[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018108650A1 - Messeinrichtung und verfahren zur feinstaubmessung für ein kraftfahrzeug - Google Patents

Messeinrichtung und verfahren zur feinstaubmessung für ein kraftfahrzeug Download PDF

Info

Publication number
WO2018108650A1
WO2018108650A1 PCT/EP2017/081613 EP2017081613W WO2018108650A1 WO 2018108650 A1 WO2018108650 A1 WO 2018108650A1 EP 2017081613 W EP2017081613 W EP 2017081613W WO 2018108650 A1 WO2018108650 A1 WO 2018108650A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
laser light
light source
chambers
mirror
Prior art date
Application number
PCT/EP2017/081613
Other languages
English (en)
French (fr)
Inventor
Thomas Niemann
Torsten Eggers
Uwe Röben
Original Assignee
HELLA GmbH & Co. KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HELLA GmbH & Co. KGaA filed Critical HELLA GmbH & Co. KGaA
Priority to CN201780076868.1A priority Critical patent/CN110036278B/zh
Publication of WO2018108650A1 publication Critical patent/WO2018108650A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4785Standardising light scatter apparatus; Standards therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule

Definitions

  • the invention relates to a measuring device for fine dust measurement for a motor vehicle with at least one laser light source, with at least one lens body associated with the laser light source, with at least one calibration device associated with the laser light source and with at least one
  • Measuring devices for fine dust measurement are often used in the automotive sector.
  • the ambient air of the motor vehicle can be examined for the presence of particulate matter.
  • optical measuring methods are used in which an air volume to be examined is irradiated in a measuring space by a laser and the change in the laser beam is detected by means of an optical receiving device.
  • a disadvantage of these devices is that for each measuring space, a laser light source, a
  • a measuring device for fine dust measurement for a motor vehicle with at least one laser light source with at least one of the laser light source associated lens body, at least one of the laser light source associated calibration device, at least one measuring space and at least one optical receiving device
  • the measuring device at least two measuring chambers in that at least one laser light source is associated with at least two measuring chambers, and that each measuring chamber has at least one optical receiving device for detecting laser light.
  • the measuring device has exactly two measuring chambers, the measuring device has at least one, the two
  • the mirror body associated with measuring chambers, the mirror body has two mirror surfaces, the mirror surfaces are arranged facing away from each other, the Mirror surfaces span an angle, the mirror surfaces together form an edge and the beam path of the laser light emitted by the laser light source is aligned with the edge.
  • the measuring device has a mirror body with two reflecting surfaces.
  • the mirror body is designed so that the two mirror surfaces are arranged facing away from each other and each have at least one straight edge.
  • the two mirror surfaces meet at a corner formed by the straight edges of the mirror surfaces. The two mirror surfaces of the mirror body are thus arranged over the corner and span an angle.
  • Beam path of the laser light emitted by the laser light source is aligned with the edge of the mirror body.
  • the emitted laser light is scattered in two directions, so that it is available for examination in both measurement spaces.
  • the mirror surfaces span a 90 ° angle, the mirror surfaces being directed outwards.
  • the mirror surfaces of the mirror body can be arranged so that the mirror surfaces are at right angles to each other.
  • the mirror body with its two mirror surfaces thus forms a right-angled edge, the mirror surfaces being directed outwards.
  • a laser beam can be aligned, so that the laser beam is scattered in two spatial directions.
  • the mirror body is arranged between two measuring chambers and by the leading edge of the mirror body, the laser beam can be scattered in both measuring chambers, so that a parallel measurement in both measuring chambers with a laser light source is possible.
  • Each mirror surface may be associated with a lens body, so that the laser beam can be correspondingly expanded to the measurement spaces.
  • the measuring chambers are arranged side by side, the mirror body is arranged between the measuring chambers, one mirror surface is assigned to one measuring chamber and the beam path of the laser light runs at least in sections between the two measuring chambers.
  • the two measuring chambers can be arranged next to each other, wherein the mirror body is arranged between the two measuring chambers.
  • the mirror surfaces of the mirror body are preferably each arranged facing a measuring space.
  • the edge, which is formed by the two mirror surfaces, is arranged facing the laser beam, that is to say facing the laser light source.
  • an angle of 135 ° between the laser beam and the beam axis of the laser beam and a mirror surface is spanned.
  • the laser beam strikes the edge of the mirror body and the mirror surfaces and, due to the clamped angle between the laser beam and the mirror surfaces, a partial beam of the laser beam is scattered in each of the two measuring chambers.
  • Beam path of the laser beam can be arranged between the two measuring chambers until it hits the mirror body and is scattered from there into the two measuring chambers. This allows a compact construction of the measuring device.
  • the measuring cell into which the air volume to be examined is introduced and an optical receiving device for detecting the affected by the air volume laser beam are arranged.
  • lens bodies for focusing or widening of the respective partial beam to the air volume to be examined can be assigned to the two mirror surfaces.
  • the measuring device on two mirror body each have a mirror surface, each mirror surface has at least one straight edge and the mirror surfaces are at least at a straight edge to each other.
  • the mirror body may be formed as a mirror discs and each at least one straight
  • Edge have. At this straight edge, the mirror body can be arranged adjacent to each other and thus over the corner, with the mirror surfaces facing outward. The formation of an edge allows the scattering of the laser beam into both measuring chambers.
  • the measuring chambers are arranged side by side, the laser light source with its laser light exit opening is arranged facing a measuring chamber, both measuring chambers have at least one inlet opening for the entry of the laser light, the laser light source facing measuring space has an outlet opening and the beam path is passed through both measuring chambers.
  • the two measuring chambers are arranged side by side and the
  • Both measuring chambers have inlet openings through which the laser light can enter the measuring chambers.
  • the measuring space facing the laser light source additionally has an outlet opening.
  • the arrangement of the measuring chambers next to one another thus allows entry of the laser beam into the first measuring space, exit of the laser beam from the first measuring space and entry of the laser beam into the second measuring space.
  • the inlet openings of the two measuring chambers, and the outlet opening of the laser light source associated measuring space are arranged so that overlap the opening areas. This makes it possible to examine both measuring chambers, that is to say both volumes of air to be examined, with a laser light source.
  • the outlet opening of the measuring space facing the laser light source and the inlet opening of the measuring space facing away from the laser light source intersect at least in sections.
  • At least one receiving device is arranged in at least one measuring space perpendicular to the beam axis of the laser light
  • at least one beam splitting device is arranged in at least one measuring space and the beam splitting device is assigned to at least one receiving device.
