[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018124790A2 - 열가소성 수지 조성물 및 이를 이용한 성형품 - Google Patents

열가소성 수지 조성물 및 이를 이용한 성형품 Download PDF

Info

Publication number
WO2018124790A2
WO2018124790A2 PCT/KR2017/015690 KR2017015690W WO2018124790A2 WO 2018124790 A2 WO2018124790 A2 WO 2018124790A2 KR 2017015690 W KR2017015690 W KR 2017015690W WO 2018124790 A2 WO2018124790 A2 WO 2018124790A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight
acrylonitrile
copolymer
compound
mol
Prior art date
Application number
PCT/KR2017/015690
Other languages
English (en)
French (fr)
Other versions
WO2018124790A3 (ko
Inventor
김명훈
권기혜
박정은
Original Assignee
롯데첨단소재(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데첨단소재(주) filed Critical 롯데첨단소재(주)
Priority to EP17886494.8A priority Critical patent/EP3564314A4/en
Publication of WO2018124790A2 publication Critical patent/WO2018124790A2/ko
Publication of WO2018124790A3 publication Critical patent/WO2018124790A3/ko
Priority to US16/456,376 priority patent/US11124647B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/66Substances characterised by their function in the composition
    • C08L2666/84Flame-proofing or flame-retarding additives

