WO2018105767A1 - 종이 집전체, 이의 제조방법 및 이를 포함하는 전기화학소자 - Google Patents
종이 집전체, 이의 제조방법 및 이를 포함하는 전기화학소자 Download PDFInfo
- Publication number
- WO2018105767A1 WO2018105767A1 PCT/KR2016/014242 KR2016014242W WO2018105767A1 WO 2018105767 A1 WO2018105767 A1 WO 2018105767A1 KR 2016014242 W KR2016014242 W KR 2016014242W WO 2018105767 A1 WO2018105767 A1 WO 2018105767A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current collector
- paper
- conductive material
- paper current
- conductive
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
- D01D5/003—Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/663—Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/74—Meshes or woven material; Expanded metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a paper current collector, a manufacturing method thereof, and an electrochemical device including the same.
- Korean Laid-Open Patent Publication No. 2015-0131505 discloses a lithium ion secondary battery manufactured by sequentially stacking a cathode / separator / cathode in a standardized case and injecting an electrolyte solution.
- the battery of such a structure has a number of limitations to meet the design diversity required in the flexible electrochemical device due to the lack of physical flexibility.
- an electrode, such as a positive electrode or a negative electrode, of a lithium ion secondary battery component is manufactured by applying an electrode mixture in which an electrode active material is dispersed in a conductive material, a binder, and a solvent in a particle form to a metal-based current collector.
- the metal-based current collector is expensive and heavy, it not only reduces the energy density of the battery, but also has low mechanical flexibility and easily detaches the electrode active layer composed of the electrode mixture applied to the surface. have.
- An object of the present invention is to provide a current collector that is light in weight, high in the energy density of the electrode when manufacturing the electrode, excellent mechanical flexibility as well as ensuring both electrical properties and transparency of the material.
- the present invention in one embodiment,
- a fibrous layer comprising nano cellulose fibers
- the conductive material provides a paper current collector, characterized in that 5 to 1,000 parts by weight based on 100 parts by weight of nano cellulose fibers.
- the present invention provides a method of manufacturing the paper current collector in one embodiment.
- the present invention provides an electrode including the paper current collector and an electrochemical device including the electrode.
- the paper current collector according to the present invention is light in weight by having a conductive layer including a conductive material constituting a conductive network with nano cellulose fibers on a fiber layer including nano cellulose fibers, and has high energy density and high mechanical flexibility in manufacturing electrodes. Not only is this excellent, there is an advantage that can secure both electrical properties and transparency of the material.
- 1 is an image schematically showing a continuous electrospinning method used in the present invention.
- FIG. 2 is an image schematically showing a double electrospinning method used in the present invention.
- Figure 3 is an image of the surface of the current collector prepared in accordance with the present invention analyzed by a runner electron microscope (SEM, acceleration voltage: 15kV).
- Example 4 is an image measuring the insulation resistance of the current collector of Example 2 and Comparative Example 2 according to the present invention.
- FIG. 5 is a graph showing (a) surface resistance and (b) electrical conductivity of a current collector manufactured according to the present invention.
- FIG. 6 is a graph showing the transmittance of light of the 550 nm wavelength of the current collector manufactured according to the present invention.
- FIG. 7 is a graph showing a resistance value according to the bending diameter of the current collector manufactured in Example 2.
- FIG. 8 is a graph showing an initial resistance value change rate when performing 5 times intervals and 5,000 repeated bending tests of the current collector manufactured in Example 2.
- FIG. 8 is a graph showing an initial resistance value change rate when performing 5 times intervals and 5,000 repeated bending tests of the current collector manufactured in Example 2.
- FIG. 10 is a graph showing an initial discharge capacity of a battery including a current collector manufactured according to the present invention.
- the terms "comprises” or “having” are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
- the present invention relates to a paper current collector, a manufacturing method thereof, and an electrochemical device including the same.
- a lithium ion secondary battery is manufactured by sequentially stacking a cathode / separator / cathode in a shaped case and injecting an electrolyte solution.
- the battery of such a structure has a number of limitations to meet the design diversity required in the flexible electrochemical device due to the lack of physical flexibility.
- an electrode such as a positive electrode or a negative electrode of a lithium ion secondary battery component is manufactured by applying an electrode mixture obtained by dispersing an electrode active material in a conductive material, a binder, and a solvent in a particle form to a metal-based current collector.
- the metal-based current collector is expensive and heavy, it not only reduces the energy density of the battery, but also has low mechanical flexibility and easily detaches the electrode active layer composed of the electrode mixture applied to the surface. have.
- the present invention provides a paper current collector, a method of manufacturing the same, and an electrochemical device including the same.
- the paper current collector according to the present invention is light in weight by having a conductive layer including a conductive material constituting a conductive network with nano cellulose fibers on a fiber layer including nano cellulose fibers, and has high energy density and high mechanical flexibility in manufacturing electrodes. Not only is this excellent, there is an advantage that can stalk both electrical properties and transparency of the material.
- the present invention provides a paper current collector including nano cellulose fibers and a conductive material.
- the paper current collector according to the present invention may have a structure in which a conductive layer including at least one conductive material forming a conductive network with a nano cellulose fiber is formed on a fiber layer including nano cellulose fibers.
- the paper current collector may include a fiber layer including nano cellulose fibers; And it may have a structure including a conductive layer formed on the fiber layer and comprising at least one conductive material.
- the paper current collector may include a fiber layer including nano cellulose fibers; A first conductive layer formed on the fiber layer and including a first conductive material; And it may have a structure including a second conductive layer comprising a second conductive material.
- the paper current collector according to the present invention includes a fiber layer composed of nano cellulose fibers as a base material, and has a structure including a conductive layer including a conductive material forming a network structure with the nano cellulose fibers of the fiber layer on the surface of the fiber layer.
- a fiber layer composed of nano cellulose fibers as a base material
- a structure including a conductive layer including a conductive material forming a network structure with the nano cellulose fibers of the fiber layer on the surface of the fiber layer Compared to the metal current collectors used in the conventional general electrochemical device, it is light and has excellent mechanical flexibility, so that the energy density of the electrode is high when manufacturing the electrode, as well as excellent electrical properties and transparency such as electrical conductivity.
- the fiber layer may have a net structure in which the light weight and high flexibility of the fiber type nano cellulose is entangled with each other to form pores. It may be one or more selected from seaweed nanofibers, bacterial cellulose obtained by culturing bacteria, derivatives thereof, and mixtures thereof.
- the nano cellulose fiber layer may be a paper containing vegetable cellulose fibers. In the case of the paper, it can be prepared by treating the nano cellulose fibers with an alkali and then mixing with the binder, the paper mixed with the binder and then dried.
- the nano cellulose fibers may have an average diameter of 10nm to 1,000nm, the average length may be 10nm to 100,000nm. More specifically, the nano cellulose fibers may have an average diameter of 50nm to 500nm or 50nm to 200nm, the average length may be 10nm to 10,000nm or 50nm to 1,000nm.
- the range of the average diameter and the average length of the cellulose fibers in the above range it is easy to form fibrous, the surface of the manufactured network structure is uniform, the interface characteristics can be improved.
- the nano cellulose fibers are at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, an acetyl group, a silane group, an acryl group. It may be modified with a functional group.
- the nano cellulose fibers are converted to vegetable cellulose nanofibers with 2,2,6,6-tetramethylpiperidine-1-oxyl (2,2,6,6-tetramethylpiperidine-1-oxyl, TEMPO). It may be a paper containing nano cellulose fibers that are oxidized to introduce a carboxyl group.
- the conductive layer may have a net structure in which conductive materials in the form of fibers are entangled with each other to form a conductive network.
- the conductive material may have a fiber shape and an average diameter may be 10 nm to 100 ⁇ m, and the ratio (L / D) of the average length to the average diameter may be 50 or more on average.
- the conductive material has an average diameter of 10 nm to 10 ⁇ m, 10 nm to 1 ⁇ m, 50 nm to 500 ⁇ m, 500 nm to 1 ⁇ m, 1 ⁇ m to 10 ⁇ m, 1 ⁇ m to 100 ⁇ m or 1 ⁇ m to 50 ⁇ m
- the ratio of the average length to the average diameter (L / D) may be 50 or more, 100 or more, 50 to 10,000, 50 to 5,000, 50 to 1,000 or 50 to 500.
- the present invention maintains the shape of the long axis relative to the short axis length by controlling the average diameter of the conductive material having a fiber form and the ratio (L / D) of the average length to the average diameter in the above range is advantageous in complexing with nano cellulose fibers
- the contact resistance between the conductive materials can be reduced to effectively form the conductive network, and the mechanical flexibility of the conductive layer can be improved at the same time.
- the support used in the current collector and the conductive material used to secure the electronic conductivity have a problem in that sufficient electrical conductivity is not realized because of poor incompatibility. In order to solve this problem, it is necessary to add a surfactant to help disperse the conductive material.
- the current collector of the present invention can easily implement the conductive network structure because it is easy to composite the nano cellulose fibers and the conductive material included in the conductive layer without the use of additional additives.
- each conductive material may be included in a form of being laminated in separate layers.
