[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018124176A1 - 電池用セパレータ、電極体及び非水電解質二次電池 - Google Patents

電池用セパレータ、電極体及び非水電解質二次電池 Download PDF

Info

Publication number
WO2018124176A1
WO2018124176A1 PCT/JP2017/046887 JP2017046887W WO2018124176A1 WO 2018124176 A1 WO2018124176 A1 WO 2018124176A1 JP 2017046887 W JP2017046887 W JP 2017046887W WO 2018124176 A1 WO2018124176 A1 WO 2018124176A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
separator
vinylidene fluoride
hexafluoropropylene
battery
Prior art date
Application number
PCT/JP2017/046887
Other languages
English (en)
French (fr)
Inventor
辻本 潤
水野 直樹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2018559575A priority Critical patent/JP7229775B2/ja
Priority to KR1020197009466A priority patent/KR102210007B1/ko
Priority to CN201780054369.2A priority patent/CN109661736B/zh
Publication of WO2018124176A1 publication Critical patent/WO2018124176A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery separator, an electrode body, and a nonaqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries are widely used in small electronic devices such as mobile phones and portable information terminals.
  • Examples of the form of the nonaqueous electrolyte secondary battery include a cylindrical battery, a square battery, and a laminate battery.
  • these batteries have a configuration in which an electrode body in which a positive electrode and a negative electrode are arranged via a separator, and a nonaqueous electrolytic solution are housed in an exterior body.
  • Examples of the structure of the electrode body include a laminated electrode body in which a positive electrode and a negative electrode are stacked via a separator, and a wound electrode body in which the positive electrode and the negative electrode are spirally wound via a separator.
  • microporous membranes mainly made of polyolefin resin are used as battery separators. Since the microporous film made of polyolefin resin has a so-called shutdown function, the current flow can be suppressed and ignition and the like can be prevented by closing the pores of the separator when the battery is abnormally heated.
  • Patent Document 1 includes a positive electrode, a negative electrode, a three-layer separator made of polypropylene, polyethylene, and polypropylene, and an adhesive resin layer made of polyvinylidene fluoride and alumina powder disposed between the electrode and the separator.
  • An electrode body provided with is described.
  • Example 1 of Patent Document 2 VdF-HFP copolymer (HFP unit 0.6 mol%) and VdF-HFP copolymer (weight average molecular weight 470,000, HFP unit 4.8 mol%) were used. There is described a separator in which a porous layer is formed by dissolving in a dimethylacetamide and tripropylene glycol solution and applying this to a polyethylene microporous membrane.
  • Example 1 of Patent Document 3 PVdF (weight average molecular weight 500,000) and VdF-HFP copolymer (weight average molecular weight 400,000, HFP unit 5 mol%) were dissolved in dimethylacetamide and tripropylene glycol solution. A separator in which a porous layer is formed by applying this to a polyethylene microporous film is described.
  • Example 1 of Patent Document 4 PVdF (weight average molecular weight: 700,000) and VdF-HFP copolymer (weight average molecular weight: 470,000, HFP unit: 4.8 mol%) were mixed in dimethylacetamide and tripropylene glycol solution.
  • a separator is described in which a porous layer is formed by dissolving the polymer in a polyethylene microporous film.
  • Example 1 of Patent Document 5 PVdF (weight average molecular weight 350,000) and VdF-HFP copolymer (weight average molecular weight 270,000, HFP copolymer 4.8 mol%) were mixed with dimethylacetamide and tripropylene glycol.
  • a separator is disclosed in which a porous layer is formed by dissolving in a solution and coating it on a polyethylene microporous membrane.
  • Example 23 of Patent Document 6 a VdF-HFP copolymer (weight average molecular weight 1.93 million, HFP unit 1.1 mol%) and a VdF-HFP copolymer (weight average molecular weight 470,000, HFP unit 4. 8 mol%) is dissolved in a dimethylacetamide and tripropylene glycol solution, and a coating solution is prepared by adding aluminum hydroxide, and this is applied to a polyethylene microporous membrane to form a separator having a porous layer.
  • a coating solution is prepared by adding aluminum hydroxide
  • Patent Documents 1 to 5 all improve the adhesion between the separator containing the electrolytic solution and the electrode. However, when the secondary battery is enlarged, further improvement in the adhesion is required.
  • the present inventors evaluated the adhesion between the electrode and the separator when the adhesion between the electrode and the separator during drying and the adhesion between the electrode and the separator when wet. Focusing on the fact that the adhesiveness can be more accurately evaluated by distinguishing and evaluating two types of adhesiveness, and further, using these adhesivenesses as indicators of peel strength when dry and bending strength when wet, respectively. And found that it can be evaluated.
  • the wound electrode body is manufactured by winding a positive electrode and a negative electrode while applying tension to each member via a separator.
  • the positive electrode and the negative electrode applied to the metal current collector hardly expand or contract with respect to the tension, but the separator is wound while extending to some extent in the machine direction.
  • the separator portion is gradually contracted to return to the original length.
  • a force in the parallel direction is generated at the boundary surface between the electrode and the separator, and the wound electrode body (particularly, the electrode body wound flatly) is likely to bend and distort.
  • the separator In order to suppress the occurrence of deflection and distortion of the wound electrode body, the separator is required to have more adhesiveness with the electrode than ever before. Further, when the electrode body is transported, the electrodes and the separator are peeled off unless the respective members are sufficiently adhered, and cannot be transported with a high yield. The problem of adhesion at the time of transportation becomes obvious due to the increase in size of the battery, and there is a concern that the yield may deteriorate. Therefore, the separator is required to have a high peeling force during drying that is difficult to peel off from the electrode.
  • the separator is required to have adhesiveness with the electrode in the battery after injecting the electrolytic solution.
  • this adhesiveness is evaluated using as an index the wet bending strength obtained by the measurement method described later. If this strength is large, it can be considered that improvement of battery characteristics such as suppression of battery swelling after repeated charge and discharge is expected.
  • the bending strength when wet in the present specification represents the adhesiveness between the separator and the electrode in a state where the separator contains an electrolytic solution.
  • the peeling force at the time of drying represents the adhesiveness to the interface between the separator and the electrode when the separator does not substantially contain the electrolyte.
  • that electrolyte solution does not contain substantially means that the electrolyte solution in a separator is 500 ppm or less.
  • the battery is required to have a characteristic in which the convex portion of the electrode active material penetrates the separator and the electrode is not easily short-circuited (hereinafter referred to as short-circuit resistance) even when a sudden impact is applied.
  • short-circuit resistance a characteristic in which the convex portion of the electrode active material penetrates the separator and the electrode is not easily short-circuited
  • the battery separator is expected to have a thin film thickness.
  • the thickness of the separator decreases, it becomes difficult to ensure short circuit resistance.
  • it is known that it is effective to contain a certain amount or more of inorganic particles in the porous layer, but when including inorganic particles that can ensure short circuit resistance, There is a tendency for the adhesion of the resin to decrease.
  • the present invention has been made in view of the above circumstances, and is excellent in both the adhesion between the electrode and the separator during drying and the adhesion between the electrode and the separator during wetness, and excellent in short circuit resistance.
  • An object is to provide a separator, an electrode body using the separator, and a secondary battery.
  • the present inventors have conducted extensive research, and as a result, a separator having a porous layer containing two types of fluorine-based resins having different structures and their blending ratio and a specific amount of inorganic particles is used.
  • the present inventors have found that the problem can be solved and have completed the present invention.
  • the present invention is a battery separator comprising a polyolefin microporous membrane and a porous layer laminated on at least one surface of the polyolefin microporous membrane,
  • the porous layer includes a vinylidene fluoride-hexafluoropropylene copolymer (A), a vinylidene fluoride-hexafluoropropylene copolymer (B), and inorganic particles
  • the vinylidene fluoride-hexafluoropropylene copolymer (A) has not less than 0.3 mol% and not more than 5.0 mol% of hexafluoropropylene units, and has a weight average molecular weight of not less than 900,000 and not more than 2 million, And includes a hydrophilic group,
  • the vinylidene fluoride-hexafluoropropylene copolymer (B) has more than 5.0 mol% and not more than 8.0 mol% hexaflu
  • the vinylidene fluoride-hexafluoropropylene copolymer (A) preferably contains 0.1 mol% or more and 5.0 mol% or less of a hydrophilic group.
  • the vinylidene fluoride-hexafluoropropylene copolymer (B) preferably has a melting point of 60 ° C. or higher and 145 ° C. or lower.
  • the inorganic particles are preferably at least one selected from titanium dioxide, alumina and boehmite.
  • the thickness of the polyolefin microporous membrane is preferably 3 ⁇ m or more and 16 ⁇ m or less.
  • the present invention is also an electrode body comprising a positive electrode, a negative electrode, and the battery separator of the present invention.
  • the present invention is also a non-aqueous electrolyte secondary battery comprising the electrode body of the present invention and a non-aqueous electrolyte.
  • a battery separator excellent in both the adhesion between the electrode and the separator at the time of drying and the adhesion between the electrode and the separator at the time of wetness and excellent in short circuit resistance, and the same are used.
  • An electrode body and a secondary battery are provided.
  • FIG. 1 is a schematic diagram illustrating an example of a battery separator according to the present embodiment.
  • FIG. 2 is a schematic diagram showing a method for evaluating the bending strength when wet.
  • FIG. 3 is a schematic diagram showing an evaluation method of a short-circuit resistance test.
  • FIG. 1 is a diagram showing an example of a battery separator according to this embodiment.
  • a battery separator 10 (hereinafter sometimes abbreviated as “separator 10”) includes a polyolefin microporous membrane 1 and a porous layer laminated on at least one surface of the polyolefin microporous membrane 1. Layer 2.
  • each layer constituting the battery separator will be described.
  • the polyolefin microporous membrane 1 is a microporous membrane containing a polyolefin resin.
  • the polyolefin microporous membrane 1 is not particularly limited, and a polyolefin microporous membrane used for a known battery separator can be used.
  • the microporous membrane means a membrane having voids connected to the inside.
  • the polyolefin microporous membrane used for this invention is not limited to this.
  • polyolefin resin examples of the polyolefin resin constituting the polyolefin microporous membrane 1 (hereinafter sometimes abbreviated as “microporous membrane 1”) include ethylene, propylene, 1-butene, 4-methyl 1-pentene, 1-hexene and the like. Examples thereof include a polymerized homopolymer, a two-stage polymer, a copolymer, or a mixture thereof. Among these, as the polyolefin resin, it is preferable to have a polyethylene resin as a main component.
  • the content of the polyethylene resin is preferably 70% by mass or more, more preferably 90% by mass or more, and still more preferably 100% by mass with respect to 100% by mass of the total mass of the polyolefin resin in the microporous membrane 1. is there. You may add various additives, such as antioxidant and an inorganic filler, to the polyolefin resin in the range which does not impair the effect of this invention as needed.
  • the thickness of the polyolefin microporous membrane 1 is not particularly limited, but is preferably 3 ⁇ m or more and 16 ⁇ m or less, more preferably 5 ⁇ m or more and 12 ⁇ m or less, and further preferably 5 ⁇ m or more and 10 ⁇ m or less from the viewpoint of increasing the battery capacity. It is.
  • the film thickness of the polyolefin microporous film is within the above-mentioned preferable range, practical film strength and pore blocking function can be retained, which is suitable for increasing the capacity of the battery which is expected to advance in the future.
  • the battery separator 10 of the present embodiment is provided between the polyolefin microporous film 1 and the porous layer 2 of the separator 10 and between the separator 10 and the electrode, even if the polyolefin microporous film 1 is thin.
  • the adhesiveness can be excellent, and when the separator 10 is thinned, the effect is more clearly exhibited.
  • Air resistance of the polyolefin microporous film 1 is not particularly limited, 50 sec / 100 cm 3 Air or more is preferably not more than 300 sec / 100 cm 3 Air.
  • the porosity of the polyolefin microporous membrane 1 is not particularly limited, but is preferably 30% or more and 70% or less.
  • the average pore diameter of the polyolefin microporous membrane 1 is not particularly limited, but is preferably 0.01 ⁇ m or more and 1.0 ⁇ m or less from the viewpoint of pore closing performance.
  • the production method of the microporous membrane 1 is not particularly limited as long as a polyolefin microporous membrane having desired characteristics can be produced, and a conventionally known method can be used.
  • a method for producing the microporous membrane for example, methods described in Japanese Patent No. 2132327, Japanese Patent No. 3347835, International Publication No. 2006/137540, and the like can be used.
  • an example of a method for manufacturing the microporous membrane 1 will be described.
  • the manufacturing method of the microporous film 1 is not limited to the following method.
  • the manufacturing method of the microporous membrane 1 can include the following steps (1) to (5), and can further include the following steps (6) to (8).
  • Stretching the gel-like sheet The first stretching step (4) The step of removing the film-forming solvent from the stretched gel-like sheet (5)
  • the step of drying the sheet after the film-forming solvent is removed (6)
  • melt-kneading method for example, a method using a twin-screw extruder described in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Since the melt-kneading method is well-known, description is abbreviate
  • the blending ratio of the polyolefin resin and the film-forming solvent in the polyolefin solution is not particularly limited, but it is preferably 70 to 80 parts by weight of the film-forming solvent with respect to 20 to 30 parts by weight of the polyolefin resin.
  • the ratio of the polyolefin resin is within the above range, swell and neck-in can be prevented at the die exit when extruding the polyolefin solution, and the moldability and self-supporting property of the extruded molded body (gel-shaped molded body) are improved.
  • a polyolefin solution is fed from an extruder to a die and extruded into a sheet.
  • a plurality of polyolefin solutions having the same or different compositions may be fed from an extruder to a single die, where they are laminated in layers and extruded into sheets.
  • the extrusion method may be either a flat die method or an inflation method.
  • the extrusion temperature is preferably 140 to 250 ° C.
  • the extrusion speed is preferably 0.2 to 15 m / min.
  • the film thickness can be adjusted by adjusting each extrusion amount of the polyolefin solution.
  • an extrusion method for example, methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used.
  • a gel-like sheet is formed by cooling the obtained extruded product.
  • a method for forming the gel-like sheet for example, methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Cooling is preferably performed at a rate of 50 ° C./min or more at least up to the gelation temperature. Cooling is preferably performed to 25 ° C. or lower. By cooling, the polyolefin microphase separated by the film-forming solvent can be immobilized. When the cooling rate is within the above range, the crystallization degree is maintained in an appropriate range, and a gel-like sheet suitable for stretching is obtained.
  • a method of contacting with a cooling medium such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used, but it is preferable that the cooling is performed by contacting a roll cooled with a cooling medium.
  • seat is extended
  • the gel-like sheet is preferably stretched at a predetermined ratio after heating by a tenter method, a roll method, an inflation method, or a combination thereof.
  • the stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching, and multistage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used.
  • the stretching ratio (area stretching ratio) in this step is preferably 9 times or more, more preferably 16 times or more, and particularly preferably 25 times or more.
  • the draw ratios in the machine direction (MD) and the width direction (TD) may be the same or different.
  • the draw ratio in this process means the area draw ratio of the microporous film immediately before being used for the next process on the basis of the microporous film immediately before this process.
  • the stretching temperature in this step is preferably in the range of the crystal dispersion temperature (Tcd) to Tcd + 30 ° C. of the polyolefin resin, and in the range of crystal dispersion temperature (Tcd) + 5 ° C. to crystal dispersion temperature (Tcd) + 28 ° C. It is more preferable that the temperature be within the range of Tcd + 10 ° C. to Tcd + 26 ° C.
  • the stretching temperature is preferably 90 to 140 ° C., more preferably 100 to 130 ° C.
  • the crystal dispersion temperature (Tcd) is determined by measuring the dynamic viscoelasticity temperature characteristics according to ASTM D4065.
  • the stretching as described above causes cleavage between polyethylene lamellae, the polyethylene phase becomes finer, and a large number of fibrils are formed. Fibrils form a three-dimensional irregularly connected network structure. Stretching improves the mechanical strength and enlarges the pores. However, when stretching is performed under appropriate conditions, the through-hole diameter can be controlled, and a high porosity can be achieved even with a thinner film thickness.
  • the film may be stretched by providing a temperature distribution in the film thickness direction, whereby a microporous film having excellent mechanical strength can be obtained. Details of this method are described in Japanese Patent No. 3347854.
  • the film-forming solvent is removed (washed) using a cleaning solvent. Since the polyolefin phase is phase-separated from the film-forming solvent phase, removing the film-forming solvent consists of fibrils that form a fine three-dimensional network structure, and pores (voids) that communicate irregularly in three dimensions. A porous membrane having the following is obtained. Since the cleaning solvent and the method for removing the film-forming solvent using the same are known, the description thereof is omitted. For example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used.
  • the microporous film from which the film-forming solvent has been removed is dried by a heat drying method or an air drying method.