Definitions

  • thermoplastic resin composition and a molded article using the same.
  • Polycarbonate is one of engineering plastics and is widely used in the plastics industry.
  • Polycarbonate has a glass transition temperature (Tg) of about 150 ° C. due to a bulky molecular structure such as bisphenol-A, and thus exhibits high heat resistance.
  • Tg glass transition temperature
  • the carbonyl group of the carbonate group has high rotational motility, thereby providing flexibility and rigidity to the polycarbonate.
  • the amorphous polymer has excellent transparency.
  • polycarbonate resin has a disadvantage in that it is inferior in fluidity, so it is also used in the form of alloys with various resins to compensate for workability and post processing. do.
  • PC / ABS polycarbonate / acrylonitrile-butadiene-styrene copolymer
  • an impact modifier in the form of a crosslinked rubber particle such as ABS and methyl methacrylate butadiene-styrene copolymer (MBS) is added to improve impact resistance while additionally adding a flame retardant to the flame retardancy lowered. How to reinforce this is being tried.
  • the content of the impact modifier increases, too much flame retardant is required, and as a result, there is a concern that a decrease in heat resistance occurs.
  • thermoplastic resin composition that can be secured at the same time impact resistance, moldability and flame resistance compared to the existing PC / ABS alloy.
  • thermoplastic resin composition excellent in impact resistance, moldability and flame retardancy, and a molded article using the same.
  • the first acrylonitrile-butadiene-styrene graft having an average particle diameter of (A-1) polycarbonate resin and (A-2) (A-2-1) rubbery polymer is 200 nm to 400 nm.
  • Acrylonitrile-butadiene-styrene graft copolymer comprising a second acrylonitrile-butadiene-styrene graft copolymer having an average particle diameter of the copolymer and the (A-2-2) rubbery polymer, 400 nm to 600 nm, And (A-3) 100 parts by weight of a base resin comprising an aromatic vinyl compound-vinyl cyanide compound copolymer resin; (B) 1 to 10 parts by weight of the crosslinked styrene-acrylonitrile copolymer; And (C) 5 to 15 parts by weight of the flame retardant is provided a thermoplastic resin composition.
  • thermoplastic resin composition is based on (A) 100% by weight of the base resin, 55 to 75% by weight of the (A-1) polycarbonate resin, the (A-2) acrylonitrile-butadiene-styrene graft copolymer 20 to 35% by weight of the resin, and the (A-3) aromatic vinyl compound-vinyl cyanide compound copolymer resin may be included in 10% by weight or less.
  • the polycarbonate resin (A-1) may be composed of (A-1-1) first polycarbonate resin and (A-1-2) second polycarbonate resin having different weight average molecular weights.
  • the (A-1-1) first polycarbonate resin may have a weight average molecular weight of 32,000 g / mol to 38,000 g / mol.
  • the (A-1-2) second polycarbonate resin may have a weight average molecular weight of 24,000 g / mol to 30,000 g / mol.
  • the thermoplastic resin composition may include 30 to 70 wt% of the (A-1-1) first carbonate resin, based on 100 wt% of the (A) base resin, and (A-1-2) the second carbonate
  • the resin may comprise 0 to 40% by weight.
  • the thermoplastic resin composition includes 10 to 15 wt% of the (A-2-1) first acrylonitrile-butadiene-styrene graft copolymer based on 100 wt% of the (A) base resin, A-2-2) 14 to 19% by weight of the second acrylonitrile-butadiene-styrene graft copolymer.
  • the (A-2-1) first acrylonitrile-butadiene-styrene graft copolymer and the (A-2-2) second acrylonitrile-butadiene-styrene graft copolymer may each have a core-shell structure. Can be.
  • the core is made of butadiene
  • the shell may be made of a copolymer of acrylonitrile and styrene.
  • the (A-3) vinyl compound-vinyl cyanide compound copolymer may have a weight average molecular weight of 320,000 g / mol to 420,000 g / mol.
  • the aromatic vinyl compound may be selected from the group consisting of styrene, ⁇ -methyl styrene, and combinations thereof unsubstituted or substituted with halogen or C1 to C10 alkyl group. Can be.
  • the vinyl cyanide compound may be selected from the group consisting of acrylonitrile, methacrylonitrile, fumaronitrile and combinations thereof.
  • the (A-3) aromatic vinyl compound-vinyl cyanide compound copolymer may be a styrene-acrylonitrile copolymer (SAN).
  • the (B) crosslinked styrene-acrylonitrile copolymer may have a weight average molecular weight of 3,000,000 g / mol to 7,000,000 g / mol.
  • the (C) flame retardant is a phosphate compound, a phosphite compound, a phosphonate compound, a polysiloxane, a phosphazene compound, a phosphinate compound or a melamine compound and a combination thereof It may be selected from the group consisting of.
  • thermoplastic resin composition a molded article using a thermoplastic resin composition according to one embodiment may be provided.
  • thermoplastic resin composition which can be usefully applied as a finishing material, and a molded article prepared therefrom.
  • At least one hydrogen in the compound is a C1 to C30 alkyl group; C1 to C10 alkylsilyl group; C3 to C30 cycloalkyl group; C6 to C30 aryl group; C2 to C30 heteroaryl group; C1 to C10 alkoxy group; C1-C10 trifluoroalkyl groups, such as a fluoro group and a trifluoromethyl group; Or cyano group.
  • hetero means one to three heteroatoms selected from the group consisting of N, O, S, and P in one compound or substituent, and the remainder is carbon unless otherwise defined. do.
  • an "alkyl group” means a “saturated alkyl group” that does not include any alkene or alkyne; Or “unsaturated alkyl group” containing at least one alkene group or alkyne group.
  • the "alkene group” refers to a substituent in which at least two carbon atoms form at least one carbon-carbon double bond
  • the “alkyne group” refers to a substituent in which at least two carbon atoms form at least one carbon-carbon triple bond. it means.
  • the alkyl group may be branched, straight chain or cyclic.
  • the alkyl group may be a C1 to C20 alkyl group, specifically, may be a C1 to C6 lower alkyl group, a C7 to C10 intermediate alkyl group, C11 to C20 higher alkyl group.
  • Aromatic means a compound in which all elements of the cyclic substituent have p-orbitals, and these p-orbitals form conjugation. Specific examples include an aryl group and a heteroaryl group.
  • aryl group includes a monocyclic or fused ring (ie, a plurality of rings sharing adjacent pairs of carbon atoms) substituents.
  • Heteroaryl group means one to three hetero atoms selected from the group consisting of N, O, S and P in the aryl group, and the rest is carbon. When the heteroaryl group is a fused ring, each ring may include 1 to 3 heteroatoms.
  • (meth) acrylate means acrylate or methacrylate.
  • (meth) acrylic acid alkyl ester means acrylic acid alkyl ester or methacrylic acid alkyl ester, and (meth) acrylic acid ester means acrylic acid ester or methacrylic acid ester.
  • copolymerization may mean block copolymerization, random copolymerization, graft copolymerization or alternating copolymerization
  • copolymer means block copolymer, random copolymer, graft copolymer or alternating copolymer Can mean coalescence.
  • the first acrylonitrile-butadiene-styrene graft having an average particle diameter of (A-1) polycarbonate resin and (A-2) (A-2-1) rubbery polymer is 200 nm to 400 nm.
  • Acrylonitrile-butadiene-styrene graft copolymer comprising a second acrylonitrile-butadiene-styrene graft copolymer having an average particle diameter of the copolymer and the (A-2-2) rubbery polymer, 400 nm to 600 nm, And (A-3) 100 parts by weight of a base resin comprising an aromatic vinyl compound-vinyl cyanide compound copolymer; (B) 1 to 10 parts by weight of the crosslinked styrene-acrylonitrile copolymer; And (C) 5 to 15 parts by weight of a flame retardant.
  • a thermoplastic resin composition is provided.
  • thermoplastic resin composition is demonstrated concretely.
  • the polycarbonate resin is a polyester having a carbonate bond, and the kind thereof is not particularly limited, and any polycarbonate resin available in the resin composition field may be used.
  • it may be prepared by reacting a compound selected from the group consisting of diphenols represented by the following formula (1) with phosgene, halogen acid ester, carbonate ester and combinations thereof.
  • A is a single bond, a substituted or unsubstituted C1 to C30 alkylene group, a substituted or unsubstituted C2 to C5 alkenylene group, a substituted or unsubstituted C2 to C5 alkylidene group, a substituted or unsubstituted C1 to C30 haloalkyl Benzene group, substituted or unsubstituted C5 to C6 cycloalkylene group, substituted or unsubstituted C5 to C6 cycloalkenylene group, substituted or unsubstituted C5 to C10 cycloalkylidene group, substituted or unsubstituted C6 to C30 arylene group , A substituted or unsubstituted C1 to C20 alkoxylene group, a halogen acid ester group, a carbonate ester group, a linking group selected from the group consisting of CO, S and SO2, R1 and R2 are each independently
  • the diphenols represented by the formula (1) may combine two or more kinds to constitute a repeating unit of the polycarbonate resin.
  • diphenols include hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane (also called 'bisphenol-A'), 2, 4-bis (4-hydroxyphenyl) -2-methylbutane, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (3-chloro 4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2 Bis (3,5-dichloro-4-hydroxyphenyl) propane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfoxide, Bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) ether, etc.
  • diphenols preferably 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5- Dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane or 1,1-bis (4-hydroxyphenyl) cyclohexane can be used. More preferably 2,2-bis (4-hydroxyphenyl) propane can be used.
  • the polycarbonate resin may be a mixture of copolymers prepared from two or more diphenols.
  • polycarbonate resin a linear polycarbonate resin, a branched polycarbonate resin, a polyester carbonate copolymer resin, or the like may be used.
  • linear polycarbonate resin may be bisphenol-A polycarbonate resin.
  • branched polycarbonate resin may be a resin prepared by reacting a polyfunctional aromatic compound such as trimellitic anhydride, trimellitic acid, and the like with diphenols and carbonates.
  • the polyester carbonate copolymer resin may be prepared by reacting a difunctional carboxylic acid with diphenols and carbonates, and the carbonate used herein may be a diaryl carbonate such as diphenyl carbonate or ethylene carbonate.
  • the polycarbonate resin having a weight average molecular weight of 10,000 g / mol to 200,000 g / mol it is effective to use, for example, 14,000 g / mol to 40,000 g / mol.
  • the weight average molecular weight of the polycarbonate resin is in the above range, excellent impact resistance and fluidity can be obtained.
  • two or more kinds of polycarbonate resins having different weight average molecular weights may be mixed to meet desired fluidity.
  • the polycarbonate resin is based on 100% by weight of the base resin, for example 50% to 90% by weight, for example 55% to 85% by weight, for example 55% to 80% by weight, for example 55 Weight percent to 75 weight percent, such as 60 weight percent to 75 weight percent, such as 60 weight percent to 75 weight percent, for example 60 weight percent to 70 weight percent.
  • the polycarbonate resin is less than 50% by weight, the appearance characteristics are not good, and when the polycarbonate resin is more than 90% by weight may lower the mechanical strength.
  • the polycarbonate resin may be made of, for example, a first polycarbonate resin (A-1-1) and a second polycarbonate resin (A-1-2) having different weight average molecular weights.
  • the weight average molecular weight of the first polycarbonate resin may have a value greater than the weight average molecular weight of the second polycarbonate resin.
  • the first polycarbonate resin (A-1-1) may be, for example, 30 wt% to 75 wt%, for example 30 wt% to 70 wt%, 32 wt% to 68 wt%, based on 100 wt% of the base resin. % May be included.
  • the first polycarbonate resin (A-1-1) is for example 30,000 g / mol to 50,000 g / mol, for example 30,000 g / mol to 48,000 g / mol, for example 30,000 g / mol to 46,000 g / mol, for example 30,000 g / mol to 44,000 g / mol, for example 30,000 g / mol to 46,000 g / mol, for example 30,000 g / mol to 44,000 g / mol, for example 30,000 g / mol to 42,000 g / mol, for example 30,000 g / mol to 40,000 g / mol, for example 32,000 g / mol to 40,000 g / mol, for example 32,000 g / mol to 38,000 g / mol, for example 34,000 g / mol to 36,000 g / mol.
  • the second polycarbonate resin (A-1-2) is for example 20,000 g / mol to 30,000 g / mol, for example 22,000 g / mol to 30,000 g / mol, for example 24,000 g / mol to 30,000 g / mol, for example 24,000 g / mol to 28,000 g / mol, for example 26,000 g / mol to 28,000 g / mol.
  • the second polycarbonate resin (A-1-2) may be included, for example, 50 wt% or less, for example 45 wt% or less, for example 40 wt% or less, based on 100 wt% of the base resin.
  • the weight average molecular weight and content of the first and second polycarbonate resins are within the above ranges, excellent impact resistance and fluidity can be obtained.
  • the polycarbonate resin may satisfy the desired fluidity by mixing and using the first and second polycarbonates each having the weight average molecular weight within the above range.
  • the acrylonitrile-butadiene-styrene graft copolymer is a core in which a butadiene-based rubbery polymer component is formed and a core is formed by graft-polymerizing acrylonitrile and styrene around the core. It may have a core-chell structure.