  • the measuring chambers are next to each other arranged.
  • the laser beam first penetrates the first volume of air to be examined in the measuring space facing the laser light source and then penetrates into the second measuring space, in which the second volume of air is examined.
  • the laser beam enters the measuring space facing the laser light source and impinges here on a beam splitter arranged in the beam path.
  • a partial beam of the beam axis of the input beam following is passed further into the second measuring space and the other partial beam is preferably deflected at a right angle to the beam axis of the input beam.
  • the deflected laser beam is directed through a first volume of air to be examined. Behind the first volume of air to be examined, an optical receiving device is arranged in the beam path of the deflected laser beam, by means of which the change in the laser beam through the air volume can be examined.
  • the undeflected partial beam can penetrate into the second measuring space.
  • the second air volume to be examined can be arranged in the beam axis of the incident laser beam, and accordingly an optical receiving device can be arranged behind the air volume in the beam path of the laser beam.
  • a beam splitter or also a device for beam deflection, for example a mirror can be arranged in the second measuring space, which deflects the laser beam at right angles to the incident laser beam.
  • the second air volume to be examined and an optical receiving device can accordingly be arranged in the deflected laser beam.
  • the measuring chambers each have at least one receiving device and each receiving device is associated with a laser light attenuation device.
  • the optical receiving devices which may be formed, for example, as semiconductor diodes, in particular as photodiodes or the like, are each assigned a laser light attenuation device.
  • the optical receiving devices which may be formed, for example, as semiconductor diodes, in particular as photodiodes or the like, are each assigned a laser light attenuation device.
  • the optical receiving devices which may be formed,
  • the Laser light attenuation devices arranged in the beam path of the respective laser beam behind the receiving devices.
  • the Laser light attenuation devices can be formed for example by concave mirrors or by a plurality of concave mirrors, which are hit by the laser beam and attenuated by multiple reflection, the intensity of the laser beam so far that the laser beam does not scatter back into the measuring space. As a result, a disturbance of the measurement is prevented by uncontrolled reflective or scattered laser beams.
  • each receiving device is associated with a laser light attenuation device.
  • the invention relates to a method for measuring particulate matter in a motor vehicle with a measuring device according to the invention, wherein an air volume to be examined is introduced into at least one measuring space, wherein an air volume is irradiated with laser light of at least one laser light source and wherein the laser light after passing through the is to be examined air volume is detected, is provided in the invention essential that measurements are performed in parallel in at least two measuring chambers and that the measurements are performed with the laser light of the same laser light source.
  • the air volumes can be introduced into the corresponding measurement spaces.
  • a detection device in particular an optical detection device, in each measuring space, air volumes can be examined simultaneously.
  • the light of the laser light source is, for example, passed through both rooms or scattered by at least one mirror body so that the laser light enters both measuring chambers.
  • the air volumes introduced into the measuring chambers are irradiated by the laser light and the laser light is detected by an optical receiving device after passing through the air volumes.
  • the measurement results of the optical receiving devices are evaluated.
  • 1 shows a measuring device with two adjacent measuring chambers
  • 2 shows a measuring device with two beam splitters
  • FIG. 3 shows a measuring device with two measuring chambers and a mirror body.
  • Fig. 1 is a measuring device 1 with a laser light source 2 and measuring chambers
  • the laser light source 2 is arranged facing the measuring space 3.
  • the measuring chamber 3 has an inlet opening 5 for the entry of the laser light and an outlet opening 6 for the exit of the laser light.
  • the measuring space 4, which is arranged facing away from the laser light source 2 has an inlet opening 7, through which the laser beam, which has passed the measuring space 3, can enter the measuring space 4.
  • At the inlet openings 5 and 7 are lens body 8, 9 for focusing or expansion of the laser beam to be examined air volumes 10, 1 1 arranged.
  • the measuring chambers 3, 4 have receiving devices 12, 13 for the evaluation of the guided through the air volumes 10, 1 1 laser beam.
  • the receiving devices 12, 13 are
  • Associated laser light attenuation devices 14, 15, which may be formed for example by concave mirrors and serve that laser beams are not reflected after hitting the receiving devices 1 2, 13 in the corresponding measuring space 3, 4 back.
  • the laser light source 2 is assigned a calibration device 16.
  • the laser beam enters through the lens body 8 at the inlet opening 5 in the measuring chamber 3 and passes through a beam splitting device 17, through which the laser beam is divided into two partial beams.
  • a partial beam continues along the beam axis of the incoming laser beam through the inlet opening 7 into the measuring space 4.
  • a partial beam is deflected at right angles and passes through the air volume 10 until it hits the receiving device 12.
  • the undeflected laser beam passes through the air volume 1 1 and is directed to a receiving device 13.
  • FIG. 2 a measuring device according to FIG. 1 with two receiving means 14, 15, which are arranged at right angles to the beam path of the incident laser light of the laser light source 2 is shown. Due to the scattering in the air volumes 10, 1 1 in the measuring chambers 3, 4, the laser light of the
  • Receiving devices 14, 15 are detected.
  • FIG. 3 shows a further embodiment of the invention.
  • the measuring chambers 3, 4 are arranged side by side, wherein the beam path of the laser beam of the laser light source 2 at least partially between the
  • Measuring chambers 3, 4 runs. Between the measuring chambers 3, 4 mirror body 18, 19 are arranged with mirror surfaces 20, 21. The mirror surfaces 20, 21 span a right angle. The laser beam of the laser light source 2 is focused on the edge 22 which is formed by the mirror surfaces 20, 21. The arrangement of the mirror surfaces 20, 21, the laser beam is introduced into the measuring chambers 3, 4. In the measuring chambers 3, 4, the air volumes to be examined 10, 1 1 and optical receiving devices 12, 13 and laser light attenuation devices 14, 15 are arranged in the beam path of the laser beam. In addition, the laser light source 2 is assigned a calibration device 16. Due to the arrangement of the mirror body 18, 19 and through the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Bei einer Messeinrichtung zur Feinstaubmessung für ein Kraftfahrzeug mit mindestens einer Laserlichtquelle, mit mindestens einem der Laserlichtquelle zugeordneten Linsenkörper, mit mindestens einer der Laserlichtquelle zugeordneten Kalibrierungseinrichtung, mit mindestens einem Messraum und mit mindestens einer optischen Empfangseinrichtung, ist erfindungswesentlich vorgesehen, dass die Messeinrichtung mindestens zwei Messräume aufweist, dass mindestens einer Laserlichtquelle mindestens zwei Messräume zugeordnet sind und dass jeder Messraum mindestens eine optischen Empfangseinrichtung zur Detektion von Laserlicht aufweist. Des Weiteren betrifft die Erfindung ein Verfahren zur Messung von Feinstaub in einem Kraftfahrzeug mit einer erfindungsgemäßen Messeinrichtung.

