジカル重合開始剤を使用することができ、有機化過酸化物を用いることが好ましい。
 有機過酸化物の例としては、ジベンゾイルパーオキサイド(ベンゾイルパーオキサイドともいう)、ケトンパーオキサイド、パーベンゾエート、ハイドロパーオキサイド、ジアシルパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアリルパーオキサイド、パーオキシエステル及びパーオキシジカーボネート等が挙げられ、アゾ化合物等も使用可能である。より具体的には、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーベンゾエート、ジベンゾイルパーオキサイド、ジクミルパーオキサイド、ジイソプロピルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、3-イソプロピルヒドロパーオキサイド、t-ブチルヒドロパーオキサイド、ジクミルヒドロパーオキサイド、アセチルパーオキサイド、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、イソブチルパーオキサイド、3,3,5-トリメチルヘキサノイルパーオキサイド、ラウリルパーオキサイド、アゾビスイソブチロニトリル及びアゾビスカルボンアミド等が使用できる。これら有機過酸化物は、単独又は組み合わせて用いることが可能である。また、これらの中でも、コスト、入手のし易さ、及び安定性の観点から、ジベンゾイルパーオキサイドが好ましい。
<Curing agent (D)>
The radically polymerizable resin composition of the present invention may contain a curing agent (D). The (D) curing agent used in the present invention is not particularly limited, and a known radical polymerization initiator can be used, and an organic peroxide is preferably used.
Examples of organic peroxides include dibenzoyl peroxide (also called benzoyl peroxide), ketone peroxide, perbenzoate, hydroperoxide, diacyl peroxide, peroxyketal, hydroperoxide, diallyl peroxide, peroxy Examples thereof include esters and peroxydicarbonates, and azo compounds can also be used. More specifically, methyl ethyl ketone peroxide, cumene hydroperoxide, t-butyl perbenzoate, dibenzoyl peroxide, dicumyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, 3-isopropyl hydroperoxide , T-butyl hydroperoxide, dicumyl hydroperoxide, acetyl peroxide, bis (4-t-butylcyclohexyl) peroxydicarbonate, diisopropyl peroxydicarbonate, isobutyl peroxide, 3,3,5-tri Chill hexanoyl peroxide, lauryl peroxide, azobisisobutyronitrile and azo-bis-carboxylic amide and the like can be used. These organic peroxides can be used alone or in combination. Of these, dibenzoyl peroxide is preferable from the viewpoints of cost, availability, and stability.
 硬化剤(D)の配合量は、上記(A)成分と(B)成分の合計100質量部に対して、0.1~8質量部が好ましく、0.5~5質量部がより好ましい。硬化剤(D)の配合量が0.1質量部以上では、所望の硬化性が得られ易い。一方、硬化剤(D)の配合量が8質量部以下であると、経済的に有利であり、十分な作業時間が得られ易い。 The blending amount of the curing agent (D) is preferably 0.1 to 8 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass in total of the components (A) and (B). When the blending amount of the curing agent (D) is 0.1 parts by mass or more, desired curability is easily obtained. On the other hand, when the blending amount of the curing agent (D) is 8 parts by mass or less, it is economically advantageous and sufficient working time is easily obtained.
<その他成分>
〔重合禁止剤〕
 本発明のラジカル重合性樹脂組成物は、(A)ラジカル重合性樹脂及び(B)ラジカル重合性不飽和単量体の過度の重合を抑える観点、反応速度をコントロールする観点から、重合禁止剤を含んでもよい。
 重合禁止剤としては、ハイドロキノン、メチルハイドロキノン、フェノチアジン、カテコール、4-tert-ブチルカテコール等の公知のものが挙げられる。
〔アミン系以外の硬化促進剤〕
 本発明のラジカル重合性樹脂組成物には、上記したアミン系硬化促進剤以外の硬化促進剤を含有させてもよい。アミン系以外の硬化促進剤としては特に限定はされず、公知の有機金属塩を使用することができる。有機金属塩の例としては、ナフテン酸銅、オクチル酸コバルト、ナフテン酸コバルト、水酸化コバルト、ヘキソエート亜鉛、オクチル酸マンガン等が挙げられる。これらの中でも、ナフテン酸コバルト、オクチル酸コバルトが好ましい。これらの有機金属塩は、単独又は組み合わせて用いることが可能である。
<Other ingredients>
(Polymerization inhibitor)
The radical polymerizable resin composition of the present invention comprises a polymerization inhibitor from the viewpoint of suppressing excessive polymerization of (A) radical polymerizable resin and (B) radical polymerizable unsaturated monomer, and controlling the reaction rate. May be included.
Examples of the polymerization inhibitor include known ones such as hydroquinone, methylhydroquinone, phenothiazine, catechol, 4-tert-butylcatechol.
[Curing accelerators other than amines]
The radical polymerizable resin composition of the present invention may contain a curing accelerator other than the amine-based curing accelerator described above. It does not specifically limit as hardening accelerators other than an amine type | system | group, A well-known organometallic salt can be used. Examples of the organic metal salt include copper naphthenate, cobalt octylate, cobalt naphthenate, cobalt hydroxide, zinc hexate, manganese octylate and the like. Among these, cobalt naphthenate and cobalt octylate are preferable. These organometallic salts can be used alone or in combination.
 有機金属塩の配合量は、上記(A)成分と(B)成分の合計100質量部に対して、0.02~10質量部であることが好ましく、0.1~3.0質量部であることがより好ましい。有機金属塩の配合量が0.02質量部以上であると、所望の硬化時間及び硬化状態が得られ易く、乾燥性良好になる。一方、有機金属塩の配合量が10質量部以下であると、所望の可使時間及び貯蔵安定性が得られ易い。
〔光重合開始剤〕
 本実施形態の樹脂組成物は、硬化性を向上させる目的で光重合開始剤を含むものであっても良い。光重合開始剤としては、例えば、光ラジカル重合開始剤などが挙げられる。
 光ラジカル重合開始剤は、二重結合を有するアクリル樹脂やモノマーの硬化性を向上させるために用いられる。
 具体的には、光ラジカル重合開始剤として、ベンゾインアルキルエーテルのようなベンゾインエーテル系、ベンゾフェノン、ベンジル、メチルオルソベンゾイルベンゾエートなどのベンゾフェノン系、ベンジルジメチルケタール、2,2-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、4-イソプロピル-2-ヒドロキシ-2-メチルプロピオフェノン、1,1-ジクロロアセトフェノンなどのアセトフェノン系、2-クロロチオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントンなどのチオキサントン系のものが挙げられる。
 光重合開始剤は、(A)ラジカル反応性樹脂と(B)ラジカル重合性不飽和単量体との合計100質量部に対して、0.1~10質量部の範囲で添加することができる。
The compounding amount of the organic metal salt is preferably 0.02 to 10 parts by mass, and preferably 0.1 to 3.0 parts by mass with respect to 100 parts by mass in total of the components (A) and (B). More preferably. When the compounding amount of the organic metal salt is 0.02 parts by mass or more, a desired curing time and a cured state can be easily obtained, and the drying property is improved. On the other hand, when the compounding amount of the organic metal salt is 10 parts by mass or less, desired pot life and storage stability are easily obtained.
(Photopolymerization initiator)
The resin composition of this embodiment may contain a photopolymerization initiator for the purpose of improving curability. As a photoinitiator, radical photopolymerization initiator etc. are mentioned, for example.
A radical photopolymerization initiator is used to improve the curability of an acrylic resin or monomer having a double bond.
Specifically, photo radical polymerization initiators include benzoin ethers such as benzoin alkyl ether, benzophenones such as benzophenone, benzyl and methyl orthobenzoylbenzoate, benzyl dimethyl ketal, 2,2-diethoxyacetophenone, 2-hydroxy -2-Methylpropiophenone, 4-isopropyl-2-hydroxy-2-methylpropiophenone, acetophenone series such as 1,1-dichloroacetophenone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, etc. A thioxanthone type is mentioned.
The photopolymerization initiator can be added in a range of 0.1 to 10 parts by mass with respect to 100 parts by mass in total of (A) the radical reactive resin and (B) the radical polymerizable unsaturated monomer. .
〔界面活性剤〕
 本発明のラジカル重合性樹脂組成物は、樹脂と水とのなじみをよくし、水を樹脂に抱き込んだ状態で硬化しやすくする観点から、界面活性剤を含有してもよい。
 界面活性剤としては、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤、及び両性界面活性剤が挙げられる。これらの界面活性剤は、単独でも、2種以上を組み合わせて用いてもよい。
 これらの界面活性剤の中でも陰イオン性界面活性剤、及び非イオン性界面活性剤から選ばれる1種以上が好ましい。
[Surfactant]
The radically polymerizable resin composition of the present invention may contain a surfactant from the viewpoint of improving the compatibility between the resin and water and facilitating curing in a state where water is embraced in the resin.
Examples of the surfactant include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant. These surfactants may be used alone or in combination of two or more.
Among these surfactants, one or more selected from anionic surfactants and nonionic surfactants are preferable.