  • the rubbery polymer component constituting the core improves the impact strength, especially at low temperatures, and the shell component is located at the interface of the continuous phase, e.g., aromatic vinyl compound-vinyl cyanide compound copolymer and rubbery polymer to lower the interfacial tension and thus the dispersed phase.
  • the rubbery polymer particle size can be made small while the adhesion at the interface can be improved.
  • the acrylonitrile-butadiene-styrene graft copolymer is a first acrylonitrile-butadiene-styrene graft copolymer (A-2-1) having a different average particle diameter of a rubbery polymer, and a second acrylonitrile-butadiene Styrene graft copolymer (A-2-2).
  • the average size of the population by quantifying the particle size by the measurement method, but it is used universally and corresponds to the mode diameter indicating the maximum value of the distribution and the median value of the integral distribution curve.
  • the acrylonitrile-butadiene-styrene graft copolymer may be prepared by adding styrene and acrylonitrile to a butadiene-based rubbery polymer and graft copolymerization through conventional polymerization methods such as emulsion polymerization and bulk polymerization.
  • the first acrylonitrile-butadiene-styrene graft copolymer (A-2-1) has an average particle diameter of, for example, 200 nm to 400 nm, for example 200 nm to 350 nm, for example 250 nm. To 350 nm.
  • the first acrylonitrile-butadiene-styrene graft copolymer (A-2-1) is, for example, from 8% to 18% by weight, for example from 10% to 18% by weight, based on 100% by weight of the base resin. %, For example 10% to 15% by weight, for example 11% to 13% by weight.
  • the first acrylonitrile-butadiene-styrene graft copolymer (A-2-2) is included in less than 10% by weight of the base resin, the impact resistance and the extrudability of the thermoplastic resin composition may be deteriorated. When it is included in an amount greater than% by weight, the heat resistance and flame retardancy of the thermoplastic resin composition may be lowered.
  • the second acrylonitrile-butadiene-styrene graft copolymer (A-2-2) has an average particle diameter of, for example, 350 nm to 650 nm, for example 400 nm to 600 nm, for example 450 nm. To 550 nm.
  • the second acrylonitrile-butadiene-styrene graft copolymer (A-2-2) is, for example, from 8% to 18% by weight, for example from 10% to 18% by weight, based on 100% by weight of the base resin. %, For example 10% to 15% by weight, for example 11% to 13% by weight.
  • the second acrylonitrile-butadiene-styrene graft copolymer (A-2-2) is included in less than 8% by weight of the base resin, the impact resistance and the extrudability of the thermoplastic resin composition may be deteriorated. When it is included in an amount greater than% by weight, the heat resistance and flame retardancy of the thermoplastic resin composition may be lowered.
  • the acrylonitrile-butadiene-styrene graft copolymer (A-2) has a first acrylonitrile-butadiene-styrene graft copolymer (A-2-1) as the second acrylonitrile- It may contain the same as or more than butadiene-styrene graft copolymer (A-2-2).
  • the first acrylonitrile-butadiene-styrene graft copolymer (A-2-1) and the second acrylonitrile-butadiene-styrene graft copolymer (A-2-2) are 1: 1 to It may have a weight ratio of 1: 1.5, for example, may have a weight ratio of 1: 1 to 1: 1.4, for example 1: 1 to 1: 1.3.
  • thermoplastic resin having excellent impact resistance, flame retardancy, and extrusion moldability can be provided.
  • An aromatic vinyl compound-vinyl cyanide compound copolymer is formed by copolymerizing a vinyl cyanide compound and an aromatic vinyl compound.
  • the vinyl cyanide compound may be selected from the group consisting of acrylonitrile, methacrylonitrile, fumaronitrile, and combinations thereof.
  • the aromatic vinyl compound may be selected from the group consisting of styrene, ⁇ -methyl styrene, and combinations thereof unsubstituted or substituted with halogen or C1 to C10 alkyl groups.
  • the vinyl cyanide compound-aromatic vinyl compound copolymer may be a styrene-acrylonitrile copolymer (SAN).
  • the thermoplastic resin composition according to one embodiment may include 50 to 90 parts by weight of the aromatic vinyl compound and 10 to 50 parts by weight of the vinyl cyanide compound based on 100 parts by weight of the aromatic vinyl compound-vinyl cyanide compound copolymer resin.
  • the aromatic vinyl compound-vinyl cyanide compound copolymer resin may be 100,000 g / mol to 600,000 g / mol, for example 150,000 g / mol to 600,000 g / mol, for example 200,000 g / mol to 600,000 g / mol, for example It may have a weight average molecular weight of 220,000 g / mol to 600,000 g / mol, for example 260,000 g / mol to 560,000 g / mol, for example 300,000 g / mol to 420,000 g / mol.
  • the aromatic vinyl compound-vinyl cyanide compound copolymer resin is more than 0 and 15 wt% or less, for example, more than 0 and 14 wt% or less, such as more than 0 and 13 wt%, based on 100 wt% of the base resin. Or less than, for example, greater than 0 and 12 wt% or less, for example, greater than 0 and 11 wt% or less, such as greater than 0 and 10 wt% or less, such as greater than 0 and 9 wt% or less.
  • the crosslinked styrene-acrylonitrile copolymer may be a material having styrene-acrylonitrile copolymer having ultra high molecular weight by forming a crosslinked bond.
  • the crosslinked styrene-acrylonitrile copolymer can improve the compatibility between the polycarbonate resin and the acrylonitrile-butadiene-styrene graft copolymer. Through this, it is possible to provide a thermoplastic resin with enhanced extrudability.
  • the crosslinked styrene-acrylonitrile copolymer can be, for example, 1,000,000 g / mol to 9,000,000 g / mol, for example 2,000,000 g / mol to 8,000,000 g / mol, for example 3,000,000 g / mol to 7,000,000 g / mol, For example, it may have a weight average molecular weight of 3,000,000 g / mol to 10,000,000 g / mol, for example 4,000,000 g / mol to 6,000,000 g / mol.
  • the compatibility between the polycarbonate resin and the acrylonitrile-butadiene-styrene graft copolymer may be lowered, thereby lowering the extrudability. have.
  • the crosslinked styrene-acrylonitrile copolymer may be, for example, 20 parts by weight or less, for example, greater than 0 and 18 parts by weight or less, for example, greater than 0 and 15 parts by weight or less, such as 0, based on 100 parts by weight of the base resin. Greater than 12 parts by weight or less, such as greater than 0 and 10 parts by weight or less, such as 1 part by weight to 10 parts by weight, for example 1 part by weight to 8 parts by weight, for example 1 part by weight to 5 parts by weight. have.
  • the compatibility between the polycarbonate resin and the acrylonitrile-butadiene-styrene graft copolymer is improved, thereby extruding the thermoplastic resin according to one embodiment. Sex can be improved.
  • the flame retardant is a material for reducing combustibility
  • the flame retardant according to an embodiment is a phosphorus-based flame retardant, a phosphate compound, a phosphite compound, a phosphonate compound, a polysiloxane, a phosphazene compound, It may include at least one of a phosphinate compound or a melamine compound.
  • Such phosphorus-based flame retardants exhibit excellent flame retardant effects in the reaction of solid phase, and are particularly effective for plastics containing a large amount of oxygen.
  • the flame retardant examples include monomolecular phosphorus compounds such as triphenylphosphate and resorcinol bisphenol phosphate, polyphosphonates, and polymerized phosphorus flame retardants, and combinations thereof.
  • monomolecular phosphorus compounds such as triphenylphosphate and resorcinol bisphenol phosphate
  • polyphosphonates such as triphenylphosphate and resorcinol bisphenol phosphate
  • polymerized phosphorus flame retardants examples include combinations thereof.
  • a monomolecular phosphorus-based flame retardant it is possible to secure flame retardancy conveniently.
  • a polyphosphonate flame retardant in the form of polymer it is possible to secure excellent flame retardancy and mechanical properties, but does not volatilize during molding and is highly compatible with the base resin. It can represent sex.
  • one embodiment is not limited thereto, and may be used as a flame retardant by further mixing any one or more of a halogen-based flame retardant, an inorganic flame retardant, and a polymer flame retardant in addition to the phosphorus flame retardant according to the content of the base resin and the specific use of the thermoplastic resin.
  • the flame retardant is, for example, 20 parts by weight or less, for example, more than 0 and 18 parts by weight or less, for example, 1 part by weight to 18 parts by weight, such as 3 parts by weight to 18 parts by weight, based on 100 parts by weight of the base resin, For example, 3 parts by weight to 15 parts by weight, for example, 5 parts by weight to 15 parts by weight, for example, 7 parts by weight to 12 parts by weight may be included.
  • the content of the flame retardant is within the above range, it is possible to meet the heat resistance level required for the thermoplastic resin, for example, about 85 ° C., and to reinforce the flame retardancy of the thermoplastic resin while minimizing degradation of other physical properties.
  • the thermoplastic resin composition may further include an additive optionally according to its use.
  • the additive may further include a lubricant, a plasticizer, a heat stabilizer, an antioxidant, a light stabilizer or a colorant, and may be used by mixing two or more kinds according to the properties of the final molded product.
  • the lubricant is a material that helps the flow or movement of the resin composition by lubricating the metal surface in contact with the polycarbonate resin composition during processing / molding / extrusion, may be used a commonly used material.
  • the plasticizer is a material that increases the flexibility, processing workability, or expandability of the thermoplastic resin composition, and a material commonly used may be used.
  • the heat stabilizer is a material that suppresses thermal decomposition of the thermoplastic resin composition when kneading or molding at a high temperature, a material commonly used may be used.
  • the antioxidant is a substance which prevents decomposition of the resin composition and loss of intrinsic properties by inhibiting or blocking a chemical reaction between the thermoplastic resin composition and oxygen, and among the phenol type, phosphite type, thioether type or amine type antioxidants It may include at least one, but is not limited thereto.
  • the light stabilizer is a substance which inhibits or blocks the decomposition of the thermoplastic resin composition from ultraviolet rays and changes color or loss of mechanical properties, and preferably at least one of a hindered phenol type, a benzophenone type or a benzotriazole type light stabilizer. It may include, but is not limited thereto.
  • the colorant may be used conventional pigments or dyes.
  • the additive may be included in an amount of 1 to 15 parts by weight based on 100 parts by weight of the thermoplastic resin composition.
  • thermoplastic resin composition according to the present invention can be produced by a known method for producing a resin composition.
  • thermoplastic resin composition according to the present invention may be prepared in the form of pellets by a method of simultaneously mixing the components of the present invention and other additives and then melt extrusion in an extruder.
  • thermoplastic resin composition is excellent in chemical resistance, heat resistance, and impact resistance, and excellent in moldability, can be applied without limitation to molded articles requiring resistance to chemicals, and specifically, may be used as automotive interior materials or exterior materials.
  • Polycarbonate resin compositions of Examples and Comparative Examples were prepared according to the component content ratios shown in Table 1 below.
  • the components constituting the base resin are expressed in weight percent based on the total weight of the base resin, and in the case of the crosslinked styrene-acrylonitrile copolymer and the phosphorus flame retardant added as an additive to the base resin, the base resin It is expressed in parts by weight based on 100 parts by weight.
  • Polycarbonate resin with a weight average molecular weight of about 27,000 g / mol (Lotte Advanced Materials Co., Ltd.)
  • An acrylonitrile-butadiene-styrene copolymer composed of 71 parts by weight and 29 parts by weight of styrene and acrylonitrile, respectively, with an average particle diameter of 300 nm, a butadiene core of 45% by weight, and a shell of 55% by weight.
  • Resin (Lotte Advanced Materials Co., Ltd.)
  • Acrylonitrile-butadiene-styrene copolymer resin consisting of a butadiene core having an average particle diameter of 500 nm, a weight average molecular weight of 190,000 g / mol, 12 wt%, and a balance shell (sinopec)
  • SAN resin with an acrylonitrile content of 29% by weight, styrene content of 71% by weight and a weight average molecular weight of about 360,000 g / mol (Lotte Advanced Materials Co., Ltd.)
  • DAIHACHI Phosphate Flame Retardant
  • Fluidity (g / 10min): The melt flow index (MFI) was measured at 250 ° C. and 10 kg according to ISO 1133.
  • Izod impact strength (kg ⁇ / cm): measured at room temperature and -40 °C according to ISO 1801A, respectively.
  • the first and second polycarbonate resins having different fluidity
  • the first and second acrylonitrile-butadiene-styrene copolymers having different average particle diameters and the styrene-acrylonitrile copolymer resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