  • the drying temperature is preferably not higher than the crystal dispersion temperature (Tcd) of the polyolefin resin, and particularly preferably 5 ° C. or more lower than Tcd. Drying is preferably performed until the residual cleaning solvent is 5% by mass or less, more preferably 3% by mass or less, with the microporous membrane being 100% by mass (dry mass).
  • Tcd crystal dispersion temperature
  • Second stretching step It is preferable to stretch the dried microporous membrane in at least a uniaxial direction.
  • the microporous membrane can be stretched by the tenter method or the like in the same manner as described above while heating.
  • the stretching may be uniaxial stretching or biaxial stretching. In the case of biaxial stretching, either simultaneous biaxial stretching or sequential stretching may be used.
  • the stretching temperature in this step is not particularly limited, but is usually preferably 90 to 135 ° C, more preferably 95 to 130 ° C.
  • the stretching ratio (area stretching ratio) in the uniaxial direction of stretching of the microporous membrane is preferably 1.0 to 2.0 times in the machine direction or the width direction in the case of uniaxial stretching.
  • the area stretching ratio is preferably 1.0 times the lower limit, more preferably 1.1 times, and even more preferably 1.2 times.
  • the upper limit is preferably 3.5 times.
  • the stretching ratio in the machine direction and the width direction may be the same or different from each other in the machine direction and the width direction.
  • the draw ratio in this process means the draw ratio of the microporous film just before being provided to the next process on the basis of the microporous film immediately before this process.
  • the microporous film after drying can be heat-treated.
  • the crystal is stabilized by heat treatment, and the lamella is made uniform.
  • heat setting treatment and / or heat relaxation treatment can be used.
  • the heat setting treatment is a heat treatment in which heating is performed while keeping the dimensions of the film unchanged.
  • the thermal relaxation treatment is a heat treatment that heat-shrinks the film in the machine direction or the width direction during heating.
  • the heat setting treatment is preferably performed by a tenter method or a roll method.
  • a thermal relaxation treatment method a method disclosed in Japanese Patent Application Laid-Open No. 2002-256099 can be given.
  • the heat treatment temperature is preferably within the range of Tcd to Tm of the polyolefin resin, more preferably within the range of the stretching temperature ⁇ 5 ° C. of the microporous membrane, and particularly preferably within the range of the second stretching temperature ⁇ 3 ° C. of the microporous membrane.
  • a crosslinking treatment and a hydrophilization treatment can also be performed on the microporous membrane after bonding or stretching.
  • the microporous membrane is subjected to a crosslinking treatment by irradiation with ionizing radiation such as ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • ionizing radiation such as ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • electron beam irradiation an electron dose of 0.1 to 100 Mrad is preferable, and an acceleration voltage of 100 to 300 kV is preferable.
  • the meltdown temperature of the microporous membrane is increased by the crosslinking treatment.
  • the hydrophilic treatment can be performed by monomer grafting, surfactant treatment, corona discharge, or the like. Monomer grafting is preferably performed after the crosslinking treatment.
  • Porous layer 2 contains two types of vinylidene fluoride-hexafluoropropylene copolymers (VdF-HFP) and inorganic particles. Hereinafter, each component which comprises the porous layer 2 is demonstrated below.
  • VdF-HFP vinylidene fluoride-hexafluoropropylene copolymers
  • the vinylidene fluoride-hexafluoropropylene copolymer (A) (hereinafter sometimes simply referred to as copolymer (A)) is a copolymer containing vinylidene fluoride units and hexafluoropropylene units. As described later, it contains a hydrophilic group.
  • the content of hexafluoropropylene units in the copolymer (A) is 0.3 mol% or more, preferably 0.5 mol% or more.
  • the content of the hexafluoropropylene unit is smaller than the above range, the polymer crystallinity becomes high and the degree of swelling of the separator with respect to the electrolytic solution decreases, so that the adhesion between the separator and the electrode decreases, and the electrode after injection of the electrolytic solution In some cases, sufficient adhesion between the separator and the separator (wet strength when wet) cannot be obtained.
  • the content of hexafluoropropylene units is 5.0 mol% or less, more preferably 2.5 mol% or less. When the content of the hexafluoropropylene unit exceeds the above range, the separator may swell excessively with respect to the electrolytic solution, and the bending strength when wet may be reduced.
  • the weight average molecular weight of the copolymer (A) is 900,000 or more, preferably 1 million or more. On the other hand, the weight average molecular weight of the copolymer (A) is 2 million or less, more preferably 1.5 million or less.
  • the weight average molecular weight of the copolymer (A) is within the above range, in the step of forming the porous layer, the time for dissolving the copolymer (A) in the solvent is not extremely long, and the production efficiency is increased. Can maintain an appropriate gel strength when swollen in the electrolyte, and can improve the bending strength when wet.
  • the weight average molecular weight of a copolymer (A) is a polystyrene conversion value by a gel permeation chromatography.
  • the copolymer (A) has a hydrophilic group. Since the copolymer (A) has a hydrophilic group, the copolymer (A) can be more firmly bonded to the active material existing on the electrode surface and the binder component in the electrode. The reason for this is not clear, but it is presumed that the adhesive force is improved by hydrogen bonding.
  • the hydrophilic group include a hydroxyl group, a carboxylic acid group, a sulfonic acid group, and salts thereof. Among these, carboxylic acid groups and carboxylic acid esters are particularly preferable.
  • a method for introducing a hydrophilic group into the copolymer (A) a known method can be used.
  • maleic anhydride, maleic acid, maleic ester, malein A method of introducing a monomer having a hydrophilic group such as acid monomethyl ester into the main chain by copolymerization or a method of introducing it as a side chain by grafting can be used.
  • the hydrophilic group modification rate can be measured by FT-IR, NMR, quantitative titration or the like.
  • a carboxylic acid group it can be determined from the absorption intensity ratio of C—H stretching vibration and C ⁇ O stretching vibration of a carboxyl group based on a homopolymer using FT-IR.
  • the content of the hydrophilic group of the copolymer (A) is preferably 0.1 mol% or more, more preferably 0.3 mol% or more.
  • the content of the hydrophilic group is preferably 5.0 mol% or less, more preferably 4.0 mol% or less.
  • the content of the hydrophilic group is within the above range, the affinity between the inorganic particles contained in the porous layer 2 and the copolymer (A) is increased, the short circuit resistance is improved, and the inorganic particles are removed. It also has an inhibitory effect. Although this reason is not certain, it is guessed that the film strength of the porous layer 2 is increased by the copolymer (A) having a hydrophilic group as the main component of the porous layer 2 and the inorganic particles.
  • the quantification of the hydrophilic group of the vinylidene fluoride-hexafluoropropylene copolymer in the porous layer 2 can be determined by IR (infrared absorption spectrum) method, NMR (nuclear magnetic resonance) method or the like.
  • the copolymer (A) is a copolymer obtained by further polymerizing other monomers other than vinylidene fluoride, hexafluoropropylene, and a monomer having a hydrophilic group, as long as the characteristics are not impaired. Also good.
  • other monomers include monomers such as tetrafluoroethylene, trifluoroethylene, trichloroethylene, and vinyl fluoride.
  • the separator 10 has a high affinity for the nonaqueous electrolyte when used in a nonaqueous electrolyte secondary battery, and is chemically and physically Stability is high, it exhibits bending strength when wet, and the affinity with the electrolyte is sufficiently maintained even when used at high temperatures.
  • the vinylidene fluoride-hexafluoropropylene copolymer (B) (hereinafter sometimes simply referred to as copolymer (B)) is a copolymer containing vinylidene fluoride units and hexafluoropropylene units. .
  • the content of hexafluoropropylene in the copolymer (B) exceeds 5.0 mol%, more preferably 6.0 mol% or more, and even more preferably 7.0 mol% or more.
  • the content of the hexafluoropropylene unit is 5.0 mol% or less, the adhesion between the separator and the electrode during drying (peeling force during drying) may not be sufficiently obtained.
  • the content on the upper limit side is 8.0 mol% or less, more preferably 7.5 mol% or less.
  • the content of the hexafluoropropylene unit exceeds 8.0 mol%, it may swell excessively with respect to the electrolytic solution, and the bending strength when wet may decrease.
  • the copolymer (B) may contain a hydrophilic group or not.
  • the copolymer (B) has a weight average molecular weight of 100,000 to 750,000.
  • weight average molecular weight of the copolymer (B) When the weight average molecular weight of the copolymer (B) is in the above range, it has high affinity for the non-aqueous electrolyte, high chemical and physical stability, and excellent separator and electrode during drying. Adhesiveness (peeling force when dried) is obtained. The reason for this is not clear, but the copolymer (B) is fluid under heating and pressurizing conditions that develop a peeling force during drying, and becomes an anchor by entering the porous layer of the electrode. It can be presumed that the layer 2 and the electrode have strong adhesiveness.
  • the copolymer (B) contributes to the peeling force at the time of drying, and can contribute to the deflection of the wound electrode body and the laminated electrode body, the prevention of distortion, and the improvement of the transportability.
  • the copolymer (B) is a resin different from the copolymer (A).
  • the weight average molecular weight of the copolymer (B) is 100,000 or more, preferably 150,000 or more.
  • the weight average molecular weight of the copolymer (B) is below the lower limit of the above range, the amount of entanglement of the molecular chains is too small, so that the resin strength becomes weak and the porous layer 2 is liable to cohesive failure.
  • the weight average molecular weight of the copolymer (B) is preferably 750,000 or less, more preferably 700,000 or less.
  • the melting point of the copolymer (B) is preferably 60 ° C or higher, more preferably 80 ° C or higher. On the other hand, the melting point of the copolymer (B) is preferably 145 ° C. or less, more preferably 140 ° C. or less.
  • fusing point (Tm) is the temperature of the peak top of the endothermic peak at the time of temperature rising measured by the differential scanning calorimetry (DSC) method.
  • the copolymer (B) is a copolymer having a vinylidene fluoride unit and a hexafluoropropylene unit.
  • the copolymer (B) can be obtained by a suspension polymerization method or the like, similar to the copolymer (A).
  • the melting point of the copolymer (B) can be adjusted by controlling the crystallinity of the site composed of vinylidene fluoride units. For example, when the copolymer (B) contains a monomer other than the vinylidene fluoride unit, the melting point can be adjusted by controlling the ratio of the vinylidene fluoride unit.
  • Monomers other than vinylidene fluoride units are tetrafluoroethylene, trifluoroethylene, trichloroethylene, hexafluoropropylene, fluorinated vinyl maleic anhydride, maleic acid, maleic acid ester, maleic acid monomethyl ester, etc. You may have more. Examples thereof include a method in which the monomer is added when the copolymer (B) is polymerized and introduced into the main chain by copolymerization, or a method in which it is introduced as a side chain by grafting. Further, the melting point may be adjusted by controlling the ratio of Head-to-Head bonds (—CH 2 —CF 2 —CF 2 —CH 2 —) of vinylidene fluoride units.
  • the content of the copolymer (A) is 86% by mass or more, more preferably 88% by mass or more with respect to 100% by mass of the total weight of the copolymer (A) and the copolymer (B). .
  • the upper limit of the content of the copolymer (A) is 98% by mass or less, and more preferably 97% by mass or less.
  • the content of the copolymer (B) is 14% by mass or less, preferably 12% by mass or less, with respect to 100% by mass of the total weight of the copolymer (A) and the copolymer (B). is there.
  • content of a copolymer (B) is 2 mass% or more, and is 3 mass% or more.
  • the porous layer 2 has both excellent bending strength when wet and peeling strength when drying at a high level. Can do.
  • the porous layer 2 can contain a resin other than the copolymer (A) and the copolymer (B) as long as the effects of the present invention are not impaired.
  • the copolymer (A) and the copolymer (B) are preferably used.
  • content of the said copolymer (A) or the said copolymer (B) is 100 mass of resin components of the porous layer 2. % As a percentage.
  • the porous layer 2 contains inorganic particles. By including particles in the porous layer 2, the short-circuit resistance can be particularly improved, and an improvement in thermal stability can be expected.
  • Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass particles, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, lithium fluoride, zeolite , Molybdenum sulfide, mica, boehmite, magnesium oxide and the like.
  • inorganic particles containing a large amount of OH groups are preferred, and specifically, selected from titanium dioxide, alumina, and boehmite. It is preferable to use more than one type.
  • the content of the inorganic particles contained in the porous layer 2 is 80% by volume or less, preferably 70% by volume or less, more preferably 60% by volume with respect to 100% by volume of the solid content volume of the porous layer 2. It is as follows. On the other hand, the content of the inorganic particles is 40% by volume or more, more preferably 45% by volume or more, still more preferably 50% by volume or more, and further preferably 51% by volume or more.
  • the content of the inorganic particles contained in the porous layer 2 was calculated by calculating the density of the copolymer (A) and the copolymer (B) as 1.77 g / cm 3 .
  • the porous layer 2 when inorganic particles having no adhesiveness are contained in the porous layer, the bending strength when wet and the peeling force when drying tend to decrease.
  • the porous layer 2 according to the present embodiment contains a specific fluororesin in a specific ratio, so that when the inorganic particles are contained in the above range, the porous layer 2 has a high adhesive force to the electrode, The balance between the bending strength when wet and the peeling force when drying is good, and excellent short-circuit resistance can be obtained.
  • the average particle size of the inorganic particles is preferably 1.5 times or more and 50 times or less, more preferably 2.0 times or more and 20 times or less of the average flow pore size of the polyolefin microporous membrane. It is.
  • the average flow pore size is measured according to JISK3832, and can be determined by measuring in the order of Dry-up and Wet-up using a palm porometer (for example, CFP-1500A manufactured by PMI). Specifically, the pore diameter is converted from the pressure at the point where the curve showing the 1/2 slope of the pressure / flow rate curve in the Dry-up measurement and the curve of the Wet-up measurement intersect. The following formula is used for conversion of pressure and pore diameter.
  • d C ⁇ ⁇ / P
  • d ( ⁇ m) is the pore diameter of the microporous membrane
  • ⁇ (mN / m) is the surface tension of the liquid
  • P (Pa) is the pressure
  • C is a constant.
  • the average particle size of the inorganic particles is preferably 0.3 ⁇ m to 1.8 ⁇ m, more preferably 0.5 ⁇ m to 1.5 ⁇ m, still more preferably. 0.9 ⁇ m to 1.3 ⁇ m.
  • the average particle diameter of the particles can be measured using a laser diffraction method or dynamic light scattering method measuring device. For example, particles dispersed in an aqueous solution containing a surfactant using an ultrasonic probe were measured with a particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd., Microtrac HRA) and accumulated 50% from the small particle side in terms of volume.
  • the value of the particle size (D50) at the time is preferably the average particle size.
  • Examples of the shape of the particles include a true spherical shape, a substantially spherical shape, a plate shape, and a needle shape, but are not particularly limited.
  • the film thickness of the porous layer 2 is preferably 0.5 ⁇ m or more and 3 ⁇ m or less per side, more preferably 1 ⁇ m or more and 2.5 ⁇ m or less, and further preferably 1 ⁇ m or more and 2 ⁇ m or less.
  • the film thickness per side is 0.5 ⁇ m or more, high adhesion to the electrode (bending strength when wet, peel strength when drying) can be secured.
  • the film thickness per side is 3 ⁇ m or less, the winding volume can be suppressed and the film can be made thinner, which is more suitable for increasing the capacity of batteries that will be developed in the future.
  • the porosity of the porous layer 2 is preferably 30% or more and 90% or less, more preferably 40% or more and 70% or less. When the porosity of the porous layer 2 is within the above range, an increase in the electrical resistance of the separator can be prevented, a large current can be passed, and the film strength can be maintained.
  • the manufacturing method of the battery separator is not particularly limited, and can be manufactured using a known method.
  • the battery separator manufacturing method can include the following steps (1) to (3) in sequence.
  • (1) A step of obtaining a fluororesin solution in which a vinylidene fluoride-hexafluoropropylene copolymer (A) and a vinylidene fluoride-hexafluoropropylene copolymer (B) are dissolved in a solvent.
  • Step of obtaining a fluororesin solution The vinylidene fluoride-hexafluoropropylene copolymer (A) and the vinylidene fluoride-hexafluoropropylene copolymer (B) are gradually added to a solvent and completely dissolved.
  • the solvent is not particularly limited as long as it can dissolve the vinylidene fluoride-hexafluoropropylene copolymer (A) and the vinylidene fluoride-hexafluoropropylene copolymer (B) and is miscible with the coagulation liquid.
  • the solvent is preferably N-methyl-2-pyrrolidone.
  • Step of obtaining a coating solution it is important to sufficiently disperse inorganic particles. Specifically, particles are added while stirring the fluororesin solution and pre-dispersed by stirring with a disper for a certain time (for example, about 1 hour), and then dispersed using a bead mill or paint shaker. Through the step (dispersing step), the aggregation of particles is reduced, and further mixed with a three-one motor with a stirring blade to prepare a coating solution.
  • the method of applying the coating liquid to the microporous film may be a known method, for example, dip coating method, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, Examples thereof include an air knife coating method, a Mayer bar coating method, a pipe doctor method, a blade coating method, and a die coating method, and these methods can be used alone or in combination.
  • the coagulation liquid preferably contains water as a main component, and is preferably an aqueous solution containing 1 to 20% by mass of a good solvent for the copolymer (A) and the copolymer (B), more preferably 5 to 15% by mass. It is an aqueous solution.
  • a good solvent include N-methyl-2-pyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide.
  • the immersion time in the coagulation liquid is preferably 3 seconds or more. The upper limit is not limited, but 10 seconds is sufficient.
  • Water can be used for cleaning. Drying can be performed using, for example, hot air of 100 ° C. or less.