 陰イオン性界面活性剤としては、例えば、ラウリル硫酸ナトリウム、ラウリル硫酸トリエタノールアミン等のアルキル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等のポリオキシエチレンアルキルエーテル硫酸エステル塩;ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルフォン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム等のスルホン酸塩;ステアリン酸ソーダ石鹸、オレイン酸カリ石鹸、ヒマシ油カリ石鹸等の脂肪酸塩;ナフタレンスルフォン酸ホルマリン縮合物、特殊高分子系等が挙げられる。
 これらの中でも、スルホン酸塩が好ましく、ジアルキルスルホコハク酸ナトリウムがより好ましく、ジオクチルスルホコハク酸ナトリウムが更に好ましい。
 非イオン性界面活性剤として、例えば、ポリオキシラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール等のポリオキシエチレン誘導体;ポリオキシアルキレンアルキルエーテル、ソルビタンモノラウリレート、ソルビタンモノパルミテート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート等のポリオキシエチレンソルビタン脂肪酸エステル;テトラオレイン酸ポリオキシエチレンソルビット等のポリオキシエチレンソルビトール脂肪酸エステル;グリセリンモノステアレート、グリセリンモノオレエート等のグリセリン脂肪酸エステルが挙げられる。
 これらの中では、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、及びポリオキシエチレンアルキルエーテルが好ましい。また、非イオン性界面活性剤のHLB(Hydrophile-Lipophil Balance)は、5~15が好ましく、6~12より好ましい。
 ラジカル重合性樹脂組成物が界面活性剤を含有する場合、その量は、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体の合計100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.05~7質量部、更に好ましくは0.1~5質量部である。
Examples of the anionic surfactant include alkyl sulfate esters such as sodium lauryl sulfate and triethanolamine lauryl sulfate; polyoxyethylene alkyl such as polyoxyethylene lauryl ether sodium sulfate and polyoxyethylene alkyl ether sulfate triethanolamine. Ether sulfate salts; sulfonates such as dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, sodium alkylnaphthalene sulfonate, sodium dialkylsulfosuccinate; fatty acid salts such as sodium stearate soap, potassium oleate soap, castor oil potassium soap A naphthalene sulfonic acid formalin condensate, a special polymer system and the like.
Among these, sulfonates are preferable, sodium dialkylsulfosuccinate is more preferable, and sodium dioctylsulfosuccinate is still more preferable.
Nonionic surfactants include, for example, polyoxyethylene alkyl ethers such as polyoxylauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene distyrenated phenyl ether, polyoxyethylene Polyoxyethylene derivatives such as oxyethylene tribenzylphenyl ether and polyoxyethylene polyoxypropylene glycol; sorbitan fatty acid esters such as polyoxyalkylene alkyl ether, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate; polyoxyethylene Sorbitan monolaurate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate Polyoxyethylene sorbitan fatty acid esters; polyoxyethylene sorbit tetraoleate and the like of the polyoxyethylene sorbitol fatty acid esters; glycerol monostearate, glycerine fatty acid esters such as glycerol monooleate.
Among these, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, and polyoxyethylene alkyl ether are preferable. Further, the nonionic surfactant HLB (Hydrophile-Lipophil Balance) is preferably 5-15, more preferably 6-12.
When the radical polymerizable resin composition contains a surfactant, the amount thereof is preferably 0 with respect to a total of 100 parts by mass of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer. 0.01 to 10 parts by mass, more preferably 0.05 to 7 parts by mass, and still more preferably 0.1 to 5 parts by mass.
〔分散剤〕
 本発明のラジカル重合性樹脂組成物は、例えば、湿潤又は水没した被修復箇所に対する浸透性を向上させるために湿潤分散剤を含んでいてもよい。
 湿潤分散剤としては、フッ素系湿潤分散剤及びシリコーン系湿潤分散剤が挙げられ、これらは、単独でも、2種以上を組み合わせて用いてもよい。
 フッ素系の湿潤分散剤の市販品としては、メガファック(登録商標)F176、メガファック(登録商標)R08(大日本インキ化学工業株式会社製)、PF656、PF6320(OMNOVA社製)、トロイゾルS-366(トロイケミカル株式会社製)、フロラードFC430(スリーエム ジャパン株式会社製)、ポリシロキサンポリマーKP-341(信越化学工業株式会社製)等が挙げられる。
 シリコーン系湿潤分散剤の市販品としては、BYK(登録商標)-322、BYK(登録商標)-377、BYK(登録商標)-UV3570、BYK(登録商標)-330、BYK(登録商標)-302、BYK(登録商標)-UV3500,BYK-306(ビックケミー・ジャパン株式会社製)、ポリシロキサンポリマーKP-341(信越化学工業株式会社製)等が挙げられる。
 本発明のラジカル重合性樹脂組成物が、分散剤を含有する場合、その量は、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体の合計100質量部に対して、好ましくは、0.01~10質量部、より好ましくは0.1~5質量部が好ましい。
[Dispersant]
The radically polymerizable resin composition of the present invention may contain a wetting and dispersing agent, for example, in order to improve the permeability to a repaired site that has been wetted or submerged.
Examples of the wetting and dispersing agent include a fluorine-based wetting and dispersing agent and a silicone-based wetting and dispersing agent, and these may be used alone or in combination of two or more.
Commercially available fluorine-based wetting and dispersing agents include Megafac (registered trademark) F176, Megafac (registered trademark) R08 (manufactured by Dainippon Ink and Chemicals, Inc.), PF656, PF6320 (manufactured by OMNOVA), Troisol S- 366 (manufactured by Troy Chemical Co., Ltd.), Florard FC430 (manufactured by 3M Japan Co., Ltd.), polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
Commercially available silicone-based wetting and dispersing agents include BYK (registered trademark) -322, BYK (registered trademark) -377, BYK (registered trademark) -UV3570, BYK (registered trademark) -330, BYK (registered trademark) -302. BYK (registered trademark) -UV3500, BYK-306 (manufactured by BYK Japan), polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
When the radical polymerizable resin composition of the present invention contains a dispersant, the amount thereof is 100 parts by mass in total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer. Preferably, it is 0.01 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass.
〔揺変剤〕
 本発明のラジカル重合性樹脂組成物は、垂直面や天井面での作業性確保のための粘度調整等を目的として揺変剤を含んでもよい。
 揺変剤としては、無機系揺変剤及び有機系揺変剤を挙げることができ、有機系揺変剤としては、水素添加ひまし油系、アマイド系、酸化ポリエチレン系、植物油重合油系、界面活性剤系、及びこれらを併用した複合系が挙げられ、具体的には、DISPARLON(登録商標)6900-20X(楠本化成株式会社)等が挙げられる。
 また、無機系揺変剤としては、シリカやベントナイト系が挙げられ、疎水性のものとして、レオロシール(登録商標)PM-20L(株式会社トクヤマ製の気相法シリカ)、アエロジル(登録商標)AEROSIL R-106(日本アエロジル株式会社)等が挙げられ、親水性のものとして、アエロジル(登録商標)AEROSIL-200(日本アエロジル株式会社)等が挙げられる。揺変性をより向上させる観点から、親水性の焼成シリカに、揺変性改質剤であるBYK(登録商標)-R605やBYK(登録商標)-R606(ビックケミー・ジャパン株式会社製)を添加したものも好適に用いることができる。
 本発明のラジカル重合性樹脂組成物が、揺変剤を含有する場合、その量は、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体の合計100質量部に対して、好ましくは、0.01~10質量部、より好ましくは0.1~5質量部が好ましい。
[Thixotropic agent]
The radical polymerizable resin composition of the present invention may contain a thixotropic agent for the purpose of adjusting the viscosity for ensuring workability on a vertical surface or a ceiling surface.
Examples of thixotropic agents include inorganic thixotropic agents and organic thixotropic agents. Examples of organic thixotropic agents include hydrogenated castor oil-based, amide-based, polyethylene oxide-based, vegetable oil-polymerized oil-based, and surface activity. An agent system, and a composite system using these in combination, specifically DISPARLON (registered trademark) 6900-20X (Enomoto Kasei Co., Ltd.) and the like.
In addition, examples of inorganic thixotropic agents include silica and bentonite, and hydrophobic ones include Leolosil (registered trademark) PM-20L (gas phase method silica manufactured by Tokuyama Corporation) and Aerosil (registered trademark) AEROSIL. R-106 (Nippon Aerosil Co., Ltd.) and the like, and examples of hydrophilic ones include Aerosil (registered trademark) AEROSIL-200 (Nippon Aerosil Co., Ltd.). From the viewpoint of further improving thixotropic properties, those obtained by adding BYK (registered trademark) -R605 or BYK (registered trademark) -R606 (manufactured by BYK Japan) to hydrophilic calcined silica. Can also be suitably used.
When the radical polymerizable resin composition of the present invention contains a thixotropic agent, the amount thereof is based on 100 parts by mass in total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer. Preferably, it is 0.01 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass.
