[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018186655A1 - 반도체 소자 및 이를 포함하는 반도체 소자 패키지 - Google Patents

반도체 소자 및 이를 포함하는 반도체 소자 패키지 Download PDF

Info

Publication number
WO2018186655A1
WO2018186655A1 PCT/KR2018/003916 KR2018003916W WO2018186655A1 WO 2018186655 A1 WO2018186655 A1 WO 2018186655A1 KR 2018003916 W KR2018003916 W KR 2018003916W WO 2018186655 A1 WO2018186655 A1 WO 2018186655A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
disposed
pad
emitting unit
Prior art date
Application number
PCT/KR2018/003916
Other languages
English (en)
French (fr)
Inventor
박용남
송준오
김명수
박성준
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170043051A external-priority patent/KR102363036B1/ko
Priority claimed from KR1020170043052A external-priority patent/KR102363037B1/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US16/500,216 priority Critical patent/US11011675B2/en
Publication of WO2018186655A1 publication Critical patent/WO2018186655A1/ko

Links

Images

Classifications

    • H01L33/08
    • H01L27/153
    • H01L33/145
    • H01L33/387
    • H01L33/486
    • H01L33/62
    • H01L33/385

Definitions

  • An embodiment relates to a semiconductor device and a semiconductor device package including the same.
  • Semiconductor devices including compounds such as GaN and AlGaN are widely used in light emitting devices, light receiving devices, and various diodes because they have many advantages, such as having a wide and easily adjustable band gap energy.
  • light emitting devices such as light emitting diodes and laser diodes using semiconductors of Group 3-5 or Group 2-6 compound semiconductors have been developed through the development of thin film growth technology and device materials.
  • Various colors such as blue and ultraviolet light can be realized, and efficient white light can be realized by using fluorescent materials or combining colors.Low power consumption, semi-permanent lifespan, and fast response speed compared to conventional light sources such as fluorescent and incandescent lamps can be realized. It has the advantages of safety, environmental friendliness.
  • a light-receiving device such as a photodetector or a solar cell
  • a group 3-5 or 2-6 compound semiconductor material of a semiconductor the development of device materials absorbs light in various wavelength ranges to generate a photocurrent.
  • light in various wavelengths can be used from gamma rays to radio wavelengths. It also has the advantages of fast response speed, safety, environmental friendliness and easy control of device materials, making it easy to use in power control or microwave circuits or communication modules.
  • the semiconductor device may replace a light emitting diode backlight, a fluorescent lamp, or an incandescent bulb, which replaces a cold cathode tube (CCFL) constituting a backlight module of an optical communication means, a backlight of a liquid crystal display (LCD) display device.
  • CCFL cold cathode tube
  • LCD liquid crystal display
  • the embodiment provides a semiconductor device having a plurality of light emitting units connected in parallel and a semiconductor device package including the same.
  • a semiconductor device a semiconductor structure including a first light emitting portion and a second light emitting portion; A first electrode electrically connecting the first conductive semiconductor layer of the first light emitting part to the first conductive semiconductor layer of the second light emitting part; And a second electrode electrically connecting the second conductive semiconductor layer of the first light emitting part to the second conductive semiconductor layer of the second light emitting part, wherein the first electrode is disposed on the first light emitting part.
  • the first pad and the second pad may be partitioned, and the first pad and the second pad may be disposed so as not to overlap each other in the first direction and a second direction perpendicular to the first direction.
  • the semiconductor structure includes a first side surface and a third side surface facing each other in plan view, a second side surface and a fourth side surface facing each other, a first center line bisecting the first side surface, and a second center line bisecting the second side surface.
  • a first region to a fourth region defined by the first region wherein the first region includes the first side surface and the second side surface, and the second region includes the second side surface and the third side surface,
  • the third region includes the third side and the fourth side
  • the fourth region includes the fourth side and the first side
  • the first pad is disposed in the second region
  • the second pad may be disposed in the fourth area.
  • the first electrode and the second electrode may connect the first light emitting part and the second light emitting part in parallel.
  • the number of the second branch electrodes may be greater than the number of the first branch electrodes.
  • It may include a current blocking layer disposed under the second branch electrode.
  • the first electrode may include a first connection part disposed on the first separation section, and the width of the first connection part may be wider than the width of the first branch electrode.
  • the first branch electrode may be disposed on an imaginary line that bisects the first light emitting part in the first direction.
  • a second spacing section extending in the second direction to partition the first light emitting portion and the second light emitting portion, wherein the first center line is disposed in the second spacing section.
  • the first electrode may include a second connection portion disposed on the second separation section, and the width of the second connection portion may be wider than the width of the second branch electrode.
  • a semiconductor device package includes a body including a cavity; First and second lead frames disposed on the body; A semiconductor device disposed in the cavity; A first wire electrically connecting the first pad of the semiconductor device to the first lead frame; And a second wire electrically connecting the second pad of the semiconductor device to the second lead frame, wherein the semiconductor device comprises: a semiconductor structure including a first light emitting part and a second light emitting part; A first electrode electrically connecting the first conductive semiconductor layer of the first light emitting part to the first conductive semiconductor layer of the second light emitting part; And a second electrode electrically connecting the second conductive semiconductor layer of the first light emitting part to the second conductive semiconductor layer of the second light emitting part, wherein the first electrode is disposed on the first light emitting part.
  • the first pad and the second pad may be partitioned, and the first pad and the second pad may be disposed so as not to overlap each other in the first direction and a second direction perpendicular to the first direction.
  • a semiconductor device package includes a body including a cavity; First and second lead frames disposed on the body; A semiconductor structure including first and second light emitting parts disposed in the cavity; First and second wires electrically connecting the first and second light emitting parts to the first and second lead frames; And third and fourth wires connecting the first light emitting part and the second light emitting part in parallel, wherein the first light emitting part and the second light emitting part include a first conductive semiconductor layer, a second conductive semiconductor layer, and An active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer, a first electrode electrically connected to the first conductive semiconductor layer, and a second electrically connected to the second conductive semiconductor layer An electrode, wherein the first electrode comprises a first pad, a first subpad, and a first branch electrode, and the second electrode comprises a second pad, a second subpad, and a second branch electrode.
  • the first wire electrically connects the first subpad and the first lead frame
  • the second wire electrically connects the second subpad and the second lead frame
  • the third wire A first pad of the first light emitting part and a first pad of the second light emitting part Electrically connecting a de
  • the fourth wire is electrically connected to the second pad and the second light-emitting portion and the second pad of the first light-emitting portion.
  • the semiconductor structure may include a first separation section extending in a first direction to define the first light emitting part and the second light emitting part, wherein the first sub pad and the second sub pad are in the first direction and the first sub pad. It may not overlap in a second direction perpendicular to the direction.
  • the semiconductor structure may include a first side and a third side facing each other on a plane, a second side and a fourth side facing each other, a first center line bisecting the first side, and a second bisecting the second side.
  • the third region includes the third side and the fourth side, the fourth region includes the fourth side and the first side, and the first subpad is disposed in the second region.
  • the second subpad may be disposed in the fourth area.
  • the first and second wires and the third and fourth wires may have different materials.
  • the third and fourth wires may include silver (Ag).
  • the operating voltage of the plurality of light emitting parts is constant, thereby improving light efficiency.
  • the resistance between the plurality of chips can be reduced.
  • FIG. 1 is a plan view of a semiconductor device according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view along the direction A-A of FIG.
  • FIG. 3 is a cross-sectional view taken along the B-B direction of FIG.
  • FIG. 4 is a cross-sectional view taken along the C-C direction of FIG.
  • FIG. 5 is a plan view of a semiconductor device according to a second embodiment of the present disclosure.
  • FIG. 6 is a plan view of a semiconductor device according to a third embodiment of the present disclosure.
  • FIG. 7 is a plan view of a semiconductor device according to a fourth embodiment of the present disclosure.
  • FIG. 8 is a plan view of a semiconductor device according to a fifth embodiment of the present disclosure.
  • FIG. 10 is a plan view of a semiconductor device package according to an embodiment of the present disclosure.
  • FIG. 11 is a plan view of a semiconductor device according to a sixth embodiment of the present disclosure.
  • FIG. 12A is an enlarged view of the second region of FIG. 11;
  • FIG. 12B is an enlarged view of the fourth region of FIG. 11;
  • FIG. 13 is a plan view of a semiconductor device package according to another exemplary embodiment of the inventive concept.
  • FIG. 1 is a plan view of a semiconductor device according to a first exemplary embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA of FIG. 1
  • FIG. 3 is a cross-sectional view taken along line BB of FIG. 1, and FIG. .
  • a semiconductor device may include semiconductor structures 120A and 120B including a first light emitting unit 120A and a second light emitting unit 120B, a first light emitting unit 120A, and a second light emitting unit.
  • the first electrode 130 and the second electrode 140 which connect the light emitting units 120B in parallel are included.
  • the first light emitter 120A and the second light emitter 120B may be isolated light emitting cells.
  • the light emitting part may be defined as an area having an active layer independently.
  • a first separation period d1 extending in the first direction (X-axis direction) may be disposed between the first light emitting part 120A and the second light emitting part 120B.
  • the first light emitting unit 120A and the second light emitting unit 120B may be spaced apart from each other in the second direction (Y-axis direction) based on the first separation section d1.
  • the first electrode 130 may include a first pad 131 disposed on the first light emitting unit 120A, a first branch electrode 132 disposed on the first light emitting unit 120A, and a second light emitting unit ( It may include a first extension electrode 133 disposed on 120B.
  • the first electrode 130 may electrically connect the first conductive semiconductor layer of the first light emitting unit 120A and the first conductive semiconductor layer of the second light emitting unit 120B.
  • the first electrode 130 includes at least one of aluminum (Al), titanium (Ti), chromium (Cr), nickel (Ni), copper (Cu), and gold (Au) and may be formed in a single layer or a multilayer structure. have.
  • the first pad 131 may be an area where the wire is bonded.
  • the shape of the first pad 131 is not particularly limited.
  • the first branch electrode 132 and the second extension electrode 143 may extend in the first-second direction (X2 direction).
  • the width of the first branch electrode 132 and the first extension electrode 133 is not particularly limited.
  • the first electrode 130 may include a first connector 134 connecting the first branch electrode 132 and the first extension electrode 133.
  • the first connection part 134 may be disposed on the first separation section d1.
  • the width of the first connector 134 may be wider than the width of the first branch electrode 132 and the first extension electrode 133.
  • the ratio of the width of the first branch electrode 132 to the width of the first connector 134 may be 1: 2 to 1: 5.
  • the width ratio is smaller than 1: 2 (eg, 1: 1.5)
  • the first connection part 134 may be broken by the step of the first separation section d1.
  • the width ratio is larger than 1: 5, the area of the invention is relatively small, and thus the luminous efficiency may be reduced.
  • the width of the first branch electrode 132 and the first extension electrode 133 may be 2um to 6um, and the width of the first connection part 134 may be 10um to 30um, but is not limited thereto.
  • the second electrode 140 may include a second pad 141 disposed on the second light emitting unit 120B, a second branch electrode 142 disposed on the second light emitting unit 120B, and a first light emitting unit ( And a second extension electrode 143 disposed on 120A.
  • the second electrode 140 may electrically connect the second conductive semiconductor layer of the first light emitting part 120A and the second conductive semiconductor layer of the second light emitting part 120B.
  • the second electrode 140 may be formed in a single layer or a multilayer structure including at least one of aluminum (Al), titanium (Ti), chromium (Cr), nickel (Ni), copper (Cu), and gold (Au). have.
  • the second pad 141 may be an area where the wire is bonded.
  • the shape of the second pad 141 may have a shape different from that of the first pad 131 for identification.
  • the second pad 141 may have a circular shape, but is not particularly limited thereto.
  • the second branch electrode 142 and the second extension electrode 143 may extend in the first-first direction (X1 direction).
  • the width of the second branch electrode 142 and the second extension electrode 143 is not particularly limited.
  • the width of the second branch electrode 142 and the second extension electrode 143 may be 2um to 6um.
  • the second electrode 140 may include a second connector 144 connecting the second branch electrode 142 and the second extension electrode 143.
  • the second connection part 144 may be disposed on the first separation section d1.
  • the width of the second connector 144 may be wider than the width of the second branch electrode 142 and the second extension electrode 143. For the same reason as the first connector 134, the ratio of the width of the second branch electrode 142 to the width of the second connector 144 may satisfy 1: 2 to 1: 5.
  • the number of second branch electrodes 142 may be greater than the number of first branch electrodes 132.
  • the number of second branch electrodes 142 may be increased to improve injection efficiency of holes.
  • the first branch electrode 132 may be disposed on an imaginary line that bisects the light emitting unit in the first direction. Since the first branch electrode 132 is disposed in the center of the light emitting unit, electrons may be uniformly dispersed.
  • the semiconductor device may include a first side S1 and a third side S3 that face each other on a plane, and a second side S2 and a fourth side S4 that face each other, and a first side S1.
  • the first to fourth regions P1, P2, P3, and P4 may be divided by the center line C1 and the second center line C2 that bisects the second side surface S2.
  • the first to fourth side surfaces S1, S2, S3, and S4 may form an outermost surface of the semiconductor device or the substrate 110.
  • the first region P1 includes a first side surface S1 and a second side surface S2, the second region P2 includes a second side surface S2 and a third side surface S3, and a third
  • the region P3 may include a third side surface S3 and a fourth side surface S4, and the fourth region P4 may include a fourth side surface S4 and a first side surface S1.
  • the first pad 131 according to the embodiment is disposed in the second area P2, and the second pad 141 is disposed in the fourth area P4. That is, the first pad 131 and the second pad 141 may be disposed in a diagonal direction on a plane. According to this configuration, the current dispersion efficiency can be improved. If both the first pad 131 and the second pad 141 are disposed only in the first light emitting unit 120A, the light emission intensity of the first light emitting unit 120A is stronger than that of the second light emitting unit 120B, thereby decreasing uniformity. There is a problem.
  • the first pad 131 and the second pad 141 may be disposed in a diagonal direction so as not to overlap in the second direction (Y-axis direction).
  • the first light emitting part 120A and the second light emitting part 120B each include a first conductive semiconductor layer 121, an active layer 122, and a second conductive semiconductor layer 123. can do.
  • the first conductivity-type semiconductor layer 121 may be implemented with compound semiconductors such as -V group and -VI group, and the first dopant may be doped.
  • the first conductive semiconductor layer 121 is a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1 -y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ x1 + y1 ⁇ 1), for example, it may be selected from GaN, AlGaN, InGaN, InAlGaN and the like.
  • the first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te. When the first dopant is an n-type dopant, the first conductive semiconductor layer 121 doped with the first dopant may be an n-type semiconductor layer.
  • the active layer 122 may be disposed between the first conductive semiconductor layer 121 and the second conductive semiconductor layer 123.
  • the active layer 122 is a layer where electrons (or holes) injected through the first conductivity type semiconductor layer 121 and holes (or electrons) injected through the second conductivity type semiconductor layer 123 meet each other.
  • the active layer 122 transitions to a low energy level as electrons and holes recombine, and may generate light having visible or ultraviolet wavelengths.
  • the active layer 122 includes a well layer and a barrier layer, and includes any one of a single well structure, a multi well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, or a quantum line structure.
  • the structure of the active layer 122 is not limited thereto.
  • the second conductive semiconductor layer 123 is formed on the active layer 122, and may be implemented as compound semiconductors such as -V group and -VI group, and a second dopant may be added to the second conductive semiconductor layer 123. Can be doped.
  • the second conductivity-type semiconductor layer 123 is a semiconductor material or AlInN having a composition formula of In x5 Al y2 Ga 1 -x5- y2 N (0 ⁇ x5 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ x5 + y2 ⁇ 1). , AlGaAs, GaP, GaAs, GaAsP, AlGaInP may be formed of a material selected from.
  • the second dopant is a p-type dopant such as Mg, Zn, Ca, Sr, or Ba
  • the second conductive semiconductor layer 123 doped with the second dopant may be a p-type semiconductor layer.
  • the ohmic contact layer 160 may be disposed on the second conductive semiconductor layer 123.
  • the ohmic contact layer 160 may include indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IAZO), indium gallium zinc oxide (IGZO), and indium gallium tin (IGTO).
  • At least one of Au, Hf, and the like may be formed, but is not limited thereto.
  • the insulating layer 151 may be disposed between the first light emitting part 120A and the second light emitting part 120B.
  • the insulating layer 151 may be formed by selecting at least one selected from the group consisting of SiO 2 , SixOy, Si 3 N 4 , SixNy, SiOxNy, Al 2 O 3 , TiO 2 , AlN, and the like, but is not limited thereto.
  • the second electrode 140 may include a second pad 141 disposed on the second light emitting unit 120B, a second branch electrode 142 disposed on the second light emitting unit 120B, and a first light emitting unit ( And a second extension electrode 143 disposed on 120A.
  • the second pad 141 and the second branch electrode 142 are disposed on the second conductive semiconductor layer 123 of the second light emitting part 120B, and the second extension electrode 143 is formed of the first light emitting part ( It may be disposed on the second conductivity-type semiconductor layer 123 of 120A.
  • the second connector 144 may connect the second branch electrode 142 and the second extension electrode 143.
  • a current blocking layer (CBL) 152 may be disposed under the first branch electrode 132 and the second extension electrode 143.
  • the current blocking layer 152 may be disposed in a region overlapping with the second electrode 140 in the vertical direction, thereby alleviating the phenomenon of concentration of current, thereby improving luminous efficiency of the light emitting device.
  • the current blocking layer 152 may include a material having electrical insulation or forming a Schottky contact.
  • the current blocking layer 152 may be formed of an oxide, nitride, or metal.
  • the current blocking layer 152 may include at least one of SiO 2 , SiOx, SiOxNy, Si 3 N 4 , Al 2 O 3 , TiOx, Ti, Al, Cr.
  • the first electrode 130 may include a first pad 131 disposed on the first light emitting unit 120A and a first branch electrode disposed on the first light emitting unit 120A. 132 and a first extension electrode 133 disposed on the second light emitting part 120B.
  • the first pad 131 and the first branch electrode 132 are disposed on the first conductive semiconductor layer 121 of the first light emitting part 120A, and the first extension electrode 133 is the second light emitting part 120B. ) May be disposed on the first conductivity type semiconductor layer 121.
  • a groove H1 corresponding to the first electrode 130 may be formed to expose the first electrode 130.
  • the first branch electrode 132, the first extension electrode 133, the second branch electrode 142, and the second extension electrode 143 may be alternately disposed.
  • the first extension electrode 133 may be disposed between the adjacent second branch electrodes 142.
  • the first branch electrode 132 may be disposed between adjacent second extension electrodes 143.
  • a current blocking layer 152 may be disposed below the second branch electrode 142 and the second extension electrode 143.
  • the second branch electrode 142 and the second extension electrode 143 are disposed on the ohmic electrode layer 160 to be electrically connected to the second conductive semiconductor layer 123, while the first branch electrode 132 and the first branch electrode 132 are formed on the ohmic electrode layer 160.