- the conductive layer may include a first conductive layer including a first conductive material; And it may have a structure including a second conductive layer comprising a second conductive material.
- the conductive material included in the conductive layer may be used without particular limitation so long as it is a conductive material commonly used in electrochemical devices.
- the conductive material may include at least one carbon-based material of carbon fiber, graphene, carbon nanotube, carbon nanofiber, and carbon ribbon; At least one metal of copper, silver, nickel and aluminum; And at least one conductive polymer among polyphenylene and polyphenylene derivatives.
- each conductive material included in the first conductive layer and the second conductive layer may be different from the conductive material.
- any one of the first and second conductive layers includes a conductive material of a carbon-based material, and the other layer Silver metal conductive materials may be included. More specifically, the conductive layer may include silver (Ag) in the first conductive layer and carbon nanotubes in the second conductive layer.
- the content ratio of the conductive layer of the present invention is based on 100 parts by weight of the nano cellulose fiber layer 5 to 1,000 parts by weight, specifically, 5 to 700 parts by weight, 5 to 500 parts by weight, 5 to 200 parts by weight, 5 to 100 parts by weight, 5 to 50 parts by weight, and 5 to 100 parts by weight of the nano cellulose fiber layer.
- To 30 parts by weight 5 to 25 parts by weight, 5 to 20 parts by weight, 5 to 15 parts by weight, 5 to 10 parts by weight, 10 to 30 parts by weight, 15 to 25 parts by weight, 8 to 12 parts by weight, 18 to 22 parts by weight.
- the present invention can improve the electrical conductivity and mechanical flexibility of the current collector while reducing the weight of the current collector by adjusting the content ratio of the fiber layer and the conductive layer including the nano cellulose fibers as described above.
- the paper current collector according to the present invention has excellent transparency and may have a transmittance of 50% or more for light having a wavelength of 550 nm, specifically, 50% to 99%, 60% to 99%, 70% to 99%, 70% to 90%, 70% to 80%, 70% to 75%, 73% to 75%, 80% to 99%, 90% to 99%, 95% to 99% or 96% to 98%. .
- the paper current collector is excellent in mechanical flexibility, and thus the conductive layer does not detach or damage even after winding on a 5 mm diameter rod or after 5,000 repeated bending tests, so that the rate of change of the initial surface resistance value is 5% or less, specifically, May be 3% or less, 2% or less, 1% or less, or 0.01 to 2%.
- the present invention provides a method for producing a paper current collector comprising the step of electrospinning a spinning solution containing a conductive material on a fiber layer comprising nano cellulose fibers.
- the method of manufacturing a paper current collector according to the present invention can not only uniformly disperse the conductive material constituting the conductive layer on the fiber layer by using electrospinning when introducing the conductive layer on the fiber layer containing nano cellulose fibers. It is possible to effectively form a conductive network with the nano cellulose fibers of the fiber layer, there is an advantage that can easily form a conductive network between the conductive material contained in each conductive layer when two or more kinds of conductive material to form each conductive layer.
- the electrospinning may be sequential electrospinning or dual electrospinning.
- the continuous electrospinning method refers to the first conductive material and the second conductive material by electrospinning the spinning liquid containing the first conductive material and the second conductive material together with one nozzle on the fiber layer including the nano cellulose fibers as shown in FIG. 1.
- the dual electrospinning method includes a first conductive layer that continuously forms the first conductive layer in the first nozzle and the second nozzle provided in the electrospinner when the conductive layer is formed on the fiber layer including the nanocellulose fibers.
- the second conductive material constituting the ash and the second conductive layer is radiated so that each conductive material is sequentially stacked on the fiber layer in the form of fibers.
- the electrospinning rate at which the conductive material is radiated may be 0.1 ml / h to 100 ml / h, specifically 0.1 ml / h to 5 ml / h, 1 ml / h to 10 ml / h, and 5 ml / h.
- electrospinning may be performed under voltage conditions of 5 kV to 50 kV, specifically 5 kV to 20 kV, 20 kV to 50 kV, 10 kV to 30 kV, 30 k to 50 kV, 15 k to 25 kV. It can be carried out under voltage conditions of kHz, 15 kV to 21 kV, 16 kV to 20 kV, 15 kV to 17 kV, 17 kV to 19 kV or 19 kV to 21 kV.
- the amount of the spinning solution used during electrospinning may be 0.01 ml to 10 ml per unit area (1 cm 2), specifically, 0.01 ml to 5 ml, 0.1 ml to 2 ml, and 0.1 ml per unit area (1 cm 2).
- the present invention by controlling the electrospinning speed, voltage conditions and the amount of the spinning solution in the above range during the electrospinning, it is easy to control the content of the conductive material contained in the conductive layer, the shape of the conductive material, the porosity of the conductive layer, etc.
- the overall electrical properties and transparency can be easily adjusted.
- the present invention provides an electrode including the paper current collector and the electrode active material, and an electrochemical device manufactured by the same.
- the electrode according to the present invention includes a paper current collector described above, has excellent mechanical flexibility and electrical conductivity, and thus has a high energy density, and desorption of the electrode active material layer formed on the current collector is suppressed, such as a flexible lithium ion secondary battery. ) It can be usefully used in electrochemical devices.
- the cellulose 0.5% concentration suspension obtained by adding cellulose fibers to water was stirred with a stirrer for 20 minutes, and then passed through a nozzle of 50 to 200 ⁇ diameter 20 times using a homogenizer at a pressure of 20,000 psi.
- a dispersion was prepared in which nano cellulose fibers having a diameter of 10 to 100 nm were dispersed.
- the dispersion prepared in Preparation Example 1 was mounted on a continuous electrospinning nozzle of an electrospinning machine, and electrospun to prepare a nano cellulose paper.
- the applied voltage was adjusted to 20 ⁇ 1kV
- the spinning solution was spun 1mL per unit area (1cm2) at a spinning speed of 20ml / hr.
- an isopropyl alcohol solution containing 1% by weight of silver nanowires (Ag nanowire) dispersed was electrospun on a nano cellulose paper prepared by mounting a continuous electrospinning nozzle to prepare a paper current collector.
- the applied voltage was adjusted to 15 ⁇ 1kV
- the spinning liquid was spun 0.5ml per unit area (1cm2) at a spinning speed of 20ml / hr
- the content of the silver nanowire layer contained in the paper current collector is nano It was adjusted to 10 ⁇ 5 parts by weight based on 100 parts by weight of cellulose paper.
- Nanocellulose paper was prepared in the same manner as prepared in Example 1 using the dispersion prepared in Preparation Example 1. Then, an isopropyl alcohol solution containing 1% by weight of silver nanowires was injected into the first nozzle of the dual electrospinning machine, and an aqueous solution containing 0.01% by weight of carbon nanotubes was injected into the second nozzle. Thereafter, double electrospinning was performed on the prepared nano cellulose paper to prepare a paper current collector in which the first conductive layer including the first conductive material and the second conductive layer including the second conductive material were sequentially stacked.
- the applied voltages at the first and second nozzles were adjusted to 15 ⁇ 1kV and 18 ⁇ 1kV, respectively, and the spinning speeds were 20 ⁇ 1 ml / hr and 10 ⁇ 1 ml / hr, respectively, and the unit area (1 cm 2).
- the sugar dose was controlled at 0.5 ml each.
- the contents of the first and second conductive layers included in the paper current collector were adjusted to be 20 ⁇ 10 parts by weight based on 100 parts by weight of the nano cellulose paper.
- a 0.5% by weight cellulose suspension obtained by adding cellulose fibers to distilled water was stirred with a stirrer for 20 minutes and passed 20 times through a nozzle of 50 to 200 ⁇ diameter using a homogenizer at a pressure of 20,000 psi.
- an isopropyl alcohol solution containing 1% by weight of silver nanowires (Ag nanowire) dispersed in the dispersion was mixed, and the solvent of the mixed solution thus obtained was volatilized to prepare a current collector including nano cellulose fibers and a conductive material. It was.
- the content of the silver nanowire layer contained in the current collector was adjusted to 20 ⁇ 10 parts by weight based on 100 parts by weight of nano cellulose.
- the current collectors of Examples 1 and 2 according to the present invention are uniformly dispersed in a fibrous form of conductive materials on a fibrous layer including nano cellulose fibers, and the dispersed conductive material forms a network of a network structure. It can be seen that it forms. On the other hand, it can be seen that the current collector of Comparative Example 1 is difficult to identify the conductive material on the surface.
- the paper current collector according to the present invention has a conductive network of a conductive material formed on its surface.
- Insulation resistance was measured for the paper current collectors (3 cm wide and 2 cm long) prepared in Examples 1 and 2 and Comparative Example 1 using an insulation resistance meter.
- the current collector of Example 2 according to the present invention has excellent electrical properties and exhibits insulation resistance of 11.5 ⁇ 0.1 m ⁇ .
- the paper current collectors of Examples 1 and 2 were found to have surface resistances of 12.5 ⁇ 0.5 Ohm / sq and 3 ⁇ 0.5 Ohm / sq and electrical conductivity of 163 ⁇ 5 S / cm and 375 ⁇ 5 S / cm, respectively.
