WO2018110367A1 - 車両用乗員検知装置 - Google Patents
車両用乗員検知装置 Download PDFInfo
- Publication number
- WO2018110367A1 WO2018110367A1 PCT/JP2017/043605 JP2017043605W WO2018110367A1 WO 2018110367 A1 WO2018110367 A1 WO 2018110367A1 JP 2017043605 W JP2017043605 W JP 2017043605W WO 2018110367 A1 WO2018110367 A1 WO 2018110367A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- occupant
- determination unit
- vehicle
- vibration
- load
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47C—CHAIRS; SOFAS; BEDS
- A47C7/00—Parts, details, or accessories of chairs or stools
- A47C7/62—Accessories for chairs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60N—SEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
- B60N2/00—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
- B60N2/90—Details or parts not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R21/015—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R22/00—Safety belts or body harnesses in vehicles
- B60R22/48—Control systems, alarms, or interlock systems, for the correct application of the belt or harness
Definitions
- This case relates to a vehicle occupant detection device.
- Vehicles such as automobiles are provided with an airbag device that can protect an occupant seated in the seat.
- the airbag device is provided with a vehicle occupant detection device.
- This vehicle occupant detection device detects whether an occupant is seated on a seat (performs occupant determination or occupant detection).
- Such a vehicle occupant detection device includes a load sensor attached to a seat and occupant detection means for detecting an occupant based on a detection value from the load sensor (see, for example, Patent Document 1). .
- the vehicle occupant detection device described in Patent Document 1 detects an occupant based on the detection value of the load sensor, the occupant determination result is updated when the occurrence of vehicle vibration is detected. Without retaining the previous occupant determination result, the occupant determination result can be obtained stably.
- the vehicle vibration is generated by getting on or off the door or closing the door. Therefore, even if the detected vehicle vibration is that of getting on and off, there is a possibility that the previous occupant determination result is retained as it is and the occupant determination result is not updated.
- the purpose of this case is to enable occupant determination results to be updated as soon as boarding / exiting occurs.
- a load sensor that is mounted around the seat and detects a load acting on the seat; Occupant detection means for detecting the occupant based on the detection value of the load sensor; Means for determining whether to get on and off, With
- the occupant detection means is at least An occupant determination unit that determines a seating state of the occupant with respect to the seat based on the detection value; A vibration change amount determination unit for determining presence or absence of vehicle vibration based on the detected value; An occupant determination unit that determines whether to update the occupant determination result for the seating state from the occupant determination unit or to hold the previous occupant determination result based on the presence or absence of vehicle vibration from the vibration change amount determination unit,
- the occupant determination unit is characterized by an occupant detection device for a vehicle that updates an occupant determination result even in a situation where vehicle vibration is occurring.
- the vehicle occupant detection device when a passenger gets on and off, the occupant determination result can be updated early and appropriately.
- FIG. 5A is a diagram showing a change from a seat belt wearing state to a non-wearing state ((a) in the middle of non-wearing, (b) after non-wearing, and (c) in an empty seat state).
- FIG. 4 is a diagram showing a change from a seat belt non-mounted state to a mounted state ((a) is an empty seat state, (b) is a seated state, (c) is in the middle of mounting, and (d) is after mounting). It is a graph which shows the waveform of the detection load at the time of seatbelt wearing (FIG. 24).
- FIG. 1 is a schematic plan view showing a vehicle equipped with a vehicle occupant detection device according to this embodiment.
- FIG. 2 is a block diagram illustrating a configuration of an airbag device including the vehicle occupant detection device of FIG.
- a vehicle 1 such as an automobile is provided with a seat 2 (for example, a seat such as a passenger seat) on which an occupant sits.
- the seat 2 is equipped with an airbag device 3 that can protect a seated passenger in an emergency.
- the figure shows an example in which the vehicle 1 is a left-hand drive vehicle, even if the vehicle 1 is a right-hand drive vehicle, the airbag device 3 is similarly attached to the seat 2 such as a passenger seat.
- the same airbag apparatus 3 can be employ
- the airbag apparatus 3 is mainly comprised by the airbag module 4 and the airbag control apparatus 5, and also has display parts, such as a passenger
- the airbag module 4 is stored in a position in front of the seat 2 in the instrument panel 9 disposed in the front part of the passenger compartment.
- the airbag module 4 stores the bag-shaped airbag body in a folded state, and also has a cushioning function for the passenger by deploying the airbag body and inflating it into the vehicle compartment in order to protect the passenger in an emergency. It is something that demonstrates.
- the airbag module 4 can change the size and deployment force during deployment in at least two stages according to the airbag deployment signal 5a output from the airbag control device 5. It can be what can be.
- the airbag control device 5 incorporates a CPU and, based on the occupant information 8a obtained by the vehicle occupant detection device 8, for example, deploys the airbag module 4 when no occupant is seated on the seat 2. First, the airbag module 4 is deployed when an adult is seated on the seat 2, and the airbag module 4 is not deployed when a child is seated on the seat 2 (or the deployment force is weakened). The airbag module 4 is deployed, and an airbag deployment signal 5a is output to the airbag module 4.
- the airbag control device 5 outputs a display signal 5b to the occupant state display lamp 6 based on the occupant information 8a from the vehicle occupant detection device 8, and also detects a failure of the airbag device 3. Outputs a failure signal 5 c to the warning lamp 7.
- the occupant state display lamp 6 is installed on the instrument panel 9 disposed in the front part of the passenger compartment, and at least according to the display signal 5b output from the airbag control device 5, "not seated” (or empty seat), It is an indicator lamp for displaying occupant information 8a such as "adult seating” and "child seating”.
- the warning lamp 7 is installed on an instrument panel 9 disposed in the front part of the passenger compartment, and displays a warning in response to a failure signal 5c output from the airbag control device 5 when a failure of the airbag device 3 is detected. It is a warning light for performing.
- the vehicle occupant detection device 8 determines the seating state of the occupant on the seat 2 and outputs the determined occupant information 8a to the airbag control device 5.
- the vehicle occupant detection device 8 includes a load sensor 11 as load detection means and an occupant detection means 12 (occupant detection control device).
- the vehicle occupant detection device 8 is configured to be able to output the occupant information 8a by performing the occupant determination independently without using external information as much as possible.
- Two load sensors 11 are attached to the seat 2 or its periphery so that the load acting on the seat 2 can be detected (S1, S2).
- the load sensor 11 for example, a piezoelectric film that outputs a voltage signal corresponding to the applied pressure can be used.
- the seat 2 extends in the front-rear direction via a pair of left and right parallel slide rails 33, 34 extending in the front-rear direction 32 (vehicle front-rear direction) with respect to the vehicle body 31.
- 32 is slidable (position adjustable).
- the seat 2 is supported at a total of four positions on the pair of left and right slide rails 33 and 34 via front and rear support points 35a and 35b and support points 35c and 35d, respectively.
- the (four) load sensors 11 are installed at all the support points 35a to 35d.
- the two load sensors 11 described above are installed at any two positions of the plurality of support points 35a to 35d. Specifically, one load sensor 11 (S1) is attached to the front and inner support points 24a, and the other load sensor 11 (S2) is attached to the rear and inner support points 24b. ing. That is, the two load sensors 11 are juxtaposed in a state of being separated from the longitudinal direction 32 of the vehicle 1.
- two load sensors 11 or reducing the number from four to two
- the acceleration The occupant determination can be performed without being affected by deceleration.
- FIG. 4 is a graph showing a difference in detected value characteristics due to a difference in the number of load sensors 11 installed.
- the waveform of the characteristic 11e shown in FIG. 4 is obtained when the load sensors 11 (S1, S2) are installed at the two front and rear support points 35a and 35b as in this embodiment.
- the sum of the detection values 11a and 11b output from (S1, S2) is shown.
- the waveform of the characteristic 11f shown in FIG. 4 shows the detection values output from the four load sensors 11 when the four load sensors 11 are installed at all the support points 35a to 35d. The sum is shown.
- the vehicle 1 travels in the order of a straight path, a curve, and a straight path.
- the waveform of the characteristic 11e obtained by installing the load sensor 11 at two locations on one side is obtained from all the support points 35a to 35a.
- the size is approximately half of the sum of the detection values indicated by the characteristic 11f obtained when the load sensor 11 is installed at 35d.
- the sum of the detected values 11a and 11b is greatly reduced in the waveform of the characteristic 11e compared to when traveling on a straight path. This is because the centrifugal force acts on the side opposite to the side where the load sensor 11 (S1, S2) is provided (for example, the outside of the vehicle body 31). This is because the load applied to the load sensor 11 (S1, S2) installed at the inner support points 35a, 35b is reduced.
- the load sensors 11 are installed at all the support points 35a to 35d as the load detecting means, even if the vehicle is traveling on a curve, as indicated by the waveform of the characteristic 11f, Similarly, the sum of the detection values is a substantially stable value. This is because even if the occupant's body is tilted due to the centrifugal force, if the outputs of all the load sensors 11 constituting the load detecting means are added, the influence of the occupant's weight shift is offset and almost constant. This is because it becomes the value of.
- the occupant determination result obtained by performing the occupant determination is updated.
- the vehicle 1 is traveling on a curve, the occupant determination result is obtained even if the occupant determination is performed.
- it is possible to perform occupant detection without erroneous detection.
- the fluctuations in the detection values 11a and 11b are larger during a curve run than when running on a straight road, if the fluctuations in the detection values 11a and 11b are detected, the car is running on a straight road. It is possible to distinguish between the case of and the case of traveling on a curve. Details will be described later.
- the two load sensors 11 are installed at two front and rear support points 24c and 24d on the outer slide rail 34, instead of being installed at the two front and rear support points 24a and 24b on the inner slide rail 33. It may be installed, and even in this way, a signal similar to the above can be obtained except that the left and right are reversed.
- the occupant detection means 12 described above performs occupant determination of the seat 2 based on the detection values 11 a and 11 b output from the two load sensors 11, and a CPU 12 a that performs necessary calculation processing.
- the CPU 12a includes a signal conversion unit 13, a vibration waveform removal unit 14, and an occupant determination unit 15.
- the occupant determination means 15 includes at least an occupant determination unit 16 (or a seating determination unit).
- the occupant determination unit 16 mainly determines the occupant's seating situation with respect to the seat 2 and obtains the occupant determination result 16a.
- the vibration change amount determination unit 17 and the load change amount determination unit 18 are mainly for determining the situation of the vehicle 1.
- the occupant determination means 15 may include a determination count unit 19 (occupant determination frequency count unit).
- This determination count unit 19 is mainly for forcibly updating the occupant determination result 16a when the same occupant determination result 16a continues for a certain period of time.
- the occupant determination means 15 includes an occupant determination unit 21 (update determination unit or occupant determination result update availability determination unit).
- the occupant determination unit 21 updates the occupant determination result 16a for the seating state from the occupant determination unit 16 based on the presence / absence of the vehicle vibration 17a from the vibration change amount determination unit 17 and the count ⁇ by the determination count unit 19 or the previous time. Is determined to hold the passenger determination result 16a.
- the occupant determination unit 16 operates so as to continuously send the occupant determination result 16a to the occupant determination unit 21.
- the vibration change amount determination unit 17 operates so as to continuously send the presence / absence of the vehicle vibration 17a to the occupant determination unit 21.
- the determination counting unit 19 operates so as to continuously send the count ⁇ to the occupant determination unit 21.
- crew determination means 15 can be comprised as a functional block by software.
- the software is stored in a memory 22 (internal memory or external memory) provided inside or outside the CPU 12a and executed by the CPU 12a.
- the occupant determination unit 16 is configured as occupant determination logic
- the vibration change amount determination unit 17 is configured as vibration change amount determination logic
- the load change amount determination unit 18 is configured as load change amount determination logic.
- the determination count unit 19 is configured as determination count logic
- the occupant determination unit 21 is configured as occupant determination logic.
- each part of the vehicle occupant detection device 8 is continuously operated from when the vehicle 1 is turned on until it is turned off. Further, the memory 22 can appropriately record input / output to / from each part of the occupant detection means 12. Therefore, each part of the passenger
- the signal conversion unit 13 reads the detection values 11a and 11b output from the two load sensors 11, and converts them from analog signals to digital signals (detection values 13a and 13b).
- the signal converter 13 is provided for each load sensor 11 attached to the seat 2.
- the vibration waveform removal unit 14 removes the vibration waveform indicating that the vehicle 1 is vibrating from the detection values 13a and 13b digitized by the signal conversion unit 13, and obtains the vibration waveform removal signals 14a and 14b. Generate.
- the “vibration waveform” is, for example, a high-frequency vibration component in the vertical direction (vehicle vibration such as running vibration).
- a low-pass filter LP or LPF capable of removing a vibration waveform such as a high-frequency vibration component can be used as the vibration waveform removing unit 14.
- a plurality of low-pass filters having different frequencies that can be removed can be used depending on the purpose and situation.
- the vibration waveform removal unit 14 is provided corresponding to each of the signal conversion units 13.
- the load detection signal from the load sensor 11 detection values 11a and 11b or the sum thereof
- the detection values 13a and 13b digitized by the signal conversion unit 13 or
- the sum of the vibration waveforms may indicate the vibration waveform removal signals 14a and 14b (or the sum thereof) that are detection values from which the vibration waveform has been removed by the vibration waveform removal unit 14. Further, these may be referred to as detected load or weight information depending on the situation.
- the load change amount determination unit 18 is based on the detection values after the vibration waveform is removed by the vibration waveform removal unit 14 from the digitized detection values 13a and 13b, that is, based on the vibration waveform removal signals 14a and 14b.
- a vibration threshold value 18a used in the vibration change amount determination unit 17 is set.
- the “vibration threshold value 18a” is a reference value used when determining whether or not the vehicle vibration 17a is generated.
- the load change amount determination unit 18 varies the vibration threshold value 18a between when the fluctuation amount of the vibration waveform removal signals 14a and 14b is small and when the fluctuation amount of the vibration waveform removal signals 14a and 14b is large. Can be done.
- the load change amount determination unit 18 determines that the vibration threshold value 18a is less than when the fluctuation amount of the vibration waveform removal signals 14a and 14b is large when the fluctuation amount of the vibration waveform removal signals 14a and 14b continues for a predetermined time. Can be changed to a higher value.
- the setting of the vibration threshold value 18a is specifically as shown in FIG. That is, the load change amount determination unit 18 obtains the sum of the vibration waveform removal signals 14a and 14b, and obtains the load change amount ⁇ W that is an absolute value of the change amount of the sum. Then, the load change amount ⁇ W is compared with a weight threshold value (TH / L ⁇ ) preset in the load change amount determination unit 18. When the load change amount ⁇ W is equal to or less than the weight threshold value (TH / L ⁇ ) continues for a predetermined time, the load acting on the seat 2 is stable, that is, the weight information is stably output.
- the vibration threshold value 18a (TH / L ⁇ High) having a preset high value is selected.
- the vibration change amount determination unit 17 sets the detection values 13a and 13b digitized by the signal conversion unit 13 and the vibration threshold value 18a (TH / L ⁇ High or TH / L ⁇ Low) set by the load change amount determination unit 18. Based on this, it is determined whether or not the vehicle vibration 17a is generated.
- the detection values 13a and 13b digitized by the signal conversion unit 13 are the detection values 13a including many vibration waveforms before the vibration waveform removal unit 14 removes the vibration waveforms from the detection values 11a and 11b. , 13b.
- the determination of whether or not the vehicle vibration 17a is generated by the vibration change amount determination unit 17 is specifically digitized from the detected value 11a (output from the front load sensor 11 (S1) inside the seat 2).
- the absolute value of the fluctuation amount of the detection value 13a) and the detection value 11b (detection value 13b obtained by digitizing the detection value 11b) output from the load sensor 11 (S2) on the inner side of the seat 2 is obtained.
- a vibration change amount ⁇ that is a sum of absolute values of the respective fluctuation amounts is obtained, and this vibration change amount ⁇ and the vibration threshold value 18a (TH / L ⁇ High or TH / L ⁇ Low) selected by the load change amount determination unit 18 are obtained.
- the occupant determination unit 16 performs the occupant determination using the detection values after the vibration waveforms are removed from the digitized detection values 13a and 13b by the vibration waveform removal unit 14, that is, the vibration waveform removal signals 14a and 14b.
- the “occupant determination” means a seat determination for determining whether or not an occupant is seated in the seat 2 and whether or not the occupant seated in the seat 2 is large (adult or child). And physique determination to determine whether or not. Of these, either one may be executed.
- this occupant determination is performed by obtaining a detected load W as a sum of the vibration waveform removal signals 14a and 14b, and the occupant determination threshold value which is a weight threshold value set in advance in the detected load W and the occupant determination unit 16.
- the occupant determination thresholds preset in the occupant determination unit 16 include, for example, a first threshold TH / L ⁇ 1, a second threshold TH / L ⁇ 2 (not shown), a third threshold TH / L ⁇ 3 (not shown), etc. is there.