Description

Messeinrichtung und Verfahren zur Feinstaubmessung für ein Kraftfahrzeug
Die Erfindung betrifft eine Messeinrichtung zur Feinstaubmessung für ein Kraftfahrzeug mit mindestens einer Laserlichtquelle, mit mindestens einem der Laserlichtquelle zugeordneten Linsenkörper, mit mindestens einer der Laserlichtquelle zugeordneten Kalibrierungseinrichtung und mit mindestens einem
Messraum.
Messeinrichtungen zur Feinstaubmessung kommen vielfach im Kraftfahrzeugbereich zum Einsatz. Durch die Messeinrichtungen kann beispielsweise die Umgebungsluft des Kraftfahrzeuges auf das Vorhandensein von Feinstaubpartikeln hin untersucht werden. Zumeist kommen hierbei optische Messverfahren zum Einsatz, bei denen ein zu untersuchendes Luftvolumen in einem Messraum durch einen Laser bestrahlt wird und die Veränderung des Laserstrahls mittels einer optischen Empfangseinrichtung erfasst wird. Nachteilig bei diesen Vorrichtungen ist, dass für jeden Messraum eine Laserlichtquelle, ein
Linsenkörper und eine Kalibrierungseinrichtung für die Laserlichtquelle zur Verfügung stehen müssen. Insbesondere die Verwendung mehrerer Laser bei mehreren Messräumen macht die Produktion der Messeinrichtung kostenintensiv. Der Erfindung liegt die Aufgabe zugrunde, eine Messeinrichtung der eingangs genannten Art vorzuschlagen, bei der eine kostengünstige Fertigung ermöglicht ist. Die Lösung der Aufgabe erfolgt durch eine Messeinrichtung mit den Merkmalen des Patentanspruchs 1 . Vorteilhafte Ausgestaltungen und Weiterbildungen sind in den Unteransprüchen angegeben. Bei einer Messeinrichtung zur Feinstaubmessung für ein Kraftfahrzeug mit mindestens einer Laserlichtquelle, mit mindestens einem der Laserlichtquelle zugeordneten Linsenkörper, mit mindestens einer der Laserlichtquelle zugeordneten Kalibrierungseinrichtung, mit mindestens einem Messraum und mit mindestens einer optischen Empfangseinrichtung, ist erfindungswesentlich vorgesehen, dass die Messeinrichtung mindestens zwei Messräume aufweist, dass mindestens einer Laserlichtquelle mindestens zwei Messräume zugeordnet sind und dass jeder Messraum mindestens eine optischen Empfangseinrichtung zur Detektion von Laserlicht aufweist. Durch die Verwendung zweier Messräume ist die parallele Untersuchung von verschiedenen Luftvolumina, beispielsweise eines Luftvolumens der Umgebungsluft des Kraftfahrzeuges und eines Luftvolumens der Innenraumluft des Kraftfahrzeuges ermöglicht. Hierdurch kann beispielsweise entschieden werden, ob ein Luftaustausch zwischen dem Innenraum des Kraftfahrzeuges und der Umgebung sinnvoll ist. Den beiden Messräumen ist hierbei eine
Laserlichtquelle zugeordnet, die beide Messräume zur Untersuchung mit Laserlicht bestrahlt. Durch die Bestrahlung beider Messräume mit dem Laserlicht nur einer Laserlichtquelle können die sich in den beiden Messräumen befindlichen Luftvolumina parallel untersucht werden, ohne dass zwei Laserlichtquellen notwendig sind. Zur Erfassung des Laserlichtes nach dem Durchgang durch das jeweilige zu untersuchende Luftvolumen weist jeder Messraum eine optische Empfangseinrichtung zur Detektion des Laserlichtes auf.
In einer Weiterbildung der Erfindung weist die Messeinrichtung genau zwei Messräume auf, die Messeinrichtung weist mindestens einen, den beiden
Messräumen zugeordneten Spiegelkörper auf, der Spiegelkörper weist zwei Spiegelflächen auf, die Spiegelflächen sind einander abgewandt angeordnet, die Spiegelflächen spannen einen Winkel auf, die Spiegelflächen bilden zusammen eine Kante aus und der Strahlengang des von der Laserlichtquelle ausgesendeten Laserlichtes ist auf die Kante ausgerichtet. Zur Aufteilung des Laserlichtes einer Laserlichtquelle weist die Messeinrichtung einen Spiegelkörper mit zwei spiegelnden Flächen auf. Vorzugsweise ist der Spiegelkörper dabei so ausgebildet, dass die beiden Spiegelflächen einander abgewandt angeordnet sind und jeweils mindestens eine gerade Kante aufweisen. Vorzugsweise treffen die beiden Spiegelflächen an einer Ecke, die durch die geraden Kanten der Spiegelflächen ausgebildet ist, aufeinander. Die beiden Spiegelflächen des Spiegelkörpers sind also über Eck angeordnet und spannen einen Winkel auf. Der
Strahlengang des von der Laserlichtquelle ausgesendeten Laserlichtes ist auf die Kante des Spiegelkörpers ausgerichtet. Somit wird das ausgesendete Laserlicht in zwei Richtungen gestreut, so dass es zur Untersuchung in beiden Messräumen zur Verfügung steht.