  • the first extension electrode 133 may directly contact the first conductivity type semiconductor layer 121.
  • the first electrode 130 and the second electrode 140 are Cr, V, W, Ti, Zn, Ni, Cu, Al, Au, Mo, Ti / Au / Ti / Pt / Au, Ni / Au / Ti / It may include at least one selected from Pt / Au, Cr / Al / Ni / Cu / Ni / Au.
  • FIG. 5 is a plan view of a semiconductor device according to a second embodiment of the present invention
  • FIG. 6 is a plan view of a semiconductor device according to a third embodiment of the present invention
  • FIG. 7 is a semiconductor device according to a fourth embodiment of the present invention
  • 8 is a plan view of a semiconductor device according to a fifth embodiment of the present invention.
  • the semiconductor device may include four light emitting parts 120A, 120B, 120C, and 120D.
  • the semiconductor device includes a first side surface S1 and a third side surface S3 facing each other on a plane, a second side surface S2 and a fourth side surface S4 facing each other, and bisecting the first side surface S1.
  • the light emitting units 120A, 120B, 120C, and 120D may be partitioned by the second separation section d2 that bisects the first separation section d1 and the second side surface S2. In the same way, the semiconductor structure can be partitioned into more light emitting portions.
  • the first pad 131 may be disposed in the second light emitting unit 120B, and the second pad 141 may be disposed in the fourth light emitting unit 120D. That is, the first pad 131 and the second pad 141 may be disposed in a diagonal direction on a plane.
  • the first and second electrodes 130 and 140 may have the same configuration as described with reference to FIG. 1. Additionally, the first electrode 130 and the second electrode 140 may include horizontal connecting portions 132c and 142c disposed on the second separation section d2.
  • the horizontal connection portion 132c of the first branch electrode may include the first-first branch electrode 132b disposed in the first light emitting part 120A and the first-second branch electrode disposed in the second light emitting part 120B. 132a can be electrically connected.
  • the horizontal connector 132c may have a relatively wider width than the first branch electrode 132.
  • the ratio of the width of the first branch electrode 132 to the width (width in the Y direction) of the horizontal connection portion 132c may be 1: 2 to 1: 5.
  • the width ratio is smaller than 1: 2 (eg, 1: 1.5)
  • the horizontal connection may be broken by the step of the second separation section d2.
  • the ratio of the widths is larger than 1: 5
  • the light emitting area may be small and the light emitting efficiency may decrease.
  • the width of the horizontal connection portion may be 10um to 30um, but is not limited thereto.
  • a third light emitting unit 120C and a fourth light emitting unit 120D may be further disposed between the first light emitting unit 120A and the second light emitting unit 120B.
  • First spacing sections d1 may be disposed between the plurality of light emitting units, respectively.
  • the first electrode 130 includes a first pad 131 disposed on the first light emitting unit 120A, a first branch electrode 132 disposed on the first light emitting unit 120A, and the remaining light emitting unit ( It may include a plurality of first extension electrodes 133 disposed on the 120B, 120C, 120D, respectively.
  • the first connection unit 134 may be disposed on the first separation section d1 to connect the plurality of first extension electrodes 133.
  • the second electrode 140 is the second pad 141 disposed on the second light emitting part 120B, the second branch electrode 142 disposed on the second light emitting part 120B, and the remaining light emitting part 120A.
  • 120C, 120D may include a plurality of second extension electrodes 143.
  • the second connection part 144 may be disposed on the first separation section d1 to connect the plurality of first extension electrodes 133.
  • the first electrode 130 may include two first branch electrodes 132 disposed in the first light emitting part 120A and two first extension electrodes disposed in the second light emitting part 120B. 133).
  • the second electrode 140 may include three second branch electrodes 142 disposed on the second light emitting part 120B and three second extension electrodes 142 disposed on the first light emitting part 120A. have.
  • the first connector 134 may connect the first branch electrode 132 and the first extension electrode 133
  • the second connector 144 may connect the second branch electrode 142 and the second extension electrode 143.
  • the current injection efficiency and the dispersion efficiency may be improved, and thus the luminous efficiency may be improved.
  • the first electrode 130 includes a first pad 131 disposed on the semiconductor structure 120, and two first branch electrodes 132.
  • the first pad 131 may be disposed on the center line C1 that bisects the semiconductor structure 120 in the first direction.
  • the semiconductor structure 120 may be divided into a first region P51 disposed on one side and a second region P52 disposed on the other side based on the center line C1.
  • the second electrode 140 includes the second-first pad 141a disposed in the first region P51, the second-second pad 141b disposed in the second region P52, and the second-one pad 141a. ) 2-1 branch electrode 142 connected to the 2-1 branch electrode 142, and the 2-2 branch electrode 142 connected to the 2-2 pad 141b, and the 2-1 pad 141a and the 2-2. It may include a connecting portion 146 for connecting the pad (141b).
  • a plurality of pads of the second electrode 140 may be disposed in a single semiconductor structure to improve the injection efficiency of the holes. In addition, it is possible to lower the resistance in a large chip.
  • Eo is a basic structure in which the first electrode 130 and the second electrode 140 are disposed in one light emitting unit.
  • the relative light emission intensity of the examples was measured based on the light emission intensity of Eo.
  • FIG 10 is a plan view of a semiconductor device package according to an embodiment of the present disclosure.
  • a semiconductor device package may include a body 1001 including a cavity 1010, first and second lead frames 1002 and 1003 and a cavity 1010 disposed in the body 1001. ) May include a semiconductor device 10.
  • the body 1001 is made of a resin material such as polyphthalamide (PPA), silicon (Si), aluminum (Al), aluminum nitride (AlN), AlOx, photosensitive glass (PSG), polyamide 9T (PA9T), neogeotactic polystyrene (SPS), a metal material, sapphire (Al2O3), beryllium oxide (BeO), and may be formed of at least one of a printed circuit board (PCB).
  • a resin material such as polyphthalamide (PPA), silicon (Si), aluminum (Al), aluminum nitride (AlN), AlOx, photosensitive glass (PSG), polyamide 9T (PA9T), neogeotactic polystyrene (SPS), a metal material, sapphire (Al2O3), beryllium oxide (BeO), and may be formed of at least one of a printed circuit board (PCB).
  • the top shape of the body 1001 may have various shapes such as triangles, squares, polygons, and circles depending on the use and design of the semiconductor device.
  • the cross-sectional shape of the cavity 1010 may be formed in a cup shape, a concave container shape, and the like, and an inner side surface of the cavity 1010 may be an inner side surface inclined with respect to the bottom.
  • the shape of the front surface of the cavity 1010 may be a shape such as a circle, a rectangle, a polygon, an oval, and the like, but is not limited thereto.
  • the inner wall of the cavity 1010 may form an inclined surface, and the reflection angle of light emitted from the semiconductor device may vary according to the angle of the inclined surface, thereby adjusting the directivity angle of the light emitted to the outside. As the directivity of the light decreases, the concentration of light emitted to the outside from the semiconductor device increases, while the directivity of the light to the outside increases in the semiconductor device.
  • the first and second lead frames 1002 and 1003 may be formed of a metal material, for example, titanium (Ti), copper (Cu), nickel (Ni), gold (Au), chromium (Cr), tantalum (Ta), Platinum (Pt), Tin (Sn), Silver (Ag), Phosphorus (P), Aluminum (Al), Indium (In), Palladium (Pd), Cobalt (Co), Silicon (Si), Germanium (Ge), One or more materials or alloys of hafnium (Hf), ruthenium (Ru) and iron (Fe) may be included.
  • a metal material for example, titanium (Ti), copper (Cu), nickel (Ni), gold (Au), chromium (Cr), tantalum (Ta), Platinum (Pt), Tin (Sn), Silver (Ag), Phosphorus (P), Aluminum (Al), Indium (In), Palladium (Pd), Cobalt (Co), Silicon (Si), Germanium (Ge), One or more materials or alloys of ha
  • the above-described configuration may be applied to the semiconductor device 10.
  • the semiconductor device according to the embodiment may have first to fourth regions in plan view as shown in FIG. 2, and the first pad 131 is disposed in the second region and the second pad 141 is disposed in the fourth region. Can be.
  • the first pad 131 may be electrically connected to the first leadframe 1002 by the first wire 1004, and the second pad 141 may be connected to the second leadframe 1003 by the second wire 1005. ) Can be electrically connected.
  • the number of wires may be reduced.
  • the light efficiency can be improved by the parallel connection.
  • FIG. 11 is a plan view illustrating a semiconductor device in accordance with a sixth embodiment of the present invention.
  • FIG. 12A is an enlarged view of the second region of FIG. 11
  • FIG. 12B is an enlarged view of the fourth region of FIG. 11,
  • the semiconductor device includes a first light emitting unit 120A and a second light emitting unit 120B.
  • the first and second light emitting parts 120A and 120B may be formed by isolation in the same semiconductor structure.
  • the first light emitting unit 120A and the second light emitting unit 120B may include a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, respectively. Except for the subpad, the structure described with reference to FIGS. 2 to 4 may be applied as it is.
  • Each of the first and second light emitting parts 120A and 120B may be a semiconductor device manufactured separately.
  • the active layers of the light emitting units may have different compositions.
  • the active layer of the first light emitting part 120A may emit blue light
  • the active layer of the second light emitting part 120B may emit green light. Therefore, various kinds of semiconductor devices can be connected in parallel.
  • the light emitting part is isolated from one semiconductor structure.
  • the first light emitting unit 120A and the second light emitting unit 120B may each include a first electrode 130 electrically connected to the first conductive semiconductor layer and a second electrode 140 electrically connected to the second conductive semiconductor layer. It may include.
  • the first electrode 130 may include a first pad 131 and a first branch electrode 132, and the second electrode 140 may include a second pad 141 and a second branch electrode 142. have.
  • the first electrode 130 of the first light emitter 120A may further include a first sub pad 137
  • the second electrode 140 of the second light emitter 120B may be a second sub pad. 147 may be further included.
  • the third wire 1007 electrically connects the first pad 131 disposed on the first light emitting unit 120A and the first pad 131 disposed on the second light emitting unit 120B, and the fourth wire 1007.
  • the 1006 may electrically connect the second pad 141 disposed on the first light emitting unit 120A and the second pad 141 disposed on the second light emitting unit 120B. Therefore, the first light emitting unit 120A and the second light emitting unit 120B may be connected in parallel by the third and fourth wires 1007 and 1006.
  • the third wire 1007 and the fourth wire 1006 may be silver wires. Since gold wires which are generally used absorb light in the blue wavelength range, it may be desirable to select silver wires having high reflectivity.
  • the diameter of the silver wire may be 0.7 mm to 0.9 mm, but is not limited thereto.
  • the third wire 1007 and the fourth wire 1006 may be wires coated with silver (Ag). According to the embodiment, since the plurality of light emitting units are connected by wires, the operating voltages of the light emitting units are uniform.
  • the first pad 131 of the first light emitting unit 120A and the first pad 131 of the second light emitting unit 120B are connected by a third wire 1007, and the first light emitting unit 120A Since the second pad 141 and the second pad 141 of the second light emitting unit 120B are connected to the fourth wire 1006, a pad for connecting to the lead frame may be further required.
  • the first electrode 130 of the first light emitting unit 120A may further include a first sub pad 137
  • the second electrode 140 of the second light emitting unit 120B may have a second sub pad. 147 may be further included.
  • the shapes of the first pad 131 and the first sub pad 137 may be identical, and the shapes of the second pad 141 and the second sub pad 147 may be identical. However, the shape of the subpad is not necessarily limited thereto.
  • the semiconductor device may include a first side S1 and a third side S3 that face each other on a plane, and a second side S2 and a fourth side S4 that face each other, and a first side S1.
  • the first to fourth regions P1, P2, P3, and P4 may be divided by the center line C1 and the second center line C2 that bisects the second side surface S2.
  • the first region P1 includes a first side surface S1 and a second side surface S2, the second region P2 includes a second side surface S2 and a third side surface S3, and a third
  • the region P3 may include a third side surface S3 and a fourth side surface S4, and the fourth region P4 may include a fourth side surface S4 and a first side surface S1.
  • the first subpad 137 is disposed in the second area P2, and the second subpad 147 is disposed in the fourth area P4. That is, the first subpad 137 and the second subpad 147 may be disposed in a diagonal direction. This configuration can improve chip resistance and improve current spreading efficiency.
  • the second region P2 is formed by the first center line C11 dividing the third side surface S3 and the fourth center line C21 bisecting the second side surface S2. It may be divided into 2-4 sub-regions P21, P22, P23, and P24.
  • the 2-1 sub-region P21 includes the second center line C2 and the second side surface S2, and the 2-2 sub-region P22 includes the second side surface S2 and the third side surface S3.
  • the second-3 sub-region P23 includes a third side surface S3 and the first center line C1, and the second-4 sub-region P24 includes the first center line C1 and the second It may include a center line (C2).
  • the first sub pad 137 according to the embodiment may be disposed in the second-2 sub areas P22.
  • the fourth region P4 is divided by the fifth center line C12 that bisects the first side surface S1 and the sixth center line C22 that bisects the fourth side surface S4. To 4-4 sub-regions P44.
  • the 4-1 sub-region P41 includes the first side surface S1 and the first center line C1
  • the 4-2 sub-region P42 includes the first center line C1 and the second center line C2.
  • 4-4 sub-region P43 includes a second center line C2 and a fourth side surface S4
  • the 4-4 sub-region P44 includes a fourth side S4 and a first surface. It may include a side (S1).
  • the second subpad 147 according to the embodiment may be disposed in the 4-4 sub-region P44. That is, the first subpad 137 and the second subpad 147 may be disposed in a diagonal direction. This configuration can improve chip resistance and improve current spreading efficiency.
  • a semiconductor device package may include a body 1001 including a cavity 1010, and first and second lead frames 1002 and 1003 and a cavity 1010 disposed in the body 1001. ) May include a semiconductor device 10.
  • the body 1001 is made of a resin material such as polyphthalamide (PPA), silicon (Si), aluminum (Al), aluminum nitride (AlN), AlOx, photosensitive glass (PSG), polyamide 9T (PA9T), neogeotactic polystyrene (SPS), a metal material, sapphire (Al2O3), beryllium oxide (BeO), and may be formed of at least one of a printed circuit board (PCB).
  • a resin material such as polyphthalamide (PPA), silicon (Si), aluminum (Al), aluminum nitride (AlN), AlOx, photosensitive glass (PSG), polyamide 9T (PA9T), neogeotactic polystyrene (SPS), a metal material, sapphire (Al2O3), beryllium oxide (BeO), and may be formed of at least one of a printed circuit board (PCB).
  • the top shape of the body 1001 may have various shapes such as triangles, squares, polygons, and circles depending on the use and design of the semiconductor device.
  • the cross-sectional shape of the cavity 1010 may be formed in a cup shape, a concave container shape, and the like, and an inner side surface of the cavity 1010 may be an inner side surface inclined with respect to the bottom.
  • the front shape of the cavity 1010 may be a shape of a circle, a square, a polygon, an oval, and the like, without being limited thereto.
  • An inner wall of the cavity 1010 may form an inclined surface, and a reflection angle of light emitted from the semiconductor device may vary according to the angle of the inclined surface, thereby adjusting the directivity angle of the light emitted to the outside. As the directivity of the light decreases, the concentration of light emitted to the outside from the semiconductor device increases, while the directivity of the light to the outside increases in the semiconductor device.
  • the first and second lead frames 1002 and 1003 may be formed of a metal material, for example, titanium (Ti), copper (Cu), nickel (Ni), gold (Au), chromium (Cr), tantalum (Ta), Platinum (Pt), Tin (Sn), Silver (Ag), Phosphorus (P), Aluminum (Al), Indium (In), Palladium (Pd), Cobalt (Co), Silicon (Si), Germanium (Ge), One or more materials or alloys of hafnium (Hf), ruthenium (Ru) and iron (Fe) may be included.
  • a metal material for example, titanium (Ti), copper (Cu), nickel (Ni), gold (Au), chromium (Cr), tantalum (Ta), Platinum (Pt), Tin (Sn), Silver (Ag), Phosphorus (P), Aluminum (Al), Indium (In), Palladium (Pd), Cobalt (Co), Silicon (Si), Germanium (Ge), One or more materials or alloys of ha
  • the above-described configuration may be applied to the semiconductor device.
  • the semiconductor device according to the embodiment may have first to fourth regions P1, P2, P3, and P4 in plan view as shown in FIG. 11, and the first subpad 137 is disposed in the second region P2.
  • the second subpad 147 may be disposed in the fourth region P4.
  • the first subpad 137 may be electrically connected to the first leadframe 1002 by the first wire 1004, and the second subpad 147 may be the second leadframe by the second wire 1005. And may be electrically connected to 1003.
  • the third wire 1007 electrically connects the first light emitter 120A and the first pad 131 of the second light emitter 120B, and the fourth wire 1006 is connected to the first light emitter 120A.
  • the second pad 141 of the second light emitting unit 120B may be electrically connected.
  • the third wire 1007 and the fourth wire 1006 may be silver wires. Since gold wires which are generally used absorb light in the blue wavelength range, it may be desirable to select silver wires having high reflectivity.
  • the diameter of the silver wire may be 0.7 mm to 0.9 mm, but is not limited thereto.
  • the third wire 1007 and the fourth wire 1006 may be wires coated with silver (Ag). According to the embodiment, since the plurality of light emitting units are connected by wires, the operating voltages of the light emitting units are uniform.
  • the semiconductor device may be used as a light source of an illumination system, or may be used as a light source of an image display device or a light source of an illumination device. That is, the semiconductor device may be applied to various electronic devices disposed in a case to provide light. For example, when the semiconductor device and the RGB phosphor are mixed and used, white light having excellent color rendering (CRI) may be realized.
  • CRI color rendering
  • the above-described semiconductor device may be configured as a light emitting device package and used as a light source of an illumination system.
  • the semiconductor device may be used as a light source or a light source of an image display device.
  • a backlight unit of an image display device When used as a backlight unit of an image display device, it can be used as an edge type backlight unit or a direct type backlight unit, when used as a light source of a lighting device can be used as a luminaire or bulb type, and also used as a light source of a mobile terminal. It may be.
  • the light emitting element includes a laser diode in addition to the light emitting diode described above.
  • the laser diode may include the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer having the above-described structure.
  • an electro-luminescence phenomenon is used in which light is emitted when a current flows, but the direction of emitted light is used.
  • a laser diode may emit light having a specific wavelength (monochromatic beam) in the same direction with the same phase by using a phenomenon called stimulated emission and a constructive interference phenomenon. Due to this, it can be used for optical communication, medical equipment and semiconductor processing equipment.
  • a photodetector may be a photodetector, which is a type of transducer that detects light and converts its intensity into an electrical signal.
  • Such photodetectors include photovoltaic cells (silicon, selenium), photoelectric devices (cadmium sulfide, cadmium selenide), photodiodes (e.g. PD having peak wavelength in visible blind or true blind spectral regions) Transistors, optoelectronic multipliers, phototubes (vacuum, gas encapsulation), infrared (Infra-Red) detectors, and the like, but embodiments are not limited thereto.
  • a semiconductor device such as a photodetector may generally be manufactured using a direct bandgap semiconductor having excellent light conversion efficiency.
  • the photodetector has various structures, and the most common structures include a pin photodetector using a pn junction, a Schottky photodetector using a Schottky junction, a metal semiconductor metal (MSM) photodetector, and the like. have.
  • MSM metal semiconductor metal
  • a photodiode may include a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer having the above-described structure, and have a pn junction or pin structure.
  • the photodiode operates by applying a reverse bias or zero bias. When light is incident on the photodiode, electrons and holes are generated and current flows. In this case, the magnitude of the current may be approximately proportional to the intensity of light incident on the photodiode.
  • Photovoltaic cells or solar cells are a type of photodiodes that can convert light into electrical current.
  • the solar cell may include the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer having the above-described structure similarly to the light emitting device.
  • a general diode using a p-n junction it may be used as a rectifier of an electronic circuit, it may be applied to an ultra-high frequency circuit and an oscillation circuit.
  • the semiconductor device described above is not necessarily implemented as a semiconductor and may further include a metal material in some cases.
  • a semiconductor device such as a light receiving device may be implemented using at least one of Ag, Al, Au, In, Ga, N, Zn, Se, P, or As, and may be implemented by a p-type or n-type dopant. It may also be implemented using a doped semiconductor material or an intrinsic semiconductor material.