- crew determination threshold value is 1st threshold value> 2nd threshold value> 3rd threshold value.
- the passenger determination threshold value is not limited to the above.
- the occupant determination unit 21 updates the occupant determination result 16a based on the determination result of the vibration change amount determination unit 17 (presence / absence of the vehicle vibration 17a) and the occupant determination result 16a (or seating determination) of the occupant determination unit 16. In addition, it is determined whether to hold the occupant determination result 16a, and the updated occupant determination result 16a or the retained (previous) occupant determination result 16a is output to the airbag control device 5 as occupant information 8a.
- this occupant determination unit 21 is output from the occupant determination unit 16 when the vibration change amount determination unit 17 determines that the vehicle vibration 17a has not occurred (based on the detection values 13a and 13b).
- the occupant determination result 16a is updated with the occupant determination result 16a as a new occupant determination result 16a.
- the vibration change amount determination unit 17 determines that the vehicle vibration 17a is occurring (based on the detection values 13a and 13b)
- the occupant determination result 16a output from the occupant determination unit 16 is a new one.
- the previous occupant determination result 16a is held instead of the occupant determination result 16a.
- the occupant determination means 15 determines that the vehicle vibration 17a has not occurred, the occupant determination execution result is updated and the vehicle vibration 17a is generated, assuming that the situation of the vehicle 1 is stable. If it is determined that the vehicle 1 is in an unstable state, the result of the occupant determination is not updated and the previous occupant determination result 16a is retained even if the occupant determination is executed.
- the above-described determination counting unit 19 is for forcibly executing the update of the occupant determination result 16a when the same occupant determination result 16a continues for a predetermined time.
- the determination count unit 19 counts the number of times that the same occupant determination result 16 a is obtained continuously, and outputs the counted value (count ⁇ ) to the occupant determination unit 21.
- the occupant determination unit 21 also determines whether to update the occupant determination result 16a described above or to hold the previous occupant determination result 16a for the output result of the determination count unit 19 as well. Will be performed.
- FIG. 5 shows the load change amount determination unit 18 when the vehicle 1 travels in the order of a straight path, a curve, and a straight path while an adult (for example, a woman with a weight of 49 kg) is on the seat 2 (passenger seat).
- 4 is a time chart showing a load change amount ⁇ W, a vibration change amount ⁇ by a vibration change amount determination unit 17, a detection load W by an occupant determination unit 16, and an update timing of an occupant determination result 16a by an occupant determination unit 21, respectively.
- the load change amount determination unit 18 has a vibration threshold value 18 a (TH / L ⁇ High, TH) that is greater when the load change amount ⁇ W is smaller than when the load change amount ⁇ W is large.
- TH / L ⁇ Low is set to a high value (TH / L ⁇ High). Therefore, when the vehicle 1 travels on the first straight path and a stable detected load W is output, the load change amount ⁇ W of the load change amount determination unit 18 falls below the weight threshold TH / L ⁇ at time t1.
- the vibration threshold value 18a (TH / L ⁇ Low) of the vibration change amount determination unit 17 is changed to a vibration threshold value 18a (TH / L ⁇ High) which is a higher value.
- the vibration change amount ⁇ falls below the vibration threshold value 18a (TH / L ⁇ High) from time t2 to t4, so that the occupant determination unit 16 executes the occupant determination, and the occupant determination unit 21 displays the occupant determination result 16a. Updated.
- the vibration threshold value 18a (TH / L ⁇ High) of the vibration change amount determination unit 17 is greater than this.
- the vibration threshold value 18a (TH / L ⁇ Low) which is a low value, is changed.
- the vibration change amount ⁇ exceeds the vibration threshold value 18a (TH / L ⁇ Low), so that the occupant determination unit 16 executes the occupant determination, but the occupant determination unit 21 updates the occupant determination result 16a. Instead, the previous occupant determination result 16a is maintained or held.
- the load change amount ⁇ W by the load change amount determination unit 18 once increases and then gradually decreases, so that it falls below the weight threshold TH / L ⁇ at time t5, and this state continues.
- a predetermined time for example, 3 [s]
- the low vibration threshold value 18a (TH / L ⁇ Low) of the vibration change amount determination unit 17 is changed to the high vibration threshold value 18a (TH / L ⁇ High).
- the load change amount ⁇ W by the load change amount determination unit 18 again exceeds the weight threshold value TH / L ⁇ at time t7, so the vibration change amount determination unit 17 uses the vibration threshold value 18a (TH / L ⁇ High ),
- the vibration threshold value 18a is changed to TH / L ⁇ Low, and the occupant determination unit 16 executes the occupant determination, but the occupant determination unit 21 updates the occupant determination result 16a. Instead, the previous occupant determination result 16a is maintained.
- the occupant determination unit 16 causes the detected load W to exceed the first threshold value TH / L ⁇ 1, so that the seating of the child during the curve travel, Alternatively, the occupant determination result 16a that has been determined to be vacant is output as an occupant determination result 16a of adult seating.
- the determination count unit 19 clears the count ⁇ indicating the number of times that the occupant determination result 16a is the same as the previous time (one time before).
- the count ⁇ of the determination counter 19 indicates the period T from the time t8 to the time t9 when the predetermined period T set for forced update elapses. Therefore, since the vibration change amount ⁇ in the vibration change amount determination unit 17 exceeds the vibration threshold value 18a (TH / L ⁇ Low), the occupant determination unit 16 executes the occupant determination, but the occupant determination unit 21 determines the occupant determination. The result 16a is not updated, and the previous occupant determination result 16a is maintained.
- the period T is, for example, a sufficiently long time (for example, 3 minutes) with respect to the maximum time (for example, 1 minute) required to travel on a gentle curve with a long curvature radius on a general road.
- the count ⁇ of the determination count unit 19 reaches a predetermined count value N, so that the vibration change amount ⁇ in the vibration change amount determination unit 17 does not exceed the vibration threshold value 18a (TH / L ⁇ Low).
- the occupant determination unit 16 performs occupant determination, the occupant determination unit 21 updates the occupant determination result 16a.
- the vibration change amount ⁇ in the vibration change amount determination unit 17 remains in excess of the vibration threshold value 18a (TH / L ⁇ Low)
- the predetermined value is again set. Until the period T elapses, even if the occupant determination unit 16 executes the occupant determination, the occupant determination unit 21 does not update the occupant determination result 16a, and the previous occupant determination result 16a is maintained.
- the occupant determination result 16a is updated, and the correct occupant determination result 16a of “adult” is output respectively.
- the vibration change amount ⁇ in the vibration change amount determination unit 17 exceeds the vibration threshold value 18a (TH / L ⁇ High or TH / L ⁇ Low), that is, when it is determined that the vehicle vibration 17a is occurring.
- the vibration threshold value 18a TH / L ⁇ High or TH / L ⁇ Low
- the occupant determination result 16a is updated every time the predetermined period T elapses, so that the occupant determination may be erroneous due to a load change.
- the occupant determination result 16a can be updated after passing through the curve. Further, the passenger determination result 16a can be reliably updated every predetermined period T without being affected by the generation of the vehicle vibration 17a.
- the occupant determination result 16a can be reliably updated every predetermined period T. Therefore, it can be determined that the occupant is seated early when the occupant is subsequently seated.
- the occupant determination result 16a is reliably updated every predetermined period T even when the occupant continuously shakes his / her body back and forth or performs a poor shake. be able to.
- t, T, and N are local variables that are valid only in this case, and have different meanings when used elsewhere (the same applies hereinafter).
- the occupant determination means 15 is provided with a boarding / alighting determination unit 23 (or a stability determination unit).
- the boarding / alighting determination unit 23 monitors the occurrence of boarding from a vacant seat state (section 41) as shown in FIG. 6 or the occurrence of a vacant seat state due to getting off (section 42) as shown in FIG. To get on and off). Then, when the passenger has boarded from a vacant seat or is in a vacant seat by getting off, the boarding (section 43 in FIG. 6) is stable or the boarding (section 44 in FIG. 7) is stable. Each is obtained by calculation (stability determination is performed).
- the passenger determination means 15 (the passenger determination part 21) does not update the passenger determination result 16a. Also, the occupant determination result 16a is updated (temporarily and forcibly).
- the situation in which the occupant determination result 16a is not updated (holding state) includes a situation in which the previous occupant determination result 16a should be retained, the execution of the occupant determination result 16a (before the occupant determination result 16a appears), It is assumed to include immediately after execution (after the passenger determination result 16a is output).
- each part of the occupant determination means 15 (the occupant determination unit 16, the vibration change amount determination unit 17, the load change amount determination unit 18, the determination count unit 19, and the occupant determination unit 21). At least one of them) performs a required standby process or the like in order to improve the determination accuracy or the like, so that the occupant determination result 16a is not updated (pending state).
- the boarding / alighting determination unit 23 can be considered to perform an exception process for the vibration change amount determination unit 17 that eliminates all the effects of vibration.
- the boarding / alighting determination unit 23 may use the vibration waveform removal signals 14a and 14b that are detection values from which the vibration waveform has been removed by the vibration waveform removal unit 14 (or the detection values 13a and 13b digitized by the signal conversion unit 13). And the detected load W and the load change amount ⁇ W are obtained (or obtained from the memory 22 and other parts (the occupant determination unit 16 and the load change amount determination unit 18)), and Using these, the above-mentioned boarding / exiting monitoring and stability calculation (stability judgment processing) are performed, and the presence / absence of boarding / exiting is output to the passenger judgment unit 21.
- the vibration waveform removal unit 14 uses a filter.
- the applied vibration waveform removal signals 14a and 14b are used.
- the filter to be used can be set to an optimal value for the boarding / alighting determination unit 23.
- the term “detected value” refers to either the vibration waveform removal signals 14a and 14b or the detected values 13a and 13b.
- the getting-on / off determination unit 23 can be configured as a functional block by the software described above.
- the boarding / alighting determination unit 23 is configured, for example, as a boarding / alighting algorithm including a boarding algorithm and a boarding algorithm.
- the forced update of the passenger determination result 16a is allowed only for a short time, for example, about 1 second.
- the boarding / alighting determination unit 23 first performs boarding or boarding monitoring (boarding monitoring or boarding monitoring) using the detected load W and two occupant judgment thresholds (AdultTH / L, EmptyTH / L).
- the detected load W decreases so as to be 0 [N].
- the detected load W is not necessarily 0 [N] and is more extreme than 0 [N]. If the detected load W is large and touches the-side, it is clearly not getting off, so it is judged that the vehicle is running on a curve. Thus, the monitoring of getting off may be stopped immediately.
- the boarding / alighting determination part 23 is a vacant seat state before boarding (section 43) before boarding (section 43) from the vacant seat state as shown in FIG. 6 or getting off (section 42) as shown in FIG.
- the stability determination process is performed for the vehicle after getting off (section 44).
- the stability determination process before getting on (section 43) or after getting off (section 44) sets a time range necessary for determining stability (for example, about 4 seconds), and within that range. To do.
- FIG. 8 is a diagram showing the stability determination process by the boarding / alighting determination unit 23.
- this stability determination process first, the current load (W (t)) and the previous load (W (t-1)) are calculated.
- Sen1 (t) Sen1 (t) + Sen2 (t) ⁇ (Sen1 (t-1) + Sen2 (t-1)).
- Sen1 (t), Sen1 (t-1) are vibration waveform removal signals 14a (LPF_Sen1 (t), LPF_Sen1 (t-1)), which are detected values from which the vibration waveform has been removed by the vibration waveform removal unit 14.
- the weight information may be used.
- Sen2 (t) and Sen2 (t-1) are vibration waveform removal signals 14b (LPF_Sen2 (t), LPF_Sen2 (t-1)), which are detection values from which the vibration waveform has been removed by the vibration waveform removal unit 14.
- the weight information may be used.
- the judgment threshold value JudgeTH / L
- the determination threshold value may be the same value as the determination threshold value used in determination A, or a different value may be used. In this example, the same value is used. Gn-JudgeTH / L ⁇ W (t) -W (t-1) ⁇ Gn + JudgeTH / L ... Judgment B
- the stability determination process the number of times that the above determination A and determination B are both established is counted (stable count), and the number of times that this count can be reliably determined to be stable (the number of stable determinations). Alternatively, it is determined whether time (stability determination time, for example, about 3 seconds) has been continued (decision C).
- determination A to determination C The specific method of determination using the above three determinations (determination A to determination C) is as follows.
- the judgment threshold value of judgment A (first threshold value for stability judgment) and the judgment threshold value of judgment B (second threshold value for stability judgment) are both 3 [N], and the above judgments A to C are concretely detected.
- the example applied with respect to the waveform of a load is shown.
- the determination A is established.
- the load value at is set to the variable reference G1, and the determination B is performed from the time point T1 to count how long the determination A and the determination B continue. Then, both are established until the count of 4, but at the next time, the absolute value of the difference between the detected loads becomes 4 [N] (> 3 [N]), and the judgment A is not established.
- the count is stopped and reset. If the count number is 4, the stability determination has not yet been reached, so the stability determination is not performed.
- the absolute value of the difference from the detected load at the previous time point again becomes 1 [N] ( ⁇ 3 [N]), and the determination A is established.
- the determination B is performed from the time T3, and how long the determination A and the determination B continue is counted.
- the judgment C is determined when the count number ⁇ reaches the number of stability judgments. To establish. As a result, a determination result that the operation is stable is obtained.
- the boarding / exiting determination unit 23 determines that the detected load W has exceeded the third threshold (EmptyTH / L) of the passenger determination threshold. Further, when exceeding the first threshold value (AdultTH / L, not shown) and detecting that it corresponds to the boarding from the vacant seat state (section 41), before boarding (by reading the data recorded in the memory 22, etc.) The above calculation (determination A to determination C) is performed retroactively to the section 43), but the determination C is established because the determination C continues for a long period of time exceeding the number of stable determinations or the stability determination time. Therefore, it is determined that the operation is stable.
- the third threshold EmptyTH / L
- the boarding / alighting determination unit 23 further increases the first threshold (AdultTH / L) after the detected load W exceeds the third threshold (EmptyTH / L) of the occupant determination threshold. If it is detected that the vehicle is in a vacant seat (section 41), the above calculation is performed retroactively (by reading the data recorded in the memory 22) before the boarding (section 43). (Determination A to determination C) is performed, but the count of the determination C is so short that it does not reach the number of stable determinations or the stable determination time, and thereafter, the determination C is not satisfied. Will not be done. In the case of FIG. 10, actually, a threshold (NobodyTH / L) for determining the presence or absence of a baggage slightly heavier than the third threshold (EmptyTH / L) is used instead of the third threshold (EmptyTH / L). As an example.
- the getting-on / off judging unit 23 performs the third threshold (EmptyTH / L) after the detected load W falls below the first threshold (AdultTH / L, not shown) of the occupant judging threshold.
- the third threshold EsmptyTH / L
- the above calculation determination A to determination C
- the judgment C continues for a long time as the number of stability judgments or the stability judgment time is exceeded, the judgment C is established and the judgment of stability is made.
- the boarding / alighting determination unit 23 performs the third threshold (EmptyTH after the detected load W falls below the first threshold (AdultTH / L, not shown) of the occupant determination threshold. / L), when it is detected that the seat is vacant due to getting off (section 42), the above calculation is performed for (after section 44), but the count of judgment C is stable. Since the number of judgments or the stability judgment time is too short (almost) and judgment C is not established for a long time, the judgment of stability is not performed.
- the boarding / alighting determination unit 23 detects detection values (detection values 13 a and 13 b) indicating a vacant seat state after getting on (section 41) from the vacant seat state or getting off (section 42).
- detection values 13 a and 13 b detection values indicating a vacant seat state after getting on (section 41) from the vacant seat state or getting off (section 42).
- the load change time the length of the sections 41 and 42
- the vibration waveform removal signals 14a and 14b satisfies a predetermined time condition for separating a boarding or alighting
- the boarding / alighting determination unit 23 changes the time condition for boarding (when the detected load W increases) from a vacant seat state to a boarding state (EmptyTH / L ⁇ AdultTH / L). Can be determined to be within the required time (the required travel time 51, for example, the elapsed time of the section 41 is within about 7 seconds).
- the boarding / alighting determination unit 23 changes the time condition at the time of getting off (when the detected load W is decreased) from the getting off state to the empty seat state (AdultTH / L ⁇ EmptyTH / L). It can be determined that the time is within the required time (the required time for getting off 52, for example, the elapsed time of the section 42 is within about 4 seconds).
- time conditions (required boarding time 51, boarding time 51) can be appropriately set based on the average time required for an adult to get on and get off.
- the specific value of the time condition is not limited to the above.
- the boarding / alighting determination unit 23 detects values (detection values 13a and 13b or vibration waveform removal signals 14a and 14b) indicating a vacant seat state due to getting on from the vacant seat (section 41) or getting off (section 42).
- the calculation ((1) stable calculation) for determining whether or not the load change amount ⁇ W is stable is satisfied only when a predetermined load condition for separating a boarding or getting off is satisfied. good.