In einer Weiterbildung der Erfindung spannen die Spiegelflächen einen 90° Winkel auf, wobei die Spiegelflächen nach außen gerichtet sind. Die Spiegelflächen des Spiegelkörpers können so angeordnet sein, dass die Spiegelflächen im rechten Winkel zueinander stehen. Der Spiegelkörper mit seinen beiden Spiegelflächen bildet somit eine rechtwinklige Kante aus, wobei die Spiegelflächen nach außen gerichtet sind. Auf diese Kante kann ein Laserstrahl ausgerichtet werden, so dass der Laserstrahl in zwei Raumrichtungen gestreut wird. Der Spiegelkörper ist zwischen zwei Messräumen angeordnet und durch die vorangestellte Kante des Spiegelkörpers kann der Laserstrahl in beide Messräume gestreut werden, so dass eine parallele Messung in beiden Messräumen mit einer Laserlichtquelle ermöglicht ist. Jeder Spiegelfläche kann ein Linsenkörper zugeordnet sein, so dass der Laserstrahl entsprechend auf die Messräume aufgeweitet werden kann.
In einer Weiterbildung der Erfindung sind die Messräume nebeneinander angeordnet, der Spiegelkörper ist zwischen den Messräumen angeordnet, jeweils eine Spiegelfläche ist einem Messraum zugeordnet und der Strahlengang des Laserlichts verläuft zumindest abschnittsweise zwischen den beiden Messräumen. Die beiden Messräume können nebeneinander angeordnet sein, wobei der Spiegelkörper zwischen den beiden Messräumen angeordnet ist. Vorzugsweise sind hierbei die Spiegelflächen des Spiegelkörpers jeweils einem Messraum zugewandt angeordnet. Die Kante, die von den beiden Spiegelflächen ausgebildet ist, ist dem Laserstrahl, also der Laserlichtquelle zugewandt angeordnet.
Vorzugsweise ist ein Winkel von 135° zwischen dem Laserstrahl bzw. der Strahlachse des Laserstrahl und einer Spiegelfläche aufgespannt. Der Laserstrahl trifft auf die Kante des Spiegelkörpers und die Spiegelflächen und durch den aufgespannten Winkel zwischen dem Laserstrahl und den Spiegelflächen wird jeweils ein Teilstrahl des Laserstrahls in die beiden Messräume gestreut. Der
Strahlengang des Laserstrahls kann zwischen den beiden Messräumen angeordnet sein, bis er auf den Spiegelkörper trifft und von dort aus in die beiden Messräume gestreut wird. Hierdurch ist ein kompakter Aufbau der Messeinrichtung ermöglicht. Im Strahlengang der Laserlichtquelle sind jeweils die Messzelle, in den das zu untersuchen Luftvolumen eingeleitet ist und eine optische Empfangseinrichtung zur Erfassung des durch das Luftvolumen beeinflussten Laserstrahls angeordnet. Den beiden Spiegelflächen können zudem Linsenkörper zur Fokussierung bzw. Aufweitung des jeweiligen Teilstrahls auf das zu untersuchende Luftvolumen zugeordnet sein.
In einer Ausführungsform der Erfindung weist die Messeinrichtung zwei Spiegelkörper auf, die Spiegelkörper weisen jeweils eine Spiegelfläche auf, jede Spiegelfläche weist mindestens eine gerade Kante auf und die Spiegelflächen liegen mindestens an einer geraden Kante aneinander an. Die Spiegelkörper können als Spiegelscheiben ausgebildet sein und jeweils mindestens eine gerade
Kante aufweisen. An dieser geraden Kante können die Spiegelkörper aneinander anliegend und somit über Eck angeordnet sein, wobei die Spiegelflächen nach außen weisen. Durch die Ausbildung einer Kante ist die Streuung des Laserstrahls in beide Messräume ermöglicht.
In einer alternativen Ausführungsform der Erfindung sind die Messräume nebeneinander angeordnet, die Laserlichtquelle mit ihrer Laserlichtaustrittsöffnung ist einem Messraum zugewandt angeordnet, beide Messräume weisen mindestens eine Eintrittsöffnung zum Eintritt des Laserlicht auf, der der Laserlichtquelle zugewandte Messraum weist eine Austrittsöffnung auf und der Strahlengang ist durch beide Messräume geleitet. In dieser Ausführungsform der Erfindung sind die beiden Messräume nebeneinander angeordnet und das
Laserlicht der Laserlichtquelle wird nacheinander durch beide Räume hindurch geleitet. Hierbei weisen beide Messräume Eintrittsöffnungen auf, durch die das Laserlicht in die Messräume eintreten kann. Zudem weist der der Laserlichtquelle zugewandte Messraum zusätzlich eine Austrittsöffnung auf. Durch die Anordnung der Messräume nebeneinander ist somit ein Eintreten des Laserstrahls in den ersten Messraum, ein Austreten des Laserstrahls aus dem ersten Messraum und ein Eintreten des Laserstrahls in den zweiten Messraum ermöglicht. Hierzu sind die Eintrittsöffnungen der beiden Messräume, sowie die Austrittsöffnung des der Laserlichtquelle zugeordneten Messraumes so angeordnet, dass sich die Öffnungsflächen überschneiden. Somit ist es ermöglicht, beide Messräume, also beide zu untersuchenden Luftvolumina mit einer Laserlichtquelle zu untersuchen.
In einer Weiterbildung der Erfindung überschneiden sich die Austrittsöffnung des der Laserlichtquelle zugewandten Messraumes und die Eintrittsöffnung des der Laserlichtquelle abgewandten Messraumes zumindest abschnittsweise. Durch die
Überschneidung der Eintrittsöffnungen der beiden Messräume sowie der Austrittsöffnungen des der Laserlichtquelle zugeordneten Messraumes ist ein Hindurchtreten des Laserstrahls durch beide Messräume ermöglicht. Somit ist eine Untersuchung zweier Luftvolumina in zwei nebeneinander angeordneten Messräumen ermöglicht.
In einer Weiterbildung der Erfindung ist mindestens eine Empfangseinrichtung in mindestens einem Messraum senkrecht zur Strahlachse des Laserlichtes angeordnet, in mindestens einem Messraum ist mindestens eine Strahlteilungseinrichtung angeordnet und die Strahlteilungseinrichtung ist mindestens einer Empfangseinrichtung zugeordnet. Zur Untersuchung der Luftvolumina in den beiden Messräumen sind die Messräume nebeneinander angeordnet. Der Laserstrahl durchdringt zuerst das erste zu untersuchende Luftvolumen in dem der Laserlichtquelle zugewandten Messraum und dringt dann in den zweiten Messraum ein, in dem das zweite Luftvolumen untersucht wird. Zur Untersuchung tritt der Laserstrahl in den der Laserlichtquelle zugewandten Messraum ein und trifft hier auf einen im Strahlengang angeordneten Strahlteiler.
Durch den Strahlteiler wird der Laserstrahl geteilt, wobei ein Teilstrahl der Strahlachse des Eingangsstrahls folgend weiter in den zweiten Messraum geleitet wird und der andere Teilstrahl vorzugsweise in einem rechten Winkel zur Strahlachse des Eingangsstrahls abgelenkt wird. Der abgelenkte Laserstrahl wird durch ein erstes zu untersuchendes Luftvolumen gelenkt. Hinter dem ersten zu untersuchenden Luftvolumen ist im Strahlengang des abgelenkten Laserstrahls eine optische Empfangseinrichtung angeordnet, durch die die Änderung des Laserstrahls durch das Luftvolumen untersucht werden kann. Der nicht abgelenkte Teilstrahl kann in den zweiten Messraum eindringen. Hierbei kann das zweite zu untersuchende Luftvolumen in der Strahlachse des einfallenden Laserstrahls angeordnet sein und entsprechend kann hinter dem Luftvolumen im Strahlengang des Laserstrahls eine optische Empfangseinrichtung angeordnet sein. Weiterhin kann auch vorgesehen sein, dass auch im zweiten Messraum ein Strahlteiler oder auch eine Einrichtung zur Strahlablenkung, beispielsweise ein Spiegel angeordnet sein kann, die den Laserstrahl im rechten Winkel zum einfallenden Laserstrahl ablenkt. In dem abgelenkten Laserstrahl kann entsprechend das zweite zu untersuchende Luftvolumen und eine optische Empfangseinrichtung angeordnet sein. In einer Weiterbildung der Erfindung weisen die Messräume jeweils mindestens eine Empfangseinrichtung auf und jeder Empfangseinrichtung ist eine Laserlichtabschwächungseinrichtung zugeordnet. Den optischen Empfangseinrichtungen, die beispielsweise als Halbleiterdioden, insbesondere als Fotodioden oder Ähnliches ausgebildet sein können, ist jeweils eine Laserlichtabschwächungseinrichtung zugeordnet. Insbesondere sind die
Laserlichtabschwächungseinrichtungen im Strahlengang des jeweiligen Laserstrahls hinter den Empfangs-einrichtungen angeordnet. Die Laserlichtabschwächungseinrichtungen können beispielsweise durch Hohlspiegel oder auch durch mehrere Hohlspiegel ausgebildet sein, auf die der Laserstrahl trifft und durch Mehrfachreflexion die Intensität des Laserstrahls so weit abgeschwächt wird, dass der Laserstrahl nicht in den Messraum zurück streut. Hierdurch ist eine Störung der Messung durch unkontrolliert reflektierende oder gestreute Laserstrahlen verhindert. Vorzugsweise ist jeder Empfangseinrichtung eine Laserlichtabschwächungseinrichtung zugeordnet.
Des Weiteren betrifft die Erfindung ein Verfahren zur Messung von Feinstaub in einem Kraftfahrzeug mit einer erfindungsgemäßen Messeinrichtung, wobei ein zu untersuchendes Luftvolumen in mindestens einen Messraum eingeleitet wird, wobei ein Luftvolumen mit Laserlicht mindestens einer Laserlichtquelle bestrahlt wird und wobei das Laserlicht nach dem Durchgang durch das zu untersuchende Luftvolumen erfasst wird, bei dem erfindungswesentlich vorgesehen ist, dass Messungen parallel in mindestens zwei Messräumen durchgeführt werden und dass die Messungen mit dem Laserlicht derselben Laserlichtquelle durchgeführt werden. Zur parallelen Messung von zwei Luftvolumina, beispielsweise eines Umgebungsluftvolumens und eines Innenraumluftvolumens des Kraftfahrzeuges, können die Luftvolumina in die entsprechenden Messräume eingeleitet werden. Durch die Zuordnung der Laserlichtquelle zu beiden Messräumen und durch die
Anordnung einer Erfassungseinrichtung, insbesondere einer optischen Erfassungseinrichtung, in jedem Messraum, können Luftvolumina gleichzeitig untersucht werden. Hierzu wird das Licht der Laserlichtquelle beispielsweise durch beide Räume durchgeleitet oder durch mindestens einen Spiegelkörper so gestreut, dass das Laserlicht in beide Messräume eintritt. Die in die Messräume eingeleiteten Luftvolumina werden durch das Laserlicht bestrahlt und das Laserlicht wird nach dem Durchgang durch die Luftvolumina durch eine optische Empfangseinrichtung erfasst. Die Messergebnisse der optischen Empfangseinrichtungen werden ausgewertet.
Nachfolgend wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels weiter erläutert. Im Einzelnen zeigen: Fig. 1 : eine Messeinrichtung mit zwei nebeneinander angeordneten Messräumen; Fig. 2: eine Messeinrichtung mit zwei Strahlteilern; und
Fig. 3: eine Messeinrichtung mit zwei Messräumen und einem Spiegelkörper. In Fig. 1 ist eine Messeinrichtung 1 mit einer Laserlichtquelle 2 und Messräumen
3,4 dargestellt. Die Laserlichtquelle 2 ist dem Messraum 3 zugewandt angeordnet. Der Messraum 3 weist eine Eintrittsöffnung 5 für den Eintritt des Laserlichts sowie eine Austrittsöffnung 6 für den Austritt des Laserlichts auf. Der Messraum 4, der der Laserlichtquelle 2 abgewandt angeordnet ist, weist eine Eintrittsöffnung 7 auf, durch die der Laserstrahl, der den Messraum 3 passiert hat, in den Messraum 4 eintreten kann. An den Eintrittsöffnungen 5 und 7 sind Linsenkörper 8, 9 zur Fokussierung bzw. Aufweitung des Laserstrahls auf die zu untersuchenden Luftvolumina 10, 1 1 angeordnet. Die Messräume 3, 4 weisen Empfangseinrichtungen 12, 13 zur Auswertung des durch die Luftvolumina 10, 1 1 geleiteten Laserstrahls auf. Den Empfangseinrichtungen 12, 13 sind
Laserlichtabschwächungseinrichtungen 14, 15 zugeordnet, die beispielsweise durch Hohlspiegel ausgebildet sein können und dazu dienen, dass Laserstrahlen nach dem Auftreffen auf die Empfangseinrichtungen 1 2, 13 nicht in den entsprechenden Messraum 3, 4 zurück reflektiert werden. Der Laserlichtquelle 2 ist eine Kalibrierungseinrichtung 16 zugeordnet. Durch die Anordnung der
Messräume 3, 4 nebeneinander und durch Überschneidung der Eintrittsöffnungen 5, 7 und der Austrittsöffnung 6 ist ein Eintreten des Laserstrahls von der Laserlichtquelle 2 in die Messräume 3, 4 ermöglicht. Der Laserstrahl tritt durch den Linsenkörper 8 an der Eintrittsöffnung 5 in den Messraum 3 ein und durchläuft eine Strahlteilungseinrichtung 17, durch die der Laserstrahl in zwei Teilstrahlen geteilt wird. Ein Teilstrahl verläuft entlang der Strahlachse des eintretenden Laserstrahls weiter durch die Eintrittsöffnung 7 in den Messraum 4. Ein Teilstrahl wird im rechten Winkel abgelenkt und durchläuft das Luftvolumen 10, bis er auf die Empfangseinrichtung 12 trifft. Der nicht abgelenkte Laserstrahl durchläuft das Luftvolumen 1 1 und wird auf eine Empfangseinrichtung 13 gelenkt. Durch diese Anordnung ist die parallele Untersuchung von zwei Luftvolumina 10, 1 1 mit einer Laserlichtquelle 2 ermöglicht.
In Fig. 2 ist eine Messeinrichtung gemäß Fig. 1 mit zwei Empfangseinrichtungen 14, 15, die im rechten Winkel zum Strahlengang des einfallenden Laserlicht der Laserlichtquelle 2 angeordnet sind, dargestellt. Durch die Streuung in den Luftvolumina 10, 1 1 in den Messräumen 3, 4 kann das Laserlicht von die
Empfangseinrichtungen 14, 15 erfasst werden.
In Fig. 3 ist eine weitere Ausführungsform der Erfindung dargestellt. Die Messräume 3, 4 sind nebeneinander angeordnet, wobei der Strahlengang des Laserstrahls der Laserlichtquelle 2 zumindest abschnittsweise zwischen den
Messräumen 3, 4 verläuft. Zwischen den Messräumen 3, 4 sind Spiegelkörper 18, 19 mit Spiegelflächen 20, 21 angeordnet. Die Spiegelflächen 20, 21 spannen einen rechten Winkel auf. Der Laserstrahl der Laserlichtquelle 2 ist auf die Kante 22 fokussiert, die von den Spiegelflächen 20, 21 ausgebildet ist. Durch die Anordnung der Spiegelflächen 20, 21 wird der Laserstrahl in die Messräume 3, 4 eingeleitet. In den Messräumen 3, 4 sind in dem Strahlengang des Laserstrahls die zu untersuchenden Luftvolumina 10, 1 1 sowie optische Empfangseinrichtungen 12, 13 und Laserlichtabschwächungseinrichtungen 14, 15 angeordnet. Zudem ist der Laserlichtquelle 2 eine Kalibrierungseinrichtung 16 zugeordnet. Durch die Anordnung der Spiegelkörper 18, 19 und durch die
Anordnung der Messräume 3, 4 nebeneinander ist eine parallele Untersuchung der Luftvolumina 10, 1 1 mit nur einer Laserlichtquelle 2 ermöglicht. Neben der Fokussierung des Laserstrahls auf die Kante 22, die zwischen den Spiegelflächen 20, 21 ausgebildet ist, kann der Laserstrahl so aufgeweitet sein, dass die Spiegelflächen 20, 21 vorzugsweise vollständig ausgeleuchtet werden und somit größere Luftvolumen 10, 1 1 untersucht werden können. Alle in der vorstehenden Beschreibung und in den Ansprüchen genannten Merkmale sind in einer beliebigen Auswahl mit den Merkmalen der unabhängigen Ansprüche kombinierbar. Die Offenbarung der Erfindung ist somit nicht auf die beschriebenen bzw. beanspruchten Merkmalskombinationen beschränkt, vielmehr sind alle im Rahmen der Erfindung sinnvollen Merkmalskombinationen als offenbart zu betrachten.

Claims

Patentansprüche
1 . Messeinrichtung (1 ) zur Feinstaubmessung für ein Kraftfahrzeug mit mindestens einer Laserlichtquelle (2), mit mindestens einem der Laserlichtquelle (2) zugeordneten Linsenkörper (8), mit mindestens einer der Laserlichtquelle (2) zugeordneten Kalibrierungseinrichtung (16), mit mindestens einem Messraum (3, 4) und mit mindestens einer optischen Empfangseinrichtung (12, 13),
dadurch gekennzeichnet,
dass die Messeinrichtung (1 ) mindestens zwei Messräume (3, 4) aufweist, dass mindestens einer Laserlichtquelle (2) mindestens zwei Messräume (3, 4) zugeordnet sind und
dass jeder Messraum (3, 4) mindestens eine optische Empfangseinrichtung (12, 13) zur Detektion von Laserlicht aufweist.
2. Messeinrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Messeinrichtung (1 ) genau zwei Messräume (3, 4) aufweist, dass die Messeinrichtung (1 ) mindestens einen, den beiden Messräumen (3, 4) zugeordneten Spiegelkörper aufweist, dass der Spiegelkörper mindestens zwei Spiegelflächen (20, 21 ) aufweist, dass die Spiegelflächen (20, 21 ) einander abgewandt angeordnet sind, dass die Spiegelflächen (20, 21 ) einen Winkel aufspannen, dass die Spiegelflächen (20, 21 ) zusammen eine Kante (22) ausbilden und dass der Strahlengang des von der Laserlichtquelle ausgesendeten Laserlichtes auf die Kante (22) ausgerichtet ist.
3. Messeinrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Spiegelflächen (20, 21 ) einen 90° Winkel aufspannen, wobei die Spiegelflächen (20, 21 ) nach außen gerichtet sind.
4. Messeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Messräume (3, 4) nebeneinander angeordnet sind, dass der
Spiegelkörper zwischen den Messräumen (3, 4) angeordnet ist, dass jeweils eine Spiegelfläche (20, 21 ) einem Messraum (3, 4) zugeordnet ist und dass der Strahlengang des Laserlichtes zumindest abschnittsweise zwischen den beiden Messräumen (3, 4) verläuft.
5. Messeinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Messeinrichtung (1 ) zwei Spiegelkörper (18, 19) aufweist, dass die
Spiegelkörper (18, 19) jeweils eine Spiegelfläche (20, 21 ) aufweisen, dass jede Spiegelfläche (20, 21 ) mindestens eine gerade Kante aufweist und dass die Spiegelflächen an mindestens einer geraden Kante aneinander anliegen.
6. Messeinrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Messräume nebeneinander angeordnet sind, dass die Laserlichtquelle (2) mit ihrer Laserlichtaustrittsöffnung einem Messraum (3) zugewandt angeordnet ist, dass beide Messräume (3, 4) mindestens eine Eintrittsöffnung (5, 7) zum Eintritt des Laserlicht aufweisen, dass der der Laserlichtquelle zugewandte Messraum (3) eine Austrittsöffnung (6) aufweist und dass der Strahlengang durch beide
Messräume (3, 4) geleitet ist.
7. Messeinrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Austrittsöffnung (6) des der Laserlichtquelle (2) zugewandten Messraumes (3) und die Eintrittsöffnung (5, 7) des der Laserlichtquelle (2) abgewandten Messraumes
(4) sich zumindest abschnittsweise überschneiden.
8. Messeinrichtung nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass mindestens eine Empfangseinrichtung (12, 13) in mindestens einem jeweiligen Messraum (3, 4) senkrecht zur Strahlachse des Laserlichts angeordnet ist, dass in mindestens einem Messraum (3, 4) mindestens eine Strahlteilungseinrichtung (17) angeordnet ist und dass die Strahlteilungseinrichtung (17) mindestens einer Empfangseinrichtung (12, 13) zugeordnet ist.
9. Messeinrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Messräume (3, 4) jeweils mindestens eine Empfangseinrichtung (12, 13) aufweisen und dass jeder Empfangseinrichtung (12, 13) eine Laserlichtabschwächungseinrichtung (15) zugeordnet ist.
10. Verfahren zur Messung von Feinstaub in einem Kraftfahrzeug mit einer Messeinrichtung nach einem der vorhergehenden Ansprüche, wobei ein zu untersuchendes Luftvolumen in mindestens einen Messraum (3, 4) eingeleitet wird, wobei ein Luftvolumen (10, 1 1 ) mit Laserlicht mindestens einer Laserlichtquelle (2) bestrahlt wird und wobei das Laserlicht nach dem Durchgang durch das zu untersuchende Luftvolumen (10, 1 1 ) erfasst wird,
dadurch gekennzeichnet,
dass Messungen parallel in mindestens zwei Messräumen (3, 4) durchgeführt werden und dass die Messungen mit dem Laserlicht derselben Laserlichtquelle (2) durchgeführt werden.
PCT/EP2017/081613 2016-12-12 2017-12-06 Messeinrichtung und verfahren zur feinstaubmessung für ein kraftfahrzeug WO2018108650A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780076868.1A CN110036278B (zh) 2016-12-12 2017-12-06 用于机动车的用于微尘测量的测量装置和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016124068.0 2016-12-12
DE102016124068.0A DE102016124068A1 (de) 2016-12-12 2016-12-12 Messeinrichtung und Verfahren zur Feinstaubmessung für ein Kraftfahrzeug

Publications (1)

Publication Number Publication Date
WO2018108650A1 true WO2018108650A1 (de) 2018-06-21

Family

ID=61148160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/081613 WO2018108650A1 (de) 2016-12-12 2017-12-06 Messeinrichtung und verfahren zur feinstaubmessung für ein kraftfahrzeug

Country Status (3)

Country Link
CN (1) CN110036278B (de)
DE (1) DE102016124068A1 (de)
WO (1) WO2018108650A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10776643B1 (en) * 2019-08-28 2020-09-15 Robert Bosch Gmbh Vehicular airborne particulate matter detection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181419B1 (en) * 1998-05-22 2001-01-30 National Research Council Of Canada Method and apparatus for applying laser induced incandescence for the determination of particulate measurements
WO2003019160A2 (en) * 2001-08-21 2003-03-06 Spx Corporation Open path emission sensing system
US6542831B1 (en) * 2001-04-18 2003-04-01 Desert Research Institute Vehicle particulate sensor system
US7797983B2 (en) * 2004-03-29 2010-09-21 Gasera Ltd. Method and system for detecting one or more gases or gas mixtures and/or for measuring the concentration of one or more gases or gas mixtures
DE102010027849A1 (de) * 2010-04-16 2011-10-20 Robert Bosch Gmbh Anordnung sowie Verfahren zur Bestimmung der Partikelkonzentration eines Partikel mitführenden Gases

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917494A (en) * 1987-07-28 1990-04-17 Amherst Process Instruments, Inc. Beam forming apparatus for aerodynamic particle sizing system
IL121793A (en) * 1997-09-17 2008-06-05 Lewis Coleman Isotopic gas analyzer
US5896088A (en) * 1997-04-16 1999-04-20 Southeastern Univ. Research Assn. Incipient fire detection system
CN1384361A (zh) * 2001-04-27 2002-12-11 刘岩 分立式多通道生化分析仪
US6741348B2 (en) * 2002-04-29 2004-05-25 The Curators Of The University Of Missouri Ultrasensitive spectrophotometer
CN2562181Y (zh) * 2002-05-08 2003-07-23 北京宾达绿创科技有限公司 激光粉尘仪
CN1216283C (zh) * 2003-01-10 2005-08-24 东南大学 激光散射式粉尘浓度在线测量方法
US7142299B2 (en) * 2004-11-18 2006-11-28 Apprise Technologies, Inc. Turbidity sensor
DE102005025675A1 (de) * 2005-06-03 2006-11-16 Siemens Ag Strahleranordnung für einen nichtdispersiven Infrarot-Gasanalysator
CN2886556Y (zh) * 2005-08-02 2007-04-04 德菲电气(北京)有限公司 一种新型的红外线在线气体分析仪
US8242476B2 (en) * 2005-12-19 2012-08-14 Leddartech Inc. LED object detection system and method combining complete reflection traces from individual narrow field-of-view channels
CN201016927Y (zh) * 2006-05-26 2008-02-06 戴庆超 量子激光烟气连续分析传感器
US7876450B2 (en) * 2007-09-14 2011-01-25 University Of Rochester Common-path interferometer rendering amplitude and phase of scattered light
US8373860B2 (en) * 2008-02-01 2013-02-12 Palo Alto Research Center Incorporated Transmitting/reflecting emanating light with time variation
CN201262612Y (zh) * 2008-08-27 2009-06-24 索纪文 一种超高稳定性红外气体分析仪
WO2010026579A2 (en) * 2008-09-02 2010-03-11 Technion Research & Development Foundation Ltd. Method and apparatus for sensing the nature of a gaseous composition, particularly vehicular emissions
CN102004079B (zh) * 2010-09-16 2013-04-10 华南理工大学 一种基于光学传感的在线油液颗粒污染度检测传感器
CN102103071A (zh) * 2010-12-16 2011-06-22 聚光科技(杭州)股份有限公司 一种在位式吸收光谱气体分析系统
CN103063614A (zh) * 2013-01-04 2013-04-24 吉林大学 用于柴油机尾气烟度测量的激光式消光烟度计系统
CN203287312U (zh) * 2013-04-16 2013-11-13 比亚迪股份有限公司 车辆及其pm2.5颗粒检测装置组件
CN203337547U (zh) * 2013-06-27 2013-12-11 中国科学院苏州生物医学工程技术研究所 一种紧凑型单光源多通道流式分析仪
GB2524836A (en) * 2014-04-04 2015-10-07 Servomex Group Ltd Attachment and alignment device for optical sources, detectors and analysers, and modular analysis system
CN103983544B (zh) * 2014-05-28 2015-12-30 南京大学 多通道气溶胶散射吸收测量仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181419B1 (en) * 1998-05-22 2001-01-30 National Research Council Of Canada Method and apparatus for applying laser induced incandescence for the determination of particulate measurements
US6542831B1 (en) * 2001-04-18 2003-04-01 Desert Research Institute Vehicle particulate sensor system
WO2003019160A2 (en) * 2001-08-21 2003-03-06 Spx Corporation Open path emission sensing system
US7797983B2 (en) * 2004-03-29 2010-09-21 Gasera Ltd. Method and system for detecting one or more gases or gas mixtures and/or for measuring the concentration of one or more gases or gas mixtures
DE102010027849A1 (de) * 2010-04-16 2011-10-20 Robert Bosch Gmbh Anordnung sowie Verfahren zur Bestimmung der Partikelkonzentration eines Partikel mitführenden Gases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIMONE AMARAL ET AL: "An Overview of Particulate Matter Measurement Instruments", ATMOSPHERE, vol. 6, no. 9, 9 September 2015 (2015-09-09), pages 1327 - 1345, XP055373324, DOI: 10.3390/atmos6091327 *

Also Published As

Publication number Publication date
CN110036278B (zh) 2022-05-03
DE102016124068A1 (de) 2018-06-14
CN110036278A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
EP3242107B1 (de) Optische interferometrische vorrichtung zum erfassen einer 3d-struktur eines objekts
DE112015000627T5 (de) Mikrospektroskopische Vorrichtung
DE102014100594A1 (de) Vorrichtung zur Inspektion eines mit einer beschichteten Oberfläche versehenen Materials und entsprechendes Verfahren
EP3270045B1 (de) Anordnung zum messen von gaskonzentrationen
WO1986004676A2 (en) Device for optical determination of low-order errors in shape
DE102009036383B3 (de) Vorrichtung und Verfahren zur winkelaufgelösten Streulichtmessung
WO2018108650A1 (de) Messeinrichtung und verfahren zur feinstaubmessung für ein kraftfahrzeug
DE102009046279A1 (de) Messgerät zur Abgasmessung
DE19909595A1 (de) Verfahren und Vorrichtung zur Vermessung der räumlichen Leistungsdichteverteilung von Strahlung hoher Divergenz und hoher Leistung
EP3598103B1 (de) Gasanalysator und gasanalyseverfahren
DE102017117132A1 (de) Messeinrichtung zur Feinstaubmessung in mindestens einem Luftvolumen für ein Fahrzeug, insbesondere für ein Kraftfahrzeug
DE102004058408B4 (de) Vorrichtung zur Bestimmung von Oberflächeneigenschaften
DE102013219440A1 (de) Verfahren und Vorrichtung zur optischen Analyse eines Prüflings
EP4133258B1 (de) Verfahren und vorrichtung zum bestimmen frequenzabhängiger brechungsindizes
DE102006032404B4 (de) Vorrichtung und Verfahren zur Bestimmung von Oberflächeneigenschaften
DE112020001690T5 (de) Mittleres infrarot-abtastsystem zum analysieren von mikroskopischen partikeln
DE3213533A1 (de) Infrarot-spektrometer
DE112019003855T5 (de) Streulichtdetektor
DE102019107963A1 (de) Messlichtquelle sowie Messanordnung zum Erfassen eines Reflexionsspektrums
DE102015107942A1 (de) Spektrometer und Gasanalysator
DE102010041814B4 (de) Ellipsometer
DE102005025291A1 (de) Verfahren und Vorrichtung zur Bestimmung von Oberflächeneigenschaften
DE102013205848B3 (de) Optisches Temperatursensorsystem
DE102021116991A1 (de) Verfahren und Vorrichtung zum Bestimmen frequenzabhängiger Brechungsindizes
DE19716228C2 (de) Vorrichtung und Verfahren zur Überprüfung einer Oberfläche einer optischen Komponente

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837945

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17837945

Country of ref document: EP

Kind code of ref document: A1