- the current collector of Comparative Example 1 appeared to have an insulation resistance of 0 m ⁇ like the non-insulator, and it was confirmed that the surface resistance and the electrical conductivity were 25,000 Ohm / sq and ⁇ 0 S / cm, respectively.
- the paper current collector according to the present invention can be seen that the conductive network of the conductive material is formed on the surface is excellent in electrical properties such as surface resistance, electrical conductivity.
- UV-Vis spectrophotometer Infrared visible light spectrophotometer (UV-Vis spectrophotometer) to the paper current collectors prepared in Examples 1 and 2 and Comparative Example 1 (3 cm wide and 2 cm long) for light having a wavelength of 550 nm Permeability was measured and the results are shown in FIG. 6.
- the current collectors of Examples 1 and 2 according to the present invention have light transmittances of 97 ⁇ 1% and 74 ⁇ 1%, respectively, for light having a wavelength of 550 nm.
- the current collector of Comparative Example 1 was confirmed to have a light transmittance of 35 ⁇ 1%.
- the current collector according to the present invention is provided with a conductive layer including a conductive material for forming a nano-cellulose fiber and a conductive network structure on the fiber layer including the nano cellulose fibers, thereby improving electrical and optical properties.
- the initial resistance of the current collector manufactured in Example 2 was measured and the resistance after winding on an acrylic rod having a diameter of 0 to 20 mm was measured to change the resistance value. was observed.
- the initial resistance of the current collector prepared in Example 2 was measured, the resistance was measured while performing 5,000 repeated bending tests at intervals of 5 mm to observe the change in resistance value.
- the morphology of the current collector after 5,000 repeated bending tests was performed by scanning electron microscope (SEM, acceleration voltage: 15 kV) and energy dispersive spectroscopy (Energy dispersive X) for the silver nanowires included in the first conductive layer. -ray spectroscopy (EDX) were analyzed, and the measured results are shown in FIGS. 7 to 9.
- the current collector according to the present invention has excellent mechanical flexibility did not appear to change the initial resistance value according to the degree of bending, even after 5,000 bending, the initial resistance value is constant and detachment or damage of the conductive layer It was confirmed that this does not occur.
- the paper current collector according to the present invention is manufactured through an electrospinning process, so that the conductive network of the nano cellulose fibers of the fibrous layer and the conductive material of the conductive layer is effectively achieved.
- a coin-type lithium secondary battery including the electrode was manufactured to evaluate the performance of an electrode including a paper current collector and a battery including the electrode.
- lithium manganese composite oxide LiMn 2 O 4 , 95% by weight
- carbon black 2% by weight
- PVDF polyvinylidene fluoride
- lithium titanium oxide Li 4 Ti 5 O 12 , 88 wt% as a negative electrode active material
- PVDF polyvinylidene fluoride
- carbon black 2 wt%)
- NMP methyl-2 pyrrolidone
- EC ethylene carbonate
- DEC diethyl carbonate
- a non-aqueous electrolyte was injected to prepare a coin-type lithium secondary battery. Initial capacity was measured for each of the manufactured lithium secondary batteries, and the results are shown in FIG. 10.
- the batteries including the current collectors of Examples 1 and 2 according to the present invention were found to have initial capacities of about 100 ⁇ 1 mAh / g and 104 ⁇ 1 mAh / g, respectively, but Comparative Examples It was confirmed that the battery including the current collector of 2 had an initial capacity of about 12 ⁇ 1 mAh / g.
- the battery including the paper current collector according to the present invention has excellent electrical properties.
- the paper current collector according to the present invention is light in weight by having a conductive layer including a conductive material constituting a conductive network with nano cellulose fibers on a fiber layer including nano cellulose fibers, and has high energy density and high mechanical flexibility in manufacturing electrodes. Not only is this excellent, it can secure both electrical properties and transparency of the material can be usefully used as an electrode current collector of the electrochemical device.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Cell Separators (AREA)
- Paper (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 종이 집전체, 이의 제조방법 및 이를 포함하는 전기화학소자에 관한 것으로, 본 발명에 따른 종이 집전체는 나노 셀룰로오스 섬유를 포함하는 섬유층 상에 나노 셀룰로오스 섬유와 전도성 네트워크를 이루는 도전재가 포함된 도전층을 구비함으로써 무게가 가볍고, 전극 제조 시 전극의 에너지 밀도가 높으며, 기계적 유연성이 우수할 뿐만 아니라, 소재의 전기적 물성과 투명성을 모두 활보할 수 있는 이점이 있다.
Description
본 발명은 종이 집전체, 이의 제조방법 및 이를 포함하는 전기화학소자에 관한 것이다.
최근 롤-업 디스플레이, 웨어러블 전자소자 등 다양한 디자인이 가능한 플렉서블 리튬이온이차전지(flexible lithium-ion batteries)와 같은 플렉서블 전기화학소자에 대한 중요성과 디자인 다양성에 대한 요구가 높아지고 있는 가운데, 이를 구성하는 유연한 재료에 대한 관심이 집중되고 있다.
예를 들어, 대한민국 공개특허 제2015-0131505호는 정형화된 케이스 내에 양극/분리막/음극을 순차적으로 적층한 후, 전해액을 주입하여 제조된 리튬이온 이차전지를 개시하고 있다. 그러나 이와 같은 구조의 전지는 물리적 유연성이 부족하기 때문에 플렉서블 전기화학소자에서 요구되는 디자인 다양성을 충족시키기에 많은 한계점을 갖고 있다. 특히, 리튬이온 이차전지 구성요소 중에서 양극이나 음극과 같은 전극은 전극활물질을 입자 형태의 도전재, 바인더 및 용매에 분산시킨 전극 혼합물을 금속 기반의 집전체에 도포하여 제조한다. 그러나, 상기 금속 기반의 집전체는 가격이 높고 무게가 무거워 전지의 에너지 밀도를 감소시킬 뿐만 아니라, 기계적 유연성이 낮으며 표면에 도포된 전극 혼합물로 이루어지는 전극활성층이 쉽게 탈리되므로 사용 수명이 짧은 한계가 있다.
이와 더불어, 소재의 디자인 다양성 확보를 위하여 차세대 태양전지나 디스플레이 등에 직접화가 가능하고 디자인 제약이 상대적으로 자유로운 투명소재에 대한 연구가 활발히 이뤄지고 있다. 그러나, 일반적으로 소재의 투명성과 전기 전도도 등의 전기적 물성은 서로 상충관계를 가지므로 전기적 물성과 투명성을 모두 만족시키는 소재를 개발하는데 많은 어려움이 있다.
따라서, 원료가격이 저렴하여 경제적이고, 무게가 가벼우며, 전극 제조 시 전극의 에너지 밀도가 높고, 기계적 유연성이 높을 뿐만 아니라, 집전체의 전기 물성과 투명성을 용이하게 조절할 수 있는 집전체의 개발이 절실히 요구되고 있다.
본 발명의 목적은 무게가 가볍고, 전극 제조 시 전극의 에너지 밀도가 높으며, 기계적 유연성이 우수할 뿐만 아니라 전기적 물성과 소재의 투명성을 모두 확보할 수 있는 집전체를 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 일실시예에서,
나노 셀룰로오스 섬유를 포함하는 섬유층; 및
상기 섬유층 상에 형성되고 1종 이상의 도전재를 포함하는 도전층을 포함하고,
상기 도전재는 나노 셀룰로오스 섬유 100 중량부에 대하여 5 내지 1,000 중량부인 것을 특징으로 하는 종이 집전체를 제공한다.
또한, 본 발명은 일실시예에서, 상기 종이 집전체의 제조방법을 제공한다.
나아가, 본 발명은 일실시예에서, 상기 종이 집전체를 포함하는 전극 및 상기 전극을 포함하는 전기화학소자를 제공한다.
본 발명에 따른 종이 집전체는 나노 셀룰로오스 섬유를 포함하는 섬유층 상에 나노 셀룰로오스 섬유와 전도성 네트워크를 이루는 도전재가 포함된 도전층을 구비함으로써 무게가 가볍고, 전극 제조 시 전극의 에너지 밀도가 높으며, 기계적 유연성이 우수할 뿐만 아니라, 소재의 전기적 물성과 투명성을 모두 확보할 수 있는 이점이 있다.
도 1은 본 발명에서 사용되는 연속 전기방사법을 개략적으로 나타낸 이미지이다.
도 2는 본 발명에서 사용되는 이중 전기방사법을 개략적으로 나타낸 이미지이다.
도 3은 본 발명에 따라 제조된 집전체의 표면을 주자전자현미경(SEM, 가속 전압: 15kV)으로 분석한 이미지이다.
도 4는 본 발명에 따른 실시예 2 및 비교예 2의 집전체의 절연저항을 측정한 이미지이다.
도 5는 본 발명에 따라 제조된 집전체의 (a) 표면 저항 및 (b) 전기 전도도를 나타낸 그래프이다.
도 6은 본 발명에 따라 제조된 집전체의 550㎚ 파장의 광에 대한 투과도를 나타낸 그래프이다.
도 7은 실시예 2에서 제조된 집전체의 밴딩 직경에 따른 저항값을 나타낸 그래프이다.