(A-1) 폴리카보네이트 수지, (A-2)(A-2-1) 고무질 중합체의 평균입경이 200 nm 내지 400 nm인 제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 및 (A-2-2) 고무질 중합체의 평균입경이 400 nm 내지 600 nm인 제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체, 및 (A-3) 방향족 비닐 화합물-시안화비닐 화합물 공중합체를 포함하는 기초 수지 100 중량부; (B) 가교형 스티렌-아크릴로니트릴 공중합체 1 내지 10 중량부; 및 (C) 난연제 5 내지 15 중량부를 포함하는 열가소성 수지 조성물과, 이를 이용한 성형품에 관한 것이다.

Description

열가소성 수지 조성물 및 이를 이용한 성형품
열가소성 수지 조성물 및 이를 이용한 성형품에 관한 것이다.
폴리카보네이트(polycarbonate)는 엔지니어링 플라스틱 중 하나로서 플라스틱 산업에서 폭넓게 사용되고 있는 재료이다.
폴리카보네이트는 비스페놀-A와 같은 벌크한 분자 구조에 의해 유리전이온도(Tg)가 약 150℃에 이르게 되어, 높은 내열도를 나타내며, 카보네이트 그룹의 카보닐기는 회전 운동성이 높아 폴리카보네이트에 유연성과 강성을 여한다. 또한, 비정질 고분자로 투명성이 우수한 특성을 가지고 있다.
뿐만 아니라, 내충격성 및 타 수지와의 상용성 등이 우수하나, 폴리카보네이트 수지는 유동성이 떨어지는 단점이 있어 작업성 및 후가공성을 보완하기 위하여 다양한 수지와의 얼로이(alloy) 형태로도 많이 사용된다.
이 중 폴리카보네이트/아크릴로니트릴-부타디엔-스티렌 공중합체(PC/ABS) 얼로이는 내구성, 성형성, 내열도, 내충격성 등이 우수하여 전기/전자 분야, 자동차 분야, 건축 분야 및 기타 생활 소재 등 광범위한 분야에 적용되고 있다.
그러나 PC/ABS 얼로이는 차량 실내 등의 마감재 등으로 사용할 경우, 물리적파손 등을 고려하여 상온 및 저온에서의 내충격성을 더욱 보강해야 할 필요가 있다.
이에 따라 내약품성 강화를 위한 방법 중 하나로, ABS 와 메틸메타크릴레이트 부타디엔-스티렌 공중합체(MBS) 등 가교 고무입자 형태의 충격보강제를 첨가하여 내충격성을 향상시키면서 별도로 난연제를 더 첨가하여 저하된 난연성을 보강하는 방법이 시도되고 있다. 그러나, 충격보강제의 함량 증가에 따라 지나치게 많은 난연제가 필요하게 되며, 그 결과 내열성의 저하가 발생할 우려가 있다.
이에, 본 발명에서는 상기와 같은 문제점을 해결하기 위하여 기존 PC/ABS 얼로이 대비 내충격성, 성형성 및 난연성이 동시에 확보될 수 있는 열가소성 수지 조성물을 제조하기 위한 연구를 수행하였다.
내충격성, 성형성 및 난연성이 모두 우수한 열가소성 수지 조성물, 및 이를 이용한 성형품을 제공하는 것이다.
일 구현예에 따르면, (A-1) 폴리카보네이트 수지, (A-2)(A-2-1) 고무질 중합체의 평균입경이 200 nm 내지 400 nm인 제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체와 (A-2-2) 고무질 중합체의 평균입경이 400 nm 내지 600 nm인 제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체, 및 (A-3) 방향족 비닐 화합물-시안화비닐 화합물 공중합체 수지를 포함하는 기초 수지 100 중량부; (B) 가교형 스티렌-아크릴로니트릴 공중합체 1 내지 10 중량부; 및 (C) 난연제 5 내지 15 중량부를 포함하는 열가소성 수지 조성물이 제공된다.
상기 열가소성 수지 조성물은 (A) 기초 수지 100 중량%를 기준으로, 상기 (A-1) 폴리카보네이트 수지를 55 내지 75 중량%, 상기 (A-2) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 수지를 20 내지 35 중량%, 상기 (A-3) 방향족 비닐 화합물-시안화비닐 화합물 공중합체 수지를 10 중량% 이하로 포함할 수 있다.
상기 (A-1) 폴리카보네이트 수지는 중량평균분자량이 서로 다른 (A-1-1) 제1 폴리카보네이트 수지와 (A-1-2) 제2 폴리카보네이트 수지로 이루어지는 것일 수 있다.
상기 (A-1-1) 제1 폴리카보네이트 수지는 32,000 g/mol 내지 38,000 g/mol 중량평균분자량을 가질 수 있다.
상기 (A-1-2) 제2 폴리카보네이트 수지는 24,000 g/mol 내지 30,000 g/mol 중량평균분자량을 가질 수 있다.
상기 열가소성 수지 조성물은 상기 (A) 기초 수지 100 중량%를 기준으로, 상기 (A-1-1) 제1 카보네이트 수지는 30 내지 70 중량% 포함되고, 상기 (A-1-2) 제2 카보네이트 수지는 0 내지 40 중량% 포함할 수 있다.
상기 열가소성 수지 조성물은 상기 (A) 기초 수지 100 중량%를 기준으로, 상기 (A-2-1) 제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 10 내지 15 중량% 포함하고, 상기 (A-2-2) 제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 14 내지 19 중량% 포함할 수 있다.
상기 (A-2-1) 제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체와 (A-2-2) 제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 각각은 코어-쉘 구조를 가질 수 있다.
상기 코어는 부타디엔으로 이루어져 있고, 상기 쉘은 아크릴로니트릴과 스티렌의 공중합체로 이루어져 있을 수 있다.
상기 (A-3) 비닐 화합물-시안화비닐 화합물 공중합체는 320,000 g/mol 내지 420,000 g/mol 중량평균분자량을 가질 수 있다.
상기 (A-3) 방향족 비닐 화합물-시안화비닐 화합물 공중합체에서, 상기 방향족 비닐 화합물은 할로겐 또는 C1 내지 C10 알킬기로 치환 또는 비치환된 스티렌, α-메틸 스티렌 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 (A-3) 방향족 비닐 화합물-시안화비닐 화합물 공중합체에서, 상기 시안화비닐 화합물은 아크릴로니트릴, 메타크릴로니트릴, 푸마로니트릴 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 (A-3) 방향족 비닐 화합물-시안화비닐 화합물 공중합체는 스티렌-아크릴로니트릴 공중합체(SAN)일 수 있다.
상기 (B) 가교형 스티렌-아크릴로니트릴 공중합체는 3,000,000 g/mol 내지 7,000,000 g/mol 중량평균분자량을 가질 수 있다.
상기 (C) 난연제는 포스페이트(phosphate) 화합물, 포스파이트(phosphite) 화합물, 포스포네이트(phosphonate) 화합물, 폴리실록산, 포스파젠(phosphazene) 화합물, 포스피네이트(phosphinate) 화합물 또는 멜라민 화합물 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
한편, 일 구현예에 따른 열가소성 수지 조성물을 이용한 성형품이 제공될 수 있다.
우수한 내충격성, 압출 성형성 및 난연성을 가짐에 따라 우수한 내충격성, 외관 및 성형성을 가짐에 따라 도장, 무도장으로 사용하는 여러 가지 제품의 성형에 광범위하게 적용될 수 있으며, 차량용 내장재, 특히 차량 실내용 마감재로 유용하게 적용될 수 있는 열가소성 수지 조성물, 및 이로부터 제조된 성형품을 제공할 수 있다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 첨부된 청구범위에 의해 정의될 뿐이다.
본 명세서에서 "치환"이란 별도의 정의가 없는 한 화합물 중 적어도 하나의 수소가 C1 내지 C30 알킬기; C1 내지 C10 알킬실릴기; C3 내지 C30 시클로알킬기; C6 내지 C30 아릴기; C2 내지 C30 헤테로아릴기; C1 내지 C10 알콕시기; 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기; 또는 시아노기로 치환된 것을 의미한다.
본 명세서에서 "헤테로"란 별도의 정의가 없는 한, 하나의 화합물 또는 치환기 내에 N, O, S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1개 내지 3개 포함하고, 나머지는 탄소인 것을 의미한다.
본 명세서에서 "알킬(alkyl)기"란 별도의 정의가 없는 한, 어떠한 알켄기(alkene)나 알킨기(alkyne)를 포함하고 있지 않은 "포화 알킬(saturated alkyl)기"; 또는 적어도 하나의 알켄기 또는 알킨기를 포함하고 있는 "불포화 알킬(unsaturated alkyl)기"를 모두 포함하는 것을 의미한다. 상기 "알켄기"는 적어도 두 개의 탄소원자가 적어도 하나의 탄소-탄소 이중 결합을 이루고 있는 치환기를 의미하며, "알킨기" 는 적어도 두 개의 탄소원자가 적어도 하나의 탄소-탄소 삼중 결합을 이루고 있는 치환기를 의미한다. 상기 알킬기는 분지형, 직쇄형 또는 환형일 수 있다.
상기 알킬기는 C1 내지 C20 알킬기일 수 있으며, 구체적으로 C1 내지 C6 저급 알킬기, C7 내지 C10 중급 알킬기, C11 내지 C20 고급 알킬기일 수 있다.
"방향족"은 환형인 치환기의 모든 원소가 p-오비탈을 가지고 있으며, 이들 p-오비탈이 공액(conjugation)을 형성하고 있는 화합물을 의미한다. 구체적인 예로 아릴기와 헤테로아릴기가 있다.
"아릴(aryl)기"는 단일고리 또는 융합고리(즉, 탄소원자들의 인접한 쌍들을 나눠 가지는 복수의 고리) 치환기를 포함한다.
"헤테로아릴(heteroaryl)기"는 아릴기 내에 N, O, S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 포함하고, 나머지는 탄소인 것을 의미한다. 상기 헤테로아릴기가 융합고리인 경우, 각각의 고리마다 상기 헤테로 원자를 1개 내지 3개 포함할 수 있다.
본 명세서에서 특별한 언급이 없는 한, (메타)아크릴레이트는 아크릴레이트 또는 메타크릴레이트를 의미한다. 또한 (메타)아크릴산 알킬 에스테르는 아크릴산 알킬 에스테르 또는 메타크릴산 알킬 에스테르를 의미하며, (메타)아크릴산 에스테르는 아크릴산 에스테르 또는 메타크릴산 에스테르를 의미한다.
본 명세서에서 별도의 정의가 없는 한, "공중합"이란 블록 공중합, 랜덤 공중합, 그래프트 공중합 또는 교호 공중합을 의미할 수 있고, "공중합체"란 블록 공중합체, 랜덤 공중합체, 그래프트 공중합체 또는 교호 공중합체를 의미할 수 있다.
일 구현예에 따르면, (A-1) 폴리카보네이트 수지, (A-2)(A-2-1) 고무질 중합체의 평균입경이 200 nm 내지 400 nm인 제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체와 (A-2-2) 고무질 중합체의 평균입경이 400 nm 내지 600 nm인 제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체, 및 (A-3) 방향족 비닐 화합물-시안화비닐 화합물 공중합체를 포함하는 기초 수지 100 중량부; (B) 가교형 스티렌-아크릴로니트릴 공중합체 1 내지 10 중량부; 및 (C) 난연제 5 내지 15 중량부를 포함하는 열가소성 수지 조성물. 열가소성 수지 조성물이 제공된다.
이하, 상기 열가소성 수지 조성물에 포함되는 각 성분에 대하여 구체적으로 설명한다.
(A) 기초 수지
(A-1)폴리카보네이트 수지
폴리카보네이트 수지는 카보네이트 결합을 가진 폴리에스테르로서 그 종류가 특별히 제한되지 않으며, 수지 조성물 분야에서 이용 가능한 임의의 폴리카보네이트 수지를 사용할 수 있다.
예컨대, 하기 화학식 1로 표시되는 디페놀류와 포스겐, 할로겐산 에스테르, 탄산 에스테르 및 이들의 조합으로 이루어진 군에서 선택되는 화합물을 반응시켜 제조될 수 있다.
[화학식 1]
Figure PCTKR2017015690-appb-I000001
상기 화학식 1에서,
A는 단일 결합, 치환 또는 비치환된 C1 내지 C30 알킬렌기, 치환 또는 비치환된 C2 내지 C5 알케닐렌기, 치환 또는 비치환된 C2 내지 C5 알킬리덴기, 치환 또는 비치환된 C1 내지 C30 할로알킬렌기, 치환 또는 비치환된 C5 내지 C6 사이클로알킬렌기, 치환 또는 비치환된 C5 내지 C6 사이클로알케닐렌기, 치환 또는 비치환된 C5 내지 C10 사이클로알킬리덴기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C1 내지 C20 알콕실렌기, 할로겐산 에스테르기, 탄산 에스테르기, CO, S 및 SO2로 이루어진 군에서 선택되는 연결기이며, R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C30의 알킬기 또는 치환 또는 비치환된 C6 내지 C30의 아릴기이며, n1 및 n2는 각각 독립적으로 0 내지 4의 정수이다.
