[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018124033A1 - 脂質粒子組成物および医薬組成物 - Google Patents

脂質粒子組成物および医薬組成物 Download PDF

Info

Publication number
WO2018124033A1
WO2018124033A1 PCT/JP2017/046564 JP2017046564W WO2018124033A1 WO 2018124033 A1 WO2018124033 A1 WO 2018124033A1 JP 2017046564 W JP2017046564 W JP 2017046564W WO 2018124033 A1 WO2018124033 A1 WO 2018124033A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipid
lipid particle
panobinostat
particle composition
composition according
Prior art date
Application number
PCT/JP2017/046564
Other languages
English (en)
French (fr)
Inventor
雄大 吉野
隼人 小椋
幹永 森
泰輔 遠藤
健太郎 沼尻
律子 堀
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018559499A priority Critical patent/JPWO2018124033A1/ja
Priority to CN201780080668.3A priority patent/CN110114068A/zh
Priority to EP17888488.8A priority patent/EP3560492B1/en
Priority to ES17888488T priority patent/ES2968358T3/es
Publication of WO2018124033A1 publication Critical patent/WO2018124033A1/ja
Priority to US16/448,069 priority patent/US11154534B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/4045Indole-alkylamines; Amides thereof, e.g. serotonin, melatonin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia

Definitions

  • the present invention relates to a lipid particle composition containing panobinostat or a salt thereof, and a pharmaceutical composition containing the lipid particle composition.
  • Panobinostat is a hydroxamic acid derivative used for the treatment of multiple myeloma and is one of non-selective histone deacetylase inhibitors. Panobinostat is marketed in the form of a capsule-type oral preparation under the trade name Faridac (registered trademark).
  • the liposome preparation is a preparation in which a drug is encapsulated in a liposome composed of a lipid membrane.
  • Non-Patent Document 1 describes a liposome preparation targeting bone marrow.
  • Non-Patent Document 1 includes 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), cholesterol, L-glutamic acid, N- (3-carboxyl-1-oxopropyl) -1,5-dihexa
  • DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
  • SA lipids decyl esters
  • poly ethylene glycol
  • Non-Patent Document 2 describes that a liposome encapsulating cytarabine and daunorubicin (CPX-351) exhibits high bone marrow accumulation.
  • Non-Patent Document 2 describes that accumulation of CPX-351 in the bone marrow is 20% to 50% higher in normal mice than empty liposomes and 75% higher in leukemia model mice than empty liposomes. Has been.
  • An object of the present invention is to provide a lipid particle composition containing panobinostat or a salt thereof and exhibiting high targeting ability to bone marrow, and a pharmaceutical composition containing the lipid particle composition.
  • lipid particle composition containing panobinostat or a salt thereof wherein the lipid particle composition containing phospholipids and cholesterols is a bone marrow.
  • the present invention has been completed.
  • a lipid particle composition comprising panobinostat or a salt thereof, wherein the lipid particles comprise phospholipids and cholesterols.
  • Formula 1 (Bone marrow concentration-area under time curve) / (Gastrointestinal concentration-area under time curve) [3] The lipid particle composition according to [1] or [2], wherein the lipid particles have an average particle diameter of 50 nm to 500 nm. [4] The lipid particle composition according to [1] to [3], wherein panobinostat or a salt thereof is encapsulated in lipid particles by a remote loading method. [5] The lipid particle composition according to any one of [1] to [4], wherein the solidified product of panobinostat or a salt thereof is present on at least a part of the surface and inside of the lipid particle.
  • the lipid particle composition according to [9] wherein the sphingophospholipid is sphingomyelin.
  • the lipid particle composition according to any one of [1] to [11], wherein the lipid particles are substantially free of polyethylene glycol lipid.
  • a pharmaceutical composition comprising the lipid particle composition according to any one of [1] to [15].
  • a method for treating a subject comprising administering to the subject the lipid particle composition according to any one of [1] to [17].
  • the lipid particle composition and the pharmaceutical composition of the present invention exhibit high targeting ability to bone marrow. According to the lipid particle composition and the pharmaceutical composition of the present invention, it is possible to provide a pharmaceutical composition having an improved therapeutic index.
  • FIG. 1 shows an image of a panobinostat-containing lipid particle obtained by a transmission electron microscope (Transmission Electron Microscope; TEM).
  • FIG. 2 shows the results of measurement of panobinostat concentration in plasma after administration of panobinostat-containing lipid particles or panobinostat solution.
  • FIG. 3 shows the results of measurement of panobinostat concentration in the tissue after administration of panobinostat-containing lipid particles or panobinostat solution.
  • FIG. 4 shows the results of measuring the growth inhibitory activity on leukemia cells in the Molm-13 orthotopic model mouse.
  • FIG. 5 shows the results of analyzing the number of macrophages in bone marrow and the amount of lipid particles in cells.
  • FIG. 6 shows the results of analyzing cytokine expression in bone marrow.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. To do.
  • “Empty liposome” means a liposome containing no drug. “Release” means that a drug contained in a lipid particle (such as a liposome) passes through a lipid membrane constituting the lipid particle (such as a liposome) and exits from the lipid particle (such as a liposome). “Retention in the blood” means a property in which a drug encapsulated in lipid particles (such as liposomes) is present in blood in a subject administered with a composition of lipid particles (such as liposomes).
  • the average particle diameter of lipid particles (liposomes, etc.) means the volume average particle diameter of lipid particles (liposomes, etc.) present in the composition of lipid particles (liposomes, etc.).
  • the average particle diameter of the lipid particles contained in the lipid particle composition of the present invention is measured using a dynamic light scattering method. Examples of commercially available measuring apparatuses using dynamic light scattering include a dense particle analyzer FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.), Nanotrack UPA (manufactured by Nikkiso Co., Ltd.), and nanosizer (manufactured by Malvern).
  • Subject refers to mammals such as humans, mice, monkeys, and livestock that require prevention or treatment of diseases, and preferably humans that require prevention or treatment of diseases and the like.
  • the lipid particle composition of the present invention is a lipid particle composition containing panobinostat or a salt thereof, wherein the lipid particles contain phospholipids and cholesterols.
  • Lipid particles A lipid particle means the particle
  • Lipid particles of the present invention include liposomes having lamellar structures that are closed vesicles composed of lipid bilayers.
  • a liposome is a closed vesicle formed of a lipid bilayer membrane using lipid, and has an aqueous phase (inner aqueous phase) in the space of the closed vesicle.
  • the inner water phase includes water and the like.
  • Liposomes usually exist in a dispersed state in an aqueous solution outside the closed vesicles (outer aqueous phase).
  • Liposomes are single lamellae (also called single-layer lamellae or unilamellar, and double-layer membranes have a single structure), but they are multi-layer lamellae (also called multi-lamellar, which have a large number of onion-like bilayer membranes).
  • it is a single-lamellar liposome. Is preferred.
  • the lipid particles of the present invention also include particles that do not have a lipid bilayer structure (lamellar structure) like the above-mentioned liposome and that have a structure filled with constituent components inside the particle.
  • the form of lipid formation can be confirmed by electron microscope observation or structural analysis using X-rays.
  • lipid particles such as liposomes have a lipid bilayer structure (lamella structure) and an inner water layer, or lipid particles such as liposomes. Since it has a lipid bilayer structure (lamellar structure) and a core with high electron density inside the particle without an inner water layer, it is confirmed that it has a structure filled with components such as lipids. it can.
  • SAXS lipid X-ray scattering
  • the form of the lipid particle is not particularly limited as long as it is a lipid particle capable of encapsulating a drug.
  • Encapsulation means that the drug is in a form that is contained in the inner aqueous phase and / or the membrane itself with respect to the lipid particles.
  • a form in which a drug is enclosed in a closed space formed of a film, a form in which the drug is included in the film itself, and the like may be used.
  • the average particle size of the lipid particles is generally 10 nm to 1000 nm, preferably 50 nm to 500 nm, more preferably 100 nm to 500 nm, and further preferably 100 nm to 300 nm.
  • the lipid particles preferably have a spherical shape or a form close thereto.
  • the zeta potential of the lipid particles according to the present invention is not particularly limited, but is preferably ⁇ 10 mV or less, more preferably ⁇ 15 mV or less, further preferably ⁇ 20 mV or less, and may be ⁇ 25 mV or less. Preferably, it is more preferably ⁇ 30 mV or less.
  • the component constituting the lipid bilayer of the lipid particle is selected from lipids.
  • lipid any lipid that can be dissolved in a mixed solvent of a water-soluble organic solvent and an ester-based organic solvent can be arbitrarily used.
  • lipids include phospholipids, lipids other than phospholipids, cholesterols, lysophospholipids, and derivatives thereof. These components may be composed of a single type or multiple types of components.
  • the lipid particles in the present invention include at least phospholipids and cholesterols.
  • the phospholipid examples include phosphatidylcholine (lecithin), phosphatylglycerol, phosphatidic acid, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, dihydrosphingomyelin, cardiolipin, and hydrogen Added one (for example, hydrogenated soybean phosphatidylcholine (HSPC)) and the like.
  • the “phospholipid” includes phospholipid derivatives obtained by modifying phospholipids.
  • the phospholipid preferably includes a phospholipid having a glycerol skeleton.
  • phosphatidylcholine is particularly preferable.
  • phosphatidylcholine 1,2-dialacidonoyl-sn-glycero-3-phosphocholine and the like can be used.
  • sphingophospholipid As the sphingophospholipid, sphingomyelin and the like can be used.
  • the phospholipid in the present invention preferably contains a fatty acid residue having 20 or more carbon atoms from the viewpoint of reducing the release of panobinostat or a salt thereof and improving the blood retention.
  • lipids other than phospholipids include lipids that do not contain phosphoric acid, such as glycerolipids that do not have a phosphate moiety in the molecule, and sphingolipids that do not have a phosphate moiety in the molecule.
  • lipid other than phospholipid includes derivatives of lipids other than phospholipids obtained by modifying lipids other than phospholipids.
  • cholesterols examples include cholesterol having cyclopentahydrophenanthrene as a basic skeleton, and part or all of which are hydrogenated, and derivatives thereof.
  • An example is cholesterol.
  • the addition of cholesterol is expected to lower the fluidity of the lipid particle membrane by filling the gap in the lipid particle membrane.
  • the content of cholesterols relative to the total amount of lipid constituting the lipid particle according to the present invention is preferably 10 mol% to 50 mol%, more preferably 20 mol% to 45 mol%, further preferably 30 mol% to 45 mol%, and more preferably 35 mol% to 45 mol%. % Is particularly preferred.
  • the lipid particles in the present invention may contain a lipid modified with a hydrophilic polymer.
  • a hydrophilic polymer examples include polyethylene glycols, polyglycerins, polypropylene glycols, polyvinyl alcohol, styrene-maleic anhydride alternating copolymer, polyvinyl pyrrolidone, and synthetic polyamino acid. Said hydrophilic polymer can be used individually or in combination of 2 types or more, respectively.
  • polyethylene glycols, polyglycerols and polypropylene glycols are preferable from the viewpoint of blood retention of the composition, and polyethylene glycol (PEG), polyglycerol (PG) and polypropylene glycol (PPG) are more preferable. From the viewpoint of versatility and blood retention, polyethylene glycol (PEG) is more preferable.
  • the weight average molecular weight of polyethylene glycol is not particularly limited, but is 500 to 10,000 daltons, preferably 1,000 to 7,000 daltons, and more preferably 2,000 to 5,000 daltons.
  • lipid modified with PEG polyethylene glycol lipid
  • the polyethylene glycol lipid examples include 1,2-distearoyl-3-phosphatidylethanolamine-PEG2000 (manufactured by NOF Corporation), 1,2-distearoyl-3-phosphatidylethanolamine-PEG5000 (manufactured by NOF Corporation) and Examples include 1,2-distearoyl-3-phosphatidylethanolamine-polyethylene glycol such as distearoylglycerol-PEG2000 (manufactured by NOF Corporation).
  • the ratio of polyethylene glycol lipid in the total lipid constituting the lipid particle is generally 0.01 to 10 mol%, preferably 0.05 to 8 mol%, more preferably 0.1 to 7 mol%. %, Preferably 5 mol% or less, and more preferably 1 mol% or less.
  • the lipid particle does not substantially contain polyethylene glycol lipid.
  • the lipid particle in the present invention preferably contains an anionic lipid together with the main lipid contained in the lipid particle.
  • anionic lipids include phosphatidylglycerol-containing lipids such as 1,2-Dipalmitoyyl-sn-glycero-3-phosphoglycerol, sodium salt (COATSOME MG-6060LS, manufactured by NOF Corporation), and 1,2-Dimyristoyyl-sn.
  • phosphatidic acid such as glycero-3-phosphophatic acid, sodium salt (COATSOME MA-6060LS, manufactured by NOF Corporation), 1,2-Dipalmitylyl-sn-glycero-3-phospho-L-serine, sodiumCOSMET ME MS-6060LS (manufactured by NOF) and other phosphatidylserine-containing lipids, 1-Stearoy -2-Lyso-sn-glycero-3-phosphoricols such as phosphocholine (COTSOME MC-80H, NOF Corporation), steroid derivatives having an anionic group such as Cholesteryl hemisuccinate (CHEMS, manufactured by Avanti Polar Lipids), stearic acid And fatty acids.
  • COATSOME MA-6060LS manufactured by NOF Corporation
  • 1,2-Dipalmitylyl-sn-glycero-3-phospho-L-serine sodiumCOSMET ME MS-6060LS (manufactured by NOF) and
  • the ratio of the anionic lipid in the total lipid constituting the lipid particle is not particularly limited, but is 0.01 to 50 mol%, preferably 0.05 to 30 mol%, more preferably 0.1 to 10 mol%. Mol%.
  • Anionic lipids may be used in combination with PEG lipids, or PEG lipids may be used alone without being used.
  • said hydrophilic polymer can be used individually or in combination of 2 or more types, respectively.
  • the lipid particles are added with a hydrophilic polymer for improving the retention in blood, fatty acid or diacetyl phosphate as a membrane structure stabilizer, and ⁇ -tocopherol as an antioxidant. Also good.
  • additives such as dispersion aids that are not approved for intravenous use in pharmaceutical applications, such as surfactants.
  • Panobinostat The lipid particle composition of the present invention contains panobinostat or a salt thereof as a drug.
  • Panobinostat is a hydroxamic acid derivative used for the treatment of multiple myeloma and is one of non-selective histone deacetylase inhibitors. The chemical structure of panobinostat is shown below.
  • panobinostat examples include salts of basic groups such as amino groups that are generally known.
  • the salt in the basic group include salts with mineral acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, boric acid, nitric acid and sulfuric acid; formic acid, acetic acid, lactic acid, citric acid, oxalic acid, fumaric acid, malein Acids, succinic acid, malic acid, tartaric acid, aspartic acid, salts with organic carboxylic acids such as trichloroacetic acid and trifluoroacetic acid; and methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, mesitylenesulfonic acid and naphthalenesulfonic acid And salts with sulfonic acid such as As an example of the panobinostat salt, there may be mentioned panobinostat lactate, the structure of which is shown below.
  • panobinostat or salt thereof contained in the lipid particle composition In the lipid particle composition of the present invention, the presence state of panobinostat or a salt thereof in the lipid particle is not particularly limited, but at least of panobinostat or a salt thereof from the difference in accumulation in bone marrow with empty liposomes as described later. Some are presumed to exist in a form that affects recognition by cells such as proteins or macrophages in blood that recognize lipid particles. That is, it is presumed that panobinostat or a part of the salt thereof is present on the membrane surface of the lipid particle or in a state in which the mobility of lipid molecules existing on the membrane surface is affected.
  • panobinostat or a salt thereof contained in the lipid particle composition when panobinostat or a salt thereof contained in the lipid particle composition is in a high concentration, the presence state of panobinostat or a salt thereof is selected from among panobinostat or a salt thereof as can be read from the TEM image of FIG.
  • a part may exist as a solidified substance on at least a part of the surface and inside of the lipid particle. Even in such a case, the remainder of panobinostat or a salt thereof may exist in a dissolved state in the inner aqueous phase of the lipid particles.
  • the dissolved state is considered to be encapsulated in the dissolved state when the amount of the drug filled with respect to the volume of the lipid particles is equal to or lower than the saturated solubility of the drug in the composition solution of the inner aqueous phase.
  • the drug crystal is not observed with Cryo-TEM [observation of a frozen sample with a transmission electron microscope (TEM)] or the diffraction pattern due to the crystal lattice is not observed with XRD measurement, the lipid particles are not less than saturated solubility. It can be considered that most of the drug contained in the drug dissolves and exists in a dissolved state.
  • the solidified product means a solid that can be observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • panobinostat or its salt / lipid ratio in the lipid particles is 10 to 500 mg / mmol, preferably 20 to 400 mg / mmol, more preferably 30 to 300 mg / mmol.
  • panobinostat salt is included, the panobinostat or its salt / lipid ratio is calculated by the amount converted to panobinostat.
  • the lipid in panobinostat or a salt / lipid ratio thereof means all lipids constituting the lipid particle, and the lipid includes cholesterol and lysophospholipid.
  • the area ratio represented by the following formula 1 is from 1 after a single dose of 4 mg / kg of the lipid particle composition as panobinostat to the tail vein of a mouse until infinite time. It is preferably large, more preferably 2 or more, still more preferably 3 or more, further preferably 5 or more, still more preferably 10 or more, and particularly preferably 12 or more.
  • Formula 1 (Bone marrow concentration-area under time curve) / (Gastrointestinal concentration-area under time curve)
  • the bone marrow accumulation rate (% ID / g) represented by the following formula 2 is preferably 10% ID / g or more, more preferably 15% ID / g or more. More preferably, it is 20% ID / g or more, More preferably, it is 30% ID / g or more, Especially preferably, it is 40% ID / g or more.
  • the bone marrow accumulation rate shown in the examples of the present invention is a panoinostat-containing lipid particle composition (panobinostat amount of 6 mg / kg) labeled with DiI (1,1′-dioctadecyl-3,3,3 ′, 3′-tetramethyllindocarbocyanine Perchlorate).
  • a label different from DiI used in the present invention may be used, or the lipid constituting the lipid particle is traced without using the label.
  • the bone marrow accumulation rate may be obtained by Further, in addition to the method of labeling the lipid particle composition in advance as shown in the examples of the present invention, the bone marrow accumulation rate using the method of labeling the lipid particle composition later as shown in Example 25. Can also be requested.
  • the lipid particle composition of the present invention can contain lipid particles containing panobinostat or a salt thereof and an aqueous solvent in which the lipid particles are dispersed.
  • the lipid particle composition of the present invention may contain at least one of pharmaceutically acceptable isotonic agents, stabilizers, antioxidants, and pH adjusters in relation to the administration route.
  • the isotonic agent is not particularly limited, but for example, inorganic salts such as sodium chloride, potassium chloride, sodium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, glycerol, mannitol, sorbitol, etc.
  • inorganic salts such as sodium chloride, potassium chloride, sodium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, glycerol, mannitol, sorbitol, etc.
  • examples include polyols, sugars such as glucose, fructose, lactose, or sucrose.
  • the stabilizer is not particularly limited, and examples thereof include saccharides such as glycerol, mannitol, sorbitol, lactose, or sucrose.
  • antioxidant For example, ascorbic acid, uric acid, a tocopherol homologue (For example, four isomers of vitamin E, tocopherol alpha, beta, gamma, and delta), cysteine, EDTA (ethylenediaminetetraacetic acid) Propyl gallate, BHT (dibutylhydroxytoluene), BHA (butylhydroxyanisole), sodium pyrosulfite and the like.
  • the stabilizer and the antioxidant can be used alone or in combination of two or more.
  • pH adjusters examples include sodium hydroxide, citric acid, acetic acid, triethanolamine, sodium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, and the like.
  • the lipid particle composition of the present invention comprises a pharmaceutically acceptable organic solvent, collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, sodium carboxymethyl starch Pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, gelatin, agar, diglycerin, propylene glycol, polyethylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin (HSA), mannitol, sorbitol, lactose, Phosphate buffered saline (PBS), sodium chloride, saccharides, biodegradable polymer, serum-free medium, pharmaceutical additives It may contain acceptable additives as.
  • a pharmaceutically acceptable organic solvent collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium carboxy
  • the container filled with the lipid particle composition of the present invention is not particularly limited, but is preferably made of a material having low oxygen permeability.
  • gas barrier layer made of plastic container, glass container, aluminum foil, aluminum vapor deposition film, aluminum oxide vapor deposition film, silicon oxide vapor deposition film, polyvinyl alcohol, ethylene vinyl alcohol copolymer, polyethylene terephthalate, polyethylene naphthalate, polyvinylidene chloride, etc.
  • a back using a colored glass, an aluminum foil, an aluminum vapor-deposited film, or the like can be used to shield the light.
  • the container filled with the lipid particle composition it is preferable to replace the gas in the container space and the chemical solution with an inert gas such as nitrogen in order to prevent oxidation due to oxygen present in the space in the container.
  • an inert gas such as nitrogen
  • the injection solution may be bubbled with nitrogen and filled into a container under a nitrogen atmosphere.
  • lyophilization is also preferably performed.
  • the method for producing the lipid particle composition of the present invention is not particularly limited.
  • each component (phospholipid, cholesterol, etc.) constituting the lipid particles is mixed with an organic solvent, and the mixture is heated to dissolve the above components to produce the oil phase. can do.
  • organic solvent used in an oil phase is not specifically limited, For example, the water-soluble organic solvent arbitrarily mixed with water can be used.
  • water-soluble organic solvent examples include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol and t-butanol, glycols such as glycerin, ethylene glycol and propylene glycol, and polyethylene glycol. Examples include polyalkylene glycols. Among these, alcohols are preferable.
  • the alcohol is preferably at least one selected from ethanol, methanol, 2-propanol and t-butanol, more preferably at least one selected from ethanol, 2-propanol and t-butanol, More preferably, it is ethanol.
  • the lipid concentration is not particularly limited and can be appropriately adjusted.
  • aqueous phase water (distilled water, water for injection, etc.), physiological saline, various buffer solutions or aqueous solutions of saccharides, and a mixture thereof (aqueous solvent) can be used.
  • aqueous solvent aqueous solvent
  • panobinostat is encapsulated in lipid particles by remote loading described later, it is preferable to use an aqueous solution containing an ammonium salt as the aqueous phase.
  • the buffer is not limited to organic or inorganic, but a buffer having a buffering action near the hydrogen ion concentration close to the body fluid is preferably used.
  • Phosphate buffer, Tris buffer, citric acid Examples include a buffer solution, an acetate buffer solution, and a good buffer.
  • the inner aqueous phase of the lipid particles may be an aqueous solution in which the lipid particles are dispersed when the lipid particles are produced, or newly added water, physiological saline, various buffer solutions or aqueous solutions of saccharides and these. It may be a mixture of It is preferable that the water used as the outer aqueous phase or the inner aqueous phase does not contain impurities (dust, chemical substances, etc.).
  • Physiological saline means an inorganic salt solution adjusted to be isotonic with the human body, and may further have a buffering function.
  • physiological saline examples include saline containing 0.9 w / v% (mass / volume percent) of sodium chloride, PBS, and Tris buffered physiological saline.
  • the aqueous phase includes both an outer aqueous phase and an inner aqueous phase.
  • the outer aqueous phase in the present invention means an aqueous solution in which lipid particles are dispersed.
  • the solution occupying the outside of the lipid particles in the dispersion of lipid particles stored in a vial or prefilled syringe package is the outer aqueous phase.
  • the liquid occupying the outer side of the lipid particles in the lipid particle dispersion is the outer aqueous phase of the liquid dispersed at the time of administration using the attached dispersion liquid or other solution.
  • the inner aqueous phase in the present invention means an aqueous phase in a closed vesicle separated by a lipid bilayer of lipid particles.
  • ⁇ (C) Lipid particle formation by emulsification In the emulsification step, an oil phase in which at least one kind of lipid is dissolved in an organic solvent and an aqueous phase are mixed, and an aqueous solution containing the lipid can be stirred and emulsified.
  • an emulsion in which the oil phase and the aqueous phase are emulsified in the O / W type (oil-in-water type) is prepared.
  • lipid particles are formed by removing part or all of the organic solvent derived from the oil phase by evaporation. Alternatively, part or all of the organic solvent in the oil phase evaporates in the course of stirring and emulsification to form lipid particles.
  • ultrasonic waves or mechanical shearing force is used for particle refinement.
  • an extruder process or a microfluidizer process through a filter having a fixed pore diameter can be performed. If an extruder or the like is used, the secondary vesicle lipid particles can be separated into single vesicle lipid particles.
  • the emulsification step is not limited as long as it is an emulsification step, but is preferably a step in which high shear is applied and fine particles are formed in an emulsification step including an organic solvent. If necessary, lipid particles can be formed by evaporating (desolving) the organic solvent used in the emulsification step.
  • the liquid temperature in the emulsification step when producing the lipid particles can be adjusted as appropriate, but the liquid temperature during mixing of the oil phase and the aqueous phase is preferably equal to or higher than the phase transition temperature of the lipid used.
  • the temperature is preferably 35 ° C. to 70 ° C.
  • the organic solvent and water may be evaporated from the aqueous solution containing lipid particles.
  • the term “evaporation” as used herein may forcibly remove part or all of the organic solvent derived from the oil phase and the water derived from the aqueous phase as an evaporation step, or the organic solvent derived from the oil phase and the water derived from the aqueous phase. A part or all of these may naturally evaporate in the process of stirring and emulsification.
  • the method of evaporation is not particularly limited. For example, at least one of a step of evaporating by heating an organic solvent and water, a step of standing still or gently stirring after emulsification, and a step of performing vacuum deaeration is performed. Just do it.
  • the obtained lipid particles can have a uniform particle size using a dialysis method, a filtration method or an extrusion treatment.
  • the extrusion treatment means a process of applying physical shearing force and atomizing by passing lipid particles through a filter having pores.
  • the lipid particle dispersion liquid and the filter can be rapidly atomized by maintaining the temperature at a temperature equal to or higher than the phase transition temperature of the membrane constituting the lipid particles.
  • the sizing by the extruder may or may not be performed.
  • the lipid particle outer aqueous phase liquid may be replaced by dialysis.
  • the dialysate a 0.1 to 5% by mass NaCl aqueous solution can be used, but is not particularly limited.
  • panobinostat is preferably encapsulated in lipid particles by a remote loading method.
  • the remote loading method means a method of producing an empty liposome in which no drug is encapsulated and introducing the drug into the liposome by adding the drug to the liposome external solution.
  • the remote loading method is not particularly limited, and examples thereof include a method using a citrate buffer or ammonium sulfate.
  • the drug added to the external liquid is actively transferred to the lipid particles and taken into the lipid particles.
  • a solubility gradient, an ion gradient, a pH gradient, or the like is used as the driving force.
  • a solubility gradient, an ion gradient, a pH gradient, or the like is used.
  • there is a method of introducing a drug into lipid particles using an ion gradient formed across a lipid particle membrane for example, there is a technique in which a drug is added to lipid particles formed in advance by a remote loading method using a Na + / K + concentration gradient.
  • a proton concentration gradient is generally used.
  • the inside (inner aqueous phase) pH of the lipid particle membrane has a lower pH gradient than the outer (outer aqueous phase) pH.
  • the pH gradient can be formed by an ammonium ion gradient and / or a concentration gradient of an organic compound having an amino group that can be protonated.
  • the source of ammonium ions is not particularly limited, but a water-soluble ammonium salt is preferably used, and examples thereof include ammonium sulfate, ammonium chloride, ammonium formate, ammonium succinate, and ammonium acetate.
  • the lipid particle solution encapsulating panobinostat may be dialyzed to remove panobinostat not contained in the lipid particles. For example, using a sucrose / histidine buffer at a predetermined concentration as a dialysis solution, dialysis is performed on a lipid particle solution encapsulating panobinostat to remove panobinostat present in the outer aqueous phase, and the dialysis solution is used to remove the outer aqueous phase. Can be obtained.
  • the lipid particle composition obtained above is preferably subjected to aseptic filtration.
  • As a filtration method an unnecessary thing can be removed from the aqueous solution containing lipid particles using a hollow fiber membrane, a reverse osmosis membrane, a membrane filter, or the like.
  • the aseptic filtration step and the aseptic filling step described later are preferably performed at a temperature lower than the phase transition temperature of the lipid constituting the lipid particles.
  • the lipid phase transition temperature is around 50 ° C., it is preferably about 0 to 40 ° C., and more specifically, it is preferably produced at about 5 to 30 ° C.
  • the lipid particle composition obtained after aseptic filtration is preferably aseptically filled for medical use.
  • a known method can be applied for aseptic filling.
  • a lipid particle composition suitable for medical use can be prepared by filling the container aseptically.
  • the lipid particle composition of the present invention can be used as a pharmaceutical composition. That is, according to the present invention, a pharmaceutical composition comprising the lipid particle composition of the present invention is provided.
  • parenteral administration is preferable.
  • intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, intraocular injection, and intrathecal injection
  • administration method include administration by syringe or infusion.
  • the dose and frequency of administration of panobinostat or a salt thereof as a drug contained in the lipid particle composition are generally in the range of 0.01 mg / kg to 100 mg / kg per day as the mass of panobinostat or a salt thereof. Although it can set, the lipid particle composition of this invention is not limited to these dosages.
  • the pharmaceutical composition of the present invention can be preferably used as an anticancer agent.
  • the type of cancer to which the pharmaceutical composition of the present invention is applied is not particularly limited.
  • DiI 1,1′-dioctadecyl-3,3,3 ′, 3′-tetramethyllindocarbocyneine perchlorate
  • a quantity of DiI corresponding to 0.2 mol% with respect to the total lipid is weighed and added to ethanol. Dissolved. Ethanol was added to the DiI ethanol solution to a total volume of 11.25 mL, and 3.75 mL of ethyl acetate was further added. The weighed lipid and this organic solvent were mixed and heated to 60 ° C. to dissolve the lipid to obtain an oil phase.
  • (C) Lipid particle formation by emulsification After heating the aqueous phase prepared in (b) to 70 ° C. and adding the total amount of oil phase prepared in (a) (volume ratio: aqueous phase / oil phase 8/3) ) And an emulsifier (Excel Auto Homogenizer ED-3, manufactured by Nippon Seiki Seisakusho) at 3000 rpm (rotation per minute: 1/60 s ⁇ 1 ) for 30 minutes. Subsequently, stirring was continued at 300 rpm while heating at 65 ° C. to evaporate the organic solvent and water. When the liquid was concentrated to 15 g, heating and stirring were stopped, and evaporation was stopped.
  • Example 1 Size adjustment using an extruder
  • particle size adjustment is not performed, but among the examples described in the following table, the filter size is described in the column of “size adjustment” as follows.
  • the sizing was carried out. Using an extruder (Mini Extruder, manufactured by Avanti Polar Lipids) under heating at 70 ° C., the liquid obtained in (c) was passed through a filter in order to adjust the size. As the size of the filter, the one described in the “Sizing” column of each table was used. In Examples where a plurality of filter sizes were described, the particles were sized using a filter having a large pore size, and then sized using a filter having a small pore size.
  • panobinostat APAC PHARMACEUTICAL, LLC
  • panobinostat APAC PHARMACEUTICAL, LLC
  • 8 mol / L HCl solution was added while thoroughly stirring the solution, and the pH was adjusted to about 3 to dissolve panobinostat.
  • Lipid particles were added to this panobinostat solution at a volume ratio of 1/1, and then heated at 60 ° C. for 120 minutes.
  • Example 2 Panobinostat-containing lipid particles were obtained in the same manner as in Example 1 except that the amount of DSPE-PEG used was 0.0153 g.
  • SM represents Sphingomyelin (COATSOME NM-10, manufactured by NOF Corporation)
  • DHSM Dihydrosphingomyelin (a synthetic product obtained by hydrogenation of COATSOME NM-10 (manufactured by NOF Corporation)).
  • panobinostat (APAC PHARMACEUTICAL, LLC) to make 4 mg / mL. Further, 8 mol / L HCl solution was added while thoroughly stirring the solution, and the pH was adjusted to about 4 to dissolve panobinostat.
  • the panobinostat solution, 720 mM NaCl aqueous solution, and lipid particles were mixed at a volume ratio of 5/3/2, and then heated at 60 ° C. for 120 minutes.
  • Example 15 to 25 Panobinostat-containing lipid particles were obtained in the same manner as in Example 14 with the lipid compositions described in Tables 2-4. In Example 25, lipid particles were prepared without adding DiI.
  • C20PC is 1,2-dialacidonoyl-sn-glycero-3-phosphocholine (manufactured by Nippon Seika)
  • HSPC hydrogenated soybean phosphatidylcholine (COATSOME NC-21, NOF Corporation)
  • DPPG is 1 , 2-Dipalmitoyyl-sn-glycero-3-phosphosylcerol, sodium salt (COATSOME MG-6060LS, manufactured by NOF Corporation)
  • DPPA is 1,2-Dimyristoyyl-sn-glycosidic-3-acids 6060LS (manufactured by NOF Corporation)
  • DPPS is 1,2-Dipalmitoyyl-sn-glycero-3-phospho-L-ser ne,
  • panobinostat solution was 3.6 mg / mL.
  • the mixing ratio of panobinostat solution, 720 mM NaCl aqueous solution and lipid particles was 8/5/5 in Example 16 and 2/1/1 in Examples 17-25.
  • Example 22 Only in Example 22, the average particle size is 331 nm, which is larger than others. This is because the average particle diameter was greatly calculated because the peak of aggregates was observed in the vicinity of 1 ⁇ m in the particle diameter measurement by DLS. In Example 22, the absolute value of the zeta potential is small, and the electrostatic repulsion between particles is small. Also, a material such as DSPE-PEG that prevents the particles from coalescing due to steric repulsion is not added. Although the bone marrow accumulation rate is high, it can be said that the other examples are more preferable from the viewpoint of particle stability.
  • Example 25 In Example 25, (I) DiI was not added at the time of preparation of the oil phase, and staining with DiI was performed on lipid particles that had been subjected to dialysis with a sucrose / histidine buffer in (g). After mixing 5 ⁇ L of 3 mg / mL DiI / ethanol solution with 500 ⁇ L of lipid particle solution and stirring well, the outer aqueous phase is 9.4% by mass by gel filtration (PD MiniTrap G-25, manufactured by GE Healthcare). Substitution was carried out with a sucrose / histidine buffer consisting of sucrose and 10 mmol / L histidine to remove excess DiI.
  • a sucrose / histidine buffer consisting of sucrose and 10 mmol / L histidine to remove excess DiI.
  • Panobinostat was dissolved in a 1: 4 volume ratio mixture of polyoxyl 35 castor oil (Kolliphore EL, manufactured by SIGMA) and polyethylene glycol 400 (manufactured by Wako Pure Chemical Industries, Ltd.) while irradiating with ultrasonic waves.
  • the obtained solution and physiological saline were mixed at a volume ratio of 1: 7 to obtain a 0.5 mg / mL panobinostat solution.
  • HSPC, cholesterol, and DSPE-PEG were weighed 16.63 g, 2.04 g, and 4.15 g, respectively, together with DiI in an amount of 0.2 mol% based on the total lipid, and 303.75 mL of ethanol and 101.25 mL of ethyl acetate.
  • a water phase was prepared by mixing 5.6 g of 100 mmol / L sodium dihydrogen phosphate, 37.6 g of 100 mmol / L disodium hydrogen phosphate, and 1037 g of water for injection.
  • the oil phase was mixed with the aqueous phase, and empty liposomes labeled with DiI were prepared using an emulsification method.
  • the outer aqueous phase was replaced with TFF using 0.09 mass% sodium chloride aqueous solution, and then pemetrexed was encapsulated by the passive loading method.
  • Dialysis was performed with a sucrose / histidine buffer composed of 9.4% by mass sucrose and 0.155% by mass histidine to obtain lipid particles containing pemetrexed.
  • HSPC, cholesterol, and DSPE-PEG were weighed 12.42 g, 4.14 g, and 4.14 g, respectively, and 303.4 mL of ethanol and 101.25 mL of ethyl acetate together with an amount of DiI corresponding to 0.2 mol% with respect to the total lipid.
  • To give an oil phase 26.73 g of ammonium sulfate was dissolved in 1080 g of MilliQ water to obtain an aqueous phase.
  • liposomes empty liposomes labeled with DiI containing ammonium sulfate were prepared.
  • doxorubicin hydrochloride was encapsulated by a remote loading method. Dialysis was performed with a sucrose / histidine buffer composed of 9.4% by mass sucrose and 0.155% by mass histidine to obtain lipid particles containing doxorubicin hydrochloride.
  • the composition of the lipid particles was based on the composition described in the package insert of doxil injection 20 mg (doxorubicin hydrochloride 2 mg / mL, HSPC 9.58 mg / mL, DSPE-PEG 3.19 mg / mL, cholesterol 3.19 mg / mL).
  • doxorubicin hydrochloride 2.24 mg / mL, HSPC 11.5 mg / mL, DSPE-PEG 4.1 mg / mL, and cholesterol 4.2 mg / mL.
  • the particle size means a cumulant average particle size measured by a dynamic light scattering method.
  • the average particle size of the examples and comparative examples described in each table is a cumulant average particle size measured by a dynamic light scattering method using a dense particle size analyzer FPAR-1000AS (manufactured by Otsuka Electronics Co., Ltd.) with an autosampler. The measurement results are shown in each table.
  • the zeta potential means a value measured by a laser Doppler method.
  • the zeta potential of the examples described in each table was obtained by diluting the lipid particle solution 20-fold with a sucrose / histidine buffer composed of 9.4% by mass sucrose and 10 mmol / L histidine as in the outer aqueous phase. It is a value measured by a measurement system ELSZ-2 (manufactured by Otsuka Electronics Co., Ltd.). The measurement results are shown in each table.
  • the API concentration described in each table is a value obtained by measuring the amount of panobinostat (free body) contained in the lipid particles by HPLC (high performance liquid chromatography). For detection of panobinostat, ultraviolet light (UV) of 279 nm was used.
  • UV ultraviolet light
  • the lipid concentration described in each table is the total concentration of each lipid obtained by quantifying each lipid contained in the lipid particles by HPLC (high performance liquid chromatography).
  • HPLC high performance liquid chromatography
  • a corona charged particle detector Corona CAD (charged aerosol detector) was used for lipid detection.
  • Example 1 lipid particle composition of Example 1 was snap-frozen and observed under cryo conditions using a general-purpose TEM to obtain a TEM image. The obtained TEM image is shown in FIG. From the TEM image in FIG. 1, it can be seen that the solidified panobinostat is present on at least a part of the surface and inside of the lipid particles.
  • panobinostat-containing lipid particles prepared in Examples 1 and 3 to 7 labeled with a fluorescent dye (DiI) were administered from the tail vein.
  • panobinostat-containing lipid particles prepared in Examples 2 and 8 to 13 labeled with a fluorescent dye (DiI) were administered from the tail vein.
  • lipid particles not containing panobinostat prepared in Comparative Example 2 labeled with a fluorescent dye (DiI) (the same amount as that of Example 1 as lipid amount) were administered from the tail vein.
  • lipid particles containing pemetrexed prepared in Comparative Example 3 labeled with a fluorescent dye (DiI) (1.5 mg / kg as a drug amount) were administered from the tail vein.
  • lipid particles (drug 16.7 mg / kg) containing doxorubicin hydrochloride prepared in Comparative Example 4 labeled with a fluorescent dye (DiI) were administered from the tail vein.
  • the collected bone marrow was quantified with the HPLC (High Performance Liquid Chromatography) fluorescence detector to determine the concentration of DiI in the administration solution and tissue, and the bone marrow accumulation rate was calculated by the following formula 2.
  • the bone marrow accumulation rate was shown by the ratio (% injected dose / g) (also expressed as% ID / g) of lipid particles administered per 1 g of bone marrow accumulated in the bone marrow. The measurement results are shown in each table.
  • the lipid particle compositions of Examples 1 to 25 of the present invention showed high bone marrow accumulation.
  • the lipid particles encapsulating panobinostat are presumed to be highly accumulated in the bone marrow by being recognized by macrophages as shown in the following analysis. All of the above factors are thought to contribute to indirectly enhancing the ability to accumulate bone marrow by affecting the ease of recognition by macrophages. For example, when the zeta potential is lowered by the addition of an anionic lipid, there is an effect that it is easily recognized by the scavenger receptor of macrophages, and this is considered to lead to an improvement in bone marrow accumulation.
  • Panobinostat-containing lipid particles (4 mg / kg as the drug amount) prepared in Examples 1, 2, 14 and 19 were administered to ICR mice (male, 7 weeks old) from the tail vein.
  • the panobinostat solution (5 mg / kg) prepared in Comparative Example 1 was intraperitoneally administered to ICR mice (male, 7 weeks old).
  • the dose of the panobinostat-containing lipid particles prepared in Examples 1, 2, 14 and 19 is set to the maximum tolerated dose in a single dose, and administration of the panobinostat solution prepared in Comparative Example 1 The amount was set to the maximum tolerated dose for daily administration for 8 days.
  • mice administered with the panobinostat-containing lipid particles prepared in Examples 1, 2, 14, and 19 were dissected at 3, 6, 24, 72, and 168 hours after administration.
  • Mice administered with the panobinostat solution prepared in Comparative Example 1 were dissected at 1, 3, 6, 24, and 72 hours after administration, and blood, femur bone marrow, and gastrointestinal tract (lower ileum) were collected.
  • the blood was centrifuged at 800 ⁇ g for 10 minutes, and plasma was collected.
  • the digestive tract was homogenized by freeze crushing.
  • the collected plasma, bone marrow and gastrointestinal tract were quantified for panobinostat concentration in tissues using liquid chromatography / mass spectrometry / mass spectrometry (LC / MS / MS).
  • the area under the tissue concentration-time curve (AUC) up to an infinite time after a single administration was calculated from the obtained tissue panofinostat concentration transition using the pharmacokinetic analysis software WinNonlin (registered trademark) (Certara). Further, the bone marrow / gastrointestinal tract ratio of AUC in the tissue was calculated from the following formula 1. The results are shown in FIGS. 2 and 3 and Table 5.
  • Pemetrexed-containing lipid particles 1.5 mg / kg as the drug amount
  • ICR mice male, 7 weeks old
  • mice administered with pemetrexed-containing lipid particles prepared in Comparative Example 3 were dissected 24, 72, 120, and 168 hours after administration, and blood, femur bone marrow, and digestive tract (lower ileum) were collected.
  • the tissue pemetrexed concentration was quantified in the same manner as panobinostat, and the bone marrow / gastrointestinal tract ratio of AUC and tissue AUC was calculated. The results are shown in Table 5.
  • panobinostat-containing lipid particles prepared in Examples 1, 2, 14 and 19 Panobinostat AUC showed a high bone marrow / gastrointestinal ratio and good bone marrow accumulation.
  • Panobinostat-containing lipid particles prepared in Example 1 from the 8th day after transplantation drug amount 8 mg / kg, tail vein administration, single administration
  • panobinostat solution prepared in Comparative Example 1 (5 mg / kg, intraperitoneal administration) , 8 days of continuous administration)
  • lipid particles containing no panoinostat prepared in Comparative Example 2 as a negative control the amount of lipid corresponding to 8 mg / kg of panoinostat-containing lipid particles prepared in Example 1; Administration was started.
  • the group which does not implement immunosuppression and a transplant as a non-transplant group was set. Mice were dissected 16 days after transplantation (8 days after the start of administration), and femur bone marrow was collected.
  • the obtained bone marrow was treated with a hemolysis buffer to remove erythrocytes, and then stained with a PerCP-labeled anti-human CD45 antibody and DAPI (4,6-diamidino-2-phenyllinole).
  • PerCP shows peridinin chlorophyll (Peridininchlorophyll).
  • flow cytometry the proportion of leukemia cells (human CD45 positive, DAPI negative cells) in living bone marrow was measured, and the growth inhibitory activity on leukemia cells in the Molm-13 orthotopic model mouse was compared. The measurement results are shown in FIG.
  • panobinostat-containing lipid particles prepared in Example 1 are higher in leukemia cell growth inhibition than the panobinostat solution prepared in Comparative Example 1 and the lipid particles not containing panobinostat prepared in Comparative Example 2. It was shown to be active and its effect was dose dependent.
  • Panobinostat-containing lipid particles prepared in Example 2 and labeled with DiI were administered to ICR mice (male, 7 weeks old) from the tail vein as a drug amount.
  • Non-administered, 6 hours after administration, and 96 hours after administration mice were dissected and femur bone marrow was collected.
  • the obtained bone marrow was treated with a hemolysis buffer to remove erythrocytes, and then stained with Alexa fluor (registered trademark) 647-labeled anti-mouse F4 / 80 antibody, FITC-labeled anti-mouse CD11b antibody, and DAPI.
  • Alexa fluor registered trademark
  • FITC fluorescein isothiocyanate.
  • flow cytometry the proportion of macrophages (mouse F4 / 80 positive, mouse CD11 positive, DAPI negative cells) in living bone marrow was measured. Furthermore, the amount of lipid particles taken into the cells was analyzed for a sample 96 hours after administration using the fluorescence intensity of intracellular DiI as an index. The analysis results are shown in FIG. In FIG. 5, M ⁇ indicates a macrophage.
  • the number of macrophages in the bone marrow increases with the lapse of time after administration of the panobinostat-containing lipid particles prepared in Example 2, and the panobinostat-containing lipid particles are taken into the increased macrophages. I understood.
  • the obtained bone marrow supernatant was subjected to protein concentration measurement by the BCA method (Bicinchonic Acid method), and each sample was diluted to a protein concentration of 8 mg / mL.
  • Cytokine concentrations in each sample were quantified using the Bio-Plex mouse cytokine GI23-Plex panel and the Bio-Plex200 system (Bio-Rad). The relative expression level change when the average value of cytokine expression level in non-administration was set to 1 was shown. The analysis results are shown in FIG.
  • IL indicates interleukin
  • G-CSF indicates granulocyte colony stimulating factor
  • GM-CSF indicates granulocyte monocyte colony stimulating factor
  • IFN indicates interferon
  • KC indicates keratinocyte chemoattractant
  • MCP stands for Monocytic Chemical Protein
  • MIP stands for Macrophage infraprotein protein
  • PANTES stands for regulated on activation normal T expressed and dead
  • TNF indicates tumor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明の課題は、パノビノスタットまたはその塩を含有し、骨髄への高いターゲッティング能を示す脂質粒子組成物、および上記脂質粒子組成物を含む医薬組成物を提供することである。本発明によれば、パノビノスタットまたはその塩を含有する脂質粒子組成物であって、脂質粒子がリン脂質およびコレステロール類を含む脂質粒子組成物が提供される。

Description

脂質粒子組成物および医薬組成物
 本発明は、パノビノスタットまたはその塩を含有する脂質粒子組成物、および上記脂質粒子組成物を含む医薬組成物に関する。
 パノビノスタットは、 多発性骨髄腫の治療に用いられるヒドロキサム酸誘導体であり、非選択的ヒストン脱アセチル化酵素阻害薬の一つである。パノビノスタットは、商品名ファリーダック(登録商標)としてカプセル型経口剤の形態で市販されている。
 一方、リポソーム製剤によって、薬剤をがんに集積させ、長期間に渡って曝露させることが多く検討されている。リポソーム製剤とは、脂質膜からなるリポソーム中に薬物を内包した製剤である。
 例えば、非特許文献1には、骨髄を標的としたリポソーム製剤が記載されている。非特許文献1には、1,2-ジパルミトイル-sn-グリセロ-3-ホスホコリン(DPPC)、コレステロール、L-グルタミン酸、N-(3-カルボキシル-1-オキソプロピル)-1,5-ジヘキサデシルエステル(SA脂質)、およびポリ(エチレングルコール)を含むリポソームが記載されており、SA脂質成分が骨髄食細胞による食作用を誘導する活性因子であることが記載されている。
 非特許文献2には、シタラビンとダウノルビシンを内包するリポソーム(CPX-351)が、高い骨髄集積性を示すことが記載されている。非特許文献2には、CPX-351の骨髄における蓄積が、正常マウスにおいては空リポソームと比較して20%~50%高く、白血病モデルマウスにおいては空リポソームと比較して75%高いことが記載されている。
Keitaro Sou et al., Expert Opin Drug Deliv. 2011 March ; 8(3): 317-328 Abstract 5534: Liposome accumulation within leukemia engrafted bone marrow is significantly enhanced when the formulation contains cytarabine plus daunorubicin,, Sharon A. Johnstone, Sherwin Xie, Troy Harasym, Lawrence Mayer and Paul G. Tardi, DOI: 10.1158/1538-7445.AM10-5534 Published 15 April 2010, Proceedings: AACR 101st Annual Meeting 2010, Apr 17‐21, 2010; Washington, DC
 上記の通り、高い骨髄集積性を示すリポソームについての数例の報告はあるが、パノビノスタットまたはその塩を含有し、骨髄への高いターゲッティング能を示すリポソーム組成物についての知見はない。本発明は、パノビノスタットまたはその塩を含有し、骨髄への高いターゲッティング能を示す脂質粒子組成物、および上記脂質粒子組成物を含む医薬組成物を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、パノビノスタットまたはその塩を含有する脂質粒子組成物であって、脂質粒子がリン脂質およびコレステロール類を含む脂質粒子組成物が、骨髄への高いターゲッティング能を示すことを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記を提供する。
[1] パノビノスタットまたはその塩を含有する脂質粒子組成物であって、脂質粒子がリン脂質およびコレステロール類を含む脂質粒子組成物。
[2] パノビノスタットまたはその塩を含有する脂質粒子組成物であって、パノビノスタット量として4mg/kgの脂質粒子組成物をマウスの尾静脈に単回投与した後から無限時間までの、下記式1で表される面積比が5以上である脂質粒子組成物。
式1: (骨髄中濃度-時間曲線下面積)/(消化管中濃度-時間曲線下面積)
[3] 脂質粒子の平均粒子径が50nm~500nmである、[1]または[2]に記載の脂質粒子組成物。
[4] リモートローディング法によりパノビノスタットまたはその塩が脂質粒子に内包されている、[1]から[3]に記載の脂質粒子組成物。
[5] パノビノスタットまたはその塩の固化物が脂質粒子の表面および内部の少なくとも一部に存在している、[1]から[4]の何れか一項に記載の脂質粒子組成物。
[6] 脂質粒子がリン脂質およびコレステロール類を含む、[2]から[5]の何れか一項に記載の脂質粒子組成物。
[7] リン脂質として、グリセロール骨格を有するリン脂質を含む、[1]から[6]の何れか一項に記載の脂質粒子組成物。
[8] グリセロール骨格を有するリン脂質が、ホスファチジルコリンである、[7]に記載の脂質粒子組成物。
[9] リン脂質として、スフィンゴリン脂質を含む、[1]から[6]の何れか一項に記載の脂質粒子組成物。
[10] スフィンゴリン脂質が、スフィンゴミエリンである、[9]に記載の脂質粒子組成物。
[11] リン脂質が、炭素数20以上の脂肪酸残基を含む、[1]から[10]の何れか一項に記載の脂質粒子組成物。
[12] 脂質粒子が、ポリエチレングリコール脂質をさらに含む、[1]から[11]の何れか一項に記載の脂質粒子組成物。
[13] 脂質粒子を構成する全脂質におけるポリエチレングリコール脂質の比率が5モル%以下である、[12]に記載の脂質粒子組成物。
[14] 脂質粒子が、ポリエチレングリコール脂質を実質的に含まない、[1]から[11]の何れか一項に記載の脂質粒子組成物。
[15] 脂質粒子が、アニオン性脂質を含む、[1]から[14]のいずれか一項に記載の脂質粒子組成物。
[16] [1]から[15]の何れか一項に記載の脂質粒子組成物を含む、医薬組成物。
[17] 抗がん剤である、[16]に記載の医薬組成物。
[18] [1]から[17]の何れか一に記載の脂質粒子組成物を対象に投与することを含む、対象の処置方法。
[19] がんの治療において使用するための、[1]から[17]の何れか一に記載の脂質粒子組成物。
[20] 医薬組成物の製造のための、[1]から[17]の何れか一に記載の脂質粒子組成物の使用。
[21] 抗がん剤の製造のための、[1]から[17]の何れか一に記載の脂質粒子組成物の使用。
 本発明の脂質粒子組成物および医薬組成物は、骨髄への高いターゲッティング能を示す。本発明の脂質粒子組成物および医薬組成物によれば、治療指数を向上した医薬組成物を提供することが可能になる。
図1は、パノビノスタット含有脂質粒子の透過型電子顕微鏡(Transmission Electron Microscope;  TEM)による画像を示す。 図2は、パノビノスタット含有脂質粒子またはパノビノスタット溶液の投与後の血漿中のパノビノスタット濃度の測定の結果を示す。 図3は、パノビノスタット含有脂質粒子またはパノビノスタット溶液の投与後の組織中のパノビノスタット濃度の測定の結果を示す。 図4は、Molm-13同所モデルマウスにおける白血病細胞への増殖阻害活性を測定した結果を示す。 図5は、骨髄中マクロファージ数および細胞中脂質粒子量を解析した結果を示す。 図6は、骨髄中のサイトカインの発現を解析した結果を示す。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
 本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 「空リポソーム」とは、薬物を含有していないリポソームを意味する。
 「放出」とは、脂質粒子(リポソームなど)に含有された薬物が、脂質粒子(リポソームなど)を構成する脂質膜を通過して、脂質粒子(リポソームなど)の外部へ出ることを意味する。
 「血中滞留性」とは、脂質粒子(リポソームなど)組成物を投与した対象において、脂質粒子(リポソームなど)に封入された状態の薬物が血液中に存在する性質を意味する。
 「脂質粒子(リポソームなど)の平均粒子径」とは、脂質粒子(リポソームなど)組成物中に存在する脂質粒子(リポソームなど)の体積平均粒子径を意味する。本発明の脂質粒子組成物中に含まれる脂質粒子の平均粒子径は動的光散乱法を用いて測定する。動的光散乱を用いた市販の測定装置としては、濃厚系粒子アナライザーFPAR-1000(大塚電子社製)、ナノトラックUPA(日機装社製)およびナノサイザー(マルバーン社製)等が挙げられる。
 「対象」とは、疾病等の予防若しくは治療を必要とするヒト、マウス、サル、家畜等の哺乳動物であり、好ましくは、疾病等の予防若しくは治療を必要とするヒトである。
 以下、本発明を詳細に説明する。
 本発明の脂質粒子組成物は、パノビノスタットまたはその塩を含有する脂質粒子組成物であって、脂質粒子がリン脂質およびコレステロール類を含む脂質粒子組成物である。
(脂質粒子)
  脂質粒子とは、脂質から構成される粒子を意味し、特に限定されない。本発明の脂質粒子には、脂質二分子膜より構成される閉鎖小胞体であるラメラ構造を持つリポソームが含まれる。リポソームとは、脂質を用いた脂質二重膜で形成される閉鎖小胞体であり、その閉鎖小胞の空間内に水相(内水相)を有する。内水相には、水等が含まれる。リポソームは通常、閉鎖小胞外の水溶液(外水相)に分散した状態で存在する。リポソームはシングルラメラ(単層ラメラまたはユニラメラとも呼ばれ、二重層膜が一重の構造である。)であっても、多層ラメラ(マルチラメラとも呼ばれ、タマネギ状の形状の多数の二重層膜の構造である。個々の層は水様の層で仕切られている。)であってもよいが、本発明では、医薬用途での安全性および安定性の観点から、シングルラメラのリポソームであることが好ましい。
 本発明の脂質粒子には、前述のリポソームのような脂質二分子膜構造(ラメラ構造)を持たない、粒子内部も構成成分が詰まった構造を持つ粒子も含まれる。
  脂質形成の形態は、電子顕微鏡観察またはエックス線を用いた構造解析などにより確認できる。例えば、Cryo透過型電子顕微鏡観察(CryoTEM法)を用いた方法により、リポソームのように脂質粒子が脂質二分子膜構造(ラメラ構造)および内水層を持つ構造、またはリポソームのように脂質粒子が脂質二分子膜構造(ラメラ構造)および内水層を持たず粒子内部に電子密度が高いコアを持っていることから、脂質をはじめとする構成成分が詰まった構造を有していることを確認できる。エックス線小角散乱(SAXS)測定によっても、脂質粒子が脂質二分子膜構造(ラメラ構造)の有無を確認できる。
 脂質粒子は、薬物を内包することのできる脂質粒子であれば、その形態は特に限定されない。「内包」とは、脂質粒子に対して薬物が内水相および/または膜自体に含まれる形態をとることを意味する。例えば、膜で形成された閉鎖空間内に薬物を封入する形態、膜自体に内包する形態等が挙げられ、これらの組合せでもよい。
 脂質粒子の平均粒子径は、一般的には10nm~1000nmであり、50nm~500nmが好ましく、100nm~500nmがより好ましく、100nm~300nmがさらに好ましい。
 脂質粒子は球状またはそれに近い形態をとることが好ましい。
 本発明にかかる脂質粒子のゼータ電位は、とく印限定されないが、好ましくは-10mV以下であり、より好ましくは-15mV以下であり、さらに好ましくは-20mV以下であり、-25mV以下とすることも好ましく、-30mV以下とすることもより好ましい。
 脂質粒子の脂質二重層を構成する成分は、脂質から選ばれる。脂質として、水溶性有機溶媒およびエステル系有機溶媒の混合溶媒に溶解するものを任意に使用することができる。脂質としては、例えば、リン脂質、リン脂質以外の脂質、コレステロール類、リゾリン脂質およびそれらの誘導体等が挙げられる。これらの成分は、単一種または複数種の成分から構成されてよい。本発明における脂質粒子は、少なくとも、リン脂質およびコレステロール類を含む。
 リン脂質としては、例えば、ホスファチジルコリン(レシチン)、ホスファジルグリセロール、ホスファチジン酸、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトール、スフィンゴミエリン、ジヒドロスフィンゴミエリン、カルジオリピン等の天然もしくは合成のリン脂質、またはこれらに水素添加したもの(例えば、水素添加大豆ホスファチジルコリン(HSPC))等が挙げられる。なお、本発明において、「リン脂質」とはリン脂質に修飾を加えたリン脂質誘導体も包含する。
 本発明においては、リン脂質としては、グリセロール骨格を有するリン脂質を含むことが好ましい。グリセロール骨格を有するリン脂質としては、ホスファチジルコリンが特に好ましい。ホスファチジルコリンとしては、1,2-diarachidonoyl-sn-glycero-3-phosphocholine等を使用することができる。また、本発明においては、リン脂質として、スフィンゴリン脂質を含むことも好ましい。スフィンゴリン脂質としては、スフィンゴミエリンなどを使用することができる。
 本発明におけるリン脂質は、炭素数20以上の脂肪酸残基を含むことが、パノビノスタットまたはその塩の放出を低減し、血中滞留性を向上させるという観点から、好ましい。
 リン脂質以外の脂質としては、リン酸を含まない脂質が挙げられ、例えば、リン酸部分をその分子内に有しないグリセロ脂質、リン酸部分をその分子内に有しないスフィンゴ脂質等が挙げられる。なお、本発明において、「リン脂質以外の脂質」とはリン脂質以外の脂質に修飾を加えたリン脂質以外の脂質の誘導体も包含する。
 コレステロール類としては、シクロペンタヒドロフェナントレンを基本骨格とし、その一部あるいはすべての炭素が水素化されているコレステロールおよびその誘導体を挙げることができる。例えば、コレステロールが挙げられる。脂質粒子の平均粒子径を100nm以下に微細化していくと脂質膜の曲率が高くなる。脂質粒子において配列した膜のひずみも大きくなる。脂質による膜のひずみを埋める(膜安定化効果)ために、コレステロール等を添加することが有効である。
 脂質粒子において、コレステロールの添加は、脂質粒子の膜のすきまを埋めること等により、脂質粒子の膜の流動性を下げることが期待される。
 本発明に係る脂質粒子を構成する脂質の合計量に対するコレステロール類の含有率は10mol%~50mol%が好ましく、20mol%~45mol%がより好ましく、30mol%~45mol%がさらに好ましく、35mol%~45mol%がとくに好ましい。
 本発明における脂質粒子は、親水性高分子で修飾した脂質を含んでいてもよい。
 親水性高分子としては、例えば、ポリエチレングリコール類、ポリグリセリン類、ポリプロピレングリコール類、ポリビニルアルコール、スチレン-無水マレイン酸交互共重合体、ポリビニルピロリドン、合成ポリアミノ酸等が挙げられる。上記の親水性高分子は、それぞれ単独でまたは2種以上を組み合わせて使用することができる。
 これらの中でも、組成物の血中滞留性の観点から、ポリエチレングリコール類、ポリグリセリン類およびポリプロピレングリコール類が好ましく、ポリエチレングリコール(PEG)、ポリグリセリン(PG)およびポリプロピレングリコール(PPG)がより好ましい。汎用性および血中滞留性の観点から、ポリエチレングリコール(PEG)がさらに好ましい。
 ポリエチレングリコールの重量平均分子量は、特に限定されないが、500~10,000ダルトンであり、好ましくは1,000~7,000ダルトンであり、より好ましくは2,000~5,000ダルトンである。
 本発明における脂質粒子の第一の態様としては、脂質粒子に含まれる主たる脂質とともに、PEGによって修飾された脂質(ポリエチレングリコール脂質)を用いることが好ましい。ポリエチレングリコール脂質としては、例えば、1、2-ジステアロイル-3-ホスファチジルエタノールアミン-PEG2000(日本油脂社製)、1,2-ジステアロイル-3-ホスファチジルエタノールアミン-PEG5000(日本油脂社製)およびジステアロイルグリセロール-PEG2000(日本油脂社製)等の1,2-ジステアロイル-3-ホスファチジルエタノールアミン-ポリエチレングリコールが挙げられる。
 脂質粒子を構成する全脂質におけるポリエチレングリコール脂質の比率は、一般的には0.01~10モル%であり、好ましくは0.05~8モル%であり、より好ましくは0.1~7モル%であり、5モル%以下とすることも好ましく、1モル%以下とすることもより好ましい。
 本発明における脂質粒子の第二の形態としては、脂質粒子が実質的にポリエチレングリコール脂質を含まないことが好ましい。
 本発明における脂質粒子は、脂質粒子に含まれる主たる脂質とともにアニオン性の脂質を含むことも好ましい。アニオン性の脂質としては、例えば、1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol, sodium salt(COATSOME MG-6060LS、日油製)などのホスファチジルグリセロールを有する脂質、1,2-Dimyristoyl-sn-glycero-3-phosphatidic acid, sodium salt(COATSOME MA-6060LS、日油製)などのホスファチジン酸を有する脂質、1,2-Dipalmitoyl-sn-glycero-3-phospho-L-serine, sodium salt(COATSOME MS-6060LS、日油製)などのホスファチジルセリンを有する脂質、1-Stearoyl-2-lyso-sn-glycero-3- phosphocholine(COTSOME MC-80H、日油製)などのリゾリン脂質、Cholesteryl hemisuccinate(CHEMS,Avanti Polar Lipids社製)などのアニオン性基を有するステロイド誘導体、ステアリン酸などの脂肪酸などが挙げられる。
 脂質粒子を構成する全脂質におけるアニオン性脂質の比率は、とくに限定されないが、0.01~50モル%であり、好ましくは0.05~30モル%であり、より好ましくは0.1~10モル%である。アニオン性脂質はPEG脂質と組み合わせて使用してもよく、PEG脂質は用いずいに単独で用いてもよい。また、上記の親水性高分子は、それぞれ単独でまたは2種以上を組み合わせて使用することができる。
 脂質粒子には、上記の成分の他に、血中滞留性の改善のために親水性高分子等、膜構造の安定剤として脂肪酸またはジアセチルホスフェート等、抗酸化剤としてα-トコフェロール等を加えてもよい。本発明では、医薬用途において静脈注射用途での使用が認められていない分散助剤等の添加剤、例えば、界面活性剤等を用いないことが好ましい。
(パノビノスタット)
 本発明の脂質粒子組成物は、薬物としてパノビノスタットまたはその塩を含有する。
 パノビノスタット(Panobinostat)は、多発性骨髄腫の治療に用いられるヒドロキサム酸誘導体であり、非選択的ヒストン脱アセチル化酵素阻害薬の一つである。パノビノスタットの化学構造を以下に示す。
Figure JPOXMLDOC01-appb-C000001
 パノビノスタットの塩としては、通常知られているアミノ基などの塩基性基における塩を挙げることができる。
 塩基性基における塩としては、例えば、塩酸、臭化水素酸、リン酸、ホウ酸、硝酸および硫酸などの鉱酸との塩;ギ酸、酢酸、乳酸、クエン酸、シュウ酸、フマル酸、マレイン酸、コハク酸、リンゴ酸、酒石酸、アスパラギン酸、トリクロロ酢酸およびトリフルオロ酢酸などの有機カルボン酸との塩;ならびにメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、メシチレンスルホン酸およびナフタレンスルホン酸などのスルホン酸との塩が挙げられる。パノビノスタットの塩の一例としては、パノビノスタットの乳酸塩を挙げることができ、その構造を以下に示す。
Figure JPOXMLDOC01-appb-C000002
(脂質粒子組成物に含有されるパノビノスタットまたはその塩)
 本発明の脂質粒子組成物においては、脂質粒子内におけるパノビノスタットまたはその塩の存在状態は特に限定しないが、後述のように空リポソームとの骨髄への集積性の違いから、パノビノスタットまたはその塩の少なくとも一部は脂質粒子を認識する血液中のたんぱく質またはマクロファージ等の細胞による認識に影響を与える形態で存在しているものと推定される。すなわち、パノビノスタットまたはその塩の一部が脂質粒子の膜表面に存在しているか、膜表面に存在する脂質分子の運動性に影響を与える状態で存在していると推定される。
 本発明の脂質粒子組成物において、内包されるパノビノスタットまたはその塩が高濃度である場合、パノビノスタットまたはその塩の存在状態としては、図1のTEM画像から読み取れるように、パノビノスタットまたはその塩のうちの一部が、固化物として、脂質粒子の表面および内部の少なくとも一部に存在している場合がある。このような場合においても、パノビノスタットまたはその塩の残部は、脂質粒子の内水相に溶解状態で存在していてもよい。ここで、溶解状態とは、脂質粒子の体積に対して充填した薬物の量が、その内水相の組成液での薬物の飽和溶解度以下の場合、溶解状態で内包されたものとみなす。また、飽和溶解度以上においても、Cryo-TEM[凍結試料の透過型電子顕微鏡(TEM)による観察]で薬物結晶が観察されない、またはXRD測定で結晶格子に起因する回折パターンが観察されない場合、脂質粒子に内包された薬物の大部分が溶解し、溶解状態で存在するものとみなせる。
 本発明において、固化物とは、透過型電子顕微鏡(TEM)により観察できる固体を意味する。
(パノビノスタットまたはその塩/脂質比)
 本発明における脂質粒子におけるパノビノスタットまたはその塩/脂質比は10~500mg/mmolであり、20~400mg/mmolが好ましく、30~300mg/mmolがより好ましい。パノビノスタットの塩を含む場合、パノビノスタットまたはその塩/脂質比においてはパノビノスタットとして換算した量で計算する。なお、パノビノスタットまたはその塩/脂質比における脂質とは、脂質粒子を構成する脂質すべてを意味し、脂質にはコレステロールやリゾリン脂質も含まれる。
(脂質粒子組成物)
 本発明の脂質粒子組成物においては、パノビノスタット量として4mg/kgの脂質粒子組成物をマウスの尾静脈に単回投与した後から無限時間までの、下記式1で表される面積比が1より大きいことが好ましく、2以上がより好ましく、3以上がより一層好ましく、5以上がさらに好ましく、10以上がさらに一層好ましく、12以上が特に好ましい。
式1: (骨髄中濃度-時間曲線下面積)/(消化管中濃度-時間曲線下面積)
 本発明の脂質粒子組成物においては、下記の式2で示される骨髄集積率(%ID/g)が、好ましくは10%ID/g以上であり、より好ましくは15%ID/g以上であり、より好ましくは20%ID/g以上であり、さらに好ましくは30%ID/g以上であり、特に好ましくは40%ID/g以上である。本発明の実施例に示す骨髄集積率は、DiI(1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine Perchlorate)で標識したパノビノスタット含有脂質粒子組成物(パノビノスタット量として6mg/kgまたは4mg/kg)をマウスの尾静脈に投与した後72時間後における、大腿骨骨髄1g当たりの投与した脂質粒子のうち骨髄に集積した割合(% injected dose/g)として求めたものであり、下記式2で示される。
式2:骨髄集積率(%ID/g)=骨髄中DiI濃度(ng/g)/(投与液中DiI濃度(ng/mL)×投与容量(mL))×100
 上記の骨髄集積率(%ID/g)を求めるためには、本発明で使用したDiIとは異なる標識を使用してもよいし、標識を用いず、脂質粒子を構成する脂質をトレースすることにより骨髄集積率を求めてもよい。また、本発明の実施例に示すように脂質粒子組成物をあらかじめ標識しておく方法のほかにも、実施例25に示すように脂質粒子組成物をあとから標識する方法を用いて骨髄集積率を求めることもできる。
 本発明の脂質粒子組成物は、パノビノスタットまたはその塩を含有する脂質粒子と、上記脂質粒子を分散する水性溶媒とを含むことができる。
 本発明の脂質粒子組成物は、投与経路に関連して、医薬的に許容される等張化剤、安定化剤、酸化防止剤、およびpH調整剤の少なくとも一種を含んでもよい。
 等張化剤としては、特に限定されないが、例えば、塩化ナトリウム、塩化カリウム、リン酸水素ナトリウム、リン酸二水素ナトリウム、リン酸二水素カリウムのような無機塩類、グリセロール、マンニトール、ソルビトールのようなポリオール類、グルコース、フルクトース、ラクトース、またはスクロースのような糖類が挙げられる。
 安定化剤としては、特に限定されないが、例えば、グリセロール、マンニトール、ソルビトール、ラクトース、またはスロースのような糖類が挙げられる。
 酸化防止剤としては、特に限定されないが、例えば、アスコルビン酸、尿酸、トコフェロール同族体(例えば、ビタミンE、トコフェロールα、β、γ、δの4つの異性体)、システイン、EDTA(エチレンジアミン四酢酸)、没食子酸プロピル、BHT(ジブチルヒドロキシトルエン)、BHA(ブチルヒドロキシアニソール)、ピロ亜硫酸ナトリウム等が挙げられる。安定化剤および酸化防止剤は、それぞれ単独でまたは2種以上組み合わせて使用することができる。
 pH調整剤としては、水酸化ナトリウム、クエン酸、酢酸、トリエタノールアミン、リン酸水素ナトリウム、リン酸二水素ナトリウム、リン酸二水素カリウム等が挙げられる。
 本発明の脂質粒子組成物は、医薬的に許容される有機溶媒、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、ゼラチン、寒天、ジグリセリン、プロピレングリコール、ポリエチレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン(HSA)、マンニトール、ソルビトール、ラクトース、リン酸緩衝生理食塩水(PBS)、塩化ナトリウム、糖類、生体内分解性ポリマー、無血清培地、医薬添加物として許容される添加物を含有してもよい。
 本発明の脂質粒子組成物を充填する容器は、特に限定されないが、酸素透過性が低い材質であることが好ましい。例えば、プラスチック容器、ガラス容器、アルミニウム箔、アルミ蒸着フィルム、酸化アルミ蒸着フィルム、酸化珪素蒸着フィルム、ポリビニルアルコール、エチレンビニルアルコール共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ塩化ビニリデン、等をガスバリア層として有するラミネートフィルムによるバック等が挙げられ、必要に応じて、着色ガラス、アルミニウム箔やアルミ蒸着フィルム等を使用したバック等を採用することで遮光することもできる。
 脂質粒子組成物を充填する容器において、容器内の空間部に存在する酸素による酸化を防ぐために、容器空間部および薬液中のガスを窒素等の不活性ガスで置換することが好ましい。例えば、注射液を窒素バブリングし、容器への充填を窒素雰囲気下で行うことが挙げられる。
 脂質粒子組成物中の脂質や原薬の分解を防ぐために、凍結乾燥を行うことも好ましい。例えば、スクロースを含む水相に脂質粒子を分散させ、凍結乾燥を行うことが上げられる。
(脂質粒子組成物の製造方法)
 本発明の脂質粒子組成物の製造方法は、特に限定されないが、一例としては、
(a)油相の調製;
(b)水相の調製;
(c)乳化による脂質粒子形成;
(d)エクストルーダーによる整粒;
(e)透析による脂質粒子外水相液の置換;
(f)リモートローディングによるパノビノスタットの脂質粒子への内包;および
(g)透析による外水相パノビノスタットの除去:
という工程により製造することができる。
<(a)油相の調製>
 (a)油相の調製においては、脂質粒子を構成する各成分(リン脂質、コレステロール類など)と有機溶媒とを混合し、混合物を加温して上記成分を溶解することにより油相を製造することができる。
 油相において使用する有機溶媒は特に限定されないが、例えば、水と任意に混じりあう水溶性有機溶媒を用いることが出来る。
 水溶性有機溶媒としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノールおよびt-ブタノール等のアルコール類、グリセリン、エチレングリコールおよびプロピレングリコール等のグリコール類、ポリエチレングリコール等のポリアルキレングリコール類等が挙げられる。これらのなかでも、アルコール類が好ましい。アルコール類としては、エタノール、メタノール、2-プロパノールおよびt-ブタノールから選ばれる少なくとも1種であることが好ましく、エタノール、2-プロパノールおよびt-ブタノールから選ばれる少なくとも1種であることがより好ましく、エタノールであることがさらに好ましい。
 脂質の濃度は、特に限定されず、適宜調整することが可能である。
<(b)水相の調製>
 水相としては、水(蒸留水、注射用水等)、生理食塩水、各種緩衝液または糖類の水溶液およびこれらの混合物(水性溶媒)を使用することができる。本発明において、後述するリモートローディングによってパノビノスタットを脂質粒子へ内包させる場合には、水相としてアンモニウム塩を含む水溶液を使用することが好ましい。
 緩衝液としては、有機系、無機系に限定されることはないが、体液に近い水素イオン濃度付近に緩衝作用を有する緩衝液が好適に用いられ、リン酸緩衝液、トリス緩衝液、クエン酸緩衝液、酢酸緩衝液およびグッドバッファー等が挙げられる。脂質粒子の内水相は、脂質粒子を製造する際に、脂質粒子を分散する水溶液であってもよいし、新たに添加される、水、生理食塩水、各種緩衝液または糖類の水溶液およびこれらの混合物であってもよい。外水相または内水相として用いる水は、不純物(埃、化学物質等)を含まないことが好ましい。
 生理食塩水とは、人体と等張になるように調整された無機塩溶液を意味し、さらに緩衝機能を持っていてもよい。生理食塩水としては、塩化ナトリウムを0.9w/v%(質量/体積パーセント)含有する食塩水、PBSおよびトリス緩衝生理食塩水等が挙げられる。
 本発明において、水相とは、外水相および内水相の両方を包含する。
 本発明における外水相とは、脂質粒子を分散する水溶液を意味する。例えば注射剤の場合においては、バイアル瓶またはプレフィルドシリンジ包装されて保管された脂質粒子の分散液の脂質粒子の外側を占める溶液が外水相となる。また、添付された分散用液またはその他溶解液により投与時に用時分散した液についても同様に、脂質粒子の分散液の脂質粒子の外側を占める溶液が外水相となる。
 本発明における内水相とは、脂質粒子の脂質二重膜を隔てた閉鎖小胞内の水相を意味する。
<(c)乳化による脂質粒子形成>
 乳化工程では、少なくとも1種の脂質が有機溶媒に溶解している油相と水相とを混合して脂質を含む水溶液を攪拌して乳化することができる。脂質が有機溶媒に溶解している油相および水相を混合し撹拌し、乳化することで、油相および水相がO/W型(水中油型)に乳化した乳化液が調製される。混合後、油相由来の有機溶媒の一部または全部を蒸発によって除去することにより、脂質粒子が形成される。または、油相中の有機溶媒の一部または全部が撹拌・乳化の過程で蒸発して、脂質粒子が形成される。
 撹拌する方法としては、粒子微細化のために、超音波または機械的せん断力が用いられる。また、粒子径の均一化のためには、一定の孔径のフィルターを通すエクストルーダー処理またはマイクロフルイダイザー処理を行うことができる。エクストルーダー等を用いれば、副次的に形成された多胞脂質粒子をばらして単胞脂質粒子にすることができる。
 乳化工程は、乳化する工程であれば限定されることはないが、好ましくは高せん断をかけ、有機溶媒を含む乳化工程で微粒子化する工程である。必要に応じて、乳化工程で用いた有機溶媒を蒸発させる(脱溶媒する)ことで脂質粒子を形成することができる。
 脂質粒子を製造する際の乳化工程の液温は、適宜調整することが可能であるが、油相と水相との混合時の液温を使用する脂質の相転移温度以上とすることが好ましく、例えば、相転移温度が35~40℃の脂質を使用する場合、35℃~70℃とすることが好ましい。
 乳化工程においては、脂質粒子を含む水溶液から有機溶媒と水を蒸発させてもよい。ここで言う蒸発とは、油相由来の有機溶媒と水相由来の水の一部または全部を蒸発工程として強制的に除去してもよいし、油相由来の有機溶媒と水相由来の水の一部または全部が撹拌・乳化の過程で自然に蒸発するものでもよい。
 蒸発の方法は、特に限定されないが、例えば、有機溶媒と水を加熱することにより蒸発させる工程、乳化後に静置または緩やかな撹拌を継続する工程、および真空脱気を行う工程の少なくとも一つを行えばよい。
<(d)エクストルーダーによる整粒>
 得られた脂質粒子は、透析法、ろ過法またはエクストルージョン処理等を用いて粒径を均一にすることができる。
 エクストルージョン処理とは、細孔を有するフィルターに脂質粒子を通過させることで、物理的なせん断力を施し、微粒化する工程を意味する。脂質粒子を通過させる際、脂質粒子分散液およびフィルターを、脂質粒子を構成する膜の相転移温度以上の温度に保温することで、速やかに微粒化することができる。
 なお、エクストルーダーによる整粒は行ってもよいし、行わなくてもよい。
<(e)透析による脂質粒子外水相液の置換>
 本発明において、リモートローディングによってパノビノスタットを脂質粒子へ内包させる場合には、透析により脂質粒子外水相液を置換してもよい。透析液として、0.1~5質量%のNaCl水溶液を使用することができるが、特に限定されない。上記した透析液を用いて、脂質粒子液を透析することにより、外水相に存在するアンモニウム塩を除去し、透析液で外水相を置換した脂質粒子を得ることができる。
<(f)リモートローディング法によるパノビノスタットの脂質粒子への内包>
 本発明においては、リモートローディング法によってパノビノスタットを脂質粒子へ内包させることが好ましい。
 本発明においてリモートローディング法とは、薬物が内封されていない空リポソームを製造し、リポソーム外液に薬物を加えることによりリポソームに薬物を導入する方法を意味する。リモートローディングの方法については特に限定されないが、クエン酸緩衝液や硫酸アンモニウムを用いた方法が例示される。
 リモートローディング法では、外液に加えられた薬物が、能動的に脂質粒子へと移行し、脂質粒子へと取り込まれる。このドライビングフォースとしては、溶解度勾配、イオン勾配、pH勾配等が用いられている。例えば、脂質粒子膜を隔てて形成されるイオン勾配を用いて薬物を脂質粒子内部に導入する方法がある。例えば、Na+/K+濃度勾配を利用してリモートローディング法により予め形成されている脂質粒子中に薬物を添加する技術がある。
 イオン勾配の中でもプロトン濃度勾配が一般的に用いられ、例えばクエン酸を用いて、脂質粒子膜の内側(内水相)pHが、外側(外水相)pHよりも低いpH勾配をもつ態様が挙げられる。pH勾配は、具体的に、アンモニウムイオン勾配および/またはプロトン化しうるアミノ基を有する有機化合物の濃度勾配等により形成することができる。
 アンモニウムイオン元は、特に限定されることはないが、水溶性のアンモニウム塩が好適に用いられ、硫酸アンモニウム、塩化アンモニウム、ぎ酸アンモニウム、コハク酸アンモニウム、酢酸アンモニウム等が挙げられる。
<(g)透析による外水相パノビノスタットの除去>
 パノビノスタットを内包した脂質粒子液は、脂質粒子に含まれなかったパノビノスタットを除去するために、透析を行ってもよい。例えば、所定濃度のスクロース/ヒスチジンバッファーを透析液として用いて、パノビノスタットを内包した脂質粒子液に対して、透析を行うことにより、外水相に存在するパノビノスタットを除去し、透析液で外水相を置換した脂質粒子組成物を得ることができる。
<無菌ろ過>
 上記で得られた脂質粒子組成物は、無菌ろ過を行うことが好ましい。ろ過の方法としては、中空糸膜、逆浸透膜またはメンブレンフィルター等を用いて、脂質粒子を含む水溶液から不要な物を除去することができる。本発明では、滅菌できる孔径をもつフィルター(好ましくは0.2μmのろ過滅菌フィルター)によってろ過することが好ましい。
 脂質粒子の変形による平均粒子径への影響を防ぐために、無菌ろ過工程および後述する無菌充填工程は、脂質粒子を構成する脂質の相転移温度以下で行うことが好ましい。例えば、脂質の相転移温度が50℃付近である場合、0~40℃程度が好ましく、より具体的には5~30℃程度で製造されることが好ましい。
<無菌充填>
 無菌ろ過の後に得られた脂質粒子組成物は、医療用途として無菌充填することが好ましい。無菌充填の方法は公知のものが適用できる。容器に無菌的に充填することで医療用として好適な脂質粒子組成物が調製できる。
(医薬組成物)
 本発明の脂質粒子組成物は、医薬組成物として使用することができる。即ち、本発明によれば、本発明の脂質粒子組成物を含む、医薬組成物が提供される。
 本発明の医薬組成物の投与経路としては、非経口的投与が好ましい。例えば、点滴等の静脈内注射(静注)、筋肉内注射、腹腔内注射、皮下注射、眼内注射および髄腔内注射を挙げることができる。投与方法としては、シリンジまたは点滴による投与が挙げられる。
 脂質粒子組成物に含まれる薬物としてのパノビノスタットまたはその塩の投与量および投与回数は、パノビノスタットまたはその塩の質量として、1日あたり、一般的には0.01mg/kg~100mg/kgの範囲で設定することができるが、本発明の脂質粒子組成物はこれらの投与量に限定されるものではない。
 本発明の医薬組成物は、好ましくは抗がん剤として使用することができる。
 本発明の医薬組成物の適用対象であるがんの種類は、特に限定されないが、例えば、多発性骨髄腫、急性骨髄性白血病、慢性骨髄性白血病、急性リンパ性白血病、成人T細胞白血病、骨髄転移がん、骨肉腫、慢性骨髄単球性白血病、ホジキンリンパ腫、皮膚T細胞リンパ腫、乳がん、前立腺がん、子宮体がん、卵巣がん、肺がん、胃(胃腺)がん、非小細胞肺がん、膵臓がん、頚部扁平上皮がん、食道がん、膀胱がん、メラノーマ、大腸がん、腎細胞がん、非ホジキンリンパ腫および尿路上皮がん等が挙げられる。
 以下、本発明を実施例にて詳細に説明する。しかし、本発明は実施例に限定されるものではない。
[脂質粒子組成物の作製]
<実施例1>
(a)油相の調製
 1,2-diarachidonoyl-sn-glycero-3-phosphocholine(日本精化製、以下、C20PCとする)、PEGリン脂質(SUNBRIGHT DSPE-020CN、日油製、以下、DSPE-PEGとする)、コレステロールをそれぞれ0.495g、0.153g、0.153g秤量した。脂質粒子をDiI(1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine Perchlorate)で標識するため、全脂質に対して0.2mol%となる分量のDiIを秤量し、エタノールに溶解させた。このDiIエタノール溶液にエタノールを加え、全量で11.25mLとし、さらに酢酸エチル3.75mLを加えた。秤量した脂質とこの有機溶媒を混合し、60℃に加温して脂質を溶解し油相とした。
(b)水相の調製
 硫酸アンモニウム0.9gを水40gに溶解し、水相を調製した。
(c)乳化による脂質粒子形成
 (b)で調製した水相を70℃に加温し、(a)で調製した油相全量を添加した後(容積比:水相/油相=8/3)、乳化機(エクセルオートホモジナイザーED-3、日本精機製作所製)にて、3000rpm(rotation per minute:1/60s-1)にて30分間混合した。つづいて、65℃で加温しながら300rpmで攪拌を続けることで有機溶媒と水を蒸発させ、液が15gまで濃縮された時点で加温と攪拌を止め、蒸発を停止した。
(d)エクストルーダーによる整粒
 実施例1では整粒を実施してはいないが、下記表に記載の実施例のうち、「整粒」の欄にフィルターサイズの記載があるものは以下の要領で整粒を実施した。70℃の加温下でエクストルーダー(Mini Extruder、Avanti Polar Lipids社製)を用い、(c)で得た液をフィルターに順次通過させることで整粒した。フィルターのサイズは各表の「整粒」欄に記載のものを使用した。複数のフィルターサイズの記載のある実施例では、孔径の大きいフィルターで整粒した後、引き続き孔径の小さいフィルターで整粒した。
(e)透析による脂質粒子外水相液の置換
 透析液として2.43質量%のNaCl水溶液を用いた。この透析液を用いて、(c)または(d)で得た液に対して、室温にて透析を行い、外水相に存在する硫酸アンモニウムを除去し、透析液で外水相を置換した脂質粒子を得た。
(f)リモートローディングによるパノビノスタットの脂質粒子への内包
 パノビノスタット(APAC PHARMACEUTICAL, LLC製)に注射用水を加え、10mg/mLとした。さらに、液をよく攪拌しながら8mol/LのHCl溶液を添加し、pHを約3に調整してパノビノスタットを溶解させた。このパノビノスタット溶液に脂質粒子を1/1の容積比で加えた後、60℃で120分間加温した。
(g)透析による外水相パノビノスタットの除去
 透析液として9.4質量%スクロース、10mmol/Lヒスチジンからなるスクロース/ヒスチジンバッファーを調製した。この透析液を用いて、(f)で得た液に対して、室温にて透析を行い、外水相に存在するパノビノスタットを除去し、透析液で外水相を置換したパノビノスタット含有脂質粒子を得た。
<実施例2>
 DSPE-PEGの使用量を0.0153gとしたこと以外は実施例1と同様にして、パノビノスタット含有脂質粒子を得た。
<実施例3~13>
 下記表に記載した脂質組成とすること以外は、実施例1と同様にして、パノビノスタット含有脂質粒子を得た。下記表において、SMはSphingomyelin(COATSOME NM-10、日油製)を示し、DHSMは、Dihydrosphingomyelin(COATSOME NM-10(日油製)に対し水素添加した合成品)を示す。
<実施例14>
(a)油相の調製
 Sphingomyelin(COATSOME NM-10、日油製、以下、SMとする)、PEGリン脂質(SUNBRIGHT DSPE-020CN、日油製、以下、DSPE-PEGとする)、コレステロールをそれぞれ0.420g、0.014g、0.155g秤量した。脂質粒子をDiI(1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine Perchlorate)で標識するため、全脂質に対して0.2mol%となる分量のDiIを秤量し、エタノールに溶解させた。このDiIエタノール溶液にエタノールを加え、全量で11.25mLとし、さらに酢酸エチル3.75mLを加えた。秤量した脂質とこの有機溶媒を混合し、70℃に加温して脂質を溶解し油相とした。
(b)水相の調製
 硫酸アンモニウム0.9gを水40gに溶解し、水相を調製した。
(c)乳化による脂質粒子形成
 (b)で調製した水相を70℃に加温しマグネチックスターラーで攪拌し、そこに(a)で調製した油相全量を添加し30秒間攪拌した(容積比:水相/油相=8/3)。つづいて、65℃で加温しながら300rpmで攪拌を続けることで有機溶媒と水を蒸発させ、液が15gまで濃縮された時点で加温と攪拌を止め、蒸発を停止した。
(d)エクストルーダーによる整粒
 70℃の加温下でエクストルーダー(Mini Extruder、Avanti Polar Lipids社製)を用い、(c)で得た液をフィルターに順次通過させることで整粒した。フィルターのサイズは各表の「整粒」欄に記載のものを使用した。複数のフィルターサイズの記載のある実施例では、孔径の大きいフィルターで整粒した後、引き続き孔径の小さいフィルターで整粒した。
(e)透析による脂質粒子外水相液の置換
 透析液として720mMのNaCl水溶液を用いた。この透析液を用いて、(d)で得た液に対して、室温にて透析を行い、外水相に存在する硫酸アンモニウムを除去し、透析液で外水相を置換した脂質粒子を得た。
(f)リモートローディングによるパノビノスタットの脂質粒子への内包
 パノビノスタット(APAC PHARMACEUTICAL, LLC製)に注射用水を加え、4mg/mLとした。さらに、液をよく攪拌しながら8mol/LのHCl溶液を添加し、pHを約4に調整してパノビノスタットを溶解させた。このパノビノスタット溶液と720mMのNaCl水溶液と脂質粒子を5/3/2、の容積比で混合した後、60℃で120分間加温した。
(g)透析による外水相パノビノスタットの除去
 透析液として9.4質量%スクロース、10mmol/Lヒスチジンからなるスクロース/ヒスチジンバッファーを調製した。この透析液を用いて、(f)で得た液に対して、室温にて透析を行い、外水相に存在するパノビノスタットを除去し、透析液で外水相を置換したパノビノスタット含有脂質粒子を得た。
<実施例15~25>
 表2~4に記載した脂質組成にて、実施例14と同様にしてパノビノスタット含有脂質粒子を得た。実施例25ではDiIは添加せずに脂質粒子を作製した。表2~4において、C20PCは1,2-diarachidonoyl-sn-glycero-3-phosphocholine(日本精化製)を、HSPCは水素添加大豆ホスファチジルコリン(COATSOME NC-21、日油製)を、DPPGは1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol, sodium salt(COATSOME MG-6060LS、日油製)を、DPPAは1,2-Dimyristoyl-sn-glycero-3-phosphatidic acid, sodium salt(COATSOME MA-6060LS、日油製)を、DPPSは1,2-Dipalmitoyl-sn-glycero-3-phospho-L-serine, sodium salt(COATSOME MS-6060LS、日油製)を示す。(f)リモートローディングによるパノビノスタットの脂質粒子への内包工程において、実施例17~25ではパノビノスタット溶液を3.6mg/mLとした。また、パノビノスタット溶液と720mMのNaCl水溶液と脂質粒子の混合比率は、実施例16では8/5/5、実施例17~25では2/1/1とした。
 実施例22のみ平均粒子径が331nmと他より大きい。これは、DLSによる粒径測定において1μm付近に凝集物のピークが観察されたことで、平均粒子径が大きく算出されたものである。実施例22はゼータ電位の絶対値が小さく粒子同士の静電相反発が小さい。また、立体反発により粒子同士の合一を妨げるDSPE-PEGのような素材も添加されていない。骨髄集積率は高いが、粒子の安定性の観点から他の実施例の方が好ましい態様であると言える。
<実施例25>
 実施例25では(a)油相の調製時にはDiIを添加せず、(g)にてスクロース/ヒスチジンバッファーで透析まで行った脂質粒子に対してDiIでの染色を行った。脂質粒子液500μLに、3mg/mLのDiI/エタノール溶液5μLを混合して十分に攪拌したのち、ゲルろ過法で(PD MiniTrap G-25、GEヘルスケア製)外水相を9.4質量%スクロース、10mmol/Lヒスチジンからなるスクロース/ヒスチジンバッファーで置換し、余剰なDiIを除去した。
<比較例1>
 パノビノスタットをポリオキシル35ヒマシ油(Kolliphore EL、SIGMA社製)とポリエチレングリコール400(和光純薬工業社製)の体積比1:4混合液に超音波を照射しながら溶解した。得られた溶液と生理食塩水とを体積比1:7で混合することにより、0.5mg/mLのパノビノスタット溶液を得た。
<比較例2>
 実施例1における(a)~(e)と同様の工程により脂質粒子を調製し、さらに実施例1における(g)と同様にして外水相を実施例1と同様の溶液に置換することにより、パノビノスタットを含有しない脂質粒子を得た。
<比較例3>
 HSPC、コレステロールおよびDSPE-PEGをそれぞれ16.63g、2.04g、4.15gを秤量し、全脂質に対して0.2mol%となる分量のDiIとともに、エタノール303.75mL、酢酸エチル101.25mLに溶解させ油相とした。100mmol/Lリン酸二水素ナトリウム5.6g、100mmol/Lリン酸水素二ナトリウム37.6g、注射用水1037gを混合し水相とした。上記油相を水相に混合し、乳化法を用いてDiIで標識した空リポソームを作製した。0.09質量%の塩化ナトリウム水溶液を用いてTFFにて外水相を置換し、続いてパッシブローディング法にてペメトレキセドを封入した。9.4質量%スクロース、0.155質量%ヒスチジンからなるスクロース/ヒスチジンバッファーで透析を行い、ペメトレキセドを含有する脂質粒子を得た。
<比較例4>
 HSPC、コレステロールおよびDSPE-PEGをそれぞれ12.42g、4.14g、4.14gを秤量し、全脂質に対して0.2mol%となる分量のDiIとともに、エタノール303.4mL、酢酸エチル101.25mLに溶解させ油相とした。硫酸アンモニウム26.73gをMilliQ水1080gに溶解し水相とした。乳化法を用いて硫酸アンモニウムを含有するDiIで標識した空リポソームを作製した。417mMの塩化ナトリウム水溶液を用いてTFFにて外水相を置換し、続いてリモートローディング法でドキソルビシン塩酸塩を封入した。9.4質量%スクロース、0.155質量%ヒスチジンからなるスクロース/ヒスチジンバッファーで透析を行い、ドキソルビシン塩酸塩を含有する脂質粒子を得た。脂質粒子の組成はドキシル注20mgの添付文書に記載の組成を参考にした(ドキソルビシン塩酸塩2mg/mL、HSPC9.58mg/mL、DSPE-PEG3.19mg/mL、コレステロール3.19mg/mL)。定量の結果、ドキソルビシン塩酸塩2.24mg/mL、HSPC11.5mg/mL、DSPE-PEG4.1mg/mL、コレステロール4.2mg/mLであった。
[物性測定および評価]
<平均粒子径>
 本発明において、粒子径とは、動的光散乱法により測定されるキュムラント平均粒子径を意味する。各表に記載の実施例および比較例の平均粒子径は、オートサンプラー付き濃厚系粒径アナライザーFPAR-1000AS(大塚電子社製)により動的光散乱法で測定したキュムラント平均粒子径である。測定結果を各表に示す。
<ゼータ電位>
 本発明において、ゼータ電位とは、レーザードップラー法により測定された値を意味する。各表に記載の実施例のゼータ電位は、外水相と同じ9.4質量%スクロース、10mmol/Lヒスチジンからなるスクロース/ヒスチジンバッファーで脂質粒子液を20倍に希釈し、ゼータ電位・粒径測定システム ELSZ-2(大塚電子社製)により測定した値である。測定結果を各表に示す。
<API濃度>
 本発明において、各表に記載のAPI濃度とは、脂質粒子に含まれるパノビノスタット(フリー体)の量を、HPLC(高速液体クロマトグラフィー)にて測定した値である。パノビノスタットの検出には279nmの紫外光(UV)を用いた。
<脂質濃度>
 本発明において、各表に記載の脂質濃度とは、脂質粒子に含まれる各脂質をHPLC(高速液体クロマトグラフィー)にて定量した各脂質の濃度の総和である。脂質の検出にはコロナ荷電化粒子検出器(Corona CAD(charged aerosol detector))を用いた。
<透過型電子顕微鏡(TEM)による観察>
 実施例1の脂質粒子組成物を急速凍結し、汎用TEMを用いクライオ条件下で観察し、TEM画像を得た。得られたTEM画像を図1に示す。図1のTEM画像から、パノビノスタットの固化物が脂質粒子の表面および内部の少なくとも一部に存在していることが分かる。
<骨髄中の脂質粒子の集積率の測定>
 試験にはICRマウス(雄、7週齢、なおICRはInstitute of Cancer Researchの頭文字)を用いた。蛍光色素(DiI)で標識した実施例1および3~7で調製したパノビノスタット含有脂質粒子(薬物量として6mg/kg)を尾静脈より投与した。また、蛍光色素(DiI)で標識した実施例2および8~13で調製したパノビノスタット含有脂質粒子(薬物量として4mg/kg)を尾静脈より投与した。また、蛍光色素(DiI)で標識した比較例2で調製したパノビノスタットを含有しない脂質粒子(脂質量として実施例1と同量)を尾静脈より投与した。また、蛍光色素(DiI)で標識した比較例3で調整したペメトレキセドを含有する脂質粒子(薬物量として1.5mg/kg)を尾静脈より投与した。また、蛍光色素(DiI)で標識した比較例4で調整したドキソルビシン塩酸塩を含有する脂質粒子(薬物量として16.7mg/kg)を尾静脈より投与した。
 投与後72時間に解剖し、大腿骨骨髄を採取した。採取した骨髄について、HPLC(高速液体クロマトグラフィー)蛍光検出器を用いて投与液および組織中DiI濃度を定量し、骨髄集積率を下記式2により算出した。なお、骨髄集積率、骨髄1gあたりの、投与した脂質粒子のうち骨髄に集積した割合(% injected dose/g)(%ID/gとも表記する)で示した。測定結果を各表に示す。
式2:骨髄集積率(%ID/g)=骨髄中DiI濃度(ng/g)/(投与液中DiI濃度(ng/mL)×投与容量(mL))×100
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 比較例2~4の脂質粒子組成物と比較して、本発明の実施例1~25の脂質粒子組成物は、高い骨髄集積性を示した。
 実施例3~5および22~24より、添加するDSPE-PEGは少ない方が骨髄への集積性が良好であった。また、実施例10~13より、粒子径が大きいほど骨髄への集積能が良好であるが、一方で、100nm程度の小さな脂質粒子であっても、パノビノスタットを内包しない脂質粒子(空リポソーム)に比べて高い骨髄集積性が得られた。実施例14~17からは、アニオン性脂質の添加により骨髄集積性が向上した。
 パノビノスタットを内包する脂質粒子は、以降の解析に示すとおりマクロファージに認識されることで骨髄への高い集積が得られているものと推測される。上記の因子はいずれもマクロファージからの認識されやすさに影響を与えることで間接的に骨髄集積能を高めるのに寄与するものと考えられる。例えば、アニオン性脂質の添加によりゼータ電位が低下すると、マクロファージのスカベンジャーレセプターに認識されやすくなるなどの効果があり、これが骨髄集積性の向上に繋がっているものと考えられる。
<組織中のパノビノスタット濃度の測定>
 ICRマウス(雄、7週齢)に実施例1、2、14および19で調製したパノビノスタット含有脂質粒子(薬物量として4mg/kg)を尾静脈より投与した。また、ICRマウス(雄、7週齢)に、比較例1で調製したパノビノスタット溶液(5mg/kg)を腹腔内に投与した。薬効試験での用量を想定し、実施例1、2、14および19で調製したパノビノスタット含有脂質粒子の投与量は単回投与での最大耐量を設定し、比較例1で調製したパノビノスタット溶液の投与量は8日間連日投与での最大耐量を設定した。
 実施例1、2、14および19で調製したパノビノスタット含有脂質粒子を投与したマウスについては、投与後3、6、24、72、168時間で解剖した。比較例1で調製したパノビノスタット溶液を投与したマウスについては、投与後1、3、6、24、72時間で解剖し、血液、大腿骨骨髄および消化管(回腸下部)を採取した。血液は800×g、10分間遠心し、血漿を回収した。消化管は凍結破砕によりホモジナイズ処理を行った。採取した血漿、骨髄および消化管について、液体クロマトグラフィー/質量分析/質量分析(LC/MS/MS)を用いて、組織中パノビノスタット濃度の定量を行った。得られた組織中パノビノスタット濃度推移より薬物動態解析ソフトWinNonlin(登録商標)(Certara)を用いて単回投与後の無限時間までの組織中濃度-時間曲線下面積(AUC)を算出した。さらに組織中AUCの骨髄/消化管比を次の式1より算出した。結果を、図2および図3、並びに表5に示す。
式1:骨髄/消化管比=骨髄中パノビノスタットAUC/消化管中パノビノスタットAUC=(骨髄中濃度-時間曲線下面積)/(消化管中濃度-時間曲線下面積)
<組織中のペメトレキセド濃度の測定>
 ICRマウス(雄、7週齢)に比較例3で調製したペメトレキセド含有脂質粒子(薬物量として1.5mg/kg)を尾静脈より投与した。
 比較例3で調製したペメトレキセド含有脂質粒子を投与したマウスについては、投与後24、72、120、168時間で解剖し、血液、大腿骨骨髄および消化管(回腸下部)を採取した。パノビノスタットと同様に組織中ペメトレキセド濃度を定量し、AUCおよび組織中AUCの骨髄/消化管比を算出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000007
 上記の結果から、比較例1で調製したパノビノスタット溶液および比較例3で調製したペメトレキセド含有脂質粒子と比較して、実施例1、2、14および19で調製したパノビノスタット含有脂質粒子は、組織中のパノビノスタットAUCについて、骨髄/消化管の比が高く、骨髄集積性が良好であることが示された。
<Molm-13同所モデルマウスを用いた薬効試験>
 NOD/SCIDマウス(雄、8週齢)にシクロホスファミド(125mg/kg、腹腔内投与、2日間連日投与)およびウサギ抗アシアロGM1抗体(和光純薬工業)(0.4mg、腹腔内投与、単回投与)による免疫抑制を施した。ヒト白血病細胞株であるMolm-13細胞 3×106個を静脈内に移植し、骨髄に生着させた。移植後8日目から実施例1で調製したパノビノスタット含有脂質粒子(薬剤量として8mg/kg、尾静脈内投与、単回投与)、比較例1で調製したパノビノスタット溶液(5mg/kg、腹腔内投与、8日間連日投与)、および陰性対照として比較例2で調製したパノビノスタットを含まない脂質粒子(実施例1で調製したパノビノスタット含有脂質粒子の8mg/kgに相当する脂質量、尾静脈内投与、単回投与)を投与開始した。また、非移植群として免疫抑制および移植を実施しない群を設定した。移植後16日後(投与開始8日後)のマウスを解剖し、大腿骨骨髄を採取した。得られた骨髄を溶血バッファーで処理して赤血球を除去した後、PerCP標識抗ヒトCD45抗体、およびDAPI(4,6-diamidino-2-phenylindole)で染色した。なお、PerCPは、ペリジニンクロロフィル(Peridininchrorophyll)を示す。フローサイトメトリーを用いて、骨髄生細胞中の白血病細胞(ヒトCD45陽性、DAPI陰性細胞)の割合を測定し、Molm-13同所モデルマウスにおける白血病細胞への増殖阻害活性を比較した。測定結果を図4に示す。
 図4の結果から、比較例1で調製したパノビノスタット溶液および比較例2で調製したパノビノスタットを含まない脂質粒子と比較して、実施例1で調製したパノビノスタット含有脂質粒子は、高い白血病細胞の増殖阻害活性を示し、その効果は用量に依存していることが分かった。
<骨髄中マクロファージ数および細胞中脂質粒子量の解析>
 ICRマウス(雄、7週齢)にDiI標識した実施例2で調製したパノビノスタット含有脂質粒子を、薬物量として6mg/kg尾静脈より投与した。非投与、投与6時間後、投与96時間後のマウスを解剖し、大腿骨骨髄を採取した。得られた骨髄を溶血バッファーで処理して赤血球を除去した後、Alexa fluor(登録商標)647標識抗マウスF4/80抗体、FITC標識抗マウスCD11b抗体、およびDAPIで染色した。FITCは、フルオレセインイソチオシアネート (fluorescein isothiocyanate)を示す。フローサイトメトリーを用いて、骨髄生細胞中のマクロファージ(マウスF4/80陽性、マウスCD11陽性、DAPI陰性細胞)の割合を測定した。さらに、投与後96時間の試料について、細胞内のDiIの蛍光強度を指標として細胞に取り込まれた脂質粒子量を解析した。解析結果を図5に示す。図5において、Mφは、マクロファージを示す。
 図5の結果から、実施例2で調製したパノビノスタット含有脂質粒子の投与後の時間の経過に伴って、骨髄中マクロファージ数は増加し、増加したマクロファージにパノビノスタット含有脂質粒子が取り込まれていることが分かった。
<骨髄中サイトカイン発現解析>
 ICRマウス(雄、7週齢)に実施例2で調製したパノビノスタット含有脂質粒子(薬剤量として4mg/kg、尾静脈内投与、単回投与)および比較例1で調製したパノビノスタット溶液(5mg/kg、腹腔内投与、単回投与)を投与し、投与72時間後のマウスを解剖して大腿骨骨髄を採取した。また、陰性対照として非投与のマウスについても大腿骨骨髄を得た。骨髄重量の3倍量のPBSを添加後に300×g、5分間遠心し、上清を回収した。得られた骨髄上清についてBCA法(Bicinchoninic Acid法)によるタンパク質濃度測定を行い、各試料を8mg/mLのタンパク質濃度に希釈した。Bio-PlexマウスサイトカインGI23-PlexパネルおよびBio-Plex200システム(Bio-Rad)を用いて各試料中のサイトカイン濃度を定量した。非投与におけるサイトカイン発現量の平均値を1とした時の相対発現量変化を示した。解析結果を図6に示す。
 図6において、ILはインターロイキン、G-CSFは顆粒球コロニー刺激因子を示し、GM-CSFは顆粒球単球コロニー刺激因子を示し、IFNはインターフェロンを示し、KCはケラチノサイトケモアトラクタントを示し、MCPは、Monocyte Chemotactic Proteinを示し、MIPは、Macrophage inflammatory proteinを示し、PANTESは、regulated on activetion normal T expressed and secretedを示し、TNFは腫瘍壊死因子を示す。
 図6の結果から、非投与の場合と比較して、実施例2で調製したパノビノスタット含有脂質粒子または比較例1で調製したパノビノスタット溶液を投与した場合には、サイトカインの発現が増加する傾向が認められ、実施例2で調製したパノビノスタット含有脂質粒子ではサイトカイン発現がさらに増強された。骨髄にマクロファージが集積する要因としてサイトカイン発現の増加が考えられる。

Claims (17)

  1. パノビノスタットまたはその塩を含有する脂質粒子組成物であって、脂質粒子がリン脂質およびコレステロール類を含む脂質粒子組成物。
  2. パノビノスタットまたはその塩を含有する脂質粒子組成物であって、パノビノスタット量として4mg/kgの脂質粒子組成物をマウスの尾静脈に単回投与した後から無限時間までの、下記式1で表される面積比が5以上である脂質粒子組成物。
    式1: (骨髄中濃度-時間曲線下面積)/(消化管中濃度-時間曲線下面積)
  3. 脂質粒子の平均粒子径が50nm~500nmである、請求項1または2に記載の脂質粒子組成物。
  4. リモートローディング法によりパノビノスタットまたはその塩が脂質粒子に内包されている、請求項1から3の何れか一項に記載の脂質粒子組成物。
  5. パノビノスタットまたはその塩の固化物が脂質粒子の表面および内部の少なくとも一部に存在している、請求項1から4の何れか一項に記載の脂質粒子組成物。
  6. 脂質粒子がリン脂質およびコレステロール類を含む、請求項2から5の何れか一項に記載の脂質粒子組成物。
  7. リン脂質として、グリセロール骨格を有するリン脂質を含む、請求項1から6の何れか一項に記載の脂質粒子組成物。
  8. グリセロール骨格を有するリン脂質が、ホスファチジルコリンである、請求項7に記載の脂質粒子組成物。
  9. リン脂質として、スフィンゴリン脂質を含む、請求項1から6の何れか一項に記載の脂質粒子組成物。
  10. スフィンゴリン脂質が、スフィンゴミエリンである、請求項9に記載の脂質粒子組成物。
  11. リン脂質が、炭素数20以上の脂肪酸残基を含む、請求項1から10の何れか一項に記載の脂質粒子組成物。
  12. 脂質粒子が、ポリエチレングリコール脂質をさらに含む、請求項1から11の何れか一項に記載の脂質粒子組成物。
  13. 脂質粒子を構成する全脂質におけるポリエチレングリコール脂質の比率が5モル%以下である、請求項12に記載の脂質粒子組成物。
  14. 脂質粒子が、ポリエチレングリコール脂質を実質的に含まない、請求項1から11の何れか一項に記載の脂質粒子組成物。
  15. 脂質粒子が、アニオン性脂質を含む、請求項1から14のいずれか一項に記載の脂質粒子組成物。
  16. 請求項1から15の何れか一項に記載の脂質粒子組成物を含む、医薬組成物。
  17. 抗がん剤である、請求項16に記載の医薬組成物。
PCT/JP2017/046564 2016-12-26 2017-12-26 脂質粒子組成物および医薬組成物 WO2018124033A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018559499A JPWO2018124033A1 (ja) 2016-12-26 2017-12-26 脂質粒子組成物および医薬組成物
CN201780080668.3A CN110114068A (zh) 2016-12-26 2017-12-26 脂质粒子组合物及医药组合物
EP17888488.8A EP3560492B1 (en) 2016-12-26 2017-12-26 Lipid particle composition and pharmaceutical composition
ES17888488T ES2968358T3 (es) 2016-12-26 2017-12-26 Composición de partículas lipídicas y composición farmacéutica
US16/448,069 US11154534B2 (en) 2016-12-26 2019-06-21 Lipid particle composition and pharmaceutical composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016250826 2016-12-26
JP2016-250826 2016-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/448,069 Continuation US11154534B2 (en) 2016-12-26 2019-06-21 Lipid particle composition and pharmaceutical composition

Publications (1)

Publication Number Publication Date
WO2018124033A1 true WO2018124033A1 (ja) 2018-07-05

Family

ID=62709478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046564 WO2018124033A1 (ja) 2016-12-26 2017-12-26 脂質粒子組成物および医薬組成物

Country Status (6)

Country Link
US (1) US11154534B2 (ja)
EP (1) EP3560492B1 (ja)
JP (4) JPWO2018124033A1 (ja)
CN (1) CN110114068A (ja)
ES (1) ES2968358T3 (ja)
WO (1) WO2018124033A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024215850A1 (en) * 2023-04-13 2024-10-17 W. L. Gore & Associates, Inc. Asymmetric membranes for nanoporous membrane extrusion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014121211A2 (en) * 2013-02-01 2014-08-07 Zoneone Pharma, Inc. Remote loading of sparingly water-soluble drugs into liposomes
WO2017167837A1 (en) * 2016-03-31 2017-10-05 Midatech Ltd. Cyclodextrin-panobinostat adduct

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2383259A1 (en) * 2002-04-23 2003-10-23 Celator Technologies Inc. Synergistic compositions
PL2836234T3 (pl) * 2012-04-12 2020-02-28 Yale University Podłoża do kontrolowanego dostarczania różnych środków farmaceutycznych
MX2015000813A (es) * 2012-07-18 2015-09-07 Onyx Therapeutics Inc Composiciones liposómicas de inhibidores de proteasoma basadas en epoxicetona.
US10004759B2 (en) * 2014-08-04 2018-06-26 Zoneone Pharma, Inc. Remote loading of sparingly water-soluble drugs into lipid vesicles
WO2016191363A1 (en) * 2015-05-22 2016-12-01 Aphios Corporation Combination hiv therapeutic
CN105457038A (zh) * 2015-11-09 2016-04-06 东南大学 一种速释型药物磷脂化合物及其药物组合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014121211A2 (en) * 2013-02-01 2014-08-07 Zoneone Pharma, Inc. Remote loading of sparingly water-soluble drugs into liposomes
WO2017167837A1 (en) * 2016-03-31 2017-10-05 Midatech Ltd. Cyclodextrin-panobinostat adduct

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Package Insert (1st ed.)", article "Farydak (R) Capsules", pages: 1 - 9 *
CHEN, H. ET AL.: "Development of Histone Deactylation Enzyme Inhibitor-containing Ribosomes for Cancer treatment Purposes (non-official translation)", ABSTRACTS OF THE 137TH ANNUAL MEETING OF THE PHARMACEUTICAL SOCIETY OF JAPAN:4, vol. 137, no. 4, 5 March 2017 (2017-03-05), pages 91, XP009516432, ISSN: 0918-9823 *
FUKAYA, NATSUKI ET AL.: "Development and Cancer Treatment Applications of Histone Deacetylation Enzyme Inhibitor-containing Ribosomes. (non-official translation)", ABSTRACTS OF THE 136TH ANNUAL MEETING OF THE PHARMACEUTICAL SOCIETY OF JAPAN, vol. 136, March 2016 (2016-03-01), pages 68, XP009516433 *
KALUSHKOVA, A.: "Polycomb Target Genes Are Silenced in Multiple Myeloma", PLOS ONE, vol. 5, no. 7, 9 July 2010 (2010-07-09), pages 1 - 12, XP055051149 *
KEITARO SOU ET AL., EXPERT OPIN DRUG DELIV., vol. 8, no. 3, March 2011 (2011-03-01), pages 317 - 328
SHARON A. JOHNSTONESHERWIN XIETROY HARASYMLAWRENCE MAYERPAUL GTARDI, PROCEEDINGS: AACR 101ST ANNUAL MEETING , 15 April 2010 (2010-04-15)

Also Published As

Publication number Publication date
EP3560492C0 (en) 2023-11-29
JP7343643B2 (ja) 2023-09-12
US20190314335A1 (en) 2019-10-17
JP2023139213A (ja) 2023-10-03
JP2021073301A (ja) 2021-05-13
EP3560492A1 (en) 2019-10-30
EP3560492B1 (en) 2023-11-29
ES2968358T3 (es) 2024-05-09
EP3560492A4 (en) 2020-06-17
JPWO2018124033A1 (ja) 2019-11-14
JP2022088508A (ja) 2022-06-14
US11154534B2 (en) 2021-10-26
CN110114068A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
JP7278436B2 (ja) リポソーム組成物および医薬組成物
JP6263609B2 (ja) リポソーム組成物及びその製造方法
WO2017078008A1 (ja) ゲムシタビンリポソーム組成物を含む腫瘍治療剤およびキット
JP6276847B2 (ja) リポソーム組成物及びその製造方法
US11684575B2 (en) Liposome composition and method for producing same
JP7343643B2 (ja) 脂質粒子組成物および医薬組成物
JP6705933B2 (ja) リポソーム組成物およびその製造方法
JP2020079303A (ja) リポソーム及びリポソーム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559499

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017888488

Country of ref document: EP