  • the battery separator 10 of the present embodiment can be suitably used for both a battery using an aqueous electrolyte and a battery using a nonaqueous electrolyte.
  • the secondary battery can be preferably used. Specifically, it can be preferably used as a separator for secondary batteries such as nickel-hydrogen batteries, nickel-cadmium batteries, nickel-zinc batteries, silver-zinc batteries, lithium secondary batteries, and lithium polymer secondary batteries. Especially, it is preferable to use as a separator of a lithium ion secondary battery.
  • a positive electrode and a negative electrode are arranged via a separator, and the separator contains an electrolytic solution (electrolyte).
  • the structure of the non-aqueous electrolyte electrode is not particularly limited, and a conventionally known structure can be used.
  • an electrode structure coin type in which a disk-like positive electrode and a negative electrode are opposed to each other, a flat plate-like structure
  • An electrode structure stacked type in which positive and negative electrodes are alternately stacked, an electrode structure in which stacked belt-like positive and negative electrodes are wound (winding type), and the like can be used.
  • the battery separator of this embodiment can have excellent adhesiveness between the separator and the electrode in any battery structure.
  • the current collector, the positive electrode, the positive electrode active material, the negative electrode, the negative electrode active material, and the electrolyte used in the non-aqueous electrolyte secondary battery including a lithium ion secondary battery are not particularly limited, and a conventionally known material is appropriately selected. They can be used in combination.
  • the battery separator 10 may be formed by laminating the porous 2 on one surface of the polyolefin microporous membrane 1, and porous on both surfaces of the polyolefin microporous membrane 1. Even if two are laminated.
  • the polyolefin microporous membrane 1 is a single layer, but may be a laminate of two or more layers.
  • the battery separator 10 may further include a layer other than the polyolefin microporous membrane 1 and the porous 2.
  • the wet bending strength of the battery separator is preferably 4.0 N or more, more preferably 5.0 N or more, and still more preferably 6.0 N or more.
  • the upper limit of the bending strength when wet is not particularly defined, but is, for example, 15.0 N or less.
  • the bending strength when wet can be measured by the method described in Examples described later.
  • the peel strength during drying of the battery separator is preferably 2.0 N / m or more, more preferably 5.0 N / m or more, and still more preferably 6.0 N / m or more.
  • the upper limit of the peeling force at the time of drying is not particularly defined, it is, for example, 40.0 N / m or less.
  • the peeling force at the time of drying can be measured by the method as described in the below-mentioned Example.
  • the battery separator of this embodiment can achieve both a high bending strength when wet and a high peel strength when dry. Specifically, as shown in the examples described later, the battery separator can satisfy a bending strength when wet of 4.0 N or more and a peel strength when dry of 2.0 N / m or more.
  • this invention is not limited to said embodiment, It can implement in various deformation
  • Weight average molecular weight (Mw) of vinylidene fluoride-hexafluoropropylene copolymer (A) and vinylidene fluoride-hexafluoropropylene copolymer (B) It calculated
  • Measurement device GPC-150C manufactured by Waters Corporation ⁇ Column: 2 shodex KF-806M manufactured by Showa Denko KK ⁇ Column temperature: 23 ° C Solvent (mobile phase): 0.05M lithium chloride added N-methyl-2-pyrrolidone (NMP) ⁇ Solvent flow rate: 0.5 ml / min ⁇ Sample preparation: 4 mL of measurement solvent was added to 2 mg of the sample, and gently stirred at room temperature (dissolution was visually confirmed).
  • ⁇ Injection volume 0.2mL
  • ⁇ Detector Differential refractive index detector RI (RI-8020 type sensitivity 16 manufactured by Tosoh Corporation)
  • -Calibration curve Created from a calibration curve obtained using a monodisperse polystyrene standard sample, using a polyethylene conversion coefficient (0.46).
  • the negative electrode 20 (machine direction 161 mm ⁇ width direction 30 mm) created above and the produced separator 10 (machine direction 160 mm ⁇ width direction 34 mm) are overlapped to form a metal plate (length 300 mm, width 25 mm, thickness 1 mm).
  • the separator 10 and the negative electrode 20 were wound so that the separator 10 was inside as a winding core, and the metal plate was pulled out to obtain a test winding body 30.
  • the test winding was about 34 mm long and about 28 mm wide.
  • test roll 30 enclosed in the laminate film 22 is sandwiched between two gaskets (thickness 1 mm, 5 cm ⁇ 5 cm), and placed in a precision heating and pressing apparatus (CYPT-10, manufactured by Shinto Kogyo Co., Ltd.). The mixture was pressurized at 98 ° C. and 0.6 MPa for 2 minutes and allowed to cool at room temperature. With the test roll 30 after being pressurized, the bending strength when wet was measured using a universal testing machine (manufactured by Shimadzu Corporation, AGS-J) while encapsulated in the laminate film 22. Details will be described below with reference to FIG.
  • Two aluminum L-shaped angles 41 are arranged in parallel so that the 90 ° part is on top, with the ends aligned, and the fulcrum with the 90 ° part as a fulcrum The distance was fixed to 15 mm.
  • the length direction of the L-shaped angle 41 by aligning the midpoint of the width direction of the test winding body (about 28 mm) with the 7.5 mm point which is the middle of the distance between the fulcrums of the two aluminum L-shaped angles 41
  • the test winding body 30 was arranged so as not to protrude from the sides of the test piece.
  • the length direction side (about 34 mm) of the test winding body does not protrude from the length direction side of the aluminum L-shaped angle 42 (thickness 1 mm, 10 mm ⁇ 10 mm, length 4 cm) as an indenter.
  • the 90 ° portion of the aluminum L-shaped angle 42 is aligned with the midpoint of the side in the width direction of the test winding body, and the aluminum L-shaped angle 42 is placed so that the 90 ° portion is down. It was fixed to the load cell (load cell capacity 50N) of the universal testing machine.
  • the average value of the maximum test force obtained by measuring the three test winding bodies at a load speed of 0.5 mm / min was defined as the bending strength when wet.
  • a double-sided tape having a width of 1 cm is attached to the negative electrode side of the laminate of the negative electrode 20 and the separator 10, and the other side of the double-sided tape is attached to a SUS plate (thickness 3 mm, length 150 mm ⁇ width 50 mm).
  • the pasting was performed so that the machine direction and the SUS plate length direction were parallel. This was made into the peeling test piece.
  • a separator 10 was sandwiched between load cell side chucks using a universal testing machine (AGS-J, manufactured by Shimadzu Corporation), and a 180 degree peel test was performed at a test speed of 300 mm / min.
  • a value obtained by averaging measured values from a stroke of 20 mm to 70 mm during the peel test was defined as the peel strength of the peel test piece.
  • a total of three peel test pieces were measured, and a value obtained by converting the average peel force into a width was defined as a peel force during drying (N / m).
  • the sample laminate 31 was fixed to the compression jig (lower side) 44 of the universal testing machine with double-sided tape.
  • the aluminum foil 4 and the negative electrode 21 of the sample laminate 31 were connected to a circuit composed of a capacitor and a clad resistor with a cable.
  • the capacitor was charged to about 1.5 V, and a metal ball 6 (material: chromium (SUJ-2)) having a diameter of about 500 ⁇ m was placed between the separator in the sample laminate 31 and the aluminum foil 4.
  • a compression jig is attached to the universal testing machine, and the sample laminate 31 including the metal balls 6 is placed between both compression jigs 43 and 44 as shown in FIG. / Min. The test was terminated when the load reached 100 N.
  • the part where the inflection point appeared in the change in compressive load was taken as the film breaking point of the separator, and the moment when the circuit was formed and the current was detected via the metal sphere was taken as the short-circuit occurrence point.
  • the compression displacement A (t) when the separator breaks due to compression and an inflection point occurs in the compression stress, and the compression displacement B (t) at the moment when the current flows through the circuit are measured. If the numerical value obtained in 1.1 is 1.1 or more, even if the separator breaks due to foreign matter mixed in the battery, it means that the insulation is maintained by the coating layer composition adhering to the surface of the foreign matter, Short-circuit resistance was evaluated as good.
  • Equation 1 when the numerical value obtained by Equation 1 is greater than 1.0 and less than 1.1, the separator film breakage and short circuit do not occur at the same time, but the tension applied to the winding of the battery member or the expansion of the electrode during charge / discharge In order to prevent a short circuit from occurring even when the internal pressure of the battery increases, a certain level of resistance is required, and thus the short circuit resistance was evaluated as slightly poor.
  • the numerical value obtained by Equation 1 is 1.0, a short circuit occurred at the same time as the film breakage of the separator, and no improvement in the short circuit resistance by the coating layer was observed, so the short circuit resistance was evaluated as poor.
  • copolymer (A1) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 98.0 / 1.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A1) was synthesized. The weight average molecular weight of the obtained copolymer (A1) was 1,500,000.
  • copolymer (B1) was synthesized as follows. A copolymer (B1) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 93.0 / 7.0. The weight average molecular weight of the obtained copolymer (B1) was 300,000.
  • the obtained coating liquid (A) was applied in an equal amount on both surfaces of a polyethylene microporous film having a thickness of 7 ⁇ m, a porosity of 40%, and an air resistance of 100 seconds / 100 cm 3 by a dip coating method.
  • the coated film is immersed in an aqueous solution (coagulation solution) containing 10% by mass of N-methyl-2-pyrrolidone (NMP), washed with pure water, and then dried at 50 ° C. to obtain a battery separator. It was. The thickness of the battery separator was 10 ⁇ m.
  • copolymer (B2) was synthesized as follows.
  • a copolymer (B2) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 94.5 / 5.5.
  • the weight average molecular weight of the obtained copolymer (B2) was 280,000.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (B) in which the copolymer (B1) was replaced with the copolymer (B2) was used in the preparation of the coating liquid.
  • Example 3 As the copolymer (B), a copolymer (B3) was synthesized as follows. A copolymer (B3) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 92.0 / 8.0. The weight average molecular weight of the obtained copolymer (B3) was 350,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (C) in which the copolymer (B1) was replaced with the copolymer (B3) was used in the preparation of the coating liquid.
  • the coating liquid (C) in which the copolymer (B1) was replaced with the copolymer (B3) was used in the preparation of the coating liquid.
  • copolymer (A2) was synthesized as follows.
  • the molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 99.0 / 0.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials.
  • a copolymer (A2) was synthesized.
  • the weight average molecular weight of the obtained copolymer (A2) was 1,400,000.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (D) in which the copolymer (A1) was replaced with the copolymer (A2) was used in the preparation of the coating liquid.
  • copolymer (A3) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 95.0 / 4.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A3) was synthesized. The weight average molecular weight of the obtained copolymer (A3) was 1,700,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (E) in which the copolymer (A1) was replaced with the copolymer (A3) was used in the preparation of the coating liquid.
  • copolymer (A4) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 98.0 / 1.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A4) was synthesized. The weight average molecular weight of the obtained copolymer (A4) was 1,900,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (F) in which the copolymer (A1) was replaced with the copolymer (A4) was used in the preparation of the coating liquid.
  • Example 7 In the preparation of the coating liquid, the blending ratio of the copolymer (A1) and the copolymer (B1) was 28.0 parts by mass of the copolymer (A1) and 2.0 parts by mass of the copolymer (B1). A battery separator was obtained in the same manner as in Example 1 except that the working liquid (G) was used.
  • Example 8 In the preparation of the coating liquid, the content of alumina particles was set to 40% by volume with the solid content of the porous layer being 100% by volume, and 35.2 parts by mass of the copolymer (A1) and the copolymer (B1). A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (H) in which 4.7 parts by mass and NMP was changed to 900 parts by mass was used.
  • Example 9 In the preparation of the coating liquid, the content of alumina particles is 75% by volume with the solid content of the porous layer being 100% by volume, and 11.4 parts by mass of copolymer (A1) and copolymer (B1).
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (I) in which 1.5 parts by mass and NMP was changed to 300 parts by mass was used.
  • copolymer (A5) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 98.4 / 1.5 / 0.1 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A5) was synthesized. The weight average molecular weight of the obtained copolymer (A5) was 1,500,000.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (J) was used instead of the copolymer (A5) in the preparation of the coating liquid.
  • copolymer (A6) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 94.5 / 1.5 / 4.0 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A6) was synthesized. The weight average molecular weight of the obtained copolymer (A6) was 1,500,000.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (K) in which the copolymer (A1) was replaced with the copolymer (A6) was used in the preparation of the coating liquid.
  • Example 12 A battery separator was obtained in the same manner as in Example 1 except that a polyethylene microporous film having a thickness of 5 ⁇ m, a porosity of 35%, and a gas permeability of 150 seconds / 100 cm 3 was used as the polyolefin microporous film.
  • the thickness of the battery separator was 8 ⁇ m.
  • Example 13 A battery separator was obtained in the same manner as in Example 1 except that a polyethylene microporous membrane having a thickness of 12 ⁇ m, a porosity of 45%, and an air resistance of 95 seconds / 100 cm 3 was used as the polyolefin microporous membrane.
  • the thickness of the battery separator was 15 ⁇ m.
  • Example 14 As the copolymer (B), a copolymer (B4) was synthesized as follows. A copolymer (B4) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 93.0 / 7.0. The weight average molecular weight of the obtained copolymer (B1) was 700,000. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (L) in which the copolymer (B1) was replaced with the copolymer (B4) was used in the preparation of the coating liquid.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (L) in which the copolymer (B1) was replaced with the copolymer (B4) was used in the preparation of the coating liquid.
  • Example 15 In preparation of the coating liquid, the alumina particles are replaced with plate-like boehmite particles (density 3.07 g / cm 3 ) having an average particle diameter of 1.0 ⁇ m and an average thickness of 0.4 ⁇ m, and the copolymer (A1) 31.5 mass. Battery separator was obtained in the same manner as in Example 1 except that the coating liquid (M) was used in an amount of 4.2 parts by weight of the copolymer (B1).
  • Example 16 In the preparation of the coating liquid, the alumina particles are replaced with an average particle size of 0.4 ⁇ m, titania particles (density 4.23 g / cm 3 ), 25.3 parts by mass of copolymer (A1), and copolymer (B1) 3.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (N) having 4 parts by mass was used.
  • Example 17 In the preparation of the coating solution, the blending ratio of the copolymer (A1) and the copolymer (B1) was 29.0 parts by mass of the copolymer (A1) and 1.0 part by mass of the copolymer (B1). A battery separator was obtained in the same manner as in Example 1 except that the working liquid (O) was used.
  • Example 2 In the preparation of the coating liquid, alumina particles were added so that the solid content of the porous layer was 100% by volume to 95% by volume, and 2.0 parts by mass of the copolymer (A1), 0. A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (Q) in which 3 parts by mass and NMP was changed to 250 parts by mass was used.
  • copolymer (A7) was synthesized as follows.
  • a copolymer (A7) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 98.5 / 1.5.
  • the weight average molecular weight of the obtained copolymer (A7) was 1,500,000.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (S) in which the copolymer (A1) was replaced with the copolymer (A7) was used in the preparation of the coating liquid.
  • copolymer (A8) was synthesized as follows. The molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 98.0 / 1.5 / 0.5 by suspension polymerization using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. Thus, a copolymer (A8) was synthesized. The weight average molecular weight of the obtained copolymer (A8) was 650,000.
  • a battery was prepared in the same manner as in Example 1 except that in the preparation of the coating liquid, the copolymer (A1) was replaced with the copolymer (A8) and the coating liquid (U) in which NMP was changed to 500 parts by mass was used. A separator was obtained.
  • copolymer (B5) was synthesized as follows.
  • a copolymer (B5) was synthesized by suspension polymerization using vinylidene fluoride and hexafluoropropylene as starting materials so that the molar ratio of vinylidene fluoride / hexafluoropropylene was 93.0 / 7.0.
  • the weight average molecular weight of the obtained copolymer (B5) was 70,000.
  • a battery separator was obtained in the same manner as in Example 1 except that the coating liquid (V) was used instead of the copolymer (B5) in the preparation of the coating liquid.
  • Comparative Example 8 A battery separator was obtained in the same manner as in Comparative Example 1 except that a polyethylene microporous membrane having a thickness of 5 ⁇ m, a porosity of 35%, and a gas permeability resistance of 150 seconds / 100 cm 3 was used as the polyolefin microporous membrane.
  • the thickness of the battery separator was 8 ⁇ m.
  • Table 1 shows the structures and weight average molecular weights of the copolymers (A) and copolymers (B) used in the above Examples and Comparative Examples, the composition of the coating solution, and the characteristics of the battery separator obtained.
  • the battery separator of the present embodiment when used in a non-aqueous electrolyte secondary battery, satisfies the peeling force during drying and the bending strength when wet, and the adhesion between the separators of the polyolefin multilayer microporous membrane and the porous layer. And the separator for batteries which is excellent in the adhesiveness between a separator and an electrode, and is excellent in short circuit tolerance can be provided. Therefore, the battery separator according to the present embodiment can be suitably used even when a larger size and a higher capacity of a battery (particularly a laminate type battery) are required in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Abstract