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

실시 예는, 제1 발광부 및 제2 발광부를 포함하는 반도체구조물; 상기 제1 발광부의 제1 도전형 반도체층과 상기 제2 발광부의 제1 도전형 반도체층을 전기적으로 연결하는 제1 전극; 및 상기 제1 발광부의 제2 도전형 반도체층과 상기 제2 발광부의 제2 도전형 반도체층을 전기적으로 연결하는 제2 전극을 포함하고, 상기 제1 전극은 상기 제1 발광부상에 배치되는 제1 패드, 상기 제1 발광부상에 배치되는 제1 가지전극, 및 상기 제2 발광부상에 배치되는 제1 연장전극을 포함하고, 상기 제2 전극은 상기 제2 발광부상에 배치되는 제2 패드, 상기 제2 발광부상에 배치되는 제2 가지전극, 및 상기 제1 발광부상에 배치되는 제2 연장전극을 포함하고, 상기 반도체구조물은 제1방향으로 연장되어 상기 제1 발광부와 제2 발광부를 구획하는 제1 이격구간을 포함하고, 상기 제1 패드와 제2 패드는 상기 제1방향, 및 상기 제1방향과 수직한 제2 방향으로 오버랩되지 않는 반도체 소자 및 이를 포함하는 반도체 소자 패키지를 개시한다.