- the boarding / alighting determination unit 23 sets a predetermined value (+10 [N]) during the boarding judgment period (EmptyTH / L ⁇ AdultTH / L, section 41). It is monitored whether or not a larger load change amount ⁇ W is observed.
- the getting-on / off judging unit 23 performs a predetermined value (stable calculation trigger at getting off) during the getting-off judgment period (AdultTH / L ⁇ EmptyTH / L, section 42). It is monitored whether or not a load change amount ⁇ W lower than the threshold value: ⁇ 10 [N]) is observed.
- the above-described load condition (stability calculation trigger threshold) is set as a value that can be divided between when the vehicle is stopped and when the vehicle is traveling on a curve.
- the specific value of the load condition is not limited to the above as long as it is possible to distinguish between getting on and off and (curve) traveling.
- the boarding / alighting determination unit 23 may be operated at all times in the same manner as other parts of the occupant determination means 15 (the occupant determination unit 16, the vibration change amount determination unit 17, the load change amount determination unit 18, etc.). The operation may be performed only when necessary. Therefore, for example, a stability calculation trigger threshold 55 for boarding that is smaller than the boarding stability value 53 (for example, 5 [N]), or a stability calculation trigger threshold 55 for boarding that is smaller than the boarding stability value 54 (for example, ⁇ 5 [N]) is set, and when the load change amount ⁇ W exceeds the stability calculation trigger threshold 55 or the stability calculation trigger threshold 55, the operation of the getting-on / off determination unit 23 may be prepared. .
- a stability calculation trigger threshold 55 for boarding that is smaller than the boarding stability value 53 (for example, 5 [N])
- a stability calculation trigger threshold 55 for boarding that is smaller than the boarding stability value 54 for example, ⁇ 5 [N]
- the occupant determination unit 21 updates the occupant determination result 16a even if the occupant determination is performed by the occupant determination unit 16. The previous occupant determination result 16a is held without executing.
- the boarding / alighting determination unit 23 and monitoring the boarding / alighting, even in a situation where a disturbance occurs with respect to the update of the occupant determination result 16a due to the vibration that occurs when the boarding or getting off the vehicle is stopped.
- the occupant determination result 16a can be updated early.
- the boarding / alighting determination unit 23 is made to monitor the occurrence of boarding from a vacant seat state or the occurrence of a vacant seat state by getting off. Then, in the case of getting in from a vacant seat state or in a vacant seat state by getting off, it is determined by calculation whether it is stable before getting on or stable after getting off. As a result, it is possible to correctly determine whether it is a sudden boarding or alighting that actually occurred while the vehicle was stopped, such as a loose curve while driving (similar to a boarding or alighting when stopped) Case can be eliminated. It should be noted that a gentle curve during traveling can be classified by making a judgment on stability because the waveform stability corresponding to that before getting on or after getting off is low.
- the suspension state is released and the occupant determination unit 21 can update the occupant determination result 16a.
- the update of the occupant determination result 16a due to the influence of getting on and off while the vehicle is stopped It is possible to quickly and correctly update the situation such as a sudden boarding or getting off that occurred while a disturbance is occurring.
- the boarding / alighting determination unit 23 sets in advance the load change time of the detected load W based on detection values (detection values 13a, 13b or vibration waveform removal signals 14a, 14b) indicating the occupancy from the unoccupied state or the unoccupied state by dismounting.
- detection values detection values 13a, 13b or vibration waveform removal signals 14a, 14b
- the majority of cases such as loose curves during driving that have a waveform similar to that of a stop (steep) Can be excluded.
- the load change time of the detected value becomes a value within a certain range, whereas in the case of a gentle curve while traveling, the detected value of The load change time varies depending on the situation during the curve travel (for example, the weight on the seat 2, the speed of the vehicle 1, the rudder angle, etc.). Part can be excluded.
- the load change amount ⁇ W (vibration change amount ⁇ ) of the detection value (detection values 13a, 13b or the vibration waveform removal signals 14a, 14b) indicating the occupancy from the vacant seat state or the vacant seat state by getting off the vehicle.
- the load change amount ⁇ W of the detected value includes a part that suddenly changes greatly due to the influence of the getting off (load fluctuation, vibration, etc.).
- the load change amount ⁇ W of the detected values 13a and 13b is almost free from suddenly changing portions such as getting on and off when the vehicle is stopped. By narrowing down by ⁇ W, it is possible to exclude most of the curve running.
- a load sensor 11 that is attached to the periphery of the seat 2 and detects a load acting on the seat 2
- an occupant detection means 12 for detecting an occupant based on the detection value of the load sensor 11.
- the occupant detection means 12 examines at least the waveform of the detection value of the load sensor 11 and determines whether the door is closed based on a load variation pattern indicating door closing included in the waveform of the detection value.
- the unit 101 is provided.
- the door closing determination unit 101 is provided as means for determining whether or not the passenger gets on and off (boarding / alighting determination means), and is configured as, for example, a door closing determination logic.
- the door closing has a characteristic waveform as shown in FIGS. 19 and 20.
- the waveform indicating the closing of the door shows a large load variation (large variation portion 102a) due to the door closing, and then repeats the increase / decrease variation alternately (for example, in a cycle of approximately 100 ms) (increase / decrease portion 102b). ,
- the characteristic converges to the value before closing the door (convergence portion 102c).
- the process for confirming whether or not the door closing waveform by the door closing determining unit 101 is performed according to the following five items, for example.
- “Section 2” Check for large load fluctuations due to door closing
- Check the “door closing process” flag When the “door closing process” flag is present, the process proceeds to item 3 without performing the calculation of A below.
- the “door closing process” flag is not present, the following calculation A is performed. If it is established, the “door closing process” flag is set and the process proceeds to item 3.
- the “door closing process” flag is not present, the following calculation A is performed. If not established, proceed to item 1 without performing items 3 and after.
- the value of DoorTrigTH / L (door closing trigger threshold) can be arbitrarily selected within a range in which a large load fluctuation due to door closing can be identified. For example, it may be 5 [N] to 10 [N].
- “Section 5” (confirm the end of door closing) It is confirmed whether the code continuous count or the same code count has reached a predetermined number (N times). If not established, proceed to item 1 without doing anything. At the time of establishment, the calculation result of B is confirmed and C is calculated.
- ⁇ DoorSumTH / L ⁇ ⁇ ⁇ C DoorSumTH / L (door closing threshold) can be selected arbitrarily within a range where convergence can be confirmed. For example, it may be 2 [N] to 10 [N]. If C is established, the door closing process flag is not set, the count of the stability determination process is validated during the period from the start of A to the current result, and the process proceeds to item 1. If C is not established, the door closing process flag is not set, the stability determination process count is invalid during the period from the start of A to the current result, and the process proceeds to item 1.
- the door closing trigger threshold (DoorTrigTH / L) is set to 5 [N].
- the door closing threshold (DoorSumTH / L) is 2 [N].
- the door closing may be accompanied by either getting on or getting off, but in this case, an example of getting off is described.
- the load change amount ⁇ W becomes +6 [N] (> 5 [N]: door closing trigger threshold)
- the door closing determination is started. Thereafter, the load change amount ⁇ W is +1 [N], ⁇ 9 [N], +5 [N], ⁇ 2 [N], 1 [N], ⁇ 1 [N], 0 [N], and 0 [N].
- the 4 sign consecutive counts are “0” “1” “0” “0” “1” “0”,
- the coincidence counts of the four terms are “0”, “0”, “1”, “1”, “1”, and “2”, and the fifth term is established.
- the difference value DoorSum (x) when the coincidence count becomes “2” becomes +7 [N] (> DoorSumTH / L), and convergence to the load immediately before the start of the door closing determination is not observed. It is determined that the door is not closed.
- the load change amount ⁇ W becomes +6 [N] (> 5 [N]: door closing trigger threshold)
- the door closing determination is started.
- the load change amount ⁇ W becomes ⁇ 10 [N], +3 [N], +4 [N], +3 [N], ⁇ 1 [N], and +1 [N].
- the sign of the three terms is “+” “ ⁇ ” “+” “+” “+”.
- the difference value DoorSum (x) from the load immediately before the start of the door closing determination at that time becomes “+6”, “ ⁇ 4”, “ ⁇ 1”, “+3”, “+6”,.
- the sign continuous count of the four terms becomes “0”, “0”, “0”, “1”, “2”,.
- the door closing determination unit 101 can determine whether the door is closed.
- the occupant detection means 12 is at least Based on the detected value and the vibration threshold value 18a, a vibration change amount determination unit 17 that determines the presence or absence of the vehicle vibration 17a is provided. Then, the vibration change amount determination unit 17 When the door closing determination unit 101 determines that the door is closed, The vehicle vibration 17a when the door is closed may be determined to be the vehicle vibration 17a generated while the vehicle is stopped.
- a signal indicating whether the door is closed or not from the door closing determination unit 101 is input to the vibration change amount determination unit 17.
- the occupant detection means 12 is at least An occupant determination unit 16 that determines the seating state of the occupant with respect to the seat 2 based on the detection value (and the occupant determination threshold); Based on the detected value (and the vibration threshold value 18a), a vibration change amount determination unit 17 that determines the presence or absence of the vehicle vibration 17a; Based on the presence or absence of the vehicle vibration 17a from the vibration change amount determination unit 17, the occupant determination unit 21 determines whether to update the occupant determination result 16a for the seated state from the occupant determination unit 16 or to hold the previous occupant determination result 16a. And. When the door closing determination unit 101 determines that the door is closed, The occupant determination unit 21 may be able to update the occupant determination result 16a even in a situation where vehicle vibration is occurring (a situation where the occupant determination result 16a is not updated).
- a signal indicating whether the door is closed or not from the door closing determination unit 101 is input to the occupant determination unit 21. Even if a disturbance such as the vehicle vibration 17a occurs, if the door closing determination unit 101 reliably determines that the disturbance is due to the door closing, the occupant determination unit 21 updates the occupant determination result 16a. However, there is no particular problem.
- the signal indicating whether the door is closed or not from the door closing determination unit 101 is input to the getting on / off determination unit 23.
- the door closing determination unit 101 is provided so that the door closing determination unit 101 monitors the characteristic load fluctuation pattern waveform indicating the door closing. Thus, it is possible to reliably determine whether the door is closed.
- the waveform indicating the door closing converges to the value before the door closing while repeating the increase / decrease in the change in a short time (for example, in a cycle of 100 ms) after a large load fluctuation due to the door closing. It becomes a characteristic load fluctuation pattern. Therefore, it is possible to determine whether the door is closed or not by calculating whether the waveform of the detected value has the characteristic load fluctuation pattern as described above. Thus, if it can be determined that the door is closed, it can be used for various controls.
- the vibration change amount determination unit 17 can determine that the vibration generated when the door is closed is vibration generated while the vehicle is stopped. Therefore, it can be prevented that the vehicle is erroneously determined to be traveling due to the vibration of closing the door.
- the door when getting on and off the vehicle while the vehicle is stopped, the door is closed. When the door is closed, a vibration is generated. If this vibration is erroneously determined by the vibration change amount determination unit 17 as a running vibration or the like, even if the passenger determination by the passenger determination unit 16 is performed, The determination unit 21 holds the previous occupant determination result 16a without updating the occupant determination result 16a.
- the door closing determination unit 101 so that the door closing determination unit 101 can detect vibration due to “door closing”, it is possible to correctly determine whether or not the vehicle is stopped. As a result, the door closing vibration is not erroneously determined as traveling.
- the occupant determination unit 21 does not execute the update of the occupant determination result 16a by receiving a signal from the vibration change amount determination unit 17 that the vehicle vibration 17a is present or the like, temporarily (for example, 1 second).
- the suspension state is released and the occupant determination unit 21 can update the occupant determination result 16a, for example, while the occupant determination result 16a cannot be updated due to the influence of getting on and off while the vehicle is stopped. It is possible to quickly and correctly update the situation such as a sudden boarding or alighting that has occurred.
- a boarding / alighting determination unit 23 is provided to allow the boarding / alighting determination unit 23 to monitor the occurrence of boarding from a vacant seat state or the occurrence of a vacant seat state due to getting off. Then, in the case of getting in from a vacant seat state or in a vacant seat state by getting off, it is determined by calculation whether it is stable before getting on or stable after getting off. As a result, it is possible to correctly determine whether it is a sudden boarding or alighting that actually occurred while the vehicle was stopped, such as a loose curve while driving (similar to a boarding or alighting when stopped) Case can be eliminated. It should be noted that a gentle curve during traveling can be classified by making a judgment on stability because the waveform stability corresponding to that before getting on or after getting off is low.
- the boarding / alighting determination unit 23 handles the determination of the door closing by the door closing determination unit 101 as stable. Thereby, it is possible to prevent the vibration accompanying the door closing from affecting the stability determination. Therefore, the boarding / alighting determination unit 23 can correctly determine boarding / alighting when the vehicle is stopped even if the door is closed.
- this embodiment has the following configuration.
- the vehicle occupant detection device 8 of this embodiment includes means for determining whether or not to get on and off (boarding and getting off determination means). And when the means for determining whether or not to get on and off determines whether to get on and off, The occupant determination unit 21 updates the occupant determination result 16a even in a situation where vehicle vibration is occurring.
- a buckle switch 202 capable of detecting the wearing state of the seat belt 201 (see FIGS. 23 and 24) (provided on the seat 2) is provided.
- the occupant detection means 12 has a buckle determination unit 204 that receives information 203 (buckle switch information) from the buckle switch 202 and determines the wearing state of the seat belt 201.
- the occupant determination unit 21 updates the occupant determination result 16a even in a situation where a disturbance such as vehicle vibration occurs in the detection value of the load sensor 11 (a situation where the occupant determination result 16a is not updated). Make it run.
- the buckle switch 202 is a switch for detecting whether or not the lock fitting attached to the seat belt 201 is attached to the buckle attached to the seat 2, such as inside the buckle of the seat 2. Is provided.
- the buckle switch 202 can detect a change from wearing the seat belt 201 to non-wearing as shown in FIG. 23 and a change from non-wearing to wearing the seat belt 201 as shown in FIG. Become. Even if a disturbance such as the vehicle vibration 17a occurs, if the buckle determination unit 204 determines that the disturbance is due to a change in the wearing state of the seat belt 201, the occupant determination unit 21 determines that the occupant determination result 16a Executing the update does not cause any particular problems.
- the signal 205 indicating the change in the wearing state of the seat belt 201 from the buckle determination unit 204 is input to the occupant determination unit 21, input to the vibration change amount determination unit 17, or to the door closing determination unit 101, for example. Or enter.
- the buckle determination unit 204 can be configured as a functional block using the above-described software.
- the buckle determination unit 204 determines that the wearing state of the seat belt 201 has changed from non-wearing to wearing, As shown in FIG. 25, the occupant determination result 16a for the seated state may be updated based on the maximum detected value 210 within a certain time before and after the change.
- the buckle determination unit 204 reads the data recorded in the memory 22 so that the maximum value 210 of the detected value can be examined by going back to about 15 seconds before the change, for example. Further, the maximum value 210 of the detected value can be examined until about 5 to 10 seconds after the change.
- the fixed time before and after the change is not limited to the above, and can be set to a necessary range.
- the means for determining whether or not to get on and off determines that the user gets on and off (when the user gets on and off)
- the occupant determination result 16a is updated at an early stage. Will be able to. This makes it possible to match the passenger determination result with the actual situation even when getting on and off.
- a buckle determination unit 204 is provided so as to incorporate determination based on the seat belt 201 wearing condition.