도 8은 실시예 2에서 제조된 집전체의 5㎜ 간격, 5,000회 반복굽힘 시험 수행 시 초기 저항값 변화율을 나타낸 그래프이다.
도 9는 실시예 2에서 제조된 집전체의 5㎜ 간격, 5,000회 반복굽힘 시험 수행 후 (a) 주자전자현미경(SEM, 가속 전압: 15kV) 및 (b) 에너지분산형 분광(Energy dispersive X-ray spectroscopy, EDX)을 분석한 이미지이다.
도 10은 본 발명에 따라 제조된 집전체를 포함하는 전지의 초기 방전 용량을 나타낸 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서 첨부된 도면은 설명의 편의를 위하여 확대 또는 축소하여 도시된 것으로 이해되어야 한다.
본 발명은 종이 집전체, 이의 제조방법 및 이를 포함하는 전기화학소자에 관한 것이다.
최근 롤-업 디스플레이, 웨어러블 전자소자 등 다양한 디자인이 가능한 플렉서블 리튬이온이차전지(flexible lithium-ion batteries)와 같은 플렉서블 전기화학소자에 대한 중요성과 디자인 다양성에 대한 요구가 높아지고 있는 가운데, 이를 구성하는 유연한 재료에 대한 관심이 집중되고 있다.
예를 들어, 리튬이온 이차전지는 정형화된 케이스 내에 양극/분리막/음극을 순차적으로 적층한 후, 전해액을 주입하여 제조한다. 그러나 이와 같은 구조의 전지는 물리적 유연성이 부족하기 때문에 플렉서블 전기화학소자에서 요구되는 디자인 다양성을 충족시키기에 많은 한계점을 갖고 있다. 특히 리튬이온 이차전지 구성요소 중에서 양극이나 음극과 같은 전극은, 전극활물질을 입자 형태의 도전재, 바인더 및 용매에 분산시킨 전극 혼합물을 금속 기반의 집전체에 도포하여 제조한다. 그러나, 상기 금속 기반의 집전체는 가격이 높고 무게가 무거워 전지의 에너지 밀도를 감소시킬 뿐만 아니라, 기계적 유연성이 낮으며 표면에 도포된 전극 혼합물로 이루어지는 전극활성층이 쉽게 탈리되므로 사용 수명이 짧은 한계가 있다.
이와 더불어, 소재의 디자인 다양성 확보를 위하여 차세대 태양전지나 디스플레이 등에 직접화가 가능하고 디자인 제약이 상대적으로 자유로운 투명소재에 대한 연구가 활발히 이뤄지고 있다. 그러나, 일반적으로 소재의 투명성과 전기 전도도 등의 전기적 물성은 서로 상충관계를 가지므로 전기적 물성과 투명성을 모두 만족시키는 소재를 개발하는데 많은 어려움이 있다.
이에, 본 발명은 종이 집전체, 이의 제조방법 및 이를 포함하는 전기화학소자를 제공한다.
본 발명에 따른 종이 집전체는 나노 셀룰로오스 섬유를 포함하는 섬유층 상에 나노 셀룰로오스 섬유와 전도성 네트워크를 이루는 도전재가 포함된 도전층을 구비함으로써 무게가 가볍고, 전극 제조 시 전극의 에너지 밀도가 높으며, 기계적 유연성이 우수할 뿐만 아니라, 소재의 전기적 물성과 투명성을 모두 활보할 수 있는 이점이 있다.
이하, 본 발명을 보다 상세히 설명한다.
본 발명은 일실시예에서, 나노 셀룰로오스 섬유와 도전재를 포함하는 종이 집전체를 제공한다.
본 발명에 따른 상기 종이 집전체는 나노 셀룰로오스 섬유를 포함하는 섬유층 상에 나노 셀룰로오스 섬유와 전도성 네트워크를 이루는1종 이상의 도전재를 포함하는 도전층이 형성된 구조를 가질 수 있다.
하나의 예로서, 상기 종이 집전체는 나노 셀룰로오스 섬유를 포함하는 섬유층; 및 상기 섬유층 상에 형성되고 1종 이상의 도전재를 포함하는 도전층을 포함하는 구조를 가질 수 있다.
다른 하나의 예로서, 상기 종이 집전체는 나노 셀룰로오스 섬유를 포함하는 섬유층; 상기 섬유층 상에 형성되고 제1 도전재를 포함하는 제1 도전층; 및 제2 도전재를 포함하는 제2 도전층을 포함하는 구조를 가질 수 있다.
본 발명에 따른 상기 종이 집전체는 기재로서 나노 셀룰로오스 섬유로 구성되는 섬유층을 포함하고, 상기 섬유층 표면에서 섬유층의 나노 셀룰로오스 섬유와 네트워크 구조를 이루는 도전재를 포함하는 도전층을 포함하는 구조를 가짐으로써 종래 일반적인 전기화학소자에 사용되고 있는 금속 집전체와 대비하여 가볍고, 기계적 유연성이 우수하여 전극 제조 시 전극의 에너지 밀도가 높을 뿐만 아니라 전기 전도도와 같은 전기적 물성과 투명성이 뛰어나다.
이때, 상기 섬유층은 중량이 가볍고 유연성이 높은 섬유 형태의 나노 셀룰로오스가 서로 엉켜 기공을 형성하는 그물 구조를 가질 수 있고, 이러한 섬유층에 포함된 나노 셀룰로오스 섬유는 나노 크기의 목질 재료로부터 분리된 셀룰로오스 나노 섬유, 해조류 나노섬유, 균을 배양하여 얻은 박테리아 셀룰로오스, 이들의 유도체 및 이들의 혼합물에서 선택되는 1종 이상일 수 있다. 하나의 예로서, 상기 나노 셀룰로오스 섬유층은 식물성 셀룰로오스 섬유를 포함하는 종이일 수 있다. 상기 종이의 경우, 나노 셀룰로오스 섬유를 알칼리로 처리한 후 결합제와 혼합하고, 결합제와 혼합된 섬유를 초지한 다음 건조시켜 제조될 수 있다.
또한, 상기 나노 셀룰로오스 섬유는 평균 직경이 10㎚ 내지 1,000㎚일 수 있고, 평균 길이는 10㎚ 내지 100,000㎚일 수 있다. 보다 구체적으로, 상기 나노 셀룰로오스 섬유는 평균 직경이 50㎚ 내지 500㎚ 또는 50㎚ 내지 200㎚일 수 있고, 평균 길이는 10㎚ 내지 10,000㎚ 또는 50㎚ 내지 1,000㎚일 수 있다. 본 발명은 셀룰로오스 섬유의 평균 직경과 평균 길이의 범위를 상기 범위로 제어함으로써 섬유상 형성이 용이하고, 제조된 그물 구조의 표면이 균일해져 계면 특성이 향상시킬 수 있다.
아울러, 상기 나노 셀룰로오스 섬유는 수산화기 (hydroxyl group), 카르복시기 (carboxyl group), 아세틸기 (acetyl group), 실란기 (silane group), 아크릴기 (acryl group)로 이루어진 군으로부터 선택되는 1종 이상의 작용기로 작용기로 개질된 것일 수 있다. 하나의 예로서, 상기 나노 셀룰로오스 섬유는 식물성 셀룰로오스 나노섬유를 2,2,6,6-테트라메틸피페리딘-1-옥실(2,2,6,6-tetramethylpiperidine-1-oxyl, TEMPO)로 산화 처리되어 카르복시기가 도입된 나노 셀룰로오스 섬유를 포함하는 종이일 수 있다.
이와 더불어, 상기 도전층은 섬유 형태의 도전재가 서로 엉켜 전도성 네트워크를 형성하는 그물 구조를 가질 수 있다. 여기서, 상기 도전재는 섬유 형태를 가져 평균 직경이 10㎚ 내지 100㎛일 수 있고, 평균 직경 대비 평균 길이의 비율(L/D)가 평균 50 이상일 수 있다. 구체적으로, 상기 도전재는 평균 직경이 10㎚ 내지 10㎛, 10㎚ 내지 1㎛, 50㎚ 내지 500㎛, 500㎚ 내지 1㎛, 1㎛ 내지 10㎛, 1㎛ 내지 100㎛ 또는 1㎛ 내지 50㎛일 수 있고, 평균 직경 대비 평균 길이의 비율(L/D)이 50 이상, 100 이상, 50 내지 10,000, 50 내지 5,000, 50 내지 1,000 또는 50 내지 500일 수 있다. 본 발명은 섬유 형태를 갖는 도전재의 평균 직경과, 평균 직경 대비 평균 길이의 비율(L/D)을 상기 범위로 제어함으로써 단축 대비 장축의 길이가 긴 형태를 유지하여 나노 셀룰로오스 섬유와 복합화가 유리하고, 도전재간 접촉 저항이 감소하여 효과적으로 전도성 네트워크를 형성할 수 있으며, 도전층의 기계적 유연성을 동시에 향상시킬 수 있다. 종래 기계적 물성을 확보하기 위하여 집전체에 사용되는 지지체와 전자 전도성을 확보하기 위하여 사용되는 도전재는 혼합성이 떨어지므로 충분한 전기 전도도가 구현되지 않는 문제가 있었다. 이를 해결하기 위해서는 도전재의 분산을 돕는 계면활성제의 첨가가 필수적인데, 첨가되는 대부분의 계면활성제는 비전도성을 가지므로 전기 전도도의 하락이 야기된다. 그러나, 본 발명의 집전체는 별도의 첨가제 사용 없이 섬유층에 포함된 나노 셀룰로오스 섬유와 도전층에 포함된 도전재의 복합화가 용이하므로 전도성 네트워크 구조를 효과적으로 구현할 수 있다.