Description

반도체 소자 및 이를 포함하는 반도체 소자 패키지
실시 예는 반도체 소자 및 이를 포함하는 반도체 소자 패키지에 관한 것이다.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점이 있기 때문에 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용되고 있다.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용할 수 있다.
따라서, 반도체 소자는 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 Gas나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다. 또한, 반도체 소자는 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다.
최근에는 고효율 패키지를 구현하기 위해 2개의 반도체 소자를 병렬로 연결하는 기술이 개발되고 있다. 그러나, 2개의 칩을 병렬 연결하는 경우 와이어 본딩 횟수가 늘어나고, 칩 간에 동작 전압이 균일하지 않은 문제가 있다.
실시 예는 복수의 발광부를 병렬로 연결한 반도체 소자 및 이를 포함하는 반도체 소자 패키지를 제공한다.
본 발명의 일 실시 예에 따른 반도체 소자는, 제1 발광부 및 제2 발광부를 포함하는 반도체구조물; 상기 제1 발광부의 제1 도전형 반도체층과 상기 제2 발광부의 제1 도전형 반도체층을 전기적으로 연결하는 제1 전극; 및 상기 제1 발광부의 제2 도전형 반도체층과 상기 제2 발광부의 제2 도전형 반도체층을 전기적으로 연결하는 제2 전극을 포함하고, 상기 제1 전극은 상기 제1 발광부상에 배치되는 제1 패드, 상기 제1 발광부상에 배치되는 제1 가지전극, 및 상기 제2 발광부상에 배치되는 제1 연장전극을 포함하고, 상기 제2 전극은 상기 제2 발광부상에 배치되는 제2 패드, 상기 제2 발광부상에 배치되는 제2 가지전극, 및 상기 제1 발광부상에 배치되는 제2 연장전극을 포함하고, 상기 반도체구조물은 제1방향으로 연장되어 상기 제1 발광부와 제2 발광부를 구획하는 제1 이격구간을 포함하고, 상기 제1 패드와 제2 패드는 상기 제1방향, 및 상기 제1방향과 수직한 제2 방향으로 오버랩되지 않게 배치될 수 있다.
반도체구조물은, 평면상 서로 마주보는 제1 측면과 제3 측면, 서로 마주보는 제2 측면과 제4 측면, 상기 제1 측면을 이등분하는 제1 중심선, 및 상기 제2 측면을 이등분하는 제2 중심선에 의해 구획되는 제1 내지 제4 영역을 포함하고, 상기 제1 영역은 상기 제1 측면과 상기 제2 측면을 포함하고, 상기 제2 영역은 상기 제2 측면과 상기 제3 측면을 포함하고, 상기 제3 영역은 상기 제3 측면과 상기 제4 측면을 포함하고, 상기 제4 영역은 상기 제4 측면과 상기 제1 측면을 포함하고, 상기 제1 패드는 상기 제2 영역에 배치되고, 상기 제2 패드는 상기 제4 영역에 배치될 수 있다.
상기 제1 전극과 제2 전극은 상기 제1 발광부와 제2 발광부를 병렬 연결할 수 있다.
상기 제2 가지전극의 개수는 상기 제1 가지전극의 개수보다 많을 수 있다.
상기 제2 가지전극의 하부에 배치되는 전류차단층을 포함할 수 있다.
상기 제1 전극은 상기 제1 이격구간상에 배치되는 제1 연결부를 포함하고, 상기 제1 연결부의 폭은 상기 제1 가지전극의 폭보다 넓을 수 있다.
상기 제1 가지전극은 상기 제1 발광부를 상기 제1 방향으로 이등분하는 가상선상에 배치될 수 있다.
상기 제2 방향으로 연장되어 상기 제1 발광부와 상기 제2 발광부를 구획하는 제2 이격구간을 포함하고, 상기 제1 중심선은 상기 제2 이격구간에 배치될 수 있다.
상기 제1 전극은 상기 제2 이격구간상에 배치되는 제2 연결부를 포함하고, 상기 제2 연결부의 폭은 상기 제2 가지전극의 폭보다 넓을 수 있다.
본 발명의 일 실시 예에 따른 반도체 소자 패키지는, 캐비티를 포함하는 몸체; 상기 몸체에 배치되는 제1, 제2 리드 프레임; 상기 캐비티에 배치되는 반도체 소자; 상기 반도체 소자의 제1 패드를 상기 제1 리드 프레임과 전기적으로 연결하는 제1 와이어; 및 상기 반도체 소자의 제2 패드를 상기 제2 리드 프레임과 전기적으로 연결하는 제2 와이어를 포함하고, 상기 반도체 소자는, 제1 발광부 및 제2 발광부를 포함하는 반도체구조물; 상기 제1 발광부의 제1 도전형 반도체층과 상기 제2 발광부의 제1 도전형 반도체층을 전기적으로 연결하는 제1 전극; 및 상기 제1 발광부의 제2 도전형 반도체층과 상기 제2 발광부의 제2 도전형 반도체층을 전기적으로 연결하는 제2 전극을 포함하고, 상기 제1 전극은 상기 제1 발광부상에 배치되는 제1 패드, 상기 제1 발광부상에 배치되는 제1 가지전극, 및 상기 제2 발광부상에 배치되는 제1 연장전극을 포함하고, 상기 제2 전극은 상기 제2 발광부상에 배치되는 제2 패드, 상기 제2 발광부상에 배치되는 제2 가지전극, 및 상기 제1 발광부상에 배치되는 제2 연장전극을 포함하고, 상기 반도체구조물은 제1방향으로 연장되어 상기 제1 발광부와 제2 발광부를 구획하는 제1 이격구간을 포함하고, 상기 제1 패드와 제2 패드는 상기 제1방향, 및 상기 제1방향과 수직한 제2 방향으로 오버랩되지 않게 배치될 수 있다.
본 발명의 일 실시 예에 따른 반도체 소자 패키지는, 캐비티를 포함하는 몸체; 상기 몸체에 배치되는 제1, 제2 리드 프레임; 상기 캐비티에 배치되는 제1, 제2 발광부를 포함하는 반도체구조물; 상기 제1, 제2 발광부를 상기 제1, 제2 리드 프레임과 전기적으로 연결하는 제1, 제2 와이어; 및 상기 제1 발광부와 제2 발광부를 병렬 연결하는 제3, 제4 와이어를 포함하고, 상기 제1 발광부와 제2 발광부는, 제1 도전형 반도체층, 제2 도전형 반도체층, 상기 제1 도전형 반도체층과 제2 도전형 반도체층 사이에 배치되는 활성층, 상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극, 및 상기 제2 도전형 반도체층과 전기적으로 연결되는 제2 전극을 포함하고, 상기 제1 전극은 제1 패드, 제1 서브패드, 및 제1 가지전극을 포함하고, 상기 제2 전극은 제2 패드, 제2 서브패드, 및 제2 가지전극을 포함하고, 상기 제1 와이어는 상기 제1 서브패드와 상기 제1 리드 프레임을 전기적으로 연결하고, 상기 제2 와이어는 상기 제2 서브패드와 상기 제2 리드 프레임을 전기적으로 연결하고, 상기 제3 와이어는 상기 제1 발광부의 제1 패드와 상기 제2 발광부의 제1 패드를 전기적으로 연결하고, 상기 제4 와이어는 상기 제1 발광부의 제2 패드와 상기 제2 발광부의 제2 패드를 전기적으로 연결한다.
상기 반도체구조물은 제1방향으로 연장되어 상기 제1 발광부와 제2 발광부를 구획하는 제1 이격구간을 포함하고, 상기 제1 서브패드와 제2 서브패드는 상기 제1방향, 및 상기 제1방향과 수직한 제2 방향으로 오버랩되지 않을 수 있다.
상기 반도체구조물은, 평면상 서로 마주보는 제1 측면과 제3 측면, 서로 마주보는 제2 측면과 제4 측면, 상기 제1 측면을 이등분하는 제1 중심선, 및 상기 제2 측면을 이등분하는 제2 중심선에 의해 구획되는 제1 내지 제4 영역을 포함하고, 상기 제1 영역은 상기 제1 측면과 상기 제2 측면을 포함하고, 상기 제2 영역은 상기 제2 측면과 상기 제3 측면을 포함하고, 상기 제3 영역은 상기 제3 측면과 상기 제4 측면을 포함하고, 상기 제4 영역은 상기 제4 측면과 상기 제1 측면을 포함하고, 상기 제1 서브패드는 상기 제2 영역에 배치되고, 상기 제2 서브패드는 상기 제4 영역에 배치될 수 있다.
상기 제1, 제2 와이어와 상기 제3, 제4 와이어는 재질이 상이할 수 있다.
상기 제3, 제4 와이어는 은(Ag)을 포함할 수 있다.
실시 예에 따르면, 복수 개의 발광부의 동작 전압이 일정하여 광 효율이 향상될 수 있다.
또한, 패키지 제작시 와이어 본딩 횟수를 줄일 수 있다.
또한, 복수 개의 칩 사이의 저항을 줄일 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 제1 실시 예에 따른 반도체 소자의 평면도이고,
도 2는 도 1의 A-A 방향 단면도이고,
도 3은 도 1의 B-B 방향 단면도이고,
도 4는 도 1의 C-C 방향 단면도이고,
도 5는 본 발명의 제2 실시 예에 따른 반도체 소자의 평면도이고,
도 6은 본 발명의 제3 실시 예에 따른 반도체 소자의 평면도이고,
도 7은 본 발명의 제4 실시 예에 따른 반도체 소자의 평면도이고,
도 8은 본 발명의 제5 실시 예에 따른 반도체 소자의 평면도이고,
도 9는 비교 예와 실시 예의 발광 강도(Po)를 측정한 그래프이고,
도 10은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 평면도이고,
도 11은 본 발명의 제6 실시 예에 따른 반도체 소자의 평면도이고,
도 12a는 도 11의 제2 영역 확대도이고,
도 12b는 도 11의 제4 영역 확대도이고,
도 13은 본 발명의 다른 실시 예에 따른 반도체 소자 패키지의 평면도이다.
본 실시 예들은 다른 형태로 변형되거나 여러 실시 예가 서로 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 각각의 실시 예로 한정되는 것은 아니다.
특정 실시 예에서 설명된 사항이 다른 실시 예에서 설명되어 있지 않더라도, 다른 실시 예에서 그 사항과 반대되거나 모순되는 설명이 없는 한, 다른 실시 예에 관련된 설명으로 이해될 수 있다.
예를 들어, 특정 실시 예에서 구성 A에 대한 특징을 설명하고 다른 실시 예에서 구성 B에 대한 특징을 설명하였다면, 구성 A와 구성 B가 결합된 실시 예가 명시적으로 기재되지 않더라도 반대되거나 모순되는 설명이 없는 한, 본 발명의 권리범위에 속하는 것으로 이해되어야 한다.
실시 예의 설명에 있어서, 어느 한 element가 다른 element의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
도 1은 본 발명의 제1 실시 예에 따른 반도체 소자의 평면도이고, 도 2는 도 1의 A-A 방향 단면도이고, 도 3은 도 1의 B-B 방향 단면도이고, 도 4는 도 1의 C-C 방향 단면도이다.
도 1을 참조하면, 실시 예에 따른 반도체 소자는, 제1 발광부(120A) 및 제2 발광부(120B)를 포함하는 반도체구조물(120A, 120B), 제1 발광부(120A)과 제2 발광부(120B)를 병렬 연결하는 제1 전극(130), 및 제2 전극(140)을 포함한다.
제1 발광부(120A)와 제2 발광부(120B)는 아이솔레이션된 발광셀일 수 있다. 발광부는 독립적으로 활성층을 갖는 영역으로 정의할 수 있다. 제1 발광부(120A)와 제2 발광부(120B) 사이에는 제1 방향(X축 방향)으로 연장된 제1 이격구간(d1)이 배치될 수 있다. 제1 발광부(120A)와 제2 발광부(120B)는 제1 이격구간(d1)을 기준으로 제2 방향(Y축 방향)으로 이격 배치될 수 있다.
제1 전극(130)은 제1 발광부(120A)상에 배치되는 제1 패드(131), 제1 발광부(120A)상에 배치되는 제1 가지전극(132), 및 제2 발광부(120B)상에 배치되는 제1 연장전극(133)을 포함할 수 있다.
제1 전극(130)은 제1 발광부(120A)의 제1 도전형 반도체층과 제2 발광부(120B)의 제1 도전형 반도체층을 전기적으로 연결할 수 있다. 제1 전극(130)은 알루미늄(Al), 티타늄(Ti), 크롬(Cr), 니켈(Ni), 구리(Cu), 금(Au) 중 적어도 하나를 포함하며 단층 또는 다층 구조로 형성될 수 있다.
제1 패드(131)는 와이어가 본딩되는 영역일 수 있다. 제1 패드(131)의 형상은 특별히 제한되지 않는다. 제1 가지전극(132)과 제2 연장전극(143)은 제1-2방향(X2 방향)으로 연장될 수 있다. 제1 가지전극(132)과 제1 연장전극(133)의 폭은 특별히 한정하지 않는다.
제1 전극(130)은 제1 가지전극(132)과 제1 연장전극(133)을 연결하는 제1 연결부(134)를 포함할 수 있다. 제1 연결부(134)는 제1 이격구간(d1)상에 배치될 수 있다. 제1 연결부(134)의 폭은 제1 가지전극(132) 및 제1 연장전극(133)의 폭보다 넓을 수 있다.
제1 가지전극(132)의 폭과 제1 연결부(134)의 폭의 비는 1:2 내지 1:5일 수 있다. 폭의 비가 1:2보다 작은 경우(예: 1:1.5)에는 제1 이격구간(d1)의 단차에 의해 제1 연결부(134)가 끊어질 수도 있다. 폭의 비가 1:5보다 큰 경우에는 상대적으로 발명 면적이 작아져 발광 효율이 감소할 수 있다. 예시적으로 제1 가지전극(132)과 제1 연장전극(133)의 폭은 2um 내지 6um일 수 있고, 제1 연결부(134)의 폭은 10um 내지 30um일 수 있으나 반드시 이에 한정하지 않는다.