- the seat belt 201 can be updated. Therefore, for example, the passenger determination result 16a is updated at an early stage even when the wearing state of the seat belt 201 is changed with getting on and off, or when a sudden getting on and off is performed immediately after the operation of the seat belt 201. be able to.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Transportation (AREA)
- Seats For Vehicles (AREA)
Abstract
乗降車が生じた場合に、早期に乗員判定結果の更新を実行することができるようにする。そのために、車両用乗員検知装置(8)は、座席(2)周辺に取り付けられた荷重センサ(11)と、荷重センサ(11)の検出値に基づいて乗員を検知する乗員検知手段(12)と、乗降車の有無を判断する手段とを備え、乗員検知手段(12)は、乗員の着座状態を判定する乗員判定部(16)と、車両振動(17a)の有無を判定する振動変化量判断部(17)と、乗員判定結果の更新または保持を判断する乗員判断部(21)と、を備え、乗降車の有無を判断する手段が乗降車を判断した場合に、乗員判断部(21)は、車両振動(17a)が発生している状況においても、乗員判定結果の更新を実行するようにしたことを特徴とする。
Description
本件は、車両用乗員検知装置に関するものである。
自動車などの車両には、座席に着座した乗員を保護可能なエアバッグ装置が設けられている。このエアバッグ装置には、車両用乗員検知装置が備えられている。この車両用乗員検知装置は、座席に乗員が着座しているか否かを検知する(乗員判定または乗員検知を行う)ようにしたものである。このような車両用乗員検知装置は、座席に取り付けられた荷重センサと、この荷重センサからの検出値に基づいて乗員を検知する乗員検知手段と、を備えている(例えば、特許文献1参照)。
特許文献1に記載された車両用乗員検知装置は、荷重センサの検出値に基づいて乗員を検知するようにしているため、車両振動の発生を検知した場合には、乗員判定結果の更新を行わずに、前回の乗員判定結果をそのまま保持することで、乗員判定結果を安定して得られるようにしていた。
しかし、例えば、停車中に乗車や降車を行った際にも、乗降車やドア閉めなどによって車両振動が発生する。そのため、検知した車両振動が乗降車のものであっても、前回の乗員判定結果をそのまま保持してしまい、乗員判定結果が更新されない可能性があった。
本件は、乗降車が生じた場合に、早期に乗員判定結果を更新できるようにすることを目的としている。
上記目的を達成するため、本件は、
座席周辺に取り付けられて、座席に作用する荷重を検知する荷重センサと、
該荷重センサの検出値に基づいて、乗員を検知する乗員検知手段と、
乗降車の有無を判断する手段と、
を備えると共に、
前記乗員検知手段は、少なくとも、
前記検出値に基づいて座席に対する乗員の着座状態を判定する乗員判定部と、
前記検出値に基づいて車両振動の有無を判定する振動変化量判断部と、
該振動変化量判断部からの車両振動の有無に基づいて、前記乗員判定部からの着座状態に対する乗員判定結果の更新または前回の乗員判定結果の保持を判断する乗員判断部と、を備え、
前記乗降車の有無を判断する手段が乗降車を判断した場合に、
前記乗員判断部は、車両振動が発生している状況においても、乗員判定結果の更新を実行するようにした車両用乗員検知装置を特徴とする。
座席周辺に取り付けられて、座席に作用する荷重を検知する荷重センサと、
該荷重センサの検出値に基づいて、乗員を検知する乗員検知手段と、
乗降車の有無を判断する手段と、
を備えると共に、
前記乗員検知手段は、少なくとも、
前記検出値に基づいて座席に対する乗員の着座状態を判定する乗員判定部と、
前記検出値に基づいて車両振動の有無を判定する振動変化量判断部と、
該振動変化量判断部からの車両振動の有無に基づいて、前記乗員判定部からの着座状態に対する乗員判定結果の更新または前回の乗員判定結果の保持を判断する乗員判断部と、を備え、
前記乗降車の有無を判断する手段が乗降車を判断した場合に、
前記乗員判断部は、車両振動が発生している状況においても、乗員判定結果の更新を実行するようにした車両用乗員検知装置を特徴とする。
本件に係る車両用乗員検知装置によれば、乗降車が生じた場合に、早期適切に乗員判定結果の更新を実行することができる。
以下、本件の車両用乗員検知装置を実現する最良の実施形態を、図面を用いて説明する。
<構成>まず、本実施例の構成を説明する。
図1は、この実施例にかかる車両用乗員検知装置が搭載された車両を示す概略平面図である。図2は、図1の車両用乗員検知装置を備えたエアバッグ装置の構成を示すブロック図である。
図1に示すように、自動車などの車両1には、乗員が着座する座席2(例えば、助手席などのシート)が備えられている。この座席2には、着座している乗員を緊急時に保護可能なエアバッグ装置3が搭載されている。なお、同図は、車両1が左ハンドル車の場合の例を示しているが、車両1が右ハンドル車であっても、同様に、助手席などの座席2に対してエアバッグ装置3を設けることができる。また、助手席以外の座席2(例えば、後部座席など)に対しても、同様のエアバッグ装置3を採用することができる。
そして、エアバッグ装置3は、エアバッグモジュール4と、エアバッグ制御装置5とによって主に構成されており、その他にも、乗員状態表示ランプ6や、ワーニングランプ7などの表示部も有している。更に、このエアバッグ装置3には、車両用乗員検知装置8が備えられている(図2も併せて参照)。
ここで、エアバッグモジュール4は、車室前部に配置されたインストルメントパネル9内における、座席2の前方となる位置に格納されている。そして、エアバッグモジュール4は、袋状のエアバッグ本体を折り畳んだ状態で収納すると共に、緊急時に乗員保護のためにエアバッグ本体を展開させて車室内へ膨出させることで乗員に対する緩衝機能を発揮するものである。なお、図2に示すように、このエアバッグモジュール4は、エアバッグ制御装置5から出力されるエアバッグ展開信号5aに応じて、展開時の大きさや展開力を少なくとも2段階に変更することができるものなどとすることができる。
エアバッグ制御装置5は、CPUを内蔵し、車両用乗員検知装置8によって得られた乗員情報8aに基づいて、例えば、座席2に乗員が着座していない場合にはエアバッグモジュール4を展開せず、座席2に大人が着座している場合にはエアバッグモジュール4を展開し、また、座席2に子供が着座している場合にはエアバッグモジュール4を展開しない(または、展開力を弱めて展開する)などのエアバッグモジュール4に対する展開判断を行って、エアバッグモジュール4にエアバッグ展開信号5aを出力する。
また、このエアバッグ制御装置5は、車両用乗員検知装置8からの乗員情報8aに基づいて、乗員状態表示ランプ6に表示信号5bを出力すると共に、エアバッグ装置3の故障を検知した場合には、ワーニングランプ7に故障信号5cを出力する。
乗員状態表示ランプ6は、車室前部に配置されたインストルメントパネル9に設置され、エアバッグ制御装置5から出力される表示信号5bに応じて、少なくとも、「着座なし」(または空席)、「大人の着座」、「子供の着座」などの乗員情報8aを表示する表示灯である。
ワーニングランプ7は、車室前部に配置されたインストルメントパネル9に設置され、エアバッグ装置3の故障を検知した場合にエアバッグ制御装置5から出力される故障信号5cに応じて、警告表示を行うための警告灯である。
車両用乗員検知装置8は、座席2に対する乗員の着座状態を判断して、判断した乗員情報8aをエアバッグ制御装置5へ出力するものである。車両用乗員検知装置8は、荷重検知手段としての荷重センサ11と、乗員検知手段12(乗員検知用制御装置)と、を備えている。なお、車両用乗員検知装置8は、外部からの情報を極力用いずに単独で乗員判定を行って乗員情報8aを出力できるような構成にするのが好ましい。
荷重センサ11は、座席2に作用する荷重を検知可能なように、座席2またはその周辺に対して2個取り付けられている(S1,S2)。荷重センサ11には、例えば、加圧力に応じた電圧信号を出力する圧電フィルムなどを用いることができる。
そして、座席2は、図3A~図3Cに示すように、車体31に対し、前後方向32(車両前後方向)に延設された左右一対の平行なスライドレール33,34を介して、前後方向32へスライド可能(位置調整可能)に取り付けられている。この際、座席2は、左右一対のスライドレール33,34に対し、それぞれ、前後の支持点35a,35bおよび支持点35c,35dを介して合計4箇所の位置で支持されている。
このように、車体31に対して座席2が複数の支持点35a~35dによって支持されている場合において、例えば、全ての支持点35a~35dに対して(4個の)荷重センサ11を設置することができるが、この場合には、上記した2個の荷重センサ11を、複数の支持点35a~35dのうちのいずれか2箇所の位置に対して設置するようにしている。具体的には、1つの荷重センサ11(S1)は、前側で且つ内側の支持点24aに取り付けられ、もう1つの荷重センサ11(S2)は、後側で且つ内側の支持点24bに取り付けられている。すなわち、2個の荷重センサ11は、車両1の前後方向32に対し離隔した状態で並設される。このように、荷重センサ11を2個にする(または、4個から2個に削減する)ことで、構造の簡略化、および、信号処理の迅速化など図ることができる。
また、2個の荷重センサ11を、車両1の前後方向32に所要の間隔を有して並べて取り付けることで、車両1が加速したり、あるいは、減速したりした場合であっても、その加速、減速の影響を受けることなく乗員判定を行うことができる。
これは、例えば、車両1が加速した場合には、車両1の加速度によって乗員の体が後方に傾くため、前側の荷重センサ11(S1)にかかる荷重が小さくなり、これによって前側の荷重センサ11(S1)から出力される検出値11a(図2参照)は小さくなるが、逆に、後側の荷重センサ11(S2)にかかる荷重が大きくなるため、後側の荷重センサ11(S2)から出力される検出値11b(図2参照)は大きくなって、2個の荷重センサ11(S1,S2)から出力される各検出値11a,11bの総和は、車両1が一定速度で走行している場合と変わらなくなるためである。なお、これは、車両1が減速した場合についても同様である。
ここで、荷重センサ11から出力される検出値についての具体的な例を説明する。図4は、荷重センサ11の設置個数の違いによる検出値の特性の違いを示すグラフである。
図4に示した特性11eの波形は、本実施例のように前後2箇所の支持点35a,35bに対して、それぞれ荷重センサ11(S1,S2)を設置した場合に、それぞれの荷重センサ11(S1,S2)から出力される検出値11a,11bの総和を示している。
また、図4に示した特性11fの波形は、仮に、全ての支持点35a~35dに対して4個の荷重センサ11を設置した場合に、4個の荷重センサ11から出力される検出値の総和を示している。なお、車両1は、直進路、カーブ、直進路の順に走行するようにしている。
そして、車両1が直進路を走行している場合、荷重センサ11を片側2箇所(例えば、内側の支持点35a,35b)に設置して得られる特性11eの波形は、全ての支持点35a~35dに荷重センサ11を設置した時に得られる特性11fが示す検出値の総和のほぼ半分の大きさになっている。
また、車両1がカーブを走行している場合、特性11eの波形は、直進路の走行中と比べて検出値11a,11bの総和が大きく減少している。これは、荷重センサ11(S1,S2)を設けた側とは反対の側(例えば、車体31の外側)に遠心力が作用したことで、乗員の体が車体31の外側へ傾き、これによって、内側の支持点35a,35bに設置した荷重センサ11(S1,S2)にかかる荷重が低減されたためである。
反対に、図示はしないが、上記したカーブとは逆方向のカーブを走行している場合、乗員の体が車体31の内側へ傾くため、これによって、内側の支持点35a,35bに設置した荷重センサ11(S1,S2)に乗員の体重のほぼ全てがかかるので、特性11eの波形における、検出値11a,11bの総和は、直進路を走行している場合の検出値11a,11bの総和よりも大きな値となる。
これに対し、仮に、荷重検知手段として全ての支持点35a~35dに荷重センサ11を設置した場合には、カーブ走行中であっても、特性11fの波形が示すように、直進路走行中と同様に検出値の総和がほぼ安定した値となる。これは、遠心力が作用して乗員の体が傾いた場合であっても、荷重検知手段を構成する全ての荷重センサ11の出力を加算すると、乗員の体重移動の影響が相殺されてほぼ一定の値になるためである。
すなわち、荷重検知手段として、荷重センサ11(S1,S2)を内側のスライドレール33における前後2箇所の支持点24a,24bのみに取り付けることによって、直進路を走行している場合には、全ての支持点35a~35dに荷重センサ11を取り付けた場合と比較して、検出値11a,11bの総和は異なるが、同様な特性の検出値11a,11bを得ることができる。
したがって、直進路を走行している場合については、前後2箇所の支持点24a,24bに取り付けた荷重センサ11(S1,S2)のそれぞれから出力される検出値11a,11bの総和に基づいて、座席2への乗員の着座の有無、および、大人が着座しているか、子供が着座しているかの判定(乗員判定)を支障なく行うことが可能である。
一方、カーブを走行している場合には、荷重センサ11(S1,S2)をスライドレール33における前後2箇所の支持点24a,24bのみに対して取り付けると、直進路を走行している場合に得られる検出値11a,11bの総和値とは異なる総和値が出力されてしまい、さらに、右カーブと左カーブとで検出値11a,11bの特性が異なってしまうため、検出値11a,11bのみによって正しく乗員判定を行うことが困難になる。
したがって、車両1が直進路を走行中の場合についてのみ、乗員判定を行って得た乗員判定結果を更新するようにし、車両1がカーブ走行中には、乗員判定を行っても乗員判定結果を更新しないようにすることによって、誤検知のない乗員検知を行うことが可能となる。なお、一般的に、カーブ走行中は直進路を走行中の場合と比べて検出値11a,11bの変動が大きくなるため、この検出値11a,11bの変動を検出すれば、直進路を走行中の場合とカーブを走行中の場合とを識別することが可能となる。詳しくは後述する。
なお、2つの荷重センサ11は、内側のスライドレール33における前後2箇所の支持点24a,24bに対して設置する替りに、外側のスライドレール34における前後2箇所の支持点24c,24dに対して設置しても良く、このようにしても左右反対勝手となる他は、上記とほぼ同様の信号を得ることができる。
図2に戻って、上記した乗員検知手段12は、2つの荷重センサ11から出力された検出値11a,11bに基づいて、座席2の乗員判定を行うものであり、必要な演算処理を行うCPU12a(演算処理装置)を有している。そして、このCPU12aの内部には、信号変換部13と、振動波形除去部14と、乗員判定手段15と、が備えられている。
乗員判定手段15は、少なくとも、乗員判定部16(または着座判定部)を備えている。乗員判定部16は、主に、座席2に対する乗員の着座状況について判断し、乗員判定結果16aを求めるためのものである。
また、乗員判定手段15には、振動変化量判断部17(または振動判定部)や、荷重変化量判断部18(または振動閾値設定部、(閾値=しきい値))を備えるようにしても良い。振動変化量判断部17、および、荷重変化量判断部18は、主に、車両1の状況について判断するためのものである。
更に、乗員判定手段15には、判定カウント部19(乗員判定回数カウント部)を備えるようにしても良い。この判定カウント部19は、主に、同一の乗員判定結果16aが一定時間続いている場合に、乗員判定結果16aの更新を強制的に実行させるためのものである。
更に、乗員判定手段15は、乗員判断部21(更新判断部または乗員判定結果更新可否判断部)を備えている。この乗員判断部21は、振動変化量判断部17からの車両振動17aの有無や判定カウント部19によるカウントεなどに基づいて、乗員判定部16からの着座状態に対する乗員判定結果16aの更新または前回の乗員判定結果16aの保持を判断するものである。なお、乗員判断部21に対し、乗員判定部16は乗員判定結果16aを常時送り続けるように動作している。また、乗員判断部21に対し、振動変化量判断部17は、車両振動17aの有無を常時送り続けるように動作している。乗員判断部21に対し、判定カウント部19は、カウントεを常時送り続けるように動作している。
なお、乗員判定手段15の各部は、ソフトウェアによる機能ブロックとして構成することができる。ソフトウェアは、CPU12aの内部または外部に設けられたメモリ22(内部メモリまたは外部メモリ)に記憶されて、CPU12aによって実行される。そして、例えば、乗員判定部16は、乗員判定ロジックとして構成され、振動変化量判断部17は、振動変化量判断ロジックとして構成され、荷重変化量判断部18は、荷重変化量判断ロジックとして構成され、判定カウント部19は判定カウントロジックとして構成され、乗員判断部21は、乗員判断ロジックとして構成される。
また、車両用乗員検知装置8の各部については、車両1の電源をオンにした時からオフにするまでの間中、常時作動し続けるようになっている。また、メモリ22は、乗員検知手段12の各部に対する入出力を適宜記録することができるようになっている。よって、乗員検知手段12の各部は、互いに入出力を参照したり、使用したりできるようになっている。
より詳しくは、信号変換部13は、2つの荷重センサ11のそれぞれから出力された検出値11a,11bを読み込んで、アナログ信号からデジタル信号(検出値13a,13b)に変換するものである。なお、この信号変換部13は、座席2に取り付けられた各荷重センサ11のそれぞれに対して設けられている。
