[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018186259A1 - Insulated electric wire - Google Patents

Insulated electric wire Download PDF

Info

Publication number
WO2018186259A1
WO2018186259A1 PCT/JP2018/012828 JP2018012828W WO2018186259A1 WO 2018186259 A1 WO2018186259 A1 WO 2018186259A1 JP 2018012828 W JP2018012828 W JP 2018012828W WO 2018186259 A1 WO2018186259 A1 WO 2018186259A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polyamideimide
insulated wire
insulating layer
polyimide
Prior art date
Application number
PCT/JP2018/012828
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤 秀明
雅晃 山内
槙弥 太田
修平 前田
吉田 健吾
田村 康
Original Assignee
住友電気工業株式会社
住友電工ウインテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ウインテック株式会社 filed Critical 住友電気工業株式会社
Priority to CN201880019748.2A priority Critical patent/CN110462755A/en
Priority to JP2019511183A priority patent/JPWO2018186259A1/en
Publication of WO2018186259A1 publication Critical patent/WO2018186259A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Definitions

  • the present invention relates to an insulated wire.
  • This application claims priority based on Japanese Patent Application No. 2017-073755 filed on Apr. 3, 2017, and incorporates all the description content described in the above Japanese application.
  • Coils with insulated wires wound around are used as components that make up general household electrical equipment and automotive electrical equipment.
  • the insulated electric wire which comprises such a coil is equipped with the metal conductor part which has electroconductivity, and the resin insulation layer which coat
  • the insulated wire of the present disclosure includes a linear conductor portion and an insulating layer that covers the outer peripheral surface of the conductor portion.
  • the insulating layer includes a polyamideimide layer having a plurality of pores therein and a polyimide layer.
  • the porosity of the polyamideimide layer is 20% by volume or more and 80% by volume or less.
  • FIG. 3 is a schematic cross-sectional view showing the structure of the insulated wire in the first embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a first modification of the first embodiment.
  • 6 is a schematic cross-sectional view showing the structure of an insulated wire in Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view showing a first modification of the second embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a second modification of the second embodiment.
  • FIG. FIG. 10 is a schematic cross-sectional view showing a third modification of the second embodiment.
  • 6 is a schematic cross-sectional view showing the structure of an insulated wire in Embodiment 3.
  • FIG. 10 is a schematic cross-sectional view showing a first modification of the third embodiment.
  • FIG. 9 is a schematic cross-sectional view showing the structure of an insulated wire in a fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a first modification of the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing the structure of an insulated wire in a fifth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a first modification of the fifth embodiment.
  • Polyimide may be used as a material constituting the insulating layer in a conventional insulated wire. This is because polyimide is excellent in heat resistance and workability. However, since polyimide is expensive, if polyimide is used as a material constituting the insulating layer, the manufacturing cost increases.
  • an object of the present invention is to provide an insulated wire having an insulating layer having excellent heat resistance and work resistance, low cost, and low dielectric constant.
  • the insulated wire of the present disclosure it is possible to provide an insulated wire including an insulating layer having excellent heat resistance and workability, low cost, and low dielectric constant.
  • the insulated wire of this indication is provided with a linear conductor part and an insulating layer which coat
  • the insulating layer includes a polyamideimide layer having a plurality of pores therein and a polyimide layer.
  • the porosity of the polyamideimide layer is 20% by volume or more and 80% by volume or less.
  • the insulating layer includes a polyimide layer. By doing in this way, the heat resistance and workability of an insulating layer can be improved.
  • the insulating layer includes a polyamideimide layer. By doing in this way, the manufacturing cost of an insulated wire can be made low compared with the case where an insulating layer is comprised only from a polyimide layer.
  • the polyamideimide layer has a plurality of pores therein and the porosity of the polyamideimide layer is 20% by volume or more, the dielectric constant of the polyamideimide layer can be lowered. By including the polyamideimide layer having a low dielectric constant in this way, the dielectric constant of the entire insulating layer can be lowered.
  • the porosity of the polyamideimide layer means the ratio of the total volume of the pores to the total volume including the pores of the polyamideimide layer.
  • the polyimide layer may be a solid layer. By doing in this way, the heat resistance and workability of an insulating layer can be improved more reliably.
  • the polyimide layer may be disposed so as to include the outer peripheral surface of the insulating layer.
  • the average diameter of the pores formed in the polyamideimide layer is preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the dielectric constant of the polyamideimide layer can be lowered, and the dielectric constant of the entire insulating layer can be lowered more reliably.
  • the average diameter of the pores formed in the polyamideimide layer exceeds 10 ⁇ m, the dielectric constant is lowered, but the insulating property is lowered.
  • the ratio of the thickness of the polyamideimide layer to the thickness of the insulating layer is preferably 20% or more and 90% or less. By making the ratio of the thickness of the polyamideimide layer to the thickness of the insulating layer 20% or more, the manufacturing cost of the insulated wire can be reduced more reliably. On the other hand, when the ratio of the thickness of the polyamideimide layer to the thickness of the insulating layer exceeds 90%, the heat resistance and workability of the insulating layer are lowered.
  • a primer layer may be provided between the conductor portion and the insulating layer.
  • the plurality of holes may be provided with an outer shell at the peripheral edge thereof. By doing so, it is difficult for the holes to communicate with each other, and therefore, the size of the holes in the insulating layer is unlikely to vary. As a result, it is possible to suppress a decrease in strength, insulation and solvent resistance of the insulating layer while reducing the dielectric constant of the insulated wire.
  • FIG. 1 is a schematic cross-sectional view showing a cross section perpendicular to the longitudinal direction of the insulated wire 1.
  • the insulated wire 1 has a circular cross-sectional shape.
  • the insulated wire 1 includes a linear conductor portion 10 having a circular cross-sectional shape and an insulating layer 20 that covers the outer peripheral surface of the conductor portion 10.
  • the conductor portion 10 has a circular shape in a cross section perpendicular to the longitudinal direction.
  • a rectangular wire having a rectangular shape, a square wire having a rectangular shape, or the like can be used in addition to a circular wire having a circular cross section perpendicular to the longitudinal direction as in the present embodiment.
  • the strand wire which twisted together the some strand may be sufficient.
  • the material of the conductor 10 is preferably a metal having high electrical conductivity and high mechanical strength.
  • the conductor portion 10 is made of copper.
  • copper alloy, aluminum, aluminum alloy, nickel, silver, iron, steel, stainless steel, or the like can be used in addition to the copper of the present embodiment.
  • the conductor portion 10 may be formed of the above metal in a linear shape or a multilayer structure in which another metal is coated on the above metal formed in a linear shape. Examples of the multi-layered conductor 10 include a nickel-coated copper wire, a silver-coated copper wire, a copper-coated aluminum wire, and a copper-coated steel wire.
  • insulating layer 20 constituting insulated wire 1 includes a polyimide layer 30 and a polyamideimide layer 40.
  • the insulating layer 20 constituting the insulated wire 1 includes only the polyimide layer 30 and the polyamideimide layer 40 as in the present embodiment, and has a structure in which a plurality of insulating layers are laminated. And at least the polyamideimide layer 40 may be included. Further, the polyamideimide layer 40 and the polyimide layer 30 may be repeatedly included.
  • the polyamideimide layer 40 is disposed so as to cover the outer peripheral surface of the conductor portion 10.
  • the polyamideimide layer 40 has a plurality of holes 15 inside.
  • the thickness of the insulating layer 20 is, for example, 5 ⁇ m or more and 200 ⁇ m or less. By setting it as such a range, the conductor part 10 can fully be insulated.
  • the polyamideimide layer 40 is a layer mainly composed of polyamideimide.
  • the main component refers to a component occupying at least 50% by mass or more of the components constituting the polyamideimide layer 40.
  • the polyamideimide layer 40 includes polyamideimide, and the remainder is made of inevitable impurities.
  • Synthetic resins constituting the polyamideimide layer 40 are polyamideimide, polyesterimide, polyetherimide, polyamide, polyurethane, polyester, polybenzimidazole, melamine resin, polyvinyl formal, epoxy resin, phenol resin, urea resin, acrylic resin. Or other thermosetting resin.
  • the lower limit of the ratio of the thickness of the polyamideimide layer 40 to the thickness of the insulating layer 20 is 20%.
  • the upper limit of the ratio of the thickness of the polyamideimide layer 40 to the thickness of the insulating layer 20 is 90%.
  • the ratio of the thickness of the polyamideimide layer 40 with respect to the thickness of the insulating layer 20 20% or more, the manufacturing cost of the insulated wire 1 can be reduced more reliably.
  • the ratio of the thickness of the polyamideimide layer 40 to the thickness of the insulating layer 20 exceeds 90%, the heat resistance and workability of the insulating layer 20 are lowered.
  • the ratio of the total thickness of the polyamideimide layers 40 in the insulating layer 20 is 20% or more and 90% or less.
  • the polyamideimide layer 40 has a plurality of pores 15 dispersed therein.
  • the relative dielectric constant is different between the polyamideimide constituting the polyamideimide layer 40 and air. For this reason, the dielectric constant as the whole polyamideimide layer 40 changes by forming the several void
  • the relative permittivity of polyamideimide is higher than that of air (relative permittivity: about 1.0).
  • the polyamideimide layer 40 is made of polyamideimide, the pores 15 are formed in the polyamideimide layer 40, so that the dielectric constant can be made lower than that of the polyamideimide layer 40 in which the holes 15 are not formed. .
  • the upper limit of the ratio (porosity) of the total volume of the pores 15 to the total volume (including the pores 15) of the polyamideimide layer 40 in the present embodiment is 80% by volume.
  • the lower limit of the porosity of the polyamideimide layer 40 is 20% by volume.
  • a preferable range of the upper limit of the porosity of the polyamideimide layer 40 is 60% by volume or less from the viewpoint of ensuring insulation.
  • a preferable lower limit of the porosity of the polyamideimide layer 40 is 25% by volume or more from the viewpoint of more reliably lowering the dielectric constant of the entire insulating layer 20.
  • the ratio of the total volume of pores to the total volume of the polyamideimide layers in the insulating layer 20 may be within the above range.
  • the porosity of the polyamideimide layer 40 is such that the polyamideimide layer 40 is peeled off from the conductor 10 and the polyamideimide layer 40 has an apparent volume V1 calculated from the actual mass W2 of the peeled polyamideimide layer and its outer shape. From the mass W1 when there is no hole obtained by multiplying by the density of (W1-W2) ⁇ 100 / W1, it can be obtained by the equation.
  • the lower limit of the average diameter of the pores 15 formed in the polyamideimide layer 40 in the present embodiment is 1 ⁇ m.
  • the upper limit of the average diameter of the pores 15 formed in the polyamideimide layer 40 is 10 ⁇ m.
  • the dielectric constant of the polyamideimide layer 40 can be lowered, and the dielectric constant of the entire insulating layer 20 can be lowered more reliably.
  • the average diameter of the pores 15 formed in the polyamideimide layer 40 exceeds 10 ⁇ m, the dielectric constant is lowered, but the insulating property is lowered.
  • the average diameter of the pores 15 is a value obtained by measuring a cross section with a pore diameter distribution measuring device (for example, “Porous Material Automatic Pore Diameter Distribution Measuring System” manufactured by Porous Materials).
  • the polyimide layer 30 is a layer mainly composed of polyimide.
  • the main component refers to a component that occupies at least 50 mass% or more of the components constituting the polyimide layer 30.
  • the polyimide layer 30 includes polyimide, and the remainder is made of inevitable impurities.
  • Synthetic resins constituting the polyimide layer 30 include, in addition to polyimide, polyesterimide, polyetherimide, polyamide, polyurethane, polyester, polybenzimidazole, melamine resin, polyvinyl formal, epoxy resin, phenol resin, urea resin, acrylic resin, and the like.
  • a thermosetting resin may be included.
  • the polyimide constituting the polyimide layer 30 is formed, for example, by synthesizing a polyimide precursor obtained by condensation polymerization of aromatic diamine and aromatic tetracarboxylic dianhydride and imidizing by heating or the like.
  • aromatic tetracarboxylic dianhydride pyromellitic dianhydride (PMDA) or the like can be used.
  • aromatic diamine 4,4′-diaminodiphenyl ether (ODA) or the like can be used.
  • polyimide layer 30 in the present embodiment is a solid layer.
  • the solid layer refers to a layer in which the holes 15 are not intentionally formed, that is, a layer in which the holes 15 are not substantially present.
  • the porosity of the polyimide layer 30 is, for example, 1% by volume or less. By doing in this way, the heat resistance and workability of the insulating layer 20 can be improved more reliably.
  • the polyimide layer 30 is disposed so as to include the outer peripheral surface of the insulating layer 20. By doing in this way, when the insulated wire 1 is used in oil, it can suppress that oil osmose
  • the polyimide layer 30 may have a plurality of holes 15 in addition to the solid layer in which the holes 15 are not formed as in the present embodiment.
  • the 1st modification of the insulated wire 1 in Embodiment 1 is shown in FIG.
  • FIG. 2 is a schematic cross-sectional view showing a cross section perpendicular to the longitudinal direction of the insulated wire 1.
  • polyimide layer 30 is disposed so as to include the outer peripheral surface of insulating layer 20, and has a plurality of holes 15 dispersed therein. By doing in this way, the dielectric constant of the whole insulating layer 20 can be made lower.
  • the insulating layer 20 includes a polyimide layer 30. Thereby, the heat resistance and workability of the insulating layer 20 are improved.