또한, 상기 도전층은 2종 이상의 도전재를 포함하는 경우, 각 도전재를 각각 별도의 층으로 적층된 형태로 포함될 수 있다. 구체적으로, 상기 도전층은 제1 도전재를 포함하는 제1 도전층; 및 제2 도전재를 포함하는 제2 도전층을 포함하는 구조를 가질 수 있다.
이와 더불어, 상기 도전층에 포함된 도전재는 전기화학소자에 통상적으로 사용되는 도전재라면 특별히 제한되지 않고 사용될 수 있다. 구체적으로 상기 도전재로는 탄소섬유, 그래핀, 탄소나노튜브, 탄소나노섬유 및 탄소리본 중 1종 이상의 탄소계 물질; 구리, 은, 니켈 및 알루미늄 중 1종 이상의 금속; 및 폴리페닐렌 및 폴리페닐렌 유도체 중 1종 이상의 도전성 폴리머로 이루어진 군으로부터 선택되는 2종 이상일 수 있다. 아울러, 상기 도전재는 제1 도전층과 제2 도전층에 포함되는 각 도전재가 상이할 수 있다. 하나의 예로서, 상기 도전층은 제1 도전층 및 제2 도전층에 포함되는 경우, 제1 및 제2 도전층 중 어느 하나의 층은 탄소계 물질의 도전재를 포함하고, 나머지 하나의 층은 금속 도전재가 포함될 수 있다. 보다 구체적으로 상기 도전층은 제1 도전층에 은(Ag)을 포함하고, 제2 도전층에는 탄소나노튜브를 포함할 수 있다.
나아가, 본 발명의 도전층의 함량비는 나노 셀룰로오스 섬유층 100 중량부를 기준으로 5 내지 1,000 중량부일 수 있고, 구체적으로는 나노 셀룰로오스 섬유층 100 중량부에 대하여 5 내지 700 중량부, 5 내지 500 중량부, 5 내지 200 중량부, 5 내지 100 중량부, 5 내지 50 중량부, 5 내지 30 중량부, 5 내지 25 중량부, 5 내지 20 중량부, 5 내지 15 중량부, 5 내지 10 중량부, 10 내지 30 중량부, 15 내지 25 중량부, 8 내지 12 중량부, 18 내지 22 중량부, 50 내지 1,000 중량부, 10 내지 800 중량부, 50 내지 800 중량부, 50 내지 600 중량부, 50 내지 500 중량부, 50 내지 300 중량부, 50 내지 200 중량부, 50 내지 100 중량부, 100 내지 300 중량부, 200 내지 500 중량부, 400 내지 700 중량부, 500 내지 900 중량부, 700 내지 1,000 중량부, 100 내지 300 중량부, 150 내지 250 중량부 또는 180 내지 220 중량부일 수 있다. 본 발명은 나노 셀룰로오스 섬유를 포함하는 섬유층과 도전층의 함량비를 상기와 같이 조절함으로써 집전체의 무게를 줄이면서 집전체의 전기 전도도와 기계적 유연성을 향상시킬 수 있다.
한편, 본 발명에 따른 종이 집전체는 투명성이 우수하여 550㎚ 파장의 광에 대한 투과도가 50% 이상일 수 있고, 구체적으로는 50% 내지 99%, 60% 내지 99%, 70% 내지 99%, 70% 내지 90%, 70% 내지 80%, 70% 내지 75%, 73% 내지 75%, 80% 내지 99%, 90% 내지 99%, 95% 내지 99% 또는 96% 내지 98%일 수 있다.
나아가, 상기 종이 집전체는 기계적 유연성이 우수하여 5 ㎜ 직경의 로드(rod)에 감거나 5,000회의 반복 굽힘 시험 이후에도 도전층의 탈리되거나 손상되지 않아 초기 표면 저항값의 변화율이 5% 이하, 구체적으로는 3% 이하, 2% 이하, 1% 이하, 또는 0.01 내지 2%일 수 있다.
또한, 본 발명은 일실시예에서, 나노 셀룰로오스 섬유를 포함하는 섬유층 상에 도전재를 포함하는 방사액을 전기방사하는 단계를 포함하는 종이 집전체의 제조방법을 제공한다.
본 발명에 따른 종이 집전체의 제조방법은 나노 셀룰로오스 섬유를 포함하는 섬유층 상에 도전층을 도입할 때 전기방사를 이용함으로써 도전층을 구성하는 도전재를 섬유층 상에 균일하게 분산시킬 수 있을 뿐만 아니라 섬유층의 나노 셀룰로오스 섬유와 효과적으로 전도성 네트워크를 형성할 수 있고, 2종 이상의 도전재가 각각의 도전층을 형성하는 경우 각 도전층에 포함된 도전재간의 전도성 네트워크를 용이하게 형성할 수 있는 이점이 있다.
이때, 상기 전기방사는 연속 전기방사법(sequential electrospinning) 또는 이중 전기방사법(dual electrospinning)일 수 있다.
연속 전기방사법이란 도 1에 나타낸 바와 같이 나노 셀룰로스 섬유를 포함하는 섬유층 상에 제1 도전재와 제2 도전재를 함께 포함하는 방사액을 하나의 노즐로 전기방사하여 제1 도전재와 제2 도전재가 섬유층의 표면에서 분산 혼합되는 방식을 말한다. 또한, 이중 전기방사법이란 도 2에 나타낸 바와 같이 나노 셀룰로오스 섬유를 포함하는 섬유층 상에 도전층 형성 시 전기방사기에 구비된 제1 노즐과 제2 노즐에서 연속적으로 제1 도전층을 구성하는 제1 도전재와 제2 도전층을 구성하는 제2 도전재를 방사하여 각각의 도전재가 섬유 형태로 섬유층 상에 순차적으로 적층되도록 하는 방식을 말한다.
이때, 도전재가 방사되는 전기방사 속도는 0.1 ㎖/h 내지 100 ㎖/h일 수 있고, 구체적으로는 0.1 ㎖/h 내지 5 ㎖/h, 1 ㎖/h 내지 10 ㎖/h, 5 ㎖/h 내지 50 ㎖/h, 10 ㎖/h 내지 40 ㎖/h, 15 ㎖/h 내지 30 ㎖/h 또는 18 ㎖/h 내지 22 ㎖/h일 수 있다.
또한, 전기방사는 5㎸ 내지 50㎸의 전압 조건에서 수행될 수 있고, 구체적으로는 5㎸ 내지 20㎸, 20㎸ 내지 50㎸, 10㎸ 내지 30㎸, 30㎸ 내지 50㎸, 15㎸ 내지 25㎸, 15㎸ 내지 21㎸, 16㎸ 내지 20㎸, 15㎸ 내지 17㎸, 17㎸ 내지 19㎸ 또는 19㎸ 내지 21㎸의 전압 조건에서 수행될 수 있다.
나아가, 전기방사 시 방사액의 사용량은 단위면적(1㎠) 당 0.01㎖ 내지 10㎖일 수 있고, 구체적으로는 단위면적(1㎠) 당 0.01㎖ 내지 5㎖, 0.1㎖ 내지 2㎖, 0.1㎖ 내지 1㎖, 1㎖ 내지 5㎖, 5㎖ 내지 10㎖, 3㎖ 내지 7㎖, 0.2㎖ 내지 0.8㎖, 0.4㎖ 내지 0.6㎖ 또는 0.5㎖ 내지 1.5㎖일 수 있다.
본 발명은 전기방사 시 전기방사 속도, 전압 조건 및 방사액의 사용량을 상기 범위로 제어함으로써 도전층에 포함되는 도전재의 함량, 도전재의 형태, 도전층의 기공도 등의 조절이 용이하므로 제조되는 집전체의 전기적 물성과 투명성을 용이하게 조절할 수 있다.
나아가, 본 발명은 일실시예에서, 상기 종이 집전체 및 전극활물질을 포함하는 전극 및 이를 포함하여 제조되는 전기화학소자를 제공한다.
본 발명에 따른 전극은 앞서 설명한 종이 집전체를 포함하여 기계적 유연성 및 전기 전도성이 뛰어나므로 에너지 밀도가 높고, 집전체 상에 형성된 전극활물질층의 탈리가 억제되므로 플렉서블 리튬이온 이차전지와 같은 플렉서블(flexible) 전기화학소자에 유용하게 사용될 수 있다.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
제조예 1.