제2 전극(140)은 제2 발광부(120B)상에 배치되는 제2 패드(141), 제2 발광부(120B)상에 배치되는 제2 가지전극(142), 및 제1 발광부(120A)상에 배치되는 제2 연장전극(143)을 포함할 수 있다.
제2 전극(140)은 제1 발광부(120A)의 제2 도전형 반도체층과 제2 발광부(120B)의 제2 도전형 반도체층을 전기적으로 연결할 수 있다. 제2 전극(140)은 알루미늄(Al), 티타늄(Ti), 크롬(Cr), 니켈(Ni), 구리(Cu), 금(Au) 중 적어도 하나를 포함하여 단층 또는 다층 구조로 형성될 수 있다.
제2 패드(141)는 와이어가 본딩되는 영역일 수 있다. 식별을 위해 제2 패드(141)의 형상은 제1 패드(131)의 형상과 다른 형상을 가질 수 있다. 예시적으로 제2 패드(141)는 원형 형상을 가질 수 있으나 특별히 이에 한정하지 않는다. 제2 가지전극(142)과 제2 연장전극(143)은 제1-1방향(X1 방향)으로 연장될 수 있다. 제2 가지전극(142)과 제2 연장전극(143)의 폭은 특별히 한정하지 않는다. 예시적으로 제2 가지전극(142)과 제2 연장전극(143)의 폭은 2um 내지 6um일 수 있다.
제2 전극(140)은 제2 가지전극(142)과 제2 연장전극(143)을 연결하는 제2 연결부(144)를 포함할 수 있다. 제2 연결부(144)는 제1 이격구간(d1)상에 배치될 수 있다. 제2 연결부(144)의 폭은 제2 가지전극(142) 및 제2 연장전극(143)의 폭보다 넓을 수 있다. 제1 연결부(134)와 동일한 이유로 제2 가지전극(142)의 폭과 제2 연결부(144)의 폭의 비는 1:2 내지 1:5를 만족할 수 있다.
제2 가지전극(142)의 개수는 제1 가지전극(132)의 개수보다 많을 수 있다. 제2 가지전극(142)의 개수를 늘려 홀의 주입 효율을 개선할 수 있다. 또한, 제1 가지전극(132)은 발광부를 제1 방향으로 이등분하는 가상선 상에 배치될 수 있다. 제1 가지전극(132)이 발광부의 중앙에 배치되므로 전자(electron)가 균일하게 분산될 수 있다.
반도체 소자는 평면상에서 서로 마주보는 제1 측면(S1)과 제3 측면(S3), 서로 마주보는 제2 측면(S2)과 제4 측면(S4), 제1 측면(S1)을 이등분하는 제1 중심선(C1), 및 제2 측면(S2)을 이등분하는 제2 중심선(C2)에 의해 구획되는 제1 내지 제4 영역(P1, P2, P3, P4)을 포함할 수 있다. 제1 측면 내지 제4 측면(S1, S2, S3, S4)은 반도체 소자 또는 기판(110)의 최외곽면을 이룰 수 있다.
제1 영역(P1)은 제1 측면(S1)과 제2 측면(S2)을 포함하고, 제2 영역(P2)은 제2 측면(S2)과 제3 측면(S3)을 포함하고, 제3 영역(P3)은 제3 측면(S3)과 제4 측면(S4)을 포함하고, 제4 영역(P4)은 제4 측면(S4)과 제1 측면(S1)을 포함할 수 있다.
실시 예에 따른 제1 패드(131)는 제2 영역(P2)에 배치되고, 제2 패드(141)는 제4 영역(P4)에 배치된다. 즉, 제1 패드(131)와 제2 패드(141)는 평면상 대각선 방향으로 배치될 수 있다. 이러한 구성에 의하면 전류 분산 효율이 향상될 수 있다. 만약, 제1 패드(131)와 제2 패드(141)가 모두 제1 발광부(120A)에만 배치되면 제1 발광부(120A)의 발광 강도가 제2 발광부(120B)보다 강해져 균일도가 저하되는 문제가 있다.
또한, 제1 패드(131)가 제1 영역(P1)에 배치되고 제2 패드(141)가 제4 영역(P4)에 배치된 경우(제2 방향으로 오버랩되게 배치), 전류 분산 효율이 감소할 수 있다. 따라서, 제1 패드(131)와 제2 패드(141)는 제2 방향(Y축 방향)으로 오버랩되지 않도록 대각선 방향으로 배치되는 것이 바람직할 수 있다.
도 2를 참조하면, 제1 발광부(120A)와 제2 발광부(120B)는 각각 제1 도전형 반도체층(121), 활성층(122), 및 제2 도전형 반도체층(123)을 포함할 수 있다.
제1 도전형 반도체층(121)은 -Ⅴ족, -Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1도펀트가 도핑될 수 있다. 제1 도전형 반도체층(121)은 Inx1Aly1Ga1 -x1-y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlGaN, InGaN, InAlGaN 등에서 선택될 수 있다. 그리고, 제1도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 제1도펀트가 n형 도펀트인 경우, 제1도펀트가 도핑된 제1 도전형 반도체층(121)은 n형 반도체층일 수 있다.
활성층(122)은 제1 도전형 반도체층(121)과 제2 도전형 반도체층(123) 사이에 배치될 수 있다. 활성층(122)은 제1 도전형 반도체층(121)을 통해서 주입되는 전자(또는 정공)와 제2 도전형 반도체층(123)을 통해서 주입되는 정공(또는 전자)이 만나는 층이다. 활성층(122)은 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 가시광 또는 자외선 파장을 가지는 빛을 생성할 수 있다.
활성층(122)은 우물층과 장벽층을 포함하고, 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quantum Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(122)의 구조는 이에 한정하지 않는다.
제2 도전형 반도체층(123)은 활성층(122) 상에 형성되며, -Ⅴ족, -Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 반도체층(123)에 제2도펀트가 도핑될 수 있다. 제2 도전형 반도체층(123)은 Inx5Aly2Ga1 -x5- y2N (0≤x5≤1, 0≤y2≤1, 0≤x5+y2≤1)의 조성식을 갖는 반도체 물질 또는 AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 선택된 물질로 형성될 수 있다. 제2도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제2도펀트가 도핑된 제2 도전형 반도체층(123)은 p형 반도체층일 수 있다.
제2 도전형 반도체층(123)상에는 오믹접촉층(160)이 배치될 수 있다. 오믹접촉층(160)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 또는 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Sn, In, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나를 포함하여 형성될 수 있으나, 이러한 재료에 한정되는 않는다.
절연층(151)은 제1 발광부(120A)와 제2 발광부(120B) 사이에 배치될 수 있다. 절연층(151)은 SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3, TiO2, AlN 등으로 이루어진 군에서 적어도 하나가 선택되어 형성될 수 있으나, 이에 한정하지 않는다.
제2 전극(140)은 제2 발광부(120B)상에 배치되는 제2 패드(141), 제2 발광부(120B)상에 배치되는 제2 가지전극(142), 및 제1 발광부(120A)상에 배치되는 제2 연장전극(143)을 포함할 수 있다.
제2 패드(141) 및 제2 가지전극(142)은 제2 발광부(120B)의 제2 도전형 반도체층(123)상에 배치되고, 제2 연장전극(143)은 제1 발광부(120A)의 제2 도전형 반도체층(123)상에 배치될 수 있다. 제2 연결부(144)는 제2 가지전극(142)과 제2 연장전극(143)을 연결할 수 있다.
제1 가지전극(132)과 제2 연장전극(143)의 하부에는 전류차단층 (CBL; current blocking layer)(152)이 배치될 수 있다. 전류차단층(152)은 제2 전극(140)과 수직 방향으로 중첩되는 영역에 배치될 수 있으며, 이에 따라 전류가 집중되는 현상을 완화하여 발광 소자의 발광 효율을 향상시킬 수 있다.
전류차단층(152)은 전기 절연성을 갖거나 쇼트키 접촉을 형성하는 재질을 포함할 수 있다. 전류차단층(152)은 산화물, 질화물 또는 금속으로 형성될 수 있다. 예시적으로 전류차단층(152)은 SiO2, SiOx, SiOxNy, Si3N4, Al2O3, TiOx, Ti, Al, Cr 중 적어도 하나를 포함할 수 있다.
도 1 및 도 3을 참조하면, 제1 전극(130)은 제1 발광부(120A)상에 배치되는 제1 패드(131), 제1 발광부(120A)상에 배치되는 제1 가지전극(132), 및 제2 발광부(120B)상에 배치되는 제1 연장전극(133)을 포함할 수 있다.
제1 패드(131) 및 제1 가지전극(132)은 제1 발광부(120A)의 제1 도전형 반도체층(121)상에 배치되고 제1 연장전극(133)은 제2 발광부(120B)의 제1 도전형 반도체층(121)상에 배치될 수 있다. 제1 발광부(120A)와 제2 발광부(120B)는 제1 전극(130)이 노출되도록 제1 전극(130)과 대응되는 홈(H1)이 형성될 수 있다.
도 1 및 도 4를 참조하면, 제1 가지전극(132), 제1 연장전극(133), 제2 가지전극(142), 제2 연장전극(143)은 교대로 배치될 수 있다. 제1 연장전극(133)은 이웃한 제2 가지전극(142) 사이에 배치될 수 있다. 또한, 제1 가지전극(132)은 이웃한 제2 연장전극(143) 사이에 배치될 수 있다.
제2 가지전극(142) 및 제2 연장전극(143)의 하부에는 전류차단층(152)이 배치될 수 있다. 제2 가지전극(142) 및 제2 연장전극(143)은 오믹전극층(160)상에 배치되어 제2 도전형 반도체층(123)과 전기적으로 연결되는 반면, 제1 가지전극(132)과 제1 연장전극(133)은 직접 제1 도전형 반도체층(121)과 접촉할 수 있다. 제1 전극(130)과 제2 전극(140)은 Cr, V, W, Ti, Zn, Ni, Cu, Al, Au, Mo, Ti/Au/Ti/Pt/Au, Ni/Au/Ti/Pt/Au, Cr/Al/Ni/Cu/Ni/Au 등에서 선택된 적어도 어느 하나를 포함할 수 있다.
도 5는 본 발명의 제2 실시 예에 따른 반도체 소자의 평면도이고, 도 6은 본 발명의 제3 실시 예에 따른 반도체 소자의 평면도이고, 도 7은 본 발명의 제4 실시 예에 따른 반도체 소자의 평면도이고, 도 8은 본 발명의 제5 실시 예에 따른 반도체 소자의 평면도이다.
도 5를 참조하면, 실시 예에 따른 반도체 소자는 4개의 발광부(120A, 120B, 120C, 120D)를 포함할 수 있다. 반도체 소자는 평면상에서 서로 마주보는 제1 측면(S1)과 제3 측면(S3), 서로 마주보는 제2 측면(S2)과 제4 측면(S4)을 포함하고, 제1 측면(S1)을 이등분하는 제1 이격구간(d1) 및 제2 측면(S2)을 이등분하는 제2 이격구간(d2)에 의해 4개의 발광부(120A, 120B, 120C, 120D)로 구획될 수 있다. 이와 동일한 방식으로 반도체구조물은 더 많은 발광부로 구획될 수 있다.
실시 예에 따른 제1 패드(131)는 제2 발광부(120B)에 배치되고, 제2 패드(141)는 제4 발광부(120D)에 배치될 수 있다. 즉, 제1 패드(131)와 제2 패드(141)는 평면상 대각선 방향으로 배치될 수 있다.
제1 전극(130)과 제2 전극(140)은 도 1에서 설명한 구성이 그대로 적용될 수 있다. 추가적으로 제1 전극(130)과 제2 전극(140)은 제2 이격구간(d2)상에 배치되는 수평 연결부(132c, 142c)를 포함할 수 있다.
예시적으로 제1 가지전극의 수평 연결부(132c)는 제1 발광부(120A)에 배치된 제1-1 가지전극(132b)과 제2 발광부(120B)에 배치된 제1-2 가지전극(132a)을 전기적으로 연결할 수 있다. 수평 연결부(132c)는 제1 가지전극(132)에 비해 상대적으로 넓은 폭을 가질 수 있다.
제1 가지전극(132)의 폭과 수평 연결부(132c)의 폭(Y 방향 폭)의 비는 1:2 내지 1:5일 수 있다. 폭의 비가 1:2보다 작은 경우(예: 1:1.5)에는 제2 이격구간(d2)의 단차에 의해 수평 연결부가 끊어질 수도 있다. 폭의 비가 1:5보다 큰 경우에는 발광 면적이 작아져 발광 효율이 감소할 수 있다. 예시적으로 수평 연결부의 폭은 10um 내지 30um일 수 있으나 반드시 이에 한정하지 않는다.
도 6을 참조하면, 제1 발광부(120A)와 제2 발광부(120B) 사이에는 제3 발광부(120C)와 제4 발광부(120D)가 더 배치될 수 있다. 복수 개의 발광부 사이에는 제1 이격구간(d1)이 각각 배치될 수 있다.
제1 전극(130)은 제1 발광부(120A)상에 배치되는 제1 패드(131), 및 제1 발광부(120A)상에 배치되는 제1 가지전극(132), 및 나머지 발광부(120B, 120C, 120D) 상에 각각 배치되는 복수 개의 제1 연장전극(133)을 포함할 수 있다. 또한, 제1 이격구간(d1)상에 배치되어 복수 개의 제1 연장전극(133)을 연결하는 제1 연결부(134)를 포함할 수 있다.
제2 전극(140)은 제2 발광부(120B)상에 배치되는 제2 패드(141) 및 제2 발광부(120B)상에 배치되는 제2 가지전극(142), 및 나머지 발광부(120A, 120C, 120D) 상에 배치되는 복수 개의 제2 연장전극(143)을 포함할 수 있다. 또한, 제1 이격구간(d1)상에 배치되어 복수 개의 제1 연장전극(133)을 연결하는 제2 연결부(144)를 포함할 수 있다.
도 7을 참조하면, 제1 전극(130)은 제1 발광부(120A)에 배치된 2개의 제1 가지전극(132), 제2 발광부(120B)에 배치된 2개의 제1 연장전극(133)을 포함할 수 있다. 제2 전극(140)은 제2 발광부(120B)에 배치된 3개의 제2 가지전극(142) 및 제1 발광부(120A)에 배치된 3개의 제2 연장전극(142)을 포함할 수 있다. 제1 연결부(134)는 제1 가지전극(132)과 제1 연장전극(133)을 연결할 수 있고, 제2 연결부(144)는 제2 가지전극(142)과 제2 연장전극(143)을 연결할 수 있다.
이러한 구성에 의하면, 하나의 발광부당 제1, 제2 가지전극(132, 142)의 개수가 많아져 전류 주입 효율 및 분산 효율이 향상되므로 발광 효율이 향상될 수 있다.
도 8을 참조하면, 제1 전극(130)은 반도체구조물(120)상에 배치된 제1 패드(131), 및 2개의 제1 가지전극(132)을 포함한다. 제1 패드(131)는 반도체구조물(120)를 제1 방향으로 이등분한 중심선(C1)상에 배치될 수 있다. 반도체구조물(120)은 중심선(C1)을 기준으로 일 측에 배치되는 제1 영역(P51) 및 타 측에 배치되는 제2 영역(P52)으로 구분될 수 있다.
제2 전극(140)은 제1 영역(P51)에 배치되는 제2-1 패드(141a), 제2 영역(P52)에 배치되는 제2-2 패드(141b), 제2-1 패드(141a)와 연결되는 제2-1 가지전극(142), 및 제2-2 패드(141b)와 연결되는 제2-2 가지전극(142), 및 제2-1 패드(141a)와 제2-2 패드(141b)를 연결하는 연결부(146)를 포함할 수 있다.
실시 예에 따르면 단일의 반도체구조물에 제2 전극(140)의 패드를 복수 개 배치함으로써 홀의 주입 효율을 개선할 수 있다. 또한, 사이즈가 큰 칩에서 저항을 낮출 수 있다.
도 9는 비교 예와 실시 예의 발광 강도(Po)를 측정한 그래프이다.
도 9를 참조하면, Eo는 하나의 발광부에 제1 전극(130)과 제2 전극(140)이 배치된 기본 구조이다. Eo의 발광 강도를 기준으로 실시 예들의 상대적인 발광 강도를 측정하였다.
측정 결과, 실시 예들은 모두 Eo에 비해 발광 강도가 향상되었음을 알 수 있다. 즉 반도체구조물을 복수 개로 구획하고 병렬로 연결하는 경우에는 상대적으로 높은 광속 및 광 효율을 확보할 수 있음을 알 수 있다.
도 10은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 평면도이다.
도 10을 참조하면, 실시 예에 따른 반도체 소자 패키지는 캐비티(1010)를 포함하는 몸체(1001), 및 몸체(1001)에 배치되는 제1, 제2 리드프레임(1002, 1003), 캐비티(1010)에 배치되는 반도체 소자(10)를 포함할 수 있다.
몸체(1001)는 폴리프탈아미드(PPA:Polyphthalamide)와 같은 수지 재질, 실리콘(Si), 알루미늄(Al), 알루미늄 나이트라이드(AlN), AlOx, 액정폴리머(PSG, photo sensitive glass), 폴리아미드9T(PA9T), 신지오택틱폴리스티렌(SPS), 금속 재질, 사파이어(Al2O3), 베릴륨 옥사이드(BeO), 세라믹 및 인쇄회로기판(PCB, Printed Circuit Board) 중 적어도 하나로 형성될 수 있다.
몸체(1001)의 상면 형상은 반도체 소자의 용도 및 설계에 따라 삼각형, 사각형, 다각형 및 원형 등 다양한 형상을 가질 수 있다.
캐비티(1010)의 단면 형상은 컵 형상, 오목한 용기 형상 등으로 형성될 수 있으며, 캐비티(1010)의 내 측면은 하부에 대해 경사진 내측면이 될 수 있다. 또한, 캐비티(1010)의 전면 형상은 원형, 사각형, 다각형, 타원형 등의 형상일 수 있으며, 이에 한정하지 않는다.
캐비티(1010)의 내측벽은 경사면을 이룰 수 있으며, 경사면의 각도에 따라 반도체 소자에서 방출되는 광의 반사각이 달라질 수 있으며, 이에 따라 외부로 방출되는 광의 지향각을 조절할 수 있다. 광의 지향각이 줄어들수록 반도체 소자에서 외부로 방출되는 광의 집중성은 증가하는 반면, 광의 지향각이 클수록 반도체 소자에서 외부로 방출되는 광의 집중성은 감소할 수 있다.
제1, 2 리드프레임(1002, 1003)은 금속 재질, 예를 들어, 티타늄(Ti), 구리(Cu), 니켈(Ni), 금(Au), 크롬(Cr), 탄탈늄(Ta), 백금(Pt), 주석(Sn), 은(Ag), 인(P), 알루미늄(Al), 인듐(In), 팔라듐(Pd), 코발트(Co), 실리콘(Si), 게르마늄(Ge), 하프늄(Hf), 루테늄(Ru), 철(Fe) 중에서 하나 이상의 물질 또는 합금을 포함할 수 있다.
반도체 소자(10)는 전술한 구성이 모두 적용될 수 있다. 실시 예에 따른 반도체 소자는 도 2와 같이 평면상 제1 내지 제4 영역을 가질 수 있으며, 제1 패드(131)는 제2 영역에 배치되고 제2 패드(141)는 제4 영역에 배치될 수 있다.
제1 패드(131)는 제1 와이어(1004)에 의해 제1 리드프레임(1002)과 전기적으로 연결될 수 있으며, 제2 패드(141)는 제2 와이어(1005)에 의해 제2 리드프레임(1003)과 전기적으로 연결될 수 있다.
실시 예에 따르면, 복수의 발광부가 칩 레벨에서 병렬 연결되므로 와이어 개수를 줄일 수 있다. 또한, 병렬 연결에 의해 광 효율이 향상될 수 있다.
도 11은 본 발명의 제6 실시 예에 따른 반도체 소자의 평면도이고, 도 12a는 도 11의 제2 영역 확대도이고, 도 12b는 도 11의 제4 영역 확대도이고, 도 13은 본 발명의 다른 실시 예에 따른 반도체 소자 패키지의 평면도이다.
도 11을 참조하면, 실시 예에 따른 반도체 소자는 제1 발광부(120A)와 제2 발광부(120B)를 포함한다. 제1, 제2 발광부(120A, 120B)는 동일 반도체구조물에서 아이솔레이션에 의해 형성될 수 있다. 제1 발광부(120A)와 제2 발광부(120B)는 각각 제1 도전형 반도체층, 활성층, 및 제2 도전형 반도체층을 포함할 수 있다. 서브패드를 제외한 나머지 구성은 도 2 내지 도 4에서 설명한 구조가 그대로 적용될 수 있다.
제1, 제2 발광부(120A, 120B)는 각각 별도로 제작된 반도체 소자일 수도 있다. 제1, 제2 발광부(120A, 120B)가 별도로 제작된 반도체 소자일 경우 각 발광부의 활성층은 서로 다른 조성을 가질 수도 있다. 예시적으로 제1 발광부(120A)의 활성층은 청색광을 방출하고 제2 발광부(120B)의 활성층은 녹색광을 방출할 수도 있다. 따라서, 다양한 종류의 반도체 소자를 병렬로 연결할 수 있다. 이하에서는 하나의 반도체구조물에서 아이솔레이션된 발광부로 설명한다.
제1 발광부(120A)와 제2 발광부(120B)는 각각 제1 도전형 반도체층과 전기적으로 연결된 제1 전극(130) 및 제2 도전형 반도체층과 전기적으로 연결된 제2 전극(140)을 포함할 수 있다.
제1 전극(130)은 제1 패드(131)와 제1 가지전극(132)을 포함하고, 제2 전극(140)은 제2 패드(141)와 제2 가지전극(142)을 포함할 수 있다. 이때, 제1 발광부(120A)의 제1 전극(130)은 제1 서브패드(137)를 더 포함할 수 있고, 제2 발광부(120B)의 제2 전극(140)은 제2 서브패드(147)를 더 포함할 수 있다.
제3 와이어(1007)는 제1 발광부(120A)에 배치된 제1 패드(131)와 제2 발광부(120B)에 배치된 제1 패드(131)를 전기적으로 연결하고, 제4 와이어(1006)는 제1 발광부(120A)에 배치된 제2 패드(141)와 제2 발광부(120B)에 배치된 제2 패드(141)를 전기적으로 연결할 수 있다. 따라서, 제1 발광부(120A)와 제2 발광부(120B)는 제3, 제4 와이어(1007, 1006)에 의해 병렬로 연결될 수 있다.
제3 와이어(1007)와 제4 와이어(1006)는 실버 와이어일 수 있다. 일반적으로 사용되는 골드 와이어는 청색 파장대의 광을 흡수하므로 반사도가 높은 실버 와이어를 선택하는 것이 바람직할 수 있다. 실버 와이어의 직경은 0.7mm 내지 0.9mm일 수 있으나 반드시 이에 한정하지 않는다. 또한, 제3 와이어(1007)와 제4 와이어(1006)는 은(Ag)이 코팅된 와이어일 수도 있다. 실시 예에 따르면, 와이어에 의해 복수 개의 발광부를 연결하므로 발광부들의 동작 전압이 균일해지는 효과가 있다.
실시 예에 따르면 제1 발광부(120A)의 제1 패드(131)와 제2 발광부(120B)의 제1 패드(131)가 제3 와이어(1007)로 연결되고, 제1 발광부(120A)의 제2 패드(141)와 제2 발광부(120B)의 제2 패드(141)가 제4 와이어(1006)와 연결되므로, 리드 프레임과 연결을 위한 패드가 더 필요할 수 있다. 따라서, 제1 발광부(120A)의 제1 전극(130)은 제1 서브패드(137)를 더 포함할 수 있고, 제2 발광부(120B)의 제2 전극(140)은 제2 서브패드(147)를 더 포함할 수 있다. 제1 패드(131)와 제1 서브패드(137)의 형상은 동일할 수 있으며, 제2 패드(141)와 제2 서브패드(147)의 형상은 동일할 수 있다. 그러나, 서브패드의 형상은 반드시 이에 한정하지 않는다.
반도체 소자는 평면상에서 서로 마주보는 제1 측면(S1)과 제3 측면(S3), 서로 마주보는 제2 측면(S2)과 제4 측면(S4), 제1 측면(S1)을 이등분하는 제1 중심선(C1), 및 제2 측면(S2)을 이등분하는 제2 중심선(C2)에 의해 구획되는 제1 내지 제4 영역(P1, P2, P3, P4)을 포함할 수 있다.
제1 영역(P1)은 제1 측면(S1)과 제2 측면(S2)을 포함하고, 제2 영역(P2)은 제2 측면(S2)과 제3 측면(S3)을 포함하고, 제3 영역(P3)은 제3 측면(S3)과 제4 측면(S4)을 포함하고, 제4 영역(P4)은 제4 측면(S4)과 제1 측면(S1)을 포함할 수 있다.
실시 예에 따른 제1 서브패드(137)는 제2 영역(P2)에 배치되고, 제2 서브패드(147)는 제4 영역(P4)에 배치된다. 즉, 제1 서브패드(137)와 제2 서브패드(147)는 대각선 방향으로 배치될 수 있다. 이러한 구성에 의하면 칩 저항을 개선할 수 있으며 전류 분산 효율이 향상될 수 있다.
도 12a를 참조하면 제2 영역(P2)은 제3 측면(S3)을 이등분하는 제3 중심선(C11)과 제2 측면(S2)을 이등분하는 제4 중심선(C21)에 의해 제2-1 내지 제2-4 서브영역(P21, P22, P23, P24)으로 구분될 수 있다.
제2-1 서브영역(P21)은 제2 중심선(C2)과 제2 측면(S2)을 포함하고, 제2-2 서브영역(P22)은 제2 측면(S2)과 제3 측면(S3)을 포함하고, 제2-3 서브영역(P23)은 제3 측면(S3)과 제1 중심선(C1)을 포함하고, 제2-4 서브영역(P24)은 제1 중심선(C1)과 제2 중심선(C2)을 포함할 수 있다. 실시 예에 따른 제1 서브패드(137)는 제2-2 서브영역(P22)에 배치될 수 있다.
도 12b를 참조하면, 제4 영역(P4)은 제1 측면(S1)을 이등분하는 제5 중심선(C12)과 제4 측면(S4)을 이등분하는 제6 중심선(C22)에 의해 제4-1 내지 제4-4 서브영역(P44)으로 구분될 수 있다.
제4-1 서브영역(P41)은 제1 측면(S1)과 제1 중심선(C1)을 포함하고, 제4-2 서브영역(P42)은 제1 중심선(C1)과 제2 중심선(C2)을 포함하고, 제4-3 서브영역(P43)은 제2 중심선(C2)과 제4 측면(S4)을 포함하고, 제4-4 서브영역(P44)은 제4 측면(S4)과 제1 측면(S1)을 포함할 수 있다. 실시 예에 따른 제2 서브패드(147)는 제4-4 서브영역(P44)에 배치될 수 있다. 즉, 제1 서브패드(137)와 제2 서브패드(147)는 대각선 방향으로 배치될 수 있다. 이러한 구성에 의하면 칩 저항을 개선할 수 있으며 전류 분산 효율이 향상될 수 있다.
도 13을 참조하면, 실시 예에 따른 반도체 소자 패키지는 캐비티(1010)를 포함하는 몸체(1001), 및 몸체(1001)에 배치되는 제1, 제2 리드프레임(1002, 1003), 캐비티(1010)에 배치되는 반도체 소자(10)를 포함할 수 있다.