  • the insulating layer 20 includes a polyamideimide layer 40. Thereby, compared with the case where the insulating layer 20 is comprised only from the polyimide layer 30, the manufacturing cost of the insulated wire 1 becomes low.
  • the dielectric constant of the polyamide-imide layer 40 becomes low by having a plurality of pores 15 inside the polyamide-imide layer 40 and setting the porosity of the polyamide-imide layer 40 to 20% by volume or more.
  • the insulated wire 1 is an insulated wire 1 including an insulating layer 20 having excellent heat resistance and workability, low cost, and low dielectric constant.
  • the method of manufacturing the insulated wire 1 includes a step of preparing the conductor portion 10, a step of preparing a polyamideimide resin varnish to be the polyamideimide layer 40, a step of preparing a polyimide resin varnish to be the polyimide layer 30, and a conductor. Applying a polyamideimide resin varnish on the outer peripheral surface of the portion 10 and heating it to form a polyamideimide layer 40; and applying a polyimide resin varnish to the outer peripheral surface of the conductor portion 10 on which the polyamideimide layer 40 is formed And forming the polyimide layer 30 by heating.
  • the conductor portion 10 which is a wire made of a conductor such as copper is prepared.
  • a varnish containing a polyamideimide that is a thermosetting resin and a thermally decomposable resin is prepared.
  • the thermally decomposable resin is decomposed and vaporized.
  • the polyamideimide is cured.
  • a polyamideimide layer 40 having a plurality of pores 15 inside is obtained.
  • thermally decomposable resin for example, resin particles that thermally decompose at a temperature lower than the curing temperature of the polyamideimide that forms the polyamideimide layer 40 can be used.
  • thermally decomposable resin for example, a crosslinked product of a (meth) acrylic polymer can be used.
  • a core shell structure having a core mainly composed of a heat decomposable resin and a shell mainly composed of a resin having a higher heat decomposition temperature than the heat decomposable resin.
  • the hollow forming particles may be used. Since the thermally decomposable resin of the core of the hollow forming particles is gasified by thermal decomposition during baking and scatters through the shell, the hollow forming particles leave an outer shell whose inside is hollow after baking. That is, the hollow-forming particles become hollow particles composed only of the outer shell whose inside is hollow after baking, and the pores 15 are formed in the insulating layer 20.
  • the peripheral part of each hole 15 formed in the insulating layer 20 is surrounded by the outer shell, the hollow parts in each hollow particle are difficult to communicate with each other, and the insulating layer 20 is larger than the hollow particle. Since the holes 15 are not easily generated, the sizes of the holes 15 are unlikely to vary. Further, the insulating layer 20 having the voids 15 formed by the hollow particles can have a higher dielectric breakdown voltage than the insulating layer having the voids formed by a single thermally decomposable resin, so that the insulating property is excellent. The insulating layer 20 can be formed. Therefore, it is possible to suppress a decrease in strength, insulation, and solvent resistance of the insulating layer 20 while reducing the dielectric constant of the insulated wire 1.
  • the core-shell structure refers to a structure in which the material forming the core of the particle is different from the material of the shell surrounding the core.
  • the pyrolytic resin of the core of the hollow-forming particles contained in the varnish is gasified by pyrolysis at the time of baking, and the gasified pyrolytic resin passes through the shell. Therefore, at least a part of the outer shell of the hole 15 has a defect such as a crack, a crack or a hole.
  • a defect such as a crack, a crack or a hole.
  • hole 15 is ensured because an outer shell has a defect
  • the shape of the hole 15 is preferably a flat sphere. Further, if the short axis of the hole 15 is oriented in the direction perpendicular to the conductor surface, the holes 15 formed in the vertical direction where external force is likely to act are difficult to come into contact with each other. Suppressed and formed independent holes 15 (independent holes) are easily maintained. As a result, the insulation and solvent resistance of the insulating layer 20 are less likely to be lowered.
  • the “flattened sphere” means that the maximum diagonal length passing through the center of gravity is the major axis, and the minimum diagonal length passing through the center of gravity is the minor axis (the length of the minor axis).
  • a sphere for example, a sphere having a ratio of the minor axis to the major axis in a cross section including the minor axis and the major axis of 0.95 or less. “Oriented in the direction perpendicular to the conductor surface” means that the angle difference between the minor axis of the hole and the direction perpendicular to the conductor surface is 20 degrees or less.
  • the thermally decomposable resin used as the main component of the core is not particularly limited as long as it is a resin particle that thermally decomposes at a temperature lower than the curing temperature of polyamideimide.
  • a cross-linked product of an acrylic polymer can be used.
  • the main component of the outer shell is preferably silicone. Since the main component of the outer shell is silicone as described above, elasticity is imparted to the outer shell and insulation and heat resistance are easily improved. As a result, the independent voids surrounded by the outer shell are more easily maintained.
  • the “main component” is a component having the largest content, for example, a component contained in an amount of 50% by mass or more.
  • the holes 15 may be formed by foaming using a foaming agent in addition to forming the holes 15 using a thermally decomposable resin.
  • a foaming agent for example, a chemical foaming agent or a thermally expandable microcapsule can be used.
  • a chemical foaming agent it decomposes
  • the thermally expandable microcapsule for example, a core material made of an internal foaming agent and an outer shell that encloses the core material, and the outer shell expands due to the expansion of the core material can be adopted.
  • the varnish containing a high boiling point solvent may be prepared and the hole 15 may be formed.
  • a solvent having a boiling point of, for example, 180 ° C. to 300 ° C. can be used.
  • the high boiling point solvent for example, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol dibutyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol monomethyl ether, or the like can be used.
  • a varnish containing polyimide which is a thermosetting resin is prepared.
  • the said varnish is apply
  • Examples of a method for applying the varnish to the outer peripheral surface side of the conductor portion 10 include a method using a coating apparatus including a liquid composition tank storing a liquid varnish and a coating die. According to this coating apparatus, the varnish adheres to the conductor outer peripheral surface side as the conductor portion 10 passes through the liquid composition tank, and then passes through the coating die to apply the varnish to a uniform thickness.
  • the insulating layer 20 is formed by curing the varnish by heating.
  • a cylindrical baking furnace extending along the traveling direction of the conductor portion 10 coated with varnish can be used.
  • heating method hot air heating, infrared heating, high frequency heating, or the like can be employed.
  • heating temperature is 300 degreeC or more and 600 degrees C or less, for example.
  • FIG. 3 is a diagram illustrating the insulated wire 1 according to the second embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating a first modification of the insulated wire 1 according to the second embodiment.
  • FIG. 5 is a diagram illustrating a second modification of the insulated wire 1 according to the second embodiment.
  • FIG. 6 is a diagram illustrating a third modification of the insulated wire 1 according to the second embodiment. 3 to 6 are schematic cross-sectional views showing a cross section perpendicular to the longitudinal direction of the insulated wire 1.
  • FIG. 7 is a diagram illustrating the insulated wire 1 according to the third embodiment of the present disclosure.
  • FIG. 8 is a diagram showing a first modification of the insulated wire 1 in the third embodiment. 7 and 8 are schematic cross-sectional views showing a cross section perpendicular to the longitudinal direction of the insulated wire 1.
  • FIG. 9 is a diagram illustrating the insulated wire 1 according to the fourth embodiment of the present disclosure.
  • FIG. 10 is a diagram illustrating a first modification of the insulated wire 1 according to the fourth embodiment. 9 and 10 are schematic cross-sectional views showing a cross section perpendicular to the longitudinal direction of the insulated wire 1.
  • FIG. 11 is a diagram illustrating the insulated wire 1 according to the fifth embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating a first modification of the insulated wire 1 according to the fifth embodiment.
  • 11 and 12 are schematic cross-sectional views showing a cross section perpendicular to the longitudinal direction of the insulated wire 1.
  • the insulated wire 1 in the second embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment basically has the same configuration as that in the first embodiment.
  • the structure of the insulating layer 20 is different from that in the first embodiment.
  • differences from the case of the first embodiment will be described.
  • the insulated wire 1 in the second embodiment includes a linear conductor portion 10 having a circular cross-sectional shape and an insulating layer 20 that covers the outer peripheral surface of the conductor portion 10.
  • the insulating layer 20 includes a first polyimide layer 301, a polyamideimide layer 40, and a second polyimide layer 302.
  • the first polyimide layer 301 is disposed so as to cover the outer peripheral surface of the conductor portion 10.
  • the polyamideimide layer 40 is laminated on the first polyimide layer 301 disposed so as to cover the outer peripheral surface of the conductor portion 10.
  • the second polyimide layer 302 is laminated on the polyamideimide layer 40 and disposed so as to include the outer peripheral surface of the insulating layer 20.
  • first polyimide layer 301 and the second polyimide layer 302 are solid layers. By doing in this way, the heat resistance and workability of the insulating layer 20 can be improved more reliably.
  • first polyimide layer 301 may have a plurality of holes 15 dispersed therein
  • second polyimide layer 302 may be a solid layer.
  • the first polyimide layer 301 may be a solid layer
  • the second polyimide layer 302 may have a plurality of holes 15 dispersed therein.
  • first polyimide layer 301 and second polyimide layer 302 may have a plurality of holes 15 dispersed therein. By doing in this way, the dielectric constant of the whole insulating layer 20 can be made lower.
  • the insulating layer 20 may include a plurality of first polyimide layers 301, polyamideimide layers 40, and second polyimide layers 302.
  • the insulated wire 1 in the third embodiment includes a linear conductor portion 10 having a circular cross-sectional shape and an insulating layer 20 that covers the outer peripheral surface of the conductor portion 10.
  • the insulating layer 20 includes a polyimide layer 30 and a polyamideimide layer 40.
  • the polyimide layer 30 is disposed so as to cover the outer peripheral surface of the conductor portion 10.
  • the polyamideimide layer 40 is laminated on the polyimide layer 30 disposed so as to cover the outer peripheral surface of the conductor portion 10, and is disposed so as to include the outer peripheral surface of the insulating layer 20.
  • the polyimide layer 30 is a solid layer. Referring to FIG. 8, polyimide layer 30 may have a plurality of holes 15 dispersed therein.
  • the insulating layer 20 may include a plurality of polyimide layers 30 and polyamideimide layers 40 repeatedly.
  • the insulated wire 1 in the fourth embodiment includes a linear conductor portion 10 having a circular cross-sectional shape and an insulating layer 20 that covers the outer peripheral surface of the conductor portion 10.
  • the insulating layer 20 includes a first polyimide layer 301, a second polyimide layer 302, and a polyamideimide layer 40.
  • the first polyimide layer 301 is disposed so as to cover the outer peripheral surface of the conductor portion 10.
  • the second polyimide layer 302 is laminated on the first polyimide layer 301.
  • the polyamideimide layer 40 is laminated on the second polyimide layer 302 and disposed so as to include the outer peripheral surface of the insulating layer 20.
  • the first polyimide layer 301 is a solid layer, and the second polyimide layer 302 has a plurality of holes 15 dispersed therein.
  • the first polyimide layer 301 may have a plurality of holes 15 dispersed therein, and the second polyimide layer 302 may be a solid layer.
  • the insulating layer 20 may include a plurality of first polyimide layers 301, second polyimide layers 302, and polyamideimide layers 40.
  • the insulated wire 1 in the fifth embodiment includes a linear conductor portion 10 having a circular cross-sectional shape and an insulating layer 20 that covers the outer peripheral surface of the conductor portion 10.
  • the insulating layer 20 includes a polyamideimide layer 40, a first polyimide layer 301, and a second polyimide layer 302.
  • the polyamideimide layer 40 is disposed so as to cover the outer peripheral surface of the conductor portion 10.
  • the first polyimide layer 301 is laminated on the polyamideimide layer 40.
  • the second polyimide layer 302 is laminated on the first polyimide layer 301 and is disposed so as to include the outer peripheral surface of the insulating layer 20.
  • the first polyimide layer 301 is a solid layer, and the second polyimide layer 302 has a plurality of holes 15 dispersed therein. Referring to FIG. 12, the first polyimide layer 301 may have a plurality of holes 15 dispersed therein, and the second polyimide layer 302 may be a solid layer.
  • Insulating layer 20 may include a plurality of polyamideimide layers 40, first polyimide layers 301, and second polyimide layers 302.
  • the insulated wire 1 having the structure of the second embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment also has excellent heat resistance and work resistance as in the first embodiment, and is low.
  • the insulated wire 1 provided with the insulating layer 20 having a low dielectric constant at low cost can be provided.
  • a further layer such as a primer layer may be provided between the conductor portion 10 and the insulating layer 20.
  • a primer layer is a layer provided in order to improve the adhesiveness between layers, for example, can be formed with a well-known resin composition.
  • the resin composition which forms this primer layer is, for example, one or more kinds of resins among polyimide, polyamideimide, polyesterimide, polyester and phenoxy resin. It is good to include.
  • the resin composition forming the primer layer may contain an additive such as an adhesion improver.
  • the resin composition forming the primer layer may contain other resins, for example, an epoxy resin, a phenoxy resin, a melamine resin, etc. together with the above resin.
  • the lower limit of the average primer layer thickness is preferably 1 ⁇ m, more preferably 2 ⁇ m.
  • the upper limit of the average thickness of the primer layer is preferably 30 ⁇ m, more preferably 20 ⁇ m.

Landscapes

  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Provided is an insulated electric wire comprising a linear conductor and an insulation layer that covers an outer peripheral surface of the conductor. The insulation layer includes a polyimide layer and a polyamide-imide layer having a plurality of holes inside thereof. The porosity of the polyamide-imide layer is 20-80 vol.%.

Description

絶縁電線Insulated wire
 本発明は、絶縁電線に関するものである。
 本出願は、2017年4月3日出願の日本出願第2017-073755号に基づく優先権を主張し、上記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to an insulated wire.
This application claims priority based on Japanese Patent Application No. 2017-073755 filed on Apr. 3, 2017, and incorporates all the description content described in the above Japanese application.
 一般家庭用電気機器、自動車用電装機器などを構成する部品として、絶縁電線を巻いたコイルが用いられている。このようなコイルを構成する絶縁電線は、導電性を有する金属製の導体部と、これを被覆する樹脂製の絶縁層とを備える。 Coils with insulated wires wound around are used as components that make up general household electrical equipment and automotive electrical equipment. The insulated electric wire which comprises such a coil is equipped with the metal conductor part which has electroconductivity, and the resin insulation layer which coat | covers this.
 高電圧で使用される電気機器においては、電気機器を構成する絶縁電線に高電圧が印加されると、その絶縁層の表面で部分放電(コロナ放電)が発生し易くなる。コロナ放電が発生すると絶縁破壊が生じやすくなる。そのため、高電圧で使用される電気機器用の絶縁電線には、優れた絶縁性や高い機械的特性を有することに加え、コロナ放電の発生を抑制することが求められる。コロナ放電の発生を抑制するには、誘電率の低い絶縁層を備えた絶縁電線を用いるのが効果的である。誘電率の低い絶縁層を備えた絶縁電線として、空孔が形成された絶縁層を含む絶縁電線が提案されている(例えば特許文献1参照)。 In an electric device used at a high voltage, when a high voltage is applied to an insulated wire constituting the electric device, partial discharge (corona discharge) is likely to occur on the surface of the insulating layer. When corona discharge occurs, dielectric breakdown tends to occur. Therefore, in addition to having excellent insulation properties and high mechanical characteristics, insulated wires for electrical equipment used at high voltages are required to suppress the occurrence of corona discharge. In order to suppress the occurrence of corona discharge, it is effective to use an insulated wire provided with an insulating layer having a low dielectric constant. As an insulated wire provided with an insulating layer having a low dielectric constant, an insulated wire including an insulating layer in which holes are formed has been proposed (see, for example, Patent Document 1).
特開2012-224714号公報JP 2012-224714 A
 本開示の絶縁電線は、線状の導体部と、導体部の外周面を被覆する絶縁層と、を備える。絶縁層は、内部に複数の空孔を有するポリアミドイミド層と、ポリイミド層と、を含む。ポリアミドイミド層の気孔率は、20体積%以上80体積%以下である。 The insulated wire of the present disclosure includes a linear conductor portion and an insulating layer that covers the outer peripheral surface of the conductor portion. The insulating layer includes a polyamideimide layer having a plurality of pores therein and a polyimide layer. The porosity of the polyamideimide layer is 20% by volume or more and 80% by volume or less.
実施の形態1における絶縁電線の構造を示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing the structure of the insulated wire in the first embodiment. 実施の形態1の第1の変形例を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing a first modification of the first embodiment. 実施の形態2における絶縁電線の構造を示す断面模式図である。6 is a schematic cross-sectional view showing the structure of an insulated wire in Embodiment 2. FIG. 実施の形態2の第1の変形例を示す断面模式図である。6 is a schematic cross-sectional view showing a first modification of the second embodiment. FIG. 実施の形態2の第2の変形例を示す断面模式図である。10 is a schematic cross-sectional view showing a second modification of the second embodiment. FIG. 実施の形態2の第3の変形例を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing a third modification of the second embodiment. 実施の形態3における絶縁電線の構造を示す断面模式図である。6 is a schematic cross-sectional view showing the structure of an insulated wire in Embodiment 3. FIG. 実施の形態3の第1の変形例を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing a first modification of the third embodiment. 実施の形態4における絶縁電線の構造を示す断面模式図である。FIG. 9 is a schematic cross-sectional view showing the structure of an insulated wire in a fourth embodiment. 実施の形態4の第1の変形例を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing a first modification of the fourth embodiment. 実施の形態5における絶縁電線の構造を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing the structure of an insulated wire in a fifth embodiment. 実施の形態5の第1の変形例を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing a first modification of the fifth embodiment.
 [本開示が解決しようとする課題]
 従来の絶縁電線において絶縁層を構成する材料として、ポリイミドが用いられる場合がある。これは、ポリイミドが耐熱性および耐加工性に優れるためである。しかしながら、ポリイミドは高価なため、絶縁層を構成する材料としてポリイミドを用いると製造コストが増加する。
[Problems to be solved by the present disclosure]
Polyimide may be used as a material constituting the insulating layer in a conventional insulated wire. This is because polyimide is excellent in heat resistance and workability. However, since polyimide is expensive, if polyimide is used as a material constituting the insulating layer, the manufacturing cost increases.
 そこで、優れた耐熱性および耐加工性を有し、低コストで低い誘電率を有する絶縁層を備える絶縁電線を提供することを目的の1つとする。 Therefore, an object of the present invention is to provide an insulated wire having an insulating layer having excellent heat resistance and work resistance, low cost, and low dielectric constant.
 [本開示の効果]
 本開示の絶縁電線によれば、優れた耐熱性および耐加工性を有し、低コストで低い誘電率を有する絶縁層を備える絶縁電線を提供することができる。
[Effects of the present disclosure]
According to the insulated wire of the present disclosure, it is possible to provide an insulated wire including an insulating layer having excellent heat resistance and workability, low cost, and low dielectric constant.
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。本開示の絶縁電線は、線状の導体部と、導体部の外周面を被覆する絶縁層と、を備える。絶縁層は、内部に複数の空孔を有するポリアミドイミド層と、ポリイミド層と、を含む。ポリアミドイミド層の気孔率は、20体積%以上80体積%以下である。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described. The insulated wire of this indication is provided with a linear conductor part and an insulating layer which coat | covers the outer peripheral surface of a conductor part. The insulating layer includes a polyamideimide layer having a plurality of pores therein and a polyimide layer. The porosity of the polyamideimide layer is 20% by volume or more and 80% by volume or less.
 本開示の絶縁電線において、絶縁層はポリイミド層を含む。このようにすることで、絶縁層の耐熱性および耐加工性を向上させることができる。絶縁層は、ポリアミドイミド層を含む。このようにすることで、絶縁層がポリイミド層のみから構成される場合に比べて絶縁電線の製造コストを低くすることができる。ポリアミドイミド層が内部に複数の空孔を有し、ポリアミドイミド層の気孔率を20体積%以上とすることで、ポリアミドイミド層の誘電率を低くすることができる。このように誘電率の低いポリアミドイミド層を含むことで、絶縁層全体の誘電率を低くすることができる。一方、ポリアミドイミド層の気孔率を80体積%以下とすることで、絶縁性の低下を抑制しつつ誘電率を低くすることができる。その結果、本開示の絶縁電線によれば、優れた耐熱性および耐加工性を有し、低コストで低い誘電率を有する絶縁層を備える絶縁電線を提供することができる。ここで、ポリアミドイミド層の気孔率とは、ポリアミドイミド層の空孔を含む全体積に占める空孔の総体積の割合を意味する。 In the insulated wire of the present disclosure, the insulating layer includes a polyimide layer. By doing in this way, the heat resistance and workability of an insulating layer can be improved. The insulating layer includes a polyamideimide layer. By doing in this way, the manufacturing cost of an insulated wire can be made low compared with the case where an insulating layer is comprised only from a polyimide layer. When the polyamideimide layer has a plurality of pores therein and the porosity of the polyamideimide layer is 20% by volume or more, the dielectric constant of the polyamideimide layer can be lowered. By including the polyamideimide layer having a low dielectric constant in this way, the dielectric constant of the entire insulating layer can be lowered. On the other hand, by setting the porosity of the polyamideimide layer to 80% by volume or less, the dielectric constant can be lowered while suppressing a decrease in insulation. As a result, according to the insulated wire of the present disclosure, it is possible to provide an insulated wire including an insulating layer having excellent heat resistance and workability, low cost, and low dielectric constant. Here, the porosity of the polyamideimide layer means the ratio of the total volume of the pores to the total volume including the pores of the polyamideimide layer.
 上記絶縁電線において、ポリイミド層は、中実層であってもよい。このようにすることで、絶縁層の耐熱性および耐加工性をより確実に向上させることができる。 In the above insulated wire, the polyimide layer may be a solid layer. By doing in this way, the heat resistance and workability of an insulating layer can be improved more reliably.
 上記絶縁電線において、ポリイミド層は、絶縁層の外周面を含むように配置されてもよい。このようにすることで、絶縁電線が油中で使用される場合に、絶縁層に油が浸透して、耐久性が低下することを抑制することができる。 In the insulated wire, the polyimide layer may be disposed so as to include the outer peripheral surface of the insulating layer. By doing in this way, when an insulated wire is used in oil, it can control that oil penetrates into an insulating layer and durability falls.
 上記絶縁電線において、ポリアミドイミド層に形成された空孔の平均径は、1μm以上10μm以下であることが好ましい。ポリアミドイミド層に形成された空孔の平均径を1μm以上とすることで、ポリアミドイミド層の誘電率を低くし、絶縁層全体の誘電率をより確実に低くすることができる。一方でポリアミドイミド層に形成された空孔の平均径が、10μmを超えると誘電率は低くなるものの絶縁性が低下する。 In the insulated wire, the average diameter of the pores formed in the polyamideimide layer is preferably 1 μm or more and 10 μm or less. By setting the average diameter of the pores formed in the polyamideimide layer to 1 μm or more, the dielectric constant of the polyamideimide layer can be lowered, and the dielectric constant of the entire insulating layer can be lowered more reliably. On the other hand, if the average diameter of the pores formed in the polyamideimide layer exceeds 10 μm, the dielectric constant is lowered, but the insulating property is lowered.
 上記絶縁電線において、絶縁層の厚みに対するポリアミドイミド層の厚みの割合は、20%以上90%以下であることが好ましい。絶縁層の厚みに対するポリアミドイミド層の厚みの割合を20%以上とすることで、絶縁電線の製造コストをより確実に低くすることができる。一方で、絶縁層の厚みに対するポリアミドイミド層の厚みの割合が90%を超えると、絶縁層の耐熱性および耐加工性が低下する。 In the insulated wire, the ratio of the thickness of the polyamideimide layer to the thickness of the insulating layer is preferably 20% or more and 90% or less. By making the ratio of the thickness of the polyamideimide layer to the thickness of the insulating layer 20% or more, the manufacturing cost of the insulated wire can be reduced more reliably. On the other hand, when the ratio of the thickness of the polyamideimide layer to the thickness of the insulating layer exceeds 90%, the heat resistance and workability of the insulating layer are lowered.
 上記絶縁電線において、導体部と絶縁層の間にプライマー層を備えていてもよい。このようにすることで、導体と絶縁層との間の密着性を向上することが可能であり、その結果、絶縁電線の可撓性や耐摩耗性、耐傷性、耐加工性などの特性を効果的に高めることができる。 In the insulated wire, a primer layer may be provided between the conductor portion and the insulating layer. By doing so, it is possible to improve the adhesion between the conductor and the insulating layer, and as a result, the properties of the insulated wire such as flexibility, wear resistance, scratch resistance, and workability can be improved. Can be effectively increased.
 上記絶縁電線において、複数の空孔は、その周縁部に外殻を備えていてもよい。このようにすることで、空孔同士が連通し難く、そのため、絶縁層の空孔の大きさにばらつきが生じ難い。その結果、絶縁電線の誘電率を低下しつつ、絶縁層の強度、絶縁性及び耐溶剤性の低下を抑制できる。 In the above insulated wire, the plurality of holes may be provided with an outer shell at the peripheral edge thereof. By doing so, it is difficult for the holes to communicate with each other, and therefore, the size of the holes in the insulating layer is unlikely to vary. As a result, it is possible to suppress a decrease in strength, insulation and solvent resistance of the insulating layer while reducing the dielectric constant of the insulated wire.
 [本発明の実施形態の詳細]
 次に、本開示の絶縁電線の一実施の形態を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
[Details of the embodiment of the present invention]
Next, an embodiment of the insulated wire of the present disclosure will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 実施の形態1における絶縁電線1を図1に示す。図1は、絶縁電線1の長手方向に垂直な断面を示す断面模式図である。図1を参照して、絶縁電線1は、円形状の断面形状を有する。絶縁電線1は、円形状の断面形状を有する線状の導体部10と、この導体部10の外周面を被覆する絶縁層20と、を備える。
(Embodiment 1)
The insulated wire 1 in Embodiment 1 is shown in FIG. FIG. 1 is a schematic cross-sectional view showing a cross section perpendicular to the longitudinal direction of the insulated wire 1. With reference to FIG. 1, the insulated wire 1 has a circular cross-sectional shape. The insulated wire 1 includes a linear conductor portion 10 having a circular cross-sectional shape and an insulating layer 20 that covers the outer peripheral surface of the conductor portion 10.
 (導体部)
 本実施の形態において、導体部10は長手方向に垂直な断面において円形状の形状を有する。導体部10としては、本実施の形態のように長手方向に垂直な断面の形状が円形状の丸線の他、長方形の形状を有する平角線、正方形の形状の角線等を用いることができる。また、複数の素線を撚り合わせた撚り線であってもよい。
(Conductor part)
In the present embodiment, the conductor portion 10 has a circular shape in a cross section perpendicular to the longitudinal direction. As the conductor portion 10, a rectangular wire having a rectangular shape, a square wire having a rectangular shape, or the like can be used in addition to a circular wire having a circular cross section perpendicular to the longitudinal direction as in the present embodiment. . Moreover, the strand wire which twisted together the some strand may be sufficient.
 導体部10の材質としては、導電率が高くかつ機械的強度が大きい金属が好ましい。本実施の形態において、導体部10は銅からなる。導体部10は、本実施の形態の銅の他、銅合金、アルミニウム、アルミニウム合金、ニッケル、銀、鉄、鋼、ステンレス鋼等を用いることができる。導体部10は、上記の金属を線状に形成したものや、上記の金属を線状に形成したものに別の金属を被覆した多層構造のものを用いることができる。多層構造の導体部10としては、例えば、ニッケル被覆銅線、銀被覆銅線、銅被覆アルミ線、銅被覆鋼線等があげられる。 The material of the conductor 10 is preferably a metal having high electrical conductivity and high mechanical strength. In the present embodiment, the conductor portion 10 is made of copper. For the conductor portion 10, copper alloy, aluminum, aluminum alloy, nickel, silver, iron, steel, stainless steel, or the like can be used in addition to the copper of the present embodiment. The conductor portion 10 may be formed of the above metal in a linear shape or a multilayer structure in which another metal is coated on the above metal formed in a linear shape. Examples of the multi-layered conductor 10 include a nickel-coated copper wire, a silver-coated copper wire, a copper-coated aluminum wire, and a copper-coated steel wire.
 (絶縁層)
 図1を参照して、絶縁電線1を構成する絶縁層20は、ポリイミド層30と、ポリアミドイミド層40とを含む。絶縁電線1を構成する絶縁層20は、本実施の形態のように、ポリイミド層30およびポリアミドイミド層40のみから構成される他、複数の絶縁層が積層された構造を有し、ポリイミド層30およびポリアミドイミド層40を少なくとも含むようにしてもよい。また、ポリアミドイミド層40およびポリイミド層30を複数繰り返し含むようにしてもよい。ポリアミドイミド層40は、導体部10の外周面を被覆するように配置される。ポリアミドイミド層40の内部には、複数の空孔15を有する。絶縁層20の厚みは、たとえば5μm以上200μm以下である。このような範囲とすることで、導体部10を十分に絶縁することができる。
(Insulating layer)
With reference to FIG. 1, insulating layer 20 constituting insulated wire 1 includes a polyimide layer 30 and a polyamideimide layer 40. The insulating layer 20 constituting the insulated wire 1 includes only the polyimide layer 30 and the polyamideimide layer 40 as in the present embodiment, and has a structure in which a plurality of insulating layers are laminated. And at least the polyamideimide layer 40 may be included. Further, the polyamideimide layer 40 and the polyimide layer 30 may be repeatedly included. The polyamideimide layer 40 is disposed so as to cover the outer peripheral surface of the conductor portion 10. The polyamideimide layer 40 has a plurality of holes 15 inside. The thickness of the insulating layer 20 is, for example, 5 μm or more and 200 μm or less. By setting it as such a range, the conductor part 10 can fully be insulated.
 ポリアミドイミド層40は、ポリアミドイミドを主成分とする層である。ここで、主成分とは、ポリアミドイミド層40を構成する成分のうち、少なくとも50質量%以上を占める成分をいう。本実施の形態において、ポリアミドイミド層40はポリアミドイミドを含み、残部が不可避的不純物からなる。ポリアミドイミド層40を構成する合成樹脂は、ポリアミドイミドの他、ポリエステルイミド、ポリエーテルイミド、ポリアミド、ポリウレタン、ポリエステル、ポリベンゾイミダゾール、メラミン樹脂、ポリビニルホルマール、エポキシ樹脂、フェノール樹脂、ウレア樹脂、アクリル樹脂等の熱硬化性樹脂を含んでもよい。また、ポリアミド、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリブチレンナフタレート、ポリエチレンナフタレート、ポリスルホン、ポリエーテルサルホン、ポリフェニルサルホン、ポリエーテルイミド、ポリフェニレンスルフィド、ポリエーテルケトン、ポリアリールエーテルケトン、テトラフルオロエチレン・エチレン共重合体、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン等の熱可塑性樹脂を含んでもよい。 The polyamideimide layer 40 is a layer mainly composed of polyamideimide. Here, the main component refers to a component occupying at least 50% by mass or more of the components constituting the polyamideimide layer 40. In the present embodiment, the polyamideimide layer 40 includes polyamideimide, and the remainder is made of inevitable impurities. Synthetic resins constituting the polyamideimide layer 40 are polyamideimide, polyesterimide, polyetherimide, polyamide, polyurethane, polyester, polybenzimidazole, melamine resin, polyvinyl formal, epoxy resin, phenol resin, urea resin, acrylic resin. Or other thermosetting resin. Also, polyamide, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polybutylene naphthalate, polyethylene naphthalate, polysulfone, polyethersulfone, polyphenylsulfone, polyetherimide, polyphenylene sulfide, polyetherketone, polyaryletherketone, Thermoplastic resins such as tetrafluoroethylene / ethylene copolymer, polyether ether ketone, and polytetrafluoroethylene may also be included.
 本実施の形態において、絶縁層20の厚みに対するポリアミドイミド層40の厚みの割合の下限は、20%である。絶縁層20の厚みに対するポリアミドイミド層40の厚みの割合の上限は、90%である。絶縁層20の厚みに対するポリアミドイミド層40の厚みの割合を20%以上とすることで、絶縁電線1の製造コストをより確実に低くすることができる。一方で、絶縁層20の厚みに対するポリアミドイミド層40の厚みの割合が90%を超えると、絶縁層20の耐熱性および耐加工性が低下する。なお、ポリアミドイミド層40を複数含む場合には、絶縁層20におけるポリアミドイミド層40の合計の厚みの割合が20%以上90%以下である。 In the present embodiment, the lower limit of the ratio of the thickness of the polyamideimide layer 40 to the thickness of the insulating layer 20 is 20%. The upper limit of the ratio of the thickness of the polyamideimide layer 40 to the thickness of the insulating layer 20 is 90%. By making the ratio of the thickness of the polyamideimide layer 40 with respect to the thickness of the insulating layer 20 20% or more, the manufacturing cost of the insulated wire 1 can be reduced more reliably. On the other hand, when the ratio of the thickness of the polyamideimide layer 40 to the thickness of the insulating layer 20 exceeds 90%, the heat resistance and workability of the insulating layer 20 are lowered. When a plurality of polyamideimide layers 40 are included, the ratio of the total thickness of the polyamideimide layers 40 in the insulating layer 20 is 20% or more and 90% or less.
 本実施の形態において、ポリアミドイミド層40は、内部に複数の空孔15を分散して有する。ポリアミドイミド層40を構成するポリアミドイミドと空気では比誘電率が異なる。このため、ポリアミドイミド層40に複数の空孔15が形成されることによりポリアミドイミド層40全体としての誘電率が変化する。その結果として、ポリアミドイミド層40を含む絶縁層20全体としての誘電率が変化する。例えばポリアミドイミドの比誘電率は、空気(比誘電率:約1.0)の比誘電率よりも高い。このため、ポリアミドイミド層40がポリアミドイミドからなる場合、ポリアミドイミド層40に空孔15が形成されることで、空孔15が形成されないポリアミドイミド層40に比べて誘電率を低くすることができる。 In the present embodiment, the polyamideimide layer 40 has a plurality of pores 15 dispersed therein. The relative dielectric constant is different between the polyamideimide constituting the polyamideimide layer 40 and air. For this reason, the dielectric constant as the whole polyamideimide layer 40 changes by forming the several void | hole 15 in the polyamideimide layer 40. FIG. As a result, the dielectric constant of the entire insulating layer 20 including the polyamideimide layer 40 changes. For example, the relative permittivity of polyamideimide is higher than that of air (relative permittivity: about 1.0). For this reason, when the polyamideimide layer 40 is made of polyamideimide, the pores 15 are formed in the polyamideimide layer 40, so that the dielectric constant can be made lower than that of the polyamideimide layer 40 in which the holes 15 are not formed. .
 本実施の形態におけるポリアミドイミド層40の全体積(空孔15を含む)に占める空孔15の総体積の割合(気孔率)の上限は、80体積%である。また、ポリアミドイミド層40の気孔率の下限は、20体積%である。ポリアミドイミド層40の気孔率を20体積%以上とすることで、ポリアミドイミド層40の誘電率を低くし、絶縁層20全体の誘電率をより確実に低くすることができる。一方でポリアミドイミド層40の気孔率が80体積%を超えると、誘電率が低くなるものの絶縁性が低下する。ポリアミドイミド層40の気孔率の上限の好ましい範囲は、絶縁性を確保する観点から60体積%以下である。ポリアミドイミド層40の気孔率の下限の好ましい範囲は、絶縁層20全体の誘電率をより確実に低くする観点から25体積%以上である。なお、絶縁層が複数のポリアミドイミド層40を含む場合には、絶縁層20におけるポリアミドイミド層の合計の体積に占める空孔の総体積の割合が上記範囲内であればよい。なお、ポリアミドイミド層40の気孔率は、ポリアミドイミド層40を導体部10から剥離し、剥離したポリアミドイミド層の実際の質量W2と、その外形から算出される見かけの体積V1にポリアミドイミド層40の密度を乗じて求められる空孔がない場合の質量W1とから、(W1-W2)×100/W1の式により求めることができる。 The upper limit of the ratio (porosity) of the total volume of the pores 15 to the total volume (including the pores 15) of the polyamideimide layer 40 in the present embodiment is 80% by volume. The lower limit of the porosity of the polyamideimide layer 40 is 20% by volume. By setting the porosity of the polyamideimide layer 40 to 20% by volume or more, the dielectric constant of the polyamideimide layer 40 can be lowered and the dielectric constant of the entire insulating layer 20 can be lowered more reliably. On the other hand, if the porosity of the polyamideimide layer 40 exceeds 80% by volume, the dielectric constant is lowered, but the insulating properties are lowered. A preferable range of the upper limit of the porosity of the polyamideimide layer 40 is 60% by volume or less from the viewpoint of ensuring insulation. A preferable lower limit of the porosity of the polyamideimide layer 40 is 25% by volume or more from the viewpoint of more reliably lowering the dielectric constant of the entire insulating layer 20. In the case where the insulating layer includes a plurality of polyamideimide layers 40, the ratio of the total volume of pores to the total volume of the polyamideimide layers in the insulating layer 20 may be within the above range. The porosity of the polyamideimide layer 40 is such that the polyamideimide layer 40 is peeled off from the conductor 10 and the polyamideimide layer 40 has an apparent volume V1 calculated from the actual mass W2 of the peeled polyamideimide layer and its outer shape. From the mass W1 when there is no hole obtained by multiplying by the density of (W1-W2) × 100 / W1, it can be obtained by the equation.
 本実施の形態におけるポリアミドイミド層40に形成された空孔15の平均径の下限は、1μmである。ポリアミドイミド層40に形成された空孔15の平均径の上限は、10μmである。ポリアミドイミド層40に形成された空孔15の平均径を1μm以上とすることで、ポリアミドイミド層40の誘電率を低くし、絶縁層20全体の誘電率をより確実に低くすることができる。一方でポリアミドイミド層40に形成された空孔15の平均径が、10μmを超えると誘電率は低くなるものの絶縁性が低下する。なお、空孔15の平均径は、細孔直径分布測定装置(例えばPorous Materials社の「多孔質材料自動細孔径分布測定システム」)により断面を測定することにより得られる値である。 The lower limit of the average diameter of the pores 15 formed in the polyamideimide layer 40 in the present embodiment is 1 μm. The upper limit of the average diameter of the pores 15 formed in the polyamideimide layer 40 is 10 μm. By setting the average diameter of the holes 15 formed in the polyamideimide layer 40 to 1 μm or more, the dielectric constant of the polyamideimide layer 40 can be lowered, and the dielectric constant of the entire insulating layer 20 can be lowered more reliably. On the other hand, when the average diameter of the pores 15 formed in the polyamideimide layer 40 exceeds 10 μm, the dielectric constant is lowered, but the insulating property is lowered. The average diameter of the pores 15 is a value obtained by measuring a cross section with a pore diameter distribution measuring device (for example, “Porous Material Automatic Pore Diameter Distribution Measuring System” manufactured by Porous Materials).
 ポリイミド層30は、ポリイミドを主成分とする層である。ここで、主成分とは、ポリイミド層30を構成する成分のうち、少なくとも50質量%以上を占める成分をいう。本実施の形態において、ポリイミド層30はポリイミドを含み、残部が不可避的不純物からなる。ポリイミド層30を構成する合成樹脂は、ポリイミドの他、ポリエステルイミド、ポリエーテルイミド、ポリアミド、ポリウレタン、ポリエステル、ポリベンゾイミダゾール、メラミン樹脂、ポリビニルホルマール、エポキシ樹脂、フェノール樹脂、ウレア樹脂、アクリル樹脂等の熱硬化性樹脂を含んでもよい。また、ポリアミド、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリブチレンナフタレート、ポリエチレンナフタレート、ポリスルホン、ポリエーテルサルホン、ポリフェニルサルホン、ポリエーテルイミド、ポリフェニレンスルフィド、ポリエーテルケトン、ポリアリールエーテルケトン、テトラフルオロエチレン・エチレン共重合体、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン等の熱可塑性樹脂を含んでもよい。 The polyimide layer 30 is a layer mainly composed of polyimide. Here, the main component refers to a component that occupies at least 50 mass% or more of the components constituting the polyimide layer 30. In the present embodiment, the polyimide layer 30 includes polyimide, and the remainder is made of inevitable impurities. Synthetic resins constituting the polyimide layer 30 include, in addition to polyimide, polyesterimide, polyetherimide, polyamide, polyurethane, polyester, polybenzimidazole, melamine resin, polyvinyl formal, epoxy resin, phenol resin, urea resin, acrylic resin, and the like. A thermosetting resin may be included. Also, polyamide, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polybutylene naphthalate, polyethylene naphthalate, polysulfone, polyethersulfone, polyphenylsulfone, polyetherimide, polyphenylene sulfide, polyetherketone, polyaryletherketone, Thermoplastic resins such as tetrafluoroethylene / ethylene copolymer, polyether ether ketone, and polytetrafluoroethylene may also be included.
 ポリイミド層30を構成するポリイミドは、例えば芳香族ジアミンと、芳香族テトラカルボン酸二無水物とを縮合重合して得られるポリイミド前駆体を合成し、加熱等によりイミド化させて形成される。芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物(PMDA)等を用いることができる。また、芳香族ジアミンとしては、4,4’-ジアミノジフェニルエーテル(ODA)等を用いることができる。 The polyimide constituting the polyimide layer 30 is formed, for example, by synthesizing a polyimide precursor obtained by condensation polymerization of aromatic diamine and aromatic tetracarboxylic dianhydride and imidizing by heating or the like. As the aromatic tetracarboxylic dianhydride, pyromellitic dianhydride (PMDA) or the like can be used. As the aromatic diamine, 4,4′-diaminodiphenyl ether (ODA) or the like can be used.
 図1を参照して、本実施の形態におけるポリイミド層30は、中実層である。ここで、中実層とは、空孔15が意図的には形成されていない層、すなわち空孔15が実質的に存在しない層をいう。具体的には、ポリイミド層30の気孔率は、例えば1体積%以下である。このようにすることで、絶縁層20の耐熱性および耐加工性をより確実に向上させることができる。また、ポリイミド層30は、絶縁層20の外周面を含むように配置される。このようにすることで、絶縁電線1が油中で使用される場合に、絶縁層20に油が浸透して、耐久性が低下することを抑制することができる。 Referring to FIG. 1, polyimide layer 30 in the present embodiment is a solid layer. Here, the solid layer refers to a layer in which the holes 15 are not intentionally formed, that is, a layer in which the holes 15 are not substantially present. Specifically, the porosity of the polyimide layer 30 is, for example, 1% by volume or less. By doing in this way, the heat resistance and workability of the insulating layer 20 can be improved more reliably. The polyimide layer 30 is disposed so as to include the outer peripheral surface of the insulating layer 20. By doing in this way, when the insulated wire 1 is used in oil, it can suppress that oil osmose | permeates the insulating layer 20 and durability falls.
 なお、ポリイミド層30は、本実施の形態のように空孔15が形成されてない中実層の他、複数の空孔15を有するようにしてもよい。実施の形態1における絶縁電線1の第1の変形例を図2に示す。図2は、絶縁電線1の長手方向に垂直な断面を示す断面模式図である。図2を参照して、ポリイミド層30は、絶縁層20の外周面を含むように配置され、複数の空孔15を分散して有する。このようにすることで、絶縁層20全体の誘電率をより低くすることができる。 The polyimide layer 30 may have a plurality of holes 15 in addition to the solid layer in which the holes 15 are not formed as in the present embodiment. The 1st modification of the insulated wire 1 in Embodiment 1 is shown in FIG. FIG. 2 is a schematic cross-sectional view showing a cross section perpendicular to the longitudinal direction of the insulated wire 1. Referring to FIG. 2, polyimide layer 30 is disposed so as to include the outer peripheral surface of insulating layer 20, and has a plurality of holes 15 dispersed therein. By doing in this way, the dielectric constant of the whole insulating layer 20 can be made lower.
 ここで、本実施の形態の絶縁電線1においては、絶縁層20はポリイミド層30を含む。これにより、絶縁層20の耐熱性および耐加工性が向上している。絶縁層20は、ポリアミドイミド層40を含む。これにより、絶縁層20がポリイミド層30のみから構成される場合に比べて絶縁電線1の製造コストが低くなる。ポリアミドイミド層40の内部に複数の空孔15を有し、ポリアミドイミド層40の気孔率を20体積%以上とすることで、ポリアミドイミド層40の誘電率が低くなる。このように誘電率の低いポリアミドイミド層40を含むことで、絶縁層20全体の誘電率が低くなっている。一方、ポリアミドイミド層40の気孔率を80体積%以下とすることで、絶縁性の低下を抑制しつつ誘電率を低くすることができる。その結果、絶縁電線1は、優れた耐熱性および耐加工性を有し、低コストで低い誘電率を有する絶縁層20を備える絶縁電線1となっている。 Here, in the insulated wire 1 of the present embodiment, the insulating layer 20 includes a polyimide layer 30. Thereby, the heat resistance and workability of the insulating layer 20 are improved. The insulating layer 20 includes a polyamideimide layer 40. Thereby, compared with the case where the insulating layer 20 is comprised only from the polyimide layer 30, the manufacturing cost of the insulated wire 1 becomes low. The dielectric constant of the polyamide-imide layer 40 becomes low by having a plurality of pores 15 inside the polyamide-imide layer 40 and setting the porosity of the polyamide-imide layer 40 to 20% by volume or more. By including the polyamideimide layer 40 having a low dielectric constant in this way, the dielectric constant of the insulating layer 20 as a whole is low. On the other hand, by setting the porosity of the polyamideimide layer 40 to 80% by volume or less, the dielectric constant can be lowered while suppressing a decrease in insulation. As a result, the insulated wire 1 is an insulated wire 1 including an insulating layer 20 having excellent heat resistance and workability, low cost, and low dielectric constant.
 (絶縁電線の製造方法)
 次に絶縁電線1の製造方法の概要について説明する。絶縁電線1の製造方法は、導体部10を準備する工程と、ポリアミドイミド層40となるべきポリアミドイミド樹脂ワニスを準備する工程と、ポリイミド層30となるべきポリイミド樹脂ワニスを準備する工程と、導体部10の外周面上にポリアミドイミド樹脂ワニスを塗布し、加熱することでポリアミドイミド層40を形成する工程と、ポリアミドイミド層40を形成した導体部10のさらに外周面側にポリイミド樹脂ワニスを塗布し、加熱することでポリイミド層30を形成する工程と、を備える。
(Insulated wire manufacturing method)
Next, the outline | summary of the manufacturing method of the insulated wire 1 is demonstrated. The method of manufacturing the insulated wire 1 includes a step of preparing the conductor portion 10, a step of preparing a polyamideimide resin varnish to be the polyamideimide layer 40, a step of preparing a polyimide resin varnish to be the polyimide layer 30, and a conductor. Applying a polyamideimide resin varnish on the outer peripheral surface of the portion 10 and heating it to form a polyamideimide layer 40; and applying a polyimide resin varnish to the outer peripheral surface of the conductor portion 10 on which the polyamideimide layer 40 is formed And forming the polyimide layer 30 by heating.
 導体部10を準備する工程では、銅等の導体からなる線材である導体部10が準備される。次に、ポリアミドイミド樹脂ワニスを準備する工程では、熱硬化性樹脂であるポリアミドイミドと、熱分解性樹脂とを含むワニスが準備される。上記ワニスを塗布し加熱することで、熱分解性樹脂が分解されて気化する。そして、ポリアミドイミドは硬化する。その結果、内部に複数の空孔15を有するポリアミドイミド層40が得られる。 In the step of preparing the conductor portion 10, the conductor portion 10 which is a wire made of a conductor such as copper is prepared. Next, in the step of preparing a polyamideimide resin varnish, a varnish containing a polyamideimide that is a thermosetting resin and a thermally decomposable resin is prepared. By applying and heating the varnish, the thermally decomposable resin is decomposed and vaporized. Then, the polyamideimide is cured. As a result, a polyamideimide layer 40 having a plurality of pores 15 inside is obtained.
 熱分解性樹脂としては、例えば、ポリアミドイミド層40を形成するポリアミドイミドの硬化温度よりも低い温度で熱分解する樹脂粒子を用いることができる。熱分解性樹脂としては、例えば、(メタ)アクリル系重合体の架橋物を用いることができる。 As the thermally decomposable resin, for example, resin particles that thermally decompose at a temperature lower than the curing temperature of the polyamideimide that forms the polyamideimide layer 40 can be used. As the thermally decomposable resin, for example, a crosslinked product of a (meth) acrylic polymer can be used.
 また、上記の単一の熱分解性樹脂を用いる代わりに、熱分解性樹脂を主成分とするコアと、熱分解性樹脂より熱分解温度が高い樹脂を主成分とするシェルとを有するコアシェル構造の中空形成粒子を用いてもよい。この中空形成粒子のコアの熱分解性樹脂は、焼付時に熱分解によりガス化し、シェルを通過して飛散するため、上記中空形成粒子は、焼付後に内部が中空となった外殻が残る。つまり、中空形成粒子は、焼付後に内部が中空となった外殻のみで構成される中空粒子となり、絶縁層20内に空孔15が形成される。このように絶縁層20内に形成される各空孔15の周縁部が外殻で囲まれているので、各中空粒子内の中空部同士が連通し難く、絶縁層20に中空粒子よりも大きい空孔15が生じ難いため、空孔15の大きさにばらつきが生じ難い。また、中空粒子により形成された空孔15を有する絶縁層20は、単一の熱分解性樹脂で形成された空孔を有する絶縁層よりも絶縁破壊電圧を高くできるため、絶縁性が優れた絶縁層20を形成できる。従って、絶縁電線1の誘電率を低下しつつ、絶縁層20の強度、絶縁性及び耐溶剤性の低下を抑制できる。なお、ここで、コアシェル構造とは、粒子のコアを形成する材料とコアの周囲を取り囲むシェルの材料が異なる構造をいう。 In addition, instead of using the single heat decomposable resin, a core shell structure having a core mainly composed of a heat decomposable resin and a shell mainly composed of a resin having a higher heat decomposition temperature than the heat decomposable resin. The hollow forming particles may be used. Since the thermally decomposable resin of the core of the hollow forming particles is gasified by thermal decomposition during baking and scatters through the shell, the hollow forming particles leave an outer shell whose inside is hollow after baking. That is, the hollow-forming particles become hollow particles composed only of the outer shell whose inside is hollow after baking, and the pores 15 are formed in the insulating layer 20. Thus, since the peripheral part of each hole 15 formed in the insulating layer 20 is surrounded by the outer shell, the hollow parts in each hollow particle are difficult to communicate with each other, and the insulating layer 20 is larger than the hollow particle. Since the holes 15 are not easily generated, the sizes of the holes 15 are unlikely to vary. Further, the insulating layer 20 having the voids 15 formed by the hollow particles can have a higher dielectric breakdown voltage than the insulating layer having the voids formed by a single thermally decomposable resin, so that the insulating property is excellent. The insulating layer 20 can be formed. Therefore, it is possible to suppress a decrease in strength, insulation, and solvent resistance of the insulating layer 20 while reducing the dielectric constant of the insulated wire 1. Here, the core-shell structure refers to a structure in which the material forming the core of the particle is different from the material of the shell surrounding the core.
 コアシェル構造の中空形成粒子に由来する空孔15では、焼付時に、ワニスに含まれる中空形成粒子のコアの熱分解性樹脂が熱分解によりガス化し、このガス化した熱分解性樹脂がシェルを通過して飛散するため、空孔15の外殻は少なくとも一部が亀裂、割れ目又は孔などの欠損を有している。このように外殻が欠損を有することで、空孔15の形成が担保される。また、欠損が亀裂、割れ目又は孔であることにより、外殻による空孔15の連通防止効果を高めることができる。 In the pores 15 derived from the core-shell structure hollow-forming particles, the pyrolytic resin of the core of the hollow-forming particles contained in the varnish is gasified by pyrolysis at the time of baking, and the gasified pyrolytic resin passes through the shell. Therefore, at least a part of the outer shell of the hole 15 has a defect such as a crack, a crack or a hole. Thus, formation of the void | hole 15 is ensured because an outer shell has a defect | deletion. Further, since the defect is a crack, a crack or a hole, the effect of preventing the communication of the hole 15 by the outer shell can be enhanced.
 上記空孔15の形状は、扁平球体であることが好ましい。また、空孔15の短軸が導体表面と垂直方向に配向していると、外力が作用し易い上記垂直方向に形成される空孔15同士が当接し難くなるため、空孔同士の連通が抑制されて形成された独立した空孔15(独立空孔)が維持され易い。その結果、絶縁層20の絶縁性及び耐溶剤性がより低下し難くなる。ここで、「扁平球体」とは、重心を通る最大対角線長さを長径、重心を通る最小対角線長さを短径(短軸の長さ)としたとき、短径が長径の所定割合以下の球体を意味し、例えば短径及び長径を含む断面における長径に対する短径の比が0.95以下の球体である。また、「導体表面と垂直方向に配向する」とは、空孔の短軸と導体表面に垂直な方向との角度差が20度以下であることを意味する。 The shape of the hole 15 is preferably a flat sphere. Further, if the short axis of the hole 15 is oriented in the direction perpendicular to the conductor surface, the holes 15 formed in the vertical direction where external force is likely to act are difficult to come into contact with each other. Suppressed and formed independent holes 15 (independent holes) are easily maintained. As a result, the insulation and solvent resistance of the insulating layer 20 are less likely to be lowered. Here, the “flattened sphere” means that the maximum diagonal length passing through the center of gravity is the major axis, and the minimum diagonal length passing through the center of gravity is the minor axis (the length of the minor axis). It means a sphere, for example, a sphere having a ratio of the minor axis to the major axis in a cross section including the minor axis and the major axis of 0.95 or less. “Oriented in the direction perpendicular to the conductor surface” means that the angle difference between the minor axis of the hole and the direction perpendicular to the conductor surface is 20 degrees or less.
 コアシェル構造を有する中空形成粒子において、コアの主成分に用いる熱分解性樹脂としては、ポリアミドイミドの硬化温度よりも低い温度で熱分解する樹脂粒子であれば、特に限定されないが、例えば、(メタ)アクリル系重合体の架橋物を用いることができる。また、上記外殻の主成分がシリコーンであるとよい。このように外殻の主成分がシリコーンであることで、外殻に弾性を付与すると共に絶縁性及び耐熱性を向上させ易く、その結果、外殻に囲まれた独立空孔がより維持され易い。ここで「主成分」とは、最も含有量の多い成分であり、例えば50質量%以上含有される成分である。 In the hollow-forming particles having a core-shell structure, the thermally decomposable resin used as the main component of the core is not particularly limited as long as it is a resin particle that thermally decomposes at a temperature lower than the curing temperature of polyamideimide. ) A cross-linked product of an acrylic polymer can be used. The main component of the outer shell is preferably silicone. Since the main component of the outer shell is silicone as described above, elasticity is imparted to the outer shell and insulation and heat resistance are easily improved. As a result, the independent voids surrounded by the outer shell are more easily maintained. . Here, the “main component” is a component having the largest content, for example, a component contained in an amount of 50% by mass or more.
 また、上記実施形態のように、熱分解性樹脂を用いて空孔15を形成させる他、発泡剤を用い発泡させることで空孔15を形成してもよい。発泡剤としては、例えば、化学発泡剤又は熱膨張性マイクロカプセル等を用いることができる。化学発泡剤としては、例えば、加熱することにより分解して、窒素ガス、炭酸ガス、一酸化炭素、アンモニアガス等を発生するものであり、有機発泡剤又は無機発泡剤等を用いることができる。熱膨張性マイクロカプセルとしては、例えば、内部発泡剤からなる芯材と、この芯材を包む外殻とを有し、芯材の膨張によって外殻が膨張するものを採用することができる。また、高沸点溶剤を含むワニスを調製し、空孔15を形成してもよい。高沸点溶剤としては、沸点が例えば180℃~300℃の溶剤を用いることができる。高沸点溶剤としては、例えば、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールモノメチルエーテル等を用いることができる。 Further, as in the above embodiment, the holes 15 may be formed by foaming using a foaming agent in addition to forming the holes 15 using a thermally decomposable resin. As the foaming agent, for example, a chemical foaming agent or a thermally expandable microcapsule can be used. As a chemical foaming agent, it decomposes | disassembles by heating, for example, generate | occur | produces nitrogen gas, a carbon dioxide gas, carbon monoxide, ammonia gas etc., An organic foaming agent or an inorganic foaming agent etc. can be used. As the thermally expandable microcapsule, for example, a core material made of an internal foaming agent and an outer shell that encloses the core material, and the outer shell expands due to the expansion of the core material can be adopted. Moreover, the varnish containing a high boiling point solvent may be prepared and the hole 15 may be formed. As the high boiling point solvent, a solvent having a boiling point of, for example, 180 ° C. to 300 ° C. can be used. As the high boiling point solvent, for example, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol dibutyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol monomethyl ether, or the like can be used.
 次に、ポリイミド樹脂ワニスを準備する工程では、熱硬化性樹脂であるポリイミドを含むワニスが準備される。ポリアミドイミド層40を形成した導体部10のさらに外周面側に上記ワニスを塗布し、加熱することでポリイミド層30が形成される。 Next, in the step of preparing a polyimide resin varnish, a varnish containing polyimide which is a thermosetting resin is prepared. The said varnish is apply | coated to the outer peripheral surface side of the conductor part 10 in which the polyamideimide layer 40 was formed, and the polyimide layer 30 is formed by heating.
 ワニスを導体部10の外周面側に塗布する方法としては、液状のワニスを貯留した液状組成物槽と、塗布ダイスとを備える塗布装置を用いた方法を挙げることができる。この塗布装置によれば、導体部10が液状組成物槽内を通過することでワニスが導体外周面側に付着し、その後塗布ダイスを通過して、ワニスが均一な厚さに塗布される。 Examples of a method for applying the varnish to the outer peripheral surface side of the conductor portion 10 include a method using a coating apparatus including a liquid composition tank storing a liquid varnish and a coating die. According to this coating apparatus, the varnish adheres to the conductor outer peripheral surface side as the conductor portion 10 passes through the liquid composition tank, and then passes through the coating die to apply the varnish to a uniform thickness.
 ワニスを硬化する工程では、加熱することにより、ワニスを硬化させて、絶縁層20を形成する。この加熱に用いる装置としては、ワニスが塗布された導体部10の走行方向に沿って延びる筒状の焼き付け炉を用いることができる。加熱方法としては熱風加熱、赤外線加熱、高周波加熱等を採用することができる。また、加熱温度は、例えば300℃以上600℃以下である。 In the step of curing the varnish, the insulating layer 20 is formed by curing the varnish by heating. As an apparatus used for this heating, a cylindrical baking furnace extending along the traveling direction of the conductor portion 10 coated with varnish can be used. As a heating method, hot air heating, infrared heating, high frequency heating, or the like can be employed. Moreover, heating temperature is 300 degreeC or more and 600 degrees C or less, for example.
 (その他の実施の形態)
 次に、本開示の絶縁電線1の他の実施の形態について説明する。図3は、本開示の実施の形態2の絶縁電線1を示す図である。図4は、実施の形態2における絶縁電線1の第1の変形例を示す図である。図5は、実施の形態2における絶縁電線1の第2の変形例を示す図である。図6は、実施の形態2における絶縁電線1の第3の変形例を示す図である。図3~図6は、絶縁電線1の長手方向に垂直な断面を示す断面模式図である。図7は、本開示の実施の形態3の絶縁電線1を示す図である。図8は、実施の形態3における絶縁電線1の第1の変形例を示す図である。図7および図8は、絶縁電線1の長手方向に垂直な断面を示す断面模式図である。図9は、本開示の実施の形態4の絶縁電線1を示す図である。図10は、実施の形態4における絶縁電線1の第1の変形例を示す図である。図9および図10は、絶縁電線1の長手方向に垂直な断面を示す断面模式図である。図11は、本開示の実施の形態5の絶縁電線1を示す図である。図12は、実施の形態5における絶縁電線1の第1の変形例を示す図である。図11および図12は、絶縁電線1の長手方向に垂直な断面を示す断面模式図である。実施の形態2、実施の形態3、実施の形態4および実施の形態5における絶縁電線1は、基本的には実施の形態1の場合と同様の構成を有する。しかし、実施の形態2、実施の形態3、実施の形態4および実施の形態5においては、絶縁層20の構造が、実施の形態1の場合と異なっている。以下、実施の形態1の場合とは異なる点について説明する。
(Other embodiments)
Next, another embodiment of the insulated wire 1 of the present disclosure will be described. FIG. 3 is a diagram illustrating the insulated wire 1 according to the second embodiment of the present disclosure. FIG. 4 is a diagram illustrating a first modification of the insulated wire 1 according to the second embodiment. FIG. 5 is a diagram illustrating a second modification of the insulated wire 1 according to the second embodiment. FIG. 6 is a diagram illustrating a third modification of the insulated wire 1 according to the second embodiment. 3 to 6 are schematic cross-sectional views showing a cross section perpendicular to the longitudinal direction of the insulated wire 1. FIG. 7 is a diagram illustrating the insulated wire 1 according to the third embodiment of the present disclosure. FIG. 8 is a diagram showing a first modification of the insulated wire 1 in the third embodiment. 7 and 8 are schematic cross-sectional views showing a cross section perpendicular to the longitudinal direction of the insulated wire 1. FIG. 9 is a diagram illustrating the insulated wire 1 according to the fourth embodiment of the present disclosure. FIG. 10 is a diagram illustrating a first modification of the insulated wire 1 according to the fourth embodiment. 9 and 10 are schematic cross-sectional views showing a cross section perpendicular to the longitudinal direction of the insulated wire 1. FIG. 11 is a diagram illustrating the insulated wire 1 according to the fifth embodiment of the present disclosure. FIG. 12 is a diagram illustrating a first modification of the insulated wire 1 according to the fifth embodiment. 11 and 12 are schematic cross-sectional views showing a cross section perpendicular to the longitudinal direction of the insulated wire 1. The insulated wire 1 in the second embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment basically has the same configuration as that in the first embodiment. However, in the second embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment, the structure of the insulating layer 20 is different from that in the first embodiment. Hereinafter, differences from the case of the first embodiment will be described.
 図3を参照して、実施の形態2における絶縁電線1は、円形状の断面形状を有する線状の導体部10と、この導体部10の外周面を被覆する絶縁層20と、を備える。絶縁層20は、第1ポリイミド層301と、ポリアミドイミド層40と、第2ポリイミド層302と、を含む。第1ポリイミド層301は、導体部10の外周面を被覆するように配置される。ポリアミドイミド層40は、導体部10の外周面を被覆するように配置される第1ポリイミド層301上に積層される。第2ポリイミド層302は、ポリアミドイミド層40上に積層され、絶縁層20の外周面を含むように配置される。第1ポリイミド層301および第2ポリイミド層302は、中実層である。このようにすることで、絶縁層20の耐熱性および耐加工性をより確実に向上させることができる。なお、図4を参照して、第1ポリイミド層301は複数の空孔15を分散して有し、第2ポリイミド層302は中実層であってもよい。また、図5を参照して、第1ポリイミド層301は中実層であり、第2ポリイミド層302は複数の空孔15を分散して有するようにしてもよい。また、図6を参照して、第1ポリイミド層301および第2ポリイミド層302が、複数の空孔15を分散して有するようにしてもよい。このようにすることで、絶縁層20全体の誘電率をより低くすることができる。なお、絶縁層20において、第1ポリイミド層301、ポリアミドイミド層40および第2ポリイミド層302を複数繰り返し含むようにしてもよい。 Referring to FIG. 3, the insulated wire 1 in the second embodiment includes a linear conductor portion 10 having a circular cross-sectional shape and an insulating layer 20 that covers the outer peripheral surface of the conductor portion 10. The insulating layer 20 includes a first polyimide layer 301, a polyamideimide layer 40, and a second polyimide layer 302. The first polyimide layer 301 is disposed so as to cover the outer peripheral surface of the conductor portion 10. The polyamideimide layer 40 is laminated on the first polyimide layer 301 disposed so as to cover the outer peripheral surface of the conductor portion 10. The second polyimide layer 302 is laminated on the polyamideimide layer 40 and disposed so as to include the outer peripheral surface of the insulating layer 20. The first polyimide layer 301 and the second polyimide layer 302 are solid layers. By doing in this way, the heat resistance and workability of the insulating layer 20 can be improved more reliably. Referring to FIG. 4, first polyimide layer 301 may have a plurality of holes 15 dispersed therein, and second polyimide layer 302 may be a solid layer. Referring to FIG. 5, the first polyimide layer 301 may be a solid layer, and the second polyimide layer 302 may have a plurality of holes 15 dispersed therein. In addition, referring to FIG. 6, first polyimide layer 301 and second polyimide layer 302 may have a plurality of holes 15 dispersed therein. By doing in this way, the dielectric constant of the whole insulating layer 20 can be made lower. The insulating layer 20 may include a plurality of first polyimide layers 301, polyamideimide layers 40, and second polyimide layers 302.
 図7を参照して、実施の形態3における絶縁電線1は、円形状の断面形状を有する線状の導体部10と、この導体部10の外周面を被覆する絶縁層20と、を備える。絶縁層20は、ポリイミド層30と、ポリアミドイミド層40と、を含む。ポリイミド層30は、導体部10の外周面を被覆するように配置される。ポリアミドイミド層40は、導体部10の外周面を被覆するように配置されるポリイミド層30上に積層され、絶縁層20の外周面を含むように配置される。ポリイミド層30は、中実層である。なお、図8を参照して、ポリイミド層30が、複数の空孔15を分散して有するようにしてもよい。なお、絶縁層20において、ポリイミド層30およびポリアミドイミド層40を複数繰り返し含むようにしてもよい。 Referring to FIG. 7, the insulated wire 1 in the third embodiment includes a linear conductor portion 10 having a circular cross-sectional shape and an insulating layer 20 that covers the outer peripheral surface of the conductor portion 10. The insulating layer 20 includes a polyimide layer 30 and a polyamideimide layer 40. The polyimide layer 30 is disposed so as to cover the outer peripheral surface of the conductor portion 10. The polyamideimide layer 40 is laminated on the polyimide layer 30 disposed so as to cover the outer peripheral surface of the conductor portion 10, and is disposed so as to include the outer peripheral surface of the insulating layer 20. The polyimide layer 30 is a solid layer. Referring to FIG. 8, polyimide layer 30 may have a plurality of holes 15 dispersed therein. The insulating layer 20 may include a plurality of polyimide layers 30 and polyamideimide layers 40 repeatedly.
 図9を参照して、実施の形態4における絶縁電線1は、円形状の断面形状を有する線状の導体部10と、この導体部10の外周面を被覆する絶縁層20と、を備える。絶縁層20は、第1ポリイミド層301と、第2ポリイミド層302と、ポリアミドイミド層40と、を含む。第1ポリイミド層301は、導体部10の外周面を被覆するように配置される。第2ポリイミド層302は、第1ポリイミド層301上に積層される。ポリアミドイミド層40は、第2ポリイミド層302上に積層され、絶縁層20の外周面を含むように配置される。第1ポリイミド層301は中実層であり、第2ポリイミド層302は複数の空孔15を分散して有する。なお、図10を参照して、第1ポリイミド層301は複数の空孔15を分散して有し、第2ポリイミド層302は中実層であるようにしてもよい。なお、絶縁層20において、第1ポリイミド層301、第2ポリイミド層302およびポリアミドイミド層40を複数繰り返し含むようにしてもよい。 Referring to FIG. 9, the insulated wire 1 in the fourth embodiment includes a linear conductor portion 10 having a circular cross-sectional shape and an insulating layer 20 that covers the outer peripheral surface of the conductor portion 10. The insulating layer 20 includes a first polyimide layer 301, a second polyimide layer 302, and a polyamideimide layer 40. The first polyimide layer 301 is disposed so as to cover the outer peripheral surface of the conductor portion 10. The second polyimide layer 302 is laminated on the first polyimide layer 301. The polyamideimide layer 40 is laminated on the second polyimide layer 302 and disposed so as to include the outer peripheral surface of the insulating layer 20. The first polyimide layer 301 is a solid layer, and the second polyimide layer 302 has a plurality of holes 15 dispersed therein. Referring to FIG. 10, the first polyimide layer 301 may have a plurality of holes 15 dispersed therein, and the second polyimide layer 302 may be a solid layer. Note that the insulating layer 20 may include a plurality of first polyimide layers 301, second polyimide layers 302, and polyamideimide layers 40.
 図11を参照して、実施の形態5における絶縁電線1は、円形状の断面形状を有する線状の導体部10と、この導体部10の外周面を被覆する絶縁層20と、を備える。絶縁層20は、ポリアミドイミド層40と、第1ポリイミド層301と、第2ポリイミド層302と、を含む。ポリアミドイミド層40は、導体部10の外周面を被覆するように配置される。第1ポリイミド層301は、ポリアミドイミド層40上に積層される。また、第2ポリイミド層302は、第1ポリイミド層301上に積層され、絶縁層20の外周面を含むように配置される。第1ポリイミド層301は中実層であり、第2ポリイミド層302は複数の空孔15を分散して有する。なお、図12を参照して、第1ポリイミド層301は、複数の空孔15を分散して有し、第2ポリイミド層302は中実層であるようにしてもよい。なお、絶縁層20において、ポリアミドイミド層40、第1ポリイミド層301および第2ポリイミド層302を複数繰り返し含むようにしてもよい。 Referring to FIG. 11, the insulated wire 1 in the fifth embodiment includes a linear conductor portion 10 having a circular cross-sectional shape and an insulating layer 20 that covers the outer peripheral surface of the conductor portion 10. The insulating layer 20 includes a polyamideimide layer 40, a first polyimide layer 301, and a second polyimide layer 302. The polyamideimide layer 40 is disposed so as to cover the outer peripheral surface of the conductor portion 10. The first polyimide layer 301 is laminated on the polyamideimide layer 40. The second polyimide layer 302 is laminated on the first polyimide layer 301 and is disposed so as to include the outer peripheral surface of the insulating layer 20. The first polyimide layer 301 is a solid layer, and the second polyimide layer 302 has a plurality of holes 15 dispersed therein. Referring to FIG. 12, the first polyimide layer 301 may have a plurality of holes 15 dispersed therein, and the second polyimide layer 302 may be a solid layer. Insulating layer 20 may include a plurality of polyamideimide layers 40, first polyimide layers 301, and second polyimide layers 302.
 上記実施の形態2、実施の形態3、実施の形態4および実施の形態5の構造を有する絶縁電線1によっても、実施の形態1と同様に優れた耐熱性および耐加工性を有し、低コストで低い誘電率を有する絶縁層20を備える絶縁電線1を提供することができる。 The insulated wire 1 having the structure of the second embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment also has excellent heat resistance and work resistance as in the first embodiment, and is low. The insulated wire 1 provided with the insulating layer 20 having a low dielectric constant at low cost can be provided.
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiment disclosed herein is illustrative in all respects and is not restrictive in any way. The scope of the present invention is defined not by the above-described meaning but by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 例えば、上記実施形態の絶縁電線1において、導体部10と絶縁層20との間にプライマー(Primer)層等のさらなる層が設けられてもよい。プライマー層は、層間の密着性を高めるために設けられる層であり、例えば公知の樹脂組成物により形成することができる。 For example, in the insulated wire 1 of the above embodiment, a further layer such as a primer layer may be provided between the conductor portion 10 and the insulating layer 20. A primer layer is a layer provided in order to improve the adhesiveness between layers, for example, can be formed with a well-known resin composition.
 導体部10と絶縁層20との間にプライマー層を設ける場合、このプライマー層を形成する樹脂組成物は、例えばポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエステル及びフェノキシ樹脂の中の一種又は複数種の樹脂を含むとよい。また、プライマー層を形成する樹脂組成物は、密着向上剤等の添加剤を含んでもよい。このような樹脂組成物によって導体部10と絶縁層20との間にプライマー層を形成することで、導体と絶縁層との間の密着性を向上することが可能であり、その結果、絶縁電線1の可撓性や耐摩耗性、耐傷性、耐加工性などの特性を効果的に高めることができる。 When providing a primer layer between the conductor part 10 and the insulating layer 20, the resin composition which forms this primer layer is, for example, one or more kinds of resins among polyimide, polyamideimide, polyesterimide, polyester and phenoxy resin. It is good to include. Moreover, the resin composition forming the primer layer may contain an additive such as an adhesion improver. By forming a primer layer between the conductor portion 10 and the insulating layer 20 with such a resin composition, it is possible to improve the adhesion between the conductor and the insulating layer. 1 characteristics such as flexibility, wear resistance, scratch resistance, and workability can be effectively enhanced.
 また、プライマー層を形成する樹脂組成物は、上記樹脂と共に他の樹脂、例えばエポキシ樹脂、フェノキシ樹脂、メラミン樹脂等を含んでもよい。また、プライマー層を形成する樹脂組成物に含まれる各樹脂として、市販の液状組成物(絶縁ワニス)を使用してもよい。 Further, the resin composition forming the primer layer may contain other resins, for example, an epoxy resin, a phenoxy resin, a melamine resin, etc. together with the above resin. Moreover, you may use a commercially available liquid composition (insulation varnish) as each resin contained in the resin composition which forms a primer layer.
 プライマー層の平均厚さの下限としては、1μmが好ましく、2μmがより好ましい。一方、プライマー層の平均厚さの上限としては、30μmが好ましく、20μmがより好ましい。プライマー層の平均厚さが上記下限未満であると、導体部10との十分な密着性を発揮できないおそれがある。逆に、プライマー層の平均厚さが上記上限を超えると、絶縁電線1が不必要に大径化するおそれがある。 The lower limit of the average primer layer thickness is preferably 1 μm, more preferably 2 μm. On the other hand, the upper limit of the average thickness of the primer layer is preferably 30 μm, more preferably 20 μm. There exists a possibility that sufficient adhesiveness with the conductor part 10 cannot be exhibited as the average thickness of a primer layer is less than the said minimum. Conversely, if the average thickness of the primer layer exceeds the above upper limit, the insulated wire 1 may unnecessarily increase in diameter.
 1 絶縁電線、10 導体部、15 空孔、20 絶縁層
 30 ポリイミド層、301 第1ポリイミド層、302 第2ポリイミド層
 40 ポリアミドイミド層
DESCRIPTION OF SYMBOLS 1 Insulated wire, 10 Conductor part, 15 Hole, 20 Insulating layer 30 Polyimide layer, 301 1st polyimide layer, 302 2nd polyimide layer 40 Polyamideimide layer

Claims (7)

  1.  線状の導体部と、
     前記導体部の外周面を被覆する絶縁層と、
    を備え、
     前記絶縁層は、
     内部に複数の空孔を有するポリアミドイミド層と、
     ポリイミド層と、を含み、
     前記ポリアミドイミド層の気孔率は、20体積%以上80体積%以下である、絶縁電線。
    A linear conductor,
    An insulating layer covering the outer peripheral surface of the conductor portion;
    With
    The insulating layer is
    A polyamideimide layer having a plurality of pores therein;
    A polyimide layer,
    The porosity of the said polyamideimide layer is an insulated wire which is 20 volume% or more and 80 volume% or less.
  2.  前記ポリイミド層は、中実層である、請求項1に記載の絶縁電線。 The insulated wire according to claim 1, wherein the polyimide layer is a solid layer.
  3.  前記ポリイミド層は、前記絶縁層の外周面を含むように配置される、請求項2に記載の絶縁電線。 The insulated wire according to claim 2, wherein the polyimide layer is disposed so as to include an outer peripheral surface of the insulating layer.
  4.  前記ポリアミドイミド層に形成された前記空孔の平均径は、1μm以上10μm以下である、請求項1~請求項3のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 3, wherein an average diameter of the pores formed in the polyamide-imide layer is not less than 1 µm and not more than 10 µm.
  5.  前記絶縁層の厚みに対する前記ポリアミドイミド層の厚みの割合は、20%以上90%以下である、請求項1~請求項4のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 4, wherein a ratio of the thickness of the polyamideimide layer to the thickness of the insulating layer is 20% or more and 90% or less.
  6.  前記導体部と前記絶縁層の間にプライマー層を備える請求項1から請求項5のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 5, further comprising a primer layer between the conductor portion and the insulating layer.
  7.  前記複数の空孔は、その周縁部に外殻を備える請求項1から請求項6のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 6, wherein each of the plurality of holes includes an outer shell at a peripheral portion thereof.
PCT/JP2018/012828 2017-04-03 2018-03-28 Insulated electric wire WO2018186259A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880019748.2A CN110462755A (en) 2017-04-03 2018-03-28 Insulated electric conductor
JP2019511183A JPWO2018186259A1 (en) 2017-04-03 2018-03-28 Insulated wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017073755 2017-04-03
JP2017-073755 2017-04-03

Publications (1)

Publication Number Publication Date
WO2018186259A1 true WO2018186259A1 (en) 2018-10-11

Family

ID=63712908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012828 WO2018186259A1 (en) 2017-04-03 2018-03-28 Insulated electric wire

Country Status (3)

Country Link
JP (1) JPWO2018186259A1 (en)
CN (1) CN110462755A (en)
WO (1) WO2018186259A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4156470A1 (en) * 2021-09-27 2023-03-29 Hitachi Metals, Ltd. Insulated electrical wire and method of manufacturing insulated electrical wire
WO2023153063A1 (en) * 2022-02-08 2023-08-17 住友電気工業株式会社 Insulated electrical wire and method for manufacturing insulated electrical wire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627618B (en) * 2020-06-18 2021-06-15 台一铜业(广州)有限公司 Production and processing technology of enameled wire for automobile oil-cooled driving motor
CN117393208A (en) * 2023-11-14 2024-01-12 三元科技(深圳)有限公司 High-performance superfine ultrasonic cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133334A1 (en) * 2012-03-07 2013-09-12 古河電気工業株式会社 Insulated wire, electric equipment and process for producing insulated wire
WO2014175266A1 (en) * 2013-04-26 2014-10-30 古河電気工業株式会社 Insulated wire and electrical and electronic equipment, motor, and transformer using same
JP2016091865A (en) * 2014-11-06 2016-05-23 住友電気工業株式会社 Insulated electric wire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6030132B2 (en) * 2013-02-07 2016-11-24 古河電気工業株式会社 Enamel resin insulation laminate and insulated wire and electrical / electronic equipment using the same
JP5931097B2 (en) * 2014-01-22 2016-06-08 古河電気工業株式会社 Insulated wire and method for manufacturing the same, rotating electric machine and method for manufacturing the same
DE112016005010T5 (en) * 2015-10-28 2018-09-06 Sumitomo Electric Industries, Ltd. An insulated electrical wire and varnish for forming an insulating layer
JP6613163B2 (en) * 2016-02-10 2019-11-27 住友電気工業株式会社 Insulated wire
JP6775356B2 (en) * 2016-08-25 2020-10-28 住友電気工業株式会社 Insulated wire and manufacturing method of insulated wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133334A1 (en) * 2012-03-07 2013-09-12 古河電気工業株式会社 Insulated wire, electric equipment and process for producing insulated wire
WO2014175266A1 (en) * 2013-04-26 2014-10-30 古河電気工業株式会社 Insulated wire and electrical and electronic equipment, motor, and transformer using same
JP2016091865A (en) * 2014-11-06 2016-05-23 住友電気工業株式会社 Insulated electric wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4156470A1 (en) * 2021-09-27 2023-03-29 Hitachi Metals, Ltd. Insulated electrical wire and method of manufacturing insulated electrical wire
US12080448B2 (en) * 2021-09-27 2024-09-03 Proterial, Ltd. Insulated electrical wire and method of manufacturing insulated electrical wire
WO2023153063A1 (en) * 2022-02-08 2023-08-17 住友電気工業株式会社 Insulated electrical wire and method for manufacturing insulated electrical wire

Also Published As

Publication number Publication date
CN110462755A (en) 2019-11-15
JPWO2018186259A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP6720237B2 (en) Insulated wire
WO2018186259A1 (en) Insulated electric wire
TWI683325B (en) Insulated wire, method for manufacturing insulated wire, method for manufacturing stator for rotating electrical machine, and rotating electrical machine
JP5931097B2 (en) Insulated wire and method for manufacturing the same, rotating electric machine and method for manufacturing the same
EP2568476A1 (en) Insulated electric wire, electric device, and process for production of insulated electric wire
US20160322126A1 (en) Insulated wire, coil, and electrical/electronic equipment, and method of preventing cracking of insulated wire
CN107112081A (en) The insulated electric conductor of resist bending excellent in workability, the coil using it and electronic/electrical gas equipment
CN103796823A (en) High temperature insulating tape and wire or cable sheathed therewith
JP2017016862A (en) Insulation wire
JP7213806B2 (en) insulated wire
JP7016860B2 (en) Insulated wire
CN108352221B (en) Insulated wire and method for manufacturing insulated wire
KR20200136883A (en) Insulated wire
CN110419083B (en) Insulated wire
JP6613163B2 (en) Insulated wire
JP6355304B2 (en) Solderable insulated wire and manufacturing method thereof
JP6691029B2 (en) Insulated wire and method of manufacturing insulated wire
JP6900934B2 (en) Insulated wire and its manufacturing method
CN116323839A (en) Electromagnetic wire with thermoplastic insulator
JP2017045662A (en) Insulated wire and varnish for forming insulating layer
WO2023153063A1 (en) Insulated electrical wire and method for manufacturing insulated electrical wire
JP2024102995A (en) Insulated Wire
CN118507110A (en) Insulated wire, coil, electric and electronic device, and method for manufacturing insulated wire
JP2020119645A (en) Insulated wire with high heat dissipation and coil using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511183

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781100

Country of ref document: EP

Kind code of ref document: A1