振動波形除去部14は、信号変換部13によってデジタル化された検出値13a,13bの中から、車両1が振動中であることを示す振動波形を除去して、振動波形除去信号14a,14bを生成する。ここで、「振動波形」とは、例えば、上下方向の高周波振動成分(走行振動などの車両振動)のことである。この振動波形除去部14としては、例えば、高周波振動成分などの振動波形を除去可能なローパスフィルタ(LPまたはLPF)を使用することができる。ローパスフィルタは目的や状況に応じて除去可能な周波数の異なる複数種類のものを使い分けることができる。この振動波形除去部14は、信号変換部13のそれぞれに対応して設けられている。
なお、単に検出値(または荷重検出信号)といった場合、荷重センサ11からの荷重検出信号(検出値11a,11b、またはその総和)、信号変換部13によってデジタル化された検出値13a,13b(またはその総和)、振動波形除去部14によって振動波形を除去された検出値である振動波形除去信号14a,14b(またはその総和)、を指すことがある。また、これらは、状況に応じて検知荷重または重量情報などと言う場合がある。
そして、荷重変化量判断部18は、デジタル化された検出値13a,13bから、振動波形除去部14によって振動波形を除去した後の検出値、つまり、振動波形除去信号14a,14bに基づいて、振動変化量判断部17で用いる振動閾値18aを設定するものである。ここで、「振動閾値18a」とは、車両振動17aの発生の有無を判定する際に用いる基準値である。この場合、荷重変化量判断部18は、振動波形除去信号14a,14bの変動量が小さい時と、この振動波形除去信号14a,14bの変動量が大きい時とで、振動閾値18aを異ならせることができるようになっている。例えば、荷重変化量判断部18は、振動波形除去信号14a,14bの変動量が小さい状態が所定時間継続した場合に、振動波形除去信号14a,14bの変動量が大きい時よりも、振動閾値18aを高い値に変更することができる。
この振動閾値18aの設定は、具体的には、図5に示すようなものとなる。すなわち荷重変化量判断部18は、振動波形除去信号14a,14bの総和を求め、この総和の変動量の絶対値である荷重変化量ΔWを求める。そして、この荷重変化量ΔWと、荷重変化量判断部18に予め設定されている重量閾値(TH/Lβ)とを比較する。そして、荷重変化量ΔWが重量閾値(TH/Lβ)以下となった状態が所定時間継続した場合に、座席2に作用する荷重が安定している、すなわち重量情報が安定して出力されているとして、予め設定されている高い値の振動閾値18a(TH/LαHigh)を選択する。一方、荷重変化量ΔWが上記重量閾値(TH/Lβ)を越えた場合には、座席2に作用する荷重が不安定である、すなわち出力される重量情報が不安定であるとして、予め設定されている低い値の振動閾値18a(TH/LαLow)を選択する。
そして、振動変化量判断部17は、信号変換部13によってデジタル化された検出値13a,13b、及び、荷重変化量判断部18によって設定された振動閾値18a(TH/LαHighまたはTH/LαLow)に基づいて、車両振動17aの発生の有無を判定する。ここで、信号変換部13によってデジタル化された検出値13a,13bとは、振動波形除去部14によって、検出値11a,11bから振動波形を除去する前の、振動波形を多く含んだ検出値13a,13bのことである。
そして、振動変化量判断部17による車両振動17aの発生の有無の判定は、具体的には、座席2の内側で前側の荷重センサ11(S1)から出力される検出値11a(をデジタル化した検出値13a)と、座席2の内側で後側の荷重センサ11(S2)から出力される検出値11b(をデジタル化した検出値13b)の変動量の絶対値を求める。そして、この各変動量の絶対値の総和である振動変化量Δνを求め、この振動変化量Δνと、荷重変化量判断部18によって選択された振動閾値18a(TH/LαHighまたはTH/LαLow)とを比較する。そして、振動変化量Δνがその時選択されている振動閾値18a以上であれば、車両振動17aが発生していると判定する。一方、振動変化量Δνが振動閾値18a未満であれば、車両振動17aが発生していないと判定する。
そして、乗員判定部16は、振動波形除去部14によって、デジタル化された検出値13a,13bから振動波形を除去した後の検出値、つまり、振動波形除去信号14a,14bを用いて乗員判定を実行する。ここで、「乗員判定」とは、座席2に乗員が着座しているか否かを判定する着座判定と、座席2に着座している乗員の体格が大きいか否か(大人であるか、子供であるかなど)を判定する体格判定とを行うことである。なお、このうち、いずれか一方を実行するものであっても良い。
この乗員判定は、具体的には、振動波形除去信号14a,14bの総和としての検知荷重Wを求め、この検知荷重Wと乗員判定部16に予め設定されている重量閾値である「乗員判断閾値」とを比較することによって行う。乗員判定部16に予め設定された乗員判断閾値には、例えば、第1閾値TH/Lα1、第2閾値TH/Lα2(不図示)、第3閾値TH/Lα3(不図示)・・・などがある。このうち、例えば、第1閾値TH/Lα1は大人の着座を判定するものであり(=AdultTH/L)、第2閾値TH/Lα2は子供の着座を判定するものであり(=ChildTH/L)、第3閾値TH/Lα3は空席を判定するものである(=EmptyTH/L)。なお、乗員判断閾値の大きさは、第1閾値>第2閾値>第3閾値となっている。
そして、例えば、検知荷重が第1閾値TH/Lα1以上であれば大人が着座していると判定し、検知荷重が第2閾値TH/Lα2以上であって第1閾値TH/Lα1未満であれば子供が着座していると判定し、検知荷重が第3閾値TH/Lα3以上であって第2閾値TH/Lα2未満であれば空席であると判定する。但し、乗員判断閾値は、上記に限るものではない。例えば、第2閾値と第3閾値との間に、座席2の上における荷物の有無を判定する閾値(=NobodyTH/L)などを設定することができる。
乗員判断部21は、振動変化量判断部17の判断結果(車両振動17aの有無)、および、乗員判定部16の乗員判定結果16a(または着座判定)に基づいて、乗員判定結果16aを更新するか、または、乗員判定結果16aを保留するかを判断すると共に、更新した乗員判定結果16aまたは保持している(前回の)乗員判定結果16aを乗員情報8aとしてエアバッグ制御装置5へ出力する。
すなわち、この乗員判断部21は、振動変化量判断部17が(上記検出値13a,13bに基いて)車両振動17aが発生していないと判定した場合には、乗員判定部16から出力された乗員判定結果16aを新たな乗員判定結果16aとして、乗員判定結果16aを更新する。一方、振動変化量判断部17が(上記検出値13a,13bに基いて)車両振動17aが発生していると判定した場合には、乗員判定部16から出力された乗員判定結果16aを新たな乗員判定結果16aとせずに、前回の乗員判定結果16aを保持する。
これにより、乗員判定手段15では、車両振動17aが発生していないと判定した場合には、車両1の状況が安定しているとして、乗員判定の実行結果を更新し、車両振動17aが発生していると判定した場合には、車両1の状況が不安定であるとして、乗員判定を実行してもその結果を更新せずに、前回の乗員判定結果16aを保持することになる。
「判定カウント部19について」
更に、上記した判定カウント部19は、同一の乗員判定結果16aが一定時間続いている場合に、乗員判定結果16aの更新を強制的に実行させるようにするためのものである。そのために、判定カウント部19は、連続して同じ乗員判定結果16aが得られた回数をカウントして、カウントされた値(カウントε)を乗員判断部21へ出力する。これに対し、乗員判断部21は、判定カウント部19の出力の結果に対しても、上記した乗員判定結果16aの更新を実行するか、または、前回の乗員判定結果16aを保持するかの判断を行うこととなる。
「各部の具体的な作動について」
以下、荷重センサ11によって実際に取得した波形に基づいて、車両1の走行中における、乗員判定手段15の基本的な作動の一例について説明する。
図5は、座席2(助手席)に大人(例えば、体重49Kgの女性)が乗車した状態で、車両1が直進路、カーブ、直進路の順に走行した場合の、荷重変化量判断部18による荷重変化量ΔW、振動変化量判断部17による振動変化量Δν、乗員判定部16による検知荷重W、および、乗員判断部21による乗員判定結果16aの更新タイミングを、それぞれ示したタイムチャートである。
この車両用乗員検知装置8では、荷重変化量判断部18は、荷重変化量ΔWが小さい時には、荷重変化量ΔWが大きい時よりも、振動変化量判断部17の振動閾値18a(TH/LαHigh、またはTH/LαLow)を高い値(TH/LαHigh)に設定するようにしている。そのため、車両1が最初の直進路を走行して安定した検知荷重Wが出力されると、時刻t1の時点で荷重変化量判断部18の荷重変化量ΔWが重量閾値TH/Lβを下回る。
そして、時刻t2の時点で、荷重変化量判断部18での荷重変化量ΔWが重量閾値TH/Lβを下回った状態が、所定時間(例えば、3[s])経過する。すると、振動変化量判断部17の振動閾値18a(TH/LαLow)が、これよりも高い値である振動閾値18a(TH/LαHigh)へと変更される。これにより、時刻t2~t4では、振動変化量Δνが振動閾値18a(TH/LαHigh)を下回るため、乗員判定部16での乗員判定が実行されると共に、乗員判断部21で乗員判定結果16aが更新される。
そして、時刻t4の時点で、荷重変化量判断部18での荷重変化量ΔWが重量閾値TH/Lβを上回ると、振動変化量判断部17の振動閾値18a(TH/LαHigh)が、これよりも低い値である振動閾値18a(TH/LαLow)へと変更される。そして、時刻t4以降では、振動変化量Δνが振動閾値18a(TH/LαLow)を上回るため、乗員判定部16での乗員判定は実行されるが、乗員判断部21では乗員判定結果16aは更新されずに、前回の乗員判定結果16aが維持または保持される。
その後、車両1が周回路のカーブを走行すると、上記したように2つの荷重センサ11(S1,S2)によって検出値11a,11bを検出している状況では、座席2に作用する遠心力の影響によって振動波形除去信号14a,14bの総和である検知荷重Wが大きく低減する。これに伴い、荷重変化量判断部18による荷重変化量ΔWは一旦上昇してから徐々に低減して行くことになるので、時刻t5の時点で重量閾値TH/Lβを下回り、その状態が続いて時刻t6の時点で所定時間(例えば、3[s])が経過する。
このため、時刻t6の時点で、振動変化量判断部17の低い振動閾値18a(TH/LαLow)が高い振動閾値18a(TH/LαHigh)へと変更される。しかしながら、図6の場合には、時刻t7の時点で再び荷重変化量判断部18による荷重変化量ΔWが重量閾値TH/Lβを上回るため、振動変化量判断部17では振動閾値18a(TH/LαHigh)の状態が継続することなく、振動閾値18aはTH/LαLowへと変更されることになり、乗員判定部16で乗員判定は実行されるが、乗員判断部21では乗員判定結果16aは更新されずに、前回の乗員判定結果16aが維持される。
その後、車両1が再び直進路を走行するようになると、時刻t8において、乗員判定部16では、検知荷重Wが第1閾値TH/Lα1を上回るようになるため、カーブ走行中に子供の着座、もしくは空席と判定されていた乗員判定結果16aが、大人の着座という乗員判定結果16aとなって出力される。この時、判定カウント部19では、乗員判定結果16aが前回(1回前)と同じであった回数を示すカウントεがクリアされる。
そして、さらに直進路の走行を続けると、時刻t8から強制更新のために設定された所定期間Tが経過する時刻t9までの間は、判定カウント部19のカウントεが期間Tを示すカウント値Nに達しないため、振動変化量判断部17での振動変化量Δνが振動閾値18a(TH/LαLow)を上回るので、乗員判定部16で乗員判定は実行されるが、乗員判断部21では乗員判定結果16aは更新されずに、前回の乗員判定結果16aが維持される。なお、期間Tは、例えば、一般道路において、曲率半径の長い緩やかなカーブを走行するのに要する最大時間(例えば、1分)に対して十分に長い時間(例えば、3分など)となるように設定される。
その後、時刻t9になると、判定カウント部19のカウントεが所定のカウント値Nに達するため、振動変化量判断部17での振動変化量Δνが振動閾値18a(TH/LαLow)を上回ったままではあるが、乗員判定部16で乗員判定が実行されると共に、乗員判断部21で乗員判定結果16aの更新が実行される。
そして、判定カウント部19のカウントεがクリアされるため、以降、振動変化量判断部17での振動変化量Δνが振動閾値18a(TH/LαLow)を上回ったままの状態であれば、再び所定期間Tが経過するまでの間は、乗員判定部16で乗員判定が実行されても、乗員判断部21での乗員判定結果16aの更新は実行されずに、前回の乗員判定結果16aが維持される。
以上により、時刻t2~t4と、時刻t9の時に、乗員判定結果16aが更新されることになり、それぞれ「大人」という正しい乗員判定結果16aが出力されることになる。
そして、振動変化量判断部17での振動変化量Δνが振動閾値18a(TH/LαHigh、またはTH/LαLow)を上回っている時、すなわち、車両振動17aが発生していると判定された場合であっても、所定期間Tに亘って乗員検知手段12による乗員判定結果16aが変わらない時には、所定期間Tが経過するごとに乗員判定結果16aが更新されるため、荷重変化によって乗員判定を誤る可能性がある曲率半径の大きい緩やかなカーブを走行しているような場合には、そのカーブを抜けた後で乗員判定結果16aを更新することができる。また、車両振動17aの発生に影響されることなく、所定期間Tごとに、確実に乗員判定結果16aを更新することができる。
さらに、車両1が停車している場合に、例えば、乗員が腰を浮かせるなどによって着座していないと判定された時でも、所定期間Tごとに、確実に乗員判定結果16aを更新することができるため、その後、乗員が着座状態となった際に、早期に着座していると判定することができる。
また、車両1が停車している場合に、乗員が体を前後に振ったり、貧乏ゆすりなどをし続けたりした場合であっても、所定期間Tごとに、確実に乗員判定結果16aを更新することができる。なお、t、T、Nは、この場限りで通用するローカルな変数であり、別の場所で使われた場合には別の意味を持つことになる(以下同様)。
「乗降車判定部23について」
この実施例では、上記に加えて、図2に示すように、乗員判定手段15に、乗降車判定部23(または安定判断部)を備えるようにしている。
この乗降車判定部23は、図6に示すような、空席状態からの乗車(区間41)の発生、または、図7に示すような、降車(区間42)による空席状態の発生を監視する(乗降車監視を行う)ものである。そして、空席状態からの乗車、または、降車による空席状態に該当した場合に、乗車前(図6の区間43)が安定しているか、または、降車後(図7の区間44)が安定しているかをそれぞれ演算によって求める(安定判断を行う)ものである。
そして、乗降車判定部23での演算結果が「安定している」と出た場合に、乗員判定手段15(の乗員判断部21)は、乗員判定結果16aの更新を行わない状況であっても、(一時的且つ強制的に)乗員判定結果16aの更新を実行するようにしている。
ここで、乗員判定結果16aの更新を行わない状況(保留状態)とは、前回の乗員判定結果16aを保持すべき状況や、乗員判定結果16aの実行途中(乗員判定結果16aが出る前)や実行直後(乗員判定結果16aが出た後)を含むものとする。なお、乗員判定結果16aの実行途中や実行直後は、乗員判定手段15の各部(乗員判定部16や振動変化量判断部17や荷重変化量判断部18や判定カウント部19や乗員判断部21のうちの少なくともいずれか)で判定精度を高めるなどのために所要の待機処理などを行うことで乗員判定結果16aの更新を行わない状況(保留状態)になる。
乗降車判定部23は、振動の影響を全て排除してしまうようにしている振動変化量判断部17に対する例外処理を行うものと考えることができる。
乗降車判定部23は、振動波形除去部14によって振動波形を除去された検出値である振動波形除去信号14a,14b(または、信号変換部13によってデジタル化した検出値13a,13bを用いても良い)を入力して、検知荷重Wや荷重変化量ΔWを求めたり(または、これらをメモリ22や他の部分(乗員判定部16や荷重変化量判断部18)から得たり)し、更に、これらを用いて上記した乗降車の監視や安定の演算(安定判断処理)などを行い、乗員判断部21へ乗車および降車の有無を出力するものである。
なお、乗降車判定部23は、振動波形除去信号14a,14bなどの検出値と、検出値13a,13bとのどちらでも使うことができるが、この実施例では、振動波形除去部14でフィルタをかけた振動波形除去信号14a,14bを使うようにしている。なお、使用するフィルタは、乗降車判定部23にとって最適な値にすることができる。以下、「検出値」と言う場合は、振動波形除去信号14a,14bと検出値13a,13bとのどちらかを指すものとする。
乗降車判定部23は、上記したソフトウェアによる機能ブロックとして構成することができる。乗降車判定部23は、例えば、乗車アルゴリズムと降車アルゴリズムとを備えた乗降車アルゴリズムなどとして構成される。強制的な乗員判定結果16aの更新の実行は、僅かな時間、例えば、約1秒程度の間だけ可能にする。
乗降車判定部23は、まず、検知荷重Wと2つの乗員判断閾値(AdultTH/L、EmptyTH/L)とを用いて、乗車または降車の監視(乗車監視または降車監視)を行う。
なお、降車の場合、検知荷重Wは0[N]になるように減少するが、カーブの場合には、検知荷重Wは必ずしも0[N]になるとは限らず、0[N]よりも極端に大きく-側に振れることがあるので(例えば、-45[N]以下)、検知荷重Wが大きく-側に触れた場合には、明らかに降車ではないので、カーブ走行中であると判断して、即座に降車の監視を停止するようにしても良い。