셀룰로오스(cellulose) 섬유를 물에 넣어 얻은 셀룰로오스 0.5% 농도 현탁액을 20분간 교반기로 교반한 후, 20,000 psi 압력의 호모게나이저(homogenizer)를 이용하여 50 내지 200㎛ 직경의 노즐로 각각 20회 통과시켜 섬유의 직경이 10 내지 100nm 크기의 나노 셀룰로오스 섬유가 분산된 분산액을 제조하였다.
실시예 1.
제조예 1에서 제조된 분산액을 전기방사기의 연속 전기방사 노즐에 장착 시키고, 전기방사하여 나노 셀룰로오스 종이를 제조하였다. 이때, 인가 전압은 20±1kV로 조절하였고, 방사액을 20 ㎖/hr의 방사속도로 단위면적(1㎠)당 1㎖씩 방사하였다. 다음으로 1 중량%의 은 나노와이어(Ag nanowire)가 분산된 이소프로필알코올 용액을 연속 전기방사 노즐에 장착하여 제조된 나노 셀룰로오스 종이 위에 전기방사하여 종이 집전체를 제조하였다. 이때, 인가 전압은 15±1kV로 조절하였고, 방사액을 20 ㎖/hr의 방사속도로 단위면적(1㎠)당 0.5㎖씩 방사하였으며, 종이 집전체에 포함된 은 나노와이어 층의 함량은 나노 셀룰로오스 종이 100 중량부 기준 10±5 중량부가 되도록 조절하였다.
실시예 2.
제조예 1에서 제조된 분산액을 사용하여 실시예 1에서 제조된 것과 동일한 방법으로 나노셀룰로오스 종이를 제조하였다. 그런 다음 이중 전기방사기의 제1 노즐에 1 중량%의 은 나노와이어(Ag nanowire)가 분산된 이소프로필알코올 용액을 주입하고, 제2 노즐에는 0.01 중량%의 카본나노튜브가 분산된 수용액을 주입한 후, 앞서 준비된 나노 셀룰로오스 종이 위에 이중 전기방사하여 제1 도전재를 포함하는 제1 도전층과 제2 도전재를 포함하는 제2 도전층이 순차적으로 적층된 종이 집전체를 제조하였다. 이때, 제1 및 제2 노즐에서의 인가 전압은 각각 15±1kV 및 18±1kV으로 조절하였고, 방사속도는 각각 20±1 ㎖/hr 및 10±1 ㎖/hr이었으며, 단위면적(1㎠)당 방사량은 각각 0.5㎖로 제어되었다. 또한, 종이 집전체에 포함된 제1 및 제2 도전층의 함량은 나노 셀룰로오스 종이 100 중량부 기준 20±10 중량부가 되도록 조절하였다.
비교예 1.
셀룰로오스(cellulose) 섬유를 증류수에 첨가하여 얻은 0.5 중량%의 셀룰로오스 현탁액을 20분간 교반기로 교반하고, 20,000psi 압력의 호모게나이저(homogenizer)를 이용하여 50 내지 200㎛ 직경의 노즐에 각각 20회 통과시켜 직경 10 내지 100nm의 나노 셀룰로오스 섬유가 분산된 분산액을 제조하였다. 그 후, 상기 분산액에 1 중량%의 은 나노와이어(Ag nanowire)가 분산된 이소프로필알코올 용액을 혼합하고, 이렇게 얻은 혼합용액의 용매를 휘발시켜 나노 셀룰로오스 섬유와 도전재를 포함하는 집전체를 제조하였다. 이때, 집전체에 포함된 은 나노와이어 층의 함량은 나노 셀룰로오스 100 중량부 기준 20±10 중량부가 되도록 조절하였다.
실험예 1. 종이 집전체의 성능 평가
본 발명에 따른 종이 집전체의 성능을 평가하기 위하여 하기와 같은 실험을 수행하였다.
가. 모폴로지 분석
실시예 1 및 2와 비교예 1에서 제조된 집전체를 대상으로 주사전자현미경(SEM) 분석을 수행하였다. 이때, 가속 전압은 15kV였으며, 측정된 결과는 도 3에 나타내었다.
도 3에 나타낸 바와 같이, 본 발명에 따른 실시예 1 및 2의 집전체는 나노 셀룰로오스 섬유를 포함하는 섬유층 상에 섬유 형태의 도전재들이 균일하게 분산되어 있으며, 분산된 도전재는 그물 구조의 네트워크를 형성하는 것을 알 수 있다. 이에 반해, 비교예 1의 집전체는 표면에서 도전재의 확인 어려운 것을 알 수 있다.
이러한 결과로부터 본 발명에 따른 종이 집전체는 표면에 도전재의 전도성 네트워크가 형성되어 있음을 알 수 있다.
나. 전기 전도도 분석
절연저항 측정기를 이용하여 실시예 1 및 2와 비교예 1에서 제조된 종이 집전체(가로 3 ㎝ 및 세로 2 ㎝)를 대상으로 절연저항을 측정하였다.
또한, 4점 탐침법(4 point probe)을 이용하여 종이 집전체들의 표면저항과 전기 전도도를 측정하였으며, 그 결과는 도 4 및 도 5에 나타내었다.
도 4 및 도 5를 살펴보면, 본 발명에 따른 실시예 2의 집전체는 전기적 물성이 우수하여 11.5±0.1 mΩ의 절연저항을 나타내는 것으로 확인되었다. 또한, 실시예 1 및 2의 종이 집전체는 각각 12.5±0.5 Ohm/sq 및 3±0.5 Ohm/sq의 표면 저항과 163±5 S/㎝ 및 375±5 S/㎝의 전기 전도도를 갖는 것으로 나타났다. 이에 반해, 비교예 1의 집전체는 비절연체와 같이 절연저항이 0 mΩ인 것으로 나타났으며, 표면 저항 및 전기 전도도가 각각 25,000 Ohm/sq 및 ≒0 S/㎝인 것으로 확인되었다.
이러한 결과로부터 본 발명에 따른 종이 집전체는 표면에 도전재의 전도성 네트워크가 형성되어 표면저항, 전기 전도도 등의 전기적 물성이 우수함을 알 수 있다.
다. 광 투과도 분석
적외선-가시광선 분광분석기(UV-Vis spectrophotometer)를 이용하여 실시예 1 및 2와 비교예 1에서 제조된 종이 집전체(가로 3 ㎝ 및 세로 2 ㎝)를 대상으로 550㎚ 파장을 갖는 광에 대한 투과도를 측정하였으며, 그 결과를 도 6에 나타내었다.
도 6을 살펴보면, 본 발명에 따른 실시예 1 및 2의 집전체는 550㎚ 파장을 갖는 광에 대하여 각각 97±1% 및 74±1%의 광 투과도를 갖는 것으로 나타났다. 반면, 비교예 1의 집전체는 35±1%의 광 투과도를 갖는 것으로 확인되었다.
이는 본 발명에 따른 집전체가 나노 셀룰로오스 섬유를 포함하는 섬유층 상에 나노 셀룰로오스 섬유와 전도성 네트워크 구조를 형성하는 도전재를 포함하는 도전층이 구비됨으로써 전기적 물성은 물론 광학적 물성도 함께 향상되었음을 의미한다.
라. 기계적 유연성 분석
본 발명에 따른 집전체의 기계적 유연성을 확인하기 위하여 먼저, 실시예 2에서 제조된 집전체의 초기 저항을 측정하고 0 내지 20㎜의 직경을 갖는 아크릴 막대에 감은 후의 저항을 측정하여 저항값의 변화를 관찰하였다.
또한, 실시예 2에서 제조된 집전체의 초기 저항을 측정하고, 5㎜ 간격으로 5,000회 반복굽힘 시험을 수행하면서 저항을 측정하여 저항값 변화를 관찰하였다. 아울러, 5,000회 반복굽힘 시험을 수행한 이후의 집전체의 모폴로지를 주사전자현미경(SEM, 가속 전압: 15 kV)과 제1 도전층에 포함된 은 나노와이어에 대한 에너지분산형 분광(Energy dispersive X-ray spectroscopy, EDX)을 분석하였으며, 측정된 결과들은 도 7 내지 9에 나타내었다.
도 7 내지 9를 살펴보면, 본 발명에 따른 집전체는 기계적 유연성이 우수하여 밴딩 정도에 따른 초기 저항값 변화는 나타나지 않았으며, 5,000회 밴딩 이후에도 초기 저항값이 일정하게 유지되고 도전층의 탈리되거나 손상이 발생하지 않는 것을 확인되었다.
이러한 결과는 본 발명에 따른 종이 집전체가 전기방사 공정을 통하여 제조됨으로써 섬유층의 나노 셀룰로오스 섬유와 도전층의 도전재가 전도성 네트워크가 효과적으로 이뤄졌음을 알 수 있다.
실험예 2. 전극 및 전지 성능 평가
본 발명에 따라 종이 집전체를 포함하는 전극 및 상기 전극을 포함하는 전지의 성능을 평가하기 위하여 상기 전극을 포함하는 코인형 리튬 이차 전지를 제조하였다.
구체적으로, 양극활물질인 리튬 망간 복합산화물(LiMn2O4, 95 중량%), 도전제인 카본 블랙(2 중량%), 및 결합재인 폴리비닐리덴플루오라이드(polyvinylidene fluoride, PVDF, 3 중량%)를 N-메틸-2 피롤리돈(NMP)에 첨가하고 혼합하여 양극 제조용 슬러리를 제조하였다. 마찬가지로 음극활물질인 리튬 티타늄 산화물(Li4Ti5O12, 88 중량%), 결합재인 폴리비닐리덴플루오라이드(polyvinylidene fluoride, PVDF, 10 중량%) 및 도전제인 카본 블랙(2 중량%)을 N-메틸-2 피롤리돈(NMP)에 첨가하고 혼합하여 음극 제조용 슬러리를 제조하였다. 이렇게 제조된 각 슬러리를 실시예 1 및 2와 비교예 1에서 각각 제조된 집전체에 도포하고 건조하여 양극 및 음극을 제조하였다. 유기용매(에틸렌 카보네이트(EC):디에틸 카보네이트(DEC) = 1:1(v:v))에 의 농도가 1M이 되도록 용해하여 비수성 전해액을 제조하고 앞서 제조된 양극 및 음극과 상업적으로 입수된 분리막(셀가드 3501, Celgard3501, 두께 = 25 ㎛)을 넣어 코인형 셀을 형성한 후, 비수성 전해액을 주입하여 코인형 리튬 이차 전지를 제조하였다. 제조된 각 리튬 이차 전지를 대상으로 초기 용량을 측정하였으며, 그 결과를 도 10에 나타내었다.
도 10에 나타낸 바와 같이 본 발명에 따른 실시예 1 및 2의 집전체를 포함하는 전지는 각각 약 100±1 mAh/g 및 104±1 mAh/g의 초기 용량을 갖는 것으로 나타났으나, 비교예 2의 집전체를 포함하는 전지의 경우 약 12±1 mAh/g의 초기 용량을 갖는 것으로 확인되었다.
이는 본 발명에 따른 종이 집전체를 포함하는 전지는 전기적 물성이 우수함을 의미한다.
본 발명에 따른 종이 집전체는 나노 셀룰로오스 섬유를 포함하는 섬유층 상에 나노 셀룰로오스 섬유와 전도성 네트워크를 이루는 도전재가 포함된 도전층을 구비함으로써 무게가 가볍고, 전극 제조 시 전극의 에너지 밀도가 높으며, 기계적 유연성이 우수할 뿐만 아니라, 소재의 전기적 물성과 투명성을 모두 확보할 수 있으므로 전기화학소자의 전극 집전체로 유용하게 사용될 수 있다.
Claims (14)
- 나노 셀룰로오스 섬유를 포함하는 섬유층; 및상기 섬유층 상에 형성되고 1종 이상의 도전재를 포함하는 도전층을 포함하고,상기 도전재는 나노 셀룰로오스 섬유 100 중량부에 대하여 5 내지 1,000 중량부인 것을 특징으로 하는 종이 집전체.
- 제1항에 있어서,종이 집전체는,나노 셀룰로오스 섬유를 포함하는 섬유층;제1 도전재를 포함하는 제1 도전층; 및제2 도전재를 포함하는 제2 도전층;을 포함하는 구조인 것을 특징으로 하는 종이 집전체.
- 제1항에 있어서,나노 셀룰로오스 섬유는 수산화기(hydroxyl group), 아세틸기(acetyl group), 실란기(silane group) 및 아크릴기(acryl group)로 이루어진 군으로부터 선택되는 1종 이상의 작용기로 개질된 것을 특징으로 하는 종이 집전체.
- 제1항에 있어서,나노 셀룰로오스 섬유는 평균 직경이 10㎚ 내지 1,000㎚인 것을 특징으로 하는 종이 집전체.
- 제1항에 있어서,나노 셀룰로오스 섬유는 식물성 셀룰로오스 섬유를 포함하는 종이인 것을 특징으로 하는 종이 집전체.
- 제1항에 있어서,도전재는,탄소섬유, 그래핀, 탄소나노튜브, 탄소나노섬유 및 탄소리본 중 1종 이상의 탄소계 물질;구리, 은, 니켈 및 알루미늄 중 1종 이상의 금속; 및폴리페닐렌 및 폴리페닐렌 유도체 중 1종 이상의 도전성 폴리머,로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 종이 집전체.
- 제1항에 있어서,도전재는 평균 직경이 10㎚ 내지 100㎛이고,도전재의 평균 직경 대비 길이의 비율(L/D)가 평균 50 이상인 것을 특징으로 하는 종이 집전체.
- 제1항에 있어서,종이 집전체는 550㎚에서의 광 투과도가 50% 내지 99%인 것을 특징으로 하는 종이 집전체.
- 나노 셀룰로오스 섬유를 포함하는 섬유층 상에 1종 이상의 도전재를 포함하는 방사액을 전기방사하는 단계를 포함하는 종이 집전체의 제조방법.
- 제9항에 있어서,전기방사는 연속전기방사(sequential electrospinning) 또는 이중전기방사(dual electrospinning)인 것을 특징으로 하는 종이 집전체의 제조방법.
- 제9항에 있어서,전기방사 속도는 0.1 ㎖/h 내지 100 ㎖/h인 것을 특징으로 하는 종이 집전체의 제조방법.
- 제9항에 있어서,방사액의 사용량은 단위면적(1㎠) 당 0.01㎖ 내지 10㎖인 것을 특징으로 하는 종이 집전체의 제조방법.
- 제1항에 따른 종이 집전체; 및 전극활물질을 포함하는 전극.
- 제13항에 따른 전극을 포함하는 전기화학소자.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16923202.2A EP3553857A4 (en) | 2016-12-06 | 2016-12-06 | PAPER CURRENT COLLECTOR AND MANUFACTURING METHOD THEREOF, AND ELECTROCHEMICAL DEVICE COMPRISING SUCH A CURRENT COLLECTOR |
US16/467,339 US20200044259A1 (en) | 2016-12-06 | 2016-12-06 | Paper current collector, method for manufacturing same, and electrochemical device comprising paper current collector |
JP2019528538A JP6857731B2 (ja) | 2016-12-06 | 2016-12-06 | 紙集電体、その製造方法およびこれを含む電気化学素子 |
CN201680091401.XA CN110050369A (zh) | 2016-12-06 | 2016-12-06 | 纸质集流体、其制造方法和包含纸质集流体的电化学装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160164894A KR101817506B1 (ko) | 2016-12-06 | 2016-12-06 | 종이 집전체, 이의 제조방법 및 이를 포함하는 전기화학소자 |
KR10-2016-0164894 | 2016-12-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018105767A1 true WO2018105767A1 (ko) | 2018-06-14 |
Family
ID=61000982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/014242 WO2018105767A1 (ko) | 2016-12-06 | 2016-12-06 | 종이 집전체, 이의 제조방법 및 이를 포함하는 전기화학소자 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200044259A1 (ko) |
EP (1) | EP3553857A4 (ko) |
JP (1) | JP6857731B2 (ko) |
KR (1) | KR101817506B1 (ko) |
CN (1) | CN110050369A (ko) |
WO (1) | WO2018105767A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109294235A (zh) * | 2018-09-30 | 2019-02-01 | 西南大学 | 一种具有双网络结构的柔性高频电磁屏蔽材料及其制备方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6818669B2 (ja) * | 2017-09-25 | 2021-01-20 | 株式会社東芝 | 電界紡糸装置 |
KR102051212B1 (ko) * | 2018-04-11 | 2019-12-03 | 울산과학기술원 | 리튬-황 전지용 종이 전극 및 이를 포함하는 리튬-황 전지 |
KR102355101B1 (ko) * | 2018-10-18 | 2022-02-04 | 주식회사 엘지에너지솔루션 | 삼차원 구조 전극 및 이를 포함하는 전기화학소자 |
KR102209975B1 (ko) * | 2019-03-13 | 2021-02-01 | 경희대학교 산학협력단 | 에너지 저장 전극, 이를 이용하는 에너지 저장 장치, 이를 기반으로 하는 에너지 저장 시스템 및 이의 제작 방법 |
CN110581278B (zh) * | 2019-09-24 | 2021-04-27 | 浙江农林大学 | 柔性锂离子电池用正极材料及其制备方法、应用以及柔性锂离子电池 |
CN111430722A (zh) * | 2020-04-07 | 2020-07-17 | 武汉兰钧新能源科技有限公司 | 一种纸质集流体、其制备方法、电极及电池 |
CN114188547B (zh) * | 2021-12-20 | 2024-04-09 | 上海电气国轩新能源科技有限公司 | 一种骨料材料、非金属集流体及其制备方法、应用 |
CN114628687B (zh) * | 2022-03-21 | 2024-06-28 | 中国科学技术大学 | 一种梯度导电性集流体材料、其制备方法、负极及电池 |
KR102529173B1 (ko) | 2022-09-20 | 2023-05-08 | 한국건설기술연구원 | 그래핀이 코팅된 셀룰로스 종이전극과 그 제조방법, 및 셀룰로스 종이전극을 이용한 미세먼지 제거장치 |
CN115458338B (zh) * | 2022-10-10 | 2023-11-28 | 浙江理工大学 | 一种纱线状超级电容器及其制备方法 |
CN115548347A (zh) * | 2022-11-02 | 2022-12-30 | 扬州纳力新材料科技有限公司 | 复合铜集流体及其制备方法、极片、二次电池和用电装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100046557A (ko) * | 2008-10-27 | 2010-05-07 | 경북대학교 산학협력단 | 다중벽 카본나노튜브/셀룰로오스의 복합체 및 그 제조방법 |
KR20120114117A (ko) * | 2011-04-06 | 2012-10-16 | 주식회사 샤인 | 금속 섬유를 포함하는 전극 구조체를 갖는 전지 및 상기 전극 구조의 제조 방법 |
KR20150131505A (ko) | 2014-05-15 | 2015-11-25 | 주식회사 엘지화학 | 유연성 집전체를 포함하는 전지셀 |
KR101588313B1 (ko) * | 2015-05-13 | 2016-02-01 | 대한민국 | 3차원 그물구조 형태의 전기화학소자용 전극, 이의 제조 방법 및 이를 포함하는 전기화학소자 |
KR20160037380A (ko) * | 2014-09-26 | 2016-04-06 | 대한민국(산림청 국립산림과학원장) | 셀룰로오스 나노섬유 분리막을 포함하는 전기화학소자 및 이의 제조방법 |
KR20160043769A (ko) * | 2014-10-14 | 2016-04-22 | 울산과학기술원 | 삼차원구조 전극의 제조 방법, 그리고 상기 전극을 포함하는 전기 화학 소자 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007044031A1 (de) * | 2007-09-14 | 2009-03-19 | Bayer Materialscience Ag | Kohlenstoffnanoröhrchenpulver, Kohlenstoffnanoröhrchen und Verfahren zu ihrer Herstellung |
WO2011053811A1 (en) * | 2009-10-30 | 2011-05-05 | The Board Of Trustees Of The Leland Stanford Junior University | Conductive fibrous materials |
WO2013003846A2 (en) * | 2011-06-30 | 2013-01-03 | The Regents Of The University Of California | Surface insulated porous current collectors as dendrite free electrodeposition electrodes |
US9531010B2 (en) * | 2012-12-14 | 2016-12-27 | Indiana University Research And Technology Corporation | Paper-based lithium-ion batteries |
US10158116B2 (en) * | 2013-01-25 | 2018-12-18 | Arkema France | Method for manufacturing an electrode paste |
WO2015084945A1 (en) * | 2013-12-04 | 2015-06-11 | Cornell University | Electrospun composite nanofiber comprising graphene nanoribbon or graphene oxide nanoribbon, methods for producing same, and applications of same |
KR101632797B1 (ko) * | 2014-10-21 | 2016-06-23 | 한국과학기술원 | 전류 집전체-촉매 일체형 3차원 나노섬유 네트워크 전극을 이용한 리튬-공기 전지 및 그 제조 방법 |
KR101647960B1 (ko) * | 2014-10-31 | 2016-08-17 | 한국에너지기술연구원 | 탄소 전극 및 이의 제조 방법 |
KR101653164B1 (ko) * | 2014-11-25 | 2016-09-01 | 울산과학기술원 | 삼차원구조 집전체, 이의 제조 방법, 이를 포함하는 전극, 상기 전극의 제조방법, 및 상기 집전체를 포함하는 전기 화학 소자 |
KR101829097B1 (ko) * | 2015-01-14 | 2018-02-13 | 주식회사 엘지화학 | 리튬-황 전지용 양극 및 그의 제조방법 및 그를 포함하는 리튬-황 전지 |
-
2016
- 2016-12-06 CN CN201680091401.XA patent/CN110050369A/zh active Pending
- 2016-12-06 KR KR1020160164894A patent/KR101817506B1/ko active IP Right Grant
- 2016-12-06 JP JP2019528538A patent/JP6857731B2/ja active Active
- 2016-12-06 EP EP16923202.2A patent/EP3553857A4/en not_active Withdrawn
- 2016-12-06 WO PCT/KR2016/014242 patent/WO2018105767A1/ko unknown
- 2016-12-06 US US16/467,339 patent/US20200044259A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100046557A (ko) * | 2008-10-27 | 2010-05-07 | 경북대학교 산학협력단 | 다중벽 카본나노튜브/셀룰로오스의 복합체 및 그 제조방법 |
KR20120114117A (ko) * | 2011-04-06 | 2012-10-16 | 주식회사 샤인 | 금속 섬유를 포함하는 전극 구조체를 갖는 전지 및 상기 전극 구조의 제조 방법 |
KR20150131505A (ko) | 2014-05-15 | 2015-11-25 | 주식회사 엘지화학 | 유연성 집전체를 포함하는 전지셀 |
KR20160037380A (ko) * | 2014-09-26 | 2016-04-06 | 대한민국(산림청 국립산림과학원장) | 셀룰로오스 나노섬유 분리막을 포함하는 전기화학소자 및 이의 제조방법 |
KR20160043769A (ko) * | 2014-10-14 | 2016-04-22 | 울산과학기술원 | 삼차원구조 전극의 제조 방법, 그리고 상기 전극을 포함하는 전기 화학 소자 |
KR101588313B1 (ko) * | 2015-05-13 | 2016-02-01 | 대한민국 | 3차원 그물구조 형태의 전기화학소자용 전극, 이의 제조 방법 및 이를 포함하는 전기화학소자 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3553857A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109294235A (zh) * | 2018-09-30 | 2019-02-01 | 西南大学 | 一种具有双网络结构的柔性高频电磁屏蔽材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200044259A1 (en) | 2020-02-06 |
CN110050369A (zh) | 2019-07-23 |
JP2020501305A (ja) | 2020-01-16 |
JP6857731B2 (ja) | 2021-04-14 |
EP3553857A1 (en) | 2019-10-16 |
KR101817506B1 (ko) | 2018-01-12 |
EP3553857A4 (en) | 2020-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018105767A1 (ko) | 종이 집전체, 이의 제조방법 및 이를 포함하는 전기화학소자 | |
WO2016182100A1 (ko) | 3차원 그물구조 형태의 전기화학소자용 전극, 이의 제조 방법 및 이를 포함하는 전기화학소자 | |
WO2018212568A1 (ko) | 전고체 전지용 고체 전해질막의 제조 방법 및 상기 방법에 의해 제조된 고체 전해질막 | |
WO2018164413A1 (ko) | 탄소-황 복합체, 이의 제조방법, 이를 포함하는 양극 및 리튬-황 전지 | |
US10450674B2 (en) | Process for preparing a silicon-carbon nanocomposite nanofiber | |
WO2019108039A2 (ko) | 음극 및 이를 포함하는 이차전지 | |
WO2016165559A1 (zh) | 复合隔膜及其制备方法以及锂离子电池 | |
WO2014042485A1 (ko) | 개선된 전기화학 특성을 갖는 리튬이차전지 및 이의 제조방법 | |
WO2014104842A1 (ko) | 이차전지용 음극활물질, 이차전지용 도전성 조성물, 이를 포함하는 음극재료, 이를 포함하는 음극구조체 및 이차전지, 및 이들의 제조방법 | |
CN104835949B (zh) | Si‑TiO2‑C纳米纤维复合薄膜及其制备方法和应用 | |
WO2011142575A9 (ko) | 리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2018212567A1 (ko) | 전고체 전지용 전극 및 이를 제조하는 방법 | |
WO2012050277A1 (ko) | 셀룰로오스 나노섬유를 이용한 다공성 분리막 및 그 제조방법 | |
WO2011002205A2 (ko) | 다공성 코팅층을 구비한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자 | |
WO2016047835A1 (ko) | 셀룰로오스 나노섬유 분리막을 포함하는 전기화학소자 및 이의 제조방법 | |
CN111092203B (zh) | 纳米粒子填充的空心碳纤维复合材料及制备方法与应用 | |
KR20080098261A (ko) | 나노파이버 네트워크 구조의 음극 활물질을 구비한이차전지용 음극 및 이를 이용한 이차전지와, 이차전지용음극 활물질의 제조방법 | |
WO2014148819A1 (ko) | 저저항 전기화학소자용 전극, 그의 제조방법 및 상기 전극을 포함하는 전기화학소자 | |
WO2017188650A1 (ko) | 분리막 일체형 섬유상 전극 구조체, 이를 포함하는 섬유상 전지, 및 상기 섬유상 전극 구조체의 제조방법 | |
WO2015020338A1 (ko) | 플렉시블 집전체 및 그 제조방법과 이를 이용한 이차전지 | |
WO2014030853A1 (ko) | 리튬이차전지의 음극 활물질용 실리콘 산화물-탄소 복합체의 제조방법 | |
WO2013137665A1 (ko) | 리튬 이차 전지용 음극 조립체 및 이의 제조 방법 | |
CN112635762B (zh) | 锂离子电池负极材料及其制备方法和应用和锂离子电池 | |
WO2016013724A1 (ko) | 전극, 전지 및 전극의 제조방법 | |
WO2017175992A2 (ko) | 전극 조립체 및 전극 조립체와 전지의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16923202 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019528538 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016923202 Country of ref document: EP Effective date: 20190708 |