몸체(1001)는 폴리프탈아미드(PPA:Polyphthalamide)와 같은 수지 재질, 실리콘(Si), 알루미늄(Al), 알루미늄 나이트라이드(AlN), AlOx, 액정폴리머(PSG, photo sensitive glass), 폴리아미드9T(PA9T), 신지오택틱폴리스티렌(SPS), 금속 재질, 사파이어(Al2O3), 베릴륨 옥사이드(BeO), 세라믹 및 인쇄회로기판(PCB, Printed Circuit Board) 중 적어도 하나로 형성될 수 있다.
몸체(1001)의 상면 형상은 반도체 소자의 용도 및 설계에 따라 삼각형, 사각형, 다각형 및 원형 등 다양한 형상을 가질 수 있다.
캐비티(1010)의 단면 형상은 컵 형상, 오목한 용기 형상 등으로 형성될 수 있으며, 캐비티(1010)의 내 측면은 하부에 대해 경사진 내측면이 될 수 있다. 또한, 캐비티(1010)의 전면 형상은 원형, 사각형, 다각형, 타원형 등의 형상일 수 있으며, 이에 한정을 두지 않는다.
캐비티(1010)의 내측벽은 경사면을 이룰 수 있으며, 상기 경사면의 각도에 따라 반도체 소자에서 방출되는 광의 반사각이 달라질 수 있으며, 이에 따라 외부로 방출되는 광의 지향각을 조절할 수 있다. 광의 지향각이 줄어들수록 반도체 소자에서 외부로 방출되는 광의 집중성은 증가하는 반면, 광의 지향각이 클수록 반도체 소자에서 외부로 방출되는 광의 집중성은 감소할 수 있다.
제1, 2 리드프레임(1002, 1003)은 금속 재질, 예를 들어, 티타늄(Ti), 구리(Cu), 니켈(Ni), 금(Au), 크롬(Cr), 탄탈늄(Ta), 백금(Pt), 주석(Sn), 은(Ag), 인(P), 알루미늄(Al), 인듐(In), 팔라듐(Pd), 코발트(Co), 실리콘(Si), 게르마늄(Ge), 하프늄(Hf), 루테늄(Ru), 철(Fe) 중에서 하나 이상의 물질 또는 합금을 포함할 수 있다.
반도체 소자는 전술한 구성이 모두 적용될 수 있다. 실시 예에 따른 반도체 소자는 도 11과 같이 평면상 제1 내지 제4 영역(P1, P2, P3, P4)을 가질 수 있으며, 제1 서브패드(137)는 제2 영역(P2)에 배치되고 제2 서브패드(147)는 제4 영역(P4)에 배치될 수 있다.
제1 서브패드(137)는 제1 와이어(1004)에 의해 제1 리드프레임(1002)과 전기적으로 연결될 수 있으며, 제2 서브패드(147)는 제2 와이어(1005)에 의해 제2 리드프레임(1003)과 전기적으로 연결될 수 있다.
제3 와이어(1007)는 제1 발광부(120A)와 제2 발광부(120B)의 제1 패드(131)를 전기적으로 연결하고, 제4 와이어(1006)는 제1 발광부(120A)와 제2 발광부(120B)의 제2 패드(141)를 전기적으로 연결할 수 있다.
제3 와이어(1007)와 제4 와이어(1006)는 실버 와이어일 수 있다. 일반적으로 사용되는 골드 와이어는 청색 파장대의 광을 흡수하므로 반사도가 높은 실버 와이어를 선택하는 것이 바람직할 수 있다. 실버 와이어의 직경은 0.7mm 내지 0.9mm일 수 있으나 반드시 이에 한정하지 않는다. 또한, 제3 와이어(1007)와 제4 와이어(1006)는 은(Ag)이 코팅된 와이어일 수도 있다. 실시 예에 따르면, 와이어에 의해 복수 개의 발광부를 연결하므로 발광부들의 동작 전압이 균일해지는 효과가 있다.
반도체 소자는 조명 시스템의 광원으로 사용되거나, 영상표시장치의 광원이나 조명장치의 광원으로 사용될 수 있다. 즉, 반도체 소자는 케이스에 배치되어 광을 제공하는 다양한 전자 디바이스에 적용될 수 있다. 예시적으로, 반도체 소자와 RGB 형광체를 혼합하여 사용하는 경우 연색성(CRI)이 우수한 백색광을 구현할 수 있다.
상술한 반도체 소자는 발광소자 패키지로 구성되어, 조명 시스템의 광원으로 사용될 수 있는데, 예를 들어 영상표시장치의 광원이나 조명 장치 등의 광원으로 사용될 수 있다.
영상표시장치의 백라이트 유닛으로 사용될 때 에지 타입의 백라이트 유닛으로 사용되거나 직하 타입의 백라이트 유닛으로 사용될 수 있고, 조명 장치의 광원으로 사용될 때 등기구나 벌브 타입으로 사용될 수도 있으며, 또한 이동 단말기의 광원으로 사용될 수도 있다.
발광 소자는 상술한 발광 다이오드 외에 레이저 다이오드가 있다.
레이저 다이오드는, 발광소자와 동일하게, 상술한 구조의 제1도전형 반도체층과 활성층 및 제2도전형 반도체층을 포함할 수 있다. 그리고, p-형의 제1 도전형 반도체와 n-형의 제2 도전형 반도체를 접합시킨 뒤 전류를 흘러주었을 때 빛이 방출되는 electro-luminescence(전계발광) 현상을 이용하나, 방출되는 광의 방향성과 위상에서 차이점이 있다. 즉, 레이저 다이오드는 여기 방출(stimulated emission)이라는 현상과 보강간섭 현상 등을 이용하여 하나의 특정한 파장(단색광, monochromatic beam)을 가지는 빛이 동일한 위상을 가지고 동일한 방향으로 방출될 수 있으며, 이러한 특성으로 인하여 광통신이나 의료용 장비 및 반도체 공정 장비 등에 사용될 수 있다.
수광 소자로는 빛을 검출하여 그 강도를 전기 신호로 변환하는 일종의 트랜스듀서인 광 검출기(photodetector)를 예로 들 수 있다. 이러한 광 검출기로서, 광전지(실리콘, 셀렌), 광 출력전 소자(황화 카드뮴, 셀렌화 카드뮴), 포토 다이오드(예를 들어, visible blind spectral region이나 true blind spectral region에서 피크 파장을 갖는 PD), 포토 트랜지스터, 광전자 증배관, 광전관(진공, 가스 봉입), IR(Infra-Red) 검출기 등이 있으나, 실시예는 이에 국한되지 않는다.
또한, 광검출기와 같은 반도체 소자는 일반적으로 광변환 효율이 우수한 직접 천이 반도체(direct bandgap semiconductor)를 이용하여 제작될 수 있다. 또는, 광검출기는 구조가 다양하여 가장 일반적인 구조로는 p-n 접합을 이용하는 pin형 광검출기와, 쇼트키접합(Schottky junction)을 이용하는 쇼트키형 광검출기와, MSM(Metal Semiconductor Metal)형 광검출기 등이 있다.
포토 다이오드(Photodiode)는 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2도전형 반도체층을 포함할 수 있고, pn접합 또는 pin 구조로 이루어진다. 포토 다이오드는 역바이어스 혹은 제로바이어스를 가하여 동작하게 되며, 광이 포토 다이오드에 입사되면 전자와 정공이 생성되어 전류가 흐른다. 이때 전류의 크기는 포토 다이오드에 입사되는 광의 강도에 거의 비례할 수 있다.
광전지 또는 태양 전지(solar cell)는 포토 다이오드의 일종으로, 광을 전류로 변환할 수 있다. 태양 전지는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2도전형 반도체층을 포함할 수 있다.
또한, p-n 접합을 이용한 일반적인 다이오드의 정류 특성을 통하여 전자 회로의 정류기로 이용될 수도 있으며, 초고주파 회로에 적용되어 발진 회로 등에 적용될 수 있다.
또한, 상술한 반도체 소자는 반드시 반도체로만 구현되지 않으며 경우에 따라 금속 물질을 더 포함할 수도 있다. 예를 들어, 수광 소자와 같은 반도체 소자는 Ag, Al, Au, In, Ga, N, Zn, Se, P, 또는 As 중 적어도 하나를 이용하여 구현될 수 있으며, p형이나 n형 도펀트에 의해 도핑된 반도체 물질이나 진성 반도체 물질을 이용하여 구현될 수도 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 제1 발광부 및 제2 발광부를 포함하는 반도체구조물;
    상기 제1 발광부의 제1 도전형 반도체층과 상기 제2 발광부의 제1 도전형 반도체층을 전기적으로 연결하는 제1 전극; 및
    상기 제1 발광부의 제2 도전형 반도체층과 상기 제2 발광부의 제2 도전형 반도체층을 전기적으로 연결하는 제2 전극을 포함하고,
    상기 제1 전극은 상기 제1 발광부상에 배치되는 제1 패드, 상기 제1 발광부상에 배치되는 제1 가지전극, 및 상기 제2 발광부상에 배치되는 제1 연장전극을 포함하고,
    상기 제2 전극은 상기 제2 발광부상에 배치되는 제2 패드, 상기 제2 발광부상에 배치되는 제2 가지전극, 및 상기 제1 발광부상에 배치되는 제2 연장전극을 포함하고,
    상기 반도체구조물은 제1방향으로 연장되어 상기 제1 발광부와 제2 발광부를 구획하는 제1 이격구간을 포함하고,
    상기 제1 패드와 제2 패드는 상기 제1방향, 및 상기 제1방향과 수직한 제2 방향으로 오버랩되지 않는 반도체 소자.
  2. 제1항에 있어서,
    평면상 서로 마주보는 제1 측면과 제3 측면, 서로 마주보는 제2 측면과 제4 측면, 상기 제1 측면을 이등분하는 제1 중심선, 및 상기 제2 측면을 이등분하는 제2 중심선에 의해 구획되는 제1 내지 제4 영역을 포함하고,
    상기 제1 영역은 상기 제1 측면과 상기 제2 측면을 포함하고, 상기 제2 영역은 상기 제2 측면과 상기 제3 측면을 포함하고, 상기 제3 영역은 상기 제3 측면과 상기 제4 측면을 포함하고, 상기 제4 영역은 상기 제4 측면과 상기 제1 측면을 포함하고,
    상기 제1 패드는 상기 제2 영역에 배치되고, 상기 제2 패드는 상기 제4 영역에 배치되는 반도체 소자.
  3. 제1항에 있어서,
    상기 제1 전극과 제2 전극은 상기 제1 발광부와 제2 발광부를 병렬 연결하는 반도체 소자.
  4. 제1항에 있어서,
    상기 제2 가지전극의 개수는 상기 제1 가지전극의 개수보다 많은 반도체 소자.
  5. 제1항에 있어서,
    상기 제2 가지전극의 하부에 배치되는 전류차단층을 포함하는 반도체 소자.
  6. 제5항에 있어서,
    상기 제1 전극은 상기 제1 이격구간상에 배치되는 제1 연결부를 포함하고,
    상기 제1 연결부의 폭은 상기 제1 가지전극의 폭보다 넓은 반도체 소자.
  7. 제1항에 있어서,
    상기 제1 가지전극은 상기 제1 발광부를 상기 제1 방향으로 이등분하는 가상선상에 배치되는 반도체 소자.
  8. 제2항에 있어서,
    상기 제2 방향으로 연장되어 상기 제1 발광부와 상기 제2 발광부를 구획하는 제2 이격구간을 포함하고,
    상기 제1 중심선은 상기 제2 이격구간에 배치되는 반도체 소자.
  9. 제8항에 있어서,
    상기 제1 전극은 상기 제2 이격구간상에 배치되는 제2 연결부를 포함하고,
    상기 제2 연결부의 폭은 상기 제2 가지전극의 폭보다 넓은 반도체 소자.
  10. 캐비티를 포함하는 몸체;
    상기 몸체에 배치되는 제1, 제2 리드 프레임;
    상기 캐비티에 배치되는 반도체 소자;
    상기 반도체 소자의 제1 패드를 상기 제1 리드 프레임과 전기적으로 연결하는 제1 와이어; 및
    상기 반도체 소자의 제2 패드를 상기 제2 리드 프레임과 전기적으로 연결하는 제2 와이어를 포함하고,
    상기 반도체 소자는,
    제1 발광부 및 제2 발광부를 포함하는 반도체구조물;
    상기 제1 발광부의 제1 도전형 반도체층과 상기 제2 발광부의 제1 도전형 반도체층을 전기적으로 연결하는 제1 전극; 및
    상기 제1 발광부의 제2 도전형 반도체층과 상기 제2 발광부의 제2 도전형 반도체층을 전기적으로 연결하는 제2 전극을 포함하고,
    상기 제1 전극은 상기 제1 발광부상에 배치되는 제1 패드, 상기 제1 발광부상에 배치되는 제1 가지전극, 및 상기 제2 발광부상에 배치되는 제1 연장전극을 포함하고,
    상기 제2 전극은 상기 제2 발광부상에 배치되는 제2 패드, 상기 제2 발광부상에 배치되는 제2 가지전극, 및 상기 제1 발광부상에 배치되는 제2 연장전극을 포함하고,
    상기 반도체구조물은 제1방향으로 연장되어 상기 제1 발광부와 제2 발광부를 구획하는 제1 이격구간을 포함하고,
    상기 제1 패드와 제2 패드는 상기 제1방향, 및 상기 제1방향과 수직한 제2 방향으로 오버랩되지 않는 반도체 소자 패키지.
PCT/KR2018/003916 2017-04-03 2018-04-03 반도체 소자 및 이를 포함하는 반도체 소자 패키지 WO2018186655A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/500,216 US11011675B2 (en) 2017-04-03 2018-04-03 Semiconductor device and semiconductor device package including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020170043051A KR102363036B1 (ko) 2017-04-03 2017-04-03 반도체 소자 및 이를 포함하는 반도체 소자 패키지
KR1020170043052A KR102363037B1 (ko) 2017-04-03 2017-04-03 반도체 소자 패키지
KR10-2017-0043052 2017-04-03
KR10-2017-0043051 2017-04-03

Publications (1)

Publication Number Publication Date
WO2018186655A1 true WO2018186655A1 (ko) 2018-10-11

Family

ID=63712338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003916 WO2018186655A1 (ko) 2017-04-03 2018-04-03 반도체 소자 및 이를 포함하는 반도체 소자 패키지

Country Status (2)

Country Link
US (1) US11011675B2 (ko)
WO (1) WO2018186655A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102656300B1 (ko) 2017-12-05 2024-04-11 소니그룹주식회사 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치
KR102377198B1 (ko) * 2018-01-19 2022-03-21 시아먼 산안 옵토일렉트로닉스 테크놀로지 캄파니 리미티드 발광 다이오드 및 그 제조방법
TWD219684S (zh) 2021-07-09 2022-07-01 晶元光電股份有限公司 發光二極體之部分

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110083968A (ko) * 2010-01-15 2011-07-21 서울옵토디바이스주식회사 전극패드들을 갖는 발광 다이오드
KR20110093248A (ko) * 2010-02-12 2011-08-18 서울옵토디바이스주식회사 전극패드들을 갖는 발광 다이오드
KR20110098874A (ko) * 2010-02-27 2011-09-02 삼성엘이디 주식회사 멀티셀 어레이를 갖는 반도체 발광장치, 발광모듈 및 조명장치
KR20140057805A (ko) * 2012-11-05 2014-05-14 엘지이노텍 주식회사 발광 소자 패키지 및 이를 포함하는 발광 모듈
KR20140146957A (ko) * 2013-06-18 2014-12-29 삼성전자주식회사 반도체 발광소자

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100930195B1 (ko) * 2007-12-20 2009-12-07 삼성전기주식회사 전극 패턴을 구비한 질화물 반도체 발광소자
WO2011083923A2 (en) 2010-01-07 2011-07-14 Seoul Opto Device Co., Ltd. Light emitting diode having electrode pads
CN102244188A (zh) * 2010-05-13 2011-11-16 展晶科技(深圳)有限公司 发光二极管芯片的电极结构
CN103765614A (zh) * 2011-08-01 2014-04-30 三星电子株式会社 半导体发光元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110083968A (ko) * 2010-01-15 2011-07-21 서울옵토디바이스주식회사 전극패드들을 갖는 발광 다이오드
KR20110093248A (ko) * 2010-02-12 2011-08-18 서울옵토디바이스주식회사 전극패드들을 갖는 발광 다이오드
KR20110098874A (ko) * 2010-02-27 2011-09-02 삼성엘이디 주식회사 멀티셀 어레이를 갖는 반도체 발광장치, 발광모듈 및 조명장치
KR20140057805A (ko) * 2012-11-05 2014-05-14 엘지이노텍 주식회사 발광 소자 패키지 및 이를 포함하는 발광 모듈
KR20140146957A (ko) * 2013-06-18 2014-12-29 삼성전자주식회사 반도체 발광소자

Also Published As

Publication number Publication date
US11011675B2 (en) 2021-05-18
US20210098649A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
WO2016208957A1 (ko) 광학 렌즈, 발광 소자 및 이를 구비한 발광 모듈
WO2015194804A1 (ko) 발광 소자 및 이를 포함하는 발광소자 패키지
WO2016153213A1 (ko) 발광 소자 패키지 및 조명 장치
WO2016153218A1 (ko) 발광 소자, 이를 포함하는 발광 소자 패키지 및 이 패키지를 포함하는 조명 장치
WO2017146493A1 (ko) 발광소자 패키지 및 이를 갖는 표시장치
WO2014157905A1 (ko) 발광소자 패키지
WO2017014512A1 (ko) 발광 소자
WO2015190722A1 (ko) 발광 소자 및 조명 장치
WO2018097649A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2018186655A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
KR102417710B1 (ko) 반도체 소자 패키지 및 그 제조 방법
WO2017003095A1 (ko) 발광소자 패키지 이를 포함하는 발광소자 모듈
WO2017119730A1 (ko) 발광 소자
WO2019125032A1 (ko) 반도체 소자 패키지
WO2016200012A1 (ko) 광 출사 유닛 및 이를 포함하는 광원 유닛
KR20180016181A (ko) 반도체 소자 및 이를 갖는 발광소자 패키지
WO2018135908A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2019194646A1 (ko) 반도체 소자
KR102623610B1 (ko) 반도체 소자 및 이를 갖는 발광소자 패키지
KR20230038171A (ko) 반도체 소자
KR102363036B1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2017091051A1 (ko) 발광소자 패키지 및 조명 장치
WO2018124715A1 (ko) 반도체 소자
KR20180001051A (ko) 반도체 소자 및 이를 갖는 발광소자 패키지
KR20180000367A (ko) 반도체 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780301

Country of ref document: EP

Kind code of ref document: A1