また、乗降車判定部23は、図6に示すような空席状態からの乗車(区間41)の際の乗車前(区間43)、または、図7に示すような降車(区間42)による空席状態の際の降車後(区間44)に対する安定判断処理を行うものとされる。なお、乗車前(区間43)、または、降車後(区間44)に対する安定判断処理は、安定と判断するのに必要な時間的範囲を設定して(例えば、約4秒間)、その範囲内で行うようにする。
図8は、乗降車判定部23による安定判断処理を示す図であり、この安定判断処理では、第1に、今回荷重(W(t))と前回荷重(W(t-1))との差の絶対値(|ΔW(t)|またはabs(ΔW(t))):スタビリティ値)を用いて、この絶対値が所定の判断閾値(JudgeTH/L)以下であるかを求める。
|ΔW(t)|<JudgeTH/L ・・・判断A
|ΔW(t)|<JudgeTH/L ・・・判断A
但し、ΔW(t)=Sen1(t)+Sen2(t)-(Sen1(t-1)+Sen2(t-1))である。また、Sen1(t),Sen1(t-1)は、振動波形除去部14によって振動波形を除去された検出値である振動波形除去信号14a(LPF_Sen1(t),LPF_Sen1(t-1))などの重量情報を用いても良い。また、Sen2(t),Sen2(t-1)は、振動波形除去部14によって振動波形を除去された検出値である振動波形除去信号14b(LPF_Sen2(t),LPF_Sen2(t-1))などの重量情報を用いても良い。判断閾値(JudgeTH/L)は、安定と非安定とを識別するため閾値(安定判断用第1閾値)であり、状況に応じで任意の大きさに設定することができる。
安定判断処理では、第2に、上記した判断Aの成立中に、初回成立の値を基準(=Gn:可変基準値)として、今回荷重(W(t))と前回荷重(W(t-1))との差が、所要の範囲内(Gn±判断閾値(安定判断用第2閾値))にあるかどうかを求める。なお、この判断閾値は、判断Aで用いた判断閾値と同じ値を用いても良いし、または、異なる値を用いても良い。この例では、同じ値としている。
Gn-JudgeTH/L<W(t)-W(t-1)<Gn+JudgeTH/L・・・判断B
Gn-JudgeTH/L<W(t)-W(t-1)<Gn+JudgeTH/L・・・判断B
安定判断処理では、第3に、上記した判断Aと判断Bとが共に成立する回数をカウント(安定カウント)して、このカウントが、安定であると確実に判断できるだけの回数(安定判断回数)または時間(安定判断時間、例えば、約3秒)継続したかを判断する(判断C)。
上記3つの判断(判断A~判断C)を用いた具体的な判断の仕方は以下の通りである。図8では、判断Aの判断閾値(安定判断用第1閾値)および判断Bの判断閾値(安定判断用第2閾値)を共に3[N]として、上記判断A~判断Cを具体的な検知荷重の波形に対して適用した例を示している。
この図によれば、時点T1で、1つ前の検知荷重との差の絶対値が1[N](<3[N])になって判断Aが成立するので、その1つ前の時点での荷重値を可変基準G1にして時点T1から判断Bを行い、判断Aと判断Bがどれだけ継続するかをカウントする。すると、カウント4までは両者が共に成立しているが、次の時点で検知荷重の差の絶対値が4[N](>3[N])となってしまい判断Aが不成立となるので、カウントが停止され、リセットされる。そして、カウント数が4だと、まだ安定判断回数には達していないので、安定判断は行われない。
次に、時点T2で、1つ前の検知荷重との差の絶対値が1[N](<3[N])になって再び判断Aが成立するので、その1つ前の時点での荷重値を可変基準G2にして時点T2から判断Bを行い、判断Aと判断Bがどれだけ継続するかをカウントする。すると、カウント4までは両者が共に成立しているが、次の時点で検知荷重がG2+3[N]の値と等しくなってしまい判断Bが不成立となるので、カウントが停止され、リセットされる。そして、カウント数が4だと、まだ安定判断回数には達していないので、安定判断は行われない。
その後、時点T3で、再度1つ前の時点の検知荷重との差の絶対値が1[N](<3[N])になって判断Aが成立するので、その1つ前の荷重値を可変基準G3にして時点T3から判断Bを行い、判断Aと判断Bがどれだけ継続するかをカウントする。すると、カウントが設定した安定判断回数(または、安定判断時間であっても良い)を越えても両者が共に成立し続けているので、カウント数αが安定判断回数に達した時点で判断Cが成立する。これにより、演算による安定であるとの判断結果が得られることになる。
具体的なケースに当て嵌めてみると、図9のような停車中の乗車の場合、乗降車判定部23は、検知荷重Wが乗員判断閾値の第3閾値(EmptyTH/L)を越えてから更に第1閾値(AdultTH/L、不図示)を越えることによって、空席状態からの乗車(区間41)に該当することを検知すると、(メモリ22に記録されたデータを読み込むなどにより)乗車前(区間43)に遡って上記演算(判断A~判断C)を行うことになるが、判断Cが安定判断回数または安定判断時間を越えるほど長時間に亘って継続しているので、判断Cが成立し、安定との判断が行われることになる。
これに対し、図10のようなカーブ走行中の場合、乗降車判定部23は、検知荷重Wが乗員判断閾値の第3閾値(EmptyTH/L)を越えてから更に第1閾値(AdultTH/L、不図示)を越えることによって、空席状態からの乗車(区間41)に該当することを検知すると、(メモリ22に記録されたデータを読み込むなどにより)乗車前(区間43)に遡って上記演算(判断A~判断C)を行うことになるが、判断Cのカウントが安定判断回数または安定判断時間に達しないほど短く、その後は、判断Cが不成立の状態が続くので、安定との判断は行われないことになる。なお、図10の場合、実際には、第3閾値(EmptyTH/L)ではなく、第3閾値(EmptyTH/L)よりも僅かに重い荷物の有無を判定する閾値(NobodyTH/L)を用いた例としている。
また、図11のような停車中の降車の場合、乗降車判定部23は、検知荷重Wが乗員判断閾値の第1閾値(AdultTH/L、不図示)を下回ってから第3閾値(EmptyTH/L)を更に下回ることによって、降車(区間42)による空席状態に該当することを検知すると、乗車後(の区間44)に対して上記演算(判断A~判断C)を行うことになるが、判断Cが安定判断回数または安定判断時間を越えるほど長時間に亘って継続しているので、判断Cが成立し、安定との判断が行われることになる。
これに対し、図12のようなカーブ走行中の場合、乗降車判定部23は、検知荷重Wが乗員判断閾値の第1閾値(AdultTH/L、不図示)を下回ってから第3閾値(EmptyTH/L)を更に下回ることによって、降車(区間42)による空席状態に該当することを検知すると、乗車後(の区間44)に対して上記演算を行うことになるが、判断Cのカウントが安定判断回数または安定判断時間に達しないほど短く(ほとんど無く)、判断Cが不成立の状態が長く続いているので、安定との判断は行われないことになる。
「乗降車判定部23の安定判断処理における時間的条件について」
更に、図6、図7に示すように、上記乗降車判定部23は、空席状態からの乗車(区間41)、または、降車(区間42)による空席状態を示す検出値(検出値13a,13bまたは、振動波形除去信号14a,14b)の荷重変化時間(区間41,42の長さ)が、予め設定した乗車または降車を分別するための時間的条件を満たした場合にのみ、上記安定しているかどうかを求める演算((1)の安定演算)を行うようにしても良い。
ここで、乗降車判定部23は、例えば、図6に示すように、乗車時(検知荷重Wの増加時)の時間的条件を、空席状態から乗車状態(EmptyTH/L→AdultTH/L)までの変化が、所要時間内(乗車所要時間51、例えば、区間41の経過時間が約7秒以内)であることなどとすることができる。
また、乗降車判定部23は、図7に示すように、降車時(検知荷重Wの減少時)の時間的条件を、降車状態から空席状態(AdultTH/L→EmptyTH/L)までの変化が、所要時間内(降車所要時間52、例えば、区間42の経過時間が約4秒以内)であることなどとすることができる。
なお、上記した時間的条件(乗車所要時間51、乗車所要時間51)は、それぞれ、大人が乗車および降車に要する平均的な時間に基いて適宜設定することができる。但し、上記時間的条件の具体的な値は、上記に限るものでない。
「乗降車判定部23の安定判断処理における荷重条件について」
あるいは、上記乗降車判定部23は、空席状態からの乗車(区間41)、または、降車(区間42)による空席状態を示す検出値(検出値13a,13bまたは、振動波形除去信号14a,14b)の荷重変化量ΔWが、予め設定した乗車または降車を分別するための荷重条件を満たした場合にのみ、上記安定しているかどうかを求める演算((1)の安定演算)を行うようにしても良い。
ここで、乗降車判定部23は、例えば、図6に示すように、乗車時(荷重変化の増加時)の荷重条件を、乗車検出中に荷重変化量ΔWが1回以上所定値(例えば、乗車Stability値53=+10[N])以上になること(荷重変化量ΔW≧10[N])などとしても良い。
具体的には、乗車時には、乗降車判定部23は、図13に示すように、乗車判断の期間中(EmptyTH/L→AdultTH/L、区間41)に、所定値(+10[N])を上回る荷重変化量ΔWが見られるかどうかを監視する。
このようにしたのは、乗車判断の期間中において、図14のような、停車中の場合には、乗車動作に伴って、所定値(+10[N])を上回る荷重変化が多く見られるのに対し、図15のような、カーブ走行中の場合には、所定値(+10[N])を上回るような荷重変化がほとんど見られないことによる。そのため、所定値(+10[N])を上回る荷重変化を監視することで、安定判断処理(安定演算)の開始タイミングを得ることが可能となる。
同様に、図7に示すように、乗降車判定部23は、降車時(荷重変化の減少時)の荷重条件を、降車検出中に荷重変化量ΔWが1回以上所定値(例えば、降車Stability値54=-10[N])以下になること(荷重変化量ΔW≦-10[N])などとしても良い。
具体的には、降車時には、乗降車判定部23は、図16に示すように、降車判断の期間中(AdultTH/L→EmptyTH/L、区間42)に、所定値(降車時の安定演算トリガ閾値:-10[N])を下回る荷重変化量ΔWが見られるかどうかを監視する。
このようにしたのは、降車判断の期間中において、図17のような、停車中の場合には、降車動作に伴って、所定値(-10[N])を下回る荷重変化が多く見られるのに対し、図18のような、カーブ走行中の場合には、所定値(-10[N])を下回るような荷重変化がほとんど見られないことによる。そのためた、所定値(-10[N])を下回る荷重変化を監視することで、安定判断処理(安定演算)の開始タイミングを得ることが可能となる。
なお、上記した荷重条件(安定演算トリガ閾値)は、停車中とカーブ走行中とを切り分け可能な大きさの値として設定される。但し、上記荷重条件の具体的な値は、乗車および降車と、(カーブ)走行中とを分別できれば良く、上記に限るものでない。
更に、乗降車判定部23は、乗員判定手段15の他の部分(乗員判定部16、振動変化量判断部17、荷重変化量判断部18など)と同様に常時動作させるようにしても良いが、必要な時にのみ動作させるようにしても良い。そのために、例えば、乗車Stability値53よりも小さい乗車用のスタビリティ演算トリガ閾値55(例えば、5[N])や、降車Stability値54よりも小さい降車用のスタビリティ演算トリガ閾値55(例えば、-5[N])を設定しておき、荷重変化量ΔWがスタビリティ演算トリガ閾値55やスタビリティ演算トリガ閾値55を越えた時に、乗降車判定部23の動作を準備させるようにしても良い。
なお、上記した時間的条件による安定演算の開始判断と、荷重条件による安定演算の開始判断は、一方または両方を行うことができる。
「乗降車判定部23の作用効果について」
例えば、停車中における乗車や降車の際には、座席2に乗員の体重がいきなり掛かったり、座席2から急に乗員の体重が掛からなくなったりすることで急激な荷重変動が生じ、これに伴って振動も発生する。この荷重変動や振動を、振動変化量判断部17が走行中の振動などと誤って判断すると、乗員判定部16による乗員判定が行われても、乗員判断部21は、乗員判定結果16aの更新を実行せずに前回の乗員判定結果16aを保持することになる。
しかし、停車中に、乗車や降車の際の振動などの影響で乗員判定結果16aの更新が実行されない状況(保留状態)になっている間に、急な乗車または降車が生じてその直後に車両1が走り出してしまうといったような予期せぬ事態も生じ得る。このような急な発進などが生じた状況下においては、乗員判定結果16aを早期に更新できるようにする必要がある。
そこで、乗降車判定部23を設けて、乗降車を監視することによって、停車中の乗車や降車に伴って発生する振動で乗員判定結果16aの更新に対して外乱が発生している状況においても、早期に乗員判定結果16aの更新を実行できるようにした。
即ち、乗降車判定部23に、空席状態からの乗車の発生、または、降車による空席状態の発生を監視させるようにした。そして、空席状態からの乗車、または、降車による空席状態に該当した場合に、乗車前が安定しているか、または、降車後が安定しているかを演算によって求めるようにした。これにより、停車中に実際に生じた急な乗車または降車であるかどうかを正しく判断することができるようになり、走行中の緩いカーブなどのような(停車中の乗降車と)似たようなケースを排除することができる。なお、走行中の緩いカーブは、乗車前や降車後に相当する波形の安定牲が低くなっているため、安定牲についての判断を行うことで切り分けることが可能である。
よって、振動変化量判断部17から車両振動17a有りとの信号を受けるなどにより乗員判断部21が、乗員判定結果16aの更新に対して外乱が発生している状況においても、一時的(例えば、1秒)に保留状態を解除して乗員判断部21による乗員判定結果16aの更新を実行することができるようになり、例えば、停車中の乗降車の影響で乗員判定結果16aの更新に対して外乱が発生している間に生じた急な乗車または降車などの状況を早期に且つ正しく更新することが可能となる。
「乗降車判定部23の安定判断処理における時間的条件による作用効果について」
乗降車判定部23では、空席状態からの乗車、または、降車による空席状態を示す検出値(検出値13a,13bまたは、振動波形除去信号14a,14b)による検知荷重Wの荷重変化時間が予め設定した乗車または降車を分別するための時間的条件を満たすかどうかを調べることで、停車中の(急な)乗降車と似た波形になる走行中の緩いカーブなどのようなケースの大部分を除外することができる。
よって、乗車前が安定しているか、または、降車後が安定しているかどうかを調べるための演算が不必要に多く(または、過度または頻繁に)行われないようにすることができる。その結果、演算処理回数を少なくして負担を減らすと共に誤判断を防止することができ、安定判断の精度を更に上げることが可能となる。
なお、停車中の(急な)乗降車の場合には、検出値の荷重変化時間は、有る程度決まった範囲の値になるのに対し、走行中の緩いカーブの場合には、検出値の荷重変化時間は、カーブ走行時の状況(例えば、座席2上の重量や車両1の速度や舵角など)によって様々に異なるものとなることから、荷重変化時間で絞り込むことによって、カーブ走行の大部分を除外することが可能となる。
「乗降車判定部23の安定判断処理における荷重条件による作用効果について」
乗降車判定部23では、空席状態からの乗車、または、降車による空席状態を示す検出値(検出値13a,13bまたは、振動波形除去信号14a,14b)の荷重変化量ΔW(振動変化量Δν)が予め設定した乗車または降車を分別するための荷重条件を満たすかどうかを調べることで、停車中の(急な)乗降車と似た波形になる走行中の緩いカーブなどのようなケースの大部分を除外することができる。
よって、乗車前が安定しているか、または、降車後が安定しているかどうかを調べるための演算が不必要に多く(または、過度または頻繁に)行われないようにすることができる。その結果、演算処理回数を少なくして負担を減らすと共に誤判断を防止することができ、安定判断の精度を更に上げることが可能となる。
なお、停車中の(急な)乗降車の場合には、検出値の荷重変化量ΔWには、降車の影響(荷重変動や振動など)によって突発的に大きく変動する部分が含まれるのに対し、走行中の緩いカーブの場合には、検出値13a,13bの荷重変化量ΔWには、停車中の乗降車のような突発的に大きく変動する部分がほとんど見られないことから、荷重変化量ΔWで絞り込むことによって、カーブ走行の大部分を除外することが可能となる。
「ドア閉め判断部101について」
更に、この実施例の車両用乗員検知装置8では、図2に示すように、座席2周辺に取り付けられて、座席2に作用する荷重を検知する荷重センサ11と、
この荷重センサ11の検出値に基づいて、乗員を検知する乗員検知手段12と、を備えている。
そして、上記乗員検知手段12は、少なくとも、荷重センサ11の検出値の波形を調べて、上記検出値の波形中に含まれる、ドア閉めを示す荷重変動パターンに基づきドア閉めを判断するドア閉め判断部101を備えるようにしている。
この荷重センサ11の検出値に基づいて、乗員を検知する乗員検知手段12と、を備えている。
そして、上記乗員検知手段12は、少なくとも、荷重センサ11の検出値の波形を調べて、上記検出値の波形中に含まれる、ドア閉めを示す荷重変動パターンに基づきドア閉めを判断するドア閉め判断部101を備えるようにしている。
ここで、ドア閉め判断部101は、乗降車の有無を判断する手段(乗降車判断手段)として設けられ、例えば、ドア閉め判断ロジックなどとして構成される。ドア閉めは、図19や図20に示すような、特徴的な波形となる。ドア閉めを示す波形は、ドア閉めによって大きな荷重変動(大変動部分102a)があった後に、短時間のうちに(例えば、ほぼ100ms周期で)増減の変動を交互に繰り返しながら(増減部分102b)、ドア閉め前の値に収束して行く(収束部分102c)ような特徴的なものとなる。