상기 화학식 1로 표시되는 디페놀류는 2종 이상이 조합되어 폴리카보네이트 수지의 반복단위를 구성할 수도 있다.
상기 디페놀류의 구체적인 예로는, 히드로퀴논, 레조시놀, 4,4'-디히드록시디페닐, 2,2-비스(4-히드록시페닐)프로판('비스페놀-A'라고도 함), 2,4-비스(4-히드록시페닐)-2-메틸부탄, 비스(4-히드록시페닐)메탄, 1,1-비스(4-히드록시페닐)사이클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디브로모-4-히드록시페닐)프로판, 비스(4-히드록시페닐)술폭사이드, 비스(4-히드록시페닐)케톤, 비스(4-히드록시페닐)에테르 등을 들 수 있다. 상기 디페놀류 중에서, 바람직하게는 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판 또는 1,1-비스(4-히드록시페닐)사이클로헥산을 사용할 수 있다. 더 바람직하게는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.
폴리카보네이트 수지는 2종 이상의 디페놀류로부터 제조된 공중합체의 혼합물일 수 있다.
또한 폴리카보네이트 수지는 선형 폴리카보네이트 수지, 분지형(branched) 폴리카보네이트 수지, 폴리에스테르카보네이트 공중합체 수지 등을 사용할 수 있다.
선형 폴리카보네이트 수지의 구체적인 예로는 비스페놀-A계 폴리카보네이트 수지일 수 있다. 상기 분지형 폴리카보네이트 수지의 구체적인 예로는 트리멜라틱 무수물, 트리멜리틱산 등과 같은 다관능성 방향족 화합물을 디페놀류 및 카보네이트와 반응시켜 제조되는 수지일 수 있다. 상기 폴리에스테르카보네이트 공중합체 수지는 이관능성 카르복실산을 디페놀류 및 카보네이트와 반응시켜 제조할 수 있으며, 여기서 사용되는 카보네이트는 디페닐카보네이트와 같은 디아릴카보네이트 또는 에틸렌 카보네이트일 수 있다.
상기 폴리카보네이트 수지는 중량평균 분자량이 10,000 g/mol 내지 200,000 g/mol 인 것을 사용하는 것이 바람직하며, 예를 들어, 14,000 g/mol 내지 40,000 g/mol인 것을 사용하는 것이 효과적이다. 폴리카보네이트 수지의 중량평균 분자량이 상기 범위 내인 경우, 우수한 내충격성 및 유동성을 얻을 수 있다. 또한, 원하는 유동성을 충족시키기 위하여 중량평균 분자량이 다른 2종 이상의 폴리카보네이트 수지를 혼합하여 사용할 수도 있다.
폴리카보네이트 수지는 기초 수지 100 중량%을 기준으로, 예를 들어 50 중량% 내지 90 중량%, 예를 들어 55 중량% 내지 85 중량%, 예를 들어 55 중량% 내지 80 중량%, 예를 들어 55 중량% 내지 75 중량%, 예를 들어 60 중량% 내지 75 중량%, 예를 들어 60 중량% 내지 75 중량%, 예를 들어 60 중량% 내지 70 중량% 포함될 수 있다. 폴리카보네이트 수지가 50 중량% 미만인 경우에는 외관 특성이 좋지 않으며, 90 중량%를 초과하는 경우에는 기계적 강도가 떨어질 수 있다.
폴리카보네이트 수지는, 예를 들어 중량평균분자량이 서로 다른 제1 폴리카보네이트 수지(A-1-1)와 제2 폴리카보네이트 수지(A-1-2)로 이루어질 수 있다. 일 구현예에서는 제1 폴리카보네이트 수지의 중량평균분자량이 제2 폴리카보네이트 수지의 중량평균 분자량보다 큰 값을 가질 수 있다.
제1 폴리카보네이트 수지(A-1-1)는 기초 수지 100 중량%을 기준으로, 예를 들어 30 중량% 내지 75 중량%, 예를 들어 30 중량% 내지 70 중량%, 32 중량% 내지 68 중량% 포함될 수 있다.
제1 폴리카보네이트 수지(A-1-1)는, 예를 들어 30,000 g/mol 내지 50,000 g/mol, 예를 들어 30,000 g/mol 내지 48,000 g/mol, 예를 들어 30,000 g/mol 내지 46,000 g/mol, 예를 들어 30,000 g/mol 내지 44,000 g/mol, 예를 들어 30,000 g/mol 내지 46,000 g/mol, 예를 들어 30,000 g/mol 내지 44,000 g/mol, 예를 들어 30,000 g/mol 내지 42,000 g/mol, 예를 들어 30,000 g/mol 내지 40,000 g/mol, 예를 들어 32,000 g/mol 내지 40,000 g/mol, 예를 들어 32,000 g/mol 내지 38,000 g/mol, 예를 들어 34,000 g/mol 내지 36,000 g/mol 일 수 있다.
제2 폴리카보네이트 수지(A-1-2)는, 예를 들어 20,000 g/mol 내지 30,000 g/mol, 예를 들어 22,000 g/mol 내지 30,000 g/mol, 예를 들어 24,000 g/mol 내지 30,000 g/mol, 예를 들어 24,000 g/mol 내지 28,000 g/mol, 예를 들어 26,000 g/mol 내지 28,000 g/mol일 수 있다.
제2 폴리카보네이트 수지(A-1-2)는 기초 수지 100 중량%을 기준으로, 예를 들어 50 중량% 이하, 예를 들어 45 중량% 이하, 예를 들어 40 중량% 이하 포함될 수 있다.
제1, 제2 폴리카보네이트 수지의 중량평균분자량과 함량이 각각 상기 범위 내인 경우, 우수한 내충격성 및 유동성을 얻을 수 있다. 또한, 상기 중량평균분자량이 각각 상기 범위 내에 속하는 제1, 제2 폴리카보네이트를 혼합하여 사용함으로써 폴리카보네이트 수지가 원하는 유동성을 충족할 수 있다.
(A-2) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 부타디엔계 고무질 중합체 성분으로 된 중심부(코어, core)와 그 중심부를 주위로 아크릴로니트릴과 스티렌을 그라프트 중합 반응시켜 쉘(shell)을 형성한 코어-쉘(core-chell) 구조를 가질 수 있다.
코어를 구성하는 고무질 중합체 성분은 특히 저온에서의 충격 강도를 향상시키며, 쉘 성분은 연속상, 예를 들면 방향족비닐 화합물-시안화비닐 화합물 공중합체와 고무질 중합체의 계면에 위치하여 계면 장력을 낮추어 분산상의 고무질 중합체입자 크기를 작게하는 한편, 계면에서의 접착력을 향상시킬 수 있다.
상기 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 고무질 중합체의 평균 입경이 서로 다른 제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-1), 및 제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-2)를 포함할 수 있다.
또한, 본 발명에서 입자의 입경에 관해서는, 계측법에 의해 수치화하여 집단의 평균 크기를 표현하는 방법이 있지만, 범용적으로 사용되는 것으로 분포의 최대값을 나타내는 모드 직경, 적분 분포 곡선의 중앙값에 상당하는 메디안 직경, 각종 평균 직경(수평균, 길이 평균, 면적 평균, 질량 평균, 체적 평균 등)등이 있고 본 발명에 있어서는 특별히 언급하지 않는 한 평균 입경이란 수평균 직경이고, D50(분포율이 50% 되는 지점의 입경)을 측정한 것을 의미한다.
아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 부타디엔계 고무질 중합체에 스티렌과 아크릴로니트릴을 첨가하고 유화중합, 벌크중합 등 통상의 중합방법을 통해 그라프트 공중합함으로써 제조될 수 있다.
제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-1)는 고무질 중합체의 평균 입경이 예를 들어 200 nm 내지 400 nm, 예를 들어 200 nm 내지 350 nm, 예를 들어 250 nm 내지 350 nm일 수 있다.
제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-1)는 기초수지 100 중량%를 기준으로, 예를 들어 8 중량% 내지 18 중량%, 예를 들어 10 중량% 내지 18 중량%, 예를 들어 10 중량% 내지 15 중량%, 예를 들어 11 중량% 내지 13 중량% 포함될 수 있다.
제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-1) 100 중량%에 대하여, 상기 부타디엔계 고무질 중합체 10 중량% 내지 60 중량%, 상기 스티렌 20 중량% 내지 80 중량% 및 상기 아크릴로니트릴 5 중량% 내지 45 중량%를 포함할 수 있다.
제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-2)가 상기 기초수지 대비 10 중량% 미만으로 포함되면 열가소성 수지 조성물의 내충격성및 압출 성형성이 저하될 우려가 있고, 60 중량% 초과로 포함되면 열가소성 수지 조성물의 내열도 및 난연성이 저하될 우려가 있다.
제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-2)는 고무질 중합체의 평균 입경이 예를 들어 350 nm 내지 650 nm, 예를 들어 400 nm 내지 600 nm, 예를 들어 450 nm 내지 550 nm일 수 있다.
제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-2)는 기초수지 100 중량%를 기준으로, 예를 들어 8 중량% 내지 18 중량%, 예를 들어 10 중량% 내지 18 중량%, 예를 들어 10 중량% 내지 15 중량%, 예를 들어 11 중량% 내지 13 중량% 포함될 수 있다.
제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-2)가 상기 기초수지 대비 8 중량% 미만으로 포함되면 열가소성 수지 조성물의 내충격성 및 압출 성형성이 저하될 우려가 있고, 18 중량% 초과로 포함되면 열가소성 수지 조성물의 내열도 및 난연성이 저하될 우려가 있다.
제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-2) 100 중량%에 대하여, 상기 부타디엔계 고무질 중합체 10 중량% 내지 60 중량%, 상기 스티렌 20 중량% 내지 80 중량% 및 상기 아크릴로니트릴 5 중량% 내지 45 중량%를 포함할 수 있다.
중량%를 기준으로, 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2)에는 제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-1)가 제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-2)와 같거나 더 많이 함유되어 있을 수 있다.
예를 들어, 제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-1)와 제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(A-2-2)는 1:1 내지 1:1.5 의 중량비를 가질 수 있으며, 예를 들어 1:1 내지 1:1.4, 예를 들어 1:1 내지 1:1.3의 중량비를 가질 수 있다.
제1, 제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체가 각각 상기 중량비를 만족할 경우, 내충격성과 난연성 및 압출 성형성이 동시에 우수한 열가소성 수지를 제공할 수 있다.
(A-3) 방향족 비닐 화합물-시안화비닐 화합물 공중합체 수지
방향족 비닐 화합물-시안화비닐 화합물 공중합체는 시안화비닐 화합물 및 방향족 비닐 화합물이 공중합되어 형성된다.
상기 시안화비닐 화합물로는 아크릴로니트릴, 메타크릴로니트릴, 푸마로니트릴 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 방향족 비닐 화합물로는 할로겐 또는 C1 내지 C10 알킬기로 치환 또는 비치환된 스티렌, α-메틸 스티렌 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 시안화비닐 화합물-방향족 비닐 화합물 공중합체는 스티렌-아크릴로니트릴 공중합체(styrene-acrylonitrile copolymer, SAN)일 수 있다.
일 구현예에 따른 열가소성 수지 조성물은 상기 방향족 비닐 화합물-시안화비닐 화합물 공중합체 수지 100 중량부를 기준으로, 방향족 비닐 화합물은 50 내지 90 중량부, 시안화비닐 화합물은 10 내지 50 중량부 포함될 수 있다.
상기 방향족 비닐 화합물-시안화비닐 화합물 공중합체 수지는 100,000 g/mol 내지 600,000 g/mol, 예를 들어 150,000 g/mol 내지 600,000 g/mol, 예를 들어 200,000 g/mol 내지 600,000 g/mol, 예를 들어 220,000 g/mol 내지 600,000 g/mol, 예를 들어 260,000 g/mol 내지 560,000 g/mol, 예를 들어 300,000 g/mol 내지 420,000 g/mol의 중량평균분자량을 가질 수 있다.