〔硬化遅延剤〕
 本発明のラジカル重合性樹脂組成物は、硬化時間の調製の目的で、硬化遅延剤を含んでもよい。硬化遅延剤としては、フリーラジカル系硬化遅延剤が挙げられ、例えば、2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(TEMPO)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(4H-TEMPO)、4-オキソ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(4-Oxo-TEMPO)等のTEMPO誘導体が挙げられる。これらの中でも、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(4H-TEMPO)がコスト面、扱いやすさの点から好ましい。
 ラジカル重合性樹脂組成物が重合禁止剤、硬化遅延剤を含有する場合、その量は(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体の合計100質量部に対して、好ましくは各々0.0001~10質量部であり、より好ましくは各々0.001~10質量部である。
(Curing retarder)
The radical polymerizable resin composition of the present invention may contain a curing retardant for the purpose of adjusting the curing time. Examples of the curing retarder include free radical curing retarders such as 2,2,6,6-tetramethylpiperidine 1-oxyl free radical (TEMPO), 4-hydroxy-2,2,6,6- Examples thereof include TEMPO derivatives such as tetramethylpiperidine 1-oxyl free radical (4H-TEMPO) and 4-oxo-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (4-Oxo-TEMPO). Among these, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (4H-TEMPO) is preferable from the viewpoint of cost and ease of handling.
When the radical polymerizable resin composition contains a polymerization inhibitor and a curing retarder, the amount thereof is 100 parts by mass in total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer. Each is preferably 0.0001 to 10 parts by mass, and more preferably 0.001 to 10 parts by mass.
〔消泡剤〕
 本発明のラジカル重合性樹脂組成物は、成形時の泡発生、成形品の泡残りを改善する目的で、消泡剤を含んでもよい。消泡剤としては、シリコーン系消泡剤、ポリマー系消泡剤などが挙げられる。
 消泡剤の使用量は、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体の合計100質量部に対して、0.01~5質量部の範囲が好ましい。より好ましくは、0.1~1質量部である。
[Defoamer]
The radical polymerizable resin composition of the present invention may contain an antifoaming agent for the purpose of improving foam generation during molding and foam residue of the molded product. Examples of antifoaming agents include silicone-based antifoaming agents and polymer-based antifoaming agents.
The amount of the antifoaming agent used is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass in total of (A) radical polymerizable resin and (B) radical polymerizable unsaturated monomer. More preferably, it is 0.1 to 1 part by mass.
〔カップリング剤〕
 本発明のラジカル重合性樹脂組成物は、修復対象物である基材への密着性を向上させること等を目的として、カップリング剤を含んでもよい。カップリング剤としては、公知のシラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられる。
 このようなカップリング剤としては、例えば、R-Si(OR)で表されるシランカップリング剤を挙げることができる。なお、Rとしては、例えば、アミノプロピル基、グリシジルオキシ基、メタクリルオキシ基、N-フェニルアミノプロピル基、メルカプト基、ビニル基等が挙げられ、Rとしては、例えば、メチル基、エチル基等が挙げられる。
 ラジカル重合性樹脂組成物がカップリング剤を含有する場合、その量は、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体の合計100質量部に対して、好ましくは0.001~10質量%、より好ましくは0.01~5質量%である。
[Coupling agent]
The radically polymerizable resin composition of the present invention may contain a coupling agent for the purpose of improving the adhesion to a substrate that is a restoration target. Examples of the coupling agent include known silane coupling agents, titanate coupling agents, aluminum coupling agents, and the like.
An example of such a coupling agent is a silane coupling agent represented by R 3 —Si (OR 4 ) 3 . Examples of R 3 include an aminopropyl group, a glycidyloxy group, a methacryloxy group, an N-phenylaminopropyl group, a mercapto group, and a vinyl group. Examples of R 4 include a methyl group and an ethyl group. Etc.
When the radical polymerizable resin composition contains a coupling agent, the amount thereof is preferably 0 with respect to 100 parts by mass in total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer. 0.001 to 10% by mass, more preferably 0.01 to 5% by mass.
 〔光安定剤〕
 本発明のラジカル重合性樹脂組成物は、成形品の長期耐久性を向上させる目的で、光安定剤を使用してもよい。光安定剤としては、紫外線吸収剤やヒンダードアミン系光安定剤が挙げられる。これらは、単独でも、2種以上を組み合わせて用いてもよい。具体的には、紫外線吸収剤としては、ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系、シアノアクリレート系、サリシレート系等が挙げられ、ヒンダードアミン系光安定剤としては、N-H型、N-CH型、N-Oアルキル型等が挙げられる。
 光安定剤の使用量は、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体との合計100質量部に対して、0.01~5質量部の範囲であることが好ましく、より好ましくは0.05~2質量部である。
(Light stabilizer)
The radically polymerizable resin composition of the present invention may use a light stabilizer for the purpose of improving the long-term durability of the molded product. Examples of the light stabilizer include an ultraviolet absorber and a hindered amine light stabilizer. These may be used alone or in combination of two or more. Specifically, examples of the ultraviolet absorber include benzotriazole, triazine, benzophenone, cyanoacrylate, salicylate, and the like, and hindered amine light stabilizers include NH type and N—CH 3 type. , N-O alkyl type and the like.
The amount of the light stabilizer used is in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass in total of the (A) radical polymerizable resin and the (B) radical polymerizable unsaturated monomer. The amount is preferably 0.05 to 2 parts by mass.
〔ワックス〕
 本発明のラジカル重合性樹脂組成物は、ワックスを含むものであってもよい。ワックスとしては、パラフィンワックス類、極性ワックス類などを単独あるいは併用して用いることができ、各種融点の公知の物を使用できる。
 極性ワックス類としては、構造中に極性基および非極性基を合わせ持つものが挙げられる。具体的には、NPS-8070、NPS-9125(日本精蝋社製)、エマノーン3199、3299(花王社製)等が挙げられる。
 ワックスは、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体との合計100質量部に対して、0.05~4質量部含有することが好ましく、0.1~2.0質量部含有することがより好ましい。
〔wax〕
The radical polymerizable resin composition of the present invention may contain a wax. As the wax, paraffin waxes, polar waxes and the like can be used alone or in combination, and known ones having various melting points can be used.
Examples of polar waxes include those having both a polar group and a nonpolar group in the structure. Specific examples include NPS-8070, NPS-9125 (manufactured by Nippon Seiwa Co., Ltd.), Emanon 3199, 3299 (manufactured by Kao Corporation), and the like.
The wax is preferably contained in an amount of 0.05 to 4 parts by mass with respect to a total of 100 parts by mass of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer, It is more preferable to contain 0.0 part by mass.
〔難燃剤〕
 本発明のラジカル重合性樹脂組成物は、難燃剤を含むものであってもよい。難燃剤としては、臭素系難燃剤、塩素系難燃剤、リン系難燃剤、無機系難燃剤、イントメッセント系難燃剤、シリコーン系難燃剤などを単独あるいは併用して用いることができ、公知のものを使用することができる。
 また、臭素系難燃剤などのハロゲン系難燃剤は、難燃性を更に向上する目的で三酸化アンチモンと併用して用いることができる。
 難燃剤の添加量は、系統により異なるが、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体との合計100質量部に対して、1~100質量部含有することが好ましい。
〔Flame retardants〕
The radical polymerizable resin composition of the present invention may contain a flame retardant. As the flame retardant, a brominated flame retardant, a chlorine flame retardant, a phosphorus flame retardant, an inorganic flame retardant, an intimate flame retardant, a silicone flame retardant, or the like can be used alone or in combination, and publicly known Things can be used.
In addition, halogen-based flame retardants such as brominated flame retardants can be used in combination with antimony trioxide for the purpose of further improving flame retardancy.
Although the amount of the flame retardant added varies depending on the system, it may be contained in an amount of 1 to 100 parts by mass with respect to a total of 100 parts by mass of (A) radical polymerizable resin and (B) radical polymerizable unsaturated monomer. preferable.
〔可塑剤〕
 本発明の樹脂組成物は、粘度、弾性率調整を目的に、可塑剤を含むものであってもよい。可塑剤としては、エポキシ類、ポリエステル類系、フタル酸エステル類系、アジピン酸エステル類系、トリメリット酸エステル類系、リン酸エステル類系、クエン酸エステル類系、セバシン酸エステル類系、アゼライン酸エステル類系、マレイン酸エステル類系、安息香酸エステル類系等、単独あるいは併用して用いることができ、公知のものを使用することができる。
 可塑剤の添加量は、系統により異なるが、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体との合計100質量部に対して、0.01~20質量部含有することが好ましい。より好ましくは、0.1~10質量部含有することが好ましい。
 本発明のラジカル重合性組成物中における、(A)成分、(B)成分、及び(C)成分の含有量の総量は、好ましくは30~100質量%、より好ましくは60~100質量%、さらに好ましくは90~100質量%である。
 また、本発明のラジカル重合性組成物が(D)硬化剤を含有する場合、本発明のラジカル重合性組成物中における、(A)成分、(B)成分、(C)成分及び(D)硬化剤の含有量の総量は、好ましくは30~100質量%、より好ましくは60~100質量%、さらに好ましくは90~100質量%である。
[Plasticizer]
The resin composition of the present invention may contain a plasticizer for the purpose of adjusting viscosity and elastic modulus. Plasticizers include epoxies, polyesters, phthalates, adipates, trimellitic esters, phosphate esters, citrate esters, sebacate esters, azelain Acid esters, maleates, benzoates and the like can be used alone or in combination, and known ones can be used.
The amount of the plasticizer added varies depending on the system, but is 0.01 to 20 parts by mass with respect to 100 parts by mass in total of (A) radical polymerizable resin and (B) radical polymerizable unsaturated monomer. It is preferable. More preferably, the content is 0.1 to 10 parts by mass.
The total amount of the components (A), (B), and (C) in the radical polymerizable composition of the present invention is preferably 30 to 100% by mass, more preferably 60 to 100% by mass, More preferably, it is 90 to 100% by mass.
Moreover, when the radically polymerizable composition of the present invention contains (D) a curing agent, the (A) component, the (B) component, the (C) component, and (D) in the radically polymerizable composition of the present invention. The total content of the curing agent is preferably 30 to 100% by mass, more preferably 60 to 100% by mass, and still more preferably 90 to 100% by mass.
<ラジカル重合性組成物の物性値>
 ラジカル重合性組成物の粘度は、無機構造物のクラックへの注入のしやすさの観点から、好ましくは10~500mPa・s/25℃、より好ましくは10~350mPa・s/25℃、さらに好ましくは10~250mPa・s/25℃である。粘度の測定方法は、実施例に記載されているとおりである。
 ラジカル重合性組成物の液比重は、付着性を良好とする観点から、1.01~1.15であることが好ましく、1.03~1.15であることがより好ましく、1.05~1.15であることが特に好ましい。液比重の測定方法は、実施例に記載されているとおりである。
 ラジカル重合性組成物の体積収縮率は、無機構造物のクラックへの注入後の接着性の観点から、好ましくは3~12%、より好ましくは4~11%、さらに好ましくは5~10%である。体積収縮率の測定方法は、実施例に記載されているとおりである。
 ラジカル重合性組成物の弾性率は、振動に対する耐久性の観点から、好ましくは1~900N/mm、より好ましくは3~600N/mm、さらに好ましくは5~200N/mmである。弾性率の測定方法は、実施例に記載されているとおりである。
<Physical property value of radical polymerizable composition>
The viscosity of the radically polymerizable composition is preferably 10 to 500 mPa · s / 25 ° C., more preferably 10 to 350 mPa · s / 25 ° C., more preferably from the viewpoint of ease of injection into the cracks of the inorganic structure. Is 10 to 250 mPa · s / 25 ° C. The measuring method of a viscosity is as having described in the Example.
The liquid specific gravity of the radically polymerizable composition is preferably 1.01 to 1.15, more preferably 1.03 to 1.15, and more preferably 1.05 to 1.15 from the viewpoint of improving adhesion. Particularly preferred is 1.15. The method for measuring the liquid specific gravity is as described in the examples.
The volume shrinkage of the radical polymerizable composition is preferably 3 to 12%, more preferably 4 to 11%, and still more preferably 5 to 10% from the viewpoint of adhesion after injection into the crack of the inorganic structure. is there. The method for measuring the volumetric shrinkage is as described in the examples.
The elastic modulus of the radical polymerizable composition is preferably 1 to 900 N / mm 2 , more preferably 3 to 600 N / mm 2 , and further preferably 5 to 200 N / mm 2 from the viewpoint of durability against vibration. The measuring method of the elastic modulus is as described in the examples.
<ラジカル重合性組成物の製造方法>
 各成分の混合順序は特に問わないが、効率よく均一混合物を得るための作業性の観点から、またラジカル重合性組成物としての液比重など、目標物性範囲に組成物を調整する際の作業性の観点から、(A)成分を合成後に(B)成分の一部を加えて混合し、(A)成分を低粘度化してから、残りの(B)成分とその他成分を加えて混合することが好ましい。あるいは、(A)成分の合成時に希釈剤として(B)成分の一部を使用し、(A)成分と一部(B)成分の混合物を得てから、残りの(B)成分とその他成分を加えて混合することが好ましい。低粘度化の際の(A)成分と一部(B)成分の混合割合(質量割合)は特に限定されないが、好ましくは95:5~20:80、より好ましくは85:15~30:70である。
 (A)成分と一部(B)成分の混合物の粘度としては、好ましくは100~2000mPa・s、より好ましくは100~1500mPa・s、さらに好ましくは100~1000mPa・sである。粘度の測定方法は、実施例に記載されているとおりである。あらかじめ上記範囲の粘度に調整しておけば、残りの成分を混合して本発明のラジカル重合性樹脂組成物とする際に、短時間で均一に混合することができる。
 (A)成分と一部(B)成分の混合物の液比重としては、好ましくは0.95~1.15、より好ましくは1.00~1.10である。上記範囲の液比重に調整することにより、残りの成分を混合して本発明のラジカル重合性樹脂組成物とする際に、(B)成分の種類や配合量を調節して、目標とする液比重に調整しやすくなる。
<Method for producing radically polymerizable composition>
The order of mixing the components is not particularly limited, but from the viewpoint of workability for efficiently obtaining a uniform mixture, and workability when adjusting the composition within the target physical property range such as liquid specific gravity as a radical polymerizable composition. From the viewpoint of (A), after synthesizing the component (A), a part of the component (B) is added and mixed. After the viscosity of the component (A) is reduced, the remaining component (B) and other components are added and mixed. Is preferred. Alternatively, a part of the component (B) is used as a diluent during the synthesis of the component (A) to obtain a mixture of the component (A) and a part of the component (B), and then the remaining component (B) and other components. It is preferable to add and mix. The mixing ratio (mass ratio) of the component (A) and the part (B) component at the time of lowering the viscosity is not particularly limited, but is preferably 95: 5 to 20:80, more preferably 85:15 to 30:70. It is.
The viscosity of the mixture of the component (A) and the component (B) is preferably 100 to 2000 mPa · s, more preferably 100 to 1500 mPa · s, and still more preferably 100 to 1000 mPa · s. The measuring method of a viscosity is as having described in the Example. If the viscosity is adjusted in the above range in advance, the remaining components can be mixed uniformly in a short time when the radical polymerizable resin composition of the present invention is mixed.
The liquid specific gravity of the mixture of component (A) and part (B) is preferably 0.95 to 1.15, more preferably 1.00 to 1.10. By adjusting the liquid specific gravity within the above range to mix the remaining components into the radical polymerizable resin composition of the present invention, the target liquid is adjusted by adjusting the type and amount of component (B). It becomes easy to adjust the specific gravity.
[構造物修復用注入剤]
 本発明のラジカル重合性樹脂組成物は、該ラジカル重合性樹脂組成物を含む構造物修復用注入剤として使用することが好ましい。
 構造物としては、例えば、コンクリート、アスファルトコンクリート、モルタル、木材、金属等の無機構造物が挙げられる。
 構造物修復用注入剤は、ラジカル重合性樹脂組成物のみから製造してもよいし、ラジカル重合性組成物に別途、骨材等の任意の添加剤を含有させてもよい。
 骨材としては、珪砂、シリカ、タルク、アルミナ、水酸化アルミニウム、炭酸カルシウム、アルミニウム、チタン等が挙げられ、これらの中でも、コストや材料入手の観点から、珪砂、シリカ、炭酸カルシウムが好ましい。
 なお、骨材を含有させた場合には、構造物修復用注入剤の浸透性が低減される場合があるため、本発明の構造物修復用注入剤は、骨材を含有しないことが好ましい。特に、構造物修復用注入剤を用いてクラック幅の狭いコンクリートの修復を行う場合は、骨材を含有した注入剤では浸透性が乏しく、修復対象物に付着し難くなるために、骨材を含有させなくても高比重である本発明の構造物修復用注入剤が特に好適に使用することができる。
 構造物修復用注入剤の液比重は、付着性を良好とする観点から、1.01~1.15であることが好ましく、1.03~1.15であることがより好ましく、1.05~1.15であることが特に好ましい。液比重の測定方法は、実施例に記載されているとおりである。
[Injection for structural repair]
The radical polymerizable resin composition of the present invention is preferably used as an injecting agent for repairing a structure containing the radical polymerizable resin composition.
Examples of the structure include inorganic structures such as concrete, asphalt concrete, mortar, wood, and metal.
The injecting agent for repairing a structure may be produced only from the radical polymerizable resin composition, or may contain an optional additive such as aggregate separately in the radical polymerizable composition.
Examples of the aggregate include silica sand, silica, talc, alumina, aluminum hydroxide, calcium carbonate, aluminum, and titanium. Among these, silica sand, silica, and calcium carbonate are preferable from the viewpoint of cost and material availability.
In addition, since the permeability of the injecting agent for structure repair may be reduced when the aggregate is contained, it is preferable that the injecting agent for structure repair of the present invention does not contain an aggregate. In particular, when repairing concrete with a narrow crack width using an injecting agent for structural restoration, an injecting agent containing aggregate is poorly permeable and difficult to adhere to the object to be repaired. Even if it is not contained, the injectable for repairing a structure of the present invention having a high specific gravity can be used particularly preferably.
The liquid specific gravity of the injecting agent for repairing a structure is preferably 1.01 to 1.15, more preferably 1.03 to 1.15, from the viewpoint of improving adhesion. It is particularly preferred that it is ˜1.15. The method for measuring the liquid specific gravity is as described in the examples.
 構造物の修復方法は、特に限定されないが、例えば、本発明の構造物修復用注入剤を、コンクリート、アスファルトコンクリート、モルタル、木材、金属等の修復箇所に塗布し、乾燥、硬化させることにより行うことができる。構造物修復用注入剤の塗布方法は、特に限定されないが、例えば、ディッピングによる塗布方法、スプレーによる塗布方法、ローラーによる塗布方法、ブラシ、刷毛やヘラ等の器具を用いた塗布方法等が適用できる。
 構造物修復用注入剤の塗布量は、特に限定されないが、修復箇所の大きさ、構造物修復用注入剤の密着性、該構造物修復用注入剤の硬化体の強度などを考慮して適宜調整する。
 構造物修復用注入剤を塗布した後の乾燥方法は、特に限定されないが、自然乾燥する方法、又は構造物修復用注入剤の硬化体の特性が劣化しない範囲で加熱する方法が用いられる。
The method for repairing the structure is not particularly limited. For example, the structure repairing injecting agent according to the present invention is applied to a repair site such as concrete, asphalt concrete, mortar, wood, metal, etc., and dried and cured. be able to. The method for applying the injecting agent for repairing a structure is not particularly limited. For example, a coating method by dipping, a spraying method, a roller coating method, a coating method using a tool such as a brush, a brush or a spatula can be applied. .
The application amount of the injecting agent for structure repair is not particularly limited, but is appropriately determined in consideration of the size of the repaired part, the adhesion of the injecting agent for repairing the structure, the strength of the cured product of the injecting agent for structure repair, and the like. adjust.
Although the drying method after apply | coating the injection for structure restoration is not specifically limited, The method of heating naturally and the method of heating in the range which the characteristic of the hardening body of the injection for structure restoration does not deteriorate are used.
 以下、実施例に基づいて本発明を説明するが、本発明は実施例により制限されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the examples.
<合成例>
 後述するとおり、以下の原料を用いて、(A)ラジカル重合性樹脂であるウレタン(メタ)アクリレート樹脂(UM1)~(UM8)を合成し、次いで(B)ラジカル重合性不飽和単量体の1種としてのメチルメタクリレート(三菱レイヨン(株)製)を混合して、(A)成分と(B)成分との混合物(U-1)~(U-8)を得た。
<Synthesis example>
As will be described later, (A) urethane (meth) acrylate resins (UM1) to (UM8), which are radical polymerizable resins, are synthesized using the following raw materials, and then (B) radical polymerizable unsaturated monomer. One kind of methyl methacrylate (manufactured by Mitsubishi Rayon Co., Ltd.) was mixed to obtain mixtures (U-1) to (U-8) of the components (A) and (B).
 ウレタン(メタ)アクリレート樹脂(UM1)~(UM8)の原料を以下に示す。
(多価アルコール)
(1)ポリプロピレングリコール1(重量平均分子量1000)、三井化学(株)製、製品名:アクトコールD-1000
(2)ポリプロピレングリコール2(重量平均分子量2000)、三井化学(株)製、製品名:アクトコールD-2000
(3)ポリエチレングリコール1(重量平均分子量600)、東邦化学工業(株)製、製品名:トーホーポリエチレングリコール600
(4)ポリエチレングリコール2(重量平均分子量1540)、東邦化学工業(株)製、製品名:トーホーポリエチレングリコール1540
(5)ポリエステルポリオール(重量平均分子量2000)、DIC(株)製、製品名:ポリライトOD-X-2420
(6)ポリオキシアルキレンビスフェノールAエーテル1(重量平均分子量800)、ADEKA(株)製、製品名:BPX-55
(7)ポリオキシアルキレンビスフェノールAエーテル2(重量平均分子量2000)、ADEKA(株)製、製品名:BPX-2000
(多価イソシアネート)
 ジフェニルメタンジイソシアネート
(水酸基含有(メタ)アクリレート)
 2-ヒドロキシエチルメタクリレート
 2-ヒドロキシプロピルメタクリレート
 次に、各合成例について具体的に説明する。
The raw materials for the urethane (meth) acrylate resins (UM1) to (UM8) are shown below.
(Polyhydric alcohol)
(1) Polypropylene glycol 1 (weight average molecular weight 1000), manufactured by Mitsui Chemicals, Inc., product name: Actcol D-1000
(2) Polypropylene glycol 2 (weight average molecular weight 2000), manufactured by Mitsui Chemicals, Inc., product name: Actcol D-2000
(3) Polyethylene glycol 1 (weight average molecular weight 600), manufactured by Toho Chemical Industry Co., Ltd., product name: Toho polyethylene glycol 600
(4) Polyethylene glycol 2 (weight average molecular weight 1540), manufactured by Toho Chemical Co., Ltd., product name: Toho polyethylene glycol 1540
(5) Polyester polyol (weight average molecular weight 2000), manufactured by DIC Corporation, product name: Polylite OD-X-2420
(6) Polyoxyalkylene bisphenol A ether 1 (weight average molecular weight 800), manufactured by ADEKA Corporation, product name: BPX-55
(7) Polyoxyalkylene bisphenol A ether 2 (weight average molecular weight 2000), manufactured by ADEKA Corporation, product name: BPX-2000
(Polyvalent isocyanate)
Diphenylmethane diisocyanate (hydroxyl group-containing (meth) acrylate)
2-Hydroxyethyl methacrylate 2-Hydroxypropyl methacrylate Next, each synthesis example will be described in detail.
 (合成例1)
 撹拌器、還流冷却管、気体導入管及び温度計を備えた3Lの4つ口フラスコに、ジフェニルメタンジイソシアネート:500g(2.0mol)、アクトコールD-1000(三井化学(株)製ポリプロピレングリコール1:重量平均分子量1000):500g(0.5mol)、トーホーポリエチレングリコール1540(東邦化学工業(株)製ポリエチレングリコール2:重量平均分子量1540):700g(0.5mol)、及びジブチル錫ジラウレート:0.2gを仕込み、60℃で4時間攪拌して反応させた。次いで、その反応物に、2-ヒドロキシエチルメタクリレート:260g(2.0mol)を2時間かけて滴下しながら撹拌し、滴下終了後5時間撹拌して反応させ、ウレタンメタクリレート樹脂(UM1)を得た。ウレタンメタクリレート樹脂(UM1)の製造に用いた原料を表1に示した。
 次いで、このウレタンメタクリレート樹脂(UM1)にメチルメタクリレート:850gを添加し、(A)成分と(B)成分との混合物(U-1)を得た。
 ウレタンメタクリレート樹脂(UM1)の重量平均分子量は、7300であった。また、混合物(U-1)の25℃での粘度が990mPa・sであり、液比重が1.08であった。
 重量平均分子量の測定には、ゲル・パーミエーション・クロマトグラフィー(昭和電工(株)製Shodex GPC-101)を用いた。重量平均分子量は、下記条件にて常温(23℃)で測定し、ポリスチレン換算にて算出した。
(測定条件)
 カラム:昭和電工(株)製LF-804、2本
 カラム温度:40℃
 試料:被測定物の0.4質量%テトラヒドロフラン溶液
 流量:1ml/分
 溶離液:テトラヒドロフラン
 また、粘度と液比重の測定条件については、後述する実施例の試料の測定条件と同様である。
(Synthesis Example 1)
In a 3 L four-necked flask equipped with a stirrer, a reflux condenser, a gas introduction tube and a thermometer, diphenylmethane diisocyanate: 500 g (2.0 mol), Actol D-1000 (polypropylene glycol 1: manufactured by Mitsui Chemicals, Inc.) Weight average molecular weight 1000): 500 g (0.5 mol), Toho Polyethylene Glycol 1540 (Toho Chemical Industries, Ltd. polyethylene glycol 2: Weight average molecular weight 1540): 700 g (0.5 mol), and Dibutyltin dilaurate: 0.2 g Was stirred and reacted at 60 ° C. for 4 hours. Subsequently, 260 g (2.0 mol) of 2-hydroxyethyl methacrylate was added dropwise to the reaction product over 2 hours, and the reaction product was stirred for 5 hours after completion of the addition to obtain a urethane methacrylate resin (UM1). . The raw materials used for the production of the urethane methacrylate resin (UM1) are shown in Table 1.
Next, 850 g of methyl methacrylate was added to this urethane methacrylate resin (UM1) to obtain a mixture (U-1) of the component (A) and the component (B).
The weight average molecular weight of the urethane methacrylate resin (UM1) was 7300. Further, the viscosity of the mixture (U-1) at 25 ° C. was 990 mPa · s, and the liquid specific gravity was 1.08.
For the measurement of the weight average molecular weight, gel permeation chromatography (Shodex GPC-101 manufactured by Showa Denko KK) was used. The weight average molecular weight was measured at normal temperature (23 ° C.) under the following conditions and calculated in terms of polystyrene.
(Measurement condition)
Column: Showa Denko LF-804, 2 Column temperature: 40 ° C
Sample: 0.4 mass% tetrahydrofuran solution of the object to be measured Flow rate: 1 ml / min Eluent: Tetrahydrofuran Further, the measurement conditions for the viscosity and liquid specific gravity are the same as those for the samples in the examples described later.
(合成例2~8)
 合成例2~8については、使用した原料を表1のとおり変更した以外は合成例1と同様にして合成を行い、ウレタンメタクリレート樹脂(UM2)~(UM8)を得た。また、表2に示すとおり、各ウレタンメタアクリレート樹脂(UM2)~(UM8)70質量部に対して、メチルメタクリレートを30質量部となるように添加して、混合物(U-2)~(U-8)を得た。ウレタンメタクリレート樹脂(UM2)~(UM8)の重量平均分子量を表1に示した。また、混合物(U-2)~(U-8)の液比重及び粘度の値を表2に示した。
(Synthesis Examples 2 to 8)
For Synthesis Examples 2 to 8, synthesis was performed in the same manner as in Synthesis Example 1 except that the raw materials used were changed as shown in Table 1, and urethane methacrylate resins (UM2) to (UM8) were obtained. Further, as shown in Table 2, methyl methacrylate was added to 70 parts by mass of each of the urethane methacrylate resins (UM2) to (UM8) so as to be 30 parts by mass, and the mixtures (U-2) to (U -8) was obtained. The weight average molecular weights of the urethane methacrylate resins (UM2) to (UM8) are shown in Table 1. The liquid specific gravity and viscosity values of the mixtures (U-2) to (U-8) are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例1~16>
 原料として、各合成例で得られた混合物(U-1)~(U-8)と、以下の(B)ラジカル重合性不飽和単量体、(C)アミン系硬化促進剤及び(D)硬化剤を用いた。
((B)ラジカル重合性不飽和単量体)
〔(b-1)成分〕
(1)エトキシビスフェノールAジメタクリレート(エチレンオキサイド付加モル数10)、新中村化学工業(株)製、製品名:NKエステル BPE-500
(2)メトキシポリエチレングリコールメタクリレート、日油(株)製:ブレンマーPME-400(エチレンオキサイド付加モル数9)
(3)フェノキシエチルメタクリレート(エチレンオキサイド付加モル数1)、共栄社化学(株)製、製品名:ライトエステルPO
(4)フェノキシエチルアクリレート(エチレンオキサイド付加モル数1)、共栄社化学(株)製、製品名:ライトアクリレートPO-A
〔(b-2)成分〕
(5)カプロラクトン変性(付加モル数1)ヒドロキシエチルメタクリレート、(株)ダイセル製、製品名:プラクセルFM1
 表3において、カプロラクトン変性(1mol)メタクリレートと表記した。
(6)カプロラクトン変性(付加モル数2)ヒドロキシエチルメタクリレート、(株)ダイセル製、製品名:プラクセルFM2D
 表3において、カプロラクトン変性(2mol)メタクリレートと表記した。
(7)カプロラクトン変性(付加モル数2)ヒドロキシエチルアクリレート、(株)ダイセル製、製品名:プラクセルFA2D
 表3において、カプロラクトン変性(2mol)アクリレートと表記した。
〔その他のラジカル重合性不飽和単量体〕
(8)ラウリルメタクリレート、共栄社化学(株)製、製品名:ライトエステルL
(9)2-エチルヘキシルメタクリレート、共栄社化学(株)製、製品名:ライトエステルEH 
(10)メチルメタクリレート、三菱レイヨン(株)製、製品名:アクリエステルM
<Examples 1 to 16>
As raw materials, the mixtures (U-1) to (U-8) obtained in each synthesis example, the following (B) radical polymerizable unsaturated monomer, (C) amine-based curing accelerator and (D) A curing agent was used.
((B) radical polymerizable unsaturated monomer)
[(B-1) component]
(1) Ethoxybisphenol A dimethacrylate (methylene oxide addition mole number 10), manufactured by Shin-Nakamura Chemical Co., Ltd., product name: NK ester BPE-500
(2) Methoxypolyethylene glycol methacrylate, manufactured by NOF Corporation: BLEMMER PME-400 (number of moles of ethylene oxide added 9)
(3) Phenoxyethyl methacrylate (number of moles of ethylene oxide added 1), manufactured by Kyoeisha Chemical Co., Ltd., product name: Light Ester PO
(4) Phenoxyethyl acrylate (1 mole added ethylene oxide), manufactured by Kyoeisha Chemical Co., Ltd., product name: Light acrylate PO-A
[(B-2) component]
(5) Caprolactone-modified (addition mole number 1) hydroxyethyl methacrylate, manufactured by Daicel Corporation, product name: Plaxel FM1
In Table 3, it was expressed as caprolactone-modified (1 mol) methacrylate.
(6) Caprolactone-modified (addition mole number 2) hydroxyethyl methacrylate, manufactured by Daicel Corporation, product name: Plaxel FM2D
In Table 3, it was expressed as caprolactone-modified (2 mol) methacrylate.
(7) Caprolactone-modified (added mole number 2) hydroxyethyl acrylate, manufactured by Daicel Corporation, product name: Plaxel FA2D
In Table 3, it was expressed as caprolactone-modified (2 mol) acrylate.
[Other radical polymerizable unsaturated monomers]
(8) Lauryl methacrylate, manufactured by Kyoeisha Chemical Co., Ltd., product name: Light Ester L
(9) 2-ethylhexyl methacrylate, manufactured by Kyoeisha Chemical Co., Ltd., product name: Light Ester EH
(10) Methyl methacrylate, manufactured by Mitsubishi Rayon Co., Ltd., product name: Acryester M
((C)アミン系硬化促進剤)
(1)N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、和光純薬工業(株)製、製品名:アクセルレーターA
(2)N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、モーリン化学工業(株)製、製品名:PT-2HE
((D)硬化剤)
ジベンゾイルパーオキサイド、化薬アクゾ(株)製、製品名:パーカドックスCH-50L
((C) amine curing accelerator)
(1) N, N-bis (2-hydroxyethyl) -p-toluidine, manufactured by Wako Pure Chemical Industries, Ltd., product name: Accelerator A
(2) N, N-bis (2-hydroxypropyl) -p-toluidine, manufactured by Morin Chemical Industry Co., Ltd., product name: PT-2HE
((D) curing agent)
Dibenzoyl peroxide, manufactured by Kayaku Akzo Co., Ltd., product name: Perkadox CH-50L
 合成例で得られた各混合物(U-1)~(U-8)に、必要に応じて表3に示す(B)ラジカル重合性不飽和単量体を添加して、(A)成分及び(B)成分からなる予備試料を得た。次いで、この予備試料100質量部、すなわち、(A)成分及び(B)成分の合計100質量部に対して、(C)アミン系硬化促進剤及び(D)硬化剤を、この順に表3に示す割合で加えて撹拌し、ラジカル重合性樹脂組成物を得た。
 表3中のメチルメタクリレートの欄には、上記の混合物(U-1)~(U-8)に予め含まれているメチルメタクリレート含有量と、必要に応じて添加した(B)ラジカル重合性不飽和単量体としてのメチルメタクリレート含有量とを合算して記載した。
 また、表3中の(A)ラジカル重合性樹脂の欄には、混合物(U-1)~(U-8)の製造に使用した原料の仕込み量から算出した(A)ラジカル重合性樹脂のみの含有量を記載した。(A)ラジカル重合性樹脂の含有量は、混合物(U-1)~(U-8)の製造に使用した原料が100%反応したとみなして算出した。
To each of the mixtures (U-1) to (U-8) obtained in the synthesis example, (B) a radical polymerizable unsaturated monomer shown in Table 3 is added as necessary, and the components (A) and A preliminary sample consisting of component (B) was obtained. Next, with respect to 100 parts by mass of this preliminary sample, that is, 100 parts by mass of the component (A) and the component (B), (C) amine-based curing accelerator and (D) curing agent are listed in Table 3 in this order. It added in the ratio shown and stirred, and the radically polymerizable resin composition was obtained.
In the column of methyl methacrylate in Table 3, the content of methyl methacrylate previously contained in the above mixtures (U-1) to (U-8) and (B) radical polymerizable non-polymerization added as necessary are listed. The methyl methacrylate content as a saturated monomer was added and described.
In the column of (A) radical polymerizable resin in Table 3, only (A) radical polymerizable resin calculated from the amount of raw materials used in the production of the mixtures (U-1) to (U-8) is shown. The content of was described. The content of the (A) radical polymerizable resin was calculated on the assumption that the raw materials used for the production of the mixtures (U-1) to (U-8) reacted 100%.
<比較例1~9>
 (b-1)成分及び(b-2)成分を含まないこと以外は、実施例と同様にして、ラジカル重合性樹脂組成物を得た。ラジカル重合性樹脂組成物の各成分の含有量を表3に示した。
 このようにして得られたラジカル重合性樹脂用組成物について、下記の方法により、粘度、液比重、体積収縮率、弾性率を測定し、評価した。その結果を表3に示す。
<Comparative Examples 1 to 9>
A radical polymerizable resin composition was obtained in the same manner as in the Example except that the component (b-1) and the component (b-2) were not included. Table 3 shows the content of each component of the radical polymerizable resin composition.
The radical polymerizable resin composition thus obtained was measured and evaluated for viscosity, liquid specific gravity, volume shrinkage, and elastic modulus by the following methods. The results are shown in Table 3.
<粘度測定>
 東機産業(株)製RE-85型粘度計、コーンプレート型、コーンロータ1°34’×R24を用いて、25℃環境下の粘度を回転数100rpmにて測定した。
<液比重測定>
 JIS K 7112-1999の附属書2「プラスチック-液状樹脂-水中置換法」に準じて、アルファーミラージュ(株)製電子比重計MD-200Sを用いて、23℃における液比重を測定した。
<体積収縮率>
 長さ×幅×厚み=40mm×40mm×3mmの試験体を、つぎのように作製した。すなわち、常温(23℃)環境下にてラジカル重合性樹脂組成物を、長さ×幅×厚み=200mm×200mm×3mmの型枠に注ぎ込み、試験体(固体)を作製した。その後、常温(23℃)環境下にて12時間養生後、80℃、3時間後硬化を行った。作成した試験体から、長さ×幅×厚み=40mm×40mm×3mmの試験体を切り出し、測定に用いた。 当該試験体を用い、JIS K 7112-1999の水中置換法に準じて、液比重測定の同試験機により、固体比重を測定した。固体比重測定は、各試験体について2回ずつ行った。そして、2回の測定結果の平均値を、体積収縮率の算出に使用した。JIS K 6901-2008記載の計算式を用いて体積収縮率を算出した。
<弾性率>
 ラジカル重合性樹脂組成物を次のようにして固体とした。すなわち、常温環境下にてラジカル重合性樹脂組成物を、長さ×幅×厚み=200mm×200mm×3mmの型枠に注ぎ込み、試験体(固体)を作製した。その後、常温環境下にて12時間養生後、80℃、3時間後硬化を行った。
 次いで、JIS K 7113-1995、2号試験片に準じて試験体を作製した。作製した試験体について、温度23℃、湿度50%の試験環境で、上記規格に準じて、インストロン製5900Rを用いて、つかみ間長120mm、試験速度50mm/分で試験を行った。弾性率の測定は、各試験体について3回ずつ行った。そして、3回の測定結果の平均値を、弾性率の評価に使用した。
<Viscosity measurement>
Using a RE-85 type viscometer manufactured by Toki Sangyo Co., Ltd., cone plate type, cone rotor 1 ° 34 ′ × R24, the viscosity under an environment of 25 ° C. was measured at a rotation speed of 100 rpm.
<Liquid specific gravity measurement>
Annex 2 of JIS K 7112 -1999 according to "Plastics - - Liquid Resin underwater substitution method", using an electronic densimeter MD-200S manufactured by Alpha Mirage Co., were measured liquid density at 23 ° C..
<Volume shrinkage>
A test piece of length × width × thickness = 40 mm × 40 mm × 3 mm was produced as follows. That is, the radical polymerizable resin composition was poured into a mold of length × width × thickness = 200 mm × 200 mm × 3 mm in a normal temperature (23 ° C.) environment to prepare a test body (solid). Then, after curing for 12 hours in a normal temperature (23 ° C.) environment, curing was performed at 80 ° C. for 3 hours. From the prepared specimen, a specimen of length × width × thickness = 40 mm × 40 mm × 3 mm was cut out and used for measurement. Using the specimen, in accordance with the underwater substitution method JIS K 7112 -1999, the same tester liquid density measurement was measured solid density. The solid specific gravity was measured twice for each specimen. And the average value of the measurement result of 2 times was used for calculation of volume shrinkage. The volumetric shrinkage was calculated using the calculation formula described in JIS K 6901 -2008 .
<Elastic modulus>
The radical polymerizable resin composition was made solid as follows. That is, the radical polymerizable resin composition was poured into a mold of length × width × thickness = 200 mm × 200 mm × 3 mm under a normal temperature environment to prepare a test body (solid). Then, after curing for 12 hours in a room temperature environment, post-curing was performed at 80 ° C. for 3 hours.
Then, JIS K 7113 -1995, to produce a test body in accordance with No. 2 test piece. The prepared specimen was tested in a test environment at a temperature of 23 ° C. and a humidity of 50% using an Instron 5900R at a grip length of 120 mm and a test speed of 50 mm / min. The elastic modulus was measured three times for each specimen. And the average value of the measurement result of 3 times was used for evaluation of an elasticity modulus.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3に示すように、オキシアルキレン構造を有するラジカル重合性不飽和単量体(b-1)及び/又はカプロラクトン開環構造を有するラジカル重合性不飽和単量体(b-2)を含有する本発明のラジカル重合性樹脂組成物は、高比重かつ低弾性率であることが分かった。
 特に、(b-1)成分と(b-2)成分の総量が多い実施例8及び10は、高比重と低弾性率が極めて良好であることが分かった。
 これに対し、オキシアルキレン構造を有するラジカル重合性不飽和単量体(b-1)及びカプロラクトン開環構造を有するラジカル重合性不飽和単量体(b-2)のいずれも含まない比較例1~9のラジカル重合性樹脂組成物は、実施例1~16の樹脂組成物と比較して、高比重と低弾性率化を両立できないことが分かった。
As shown in Table 3, it contains a radical polymerizable unsaturated monomer (b-1) having an oxyalkylene structure and / or a radical polymerizable unsaturated monomer (b-2) having a caprolactone ring-opening structure. The radical polymerizable resin composition of the present invention was found to have a high specific gravity and a low elastic modulus.
In particular, Examples 8 and 10 having a large total amount of the component (b-1) and the component (b-2) were found to have very good high specific gravity and low elastic modulus.
On the other hand, Comparative Example 1 containing neither the radically polymerizable unsaturated monomer (b-1) having an oxyalkylene structure nor the radically polymerizable unsaturated monomer (b-2) having a caprolactone ring-opening structure It was found that the radical polymerizable resin compositions of 9 to 9 cannot achieve both high specific gravity and low elastic modulus as compared with the resin compositions of Examples 1 to 16.
 本発明のラジカル重合性樹脂組成物及び構造物修復用注入剤は、高比重かつ低弾性率であるため、コンクリート構造物等のクラックの修復に好適に用いることができる。
 
Since the radical polymerizable resin composition and the structure repairing injecting agent of the present invention have a high specific gravity and a low elastic modulus, they can be suitably used for repairing cracks in concrete structures and the like.

Claims (10)

  1.  (A)ラジカル重合性樹脂と、
     (B)ラジカル重合性不飽和単量体と、
     (C)アミン系硬化促進剤と
    を含有し、(B)ラジカル重合性不飽和単量体が、オキシアルキレン構造を有するラジカル重合性不飽和単量体(b-1)及び/又はカプロラクトン開環構造を有するラジカル重合性不飽和単量体(b-2)を含有することを特徴とするラジカル重合性樹脂組成物。
    (A) a radical polymerizable resin;
    (B) a radically polymerizable unsaturated monomer;
    (C) an amine-based curing accelerator, and (B) the radical polymerizable unsaturated monomer (b-1) and / or caprolactone ring-opening having an oxyalkylene structure. A radical polymerizable resin composition comprising a radical polymerizable unsaturated monomer (b-2) having a structure.
  2.  前記(b-1)成分が、アルキレンオキサイド付加モル数1~30のポリアルキレンオキサイド(メタ)アクリレート構造を有する、請求項1に記載のラジカル重合性樹脂組成物。 The radical polymerizable resin composition according to claim 1, wherein the component (b-1) has a polyalkylene oxide (meth) acrylate structure having an alkylene oxide addition mole number of 1 to 30.
  3.  前記(b-2)成分が、カプロラクトン付加モル数1~5のポリカプロラクトン(メタ)アクリレート構造を有する、請求項1又は2に記載のラジカル重合性樹脂組成物。 3. The radical polymerizable resin composition according to claim 1, wherein the component (b-2) has a polycaprolactone (meth) acrylate structure having 1 to 5 moles of caprolactone added.
  4.  前記(b-1)成分及び(b-2)成分の合計量が、前記(B)成分中において20~95質量%である、請求項1~3のいずれかに記載のラジカル重合性樹脂組成物。 4. The radical polymerizable resin composition according to claim 1, wherein the total amount of the component (b-1) and the component (b-2) is 20 to 95% by mass in the component (B). object.
  5.  前記(A)成分が、ポリエステルポリオール、ポリエーテルポリオール、ポリオキシアルキレンビスフェノールAエーテルから選ばれるポリオール構造を含むウレタン(メタ)アクリレート樹脂である請求項1~4のいずれかに記載のラジカル重合性樹脂組成物。 The radical polymerizable resin according to any one of claims 1 to 4, wherein the component (A) is a urethane (meth) acrylate resin having a polyol structure selected from polyester polyol, polyether polyol, and polyoxyalkylene bisphenol A ether. Composition.
  6.  さらに(D)硬化剤を含有する、請求項1~5のいずれかに記載のラジカル重合性樹脂組成物。 The radical polymerizable resin composition according to claim 1, further comprising (D) a curing agent.
  7.  前記(b-1)成分と前記(b-2)成分の総量に対する前記(b-1)成分の含有量が、40~100質量%である、請求項1~6のいずれかに記載のラジカル重合性樹脂組成物。 The radical according to any one of claims 1 to 6, wherein the content of the component (b-1) with respect to the total amount of the component (b-1) and the component (b-2) is 40 to 100% by mass. Polymerizable resin composition.
  8.  前記ラジカル重合性樹脂(A)と前記ラジカル重合性不飽和単量体(B)の総量における前記ラジカル重合性樹脂(A)の含有量が、5~60質量%である、請求項1~7のいずれかに記載のラジカル重合性樹脂組成物。 The content of the radical polymerizable resin (A) in the total amount of the radical polymerizable resin (A) and the radical polymerizable unsaturated monomer (B) is 5 to 60% by mass. The radical polymerizable resin composition according to any one of the above.
  9.  ラジカル重合性組成物の粘度が、10~500mPa・s/25℃である、請求項1~8のいずれかに記載のラジカル重合性樹脂組成物。 9. The radical polymerizable resin composition according to claim 1, wherein the viscosity of the radical polymerizable composition is 10 to 500 mPa · s / 25 ° C.
  10.  請求項1~9のいずれかに記載のラジカル重合性樹脂組成物を含み、液比重が1.01~1.15である構造物修復用注入剤。 An injecting agent for repairing a structure comprising the radically polymerizable resin composition according to any one of claims 1 to 9, and having a liquid specific gravity of 1.01 to 1.15.
PCT/JP2018/001742 2017-01-23 2018-01-22 Radical polymerizable resin composition and injectable agent for structure repair WO2018135654A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880005429.6A CN110114378B (en) 2017-01-23 2018-01-22 Radical polymerizable resin composition and injection agent for repairing structure
JP2018562474A JP7033084B2 (en) 2017-01-23 2018-01-22 Radical Polymerizable Resin Compositions and Structure Repair Injectants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017009733 2017-01-23
JP2017-009733 2017-01-23

Publications (1)

Publication Number Publication Date
WO2018135654A1 true WO2018135654A1 (en) 2018-07-26

Family

ID=62908938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001742 WO2018135654A1 (en) 2017-01-23 2018-01-22 Radical polymerizable resin composition and injectable agent for structure repair

Country Status (4)

Country Link
JP (1) JP7033084B2 (en)
CN (1) CN110114378B (en)
TW (1) TWI660974B (en)
WO (1) WO2018135654A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109504051A (en) * 2018-11-30 2019-03-22 河南建筑材料研究设计院有限责任公司 It is a kind of for concrete and the pad pasting of Cement Mortar Used in Capital and preparation method thereof
JP2020026482A (en) * 2018-08-10 2020-02-20 デンカ株式会社 Structure repair method using curable composition, and structure repaired therewith
WO2024085392A1 (en) * 2022-10-21 2024-04-25 주식회사 실크로드시앤티 Concrete additive comprising polycarboxylate ether-based copolymer compound prepared by reaction of different macromonomers and concrete chemical admixture comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230009915A (en) * 2020-07-31 2023-01-17 쇼와 덴코 가부시키가이샤 Resin composition, conduit repair material and conduit repair method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188357A (en) * 1992-12-09 1995-07-25 Teruo Sugawara Repairing material and method for repairing asphalt structure
JPH09235888A (en) * 1995-12-27 1997-09-09 Sanyu Resin Kk Resin composition for injection, and injection method
JPH09302053A (en) * 1996-05-14 1997-11-25 Denki Kagaku Kogyo Kk Cold-setting acrylic repair material for civil engineering and construction
JP2000007405A (en) * 1998-06-23 2000-01-11 Takemoto Oil & Fat Co Ltd Hardenable polymer mortar or concrete composition and hardened body obtained by hardening same
JP2002234921A (en) * 2001-02-13 2002-08-23 Mitsubishi Rayon Co Ltd Odor-less acrylic syrup composition
JP2010198719A (en) * 2008-12-02 2010-09-09 Nippon Shokubai Co Ltd Curable resin composition for optical disk
JP2011173981A (en) * 2010-02-24 2011-09-08 Nippon Shokubai Co Ltd Curable resin composition for optical recording medium, cured product and optical recording medium
JP2015048459A (en) * 2013-09-04 2015-03-16 Dic株式会社 Radically polymerizable resin composition and civil engineering building material
JP2017214441A (en) * 2016-05-30 2017-12-07 昭和電工株式会社 Resin composition, crack injection material, and crack repair method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064610A1 (en) * 2008-12-02 2010-06-10 株式会社日本触媒 Curable resin composition for optical disk, and optical disk
JP5003854B2 (en) * 2010-11-19 2012-08-15 Dic株式会社 Radical curable resin composition, coating material using the same, civil engineering building structure, and construction method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188357A (en) * 1992-12-09 1995-07-25 Teruo Sugawara Repairing material and method for repairing asphalt structure
JPH09235888A (en) * 1995-12-27 1997-09-09 Sanyu Resin Kk Resin composition for injection, and injection method
JPH09302053A (en) * 1996-05-14 1997-11-25 Denki Kagaku Kogyo Kk Cold-setting acrylic repair material for civil engineering and construction
JP2000007405A (en) * 1998-06-23 2000-01-11 Takemoto Oil & Fat Co Ltd Hardenable polymer mortar or concrete composition and hardened body obtained by hardening same
JP2002234921A (en) * 2001-02-13 2002-08-23 Mitsubishi Rayon Co Ltd Odor-less acrylic syrup composition
JP2010198719A (en) * 2008-12-02 2010-09-09 Nippon Shokubai Co Ltd Curable resin composition for optical disk
JP2011173981A (en) * 2010-02-24 2011-09-08 Nippon Shokubai Co Ltd Curable resin composition for optical recording medium, cured product and optical recording medium
JP2015048459A (en) * 2013-09-04 2015-03-16 Dic株式会社 Radically polymerizable resin composition and civil engineering building material
JP2017214441A (en) * 2016-05-30 2017-12-07 昭和電工株式会社 Resin composition, crack injection material, and crack repair method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026482A (en) * 2018-08-10 2020-02-20 デンカ株式会社 Structure repair method using curable composition, and structure repaired therewith
CN109504051A (en) * 2018-11-30 2019-03-22 河南建筑材料研究设计院有限责任公司 It is a kind of for concrete and the pad pasting of Cement Mortar Used in Capital and preparation method thereof
WO2024085392A1 (en) * 2022-10-21 2024-04-25 주식회사 실크로드시앤티 Concrete additive comprising polycarboxylate ether-based copolymer compound prepared by reaction of different macromonomers and concrete chemical admixture comprising same

Also Published As

Publication number Publication date
CN110114378A (en) 2019-08-09
CN110114378B (en) 2022-08-02
JP7033084B2 (en) 2022-03-09
JPWO2018135654A1 (en) 2019-11-07
TWI660974B (en) 2019-06-01
TW201829501A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
RU2702687C2 (en) Repair material for profile recovery, capable of hardening at low temperatures, as well as method of reducing profile using such material
JP7164522B2 (en) Radically polymerizable resin composition and structural repair material
WO2018135654A1 (en) Radical polymerizable resin composition and injectable agent for structure repair
JP2008156645A (en) Two-component thermosetting resin and use thereof
TWI593729B (en) Radical polymerizable aqueous resin composition, hardening method, and method for producing a radical polymerizable aqueous resin composition
KR20210113601A (en) curable resin composition
JP5131156B2 (en) Radical polymerizable resin composition
JP2003268054A (en) Free radical curing resin composition and civil engineering building material using the same
CN112752775A (en) Radical polymerizable resin composition and structural repair material
JP4086641B2 (en) Curable composition
JP2005146105A (en) Radical-polymerizable resin composition
JP2005015642A (en) Radically polymerizable resin composition
JP7358940B2 (en) thermosetting resin composition
JP4320590B2 (en) Radical polymerizable resin composition
WO2022264761A1 (en) Radically polymerizable resin composition
JP4873212B2 (en) Resin composition for pipe lining material and pipe lining material using the same
JP2005146205A (en) Covering material, covering material for civil engineering and construction industry and paint for wood working
JP2024082896A (en) Radical-polymerizable resin composition, adhesive and bonding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018562474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18742077

Country of ref document: EP

Kind code of ref document: A1