そこで、ドア閉め判断部101による、ドア閉めの波形かどうかを確認する処理は、例えば、以下のような5つの項目に従って行われる。
「1項」(安定判断処理中かを確認する)
降車アルゴリズムの安定判断処理中に限り、以下を実施する。但し、ドア閉めの判断は、必ずしも、安定判断処理中に限るものではない。
降車アルゴリズムの安定判断処理中に限り、以下を実施する。但し、ドア閉めの判断は、必ずしも、安定判断処理中に限るものではない。
「2項」(ドア閉めによる大きな荷重変動の有無を確認する)
”ドア閉め処理”フラグの確認を行う。
”ドア閉め処理”フラグが有りの時には、下記Aの計算を実施せずに3項へ進む。
”ドア閉め処理”フラグが無しの時には、下記Aの計算を実施する。成立の場合には、”ドア閉め処理”フラグを有りとして3項へ進む。
”ドア閉め処理”フラグが無しの時には、下記Aの計算を実施する。不成立の場合には、3項以降を行わずに1項へ進む
|ΔW(t)|>DoorTrigTH/L ・・・A
なお、 DoorTrigTH/L(ドア閉めトリガ閾値)の値は、ドア閉めによる大きな荷重変動を識別できる範囲内で、任意に選ぶことができる。例えば、5[N]~10[N]などとすることができる。
”ドア閉め処理”フラグの確認を行う。
”ドア閉め処理”フラグが有りの時には、下記Aの計算を実施せずに3項へ進む。
”ドア閉め処理”フラグが無しの時には、下記Aの計算を実施する。成立の場合には、”ドア閉め処理”フラグを有りとして3項へ進む。
”ドア閉め処理”フラグが無しの時には、下記Aの計算を実施する。不成立の場合には、3項以降を行わずに1項へ進む
|ΔW(t)|>DoorTrigTH/L ・・・A
なお、 DoorTrigTH/L(ドア閉めトリガ閾値)の値は、ドア閉めによる大きな荷重変動を識別できる範囲内で、任意に選ぶことができる。例えば、5[N]~10[N]などとすることができる。
「3項」(符合の計算を行う)
ΔW(t)≧0ならば「+」、ΔW(t)<0ならば「-」とする。
DoorSum(x)=ΔW(t)+DoorSum(x-1) ・・・B
但し、DoorSum(0)=0(ドア閉め判断開始直前の荷重),計算Aの成立時をx=1とする。
ΔW(t)≧0ならば「+」、ΔW(t)<0ならば「-」とする。
DoorSum(x)=ΔW(t)+DoorSum(x-1) ・・・B
但し、DoorSum(0)=0(ドア閉め判断開始直前の荷重),計算Aの成立時をx=1とする。
「4項」(符合の変化が交互に繰り返されているかを確認する)
・前回のΔW(t-1)の3項の符合=今回のΔW(t)の3項の符合の場合(符合が同じ場合)、
符合連続カウントを1upし、”同符合カウント”フラグを有りとして5項へ進む。
・前回のΔW(t-1)の3項の符合≠今回のΔW(t)の3項の符合で、”同符合カウント”フラグが無しの場合、
符合連続カウントを0として5項へ進む。
・前回のΔW(t-1)の3項の符合≠今回のΔW(t)の3項の符合で、”同符合カウント”フラグが有りの場合、
符合連続カウントを0とし、”同符合カウント”フラグを無しとし、同符合カウントを1upして5項へ進む。
・前回のΔW(t-1)の3項の符合=今回のΔW(t)の3項の符合の場合(符合が同じ場合)、
符合連続カウントを1upし、”同符合カウント”フラグを有りとして5項へ進む。
・前回のΔW(t-1)の3項の符合≠今回のΔW(t)の3項の符合で、”同符合カウント”フラグが無しの場合、
符合連続カウントを0として5項へ進む。
・前回のΔW(t-1)の3項の符合≠今回のΔW(t)の3項の符合で、”同符合カウント”フラグが有りの場合、
符合連続カウントを0とし、”同符合カウント”フラグを無しとし、同符合カウントを1upして5項へ進む。
「5項」(ドア閉めの終了を確認する)
符合連続カウントもしくは同符合カウントが、所定の回数(N回)に到達しているかを確認する。
不成立時には、何もせずに1項へ進む。
成立時には、Bの計算結果を確認して、Cの計算を行う。
|DoorSum(x)|≦DoorSumTH/L ・・・C
DoorSumTH/L(ドア閉め判断しきい値)は、収束が確認できる範囲内で、任意に選ぶことができる。例えば、2[N]~10[N]などとすることができる。
Cが成立ならば、ドア閉め処理フラグを無しにし、Aの開始より今回の結果までの期間、安定判断処理のカウントを有効とし、1項へ進む。
Cが不成立ならば、ドア閉め処理フラグを無しにし、Aの開始より今回の結果までの期間、安定判断処理のカウントは無効として、1項へ進む。
符合連続カウントもしくは同符合カウントが、所定の回数(N回)に到達しているかを確認する。
不成立時には、何もせずに1項へ進む。
成立時には、Bの計算結果を確認して、Cの計算を行う。
|DoorSum(x)|≦DoorSumTH/L ・・・C
DoorSumTH/L(ドア閉め判断しきい値)は、収束が確認できる範囲内で、任意に選ぶことができる。例えば、2[N]~10[N]などとすることができる。
Cが成立ならば、ドア閉め処理フラグを無しにし、Aの開始より今回の結果までの期間、安定判断処理のカウントを有効とし、1項へ進む。
Cが不成立ならば、ドア閉め処理フラグを無しにし、Aの開始より今回の結果までの期間、安定判断処理のカウントは無効として、1項へ進む。
具体的には、以下の通りである。この場合、ドア閉めトリガ閾値(DoorTrigTH/L)は、5[N]としている。ドア閉め判断しきい値(DoorSumTH/L)は、2[N]としている。また、符合連続カウントもしくは同符合カウントの成立回数は、N=2としている。なお、ドア閉めは、乗車または降車のどちらに伴うものでも良いが、この場合には、降車時の例について説明している。
図21のような検知荷重Wが得られた場合、
先ず、荷重変化量ΔWが+6[N](>5[N]:ドア閉めトリガ閾値)となることで、ドア閉め判断が開始される。その後、荷重変化量ΔWは、+1[N]、-9[N]、+5[N]、-2[N]、1[N]、-1[N]、0[N]、0[N]、0[N]となり、
3項の符合は、「+」「+」「-」「+」「-」「+」「-」「+」「+」「+」となり、
その時のドア閉め判断開始直前の荷重との差分値DoorSum(x)は、「+6」「+7」「-2」「+3」「+1」「+2」「+1」「+1」「+1「+1」」となり、
4項の符合連続カウントは、「0」「1」「0」「0」「0」「0」「0」「0」「1」「2」となり、5項が成立する。
また、4項の同符合カウントは、「0」「0」「1」「1」「1」「1」「1」「1」「1」「1」となる。
そして、連続カウントが「2」になった時の差分値DoorSum(x)は+1[N](≦DoorSumTH/L)となり、ドア閉め判断開始直前の荷重への収束が見られるため、ドア閉めと判断される。
先ず、荷重変化量ΔWが+6[N](>5[N]:ドア閉めトリガ閾値)となることで、ドア閉め判断が開始される。その後、荷重変化量ΔWは、+1[N]、-9[N]、+5[N]、-2[N]、1[N]、-1[N]、0[N]、0[N]、0[N]となり、
3項の符合は、「+」「+」「-」「+」「-」「+」「-」「+」「+」「+」となり、
その時のドア閉め判断開始直前の荷重との差分値DoorSum(x)は、「+6」「+7」「-2」「+3」「+1」「+2」「+1」「+1」「+1「+1」」となり、
4項の符合連続カウントは、「0」「1」「0」「0」「0」「0」「0」「0」「1」「2」となり、5項が成立する。
また、4項の同符合カウントは、「0」「0」「1」「1」「1」「1」「1」「1」「1」「1」となる。
そして、連続カウントが「2」になった時の差分値DoorSum(x)は+1[N](≦DoorSumTH/L)となり、ドア閉め判断開始直前の荷重への収束が見られるため、ドア閉めと判断される。
これに対し、図22に示すような検知荷重Wが得られた場合、
先ず、荷重変化量ΔWが+6[N](>5[N]:ドア閉めトリガ閾値)となることで、ドア閉め判断が開始される。その後、荷重変化量ΔWは、+1[N]、-1[N]、+1[N]、+1[N]、-1[N]となり、
3項の符合は、「+」「+」「-」「+」「+」「-」となり、
その時のドア閉め判断開始直前の荷重との差分値DoorSum(x)は、「+6」「+7」「+6」「+7」「+8」「+7」となり、
4項の符合連続カウントは、「0」「1」「0」「0」「1」「0」となり、
4項の同符合カウントは、「0」「0」「1」「1」「1」「2」となり、5項が成立する。
そして、同符合カウントが「2」になった時の差分値DoorSum(x)は+7[N](>DoorSumTH/L)となり、ドア閉め判断開始直前の荷重への収束が見られないため、この時は、ドア閉めではないと判断される。
先ず、荷重変化量ΔWが+6[N](>5[N]:ドア閉めトリガ閾値)となることで、ドア閉め判断が開始される。その後、荷重変化量ΔWは、+1[N]、-1[N]、+1[N]、+1[N]、-1[N]となり、
3項の符合は、「+」「+」「-」「+」「+」「-」となり、
その時のドア閉め判断開始直前の荷重との差分値DoorSum(x)は、「+6」「+7」「+6」「+7」「+8」「+7」となり、
4項の符合連続カウントは、「0」「1」「0」「0」「1」「0」となり、
4項の同符合カウントは、「0」「0」「1」「1」「1」「2」となり、5項が成立する。
そして、同符合カウントが「2」になった時の差分値DoorSum(x)は+7[N](>DoorSumTH/L)となり、ドア閉め判断開始直前の荷重への収束が見られないため、この時は、ドア閉めではないと判断される。
続いて、荷重変化量ΔWが+6[N](>5[N]:ドア閉めトリガ閾値)となることで、ドア閉め判断が開始される。
その後、荷重変化量ΔWは、-10[N]、+3[N]、+4[N]、+3[N]、-1[N]、+1[N]となり、
3項の符合は、「+」「-」「+」「+」「+」・・となり、
その時のドア閉め判断開始直前の荷重との差分値DoorSum(x)は、「+6」「-4」「-1」「+3」「+6」・・となり、
4項の符合連続カウントは、「0」「0」「0」「1」「2」・・となり、5項が成立する。
また、4項の同符合カウントは、「0」「0」「0」「0」「0」・・となる。
そして、符合連続カウントが「2」になった時の差分値DoorSum(x)は+6[N](>DoorSumTH/L)となり、ドア閉め判断開始直前の荷重への収束が見られないため、再び、ドア閉めではないと判断される。
その後、荷重変化量ΔWは、-10[N]、+3[N]、+4[N]、+3[N]、-1[N]、+1[N]となり、
3項の符合は、「+」「-」「+」「+」「+」・・となり、
その時のドア閉め判断開始直前の荷重との差分値DoorSum(x)は、「+6」「-4」「-1」「+3」「+6」・・となり、
4項の符合連続カウントは、「0」「0」「0」「1」「2」・・となり、5項が成立する。
また、4項の同符合カウントは、「0」「0」「0」「0」「0」・・となる。
そして、符合連続カウントが「2」になった時の差分値DoorSum(x)は+6[N](>DoorSumTH/L)となり、ドア閉め判断開始直前の荷重への収束が見られないため、再び、ドア閉めではないと判断される。
このようにすることにより、ドア閉め判断部101は、ドア閉めを判断することが可能となる。
「ドア閉め判断部101と振動変化量判断部17との関係について」
上記乗員検知手段12は、少なくとも、
上記検出値および振動閾値18aに基づいて、車両振動17aの有無を判定する振動変化量判断部17を備えている。
そして、振動変化量判断部17は、
上記ドア閉め判断部101がドア閉めと判断した場合に、
ドア閉めの際の車両振動17aを、停車中に生じた車両振動17aであると判断するものとしても良い。
上記乗員検知手段12は、少なくとも、
上記検出値および振動閾値18aに基づいて、車両振動17aの有無を判定する振動変化量判断部17を備えている。
そして、振動変化量判断部17は、
上記ドア閉め判断部101がドア閉めと判断した場合に、
ドア閉めの際の車両振動17aを、停車中に生じた車両振動17aであると判断するものとしても良い。
この場合、ドア閉め判断部101からのドア閉めの有無の信号は、振動変化量判断部17へ入力されるようにする。
「ドア閉め判断部101と乗員判断部21との関係について」
また、他の実施例として以下のようにすることもできる。
即ち、上記乗員検知手段12は、少なくとも、
上記検出値(および乗員判断閾値)に基づいて、座席2に対する乗員の着座状態を判定する乗員判定部16と、
上記検出値(および振動閾値18a)に基づいて、車両振動17aの有無を判定する振動変化量判断部17と、
この振動変化量判断部17からの車両振動17aの有無に基づいて、上記乗員判定部16からの着座状態に対する乗員判定結果16aの更新または前回の乗員判定結果16aの保持を判断する乗員判断部21と、を備えている。
そして、上記ドア閉め判断部101がドア閉めと判断した場合に、
上記乗員判断部21は、車両振動が発生している状況(乗員判定結果16aの更新を行わない状況)であっても、乗員判定結果16aの更新を実行可能としても良い。
また、他の実施例として以下のようにすることもできる。
即ち、上記乗員検知手段12は、少なくとも、
上記検出値(および乗員判断閾値)に基づいて、座席2に対する乗員の着座状態を判定する乗員判定部16と、
上記検出値(および振動閾値18a)に基づいて、車両振動17aの有無を判定する振動変化量判断部17と、
この振動変化量判断部17からの車両振動17aの有無に基づいて、上記乗員判定部16からの着座状態に対する乗員判定結果16aの更新または前回の乗員判定結果16aの保持を判断する乗員判断部21と、を備えている。
そして、上記ドア閉め判断部101がドア閉めと判断した場合に、
上記乗員判断部21は、車両振動が発生している状況(乗員判定結果16aの更新を行わない状況)であっても、乗員判定結果16aの更新を実行可能としても良い。
この場合には、図2に破線で示すように、ドア閉め判断部101からのドア閉めの有無の信号は、乗員判断部21へ入力させるようにする。そして、車両振動17aなどの外乱が発生していても、それがドア閉めによるものであるとドア閉め判断部101によって確実に判断されれば、乗員判断部21が乗員判定結果16aの更新を実行しても特に問題が生じることはない。
「ドア閉め判断部101と乗降車判定部23との関係について」
更に、別の実施例として以下のようにすることもできる。
空席状態からの乗車の発生、または、降車による空席状態の発生を監視して、空席状態からの乗車があった場合、または、降車によって空席状態になった場合に、
乗車前が安定しているか、または、降車後が安定しているかを演算によって求める乗降車判定部23(安定判断部)を設けるようにする。
この乗降車判定部23での演算結果が安定していると出た場合に、
上記乗員判断部21は、車両振動が発生している状況(乗員判定結果16aの更新を行わない状況)であっても、乗員判定結果16aの更新を実行するようにする。
これに対し、上記乗降車判定部23は、上記ドア閉め判断部101によるドア閉めとの判断を安定として取り扱うようにしても良い。
更に、別の実施例として以下のようにすることもできる。
空席状態からの乗車の発生、または、降車による空席状態の発生を監視して、空席状態からの乗車があった場合、または、降車によって空席状態になった場合に、
乗車前が安定しているか、または、降車後が安定しているかを演算によって求める乗降車判定部23(安定判断部)を設けるようにする。
この乗降車判定部23での演算結果が安定していると出た場合に、
上記乗員判断部21は、車両振動が発生している状況(乗員判定結果16aの更新を行わない状況)であっても、乗員判定結果16aの更新を実行するようにする。
これに対し、上記乗降車判定部23は、上記ドア閉め判断部101によるドア閉めとの判断を安定として取り扱うようにしても良い。
この場合には、図24に示すように、ドア閉め判断部101からのドア閉めの有無の信号は、乗降車判定部23へ入力されるようにする。
「ドア閉め判断部101による作用効果について」
ドア閉めが行われると、検知荷重W(荷重センサ11の検出値)が大きく変動するので、ドア閉めによって乗員判断が安定して行えなくなる可能性がある。しかし、ドア閉めは、特徴的な荷重変動パターンを有する波形となるので、ドア閉め判断部101を設けて、ドア閉め判断部101にドア閉めを示す特徴的な荷重変動パターンの波形を監視させることによって、確実にドア閉めを判断することができるようになる。
ドア閉めを示す波形は、ドア閉めによって大きな荷重変動があった後に、短時間のうちに(例えば、100ms周期で)増減の変動を交互に繰り返しながらドア閉め前の値に収束して行くような特徴的な荷重変動パターンとなる。よって、検出値の波形が、上記したような特徴的な荷重変動パターンになっているかを、演算によって求めることで、ドア閉めかどうかを判断し得るようにする。このように、ドア閉めを判断することができれば、様々な制御に活用することができる。
「ドア閉め判断部101と振動変化量判断部17との関係による作用効果について」
ドア閉め判断部101がドア閉めを判断することで、振動変化量判断部17は、ドア閉めの際に発生する振動を、停車中に生じた振動であると判断することができる。よって、ドア閉めの振動によって停車中を誤って走行中と判断するようなことを防止できる。または、ドア閉めによって、停車中を直接判断したり、ドア閉めを停車中に含めて処理したりする(例えば、ドア閉めの時間を停車中に加算する)ようなこともできるようになる。よって、走行中の車両振動17aとドア閉めとを確実に識別することが可能となり、停車中か走行中かの判断を正確に行うことができるようになる。
「ドア閉め判断部101と乗員判断部21との関係による作用効果について」
例えば、停車中における乗車や降車の際には、ドア閉めを伴う。このドア閉めの際には、振動が発生するが、この振動を、振動変化量判断部17が走行中の振動などと誤って判断すると、乗員判定部16による乗員判定が行われても、乗員判断部21は、乗員判定結果16aの更新を実行せずに前回の乗員判定結果16aを保持することになる。