本発明は、接着性及び短絡耐性に優れた電池用セパレータを提供することを課題とする。本発明は、ポリオレフィン微多孔膜と、前記ポリオレフィン微多孔膜の少なくとも一方の面に積層された多孔層と、を備え、多孔層は、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)と、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)と、無機粒子とを含み、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)は、0.3mol%以上、5.0mol%以下のヘキサフルオロプロピレン単位を有し、重量平均分子量が90万以上、200万以下であり、かつ、親水基を含み、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)は、5.0mol%を超え、8.0mol%以下のヘキサフルオロプロピレン単位を有し、重量平均分子量が10万以上75万以下である電池用セパレータである。

Description

電池用セパレータ、電極体及び非水電解質二次電池
 本発明は電池用セパレータ、電極体及び非水電解質二次電池に関する。
 非水電解質二次電池、中でも、リチウムイオン二次電池は、携帯電話や携帯情報端末等の小型電子機器に使用されて広く普及している。非水電解質二次電池の形態としては、例えば、円筒型電池、角型電池、ラミネート型電池等が挙げられる。一般に、これらの電池は、正極と負極とがセパレータを介して配置された電極体と、非水電解液とが外装体に収納された構成を有する。電極体の構造としては、例えば、正極と負極とをセパレータを介して積層した積層電極体、正極と負極とをセパレータを介して渦巻き状に巻回した巻回電極体などが挙げられる。
 従来、電池用セパレータとしては、主にポリオレフィン樹脂からなる微多孔膜が使用されている。ポリオレフィン樹脂からなる微多孔質膜は、いわゆるシャットダウン機能を有するため、電池の異常発熱時にセパレータの細孔を閉塞することにより、電流の流れを抑制して、発火などを防ぐことができる。
 近年、電池用セパレータにおいて、ポリオレフィン樹脂からなる層の一方または両方の面に、ポリオレフィン樹脂以外の他の層を設けることで電池特性を向上させる試みがなされている。例えば、フッ素樹脂を含有する多孔層をポリオレフィン樹脂からなる層の一方又は両方の面に設けた電池用セパレータが提案されている。また、多孔層に無機粒子を加えることにより、事故などで電池に鋭利な金属が貫き、急な短絡を起こし発熱した場合でもセパレータの溶融収縮を防ぎ、電極間における短絡部の拡大を抑制することが知られている。
 例えば、特許文献1には、正極と、負極と、ポリプロピレン・ポリエチレン・ポリプロピレンからなる三層セパレータと、これら電極とセパレータとの間に配置されたポリフッ化ビニリデンとアルミナ粉末からなる接着性樹脂層とを備えた電極体が記載されている。
 また、特許文献2の実施例1には、VdF‐HFP共重合体(HFP単位0.6モル%)とVdF‐HFP共重合体(重量平均分子量47万、HFP単位4.8モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、これをポリエチレン微多孔膜に塗工して多孔層が形成されたセパレータが記載されている。
 また、特許文献3の実施例1には、PVdF(重量平均分子量50万)とVdF‐HFP共重合体(重量平均分子量40万、HFP単位5モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、これをポリエチレン微多孔膜に塗工して多孔層が形成されたセパレータが記載されている。
 また、特許文献4の実施例1には、PVdF(重量平均分子量70万)とVdF‐HFP共重合体(重量平均分子量47万、HFP単位4.8モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、これをポリエチレン微多孔膜に塗工して多孔層が形成されたセパレータが記載されている。
 また、特許文献5の実施例1には、PVdF(重量平均分子量35万)とVdF‐HFP共重合体(重量平均分子量27万、HFP共重合4.8モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、これをポリエチレン微多孔膜に塗工して多孔層が形成されたセパレータが記載されている。
 また、特許文献6の実施例23にはVdF‐HFP共重合体(重量平均分子量193万、HFP単位1.1モル%)とVdF‐HFP共重合体(重量平均分子量47万、HFP単位4.8モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、さらに、水酸化アルミニウムを加えた塗工液を作製し、これをポリエチレン微多孔膜に塗工して多孔層が形成されたセパレータが記載されている。
再表1999-036981号 特許第5282179号 特許第5282180号 特許第5282181号 特許第5342088号 国際公開第2016/152863号
 近年、非水電解質二次電池は、大型タブレット、草刈り機、電動二輪車、電気自動車、ハイブリッド自動車、小型船舶などの大型用途向けの展開が期待されており、これに伴い大型電池の普及が想定され、さらに高容量化も想定される。上記特許文献1~5はいずれも電解液を含んだセパレータと電極との接着性を向上させたものであるが、二次電池が大型化した場合、さらなる接着性の向上が要求される。
 本発明者らは、以下に説明するように、電極とセパレータとの接着性を評価する場合、乾燥時の電極とセパレータとの接着性、及び、湿潤時の電極とセパレータとの接着性、の大きく二つの接着性を区別して評価することにより、より接着性を正確に評価できることに着目し、さらに、これらの接着性を、それぞれ乾燥時剥離力と湿潤時曲げ強さとを指標とすることで、評価できることを見出した。
 すなわち、例えば、巻回電極体は、正極電極と負極電極とをセパレータを介して各部材に張力をかけながら巻回して製造される。このとき、金属集電体に塗工された正極電極や負極電極は張力に対してほとんど伸び縮みしないが、セパレータは機械方向にある程度伸びながら巻回されることになる。この巻回体をしばらく放置するとセパレータ部分がゆっくりと縮んでもとの長さに戻ろうとする。この結果、電極とセパレータとの境界面において平行方向の力が発生し、巻回電極体(特に扁平に巻回した電極体)はたわみや歪みが発生しやすくなる。さらに、電池の大型化に伴うセパレータの広幅化や長尺化によりこれら問題が顕在化し、生産時の歩留り悪化が懸念される。巻回電極体のたわみや歪みが発生するのを抑制するため、セパレータには今まで以上に電極との接着性が求められる。また、電極体を搬送する際、各部材が十分に接着された状態でなければ電極とセパレータが剥がれてしまい歩留りよく搬送させることができない。搬送時の接着性の問題は電池の大型化により顕在化し、歩留り悪化が懸念される。そのため、セパレータには電極から剥離しにくい、高い乾燥時剥離力が求められる。
 さらに、ラミネート型電池においては、外装体で圧力をかけられる角型、円筒型電池に比べて、圧力をかけづらく、充放電に伴う電極の膨潤・収縮により、セパレータと電極の界面での部分的な遊離がおこりやすい。その結果、電池の膨れ、電池内部の抵抗増大、サイクル性能の低下につながる。そのため、電解液を注入後の電池内での電極との接着性がセパレータには要求されている。本明細書ではこの接着性について、後述する測定方法により得られる湿潤時曲げ強さを指標として評価する。この強さが大きいと充放電繰り返し後の電池の膨れ抑制などの電池特性向上が期待されると考えらえる。なお、本明細書でいう湿潤時曲げ強さとはセパレータが電解液を含む状態でのセパレータと電極との接着性を表す。乾燥時剥離力はセパレータが電解液を実質的に含まない状態でのセパレータと電極との境界面に対する接着性を表す。なお、電解液を実質的に含まないとはセパレータ中の電解液が500ppm以下であることを意味する。
 しかしながら、発明者らは、従来技術では、電極体の製造や運搬に要求される、乾燥時の電極及びセパレータ間の接着性と、電解液を注入後に要求される、湿潤時の電極及びセパレータ間の接着性とは、トレードオフの関係があり、両方の物性を満たすことが極めて困難であること、及び、上述の特許文献1~5に開示される技術では、接着性が不足する場合があることを見出した。
 さらに、電池には急激な衝撃が加わっても電極活物質の凸部分がセパレータを貫通して電極が短絡しにくい特性(以下、短絡耐性と記す。)が求められる。しかし、今後、電池用セパレータは膜厚の薄膜化が予測されるところ、セパレータの厚さが薄くなるほど短絡耐性の確保が困難になる。短絡耐性を確保するには多孔層に一定量以上の無機粒子を含有させるのが有効であることが知られているが、短絡耐性を確保できるほどの無機粒子を含有させる場合、電極とセパレータとの接着性が低下する傾向にある。
 本発明は、上記事情を鑑みたものであり、乾燥時の電極とセパレータとの接着性、及び、湿潤時の電極とセパレータとの接着性の両方に優れ、かつ、短絡耐性に優れた電池用セパレータと、それを用いた電極体及び二次電池を提供することを目的とする。
 本発明者らは、上記課題を解決するため、鋭意研究を重ねた結果、構造の異なる2種類のフッ素系樹脂とその配合比、および特定量の無機粒子を含む多孔層を備えるセパレータによって上記の課題を解決できることを見出し、本発明を完成するに至った。
 すなわち本発明は、ポリオレフィン微多孔膜と、前記ポリオレフィン微多孔膜の少なくとも一方の面に積層された多孔層と、を備える電池用セパレータであって、
 前記多孔層は、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)と、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)と、無機粒子とを含み、
 前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)は、0.3mol%以上、5.0mol%以下のヘキサフルオロプロピレン単位を有し、重量平均分子量が90万以上、200万以下であり、かつ、親水基を含み、
 前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)は、5.0mol%を超え、8.0mol%以下のヘキサフルオロプロピレン単位を有し、重量平均分子量が10万以上75万以下であり、
 前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)および前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)の合計100質量%に対して、前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)を86質量%以上、98質量%以下含み、前記多孔層中の固形分100体積%に対して、前記無機粒子を40体積%以上、80体積%以下含む、
電池用セパレータである。
 また、前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)は、親水基を0.1mol%以上、5.0mol%以下含むことが好ましい。
 また、前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)は、融点が60℃以上145℃以下であることが好ましい。
 また、前記無機粒子は、二酸化チタン、アルミナ及びベーマイトから選ばれる1種以上であることが好ましい。
 また、前記ポリオレフィン微多孔膜の厚さが3μm以上、16μm以下であることが好ましい。
 また本発明は、正極と、負極と、本発明の電池用セパレータと、を備える電極体である。
 また本発明は、本発明の電極体と、非水電解質とを備える非水電解質二次電池である。
 本発明によれば、乾燥時の電極とセパレータとの接着性、及び、湿潤時の電極とセパレータとの接着性の両方に優れ、かつ、短絡耐性に優れた電池用セパレータと、それを用いた電極体及び二次電池を提供する。
図1は、本実施形態の電池用セパレータの一例を示す模式図である。 図2は、湿潤時曲げ強さの評価方法を示す模式図である。 図3は、短絡耐性試験の評価方法を示す模式図である。
 以下、本発明の実施形態について図面を参照しながら説明する。以下、XYZ座標系を用いて図中の方向を説明する。このXYZ座標系においては、微多孔膜又はセパレータの表面(面内方向)に平行な面をXY平面とする。また、XY平面に垂直な方向(厚み方向)はZ方向とする。X方向、Y方向及びZ方向のそれぞれは、図中の矢印の方向が+方向であり、矢印の方向とは反対の方向が-方向であるものとして説明する。また、図面においては、各構成をわかりやすくするために、一部を強調して、あるいは一部を簡略化して表しており、実際の構造または形状、縮尺等が異なっている場合がある。
 図1は、本実施形態に係る電池用セパレータの一例を示す図である。図1に示すように、電池用セパレータ10(以下、「セパレータ10」と略記する場合がある。)は、ポリオレフィン微多孔膜1と、ポリオレフィン微多孔膜1の少なくとも一方の面に積層された多孔層2と、を備える。以下、電池用セパレータを構成する各層について説明する。
 [1]ポリオレフィン微多孔膜
 ポリオレフィン微多孔膜1は、ポリオレフィン樹脂を含む微多孔膜である。ポリオレフィン微多孔膜1は、特に限定されず、公知の電池用セパレータに用いられるポリオレフィン微多孔膜を用いることができる。なお、本明細書において、微多孔膜とは内部に連結した空隙を有する膜を意味する。以下、ポリオレフィン微多孔膜1の一例について説明するが、本発明に用いられるポリオレフィン微多孔膜は、これに限定されるものではない。
 [ポリオレフィン樹脂]
 ポリオレフィン微多孔膜1(以下、「微多孔膜1」と略記する場合がある。)を構成するポリオレフィン樹脂としては、エチレン、プロピレン、1-ブテン、4-メチル1-ペンテン、1-ヘキセンなどを重合した単独重合体、2段階重合体、共重合体またはこれらの混合物等が挙げられる。中でも、ポリオレフィン樹脂としては、ポリエチレン樹脂を主成分とするとすることが好ましい。ポリエチレン樹脂の含有量は、微多孔膜1中のポリオレフィン樹脂の全質量100質量%に対して、70質量%以上であるのが好ましく、より好ましくは90質量%以上、さらに好ましくは100質量%である。ポリオレフィン樹脂には、必要に応じて、酸化防止剤、無機充填剤などの各種添加剤を本発明の効果を損なわない範囲で添加しても良い。
 ポリオレフィン微多孔膜1の膜厚は、特に限定されないが、電池の高容量化の観点から3μm以上、16μm以下が好ましく、より好ましくは5μm以上、12μm以下であり、さらに好ましくは5μm以上、10μm以下である。ポリオレフィン微多孔膜の膜厚が上記好ましい範囲である場合、実用的な膜強度と孔閉塞機能を保有させることができ、今後、進むと予想される電池の高容量化により適する。すなわち、本実施形態の電池用セパレータ10は、ポリオレフィン微多孔膜1の厚さが薄くても、セパレータ10のポリオレフィン微多孔膜1と多孔層2との層間、及び、セパレータ10と電極間との接着性に優れることができ、セパレータ10を薄膜化した際、その効果がより明確に発揮される。
 ポリオレフィン微多孔膜1の透気抵抗度は、特に限定されないが、50sec/100cmAir以上、300sec/100cmAir以下が好ましい。ポリオレフィン微多孔膜1の空孔率は、特に限定されないが、30%以上、70%以下が好ましい。ポリオレフィン微多孔膜1の平均孔径は、特に限定されないが、孔閉塞性能の観点から、好ましくは0.01μm以上、1.0μm以下が好ましい。
 [ポリオレフィン微多孔膜の製造方法]
 微多孔膜1の製造方法としては、所望の特性を有するポリオレフィン微多孔膜が製造できれば、特に限定されず、従来公知の方法を用いることができる。微多孔膜1の製造方法は、例えば、日本国特許第2132327号公報および日本国特許第3347835号公報、国際公開2006/137540号等に記載された方法を用いることができる。以下、微多孔膜1の製造方法の一例について、説明する。なお、微多孔膜1の製造方法は、下記の方法に限定されない。
 微多孔膜1の製造方法は、下記の工程(1)~(5)を含むことができ、さらに下記の工程(6)~(8)を含むこともできる。
(1)前記ポリオレフィン樹脂と成膜用溶剤とを溶融混練し、ポリオレフィン溶液を調製する工程
(2)前記ポリオレフィン溶液を押出し、冷却しゲル状シートを形成する工程
(3)前記ゲル状シートを延伸する第1の延伸工程
(4)前記延伸後のゲル状シートから成膜用溶剤を除去する工程
(5)前記成膜用溶剤除去後のシートを乾燥する工程
(6)前記乾燥後のシートを延伸する第2の延伸工程
(7)前記乾燥後のシートを熱処理する工程
(8)前記延伸工程後のシートに対して架橋処理及び/又は親水化処理する工程。
 以下、各工程についてそれぞれ説明する。
 (1)ポリオレフィン溶液の調製工程
 ポリオレフィン樹脂に、それぞれ適当な成膜用溶剤を添加した後、溶融混練し、ポリオレフィン溶液を調製する。溶融混練方法として、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。
 ポリオレフィン溶液中、ポリオレフィン樹脂と成膜用溶剤との配合割合は、特に限定されないが、ポリオレフィン樹脂20~30質量部に対して、成膜溶剤70~80質量部であることが好ましい。ポリオレフィン樹脂の割合が上記範囲内であると、ポリオレフィン溶液を押し出す際にダイ出口でスウェルやネックインが防止でき、押出し成形体(ゲル状成形体)の成形性及び自己支持性が良好となる。
 (2)ゲル状シートの形成工程
 ポリオレフィン溶液を押出機からダイに送給し、シート状に押し出す。同一または異なる組成の複数のポリオレフィン溶液を、押出機から一つのダイに送給し、そこで層状に積層し、シート状に押出してもよい。
 押出方法はフラットダイ法及びインフレーション法のいずれでもよい。押出し温度は140~250℃好ましく、押出速度は0.2~15m/分が好ましい。ポリオレフィン溶液の各押出量を調節することにより、膜厚を調節することができる。押出方法としては、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。
 得られた押出し成形体を冷却することによりゲル状シートを形成する。ゲル状シートの形成方法として、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は25℃以下まで行うのが好ましい。冷却により、成膜用溶剤によって分離されたポリオレフィンのミクロ相を固定化することができる。冷却速度が上記範囲内であると結晶化度が適度な範囲に保たれ、延伸に適したゲル状シートとなる。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができるが、冷媒で冷却したロールに接触させて冷却させることが好ましい。
 (3)第1の延伸工程
 次に、得られたゲル状シートを少なくとも一軸方向に延伸する。ゲル状シートは成膜用溶剤を含むので、均一に延伸できる。ゲル状シートは、加熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸及び多段延伸(例えば、同時二軸延伸及び逐次延伸の組合せ)のいずれでもよい。
 本工程における延伸倍率(面積延伸倍率)は、9倍以上が好ましく、16倍以上がより好ましく、25倍以上が特に好ましい。また、機械方向(MD)及び幅方向(TD)での延伸倍率は、互いに同じでも異なってもよい。なお、本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の面積延伸倍率のことをいう。
 本工程の延伸温度は、ポリオレフィン樹脂の結晶分散温度(Tcd)~Tcd+30℃の範囲内にするのが好ましく、結晶分散温度(Tcd)+5℃~結晶分散温度(Tcd)+28℃の範囲内にするのがより好ましく、Tcd+10℃~Tcd+26℃の範囲内にするのが特に好ましい。例えば、ポリエチレンの場合は、延伸温度を90~140℃とするのが好ましく、より好ましくは100~130℃にする。結晶分散温度(Tcd)は、ASTM D4065による動的粘弾性の温度特性測定により求められる。
 以上のような延伸によりポリエチレンラメラ間に開裂が起こり、ポリエチレン相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに細孔が拡大するが、適切な条件で延伸を行うと、貫通孔径を制御し、さらに薄い膜厚でも高い空孔率を有する事が可能となる。
 所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよく、これにより機械的強度に優れた微多孔膜が得られる。その方法の詳細は日本国特許第3347854号公報に記載されている。
 (4)成膜用溶剤の除去
 洗浄溶媒を用いて、成膜用溶剤の除去(洗浄)を行う。ポリオレフィン相は成膜用溶剤相と相分離しているので、成膜用溶剤を除去すると、微細な三次元網目構造を形成するフィブリルからなり、三次元的に不規則に連通する孔(空隙)を有する多孔質の膜が得られる。洗浄溶媒およびこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号公報や特開2002-256099号公報に開示の方法を利用することができる。
 (5)乾燥
 成膜用溶剤を除去した微多孔膜を、加熱乾燥法又は風乾法により乾燥する。乾燥温度はポリオレフィン樹脂の結晶分散温度(Tcd)以下であるのが好ましく、特にTcdより5℃以上低いことが好ましい。乾燥は、微多孔膜を100質量%(乾燥質量)として、残存洗浄溶媒が5質量%以下になるまで行うのが好ましく、3質量%以下になるまで行うのがより好ましい。残存洗浄溶媒が上記範囲内であると、後段の微多孔膜の延伸工程及び熱処理工程を行ったときに微多孔膜の空孔率が維持され、透過性の悪化が抑制される。
 (6)第2の延伸工程
 乾燥後の微多孔膜を、少なくとも一軸方向に延伸することが好ましい。微多孔膜の延伸は、加熱しながら上記と同様にテンター法等により行うことができる。延伸は一軸延伸でも二軸延伸でもよい。二軸延伸の場合、同時二軸延伸及び逐次延伸のいずれでもよい。本工程における延伸温度は、特に限定されないが、通常90~135℃が好ましく、より好ましくは95~130℃である。 本工程における微多孔膜の延伸の一軸方向への延伸倍率(面積延伸倍率)は、一軸延伸の場合、機械方向又は幅方向に1.0~2.0倍とすることが好ましい。二軸延伸の場合、面積延伸倍率は、下限値が1.0倍であるのが好ましく、より好ましくは1.1倍、さらに好ましくは1.2倍である。上限値は、3.5倍が好適である。機械方向及び幅方向に各々1.0~2.0倍とし、機械方向と幅方向での延伸倍率が互いに同じでも異なってもよい。なお、本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の延伸倍率のことをいう。
 (7)熱処理
 また、乾燥後の微多孔膜は、熱処理を行うことができる。熱処理によって結晶が安定化し、ラメラが均一化される。熱処理方法としては、熱固定処理及び/又は熱緩和処理を用いることができる。熱固定処理とは、膜の寸法が変わらないように保持しながら加熱する熱処理である。熱緩和処理とは、膜を加熱中に機械方向や幅方向に熱収縮させる熱処理である。熱固定処理は、テンター方式又はロール方式により行うのが好ましい。例えば、熱緩和処理方法としては特開2002-256099号公報に開示の方法があげられる。熱処理温度はポリオレフィン樹脂のTcd~Tmの範囲内が好ましく、微多孔膜の延伸温度±5℃の範囲内がより好ましく、微多孔膜の第2の延伸温度±3℃の範囲内が特に好ましい。
 (8)架橋処理、親水化処理
 また、接合後又は延伸後の微多孔膜に対して、さらに、架橋処理および親水化処理を行うこともできる。例えば、微多孔膜に対して、α線、β線、γ線、電子線等の電離放射線の照射することに、架橋処理を行う。電子線の照射の場合、0.1~100Mradの電子線量が好ましく、100~300kVの加速電圧が好ましい。架橋処理により微多孔膜のメルトダウン温度が上昇する。また、親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。
 [2]多孔層
 多孔層2は、二種類のフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(VdF-HFP)と、無機粒子とを含む。以下、多孔層2を構成する各成分について以下に説明する。
 [フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)]
 フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)(以下、単に共重合体(A)と略記する場合がある。)は、フッ化ビニリデン単位とヘキサフルオロプロピレン単位とを含む共重合体であり、後述するように、親水基を含む。共重合体(A)における、ヘキサフルオロプロピレン単位の含有量は、0.3mol%以上であり、好ましくは0.5mol%以上である。ヘキサフルオロプロピレン単位の含有量が上記範囲より小さい場合、ポリマー結晶性が高くなり、セパレータの電解液に対する膨潤度が低くなるため、セパレータと電極との接着性が低下し、電解液注入後の電極とセパレータとの接着性(湿潤時曲げ強さ)が十分に得られないことがある。一方、ヘキサフルオロプロピレン単位の含有量は、5.0mol%以下であり、より好ましくは2.5mol%以下である。ヘキサフルオロプロピレン単位の含有量が上記範囲を超える場合、セパレータが電解液に対して膨潤しすぎてしまい湿潤時曲げ強さが低下することがある。
 共重合体(A)の重量平均分子量は、90万以上であり、好ましくは100万以上である。一方、共重合体(A)の重量平均分子量は、200万以下であり、より好ましくは150万以下である。共重合体(A)の重量平均分子量が上記範囲内である場合、多孔層を形成する工程において、共重合体(A)を溶媒に溶解させる時間が極端に長くならず、生産効率を上げることができたり、電解液に膨潤した際に適度なゲル強度を維持でき、湿潤時曲げ強さが向上させたりすることができる。なお、共重合体(A)の重量平均分子量は、ゲル・パーミエーション・クロマトグラフィによるポリスチレン換算値である。
 共重合体(A)は、親水基を有する。共重合体(A)は、親水基を有することで電極表面に存在する活物質や電極中のバインダー成分とより強固に接着することが可能となる。この理由は定かではないが、水素結合により接着力が向上するためと推測される。親水基としては、例えば、ヒドロキシル基、カルボン酸基、スルホン酸基、およびこれらの塩などが挙げられる。これらの中でも、特に、カルボン酸基、カルボン酸エステルが好ましい。
 共重合体(A)に親水基を導入する方法としては、公知の方法を用いることがき、例えば、共重合体(A)の合成の際に、無水マレイン酸、マレイン酸、マレイン酸エステル、マレイン酸モノメチルエステル等の親水基を有する単量体を共重合させることにより主鎖に導入する方法や、グラフト化により側鎖として導入する方法などを用いることができる。親水基変性率は、FT-IR、NMR、定量滴定などで測定できる。例えば、カルボン酸基の場合、FT-IRを用いてホモポリマーを基準としてC-H伸縮振動とカルボキシル基のC=O伸縮振動の吸収強度比から求めることができる。
 共重合体(A)の親水基の含有量は、その好ましくは0.1mol%以上であり、より好ましくは0.3mol%以上である。一方、親水基の含有量は5.0mol%以下が好ましく、より好ましくは4.0mol%以下である。親水基の含有量を5.0mol%以下とすることで、ポリマー結晶性が低くなりすぎ電解液に対する膨潤度が高くなり湿潤時曲げ強さが悪化するのを抑えることができる。また、親水基の含有量が上記範囲内である場合、多孔層2に含まれる無機粒子と、共重合体(A)との親和性が増し、短絡耐性の向上、及び、無機粒子の脱落を抑制する効果も奏する。この理由は定かではないが、多孔層2の主成分である親水基を有する共重合体(A)と無機粒子によって、多孔層2の膜強度が増すことによるものと推察される。多孔層2におけるフッ化ビニリデン-ヘキサフルオロプロピレン共重合体の親水基の定量は、IR(赤外吸収スペクトル)法、NMR(核磁気共鳴)法等により求めることができる。
 共重合体(A)は、特性を損なわない範囲で、フッ化ビニリデン、ヘキサフルオロプロピレン、及び、親水基を有する単量体以外の、他の単量体をさらに重合した共重合体であってもよい。他の単量体として、例えば、テトラフルオロエチレン、トリフルオロエチレン、トリクロロエチレン、フッ化ビニル等の単量体が挙げられる。
 共重合体(A)の構造、分子量を上記範囲内とすることで、セパレータ10は、非水電解質二次電池に用いた場合、非水電解液に対して親和性が高く、化学的、物理的な安定性が高く、湿潤時曲げ強さを発現し、高温下での使用にも電解液との親和性が十分維持される。
 [フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)]
 フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)(以下、単に共重合体(B)と略記する場合がある。)は、フッ化ビニリデン単位とヘキサフルオロプロピレン単位とを含む共重合体である。共重合体(B)における、ヘキサフルオロプロピレンの含有量は、5.0mol%を超え、より好ましくは6.0mol%以上であり、さらに好ましくは7.0mol%以上である。ヘキサフルオロプロピレン単位の含有量が5.0mol%以下である場合、乾燥時のセパレータと電極との接着性(乾燥時剥離力)が十分に得られない場合がある。一方、その上限側の含有量は、8.0mol%以下であり、より好ましくは7.5mol%以下である。また、ヘキサフルオロプロピレン単位の含有量が8.0mol%を超える場合、電解液に対して膨潤しすぎてしまい湿潤時曲げ強さが低下することがある。なお、共重合体(B)は、親水基を含んでもよいが、含まなくてもよい。
 共重合体(B)は、重量平均分子量が10万以上75万以下である。共重合体(B)の重量平均分子量が上記範囲である場合、非水電解液に対して親和性が高く、化学的、物理的な安定性が高く、乾燥時のセパレータと電極との優れた接着性(乾燥時剥離力)が得られる。この理由は定かではないが、乾燥時剥離力を発現するような加熱及び加圧条件下で共重合体(B)は流動性を帯び、電極の多孔層に入り込むことでアンカーとなり、これにより多孔層2と電極との間は強固な接着性を有するためと推測できる。すなわち、電池用セパレータ10において、共重合体(B)は、乾燥時剥離力に寄与し、巻回電極体や積層電極体のたわみ、歪み防止や搬送性の改善に寄与することができる。なお、共重合体(B)は共重合体(A)と異なる樹脂である。
 共重合体(B)の重量平均分子量は、10万以上であり、好ましくは15万以上である。共重合体(B)の重量平均分子量が上記範囲の下限値を下回る場合、分子鎖の絡み合い量が少なすぎるため樹脂強度が弱くなり、多孔層2の凝集破壊がおこりやすくなる。一方、共重合体(B)の重量平均分子量は、好ましくは75万以下であり、より好ましくは70万以下である。共重合体(B)の重量平均分子量が上記範囲の上限値を超える場合、乾燥時剥離力を得るために、捲回体の製造工程におけるプレス温度を高くする必要がある。そうするとポリオレフィンを主成分とする微多孔膜は収縮するおそれがある。また、共重合体(B)の重量平均分子量が上記範囲の上限値を超える場合、分子鎖の絡み合い量が増加し、プレス条件下で十分に流動できなくなるおそれがある。
 共重合体(B)の融点は、好ましくは60℃以上であり、より好ましくは80℃以上である。一方、共重合体(B)の融点は、好ましくは145℃以下であり、より好ましくは140℃以下である。なお、ここでいう融点(Tm)とは、示差走査熱量測定(DSC)法で測定された昇温時の吸熱ピークのピークトップの温度である。
 共重合体(B)は、フッ化ビニリデン単位及びヘキサフルオロプロピレン単位を有する共重合体である。共重合体(B)は、共重合体(A)と同様、懸濁重合法などで得ることができる。共重合体(B)の融点は、フッ化ビニリデン単位からなる部位の結晶性を制御することで調整することができる。例えば、共重合体(B)にフッ化ビニリデン単位以外の単量体が含まれる場合、フッ化ビニリデン単位の割合を制御することで融点を調整できる。フッ化ビニリデン単位以外の単量体は、テトラフルオロエチレン、トリフルオロエチレン、トリクロロエチレン、ヘキサフルオロプロピレン、フッ化ビニル無水マレイン酸、マレイン酸、マレイン酸エステル、マレイン酸モノメチルエステル等を1種類又は2種以上有してもよい。共重合体(B)を重合するときに上記単量体を添加して、共重合により主鎖に導入する方法やグラフト化により側鎖として導入する方法が挙げられる。また、フッ化ビニリデン単位のHead-to-Head結合(-CH-CF-CF-CH-)の割合を制御することで融点を調整してもよい。
 [共重合体(A)及び共重合体(B)の含有量]
 共重合体(A)の含有量は、共重合体(A)と共重合体(B)の合計重量100質量%に対して、86質量%以上であり、より好ましくは88質量%以上である。共重合体(A)の含有量は、その上限が98質量%以下であり、より好ましくは97質量%以下である。また、共重合体(B)の含有量は、共重合体(A)と共重合体(B)の合計重量100質量%に対して、14質量%以下であり、好ましくは12質量%以下である。また、共重合体(B)の含有量は、2質量%以上であり、3質量%以上である。共重合体(A)の含有量及び共重合体(B)の含有量を上記範囲内とする場合、多孔層2は優れた湿潤時曲げ強さと乾燥時剥離力とを高いレベルで両立することができる。
 なお、多孔層2は、本発明の効果を阻害しない範囲で、共重合体(A)及び共重合体(B)以外の樹脂を含むことができるが、多孔層2を構成する樹脂成分としては、共重合体(A)及び共重合体(B)からなることが好ましい。なお、共重合体(A)及び共重合体(B)以外の樹脂を含む場合、上記共重合体(A)又は上記共重合体(B)の含有量は、多孔層2の樹脂成分100質量%に対する割合とする。
 [無機粒子]
 多孔層2は、無機粒子を含む。多孔層2に粒子を含むことにより、特に短絡耐性を向上させることができ、熱安定性の向上が期待できる。
 無機粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラス粒子、カオリン、タルク、二酸化チタン、アルミナ、シリカ-アルミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカ、ベーマイト、酸化マグネシウムなどが挙げられる。特に、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)のとの親和性の観点から、OH基を多く含む無機粒子が好ましく、具体的にては、二酸化チタン、アルミナ、ベーマイトから選ばれる1種類以上を用いることが好ましい。
 多孔層2に含まれる無機粒子の含有量は、多孔層2の固形分体積を100体積%に対して、80体積%以下であり、好ましくは70体積%以下であり、より好ましくは60体積%以下である。一方、無機粒子の含有量は、40体積%以上であり、より好ましくは45体積%以上であり、さらに好ましくは50体積%以上であり、さらに好ましくは51体積%以上である。なお、多孔層2に含まれる無機粒子の含有量は、共重合体(A)と共重合体(B)の密度を1.77g/cmとして計算して算出した。
 一般に、多孔層に接着性を持たない無機粒子が含まれる場合、湿潤時曲げ強さ、乾燥時剥離力が低下する傾向にある。しかし、本実施形態に係る多孔層2は、上述したように、特定のフッ素樹脂を特定の割合で含有することにより、無機粒子を上記範囲で含有した場合、電極に対する高い接着力を有し、湿潤時曲げ強さ、乾燥時剥離力のバランスが良好となり、且つ、優れた短絡耐性を得ることができる。
 粒子脱落の観点から、無機粒子の平均粒径はポリオレフィン微多孔膜の平均流量細孔径の1.5倍以上、50倍以下であることが好ましく、より好ましくは2.0倍以上、20倍以下である。平均流量細孔径は、JISK3832にならって測定され、パームポロメーター(例えばPMI社製、CFP-1500A)を用いて、Dry-up、Wet-upの順で測定することによって求めることができる。具体的にはDry-up測定で圧力、流量曲線の1/2の傾きを示す曲線と、Wet-up測定の曲線が交わる点の圧力から孔径を換算する。圧力と孔径の換算は下記の数式を用いる。
d=C・γ/P
上記式中、「d(μm)」は微多孔膜の孔径、「γ(mN/m)」は液体の表面張力、「P(Pa)」は圧力、「C」は定数である。
 セル巻回時の巻き取芯とのすべり性や粒子脱落の観点から、無機粒子の平均粒径は0.3μm~1.8μmが好ましく、より好ましくは0.5μm~1.5μm、さらに好ましくは0.9μm~1.3μmである。粒子の平均粒径はレーザー回折方式や動的光散乱方式の測定装置を使用して測定できる。例えば、超音波プローブを用いて界面活性剤入り水溶液に分散させた粒子を粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)で測定し、体積換算での小粒子側から50%累積された時の粒子径(D50)の値を平均粒径とするのが好ましい。粒子の形状は真球形状、略球形状、板状、針状が挙げられるが特に限定されない。
 [多孔層の物性]
 多孔層2の膜厚は、片面当たり0.5μm以上、3μm以下が好ましく、より好ましくは1μm以上、2.5μm以下、さらに好ましくは1μm以上、2μm以下である。片面あたり膜厚が0.5μm以上である場合、電極との高い接着性(湿潤時曲げ強さ、乾燥時剥離力)が確保できる。一方、片面あたり膜厚が3μm以下であれば巻き嵩を抑えることができ、より薄膜化することができ、今後、進むであろう電池の高容量化により適する。
 多孔層2の空孔率は、30%以上、90%以下が好ましく、より好ましくは40%以上、70%以下である。多孔層2の空孔率を上記範囲内とした場合、セパレータの電気抵抗の上昇を防ぎ、大電流を流すことができ、かつ膜強度を維持できる。
 [3]電池用セパレータの製造方法
 電池用セパレータの製造方法は、特に限定されず、公知の方法を用いて製造することができる。以下、電池用セパレータの製造方法の一例について、説明する。電池用セパレータの製造方法は、以下の工程(1)~(3)を順次含むことができる。
(1)フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)及びフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)を溶媒に溶解したフッ素樹脂溶液を得る工程
(2)フッ素系樹脂溶液に無機粒子を添加し、混合、分散して塗工液を得る工程
(3)塗工液をポリオレフィン微多孔膜に塗布して凝固液に浸漬し、洗浄、乾燥する工程。
 (1)フッ素樹脂溶液を得る工程
 フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)及びフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)を溶媒に徐々に添加し完全に溶解させる。
 溶媒はフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)及びフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)を溶解でき、かつ、凝固液と混和しうるものであれば特に限定されない。溶解性、低揮発性の観点から、溶媒はN-メチル-2-ピロリドンが好ましい。
 (2)塗工液を得る工程
 塗工液を得るには、無機粒子を十分に分散させることが重要である。具体的には、前記フッ素樹脂溶液を撹拌しながら粒子を添加して一定の時間(例えば、約1時間)ディスパーなどで撹拌することで予備分散し、次いでビーズミルやペイントシェーカーを用いて粒子を分散させる工程(分散工程)を経て、粒子の凝集を減らし、さらに、撹拌羽根のついたスリーワンモータで混合して塗工液を調製する。
 (3)塗工液を微多孔膜に塗布し、凝固液に浸漬し、洗浄、乾燥する工程
 微多孔膜に塗工液を塗布し、塗布した微多孔膜を凝固液に浸漬してフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)を相分離させ、三次元網目構造を有する状態で凝固させ、洗浄、乾燥する。これにより微多孔膜と、微多孔膜の表面に多孔層を備えた電池用セパレータが得られる。塗工液を微多孔膜に塗布する方法は、公知の方法でもよく、例えば、ディップ・コート法、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、マイヤーバーコート法、パイプドクター法、ブレードコート法およびダイコート法などが挙げられ、これらの方法を単独あるいは組み合わせることができる。
 凝固液は水を主成分とすることが好ましく、共重合体(A)、共重合体(B)に対する良溶媒を1~20質量%含む水溶液が好ましく、より好ましくは5~15質量%含有する水溶液である。良溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが挙げられる。凝固液内での浸漬時間は3秒以上とすることが好ましい。上限は制限されないが、10秒もあれば十分である。
 洗浄には水を用いることができる。乾燥は、例えば100℃以下の熱風を用いた乾燥することができる。
 [4]電池用セパレータの物性
 電池用セパレータ
 本実施形態の電池用セパレータ10は、水系電解液を使用する電池、非水系電解質を使用する電池のいずれにも好適に使用できるが、非水系電解質二次電池により好適に用いることができる。具体的には、ニッケル-水素電池、ニッケル-カドミウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウム二次電池、リチウムポリマー二次電池等の二次電池のセパレータとして好ましく用いることができる。中でも、リチウムイオン二次電池のセパレータとして用いるのが好ましい。
 非水系電解質二次電池は、正極と負極がセパレータを介して配置されており、セパレータが電解液(電解質)を含有している。非水系電解質電極の構造は、特に限定されず、従来公知の構造を用いることができ、例えば、円盤状の正極及び負極が対向するように配設された電極構造(コイン型)、平板状の正極及び負極が交互に積層された電極構造(積層型)、積層された帯状の正極及び負極が巻回された電極構造(捲回型)等に有することができる。本実施形態の電池用セパレータは、いずれの電池構造においても、セパレータと電極間で、優れた接着性を有することができる。
 リチウムイオン二次電池等を含む非水系電解質二次電池に使用される、集電体、正極、正極活物質、負極、負極活物質および電解液は、特に限定されず、従来公知の材料を適宜組み合わせて用いることができる。
 なお、電池用セパレータ10は、図1(A)に示すように、ポリオレフィン微多孔膜1の一方の面に多孔質2を積層してもよく、ポリオレフィン微多孔膜1の両方の面に多孔質2を積層してもより。また、図1では、ポリオレフィン微多孔膜1は、一層であるが、二層以上の積層体であってもよい。また、電池用セパレータ10は、ポリオレフィン微多孔膜1及び多孔質2以外の他の層をさらに積層してもよい。
 電池用セパレータの湿潤時曲げ強さは、好ましくは4.0N以上であり、より好ましくは5.0N以上であり、さらに好ましくは6.0N以上である。湿潤時曲げ強さの上限値は特に定めないが、例えば、15.0N以下である。湿潤時曲げ強さが上記好ましい範囲内である場合、セパレータと電極との界面での部分的な遊離をより抑制し、電池内部抵抗の増大、電池特性の低下を抑制できる。なお、湿潤時曲げ強さは、後述の実施例に記載の方法により測定することができる。
 電池用セパレータの乾燥時剥離力は、好ましくは2.0N/m以上、より好ましくは5.0N/m以上、さらに好ましくは6.0N/m以上である。乾燥時剥離力の上限値は特に定めないが、例えば、40.0N/m以下である。乾燥時剥離力が上記好ましい範囲内である場合、巻回電極体又は積層電極体を電極体がばらけることなく搬送できることが期待される。なお、乾燥時剥離力は、後述の実施例に記載の方法により測定することができる。
 本実施形態の電池用セパレータは、湿潤時曲げ強さと乾燥時剥離力とを高いレベルで両立することができる。電池用セパレータは、具体的には、後述の実施例に示されるように、湿潤時曲げ強さが4.0N以上、かつ乾燥時剥離力が2.0N/m以上を満たすことができる。
 なお、本発明は、上記の実施の形態に限定されるものでなく、その要旨の範囲内で種々変形して実施することができる。
 以下、本発明を実施例により、さらに詳細に説明するが、本発明の実施態様は、これらの実施
例に限定されるものではない。なお、実施例で用いた評価法、分析の各法および材料は、以下のとおりである。
 (1)膜厚
 接触式膜厚計(株式会社ミツトヨ製“ライトマチック”(登録商標)series318)を使用して、微多孔膜及びセパレータの膜厚を測定した。測定は、超硬球面測定子φ9.5mmを用いて、加重0.01Nの条件で20点を測定し、得られた測定値の平均値を膜厚とした。
 (2)フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)およびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)の重量平均分子量(Mw)
 以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
・測定装置:Waters Corporation製GPC-150C
・カラム:昭和電工株式会社製shodex KF-806M 2本
・カラム温度:23℃
・溶媒(移動相):0.05M塩化リチウム添加N-メチル-2-ピロリドン(NMP)
・溶媒流速:0.5 ml/分
  ・試料調製:資料2mgに測定溶媒4mLを加え、室温で穏やかに攪拌した(溶解を視認)
・インジェクション量:0.2mL
・検出器:示差屈折率検出器 RI(東ソー製 RI-8020型 感度16)
・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、ポリエチレン換算係数(0.46)を用いて作成した。
 (3)融点
 示差走査熱量分析装置(株式会社パーキンエルマー製DSC)にて、測定パンに7mgの樹脂を入れ測定用試料とし、以下の条件にて測定した。初めに昇温、冷却した後、第2回目の昇温時の吸熱ピークのピークトップを融点とした。
・昇温、冷却速度  : ±10℃/min.
・測定温度範囲   : 30~230℃。
 (4)湿潤時曲げ強さ
 一般に、正極にはフッ素樹脂のバインダーが用いられ、フッ素樹脂を含む多孔層がセパレータ上に備えられている場合、フッ素樹脂同士の相互拡散により接着性が担保されやすい。一方、負極にはフッ素樹脂以外のバインダーが用いられ、フッ素系樹脂の拡散が起きにくいため正極に比べ負極はセパレータとの接着性が得られにくい。そこで、本測定では、以下に述べる湿潤時曲げ強さを測定することにより、セパレータと負極との間の接着性の指標として評価した。
 (負極の作製)
 カルボキシメチルセルロースを1.5質量部含む水溶液を人造黒鉛96.5質量部に加えて混合し、さらに固形分として2質量部のスチレンブタジエンラテックスを加えて混合して負極合剤含有スラリーとした。この負極合剤含有スラリーを、厚みが8μmの銅箔からなる負極集電体の両面に均一に塗付して乾燥して負極層を形成し、その後、ロールプレス機により圧縮成形して集電体を除いた負極層の密度を1.5g/cmにして、負極を作製した。
 (試験用巻回体の作製)
 上記で作成された負極20(機械方向161mm×幅方向30mm)と、作製されたセパレータ10(機械方向160mm×幅方向34mm)を重ね、金属板(長さ300mm、幅25mm、厚さ1mm)を巻き芯としてセパレータ10が内側になるようにセパレータ10と負極20を巻き取り、金属板を引き抜いて試験用巻回体30を得た。試験用巻回体は長さ約34mm×幅約28mmとなった。
 (湿潤時曲げ強さの測定方法)
 ポリプロピレンからなるラミネートフィルム(長さ70mm、幅65mm、厚さ0.07mm)2枚を重ね、4辺のうち3辺を溶着した袋状のラミネートフィルム22内に試験用巻回体30を入れた。エチレンカーボネートとエチルメチルカーボネートを体積比3:7で混合した溶媒にLiPFを1mol/Lの割合で溶解させた電解液500μLをグローブボックス中でラミネートフィルム22の開口部から注入し、試験用巻回体30に含浸させ、真空シーラーで開口部の一辺を封止した。
 次に、ラミネートフィルム22に封入した試験用巻回体30を2枚のガスケット(厚さ1mm、5cm×5cm)で挟み込み、精密加熱加圧装置(新東工業株式会社製、CYPT-10)にて98℃、0.6MPaで2分間加圧し、室温で放冷した。ラミネートフィルム22に封入したまま、加圧後の試験用巻回体30について、万能試験機(株式会社島津製作所製、AGS-J)を用いて湿潤時曲げ強さを測定した。以下、図2を参照して、詳細を記載する。
 2本のアルミニウム製L字アングル41(厚さ1mm、10mm×10mm、長さ5cm)を90°部分が上になるように平行に、端部をそろえて配置し、90°部分を支点として支点間距離が15mmとなるよう固定した。2本のアルミニウム製L字アングル41の支点間距離の中間である7.5mm地点に試験用巻回体の幅方向の辺(約28mm)の中点を合わせてL字アングル41の長さ方向の辺からはみ出さないように試験用巻回体30を配置した。
 次に、圧子としてアルミニウム製L字アングル42(厚さ1mm、10mm×10mm、長さ4cm)の長さ方向の辺から試験用巻回体の長さ方向の辺(約34mm)がはみ出さないようにかつ平行にして、試験用巻回体の幅方向の辺の中点にアルミニウム製L字アングル42の90°部分を合わせ、90°部分が下になるようにアルミニウム製L字アングル42を万能試験機のロードセル(ロードセル容量50N)に固定した。3個の試験用巻回体を負荷速度0.5mm/minにて測定し得られた最大試験力の平均値を湿潤時曲げ強度とした。
 (5)乾燥時剥離力
(負極の作製)
 上記湿潤時曲げ強さの場合と同一の負極20を用いた。
(剥離試験片の作成)
 上記で作成された負極20(70mm×15mm)と、作製したセパレータ10(機械方向90mm×幅方向20mm)を重ね、これを2枚のガスケット(厚さ0.5mm、95mm×27mm)で挟み込み、精密加熱加圧装置(新東工業株式会社製、CYPT-10)にて90℃、8MPaで2分間加圧し、室温で放冷した。この負極20とセパレータ10との積層体の負極側に幅1cmからなる両面テープを貼りつけ、両面テープのもう一方の面をSUS板(厚さ3mm、長さ150mm×幅50mm)に、セパレータの機械方向とSUS板長さ方向が平行になるよう貼り付けた。これを剥離試験片とした。
(乾燥時剥離力の測定方法)
 万能試験機(株式会社島津製作所製、AGS-J)を用いてセパレータ10をロードセル側チャックに挟み込み、試験速度300mm/分にて180度剥離試験を実施した。剥離試験中のストローク20mmから70mmまでの測定値を平均化した値を剥離試験片の剥離力とした。計3個の剥離試験片を測定し、剥離力の平均値を幅換算した値を乾燥時剥離力(N/m)とした。
 (6)短絡耐性試験
 短絡耐性の評価は、卓上型精密万能試験機 オートグラフAGS-X(株式会社 島津製作所製)を用いて実施した。まず、図3(A)に示されるように、ポリプロピレン製絶縁体5(厚み0.2mm)、リチウムイオン電池用負極21(総厚:約140μm、基材:銅箔(厚み約9μm)、活物質:人造黒鉛(粒径約30μm)、両面塗工)、セパレータ10、アルミニウム箔4(厚み約0.1mm)を積層したサンプル積層体31を作製した。次に、図3(B)に示されるように、サンプル積層体31を万能試験機の圧縮治具(下側)44に両面テープで固定した。次に、上記サンプル積層体31のアルミニウム箔4、負極21を、コンデンサとクラッド抵抗器からなる回路にケーブルでつないだ。コンデンサは約1.5Vに充電し、サンプル積層体31中のセパレータ、アルミニウム箔4の間に直径約500μmの金属球6(材質:クロム(SUJ-2))を置いた。次に、万能試験機に圧縮治具を取り付け、図3(B)に示されるように両圧縮治具43、44の間に金属球6を含むサンプル積層体31を置いて、速度0.3mm/min.で圧縮し、荷重が100Nに達した時点で試験終了とした。このとき、圧縮荷重変化において変曲点が現れた部分をセパレータの破膜点とし、さらに金属球を介して上記回路が形成され電流が検知された瞬間をショート発生点とした。圧縮によりセパレータが破膜し圧縮応力に変曲点を生じたときの圧縮変位A(t)、および回路に電流が流れた瞬間の圧縮変位B(t)を測定し、次の(式1)で求める数値が1.1以上の場合、電池内に混入した異物によりセパレータが破膜しても、異物表面に塗工層組成物が付着することにより絶縁が保たれることを意味するため、短絡耐性は良好と評価した。一方、式1で求める数値が1.0より大きく1.1未満の場合、セパレータの破膜と短絡は同時には起こらないものの、電池部材の捲回にかかる張力や充放電時の電極の膨張に伴う電池内圧上昇においても短絡が生じないためには、ある一定以上の耐性が必要となるため、短絡耐性はやや不良と評価した。式1で求める数値が1.0の場合は、セパレータの破膜と同時に短絡が発生しており、塗工層による短絡耐性の向上はみられていないため、短絡耐性は不良と評価した。
B(t)÷A(t)・・・(式1)
 (実施例1)
 [共重合体(A)]
 共重合体(A)として、以下のように共重合体(A1)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が98.0/1.5/0.5となるように共重合体(A1)を合成した。得られた共重合体(A1)の重量平均分子量は150万であった。
 [共重合体(B)]
 共重合体(B)として、以下のように共重合体(B1)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレンを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレンのモル比が93.0/7.0となるように共重合体(B1)を合成した。得られた共重合体(B1)の重量平均分子量は30万であった。
 [電池用セパレータの作製]
 共重合体(A1)26.5質量部及び共重合体(B1)3.5質量部と、N-メチル-2-ピロリドン(NMP)600質量部とを混合し、その後、ディスパーで撹拌しながらアルミナ粒子(平均粒径1.1μm、密度4.0g/cm)を多孔層の固形分を100体積%として、51体積%となるように加え、さらに、ディスパーで1時間、2000rpmで予備攪拌した。次いで、ダイノーミル(シンマルエンタープライゼス製ダイノーミルマルチラボ(1.46L容器、充填率80%、φ0.5mmアルミナビーズ))を用いて、流量11kg/hr、周速10m/sの条件下で3回処理し、塗工液(A)を作製した。得られた塗工液(A)を、厚さ7μm、空孔率40%、透気抵抗度100秒/100cmのポリエチレン微多孔膜の両面に、ディップコート法にて等量塗布した。塗布後の膜を、N-メチル-2-ピロリドン(NMP)を10質量%含有する水溶液(凝固液)中に浸漬させ、純水で洗浄した後、50℃で乾燥し、電池用セパレータを得た。電池用セパレータの厚さは10μmであった。
 (実施例2)
 共重合体(B)として、以下のように共重合体(B2)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレンを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレンのモル比が94.5/5.5となるように共重合体(B2)を合成した。得られた共重合体(B2)の重量平均分子量は28万であった。塗工液の作製において、共重合体(B1)を共重合体(B2)に替えた塗工液(B)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (実施例3)
 共重合体(B)として、以下のように共重合体(B3)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレンを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレンのモル比が92.0/8.0となるように共重合体(B3)を合成した。得られた共重合体(B3)の重量平均分子量は35万であった。塗工液の作製において、共重合体(B1)を共重合体(B3)に替えた塗工液(C)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (実施例4)
 共重合体(A)として、以下のように共重合体(A2)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が99.0/0.5/0.5となるように共重合体(A2)を合成した。得られた共重合体(A2)の重量平均分子量は140万であった。塗工液の作製において、共重合体(A1)を共重合体(A2)に替えた塗工液(D)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (実施例5)
 共重合体(A)として、以下のように共重合体(A3)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が95.0/4.5/0.5となるように共重合体(A3)を合成した。得られた共重合体(A3)の重量平均分子量は170万であった。塗工液の作製において、共重合体(A1)を共重合体(A3)に替えた塗工液(E)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (実施例6)
 共重合体(A)として、以下のように共重合体(A4)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が98.0/1.5/0.5となるように共重合体(A4)を合成した。得られた共重合体(A4)の重量平均分子量は190万であった。塗工液の作製において、共重合体(A1)を共重合体(A4)に替えた塗工液(F)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (実施例7)
 塗工液の作製において、共重合体(A1)と共重合体(B1)の配合比を共重合体(A1)28.0質量部、共重合体(B1)2.0質量部とした塗工液(G)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (実施例8)
 塗工液の作製において、アルミナ粒子の含有量を多孔層の固形分を100体積%として、40体積%になるようにし、共重合体(A1)35.2質量部、共重合体(B1)4.7質量部かつ、NMPを900質量部に変えた塗工液(H)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (実施例9)
 塗工液の作製において、アルミナ粒子の含有量を多孔層の固形分を100体積%として、75体積%になるようにし、共重合体(A1)11.4質量部、共重合体(B1)1.5質量部かつ、NMPを300質量部に変えた塗工液(I)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (実施例10)
 共重合体(A)として、以下のように共重合体(A5)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が98.4/1.5/0.1となるように共重合体(A5)を合成した。得られた共重合体(A5)の重量平均分子量は150万であった。塗工液の作製において、共重合体(A1)を共重合体(A5)に替えた塗工液(J)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (実施例11)
 共重合体(A)として、以下のように共重合体(A6)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が94.5/1.5/4.0となるように共重合体(A6)を合成した。得られた共重合体(A6)の重量平均分子量は150万であった。塗工液の作製において、共重合体(A1)を共重合体(A6)に替えた塗工液(K)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (実施例12)
 ポリオレフィン微多孔膜として、厚さ5μm、空孔率35%、透気抵抗度150秒/100cmのポリエチレン微多孔膜を用いた以外は実施例1と同様にして電池用セパレータを得た。電池用セパレータの厚さは8μmであった。
 (実施例13)
 ポリオレフィン微多孔膜として、厚さ12μm、空孔率45%、透気抵抗度95秒/100cmのポリエチレン微多孔膜を用いた以外は実施例1と同様にして電池用セパレータを得た。電池用セパレータの厚さは15μmであった。
 (実施例14)
 共重合体(B)として、以下のように共重合体(B4)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレンを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレンのモル比が93.0/7.0となるように共重合体(B4)を合成した。得られた共重合体(B1)の重量平均分子量は70万であった。塗工液の作製において、共重合体(B1)を共重合体(B4)に替えた塗工液(L)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (実施例15)
 塗工液の作製において、アルミナ粒子を平均粒径1.0μm、平均厚さ0.4μmの板状ベーマイト粒子(密度3.07g/cm)に替え、共重合体(A1)31.5質量部、共重合体(B1)4.2質量部とした塗工液(M)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (実施例16)
 塗工液の作製において、アルミナ粒子を平均粒径0.4μm、チタニア粒子(密度4.23g/cm)に替え共重合体(A1)25.3質量部、共重合体(B1)3.4質量部とした塗工液(N)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (実施例17)
 塗工液の作製において、共重合体(A1)と共重合体(B1)の配合比を共重合体(A1)29.0質量部、共重合体(B1)1.0質量部とした塗工液(O)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (比較例1)
 塗工液の作製において、共重合体(A1)88.3質量部、共重合体(B1)11.7質量部と、NMP3500質量部を溶解、混合した塗工液(P)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (比較例2)
 塗工液の作製において、アルミナ粒子を多孔層の固形分を100体積%として、95体積%となるように加え、共重合体(A1)2.0質量部、共重合体(B1)0.3質量部かつ、NMPを250質量部に変えた塗工液(Q)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (比較例3)
 塗工液の作製において、共重合体(A1)と共重合体(B1)の配合比を共重合体(A1)15.0質量部、共重合体(B1)15.0質量部とした塗工液(R)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (比較例4)
 共重合体(A)として、以下のように共重合体(A7)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレンを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレンのモル比が98.5/1.5となるように共重合体(A7)を合成した。得られた共重合体(A7)の重量平均分子量は150万であった。塗工液の作製において、共重合体(A1)を共重合体(A7)に替えた塗工液(S)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (比較例5)
 塗工液の作製において、共重合体(A)をポリフッ化ビニリデン(重量平均分子量150万)30.0質量部に替え、共重合体(B)を使用しないで調製した塗工液(T)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (比較例6)
 共重合体(A)として、以下のように共重合体(A8)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が98.0/1.5/0.5となるように共重合体(A8)を合成した。得られた共重合体(A8)の重量平均分子量は65万であった。 塗工液の作製において、共重合体(A1)を共重合体(A8)に替え、NMPを500質量部に変えた塗工液(U)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (比較例7)
 共重合体(B)として、以下のように共重合体(B5)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレンを出発原料として懸濁重合法にてフッ化ビニリデン/ヘキサフルオロプロピレンのモル比が93.0/7.0となるように共重合体(B5)を合成した。得られた共重合体(B5)の重量平均分子量は7万であった。塗工液の作製において、共重合体(B1)を共重合体(B5)に替えた塗工液(V)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 (比較例8)
 ポリオレフィン微多孔膜として、厚さ5μm、空孔率35%、透気抵抗度150秒/100cmのポリエチレン微多孔膜を用いた以外は比較例1と同様にして電池用セパレータを得た。電池用セパレータの厚さは8μmであった。
 上記実施例及び比較例で用いた共重合体(A)、共重合体(B)の構造及び重量平均分子量や、塗工液の組成、得られた電池用セパレータの特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本実施形態の電池用セパレータは、非水電解質二次電池に用いられた際、乾燥時剥離力、湿潤時曲げ強さを満たし、ポリオレフィン多層微多孔膜と多孔層とのセパレータの層間の接着性、及び、セパレータと電極間の接着性に優れ、且つ、短絡耐性に優れる電池用セパレータを提供することができる。したがって、本実施形態の電池用セパレータは、今後、電池(特にラミネート型電池)のより大型化、高容量化が要求された際にも、好適に用いることができる。
1…ポリオレフィン微多孔膜
2…多孔層
4…アルミニウム箔
5…樹脂製絶縁体
6…金属球
10…電池用セパレータ
20…負極(接着性評価用)
21…負極(短絡耐性評価用)
22…ラミネートフィルム
30…電極巻回体
31…電極積層体
41…アルミニウム製L字アングル(下側)
42…アルミニウム製L字アングル(上側)
43…圧縮治具(上側)
44…圧縮治具(下側)
 

Claims (7)

  1.  ポリオレフィン微多孔膜と、前記ポリオレフィン微多孔膜の少なくとも一方の面に積層された多孔層と、を備える電池用セパレータであって、
     前記多孔層は、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)と、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)と、無機粒子とを含み、
     前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)は、0.3mol%以上、5.0mol%以下のヘキサフルオロプロピレン単位を有し、重量平均分子量が90万以上、200万以下であり、かつ、親水基を含み、
     前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)は、5.0mol%を超え、8.0mol%以下のヘキサフルオロプロピレン単位を有し、重量平均分子量が10万以上75万以下であり、
     前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)および前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)の合計100質量%に対して、前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)を86質量%以上、98質量%以下含み、前記多孔層中の固形分100体積%に対して、前記無機粒子を40体積%以上、80体積%以下含む、
    電池用セパレータ。
  2.  前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(A)は、親水基を0.1mol%以上、5.0mol%以下含む、請求項1に記載の電池用セパレータ。
  3.  前記フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(B)は、融点が60℃以上145℃以下である、請求項1又は2に記載の電池用セパレータ。
  4.  前記無機粒子が二酸化チタン、アルミナ及びベーマイトから選ばれる1種以上である請求項1~3のいずれか一項に記載の電池用セパレータ。
  5.  前記ポリオレフィン微多孔膜の厚さが3μm以上、16μm以下である請求項1~4のいずれか一項に記載の電池用セパレータ。
  6.  正極と、負極と、前記請求項1~5のいずれか一項に記載の電池用セパレータと、を備える電極体。
  7.  請求項6に記載の電極体と、非水電解質とを備える非水電解質二次電池。
     
PCT/JP2017/046887 2016-12-27 2017-12-27 電池用セパレータ、電極体及び非水電解質二次電池 WO2018124176A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018559575A JP7229775B2 (ja) 2016-12-27 2017-12-27 電池用セパレータ、電極体及び非水電解質二次電池
KR1020197009466A KR102210007B1 (ko) 2016-12-27 2017-12-27 전지용 세퍼레이터, 전극체 및 비수 전해질 이차전지
CN201780054369.2A CN109661736B (zh) 2016-12-27 2017-12-27 电池用隔膜、电极体和非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-253653 2016-12-27
JP2016253653 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018124176A1 true WO2018124176A1 (ja) 2018-07-05

Family

ID=62709400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046887 WO2018124176A1 (ja) 2016-12-27 2017-12-27 電池用セパレータ、電極体及び非水電解質二次電池

Country Status (5)

Country Link
JP (1) JP7229775B2 (ja)
KR (1) KR102210007B1 (ja)
CN (1) CN109661736B (ja)
TW (1) TWI750288B (ja)
WO (1) WO2018124176A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098721A (ja) * 2018-12-18 2020-06-25 住友化学株式会社 多孔質層の製造方法、積層体、非水電解液二次電池用セパレータおよび非水電解液二次電池
WO2022044592A1 (ja) * 2020-08-28 2022-03-03 株式会社クレハ 樹脂組成物およびこれを含むコーティング組成物、積層用電極、積層用セパレータ、ならびに非水電解質二次電池およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113708010B (zh) * 2021-09-01 2023-03-14 东莞新能安科技有限公司 电化学装置和电子装置
CN113871601B (zh) * 2021-09-28 2023-02-17 珠海冠宇电池股份有限公司 一种石墨材料及其制备方法、负极片及锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307735A (ja) * 2000-04-17 2001-11-02 Matsushita Electric Ind Co Ltd リチウム二次電池
WO2013058368A1 (ja) * 2011-10-21 2013-04-25 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2014041818A (ja) * 2012-07-25 2014-03-06 Samsung Sdi Co Ltd リチウム二次電池用セパレータ、及びこれを含むリチウム二次電池
WO2016002567A1 (ja) * 2014-06-30 2016-01-07 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2016042914A1 (ja) * 2014-09-19 2016-03-24 株式会社クレハ 水性ラテックス、セパレータ/中間層積層体、及び非水電解質二次電池用構造体

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342088B2 (ja) 1973-09-25 1978-11-09
JP3248570B2 (ja) 1997-10-09 2002-01-21 日本電気株式会社 半導体装置の製造方法
WO2009014388A2 (en) * 2007-07-25 2009-01-29 Lg Chem, Ltd. Electrochemical device and its manufacturing method
JP5427046B2 (ja) 2010-01-14 2014-02-26 日立マクセル株式会社 非水電解質電池及びその製造方法
JP5768359B2 (ja) * 2010-11-17 2015-08-26 ソニー株式会社 耐熱性微多孔膜、電池用セパレータ及びリチウムイオン二次電池
JP5699576B2 (ja) * 2010-12-08 2015-04-15 ソニー株式会社 積層型微多孔膜、電池用セパレータおよび非水電解質電池
US9343719B2 (en) * 2011-09-22 2016-05-17 Mitsubishi Plastics, Inc. Method for producing laminated porous film, and laminated porous film
KR101429580B1 (ko) 2011-10-21 2014-08-12 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
TWI568061B (zh) 2011-10-21 2017-01-21 帝人股份有限公司 非水系蓄電池用分隔器及非水系蓄電池
US9178199B2 (en) * 2012-02-21 2015-11-03 Samsung Sdi Co., Ltd. Lithium battery
CN103579561B (zh) * 2012-07-25 2017-08-15 三星Sdi株式会社 用于可再充电锂电池的隔板和包括其的可再充电锂电池
US10074841B2 (en) * 2013-05-15 2018-09-11 Kureha Corporation Structure for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing same structure
KR101785263B1 (ko) * 2013-12-02 2017-10-16 삼성에스디아이 주식회사 바인더 조성물, 이에 의해 형성된 바인더를 포함하는 세퍼레이터, 상기 세퍼레이터를 포함하는 리튬 전지, 및 상기 바인더 조성물의 제조방법
CN105794019A (zh) * 2013-12-06 2016-07-20 大金工业株式会社 二次电池用隔膜和二次电池
US10002719B2 (en) * 2014-04-21 2018-06-19 Lg Chem, Ltd. Separator having binder layer, and electrochemical device comprising the separator and method of preparing the separator
JP6706461B2 (ja) * 2014-07-18 2020-06-10 株式会社村田製作所 二次電池用負極活物質、二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN105273444B (zh) * 2014-07-23 2017-11-14 乐凯胶片股份有限公司 一种浆料组合物及包含该浆料组合物的锂离子电池隔膜
WO2016152863A1 (ja) 2015-03-24 2016-09-29 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307735A (ja) * 2000-04-17 2001-11-02 Matsushita Electric Ind Co Ltd リチウム二次電池
WO2013058368A1 (ja) * 2011-10-21 2013-04-25 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2014041818A (ja) * 2012-07-25 2014-03-06 Samsung Sdi Co Ltd リチウム二次電池用セパレータ、及びこれを含むリチウム二次電池
WO2016002567A1 (ja) * 2014-06-30 2016-01-07 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2016042914A1 (ja) * 2014-09-19 2016-03-24 株式会社クレハ 水性ラテックス、セパレータ/中間層積層体、及び非水電解質二次電池用構造体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098721A (ja) * 2018-12-18 2020-06-25 住友化学株式会社 多孔質層の製造方法、積層体、非水電解液二次電池用セパレータおよび非水電解液二次電池
JP7289194B2 (ja) 2018-12-18 2023-06-09 住友化学株式会社 多孔質層の製造方法、積層体、非水電解液二次電池用セパレータおよび非水電解液二次電池
WO2022044592A1 (ja) * 2020-08-28 2022-03-03 株式会社クレハ 樹脂組成物およびこれを含むコーティング組成物、積層用電極、積層用セパレータ、ならびに非水電解質二次電池およびその製造方法

Also Published As

Publication number Publication date
TWI750288B (zh) 2021-12-21
TW201834298A (zh) 2018-09-16
JPWO2018124176A1 (ja) 2019-10-31
CN109661736A (zh) 2019-04-19
CN109661736B (zh) 2021-12-03
KR20190042715A (ko) 2019-04-24
JP7229775B2 (ja) 2023-02-28
KR102210007B1 (ko) 2021-02-01

Similar Documents

Publication Publication Date Title
CN107925036B (zh) 电池用隔膜
JP7330885B2 (ja) 電池用セパレータ、電極体及び非水電解質二次電池
KR102209887B1 (ko) 전지용 세퍼레이터 및 그의 제조 방법
WO2018124176A1 (ja) 電池用セパレータ、電極体及び非水電解質二次電池
JPWO2018164056A1 (ja) ポリオレフィン微多孔膜
JP6927047B2 (ja) 積層捲回体
WO2020050377A1 (ja) 電気化学素子用セパレータ及びこれを用いた電気化学素子
TWI715676B (zh) 電池用隔膜及其製造方法
WO2018221503A1 (ja) セパレータ
JP2022053727A (ja) 電池用セパレータ、電極体、非水電解質二次電池、及び電池用セパレータの製造方法
JP2021082481A (ja) 電池用セパレータ、電極体、非水電解質二次電池、及び電池用セパレータの製造方法
JP2019104162A (ja) 積層多孔膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559575

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197009466

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888168

Country of ref document: EP

Kind code of ref document: A1