열가소성 수지 조성물 제조 시, 상기 방향족 비닐 화합물-시안화비닐 화합물 공중합체 수지는 기초 수지 100 중량%에 대하여 0 초과 15 중량% 이하, 예를 들어 0 초과 14 중량% 이하, 예를 들어 0 초과 13 중량% 이하, 예를 들어 0 초과 12 중량% 이하, 예를 들어 0 초과 11 중량% 이하, 예를 들어 0 초과 10 중량% 이하, 예를 들어 0 초과 9 중량% 이하로 포함될 수 있다.
상기 방향족 비닐 화합물-시안화비닐 화합물 공중합체의 함량이 상기 범위를 벗어나는 경우 폴리카보네이트 수지와 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체의 상용성이 저하되어 열가소성 수지의 내충격성 및 압출 성형성이 떨어질 우려가 있다.
(B) 가교형 스티렌-아크릴로니트릴 공중합체
가교형 스티렌-아크릴로니트릴 공중합체는 스티렌-아크릴로니트릴 공중합체가 가교형 결합을 이루어 초고분자량을 갖는 물질일 수 있다. 가교형 스티렌-아크릴로니트릴 공중합체는, 폴리카보네이트 수지와 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 간 상용성을 향상시킬 수 있다. 이를 통해, 압출 성형성이 강화된 열가소성 수지를 제공할 수 있다.
가교형 스티렌-아크릴로 니트릴 공중합체는, 예를 들어 1,000,000 g/mol 내지 9,000,000 g/mol, 예를 들어 2,000,000 g/mol 내지 8,000,000 g/mol, 예를 들어 3,000,000 g/mol 내지 7,000,000 g/mol, 예를 들어 예를 들어 3,000,000 g/mol 내지 10,000,000 g/mol, 예를 들어 4,000,000 g/mol 내지 6,000,000 g/mol의 중량평균분자량을 가질 수 있다.
상기 가교형 스티렌-아크릴로 니트릴 공중합체의 중량평균분자량 범위가 상기 범위를 벗어나는 경우 폴리카보네이트 수지와 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 간 상용성이 저하되어 압출 성형성이 저하될 우려가 있다.
가교형 스티렌-아크릴로 니트릴 공중합체는 기초 수지 100 중량부에 대하여, 예를 들어 20 중량부 이하, 예를 들어 0 초과 18 중량부 이하, 예를 들어 0 초과 15 중량부 이하, 예를 들어 0 초과 12 중량부 이하, 예를 들어 0 초과 10 중량부 이하, 예를 들어 1 중량부 내지 10 중량부, 예를 들어 1 중량부 내지 8 중량부, 예를 들어 1 중량부 내지 5 중량부 포함될 수 있다.
상기 가교형 스티렌-아크릴로 니트릴 공중합체의 함량이 상기 범위 내일 경우, 폴리카보네이트 수지와 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 간의 상용성이 향상되어, 일 구현예에 따른 열가소성 수지의 압출 성형성이 개선될 수 있다.
(C) 난연제
상기 난연제는 연소성을 감소시키는 물질로서, 일 구현예에 따른 난연제는 인계 난연제로서 포스페이트(phosphate) 화합물, 포스파이트(phosphite) 화합물, 포스포네이트(phosphonate) 화합물, 폴리실록산, 포스파젠(phosphazene) 화합물, 포스피네이트(phosphinate) 화합물 또는 멜라민 화합물 중 적어도 하나를 포함할 수 있다.
이러한 인계 난연제는 고체상의 반응에서 우수한 난연효과를 나타내며 특히 산소를 다량 함유하는 플라스틱에 효과가 있다.
난연제의 예시로는 트리페닐포스페이트, 레조시놀비스페놀포스페이트 등의 단분자 인계 화합물, 폴리포스포네이트 등의 및 중합형 인계 난연제, 및 이들의 조합을 들 수 있다. 단분자 인계 난연제를 사용할 경우, 편리하게 난연성을 확보할 수 있고, 고분자 형태의 폴리포스포네이트 난연제를 사용할 경우, 우수한 난연성 및 기계적 물성을 확보할 수 있으면서도 성형 시 휘발되지 않으며 기초 수지와의 높은 상용성을 나타낼 수 있다.
다만, 일 구현예가 이에 한정되는 것은 아니며, 기초 수지의 함량, 열가소성수지의 구체적인 용도 등에 따라 인계 난연제에 더하여 할로겐계 난연제, 무기계 난연제, 고분자 난연제 중 어느 하나 이상을 더 혼합하여 난연제로 사용할 수도 있다.
난연제는 기초 수지 100 중량부에 대하여, 예를 들어 20 중량부 이하, 예를 들어 0 초과 18 중량부 이하, 예를 들어 1 중량부 내지 18 중량부, 예를 들어 3 중량부 내지 18 중량부, 예를 들어 3 중량부 내지 15 중량부, 예를 들어 5 중량부 내지 15 중량부, 예를 들어 7 중량부 내지 12 중량부 포함될 수 있다.
상기 난연제의 함량이 상기 범위일 경우, 열가소성 수지에 요구되는 내열 수준, 예를 들어 약 85℃ 의 내열도를 충족시킬 수 있으며, 다른 물성들의 저하를 최소화 하면서 열가소성 수지의 난연성을 보강할 수 있다.
(D) 기타 첨가제
상기 열가소성 수지 조성물은 그 용도에 따라 선택적으로 첨가제를 더 포함할 수 있다. 상기 첨가제로는 활제, 가소제, 열안정제, 산화방지제, 광안정제 또는 착색제를 더 포함할 수 있으며, 최종 성형품의 특성에 따라 2종 이상 혼합하여 사용할 수 있다.
상기 활제는 가공/성형/압출 중에 폴리카보네이트 수지 조성물과 접촉하는 금속 표면을 윤활시켜 수지 조성물의 흐름 또는 이동을 도와주는 물질로, 통상적으로 사용되는 물질을 사용할 수 있다.
상기 가소제는 열가소성 수지 조성물의 유연성, 가공 작업성 또는 팽창성을 증가시키는 물질로, 통상적으로 사용되는 물질을 사용할 수 있다.
상기 열안정제는 고온에서 혼련 또는 성형할 경우 열가소성 수지 조성물의 열적 분해를 억제하는 물질로, 통상적으로 사용되는 물질을 사용할 수 있다.
상기 산화방지제는 열가소성 수지 조성물과 산소와의 화학적 반응을 억제 또는 차단시킴으로써 수지 조성물이 분해되어 고유 물성이 상실되는 것을 방지하는 물질로, 페놀형, 포스파이트형, 티오에테르형 또는 아민형 산화방지제 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 광안정제는 자외선으로부터 열가소성 수지 조성물이 분해되어 색이 변하거나 기계적 성질이 상실되는 것을 억제 또는 차단시키는 물질로, 바람직하게는 힌더드 페놀형, 벤조페논형 또는 벤조트리아졸형 광안정제 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 착색제는 통상적인 안료 또는 염료를 사용할 수 있다.
상기 첨가제는 열가소성 수지 조성물 100 중량부에 대하여, 1 중량부 내지 15 중량부로 포함될 수 있다.
본 발명에 따른 열가소성 수지 조성물은 수지 조성물을 제조하는 공지의 방법에 의해서 제조될 수 있다.
예를 들어, 본 발명에 따른 열가소성 수지 조성물은 본 발명의 구성 성분과 기타 첨가제들을 동시에 혼합한 후 압출기 내에서 용융 압출하는 방법에 의하여 펠렛의 형태로 제조될 수 있다.
본 발명의 일 실시예에 의한 성형품은 상술한 열가소성 수지 조성물로부터 제조될 수 있다. 상기 열가소성 수지 조성물은 내약품성, 내열성, 및 내충격성이 우수하고, 성형성이 뛰어나 화학 약품에 대한 내성이 요구되는 성형품에 제한없이 적용이 가능하며, 구체적으로 자동차용 내장재 또는 외장재로 사용될 수 있다.
이하에서 본 발명을 실시예 및 비교예를 통하여 보다 상세하게 설명하고자 하나, 하기의 실시예 및 비교예는 설명의 목적을 위한 것으로 본 발명을 제한하고자 하는 것은 아니다.
이하, 본 발명의 바람직한 실시예를 기재한다. 다만, 하기의 실시예는 본 발명의 바람직한 일 실시예일뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 5
실시예 및 비교예의 폴리카보네이트 수지 조성물은 하기 표 1 에 기재된 성분 함량비에 따라 제조되었다.
표 1에서, 기초 수지를 이루고 있는 구성요소들은 기초 수지의 총 중량을 기준으로 중량%로 나타내었고, 기초 수지에 첨가제로 첨가되는 가교형 스티렌-아크릴로니트릴 공중합체와 인계 난연제의 경우, 기초 수지 100 중량부에 대한 중량부 단위로 나타내었다.
표 1에 기재된 성분을 건식 혼합하고 이축 압출기(L/D=29, φ=45mm)의 공급부에 정량적으로 연속 투입하여 용융/혼련하였다. 이어서 이축 압출기를 통해 펠렛화된 열가소성 수지 조성물을 약 80℃에서 약 2시간 동안 건조한 후, 실린더 온도 약 250℃, 금형 온도 약 60℃의 6 Oz 사출 성형기를 사용하여, 물성 측정용 시편, 및 고온 인장강도 및 연신율 평가용 시편(두께 3 mm, 폭 3 mm, 길이 300 mm)을 각각 사출성형 하였다.
구분 단위 실시예1 실시예2 실시예3 비교예1 비교예2 비교예3 비교예4 비교예5
(A-1-1) 중량% 36 36 66 36 66 66 66 -
(A-1-2) 30 35 - 30 - - - 66
(A-2-1) 12.5 12.5 12.5 15 15 17.5 23 12.5
(A-2-2) 16.5 16.5 16.5 19 19 9.5 - 16.5
(A-3) 5 - 5 - - 7 11 5
(B) 중량부 2 2 2 2 2 2 2 2
(C) 10 10 10 10 10 10 10 10
상기 표 1 에 기재된 각 구성에 대한 설명은 다음과 같다.
(A) 기초 수지
(A-1) 폴리카보네이트 수지
(A-1-1) 제1 폴리카보네이트 수지
중량평균분자량이 약 35,000 g/mol인 폴리카보네이트 수지 (삼양 社)
(A-1-2) 제2 폴리카보네이트 수지
중량평균분자량이 약 27,000 g/mol인 폴리카보네이트 수지 (롯데첨단소재 社)
(A-2) 아크릴로니트릴-부타디엔-스티렌 공중합체
(A-2-1) 제1 아크릴로니트릴-부타디엔-스티렌 공중합체
평균 입경이 300 nm 이고, 45 중량%인 부타디엔 코어, 및 55 중량%의 쉘로 이루어지며, 쉘은 스티렌과 아크릴로니트릴이 각각 71 중량부, 29 중량부로 이루어져 있는 아크릴로니트릴-부타디엔-스티렌 공중합체 수지 (롯데첨단소재 社)
(A-2-2) 제2 아크릴로니트릴-부타디엔-스티렌 공중합체
평균 입경이 500 nm, 중량평균분자량이 190,000 g/mol이고, 12 중량%인 부타디엔 코어, 및 잔부 쉘로 이루어져 있는 아크릴로니트릴-부타디엔-스티렌 공중합체 수지 (sinopec 社)
(A-3) 방향족비닐 화합물-시안화비닐 화합물 공중합체 수지
아크릴로니트릴 함량이 29 중량%, 스티렌 함량이 71 중량%이고 중량평균분자량이 약 360,000 g/mol인 SAN 수지 (롯데첨단소재 社)
(B) 가교형 스티렌-아크릴로니트릴 공중합체
중랑평균분자량이 약 5,000,000 g/mol인 가교형 SAN (ZIBO HUAXING ADDITIVES 社)
(C) 인계 난연제
포스페이트계 난연제 (DAIHACHI 社, CR-741)
실험예
실험 결과를 하기 표 2 에 나타내었다.
(1) 유동성 (g/10min): ISO 1133에 따라 250 ℃, 10 kg 조건에서 용융흐름지수(MFI)를 측정하였다.
(2) 열변형 온도(℃): ISO 75-2Af에 따라 1.8 Mpa 조건에서 내열성(HDT)을 측정하였다.
(3) Izod 충격강도(㎏븾?/㎝): ISO 1801A 에 따라 상온 및 -40℃에서 각각 측정하였다.
(4) 고온 인장 강도 (㎏f/㎝2), 및 연신율: 연신율 평가용 시편을 만능시험기(INSTRON 社)를 이용하여 150 ℃에서 254 mm/min 의 속도로 인장하고, 그 결과를 측정하였다.
(5) 연소 시간(sec): UL94 HB 조건에 따라 측정하였다.
구분 실시예1 실시예2 실시예3 비교예1 비교예2 비교예3 비교예4 비교예5
MFI 27 26 22 25 20 19 21 33
HDT 85 87 87 84 82 83 82 82
IZOD 충격강도(23℃) 60 61 65 58 61 58 50 54
IZOD 충격강도(-40℃) 40 41 45 40 43 36 23 23
고온 인장강도(150℃) 11.6 10.6 13 11.8 12.4 12.5 12.3 8.9
고온 연신율(150℃) 642 683 650 610 606 593 560 630
연소 시간 63 56 62 96 97 99 128 69
상기 표 1 및 표 2로부터, 유동성이 서로 다른 제1, 제2 폴리카보네이트 수지, 평균 입경이 서로 다른 제1, 제2 아크릴로니트릴-부타디엔-스티렌 공중합체, 스티렌-아크릴로니트릴 공중합체 수지에 첨가제로 가교형 스티렌-아크릴로니트릴 공중합체와 인계 난연제를 최적의 함량으로 사용함으로써, 우수한 내충격성, 외관 및 성형성을 확보하면서도, 난연성이 우수한 열가소성 수지 조성물을 구현할 수 있음을 알 수 있다.
이상에서 본 발명을 앞서 기재한 바에 따라 바람직한 실시예를 통해 설명하였지만, 본 발명은 이에 한정되지 않으며 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에 종사하는 자들은 쉽게 이해할 것이다.

Claims (16)

  1. (A-1) 폴리카보네이트 수지,
    (A-2)(A-2-1) 고무질 중합체의 평균입경이 200 nm 내지 400 nm인 제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체와 (A-2-2) 고무질 중합체의 평균입경이 400 nm 내지 600 nm인 제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체, 및
    (A-3) 방향족 비닐 화합물-시안화비닐 화합물 공중합체 수지를 포함하는 기초 수지 100 중량부;
    (B) 가교형 스티렌-아크릴로니트릴 공중합체 1 내지 10 중량부; 및
    (C) 난연제 5 내지 15 중량부
    를 포함하는 열가소성 수지 조성물.
  2. 제1항에서,
    상기 (A) 기초 수지 100 중량%를 기준으로,
    상기 (A-1) 폴리카보네이트 수지를 55 내지 75 중량%,
    상기 (A-2) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 수지를 20 내지 35 중량%,
    상기 (A-3) 방향족 비닐 화합물-시안화비닐 화합물 공중합체 수지를 10 중량% 이하로 포함하는 열가소성 수지 조성물.
  3. 제1항에서,
    상기 (A-1) 폴리카보네이트 수지는 중량평균분자량이 서로 다른 (A-1-1) 제1 폴리카보네이트 수지와 (A-1-2) 제2 폴리카보네이트 수지로 이루어지는 것인 열가소성 수지 조성물.
  4. 제3항에서,
    상기 (A-1-1) 제1 폴리카보네이트 수지는 32,000 g/mol 내지 38,000 g/mol 중량평균분자량을 갖는 열가소성 수지 조성물.
  5. 제3항에서,
    상기 (A-1-2) 제2 폴리카보네이트 수지는 24,000 g/mol 내지 30,000 g/mol 중량평균분자량을 갖는 열가소성 수지 조성물.
  6. 제3항에서,
    상기 (A) 기초 수지 100 중량%를 기준으로,
    상기 (A-1-1) 제1 카보네이트 수지는 30 내지 70 중량% 포함하고,
    상기 (A-1-2) 제2 카보네이트 수지는 0 내지 40 중량% 포함하는,
    열가소성 수지 조성물.
  7. 제1항에서,
    상기 (A) 기초 수지 100 중량%를 기준으로,
    상기 (A-2-1) 제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 10 내지 15 중량% 포함하고,
    상기 (A-2-2) 제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 14 내지 19 중량% 포함하는 열가소성 수지 조성물.
  8. 제1항에서,
    상기 (A-2-1) 제1 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체와 상기 (A-2-2) 제2 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 각각은 코어-쉘 구조를 갖는 열가소성 수지 조성물.
  9. 제1항에서,
    상기 코어는 부타디엔으로 이루어져 있고, 상기 쉘은 아크릴로니트릴과 스티렌의 공중합체로 이루어져 있는, 열가소성 수지 조성물.
  10. 제1항에서,
    상기 (A-3) 비닐 화합물-시안화비닐 화합물 공중합체는 320,000 g/mol 내지 420,000 g/mol 중량평균분자량을 갖는 열가소성 수지 조성물.
  11. 제1항에서,
    상기 (A-3) 방향족 비닐 화합물-시안화비닐 화합물 공중합체에서,
    상기 방향족 비닐 화합물은 할로겐 또는 C1 내지 C10 알킬기로 치환 또는 비치환된 스티렌, α-메틸 스티렌 및 이들의 조합으로 이루어진 군에서 선택되는 열가소성 수지 조성물.
  12. 제1항에서,
    상기 (A-3) 방향족 비닐 화합물-시안화비닐 화합물 공중합체에서,
    상기 시안화비닐 화합물은 아크릴로니트릴, 메타크릴로니트릴, 푸마로니트릴 및 이들의 조합으로 이루어진 군에서 선택되는 열가소성 수지 조성물.
  13. 제1항에서,
    상기 (A-3) 방향족 비닐 화합물-시안화비닐 화합물 공중합체는 스티렌-아크릴로니트릴 공중합체(SAN)인 열가소성 수지 조성물.
  14. 제1항에서,
    상기 (B) 가교형 스티렌-아크릴로니트릴 공중합체는 3,000,000 g/mol 내지 7,000,000 g/mol 중량평균분자량을 갖는 열가소성 수지 조성물.
  15. 제1항에서,
    상기 (C) 난연제는 포스페이트(phosphate) 화합물, 포스파이트(phosphite) 화합물, 포스포네이트(phosphonate) 화합물, 폴리실록산, 포스파젠(phosphazene) 화합물, 포스피네이트(phosphinate) 화합물 또는 멜라민 화합물 및 이들의 조합으로 이루어진 군에서 선택되는 열가소성 수지 조성물.
  16. 제1항 내지 제15항 중 어느 한 항에 따른 열가소성 수지 조성물을 이용한 성형품.
PCT/KR2017/015690 2016-12-30 2017-12-28 열가소성 수지 조성물 및 이를 이용한 성형품 WO2018124790A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17886494.8A EP3564314A4 (en) 2016-12-30 2017-12-28 COMPOSITION OF POLYOLEFIN RESIN AND MOLDED ARTICLE USING IT
US16/456,376 US11124647B2 (en) 2016-12-30 2019-06-28 Thermoplastic resin composition and molded article using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0184427 2016-12-30
KR20160184427 2016-12-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/456,376 Continuation-In-Part US11124647B2 (en) 2016-12-30 2019-06-28 Thermoplastic resin composition and molded article using same

Publications (2)

Publication Number Publication Date
WO2018124790A2 true WO2018124790A2 (ko) 2018-07-05
WO2018124790A3 WO2018124790A3 (ko) 2018-11-29

Family

ID=62709703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015690 WO2018124790A2 (ko) 2016-12-30 2017-12-28 열가소성 수지 조성물 및 이를 이용한 성형품

Country Status (4)

Country Link
US (1) US11124647B2 (ko)
EP (1) EP3564314A4 (ko)
KR (1) KR102018714B1 (ko)
WO (1) WO2018124790A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11124647B2 (en) 2016-12-30 2021-09-21 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and molded article using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188340B1 (ko) 2018-11-29 2020-12-08 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 이용한 성형품
KR102351503B1 (ko) * 2019-06-28 2022-01-14 롯데케미칼 주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
CN111073255B (zh) * 2019-12-31 2022-02-01 杭州强本塑胶科技有限公司 一种疏水性塑料粒料及其生产工艺、应用方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668300A (en) 1969-05-28 1972-06-06 Carborundum Co Printed circuit with substrate of an oxybenzoyl polyester
JPS5950059B2 (ja) 1976-09-24 1984-12-06 大日本印刷株式会社 グラビア校正法
DE3783890T2 (de) 1986-12-23 1993-08-19 Gen Electric Harzmischungen mit schlagzaehigkeitseigenschaften.
JPH0570659A (ja) * 1991-09-17 1993-03-23 Asahi Chem Ind Co Ltd ポリカーボネート樹脂組成物
EP0635547A3 (en) * 1993-07-23 1995-05-10 Gen Electric Flame retardant, impact resistant thermoplastic compositions with reduced gloss.
JP3384902B2 (ja) 1995-01-13 2003-03-10 住友ダウ株式会社 難燃性熱可塑性樹脂組成物
JP4450336B2 (ja) 1997-08-21 2010-04-14 旭化成ケミカルズ株式会社 難燃性樹脂組成物
DE19831735A1 (de) 1998-07-15 2000-01-20 Bayer Ag Thermoplastische Formmassen auf Basis hochwirksamer Propfkautschukkomponenten
KR20000026020A (ko) 1998-10-16 2000-05-06 성재갑 도금성이 우수한 열가소성 수지 및 그의 제조방버뵤
EP1129138A1 (en) * 1998-10-23 2001-09-05 General Electric Company Polycarbonate resin/abs graft copolymer/san blends
KR100680338B1 (ko) * 2005-12-07 2007-02-08 기아자동차주식회사 저광택 폴리카보네이트계 얼로이 열가소성 수지 조성물
KR100700685B1 (ko) 2005-12-30 2007-03-28 제일모직주식회사 저광택 고충격 특성을 지니는 내열아크릴로니트릴-부타디엔-스티렌 수지 조성물
KR101293789B1 (ko) * 2010-12-28 2013-08-06 제일모직주식회사 난연성 열가소성 수지 조성물
KR20140092485A (ko) * 2012-12-28 2014-07-24 제일모직주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
JP5782547B2 (ja) 2013-07-03 2015-09-24 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物
KR102256423B1 (ko) 2014-06-13 2021-05-25 테크노 유엠지 가부시키가이샤 열가소성 수지 조성물 및 그 성형품
US10000635B2 (en) 2014-12-31 2018-06-19 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition for automotive interior components and molded article for automotive interior components using the same
KR101827063B1 (ko) * 2014-12-31 2018-03-23 롯데첨단소재(주) 자동차 내장부품용 열가소성 수지 조성물 및 이를 이용한 성형품
KR101795132B1 (ko) * 2015-04-24 2017-11-08 롯데첨단소재(주) 폴리카보네이트 수지 조성물 및 이로부터 제조된 성형품
KR101950069B1 (ko) * 2015-04-30 2019-02-19 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2018124790A2 (ko) 2016-12-30 2018-07-05 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 이용한 성형품

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11124647B2 (en) 2016-12-30 2021-09-21 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and molded article using same

Also Published As

Publication number Publication date
WO2018124790A3 (ko) 2018-11-29
KR20180079200A (ko) 2018-07-10
EP3564314A4 (en) 2020-07-29
US20190322862A1 (en) 2019-10-24
KR102018714B1 (ko) 2019-09-04
EP3564314A2 (en) 2019-11-06
US11124647B2 (en) 2021-09-21

Similar Documents

Publication Publication Date Title
KR100540582B1 (ko) 난연성 열가소성 수지조성물
WO2010143796A1 (ko) 폴리에스테르/폴리카보네이트 얼로이 수지 조성물 및 이를 이용한 성형품
WO2011013882A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2012053698A1 (ko) 폴리카보네이트 수지 조성물 및 이를 이용한 성형품
WO2018124790A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2012091307A2 (ko) 난연성 열가소성 수지 조성물
WO2019212171A1 (ko) 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품
WO2012060515A1 (ko) 난연 내스크래치성 폴리카보네이트 수지 조성물
WO2018070631A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021020741A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR100471388B1 (ko) 난연성 열가소성 수지조성물
WO2019132584A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2011052849A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2016108539A1 (ko) 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2018124748A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2013100303A1 (ko) 고광택 폴리카보네이트계 수지 조성물 및 그 성형품
WO2014181921A1 (ko) 투명 폴리카보네이트 조성물 및 이를 포함한 성형품
WO2019112183A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2018117438A1 (ko) 수지 조성물 및 이로부터 제조된 성형품
WO2020141819A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2020046013A1 (ko) 패브릭 질감을 갖는 성형품
WO2016052821A1 (ko) 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2019212222A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2011081305A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2024210476A1 (ko) 난연 수지 조성물 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886494

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017886494

Country of ref document: EP

Effective date: 20190730