しかし、停車中に、乗車や降車の際の振動などの影響で乗員判定結果16aの更新が実行されない状況(保留状態)になっている間に、急な乗車または降車が生じてその直後に車両1が走り出してしまうといったような予期せぬ事態も生じ得る。このような急な発進などが生じた状況下においては、乗員判定結果16aを早期に更新できるようにする必要がある。
そこで、ドア閉め判断部101を設けて、ドア閉め判断部101によって「ドア閉め」による振動を検知できるようにすることで、停車中かどうかを正しく判断することができる。その結果、ドア閉めの振動を走行中と誤判定することがなくなる。
よって、振動変化量判断部17から車両振動17a有りとの信号を受けるなどにより乗員判断部21が、乗員判定結果16aの更新を実行しない状況になっても、一時的(例えば、1秒)に保留状態を解除して乗員判断部21による乗員判定結果16aの更新を実行することができるようになり、例えば、停車中の乗降車の影響で乗員判定結果16aの更新が実行できなくなっている間に生じた急な乗車または降車などの状況を早期に且つ正しく更新することが可能となる。
「ドア閉め判断部101と乗降車判定部23との関係による作用効果について」
乗降車判定部23を設けて、乗降車判定部23に、空席状態からの乗車の発生、または、降車による空席状態の発生を監視させるようにした。そして、空席状態からの乗車、または、降車による空席状態に該当した場合に、乗車前が安定しているか、または、降車後が安定しているかを演算によって求めるようにした。これにより、停車中に実際に生じた急な乗車または降車であるかどうかを正しく判断することができるようになり、走行中の緩いカーブなどのような(停車中の乗降車と)似たようなケースを排除することができる。なお、走行中の緩いカーブは、乗車前や降車後に相当する波形の安定牲が低くなっているため、安定牲についての判断を行うことで切り分けることが可能である。
この際、乗降車判定部23は、ドア閉め判断部101によるドア閉めとの判断を安定として取り扱うようにした。これにより、ドア閉めに伴う振動が、安定の判断に影響を及ぼすのを防止することができる。よって、乗降車判定部23は、ドア閉めによる振動があっても、停車中の乗降車を正しく判断することが可能となる。
この実施例では、上記に加えて、以下のような構成を備えている。
(1)図2に示すように、この実施例の車両用乗員検知装置8は、乗降車の有無を判断する手段(乗降車判断手段)を備える。
そして、乗降車の有無を判断する手段が乗降車を判断した場合に、
上記乗員判断部21は、車両振動が発生している状況においても、乗員判定結果16aの更新を実行するようにする。
(2)具体的には、乗降車の有無を判断する手段として、(上記座席2に設けられた)シートベルト201(図23、図24参照)の装着状況を検知可能なバックルスイッチ202を備える。
上記乗員検知手段12は、上記バックルスイッチ202からの情報203(バックルスイッチ情報)を入力して、シートベルト201の装着状況を判断するバックル判断部204を有する。
上記バックル判断部204がシートベルト201の装着状況の変化を判断した場合に、
上記乗員判断部21は、荷重センサ11の検出値に車両振動のような外乱が発生している状況(乗員判定結果16aの更新を行わない状況)であっても、乗員判定結果16aの更新を実行するようにする。
そして、乗降車の有無を判断する手段が乗降車を判断した場合に、
上記乗員判断部21は、車両振動が発生している状況においても、乗員判定結果16aの更新を実行するようにする。
(2)具体的には、乗降車の有無を判断する手段として、(上記座席2に設けられた)シートベルト201(図23、図24参照)の装着状況を検知可能なバックルスイッチ202を備える。
上記乗員検知手段12は、上記バックルスイッチ202からの情報203(バックルスイッチ情報)を入力して、シートベルト201の装着状況を判断するバックル判断部204を有する。
上記バックル判断部204がシートベルト201の装着状況の変化を判断した場合に、
上記乗員判断部21は、荷重センサ11の検出値に車両振動のような外乱が発生している状況(乗員判定結果16aの更新を行わない状況)であっても、乗員判定結果16aの更新を実行するようにする。
ここで、バックルスイッチ202は、シートベルト201に取付けられたロック用金具が、座席2に取付けられたバックルに装着されているかどうかを検出するためのスイッチであり、座席2のバックルの内部などに設けられている。バックルスイッチ202によって、図23に示すような、シートベルト201の装着から非装着への変化や、図24に示すような、シートベルト201の非装着から装着への変化を検知することが可能となる。
そして、車両振動17aなどの外乱が発生していても、それがシートベルト201の装着状況の変化によるものであるとバックル判断部204によって判断されれば、乗員判断部21が乗員判定結果16aの更新を実行しても特に問題が生じることはない。
そして、車両振動17aなどの外乱が発生していても、それがシートベルト201の装着状況の変化によるものであるとバックル判断部204によって判断されれば、乗員判断部21が乗員判定結果16aの更新を実行しても特に問題が生じることはない。
そして、バックル判断部204からのシートベルト201の装着状況の変化を示す信号205は、例えば、乗員判断部21へ入力したり、振動変化量判断部17へ入力したり、ドア閉め判断部101へ入力したりすることができる。バックル判断部204は、上記したソフトウェアによる機能ブロックとして構成することができる。
(3)また、図に示すように、上記バックル判断部204は、シートベルト201の装着状況が、非装着から装着に変化したと判断した場合に、
図25に示すように、変化の前後の一定時間内における、検出値の最大値210に基いて、着座状態に対する乗員判定結果16aを更新させるようにしても良い。
図25に示すように、変化の前後の一定時間内における、検出値の最大値210に基いて、着座状態に対する乗員判定結果16aを更新させるようにしても良い。
ここで、バックル判断部204は、例えば、メモリ22に記録されたデータを読み込むなどにより、例えば、変化の前15秒程度まで遡って検出値の最大値210を調べられるようにしている。また、変化の後の5秒~10秒程度まで検出値の最大値210を調べられるようにしている。但し、変化の前後の一定時間は、上記に限るものではなく、必要な範囲に設定することができる。
<作用効果>上記をまとめると、この実施例の作用効果は以下の通りである。
(作用効果1)停車中であっても、例えば、(乗員が座席2を叩くなどによって)座席2に常時振動が入力されているような場合がある。このような場合には、停車中であっても、乗員判定結果16aの更新に対して外乱を与える可能性がある。そこで、振動変化量判断部17による車両振動17aの有無の判定に対する例外処理を行い得るようにするために、乗降車の有無を判断する手段を設けて、乗降車の有無を取り入れるようにした。これにより、車両振動が発生している状況においても、乗降車の有無を判断する手段が乗降車と判断した場合(乗降車が生じた場合)には、乗員判定結果16aの更新を早期に実行することができるようになる。これにより、乗降車の場合でも乗員判定結果を実際の状況と合わせることが可能になる。
(作用効果2)具体的には、乗降車の有無を判断する手段として、バックル判断部204を設けて、シートベルト201の装着状況による判断を取り入れるようにした。これにより、停車中に座席2へ常時振動が入力されているなどのように、停車中に走行中と誤判定されてしまうような車両振動が検知される場合であっても、シートベルト201の装着状況の変化が確認されたら、乗員判定結果16aを更新することが可能となる。よって、例えば、乗降車に伴ってシートベルト201の装着状況が変化した時や、シートベルト201の操作直後に、急な乗降車が行われた時などでも、早期に乗員判定結果16aを更新することができる。
(作用効果3)例えば、荷重センサ11が座席2の片側にのみ設けられているような場合、荷重センサ11は、乗員の体重を部分的にしか検出することができないので、例えば、乗員が軽量の女性であると、軽量の女性を、正しく大人と判断できないことがある。しかし、シートベルト201を装着する際には、座席2上で乗員の体重移動が生じて、乗員の体重の大部分がバックルスイッチ202の近くに集中するため、バックルスイッチ202の近くに荷重センサ11を設置しておけば、荷重センサ11による検出値の最大値210を採用することで、軽量の女性であっても、正しく大人と判断することが可能となる。
2 座席
8 車両用乗員検知装置
8a 乗員情報
11 荷重センサ
12 乗員検知手段
13 信号変換部
13a 検出値
13b 検出値
14 振動波形除去部
14a 振動波形除去信号
14b 振動波形除去信号
15 乗員判定手段
16 乗員判定部
16a 乗員判定結果
17 振動変化量判断部
17a 車両振動
18 荷重変化量判断部
18a 振動閾値
21 乗員判断部
23 乗降車判定部
41 区間(乗車)
42 区間(降車)
43 区間(乗車前)
44 区間(降車後)
101 ドア閉め判断部
201 シートベルト
202 バックルスイッチ
203 情報(バックルスイッチ情報)
204 バックル判断部
210 最大値
W 検知荷重
ΔW 荷重変化量
8 車両用乗員検知装置
8a 乗員情報
11 荷重センサ
12 乗員検知手段
13 信号変換部
13a 検出値
13b 検出値
14 振動波形除去部
14a 振動波形除去信号
14b 振動波形除去信号
15 乗員判定手段
16 乗員判定部
16a 乗員判定結果
17 振動変化量判断部
17a 車両振動
18 荷重変化量判断部
18a 振動閾値
21 乗員判断部
23 乗降車判定部
41 区間(乗車)
42 区間(降車)
43 区間(乗車前)
44 区間(降車後)
101 ドア閉め判断部
201 シートベルト
202 バックルスイッチ
203 情報(バックルスイッチ情報)
204 バックル判断部
210 最大値
W 検知荷重
ΔW 荷重変化量
本出願は、2016年12月16日に、日本国特許庁に出願された特願2016-244720に基づいて優先権を主張し、その全ての開示は、完全に本明細書で参照により組み込まれる。
Claims (5)
- 座席周辺に取り付けられて、座席に作用する荷重を検知する荷重センサと、
該荷重センサの検出値に基づいて、乗員を検知する乗員検知手段と、
乗降車の有無を判断する手段と、
を備えると共に、
前記乗員検知手段は、少なくとも、
前記検出値に基づいて座席に対する乗員の着座状態を判定する乗員判定部と、
前記検出値に基づいて車両振動の有無を判定する振動変化量判断部と、
該振動変化量判断部からの車両振動の有無に基づいて、前記乗員判定部からの着座状態に対する乗員判定結果の更新または前回の乗員判定結果の保持を判断する乗員判断部と、を備え、
前記乗降車の有無を判断する手段が乗降車を判断した場合に、
前記乗員判断部は、車両振動が発生している状況においても、乗員判定結果の更新を実行するようにしたことを特徴とする車両用乗員検知装置。 - 請求項1に記載の車両用乗員検知装置において、
乗降車の有無を判断する手段として、シートベルトの装着状況を検知可能なバックルスイッチを備えると共に、
前記乗員検知手段は、前記バックルスイッチからの情報を入力して、シートベルトの装着状況を判断するバックル判断部を有し、
前記バックル判断部がシートベルトの装着状況の変化を判断した場合に、
前記乗員判断部は、車両振動が発生している状況においても、乗員判定結果の更新を実行するようにしたことを特徴とする車両用乗員検知装置。 - 請求項2に記載の車両用乗員検知装置において、
前記バックル判断部は、シートベルトの装着状況が、非装着から装着に変化したと判断した場合に、
変化の前後の一定時間内における、検出値の最大値に基いて、着座状態に対する乗員判定結果を更新させるようにしたことを特徴とする車両用乗員検知装置。 - 請求項1に記載の車両用乗員検知装置において、
前記乗員検知手段は、乗降車の有無を判断する手段として、ドアの開閉に基づき乗降車の有無を判断可能なドア閉め判断部を備えたことを特徴とする車両用乗員検知装置。 - 請求項4に記載の車両用乗員検知装置において、
前記ドア閉め判断部は、前記荷重センサの検出値の波形を調べて、検出値の波形中に含まれる、ドア閉めを示す荷重変動パターンに基づきドア閉めを判断することを特徴とする車両用乗員検知装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016244720 | 2016-12-16 | ||
JP2016-244720 | 2016-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018110367A1 true WO2018110367A1 (ja) | 2018-06-21 |
Family
ID=62559455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/043605 WO2018110367A1 (ja) | 2016-12-16 | 2017-12-05 | 車両用乗員検知装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018110367A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013166459A (ja) * | 2012-02-15 | 2013-08-29 | Aisin Seiki Co Ltd | シート乗員判定装置 |
JP2013256243A (ja) * | 2012-06-14 | 2013-12-26 | Calsonic Kansei Corp | 車両用乗員検知装置 |
JP2014162403A (ja) * | 2013-02-27 | 2014-09-08 | Aisin Seiki Co Ltd | シート乗員判定装置 |
-
2017
- 2017-12-05 WO PCT/JP2017/043605 patent/WO2018110367A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013166459A (ja) * | 2012-02-15 | 2013-08-29 | Aisin Seiki Co Ltd | シート乗員判定装置 |
JP2013256243A (ja) * | 2012-06-14 | 2013-12-26 | Calsonic Kansei Corp | 車両用乗員検知装置 |
JP2014162403A (ja) * | 2013-02-27 | 2014-09-08 | Aisin Seiki Co Ltd | シート乗員判定装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5884546B2 (ja) | シート乗員判定装置 | |
JP4881089B2 (ja) | 車両用乗員検知装置 | |
KR101197368B1 (ko) | 작동형 안전 장치를 제어하기 위한 방법 및 장치 | |
JP6797473B2 (ja) | 車両用乗員検知装置 | |
US7744123B2 (en) | Method and apparatus for controlling an actuatable restraining device using XY side satellite accelerometers | |
KR100910005B1 (ko) | 안전 기능을 위해 크러쉬 존 센서를 사용하여 작동가능 구속 장치를 제어하는 방법 및 장치 | |
JP5631808B2 (ja) | 車両用乗員検知装置 | |
US8118130B2 (en) | Method and apparatus for controlling an actuatable restraining device using XY crush-zone satellite accelerometers | |
KR101290862B1 (ko) | 차량의 피치-오버 상태를 결정하는 방법 및 장치 | |
EP2398675B1 (en) | Method and apparatus for controlling an actuatable restraint device using a side pressure sensor | |
JP4334114B2 (ja) | 車両の衝突判定方法及び衝突判定装置 | |
KR101200173B1 (ko) | 작동형 안전 장치를 제어하기 위한 방법 및 장치 | |
JP5862348B2 (ja) | シート乗員判定装置 | |
WO2018110365A1 (ja) | 車両用乗員検知装置 | |
JP2015113054A (ja) | シート乗員判定装置 | |
JP4801988B2 (ja) | 車両用乗員検知装置 | |
WO2018110367A1 (ja) | 車両用乗員検知装置 | |
KR100641037B1 (ko) | 차량의 승원분류방법 | |
JP5849756B2 (ja) | シート乗員判定装置 | |
JP2007055556A (ja) | 乗員検知装置 | |
JP6019607B2 (ja) | シート乗員判定装置およびシート乗員判定方法 | |
JP2013256243A (ja) | 車両用乗員検知装置 | |
JP2017007563A (ja) | 車両用乗員判定装置 | |
JP2013166461A (ja) | シート乗員判定装置 | |
KR100884010B1 (ko) | 안전 기능을 위해 크러쉬 존 센서를 사용하여 작동가능구속 장치를 제어하는 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17882123 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17882123 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |