[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018180926A1 - Film with conductive layer, touch panel, method for producing film with conductive layer, and method for producing touch panel - Google Patents

Film with conductive layer, touch panel, method for producing film with conductive layer, and method for producing touch panel Download PDF

Info

Publication number
WO2018180926A1
WO2018180926A1 PCT/JP2018/011518 JP2018011518W WO2018180926A1 WO 2018180926 A1 WO2018180926 A1 WO 2018180926A1 JP 2018011518 W JP2018011518 W JP 2018011518W WO 2018180926 A1 WO2018180926 A1 WO 2018180926A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
conductive layer
polyimide
conductive
layer
Prior art date
Application number
PCT/JP2018/011518
Other languages
French (fr)
Japanese (ja)
Inventor
耕司 上岡
昭典 佐伯
西山 雅仁
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201880021695.8A priority Critical patent/CN110447005B/en
Priority to JP2019509681A priority patent/JP7140108B2/en
Priority to KR1020197025834A priority patent/KR102524863B1/en
Publication of WO2018180926A1 publication Critical patent/WO2018180926A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09D171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C09D171/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a film with a conductive layer, a touch panel, a method for manufacturing a film with a conductive layer, and a method for manufacturing a touch panel.
  • Patent Documents 1 and 2 disclose a transparent conductive film in which a thin film made of ITO is formed on a polyimide film having excellent heat resistance. By patterning the thin film by etching, a film with a conductive layer excellent in visibility and conductivity can be obtained.
  • the ITO wiring is rigid and brittle, there is a problem that bending resistance is low and cracking occurs when bent.
  • metal mesh wiring is attracting attention as a transparent conductive layer having both bending resistance, visibility, and high conductivity.
  • Metal mesh wiring can be obtained by forming a metal wiring that is thin enough to be invisible to the mesh pattern. For example, by using a metal having a small electrical resistance value, such as gold, silver, or copper, a wiring with good conductivity can be obtained. Furthermore, the bending resistance of the wiring can be improved by containing an appropriate amount of an organic component that can be patterned by photolithography and has excellent flexibility. Such metal mesh wiring can sufficiently cope with flexibility.
  • a conductive paste composed of conductive metal particles (hereinafter referred to as conductive particles as appropriate) and an organic component is used, and patterning is performed by screen printing, inkjet, photolithography, or the like.
  • conductive particles conductive metal particles
  • an organic component conductive metal particles
  • patterning is performed by screen printing, inkjet, photolithography, or the like.
  • conductive particles have a problem of being easily fused and aggregated even at room temperature.
  • the surface of the conductive particles reacts with an organic component and the storage stability of the conductive paste is lowered.
  • the conductive particles have light reflectivity, which scatters exposure light, and thus there is a problem that it is difficult to form a fine pattern.
  • a method for solving the above problem by using conductive particles having a coating layer is disclosed (for example, see Patent Document 3).
  • the surface activity of the conductive particles can be reduced by the coating layer, and at least one of the reaction between the conductive particles and the reaction between the conductive particles and the organic component can be suppressed. Even when photolithography is used, scattering of exposure light can be suppressed and wiring can be patterned with high accuracy.
  • the coated conductive particles can be easily removed by heating at a high temperature of about 200 ° C. Therefore, sufficient electrical conductivity can be expressed in the wiring.
  • JP 2016-186936 A Japanese Patent No. 5773090 JP 2013-196997 A
  • Patent Document 3 requires heating at about 200 ° C. in the presence of oxygen in order to remove the coating layer of conductive particles. For this reason, high heat resistance and oxidation resistance are required for the substrate, and substantially only a glass substrate can be applied. As a matter of course, it is difficult to cope with flexibility using a glass substrate. Furthermore, even when a film with excellent heat resistance is used, the color may deteriorate due to the coloration of the film by heating in the presence of oxygen, and the dimensional accuracy of the film may decrease and misalignment may occur. There has been a problem that an appearance defect called moire occurs.
  • This invention is made
  • the place made into the objective is suppressing the yellowing at the time of conductive layer formation, and the film with a conductive layer which was excellent in the dimensional accuracy of the conductive layer, a touch panel, conductive It is providing the manufacturing method of a film with a layer, and the manufacturing method of a touch panel.
  • the inventors of the present invention have a structure in which a gas barrier layer is provided between a conductive film and a resin film (polyimide resin film) containing polyimide having a specific imide group concentration. It has been found that the polyimide resin film can be prevented from coming into contact with oxygen during heating of the layer, and the deterioration of the color and dimensional accuracy of the polyimide resin film can be suppressed.
  • the film with a conductive layer according to the present invention has an imide group concentration defined by the following formula (I) of 20.0% or more and 36.5% or less.
  • the film with a conductive layer according to the present invention is characterized in that, in the above invention, the glass transition temperature of the resin film is 250 ° C. or higher.
  • the film with a conductive layer according to the present invention is characterized in that, in the above invention, the polyimide includes a structural unit represented by the following general formula (1).
  • R 1 has a monocyclic or condensed polycyclic alicyclic structure, a tetravalent organic group having 4 to 40 carbon atoms, or a monocyclic alicyclic structure.
  • R 2 represents a divalent organic group having 4 to 40 carbon atoms.
  • the film with a conductive layer according to the present invention is characterized in that, in the above invention, the polyimide includes a structural unit represented by the following general formula (2).
  • R 3 represents a tetravalent organic group having 4 to 40 carbon atoms.
  • R 4 has a monocyclic or condensed polycyclic alicyclic structure and has 4 to 40 carbon atoms. Or a divalent organic group having 4 to 40 carbon atoms in which organic groups having a monocyclic alicyclic structure are connected to each other directly or via a crosslinked structure, or the following general group A divalent organic group represented by the formula (3) is shown.
  • X 1 is a divalent hydrocarbon group having 1 to 3 carbon atoms which may be substituted with a halogen atom.
  • Ar 1 and Ar 2 are each independently a carbon number. Represents a divalent aromatic group of 4 to 40.
  • the film with a conductive layer according to the present invention is the above invention, wherein the polyimide has a structural unit represented by the following general formula (4) as a main component and is represented by the following general formula (5).
  • the structural unit is characterized by containing 5 mol% or more and 30 mol% or less of all structural units.
  • R 1 represents a monovalent or condensed polycyclic alicyclic structure, a tetravalent organic group having 4 to 40 carbon atoms, or a monocyclic fatty acid.
  • a tetravalent organic group having 4 to 40 carbon atoms in which organic groups having a ring structure are connected to each other directly or via a crosslinked structure R 13 is a divalent group represented by the following general formula (6).
  • R 14 is a structure represented by the following structural formula (7) or the following structural formula (8).
  • R 15 to R 22 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 3 carbon atoms which may be substituted with a halogen atom.
  • X 2 is selected from a direct bond, an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms which may be substituted with a halogen atom, an ester bond, an amide bond, and a sulfide bond.
  • the film with a conductive layer according to the present invention is the above invention, wherein the polyimide is represented by the following general formula (9) in at least one of the acid dianhydride residue and the diamine residue constituting the polyimide. It contains the repeating structure represented by these, It is characterized by the above-mentioned.
  • R 23 and R 24 each independently represents a monovalent organic group having 1 to 20 carbon atoms.
  • M is an integer of 3 to 200.
  • the film with a conductive layer according to the present invention is characterized in that, in the above invention, the polyimide contains a triamine skeleton.
  • the film with a conductive layer according to the present invention is characterized in that, in the above invention, the gas barrier layer includes at least one of silicon oxide, silicon nitride, silicon oxynitride, and silicon carbonitride.
  • the gas barrier layer may be SiOxNy (where x and y are 0 ⁇ x ⁇ 1, 0.55 ⁇ y ⁇ 1 and 0 ⁇ x / y ⁇ 1). It is a value which satisfy
  • the film with a conductive layer according to the present invention is the above-described invention, wherein the gas barrier layer is an inorganic film laminated in two or more layers, and the layer in contact with the conductive layer in the inorganic film is SiOz (z Is a value satisfying 0.5 ⁇ z ⁇ 2)).
  • the conductive layer-attached film according to the present invention is characterized in that, in the above invention, the conductive particles are silver particles.
  • the film with a conductive layer according to the present invention is formed from an alkali-soluble resin including a cardo resin having two or more structures represented by the following structural formula (10) on the conductive layer in the above invention. And an insulating layer.
  • a touch panel according to the present invention includes the film with a conductive layer according to any one of the above inventions, and the conductive layer is a wiring layer.
  • the method for producing a film with a conductive layer according to the present invention includes a resin film forming step of forming a resin film containing polyimide on a support substrate, and a gas barrier layer forming step of forming a gas barrier layer on the resin film. And a conductive layer forming step of forming a conductive layer on the gas barrier layer, and a peeling step of peeling the resin film from the support substrate.
  • the conductive layer forming step uses a conductive composition containing conductive particles having a coating layer on at least a part of the surface.
  • the conductive layer is formed.
  • the resin film forming step is performed at 300 ° C. in an atmosphere having an oxygen concentration of 1000 ppm or less.
  • the resin film is formed by heating at a temperature of 500 ° C. or lower, and in the conductive layer forming step, the conductive composition on the gas barrier layer is heated to 100 ° C. or higher in an atmosphere having an oxygen concentration of 15% or higher.
  • the conductive layer is formed by heating at a temperature of 300 ° C. or lower.
  • the manufacturing method of the touchscreen which concerns on this invention is a manufacturing method of the touchscreen using the manufacturing method of the film with a conductive layer as described in any one of said invention, Comprising:
  • the said conductive layer formation process is the said electroconductivity. It is a step of forming a wiring layer as a layer.
  • ADVANTAGE OF THE INVENTION providing the film with a conductive layer which suppressed yellowing at the time of conductive layer formation, and was excellent in the dimensional accuracy of a conductive layer, a touch panel, the manufacturing method of a film with a conductive layer, and the manufacturing method of a touch panel are provided. There is an effect that can be done.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of a film with a conductive layer according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a configuration example of a touch panel including a film with a conductive layer according to an embodiment of the present invention according to the embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a configuration example of a touch panel including a film with a conductive layer according to an embodiment of the present invention.
  • FIG. 4 is a process diagram showing an example of a method for manufacturing a touch panel including a film with a conductive layer according to an embodiment of the present invention.
  • the film with a conductive layer according to the embodiment of the present invention is a film with a conductive layer having a conductive layer containing conductive particles on a resin film containing polyimide, and between the resin film and the conductive layer. Has a gas barrier layer.
  • this resin film contains polyimide having an imide group concentration defined by the following formula (I) of 20.0% or more and 36.5% or less. (Molecular weight of the imide group) / (Molecular weight of the repeating unit of polyimide) x 100 [%] ... (I)
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of a film with a conductive layer according to an embodiment of the present invention.
  • the film 11 with a conductive layer includes a resin film 1, a gas barrier layer 2, and a conductive layer 3A.
  • the resin film 1 is a polyimide resin film containing polyimide in which the imide group concentration defined by the formula (I) is 20.0% or more and 36.5% or less.
  • the gas barrier layer 2 is formed on the resin film 1.
  • the conductive layer 3 ⁇ / b> A is a conductive layer containing conductive particles, and is formed on the gas barrier layer 2.
  • the gas barrier layer 2 is interposed between the resin film 1 and the conductive layer 3A as shown in FIG. Thereby, the gas barrier layer 2 can prevent the oxygen at the time of heat-forming the conductive layer 3 ⁇ / b> A from coming into contact with the resin film 1. As a result, a decrease in color of the resin film 1 due to heating in the presence of oxygen (for example, a decrease in color due to yellowing) is suppressed.
  • the film 11 with a conductive layer may further include an insulating layer on the conductive layer 3A.
  • FIG. 2 is a plan view showing a configuration example of a touch panel including a film with a conductive layer according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a configuration example of a touch panel including a film with a conductive layer according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the touch panel 10 taken along a broken line I-I ′ in FIG.
  • This touch panel 10 is a touch panel including the film 11 with a conductive layer according to the present embodiment.
  • the touch panel 10 includes a resin film 1, a gas barrier layer 2, a first wiring layer 3, a first insulating layer 4, a second wiring layer 5, and a second wiring layer. And an insulating layer 6.
  • the resin film 1 and the gas barrier layer 2 are the same as the film 11 with a conductive layer shown in FIG.
  • the first wiring layer 3 is an application example of the conductive layer 3A of the film 11 with the conductive layer. That is, the touch panel 10 includes the resin film 1, the gas barrier layer 2, and the first wiring layer 3 as the film 11 with a conductive layer.
  • the first wiring layer 3 is formed on the gas barrier layer 2 on the resin film 1 so as to form a desired wiring pattern.
  • the first insulating layer 4 is formed on the first wiring layer 3 and the gas barrier layer 2 so as to cover the first wiring layer 3 other than the electrode portion.
  • the second wiring layer 5 is a wiring layer different from the first wiring layer 3 and is formed on the first insulating layer 4 and the gas barrier layer 2 so as to form a desired wiring pattern.
  • the first wiring layer 3 and the second wiring layer 5 are insulated by the first insulating layer 4.
  • the second insulating layer 6 is formed on the second wiring layer 5 and the first insulating layer 4 so as to cover the second wiring layer 5 other than the electrode portion.
  • the resin film (for example, the resin film 1 shown in FIG. 1) used for the film with a conductive layer according to the embodiment of the present invention has an imide group concentration defined by the above formula (I) of 20.0% or more and 36.36. Contains polyimide that is 5% or less.
  • the imide group concentration of the resulting polyimide decreases as the molecular weight of each monomer (diamine and tetracarboxylic dianhydride) increases.
  • the imide group concentration is lower than 20.0%, the interaction between polyimide molecules due to the imide group becomes weak, and the glass transition temperature (Tg) of the polyimide decreases.
  • Tg glass transition temperature
  • the imide group concentration is a value obtained by calculation by the following method.
  • the molecular weight of the imide group part is the molecular weight of the (—CO—N—CO—) part contained in the polyimide repeating unit.
  • the molecular weight per imide group is 70.03.
  • the molecular weight of the repeating unit of a polyimide is the molecular weight of the part originating in the tetracarboxylic dianhydride and diamine which comprise one repeating unit.
  • the molecular weight of the imide group portion is the molecular weight of a portion surrounded by a dotted line.
  • the glass transition temperature (Tg) of the resin film containing polyimide is preferably 250 ° C. or higher. This is because deformation of the resin film is suppressed in the heating step when forming the gas barrier layer or conductive layer on the resin film, and as a result, the dimensional accuracy during processing of the conductive layer is further improved. .
  • the glass transition temperature of the resin film containing polyimide is more preferably 300 ° C. or higher, and particularly preferably 350 ° C. or higher.
  • Examples of a method for measuring the glass transition temperature of the resin film include a measurement method using a thermomechanical analyzer (TMA method).
  • TMA method thermomechanical analyzer
  • a resin film piece having a film thickness of 10 ⁇ m to 20 ⁇ m, a width of 15 mm, a length of 30 mm is wound in the length direction, and a cylinder having a diameter of 3 mm and a height of 15 mm
  • the inflection point of the TMA curve when this sample is heated in a compressed mode in a nitrogen stream at a temperature rising rate of 5 ° C./min is defined as the glass transition temperature of the resin film.
  • the polyimide used for the resin film of the film with a conductive layer contains the structural unit represented by following General formula (1).
  • R 1 is a monovalent or condensed polycyclic alicyclic structure, a tetravalent organic group having 4 to 40 carbon atoms, or an organic having a monocyclic alicyclic structure.
  • R 2 represents a divalent organic group having 4 to 40 carbon atoms.
  • the thermal expansion coefficient (CTE) of the polyimide is lowered. Therefore, when polyimide is formed on a support substrate for a process such as formation of a conductive layer, the warp of the polyimide is reduced, and the dimensional accuracy can be improved in processing of the conductive layer.
  • R 1 in the general formula (1) represents the structure of the acid component.
  • the acid dianhydride having an alicyclic structure is not particularly limited, but 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,4,5-cyclopentanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3 4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid Dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,2,3,4-cycl
  • R 1 in the general formula (1) is preferably at least one selected from six structures represented by the following structural formulas (11) to (16).
  • R 1 is a structure represented by the following structural formulas (17) to (19) from the viewpoint of being commercially available and easy to obtain and the reactivity with the diamine compound. It is more preferable.
  • acid dianhydrides that give these structures to R 1 include 1S, 2S, 4R, 5R-cyclohexanetetracarboxylic dianhydride (for example, product name “PMDA” manufactured by Wako Pure Chemical Industries, Ltd.).
  • R 2 represents the structure of the diamine component.
  • Examples of the diamine compound used in R 2 is not particularly limited, aromatic diamine compounds, alicyclic diamine compounds, or aliphatic diamine compounds.
  • the aromatic diamine compound is not particularly limited, but 1,4-bis (4-aminophenoxy) benzene, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis ⁇ 4- (4-aminophenoxyphenyl) ⁇ sulfone, bis ⁇ 4- (3-aminophenoxyphenyl) ⁇ sulfone, bis (4-aminophenoxy) biphenyl, bis ⁇ 4- (4-aminophenoxy) phenyl ⁇ ether, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane 3-aminophenyl-4-aminobenzenesulfonate, 4-aminophenyl-4-a Roh benzenesul
  • the alicyclic diamine compound is not particularly limited, but is cyclobutanediamine, isophoronediamine, bicyclo [2.2.1] heptanebismethylamine, tricyclo [3.3.1.13,7] decane-1,3- Diamine, 1,2-cyclohexyldiamine, 1,3-cyclohexyldiamine, 1,4-cyclohexyldiamine, 4,4′-diaminodicyclohexylmethane, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 3, 3′-diethyl-4,4′-diaminodicyclohexylmethane, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodicyclohexylmethane, 3,3 ′, 5,5′-tetraethyl-4, 4'-diaminodicyclohexylmethane, 3,5-
  • the aliphatic diamine compound is not particularly limited, but ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1 Alkylenediamines such as 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, etc.
  • Ethylene glycol diamines and 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, ⁇ , ⁇ -bis (3-aminopropyl) poly Examples include siloxane diamines such as dimethylsiloxane.
  • aromatic diamine compounds alicyclic diamine compounds, and aliphatic diamine compounds can be used alone or in combination of two or more.
  • the polyimide used for the resin film of the film with a conductive layer preferably contains a structural unit represented by the following general formula (2).
  • R 3 represents a tetravalent organic group having 4 to 40 carbon atoms.
  • R 4 has a monocyclic or condensed polycyclic alicyclic structure, a divalent organic group having 4 to 40 carbon atoms, or an organic group having a monocyclic alicyclic structure directly or has a crosslinked structure.
  • X 1 is a divalent hydrocarbon group having 1 to 3 carbon atoms which may be substituted with a halogen atom.
  • Ar 1 and Ar 2 each independently represents a divalent aromatic group having 4 to 40 carbon atoms.
  • the thermal expansion coefficient of the polyimide is lowered. Therefore, when polyimide is formed on a support substrate for a process such as formation of a conductive layer, the warp of the polyimide is reduced, and the dimensional accuracy can be improved in processing of the conductive layer.
  • R 3 in the general formula (2) represents the structure of the acid component.
  • the acid dianhydride used for R 3 but are not limited to, in addition to the acid dianhydride having an alicyclic structure described above, the aromatic dianhydride and aliphatic acid dianhydride.
  • the aromatic dianhydride is not particularly limited, but pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyl Tetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-terphenyltetracarboxylic dianhydride, 3,3 ′, 4 , 4′-oxyphthalic dianhydride, 2,3,3 ′, 4′-oxyphthalic dianhydride, 2,3,2 ′, 3′-oxyphthalic dianhydride, diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic dianhydride, benzophenone-3,3 ′, 4,4′-tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride
  • the aliphatic acid dianhydride is not particularly limited, but 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, and derivatives thereof Etc.
  • R 4 represents the structure of the diamine component.
  • the diamine compound used for R 4 that is, the diamine compound having an alicyclic structure is not particularly limited, but is cyclobutanediamine, isophoronediamine, bicyclo [2.2.1] heptanebismethylamine, tricyclo [3.3.
  • the diamine that gives the structure represented by the general formula (3) is not particularly limited, but 2,2-bis (3-aminophenyl) propane, 2,2-bis [4- (4-aminophenoxy) phenyl] Propane, 2,2-bis (3-aminophenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis [3- (3-aminobenzamide) -4-hydroxyphenyl] hexafluoropropane and the like.
  • the polyimide used for the resin film of the film with a conductive layer has a structural unit represented by the following general formula (4) as a main component and the structural unit represented by the following general formula (5). It is preferable to contain 5 mol% or more and 30 mol% or less of the total structural unit of polyimide.
  • R 1 is a monovalent or condensed polycyclic alicyclic structure, a tetravalent organic group having 4 to 40 carbon atoms, or a monocyclic alicyclic ring.
  • R 13 represents a divalent organic group represented by the following general formula (6).
  • R 14 is a structure represented by the following structural formula (7) or the following structural formula (8).
  • R 15 to R 22 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 3 carbon atoms that may be substituted with a halogen atom.
  • X 2 is selected from a direct bond, an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms which may be substituted with a halogen atom, an ester bond, an amide bond, and a sulfide bond. It is a structure.
  • the oxazole ring in the structural formula (8) is generated by dehydration ring closure from the structure represented by the structural formula (7).
  • “having the structural unit represented by the general formula (4) as a main component” means that the structural unit represented by the general formula (4) is 50 mol% in the total amount of all structural units of polyimide. It means having the above.
  • polyimide has the structural unit represented by the general formula (4) as a main component, the thermal expansion coefficient of polyimide is lowered. Therefore, when polyimide is formed on a support substrate for a process such as formation of a conductive layer, the warp of the polyimide is reduced, and the dimensional accuracy can be improved in processing of the conductive layer.
  • the total amount of all structural units of polyimide is specifically the total amount (mol basis) of the structural units represented by the general formula (4) and the general formula (5).
  • the total amount is a structural unit represented by the general formula (4) and the general formula (5).
  • the content of the structural unit represented by the general formula (4) is more preferably 70 mol% or more of the total structural unit of polyimide.
  • the polyimide contains the structural unit represented by the general formula (5) in an amount of 5 mol% or more and 30 mol% or less of the entire structural unit, thereby keeping the thermal expansion coefficient of the polyimide low while improving the transparency of the resin film. Can do. Thereby, the color of a film with a conductive layer (and a touch panel including this) can be improved while maintaining the pattern processability of the conductive layer.
  • the content of the structural unit (repeating structural unit) represented by the general formula (5) in the polyimide is more preferably 10 mol% or more and 25 mol% or less of the total structural unit of the polyimide.
  • R 1 in the general formula (4) and the general formula (5) is the same as R 1 in the general formula (1) represents a structure of an acid component having an alicyclic structure. Preferred specific examples of R 1 are as described above.
  • R 13 in the general formula (4) and R 14 in the general formula (5) represent the structure of the diamine component.
  • the diamine that gives the structure represented by the general formula (6) to R 13 is not particularly limited, but 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4, 4'-diaminodiphenylmethane, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2-bis (3-amino-4 -Methylphenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, benzidine, 2,2 '-Bis (
  • R 13 is selected from, for example, four structures represented by the following structural formulas (20) to (23) from the viewpoint of availability, transparency, and reduction of the thermal expansion coefficient of polyimide. It is preferable that there are more types.
  • the polyimide used for the resin film of the film with a conductive layer may contain other structural units as long as the effects of the present invention are not hindered.
  • other structural units include polyimide, which is a polycyclic amide dehydration ring, polybenzoxazole, a polyhydroxyamide dehydration ring closure, and the like.
  • the acid dianhydride used for the other structural unit include the above-mentioned aromatic acid dianhydride or aliphatic acid dianhydride.
  • the polyimide used for the resin film of the film with a conductive layer is represented by the following general formula (9) in at least one of the acid dianhydride residue and the diamine residue constituting the polyimide. It is preferable to contain a repeating structure.
  • R 23 and R 24 each independently represent a monovalent organic group having 1 to 20 carbon atoms.
  • m is an integer of 3 to 200.
  • the polyimide is used as a support substrate for a process such as forming a conductive layer.
  • a process such as forming a conductive layer.
  • the polyimide including the structure represented by the general formula (9) has a low dielectric constant, the film with a conductive layer including the resin film including such a polyimide is used in a device such as a touch panel using the polyimide. Therefore, it is difficult to accumulate charges on the substrate, and ESD resistance is increased. Therefore, it is preferable that the polyimide used for the resin film of the film with a conductive layer includes a repeating structure represented by the general formula (9) as described above.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R 23 and R 24 in the general formula (9) include, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms and a group having 1 to 20 carbon atoms.
  • a monovalent aminoalkyl group, an alkoxy group, an epoxy group, and the like can be given.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, t- A butyl group, a pentyl group, a hexyl group, etc. are mentioned.
  • the cycloalkyl group having 3 to 20 carbon atoms is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples include a cyclopentyl group and a cyclohexyl group.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, a tolyl group, and a naphthyl group.
  • Examples of the monovalent alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy group, phenoxy group, propenyloxy group, and cyclohexyloxy group.
  • R 23 and R 24 are preferably a monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms or an aromatic group having 6 to 10 carbon atoms. This is because the resulting polyimide resin film has higher heat resistance and lower residual stress.
  • the monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms is particularly preferably a methyl group.
  • the aromatic group having 6 to 10 carbon atoms is particularly preferably a phenyl group.
  • M in the general formula (9) is preferably an integer of 10 to 200, more preferably an integer of 20 to 150, still more preferably an integer of 30 to 100, and particularly preferably an integer of 35 to 80. It is.
  • m 3 or more, the residual stress of the polyimide resin film tends to be reduced.
  • m 200 or less, the cloudiness of the varnish which consists of a polyimide precursor and a solvent which is a composition for obtaining a polyimide can be suppressed.
  • Specific examples of the acid dianhydride having a repeating structure represented by the general formula (9) are not particularly limited, but X22-168AS (manufactured by Shin-Etsu Chemical Co., Ltd., number average molecular weight 1,000), X22-168A (Shin-Etsu) Chemical Company, number average molecular weight 2,000), X22-168B (manufactured by Shin-Etsu Chemical Co., Ltd., number average molecular weight 3,200), X22-168-P5-8 (manufactured by Shin-Etsu Chemical Co., Ltd., number average molecular weight 4,200), DMS-Z21 (manufactured by Gerest, number average molecular weight 600 to 800) and the like can be mentioned.
  • diamine having a repeating structure represented by the general formula (9) are not particularly limited, but both terminal amino-modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .; X22-1660B-3 (number average molecular weight 4,400 ), X22-9409 (number average molecular weight 1,300)), both-end amino-modified dimethyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .; X22-161A (number average molecular weight 1,600), X22-161B (number average molecular weight 3,000)) KF8012 (number average molecular weight 4,400), manufactured by Toray Dow Corning; BY16-835U (number average molecular weight 900), manufactured by Chisso; Silaplane FM3311 (number average molecular weight 1000)).
  • the polyimide used for the resin film of the film with a conductive layer preferably contains a triamine skeleton.
  • the toughness of the polyimide can be improved and the yield of the subsequent process can be improved.
  • triamine compound examples include those having no aliphatic group, 2,4,4′-triaminodiphenyl ether (TAPE), 1,3,5-tris (4-aminophenoxy) benzene (TAPOB), Examples thereof include tris (4-aminophenyl) amine, 1,3,5-tris (4-aminophenyl) benzene, 3,4,4′-triaminodiphenyl ether and the like.
  • triamine compounds include tris (2-aminoethyl) amine (TAEA), tris (3-aminopropyl) amine, and the like having aliphatic groups. Of these, 2,4,4'-triaminodiphenyl ether and 1,3,5-tris (4-aminophenoxy) benzene are preferably used from the viewpoint of improving heat resistance.
  • the thickness of the resin film used for the film with a conductive layer of the present invention is preferably 1 ⁇ m or more from the viewpoint of improving the toughness of the film with a conductive layer (and thus the toughness of the touch panel), and is preferably 2 ⁇ m or more. More preferably, it is 5 ⁇ m or more.
  • the thickness of the resin film is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the transmittance at a wavelength of 450 nm of the resin film used for the film with a conductive layer of the present invention is preferably 85% or more from the viewpoint of improving the image quality of the touch panel. Further, the transmittance at a wavelength of 450 nm of the resin film after heat treatment at 150 to 350 ° C. is preferably 80% or more.
  • the resin film used for the film with a conductive layer of the present invention is prepared by adding an organic solvent, a surfactant, a leveling agent, an adhesion improver, a viscosity modifier, an antioxidant, an inorganic pigment to the polyimide or a precursor thereof as necessary. It can be formed using a resin composition formed by blending organic pigments, dyes and the like.
  • One of the methods for obtaining a resin film used in the film with a conductive layer of the present invention is to imide ring closure of polyamic acid which is a precursor corresponding to the polyimide to be obtained. It does not specifically limit as a method of imidation, Thermal imidation and chemical imidation are mentioned. Among these, thermal imidization is preferable from the viewpoint of heat resistance of the polyimide resin film and transparency in the visible light region.
  • Polyimide precursors such as polyamic acid, polyamic acid ester, and polyamic acid silyl ester can be synthesized by a polymerization reaction between a diamine compound and an acid dianhydride or a derivative thereof.
  • the acid dianhydride derivative include tetracarboxylic acid of acid dianhydride, monoester, diester, triester or tetraester of the tetracarboxylic acid, and acid chloride.
  • the reaction method of the polymerization reaction is not particularly limited as long as the target polyimide precursor can be produced, and a known reaction method can be used.
  • a predetermined amount of all diamine components and a solvent are charged into a reactor, and after dissolving the diamine, a predetermined amount of acid dianhydride component is charged at room temperature to 80 ° C. Examples thereof include a method of stirring for 0.5 to 30 hours.
  • the polyimide and polyimide precursor used for the resin film of the film with a conductive layer may be sealed at both ends with a terminal sealing agent in order to adjust the molecular weight to a preferred range.
  • the terminal blocking agent that reacts with the acid dianhydride include monoamines and monohydric alcohols.
  • the end-capping agent that reacts with the diamine compound include acid anhydrides, monocarboxylic acids, monoacid chloride compounds, monoactive ester compounds, dicarbonates, and vinyl ethers.
  • various organic groups can be introduce
  • a well-known compound can be used for terminal blocker.
  • the introduction ratio of the terminal blocking agent on the acid anhydride group side is preferably in the range of 0.1 to 60 mol%, preferably in the range of 0.5 to 50 mol%, relative to the acid dianhydride component. It is more preferable that The introduction ratio of the terminal blocking agent on the amino group side is preferably in the range of 0.1 to 100 mol%, and preferably in the range of 0.5 to 70 mol% with respect to the diamine component. Is more preferable. You may introduce
  • the end sealant introduced into the polyimide precursor or polyimide can be easily detected by the following method.
  • a polymer into which a terminal blocking agent has been introduced is dissolved in an acidic solution and decomposed into an amine component and an acid anhydride component that are constituent units of the polymer.
  • GC gas chromatography
  • NMR nuclear magnetic resonance
  • the end-capping agent can be easily detected.
  • the polymer into which the end-capping agent is introduced is directly subjected to measurement of pyrolysis gas chromatography (PGC), infrared spectrum, 1 H NMR spectrum, 13 C NMR spectrum, etc. It can be easily detected.
  • PPC pyrolysis gas chromatography
  • the composition for obtaining a resin film containing polyimide may contain an appropriate component in addition to the polyimide or the polyimide precursor.
  • the component that may be contained in the polyimide resin composition is not particularly limited, and examples thereof include an ultraviolet absorber, a thermal crosslinking agent, an inorganic filler, a surfactant, an internal release agent, and a colorant. Each of these can be a known compound.
  • a tetravalent organic group having 4 to 40 carbon atoms means a tetravalent organic group having 4 to 40 carbon atoms.
  • the film with a conductive layer according to the embodiment of the present invention has a gas barrier layer as exemplified by the gas barrier layer 2 illustrated in FIG.
  • the gas barrier layer in the present invention refers to a layer that is formed on a resin film serving as a substrate and has a function of preventing direct contact between the resin film and environmental gases.
  • a high temperature of 200 ° C. or higher is applied to the resin film in the presence of oxygen. Therefore, if there is no gas barrier layer, yellowing due to thermal oxidation occurs in the resin film, resulting in deterioration of the color of the film with a conductive layer.
  • By forming a gas barrier layer between the resin film and the conductive layer it is possible to prevent the resin film and oxygen from contacting each other during heating in an oxygen atmosphere. Thus, a film with a conductive layer excellent in color without yellowing can be obtained.
  • the material constituting the gas barrier layer may be an organic material or an inorganic material as long as it prevents the permeation of oxygen when forming the conductive layer, but an inorganic material is preferable from the viewpoint of oxygen barrier properties.
  • the inorganic material include metal oxide, metal nitride, metal oxynitride, and metal carbonitride.
  • the metal element contained in these include aluminum (Al), silicon (Si), titanium (Ti), tin (Sn), zinc (Zn), zirconium (Zr), indium (In), and niobium (Nb). , Molybdenum (Mo), tantalum (Ta), calcium (Ca), and the like.
  • the gas barrier layer preferably contains at least one of silicon oxide, silicon nitride, silicon oxynitride, and silicon carbonitride. This is because by using these materials for forming the gas barrier layer, a uniform and dense gas barrier film can be easily obtained, and the oxygen barrier property of the gas barrier layer is further improved.
  • the gas barrier layer preferably contains a component represented by SiOxNy.
  • x and y are values satisfying 0 ⁇ x ⁇ 1, 0.55 ⁇ y ⁇ 1, and 0 ⁇ x / y ⁇ 1.
  • the gas barrier layer can be produced by a vapor deposition method in which a film is formed by depositing a material from the vapor phase, such as a sputtering method, a vacuum deposition method, an ion plating method, or a plasma CVD method. Among them, it is preferable to use a sputtering method or a plasma CVD method because a more uniform film having a high oxygen barrier property can be obtained.
  • the number of gas barrier layers is not limited, and may be only one layer or a multilayer of two or more layers.
  • Examples of when the gas barrier layer is a multilayer film include a gas barrier layer in which the first layer is made of SiN and the second layer is made of SiO, a gas barrier layer in which the first layer is made of SiON and the second layer is made of SiO, etc. Is mentioned.
  • the gas barrier layer is an inorganic film laminated in two or more layers, and the layer in contact with the conductive layer among the inorganic films is SiOz (z is a value satisfying 0.5 ⁇ z ⁇ 2. It is preferable to form with the component represented by this. This is because the chemical resistance of the gas barrier layer at the time of processing the conductive layer (particularly during development using photolithography) is improved, and the pattern processability and dimensional accuracy of the conductive layer is improved, and the residue is suppressed. This is because an effect can be obtained.
  • the total thickness of the gas barrier layer is preferably 10 nm or more, and more preferably 50 nm or more, from the viewpoint of improving the oxygen barrier property.
  • the total thickness of the gas barrier layer is preferably 1 ⁇ m or less, and more preferably 200 nm or less.
  • the film with a conductive layer according to the embodiment of the present invention has a conductive layer containing conductive particles as exemplified by the conductive layer 3A illustrated in FIG.
  • the conductive layer preferably has a network structure with a line width of 0.1 to 9 ⁇ m.
  • the line width of the network structure of the conductive layer is more preferably 0.5 ⁇ m or more, and further preferably 1 ⁇ m or more.
  • the line width of the network structure of the conductive layer is more preferably 7 ⁇ m or less, and further preferably 6 ⁇ m or less.
  • the film thickness of the conductive layer is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and further preferably 0.3 ⁇ m or more.
  • the thickness of the conductive layer is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 1 ⁇ m or less.
  • Examples of the conductive particles contained in the conductive layer include gold (Au), silver (Ag), copper (Cu), nickel (Ni), tin (Sn), bismuth (Bi), lead (Pb), zinc ( Examples thereof include metal particles such as Zn), palladium (Pd), platinum (Pt), aluminum (Al), tungsten (W), and molybdenum (Mo), and metal particles having carbon.
  • the metal particles having carbon are, for example, a composite of carbon black and metal. Two or more of these may be used as the conductive particles. Among these, gold, silver, copper, nickel, tin, bismuth, lead, zinc, palladium, platinum or aluminum metal particles and carbon-containing metal particles are preferable, and silver particles are more preferable.
  • the primary particle diameter of the conductive particles is preferably 10 to 200 nm and more preferably 10 to 60 nm in order to form a fine conductive pattern having desired conductivity.
  • the primary particle size of the conductive particles is determined by observing the cross section of the conductive layer with a scanning electron microscope, selecting 100 particles at random, and measuring the primary particle size of each particle. It is calculated by taking the arithmetic average value of In addition, let the particle diameter of the primary particle of each particle
  • the content of the conductive particles in the conductive layer is preferably 20% by mass or more, more preferably 50% by mass or more, and 65% by mass or more. Further preferred. On the other hand, the content of the conductive particles is preferably 95% by mass or less, and more preferably 90% by mass or less from the viewpoint of improving pattern processability.
  • the conductive layer preferably contains 0.1 to 80% by mass of an organic compound.
  • the conductive layer contains 0.1% by mass or more of the organic compound, the conductive layer can be given flexibility and the bending resistance of the conductive layer can be further improved.
  • the content of the organic compound in the conductive layer is preferably 1% by mass or more, and more preferably 5% by mass or more.
  • the conductivity can be improved.
  • the content of the organic compound in the conductive layer is more preferably 50% by mass or less, and further preferably 35% by mass or less.
  • an alkali-soluble resin As the organic compound contained in the conductive layer, an alkali-soluble resin is preferable.
  • a (meth) acrylic copolymer having a carboxyl group is preferable.
  • the (meth) acrylic copolymer refers to a copolymer of a (meth) acrylic monomer and another monomer.
  • Examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) ) Acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, allyl (meth) acrylate, benzyl (meth) acrylate, butoxyethyl (meth) acrylate, butoxytriethylene glycol (meth) ) Acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, glycerol (meth
  • Examples of the other monomer include compounds having a carbon-carbon double bond.
  • aromatic vinyl compounds such as styrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, ⁇ -methylstyrene,
  • Amide unsaturated compounds such as (meth) acrylamide, N-methylol (meth) acrylamide, N-vinylpyrrolidone, (meth) acrylonitrile, allyl alcohol, vinyl acetate, cyclohexyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n- Examples include butyl vinyl ether, i-butyl vinyl ether, 2-hydroxyethyl vinyl ether, and 4-hydroxybutyl vinyl ether.
  • alkali-soluble resin for example, (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, acid anhydrides thereof, etc. ) A method of copolymerizing with an acrylic monomer.
  • the (meth) acrylic copolymer preferably has a carbon-carbon double bond in the side chain or molecular end from the viewpoint of increasing the speed of the curing reaction.
  • the functional group having a carbon-carbon double bond include a vinyl group, an allyl group, and a (meth) acryl group.
  • the carboxylic acid equivalent of the alkali-soluble resin is preferably 400 to 1,000 g / mol.
  • the carboxylic acid equivalent of the acrylic soluble resin can be calculated by measuring the acid value.
  • the double bond equivalent of the alkali-soluble resin is preferably 150 to 10,000 g / mol because both hardness and crack resistance can be achieved at a high level.
  • the double bond equivalent of the acrylic soluble resin can be calculated by measuring the iodine value.
  • the weight average molecular weight (Mw) of the alkali-soluble resin is preferably 1,000 to 100,000. By setting the weight average molecular weight within the above range, good coating characteristics of the alkali-soluble resin can be obtained, and the solubility of the alkali-soluble resin in the developer during pattern formation of the conductive layer can be improved.
  • the weight average molecular weight of the alkali-soluble resin refers to a polystyrene equivalent value measured by gel permeation chromatography (GPC).
  • the conductive layer may contain at least one of an organic tin compound and a metal chelate compound.
  • the conductive layer contains at least one of an organotin compound and a metal chelate compound, adhesion between the conductive layer and the gas barrier layer can be further improved.
  • a metal chelate compound is more preferable because an adhesion improving effect can be obtained without applying an environmental load as compared with an organotin compound.
  • Known compounds can be used as the organotin compound and the metal chelate compound.
  • the total content of the organotin compound and the metal chelate compound in the conductive layer is preferably 0.01% by mass or more and more preferably 0.05% by mass or more from the viewpoint of further improving the substrate adhesion. More preferably, it is more preferably 0.1% by mass or more.
  • the total content of the organotin compound and the metal chelate compound is preferably 10% by mass or less from the viewpoint of improving the conductivity of the conductive layer and forming a finer pattern. More preferably, it is more preferably 3% by mass or less.
  • At least one of a dispersant, a photopolymerization initiator, a monomer, a photoacid generator, a thermal acid generator, a solvent, a sensitizer, a pigment and a dye that absorb visible light, and adhesion improvement It is preferable to contain an agent, a surfactant, a polymerization inhibitor and the like.
  • the conductive layer in the present invention can be formed using a conductive composition.
  • the components contained in the conductive composition include conductive particles, alkali-soluble resins, organotin compounds, metal chelate compounds, dispersants, photopolymerization initiators, monomers, photoacid generators, thermal acid generators, Examples thereof include at least one of a solvent, a sensitizer, a pigment and a dye that absorb visible light, an adhesion improver, a surfactant, or a polymerization inhibitor.
  • the conductive particles contained in the conductive composition preferably have a coating layer on at least a part of the particle surface.
  • the surface activity of the conductive particles can be reduced, and at least one of the reaction between the conductive particles and the reaction between the conductive particles and the organic component can be suppressed, and the dispersibility of the conductive particles can be improved.
  • the coating layer on the surface of the conductive particles can be easily removed by heating at a high temperature of about 150 to 350 ° C. in the presence of oxygen. As a result, the conductive particles in the conductive composition can exhibit sufficient conductivity of the conductive layer.
  • the coating layer on the surface of the conductive particles preferably contains at least one of carbon and a carbon compound.
  • this coating layer contains at least one of carbon and a carbon compound, the dispersibility of the conductive particles in the conductive composition can be further improved.
  • a reactive gas having carbon such as methane gas is brought into contact with the conductive particles by a thermal plasma method. And the like (the method described in JP 2007-138287 A) and the like.
  • the film with a conductive layer preferably has an insulating layer formed from an alkali-soluble resin on the conductive layer.
  • the alkali-soluble in the present invention means that 0.1 g or more dissolves at 25 ° C. in a 0.045 mass% potassium hydroxide aqueous solution (100 g).
  • An insulating layer formed of an alkali-soluble resin is preferable because it can be patterned by photolithography, thereby forming an opening for conduction of the conductive layer.
  • the film with a conductive layer according to the embodiment of the present invention preferably has an insulating layer formed on the conductive layer from an alkali-soluble resin containing the above-mentioned (meth) acrylic copolymer. This is because the flexibility of the insulating layer is increased by the (meth) acrylic copolymer in the alkali-soluble resin.
  • the film with a conductive layer according to the embodiment of the present invention is formed from an alkali-soluble resin containing a cardo resin having two or more structures represented by the following structural formula (10) on the conductive layer. It is preferable to have an insulating layer. This is because the cardo resin increases the hydrophobicity of the insulating layer, thereby improving the insulating property of the insulating layer.
  • the cardo resin can be obtained, for example, by further reacting a reaction product of an epoxy compound and an organic acid containing a radical polymerizable group with an acid dianhydride.
  • the catalyst used for the reaction between an epoxy compound and an organic acid containing a radical polymerizable group and the reaction between the epoxy compound and acid dianhydride include, for example, an ammonium catalyst, an amine catalyst, a phosphorus catalyst, and a chromium catalyst. Etc.
  • Examples of the ammonium-based catalyst include tetrabutylammonium acetate.
  • the amine catalyst include 2,4,6-tris (dimethylaminomethyl) phenol or dimethylbenzylamine.
  • the phosphorus catalyst include triphenylphosphine.
  • the chromium-based catalyst include acetylacetonate chromium and chromium chloride.
  • the following compounds are mentioned, for example.
  • organic acid containing a radical polymerizable group examples include (meth) acrylic acid, mono (2- (meth) acryloyloxyethyl) succinate, mono (2- (meth) acryloyloxyethyl) phthalate, tetrahydrophthal Examples include acid mono (2- (meth) acryloyloxyethyl) and p-hydroxystyrene.
  • acid dianhydrides examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, from the viewpoint of improving the chemical resistance of the cured film.
  • 4-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride and the like are preferable.
  • cardo resin having two or more structures represented by the structural formula (10) commercially available products can be preferably used.
  • Examples of commercially available cardo resins include “WR-301 (trade name)” (manufactured by ADEKA), “V-259ME (trade name)” (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), “Ogsol CR-TR1 ( “Product Name)”, “Ogsol CR-TR2 (Product Name)”, “Ogsol CR-TR3 (Product Name)”, “Ogsol CR-TR4 (Product Name)”, “Ogsol CR-TR5 (Product Name)”, “ OGSOL CR-TR6 (trade name) "(manufactured by Osaka Gas Chemical Co., Ltd.).
  • the weight average molecular weights of the (meth) acrylic copolymer and the cardo resin are each preferably 2,000 or more from the viewpoint of improving coating properties. Moreover, these weight average molecular weights are each preferably 200,000 or less from the viewpoint of improving the solubility of the insulating layer in the developer in the pattern formation of the insulating layer.
  • a weight average molecular weight says the polystyrene conversion value measured by GPC.
  • the weight average molecular weight (Mw (A1)) of the (meth) acrylic copolymer and the weight average molecular weight of the cardo resin is preferably 0.14 or more from the viewpoint of suppressing layer separation and forming a uniform cured film.
  • this ratio (Mw (A2) / Mw (A1)) is preferably 1.5 or less, and preferably 1.0 or less from the viewpoint of suppressing layer separation and forming a uniform cured film. It is more preferable.
  • the insulating layer in the present invention can be formed using an insulating composition containing an alkali-soluble resin.
  • the content of the alkali-soluble resin contained in this insulating composition can be arbitrarily selected depending on the desired film thickness and application, but it is 10 parts by mass or more and 70 parts by mass with respect to 100 parts by mass of the solid content. Generally, it is as follows.
  • the above-mentioned insulating composition may contain a hindered amine light stabilizer.
  • said insulating composition contains a hindered amine light stabilizer, coloring of an insulating layer can be reduced more and the weather resistance of an insulating layer can be improved.
  • the above-mentioned insulating composition further includes a polyfunctional monomer, a curing agent, an ultraviolet absorber, a polymerization inhibitor, an adhesion improver, a solvent, a surfactant, a dissolution inhibitor, a stabilizer, an antifoaming agent, etc. It is also possible to contain these additives.
  • the touch panel according to the embodiment of the present invention includes the film with a conductive layer of the present invention as exemplified by the touch panel 10 illustrated in FIGS.
  • the conductive layer of the film with a conductive layer is a wiring layer of the touch panel (for example, the first wiring layer 3 shown in FIGS. 2 and 3).
  • the touch panel of the present invention has an insulating layer (first insulating layer) on the wiring layer (first wiring layer) on the gas barrier layer.
  • the touch panel of the present invention may further include a second insulating layer on the side opposite to the surface in contact with the first insulating layer (that is, the upper surface side) of the second wiring layer. Since the touch panel of the present invention has the second insulating layer as described above, moisture in the atmosphere can be prevented from reaching the second wiring layer. As a result, the reliability of the touch panel can be further improved.
  • the first insulating layer and the second insulating layer may be made of the same material or different materials.
  • the film thicknesses of the first insulating layer and the second insulating layer are preferably 0.1 ⁇ m or more, and more preferably 0.5 ⁇ m or more, from the viewpoint of further improving the insulating properties.
  • the film thicknesses of the first insulating layer and the second insulating layer are preferably 10 ⁇ m or less, and more preferably 3 ⁇ m or less, from the viewpoint of further improving their transparency.
  • the thickness of the film with a conductive layer applied to such a touch panel is preferably 1 to 40 ⁇ m.
  • the thickness of the film with a conductive layer applied to such a touch panel is preferably 1 to 40 ⁇ m.
  • the thickness of the touch panel is more preferably 3 ⁇ m or more, and further preferably 5 ⁇ m or more.
  • the thickness of the touch panel is more preferably 30 ⁇ m or less, and further preferably 25 ⁇ m or less.
  • the film with a conductive layer preferably has a b * value of ⁇ 5 to 5 according to the L * a * b * color system defined by the International Lighting Commission 1976.
  • b * is more preferably ⁇ 4 to 4, and further preferably ⁇ 3 to 3.
  • the manufacturing method of the touchscreen containing the film with a conductive layer which concerns on embodiment of this invention uses this manufacturing method of a film with a conductive layer.
  • This method for producing a film with a conductive layer includes at least a resin film forming step, a gas barrier layer forming step, a conductive layer forming step, and a peeling step.
  • the resin film forming step is a step of forming a resin film containing polyimide on the support substrate.
  • the gas barrier layer forming step is a step of forming a gas barrier layer on the resin film.
  • the conductive layer forming step is a step of forming a conductive layer on the gas barrier layer.
  • the peeling step is a step of peeling the resin film after the gas barrier layer and the conductive layer are formed from the support substrate.
  • the manufacturing method of a touch panel includes a wiring layer formation process as a conductive layer formation process in the manufacturing method of a film with a conductive layer.
  • the wiring layer forming step is a step of forming a wiring layer as a conductive layer on the gas barrier layer.
  • FIG. 4 is a process diagram showing an example of a method for manufacturing a touch panel including a film with a conductive layer according to an embodiment of the present invention.
  • a resin film forming step, a gas barrier layer forming step, a first wiring layer forming step, a first insulating layer forming step, a second wiring layer forming step, The second insulating layer forming step and the peeling step are sequentially performed in this order.
  • the resin film forming step as shown in the state S1 in FIG. 4, the resin film 1 containing polyimide is formed on the support substrate 7.
  • the gas barrier layer forming step the gas barrier layer 2 is formed on the resin film 1 as shown in the state S2 of FIG.
  • the first wiring layer 3 is formed on the gas barrier layer 2 as shown in a state S3 in FIG.
  • the first insulating layer 4 is formed on the gas barrier layer 2 so as to cover the first wiring layer 3 as shown in a state S4 in FIG. .
  • the second wiring layer formation step on the first insulating layer 4 (on the gas barrier layer 2 and the first insulating layer 4 in the present embodiment) as shown in the state S5 in FIG. A second wiring layer 5 is formed.
  • the second insulating layer forming step the second insulating layer 6 is formed on the gas barrier layer 2 so as to cover the second wiring layer 5 as shown in a state S6 in FIG. .
  • the peeling step as shown in a state S7 in FIG. 4, the laminated structure of the resin film 1 and the gas barrier layer 2 is cut at the cut end face 8.
  • the resin film 1 of this laminated structure is mechanically peeled from the support substrate 7. In this way, the touch panel 10 is obtained.
  • each of these steps will be described in detail.
  • the resin film forming step is a step of forming the resin film 1 containing polyimide on the support substrate 7 as described above.
  • the resin film forming step includes a coating step of applying the polyimide resin composition described above on the support substrate 7, a prebaking step of drying the polyimide resin composition on the support substrate 7, and a polyimide resin composition after drying. And a curing step for curing.
  • Examples of the support substrate 7 include a silicon wafer, a ceramic substrate, and an organic substrate.
  • Examples of the ceramic substrate include glass substrates such as soda glass, non-alkali glass, borosilicate glass, and quartz glass, alumina substrates, aluminum nitride substrates, and silicon carbide substrates.
  • Suitable examples of the organic substrate include an epoxy substrate, a polyetherimide resin substrate, a polyether ketone resin substrate, a polysulfone resin substrate, a polyimide film, and a polyester film.
  • Examples of the method for applying the polyimide resin composition onto the support substrate 7 include application using a spin coater, bar coater, blade coater, roll coater, die coater, calendar coater, meniscus coater, screen printing, spray coating, and dip. A coat etc. are mentioned.
  • Examples of the heating method in the pre-bake process and the curing process include a hot plate, a hot air dryer (oven), vacuum drying, vacuum drying, or heating by infrared irradiation.
  • the pre-baking temperature and time of the polyimide resin composition in the pre-baking step may be appropriately determined depending on the composition of the target polyimide resin composition and the film thickness of the coating film to be dried (polyimide resin composition coating film).
  • the curing atmosphere, temperature and time of the polyimide resin composition in the curing step may be appropriately determined depending on the composition of the target polyimide resin composition and the film thickness of the coating film to be cured (polyimide resin composition coating film). . From the viewpoint of suppressing yellowing of the film due to heating, in this curing step, the polyimide resin composition coating film on the support substrate 7 is heated to a temperature of 300 ° C. or more and 500 ° C. or less in an atmosphere having an oxygen concentration of 1000 ppm or less. It is preferable to form the resin film 1 by heating for 5 to 180 minutes.
  • the gas barrier layer forming step is a step of forming the gas barrier layer 2 on the resin film 1 as described above.
  • a method for forming the gas barrier layer 2 in this gas barrier layer forming step for example, a gas phase in which a film is formed by depositing a material from the gas phase, such as a sputtering method, a vacuum evaporation method, an ion plating method, or a plasma CVD method. Deposition methods are mentioned. Among them, it is preferable to use a sputtering method or a plasma CVD method because a more uniform film (gas barrier layer 2) having a high oxygen barrier property can be obtained.
  • the polyimide resin preferably used for the resin film 1 in the present invention has a high glass transition temperature, it is possible to increase the substrate temperature (the temperature of the support substrate 7) when the gas barrier layer 2 is formed. Since the crystallinity of the gas barrier layer 2 is improved as the substrate temperature is higher, the gas barrier performance is improved. On the other hand, if the film forming temperature of the gas barrier layer 2 is too high, the bending resistance of the gas barrier layer 2 is lowered. From these viewpoints, the lower limit of the film forming temperature of the gas barrier layer 2 is preferably 80 ° C. or higher, and more preferably 100 ° C. or higher. Moreover, as an upper limit of the film forming temperature of the gas barrier layer 2, 400 degrees C or less is preferable and 350 degrees C or less is more preferable.
  • the first wiring layer forming step is a step of forming the first wiring layer 3 on the gas barrier layer 2 as described above.
  • the first wiring layer forming step includes a coating step of coating the conductive composition on the gas barrier layer 2, a pre-baking step of drying the coating film of the conductive composition, and the dried coating film (pre-baking It is preferable to include a step of exposing and developing the film) to form a mesh pattern (exposure step and developing step) and a curing step of curing the pre-baked film formed with this pattern.
  • the first wiring layer forming step it is preferable to form the first wiring layer 3 using a conductive composition containing conductive particles having a coating layer on at least a part of the surface. This is because the conductive particles having the coating layer on at least a part of the surface suppress the scattering of the exposure light in the exposure process, whereby the wiring of the first wiring layer 3 can be patterned with high accuracy. Because.
  • the resin described above is used in the first wiring layer forming step.
  • the method illustrated in the polyimide resin composition of a film formation process is mentioned.
  • the light source used in the exposure process of the coating film of the conductive composition for example, j-line, i-line, h-line, and g-line of a mercury lamp are preferable.
  • a known developer can be used as the developer.
  • an alkaline aqueous solution in which an alkaline substance such as sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide (TMAH) is dissolved in water can be used.
  • the developer may be obtained by appropriately adding a water-soluble organic solvent such as ethanol, ⁇ -butyrolactone, dimethylformamide, N-methyl-2-pyrrolidone to the developer.
  • a surfactant such as a nonionic surfactant is further added to the alkaline developer and the developer. It is also preferable to add such that the content thereof is 0.01 to 1% by mass.
  • the curing atmosphere, temperature and time of the conductive composition coating film (patterned pre-baked film) in the curing process are the same as the composition of the conductive composition and the coating film to be cured (conductive composition coating film). What is necessary is just to determine suitably with a film thickness.
  • this curing step for example, it is preferable to heat the coating film of the conductive composition in the temperature range of 100 to 300 ° C. for 5 to 120 minutes.
  • the first wiring layer 3 contains conductive particles having a coating layer on the surface
  • the first wiring layer 3 is formed by heating the coating film of the conductive composition on the gas barrier layer 2 at a temperature of 100 ° C. or higher and 300 ° C. or lower in an atmosphere having an oxygen concentration of 15% or higher. It is preferable to do.
  • the polyimide resin composition is heated at a temperature of 300 ° C. or more and 500 ° C. or less in an atmosphere having an oxygen concentration of 1000 ppm or less. And forming a resin film 1 containing polyimide, and heating the conductive composition at a temperature of 100 ° C. to 300 ° C. in an atmosphere having an oxygen concentration of 15% or more to form a wiring layer (for example, a first layer) A wiring layer forming step of forming one wiring layer 3).
  • the first insulating layer forming step is a step of forming the first insulating layer 4 on the gas barrier layer 2 so as to cover the first wiring layer 3 as described above.
  • the first insulating layer forming step includes a coating step of applying the above-described insulating composition onto the first wiring layer 3, a pre-baking step of drying the coating film of the insulating composition, and the dry coating. It is preferable to include a step (exposure step and development step) of forming a pattern by exposing and developing the film (pre-baked film) and a curing step of curing the pre-baked film (insulating film) formed with this pattern.
  • Exposure step and development step of forming a pattern by exposing and developing the film (pre-baked film) and a curing step of curing the pre-baked film (insulating film) formed with this pattern.
  • Each step included in the first insulating layer forming step can be performed in the same manner as in the first wiring layer forming step described above.
  • the second wiring layer forming step is a step of forming the second wiring layer 5 on the first insulating layer 4 as described above.
  • the second wiring layer 5 can be formed by the same method as the first wiring layer 3 described above.
  • the second insulating layer forming step is a step of forming the second insulating layer 6 so as to cover the second wiring layer 5 as described above.
  • the second insulating layer 6 can be formed by the same method as the first insulating layer 4 described above.
  • the second insulating layer 6 may not be formed on the second wiring layer 5, but the second insulating layer 6 is formed as described above. Is preferred. This is because, by forming the second insulating layer 6, it is possible to suppress moisture in the atmosphere from reaching the second wiring layer 5, thereby improving the moisture and heat resistance of the touch panel 10. It is.
  • the peeling step is a step of peeling the resin film 1 from the support substrate 7.
  • a method of peeling the resin film 1 containing polyimide from the support substrate 7 in this peeling step for example, a method of peeling the resin film 1 by irradiating the resin film 1 from the back surface of the support substrate 7, a support substrate before taking out the touch panel 10 7 (hereinafter referred to as “support substrate with touch panel” as appropriate) is immersed in at least one of a solvent kept at 0 to 80 ° C. and purified water for 10 seconds to 10 hours, and the resin film 1 is removed from the upper surface.
  • Examples of the method include cutting and mechanical peeling from the cut end face 8. Among these, considering the influence on the reliability of the touch panel 10, a method of mechanical peeling from the cut end surface 8 is preferable.
  • the above-mentioned peeling process may be performed directly on the support substrate with a touch panel, or may be performed after a protective film or a transparent adhesive layer (OCA: Optical Clear Adhesive) is bonded to the support substrate with a touch panel. Furthermore, after bonding a support substrate with a touch panel to a member such as a display substrate via OCA, the resin film 1 is peeled off from the support substrate with a touch panel (that is, the touch panel 10 is taken out). It is preferable from the viewpoint of accuracy.
  • the touch panel according to the embodiment of the present invention has good visibility because the gas barrier layer prevents the resin film containing polyimide from being yellowed when the wiring layer is formed. Moreover, since the dimensional change of the resin film at the time of wiring layer formation is suppressed by a gas barrier layer, the touch panel excellent in dimensional accuracy can be provided.
  • the touch panel according to the embodiment of the present invention is suitably used as a display member such as a smartphone or a tablet terminal.
  • the method for producing a film with a conductive layer includes at least a resin film forming step, a gas barrier layer forming step, a conductive layer forming step, and a peeling step.
  • the resin film forming step, the gas barrier layer forming step, and the peeling step are the same as the touch panel manufacturing method described above, as exemplified by the states S1, S3, and S7 in FIG.
  • the conductive layer forming step is a step of forming a conductive layer on the gas barrier layer.
  • This conductive layer forming step is the same as the step in which the first wiring layer in the first wiring layer forming step in the touch panel manufacturing method described above is replaced with a conductive layer.
  • the conductive layer forming step is preferably a step of forming a conductive layer using a conductive composition containing conductive particles having a coating layer on at least a part of the surface.
  • the conductive layer forming step is a step of forming the conductive layer by heating the conductive composition on the gas barrier layer at a temperature of 100 ° C. or higher and 300 ° C. or lower in an atmosphere having an oxygen concentration of 15% or higher. Preferably there is.
  • the manufacturing method of the film with a conductive layer may include an insulating layer forming step of forming an insulating layer on the gas barrier layer so as to cover the conductive layer.
  • This insulating layer forming step can be performed, for example, by the same technique as the first insulating layer forming step in the touch panel manufacturing method described above.
  • BPDA 2,2-bis (4- (3,4-dicarboxyphenoxy) phenyl) propane dianhydride
  • BSAA propane dianhydride
  • ODPA 4,4′-diphenyl ether tetracarboxylic dianhydride
  • PMDA 1,2,4,5-benzenetetracarboxylic dianhydride
  • Diamine compound in the following Examples and Comparative Examples, as a diamine compound, trans-1,4-diaminocyclohexane (CHDA), 2,2′-bis (trifluoromethyl) benzidine (TFMB), 2,2-bis [3 -(3-aminobenzamido) -4-hydroxyphenyl] hexafluoropropane (HFHA), bis (3-aminophenyl) sulfone (3,3'-DDS), bis [4- (3-aminophenoxy) phenyl] sulfone (M-BAPS), a both-end amine-modified methylphenyl silicone oil (X22-1660B-3) manufactured by Shin-Etsu Chemical Co., Ltd. is used as necessary.
  • CHDA trans-1,4-diaminocyclohexane
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • HFHA 2,2-bis [3 -(3-aminobenzamid
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • PGMEA propylene glycol monomethyl ether
  • DPM dipropylene glycol monomethyl ether
  • Alkali-soluble resin In the following Examples and Comparative Examples, the alkali-soluble resin AR is used as necessary.
  • the alkali-soluble resin AR has a weight average molecular weight (Mw) of 29,000.
  • conductive particles A-1 and A-2 are used as necessary as conductive particles.
  • the conductive particles A-1 were silver particles (manufactured by Nisshin Engineering Co., Ltd.) having an average thickness of the surface carbon coating layer of 1 nm and a primary particle diameter of 40 nm.
  • the conductive particles A-2 were silver particles (manufactured by Mitsui Metal Mining Co., Ltd.) having a primary particle size of 0.7 ⁇ m.
  • this processed mixture was dispersed using a high-pressure wet medialess atomizer Nanomizer (manufactured by Nanomizer) to obtain a silver dispersion L1 having a silver content of 40% by mass. Further, a silver dispersion L2 was obtained in the same manner as above except that the conductive particles A-2 were used instead of the conductive particles A-1.
  • alkali-soluble resin AR (20 g) as an organic compound
  • ALCH 0.6 g
  • NCI-831 2.4 g
  • PE-3A PGMEA
  • DPM 52.6 g
  • ALCH is a metal chelate compound (ethyl acetoacetate aluminum diisopropylate) manufactured by Kawaken Fine Chemicals
  • NCI-831 is a photopolymerization initiator manufactured by ADEKA.
  • the silver dispersions L1 and L2 and the organic liquid L3 obtained as described above were mixed in the ratios shown in Table 1, respectively, thereby obtaining conductive compositions AE-1 and AE-2.
  • an insulating composition OA-1 was obtained.
  • an insulating composition OA-2 was obtained in the same manner as above except that the alkali-soluble resin AR was used in place of the cardo resin (V-259ME).
  • the prebaked film thus obtained was heated to 350 ° C. at a temperature increase rate of 3.5 ° C./min under a nitrogen stream (oxygen concentration of 20 ppm or less). The temperature was raised and held for 30 minutes. Thereafter, the pre-baked film was cooled to 50 ° C. at a rate of temperature decrease of 5 ° C./min, thereby producing a polyimide resin film T1.
  • the polyimide resin film T1 (attached to the substrate) is immersed in hydrofluoric acid for 1 to 4 minutes, the polyimide resin film T1 is peeled off from the substrate, and air-dried to obtain a polyimide resin film T1 (single unit).
  • the varnish coating film was pre-baked for 4 minutes at a temperature of 140 ° C. using a hot plate (D-SPIN) manufactured by Dainippon Screen.
  • D-SPIN hot plate
  • the inert oven (INH-21CD) manufactured by Koyo Thermo Systems Co., Ltd.
  • the prebaked film thus obtained was heated to 350 ° C. at a temperature increase rate of 3.5 ° C./min under a nitrogen stream (oxygen concentration of 20 ppm or less).
  • the temperature was raised and held for 30 minutes.
  • the pre-baked film was cooled to 50 ° C. at a temperature lowering rate of 5 ° C./min, thereby producing a polyimide resin film T2 attached to a rectangular glass substrate.
  • the prebaked film thus obtained was heated to 350 ° C. at a temperature increase rate of 3.5 ° C./min under a nitrogen stream (oxygen concentration of 20 ppm or less). The temperature was raised and held for 30 minutes. Thereafter, the pre-baked film was cooled to 50 ° C. at a temperature lowering rate of 5 ° C./min. Thereby, a polyimide resin film T3 adhered to a circular glass substrate was produced.
  • the prebaked film thus obtained was heated to 300 ° C. at a temperature rising rate of 3.5 ° C./min under a nitrogen stream (oxygen concentration of 20 ppm or less). The temperature was raised and held for 30 minutes. Thereafter, this pre-baked film was cooled to 50 ° C. at a temperature lowering rate of 5 ° C./min, and thereby a polyimide resin film T4 adhered to the silicon substrate was produced.
  • First measurement example measurement of light transmittance (T)
  • the measurement of light transmittance used as appropriate in the following examples and comparative examples will be described.
  • the light transmittance at a wavelength of 450 nm of the polyimide resin film T2 of the fifth preparation example was measured using an ultraviolet-visible spectrophotometer (MultiSpec 1500) manufactured by Shimadzu Corporation.
  • thermomechanical analyzer EXSTAR6000TMA / SS6000 manufactured by SII Nanotechnology. Measured in compressed mode.
  • the temperature raising method was performed under the following conditions.
  • the sample was heated to 150 degrees at a temperature increase rate of 5 ° C./min to remove the adsorbed water from the sample.
  • the sample was air-cooled to room temperature at a rate of 5 ° C./min.
  • the sample was measured at a rate of temperature increase of 5 ° C./min to determine the glass transition temperature of the polyimide resin film T1.
  • the average value of the linear expansion coefficients of the samples at 50 to 200 ° C. was obtained and used as the linear expansion coefficient of the polyimide resin film T1.
  • this varnish coating film was pre-baked for 4 minutes at a temperature of 140 ° C. using a Mark-7 hot plate.
  • the prebaked film thus obtained was heated to 350 ° C. at a temperature increase rate of 3.5 ° C./min under a nitrogen stream (oxygen concentration of 20 ppm or less). The temperature was raised and held for 30 minutes. Thereafter, the pre-baked film was cooled to 50 ° C. at a temperature decrease rate of 5 ° C./min, thereby producing a silicon wafer with a polyimide resin film. After the silicon wafer was dried at 150 ° C.
  • E is the biaxial elastic modulus (Pa) of the silicon wafer.
  • h is the thickness (m) of the silicon wafer.
  • t is the film thickness (m) of the polyimide resin film.
  • r 1 is a curvature radius (m) of the silicon wafer before the polyimide resin film is produced.
  • r 2 is the radius of curvature (m) of the silicon wafer after the polyimide resin film is produced.
  • the biaxial elastic modulus E of the silicon wafer was determined as 1.805 ⁇ 10 ⁇ 11 (Pa).
  • Evaluation Examples 1 to 12 polyimide resin films T1 to T4 were produced for the varnishes of Synthesis Examples 1 to 12 described above by the methods of the fourth production example to the seventh production example, and the first measurement example to the fourth measurement example.
  • the light transmittance, haze value, glass transition temperature (Tg), linear expansion coefficient, and residual stress were measured by the above method.
  • the results of Evaluation Examples 1 to 12 are shown in Table 2.
  • volume resistivity When the volume resistivity is less than 60 ⁇ ⁇ cm in the evaluation criteria of conductivity evaluation, it is level 5. When the volume resistivity is 60 ⁇ ⁇ cm or more and less than 80 ⁇ ⁇ cm, it is Level 4. When the volume resistivity is 80 ⁇ ⁇ cm or more and less than 100 ⁇ ⁇ cm, it is Level 3. Level 2 when the volume resistivity is 100 ⁇ ⁇ cm or more and less than 150 ⁇ ⁇ cm. Level 1 when the volume resistivity is 150 ⁇ ⁇ cm or more.
  • the transmittance at a wavelength of 400 nm before and after the formation of the first wiring layer in the unexposed portion of the substrate manufactured up to the first wiring layer of the touch panel was measured using an ultraviolet-visible spectrophotometer (“MultiSpec-1500 (trade name)” manufactured by Shimadzu Corporation). Then, when the transmittance before forming the first wiring layer is T0 and the transmittance after forming the first wiring layer is T, the transmittance change represented by the formula (T0-T) / T0 is calculated. did. Using the obtained value of transmittance change, the residue of the conductive composition of the touch panel was evaluated according to the following evaluation criteria. In this evaluation, the case where the evaluation result was level 2 or higher was regarded as acceptable.
  • the value of transmittance change when the value of transmittance change is less than 1%, it is level 5.
  • the value of the transmittance change is 1% or more and less than 2%, it is level 4.
  • the value of the transmittance change is 2% or more and less than 3%, it is level 3.
  • the transmittance change value is 3% or more and less than 4%, it is level 2.
  • the value of the transmittance change is 4% or more, it is level 1.
  • CM-2600d manufactured by Konica Minolta Co., Ltd.
  • the reflectance of the total reflected light is measured from the glass substrate side of the substrate manufactured up to the second insulating layer of the touch panel, and CIE (L *, a *, B *)
  • the color characteristic b * was measured in the color space.
  • the color of the touch panel was evaluated according to the following evaluation criteria. In this evaluation, the case where the evaluation result was level 2 or higher was regarded as acceptable.
  • a D65 light source was used as the light source.
  • the color characteristic b * is ⁇ 2 ⁇ b * ⁇ 2 in the evaluation criteria of the color eye evaluation, it is level 5.
  • Level 4 when the color characteristic b * is ⁇ 3 ⁇ b * ⁇ 2 or 2 ⁇ b * ⁇ 3. If the color characteristic b * is ⁇ 4 ⁇ b * ⁇ 3 or 3 ⁇ b * ⁇ 4, it is level 3. If the color characteristic b * is ⁇ 5 ⁇ b * ⁇ 4 or 4 ⁇ b * ⁇ 5, it is level 2. If the color characteristic b * is b * ⁇ 5 or 5 ⁇ b *, it is level 1.
  • an insulation deterioration characteristic evaluation system “ETAC SIR13” manufactured by Enomoto Kasei Co., Ltd.
  • An electrode was attached to each end of the first wiring layer and the second wiring layer of the touch panel, and the touch panel was placed in a high-temperature and high-humidity tank set at 85 ° C. and 85% RH. After 5 minutes from the stabilization of the environment in the tank, a voltage was applied between the electrodes of the first wiring layer and the second wiring layer, and the change in insulation resistance with time was measured. With the first wiring layer as the positive electrode and the second wiring layer as the negative electrode, a voltage of 10 V was applied, and the resistance value for 500 hours was measured at 5-minute intervals.
  • the measured resistance value reached 10 5 or less, it was judged as a short circuit due to poor insulation, the printing pressure was stopped, and the test time up to that time was defined as the short circuit time.
  • the wet heat resistance of the touch panel was evaluated according to the following evaluation criteria. In this evaluation, the case where the evaluation result was level 2 or higher was regarded as acceptable.
  • the short-circuit time is 1000 hours or more in the evaluation criteria of the wet heat resistance evaluation, it is level 5.
  • the short circuit time is 500 hours or more and less than 1000 hours, it is level 4.
  • the short circuit time is 300 hours or more and less than 500 hours, it is level 3.
  • the short circuit time is 100 hours or more and less than 300 hours, it is level 2. If the short circuit time is less than 100 hours, it is level 1.
  • the horizontal shift was measured at the design portion where the mesh intersection of the first wiring layer and the mesh intersection of the second wiring layer overlapped at the center of the multilayer substrate.
  • the dimensional accuracy of the touch panel was evaluated according to the following evaluation criteria. In this evaluation, the case where the evaluation result was level 2 or higher was regarded as acceptable.
  • the deviation is less than 1 ⁇ m in the dimensional accuracy evaluation criteria, it is level 5.
  • the deviation is 1 ⁇ m or more and less than 2 ⁇ m, it is level 4.
  • the deviation is 2 ⁇ m or more and less than 3 ⁇ m, it is level 3.
  • the deviation is 3 ⁇ m or more and less than 5 ⁇ m, it is level 2.
  • the deviation is 5 ⁇ m or more, it is level 1.
  • ESD electrostatic discharge resistance evaluation
  • the ESD test apparatus Compact ESD Simulator HCE-5000, manufactured by Hanwa Denshi Kogyo Co., Ltd.
  • HCE-5000 High ESD Simulator HCE-5000, manufactured by Hanwa Denshi Kogyo Co., Ltd.
  • Resistance was evaluated. Specifically, an electrode was attached to the end of the first wiring layer, and the voltage was continuously applied once in 100V steps starting from 100V.
  • the resistance value of the leakage current after voltage application is increased by 10% or more compared to before the voltage application, it is considered that the wiring layer is disconnected, and a voltage that is 100V lower than the disconnected voltage is defined as the ESD withstand voltage. did.
  • Example 1 ⁇ Formation of polyimide resin film>
  • the polyimide resin film T3 was produced by the method of the sixth production example using the varnish of Synthesis Example 1 produced in the first production example.
  • Example 1 On the polyimide resin film T3 obtained as described above, by using a target made of SiO 2, performs sputtering in an argon atmosphere, forming a gas barrier layer made of SiO 2 having a thickness of 100nm did.
  • the pressure was 2 ⁇ 10 ⁇ 1 Pa
  • the substrate temperature was 150 ° C.
  • the power source was an AC power source of 13.56 MHz.
  • Example 1 ⁇ Formation of first wiring layer>
  • the conductive composition AE-1 produced in the second production example was placed on a spin coater (“1H-360S (trade name) manufactured by Mikasa Co., Ltd.) on the substrate on which the polyimide resin film T3 and the gas barrier layer were formed. ) "), And spin-coated under the conditions of 300 rpm for 10 seconds and 500 rpm for 2 seconds. Thereafter, the coating film of the conductive composition AE-1 was prebaked at 100 ° C. for 2 minutes using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) to prepare a prebaked film. .
  • SCW-636 trade name
  • this pre-baked film was exposed through a desired mask using a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) using an ultrahigh pressure mercury lamp as a light source. Thereafter, the pre-baked film was subjected to shower development with a 0.045 mass% aqueous potassium hydroxide solution for 60 seconds using an automatic developing device (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), and then with water. The pattern was processed by rinsing for 30 seconds. The substrate thus patterned was cured in the air (oxygen concentration 21%) at 250 ° C. for 30 minutes using an oven to form a first wiring layer.
  • Example 1 ⁇ Formation of first insulating layer>
  • the insulating composition OA-1 produced in the third production example was spin-coated at 650 rpm for 5 seconds on the substrate on which the first wiring layer was formed, using a spin coater. Thereafter, the coating film of this insulating composition OA-1 was pre-baked at 100 ° C. for 2 minutes using a hot plate to prepare a pre-baked film. Next, this pre-baked film was exposed through a desired mask using a parallel light mask aligner using an ultrahigh pressure mercury lamp as a light source.
  • the prebaked film was subjected to shower development with a 0.045 mass% potassium hydroxide aqueous solution for 60 seconds using an automatic developing device, and then rinsed with water for 30 seconds to perform pattern processing.
  • the substrate thus patterned was cured in an air (oxygen concentration: 21%) at 250 ° C. for 60 minutes to form a first insulating layer.
  • Example 1 ⁇ Formation of second wiring layer>
  • the second wiring layer was formed on the substrate on which the first insulating layer was formed as described above by the same method as the first wiring layer.
  • Example 1 ⁇ Formation of second insulating layer>
  • the second insulating layer was formed on the substrate on which the second wiring layer was formed as described above by the same method as the first insulating layer.
  • Example 1 the periphery of the area where the first wiring layer and the second wiring layer were formed was cut with a single blade from the upper surface, and mechanically peeled from the cut end surface to obtain the touch panel of Example 1.
  • the conductivity, the residue of the conductive composition, the color (b *), the moist heat resistance, the dimensional accuracy, and the ESD voltage resistance were evaluated by the methods described above.
  • the evaluation results of Example 1 are shown in Table 3 described later.
  • Example 2 In Example 2, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 2 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 2, since the polyimide contained in the polyimide resin film has the structural unit of the general formula (1), the dimensional accuracy is improved and the level of the evaluation result is “5”. It became. The color was slightly deteriorated due to yellowing during wiring processing, and the evaluation result level was “3”.
  • Example 3 In Example 3, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 3 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 3, since the polyimide contained in the polyimide resin film has the structural unit of the general formula (2), the dimensional accuracy is improved and the level of the evaluation result is “4”. It became. The color was slightly deteriorated due to yellowing during wiring processing, and the evaluation result level was “3”.
  • Example 4 In Example 4, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 4 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 4, since the polyimide contained in the polyimide resin film has the structural unit of the general formula (2), the dimensional accuracy is improved and the evaluation result level is “5”. It became. The color was slightly deteriorated due to yellowing during wiring processing, and the evaluation result level was “3”.
  • Example 5 In Example 5, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 5 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 5, the polyimide contained in the polyimide resin film has a structural unit represented by the general formula (4) as a main component and a structure represented by the general formula (5). Since the unit contained 5 mol% or more and 30 mol% or less of all the structural units, the dimensional accuracy was improved and the evaluation result level was “5”.
  • Example 6 In Example 6, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 6 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 6, since the polyimide included in the polyimide resin film has a repeating structure represented by the general formula (9), the dimensional accuracy is improved and the level of the evaluation result is “5”. Moreover, ESD withstand voltage improved and became 1200V.
  • Example 7 In Example 7, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 7 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 7, since the Tg of the polyimide resin film is slightly low (see Evaluation Example 7 in Table 2), the dimensional accuracy deteriorates and the evaluation result level is “2”. However, it was in a usable range.
  • Example 8 In Example 8, the same operation as Example 1 was repeated except that the varnish of Synthesis Example 10 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 8, since the polyimide contained in the polyimide resin film has a repeating structure represented by the general formula (9), the dimensional accuracy is improved and the level of the evaluation result is “5”. Moreover, ESD withstand voltage improved and became 1200V.
  • Example 9 In Example 9, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 11 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 9, since the polyimide contained in the polyimide resin film has a repeating structure represented by the general formula (9), the dimensional accuracy is improved and the level of the evaluation result is “5”. Moreover, ESD withstand voltage improved and became 1200V.
  • Example 10 In Example 10, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 12 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 10, since the polyimide contained in the polyimide resin film has a repeating structure represented by the general formula (9), the dimensional accuracy is improved and the level of the evaluation result is “5”. Moreover, ESD withstand voltage improved and became 1100V.
  • Example 11 In Example 11, the same operation as Example 5 was repeated except that the target was changed to a target made of SiON when forming the gas barrier layer. As shown in Table 3, in the touch panel of Example 11, by changing the gas barrier layer, the color was improved and the evaluation result level was “5”. On the other hand, chemical resistance decreased by changing the gas barrier layer. As a result, the conductive composition residue and the dimensional accuracy slightly deteriorated, and the evaluation result level was “4”, but both were in the usable range.
  • Example 12 when forming the gas barrier layer, first, sputtering was performed in an argon atmosphere using a target made of SiON to form a gas barrier layer made of SiON having a thickness of 80 nm. Next, using a target of SiO 2, performs sputtering in an argon atmosphere to form a gas barrier layer made of SiO 2 having a thickness of 20 nm. Except this, the same operation as in Example 5 was repeated. As shown in Table 3, in the touch panel of Example 12, by setting the gas barrier layer on the polyimide resin film side to SiON, yellowing during wiring processing is suppressed, and as a result, the color is improved and the evaluation result The level is now “5”.
  • the barrier property of the gas barrier layer was improved, the heat and humidity resistance was improved, and the evaluation result level was “5”. Furthermore, since the gas barrier layer on the wiring layer side was made of SiO 2 , the conductive composition residue and dimensional accuracy were good, with the evaluation result level remaining at “5”.
  • Example 13 In Example 13, the same operation as in Example 5 was repeated except that the conductive composition was changed from the conductive composition AE-1 to the conductive composition AE-2. As shown in Table 3, in the touch panel of Example 13, the conductive particles (metal fine particles) contained in the conductive composition AE-2 were not coated, and the metal fine particles aggregated non-uniformly in the wiring layer. did. Therefore, although the conductivity deteriorated and the evaluation result level was “3”, it was in a usable range. Moreover, although the conductive composition residue and the dimensional accuracy were slightly deteriorated and the level of the evaluation result was “4”, it was in a range where there was no problem in use.
  • Example 14 In Example 14, the same operation as in Example 5 was repeated except that the insulating composition was changed from the insulating composition OA-1 to the insulating composition OA-2. As shown in Table 3, in the touch panel of Example 14, since the insulating layer does not have a predetermined cardo resin, the heat and humidity resistance is greatly deteriorated and the evaluation result level is “2”. It was possible. The conductivity, the conductive composition residue, and the dimensional accuracy were slightly deteriorated and the evaluation result level was “4”.
  • Example 15 In Example 15, when the wiring layer was formed, the patterned substrate was heated using an inert oven (INH-21CD manufactured by Koyo Thermo Systems Co., Ltd.) under a nitrogen stream (oxygen concentration 14%). The same operation as in Example 5 was repeated. As shown in Table 3, in the touch panel of Example 15, due to the change in the oxygen concentration during the formation of the wiring layer, the color was improved and the evaluation result level was “5”. On the other hand, the conductivity was greatly deteriorated and the evaluation result level was “2”, but it was in a usable range. The dimensional accuracy slightly deteriorated and the evaluation result level was “4”, but it was in a range where there was no problem in use.
  • Example 16 In Example 16, the same operation as in Example 11 was repeated except that the varnish of Synthesis Example 6 was used as the polyimide resin film-forming varnish. As shown in Table 3, in the touch panel of Example 16, since the polyimide contained in the polyimide resin film has a repeating structure represented by the general formula (9), the dimensional accuracy is improved and the level of the evaluation result is “5”. Moreover, ESD withstand voltage improved and became 1300V.
  • Example 17 In Example 17, the same operation as in Example 12 was repeated except that the varnish of Synthesis Example 6 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 17, since the polyimide contained in the polyimide resin film has a repeating structure represented by the general formula (9), the ESD withstand voltage is improved to 1300 V. .
  • Comparative Example 1 In Comparative Example 1, the same operation as in Example 5 was repeated except that the first wiring layer was formed directly on the polyimide resin film without forming the gas barrier layer. In the touch panel of Comparative Example 1, the conductive composition residue, color, and heat-and-moisture resistance were significantly lowered, and the level was unusable (level 1).
  • Comparative Example 2 In Comparative Example 2, the same operation as in Example 5 was repeated except that the varnish of Synthesis Example 8 was used as the varnish for forming a polyimide resin film.
  • the imide group concentration of the polyimide contained in the polyimide resin film was high, and haze was generated after the resin film was formed, and the visibility was greatly impaired. For this reason, the polyimide resin film in Comparative Example 2 was not applicable as a touch panel substrate.
  • Comparative Example 3 In Comparative Example 3, the same operation as in Example 5 was repeated except that the varnish of Synthesis Example 9 was used as the polyimide resin film-forming varnish. In the touch panel of Comparative Example 2, since the imide group concentration of the polyimide contained in the polyimide resin film is low and the Tg of the polyimide resin film is reduced (see Evaluation Example 9 in Table 2), the dimensional accuracy is greatly reduced and cannot be used. Level (level 1). The evaluation results of Comparative Examples 1 to 3 are shown in Table 3 together with the evaluation results of Examples 1 to 17 described above.
  • the method for manufacturing a film with a conductive layer, a touch panel, a film with a conductive layer, and a method for manufacturing a touch panel according to the present invention suppresses yellowing of the resin film during formation of the conductive layer and provides high dimensional accuracy of the conductive layer.
  • a film with a conductive layer, a touch panel, a method for producing a film with a conductive layer, and a method for producing a touch panel is suitable for a film with a conductive layer, a touch panel, a method for producing a film with a conductive layer, and a method for producing a touch panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Position Input By Displaying (AREA)
  • Push-Button Switches (AREA)

Abstract

Provided is a film with a conductive layer, which has a conductive layer that contains conductive particles on a resin film that contains a polyimide having an imide group concentration as determined by formula (I) of from 20.0% to 36.5% (inclusive), and which has a gas barrier layer between the resin film and the conductive layer. This film with a conductive layer is applicable, for example, to a touch panel. A method for producing this film with a conductive layer is applicable, for example, to a method for producing a touch panel. (Molecular weight of imide group moiety)/(molecular weight of repeating unit of polyimide) × 100 [%] (I)

Description

導電層付きフィルム、タッチパネル、導電層付きフィルムの製造方法およびタッチパネルの製造方法Film with conductive layer, touch panel, method for producing film with conductive layer, and method for producing touch panel
 本発明は、導電層付きフィルム、タッチパネル、導電層付きフィルムの製造方法およびタッチパネルの製造方法に関する。 The present invention relates to a film with a conductive layer, a touch panel, a method for manufacturing a film with a conductive layer, and a method for manufacturing a touch panel.
 近年、モバイルやタブレット等の機器において、デザイン性や利便性、耐久性の観点から、フレキシブル化が嘱望されている。しかしながら、機器のフレキシブル化には種々の課題があり、まだ実用には到っていない。 In recent years, flexible devices are desired from the viewpoints of design, convenience, and durability in devices such as mobile phones and tablets. However, there are various problems in making equipment flexible, and it has not yet been put into practical use.
 その中でも、主たる課題は、機器に用いられる導電層付きフィルムの曲げ耐性、視認性および導電性の向上である。従来、導電層付きフィルムとしては、視認性向上の観点から、ITO等の透明導電金属からなる薄膜が広く用いられてきた。例えば、特許文献1、2には、耐熱性に優れたポリイミドフィルム上に、ITOからなる薄膜を形成した透明導電性フィルムが開示されている。その薄膜をエッチングによりパターン加工することで、視認性と導電性とに優れた導電層付きフィルムを得ることができる。しかしながら、ITO配線は、剛直で脆いため、曲げ耐性が低く、曲げるとクラックが発生するという課題があった。 Among them, the main problems are improvement in bending resistance, visibility and conductivity of a film with a conductive layer used in equipment. Conventionally, as a film with a conductive layer, a thin film made of a transparent conductive metal such as ITO has been widely used from the viewpoint of improving visibility. For example, Patent Documents 1 and 2 disclose a transparent conductive film in which a thin film made of ITO is formed on a polyimide film having excellent heat resistance. By patterning the thin film by etching, a film with a conductive layer excellent in visibility and conductivity can be obtained. However, since the ITO wiring is rigid and brittle, there is a problem that bending resistance is low and cracking occurs when bent.
 そのため、ITOに替わる透明導電層として、金属メッシュ配線、金属ナノワイヤー配線、カーボンナノチューブ配線といった、種々の配線技術が提案されてきた。中でも、曲げ耐性、視認性、高導電性を兼ね備える透明導電層として、金属メッシュ配線が注目を浴びている。 Therefore, various wiring technologies such as metal mesh wiring, metal nanowire wiring, and carbon nanotube wiring have been proposed as transparent conductive layers replacing ITO. Among these, metal mesh wiring is attracting attention as a transparent conductive layer having both bending resistance, visibility, and high conductivity.
 金属メッシュ配線は、視認できない程度に細い金属配線をメッシュパターンに形成することにより得られる。例えば、金、銀、銅等の、電気抵抗値の小さい金属を用いることにより、導電性の良好な配線を得ることができる。さらに、フォトリソグラフィーによるパターン加工が可能で、かつ柔軟性に優れた有機成分を、配線中に適量含有させることにより、配線の曲げ耐性を向上させることができる。このような金属メッシュ配線は、フレキシブル化にも十分対応できる。 Metal mesh wiring can be obtained by forming a metal wiring that is thin enough to be invisible to the mesh pattern. For example, by using a metal having a small electrical resistance value, such as gold, silver, or copper, a wiring with good conductivity can be obtained. Furthermore, the bending resistance of the wiring can be improved by containing an appropriate amount of an organic component that can be patterned by photolithography and has excellent flexibility. Such metal mesh wiring can sufficiently cope with flexibility.
 このような金属メッシュ配線の形成方法としては、例えば、導電性の金属粒子(以下、導電性粒子と適宜いう)と有機成分とからなる導電ペーストを用い、スクリーン印刷、インクジェット、フォトリソグラフィー等によりパターニングする方法が挙げられる。しかしながら、視認できないほどの微細パターンを形成するためには、導電性粒子の粒径をナノサイズまで小さくする必要がある。そのような導電性粒子は、室温でも融着して凝集しやすいという問題があった。また、導電性粒子の表面が有機成分と反応して、導電ペーストの保存安定性が低下するという問題があった。さらに、フォトリソグラフィーを用いてパターン加工する場合、導電性粒子は光反射性を有しており、これが露光光を散乱させることから、微細パターンを形成することが困難であるという問題があった。 As a method for forming such a metal mesh wiring, for example, a conductive paste composed of conductive metal particles (hereinafter referred to as conductive particles as appropriate) and an organic component is used, and patterning is performed by screen printing, inkjet, photolithography, or the like. The method of doing is mentioned. However, in order to form a fine pattern that cannot be visually recognized, it is necessary to reduce the particle size of the conductive particles to nano size. Such conductive particles have a problem of being easily fused and aggregated even at room temperature. In addition, there is a problem that the surface of the conductive particles reacts with an organic component and the storage stability of the conductive paste is lowered. Further, when pattern processing is performed using photolithography, the conductive particles have light reflectivity, which scatters exposure light, and thus there is a problem that it is difficult to form a fine pattern.
 これに対し、被覆層を有する導電性粒子を用いて、上記の問題を解決する方法が開示されている(例えば、特許文献3参照)。被覆層によって導電性粒子の表面活性を低下させて、導電性粒子同士の反応および導電性粒子同士と有機成分との反応のうち少なくとも一方を抑制することができる。また、フォトリソグラフィーを用いた場合でも、露光光の散乱を抑制し、配線を高精度にパターン加工することができる。被覆された導電性粒子は、200℃程度の高温で加熱することにより、被覆層を容易に除去することができる。そのため、配線に十分な導電性を発現することができる。 On the other hand, a method for solving the above problem by using conductive particles having a coating layer is disclosed (for example, see Patent Document 3). The surface activity of the conductive particles can be reduced by the coating layer, and at least one of the reaction between the conductive particles and the reaction between the conductive particles and the organic component can be suppressed. Even when photolithography is used, scattering of exposure light can be suppressed and wiring can be patterned with high accuracy. The coated conductive particles can be easily removed by heating at a high temperature of about 200 ° C. Therefore, sufficient electrical conductivity can be expressed in the wiring.
特開2016-186936号公報JP 2016-186936 A 特許第5773090号公報Japanese Patent No. 5773090 特開2013-196997号公報JP 2013-196997 A
 しかしながら、特許文献3に開示された技術は、導電性粒子の被覆層を除去するために、酸素の存在下で200℃程度の加熱が必要であった。そのため、基板には高い耐熱性および耐酸化性が要求され、実質的に、ガラス基板しか適用できなかった。当然のことながら、ガラス基板を用いてフレキシブル化に対応することは困難である。さらに、耐熱性に優れたフィルムを用いた場合であっても、酸素の存在下での加熱によるフィルムの着色により色目が低下するという問題や、フィルムの寸法精度が低下して位置ずれが発生し、モアレと呼ばれる外観不良が発生するという問題があった。 However, the technique disclosed in Patent Document 3 requires heating at about 200 ° C. in the presence of oxygen in order to remove the coating layer of conductive particles. For this reason, high heat resistance and oxidation resistance are required for the substrate, and substantially only a glass substrate can be applied. As a matter of course, it is difficult to cope with flexibility using a glass substrate. Furthermore, even when a film with excellent heat resistance is used, the color may deteriorate due to the coloration of the film by heating in the presence of oxygen, and the dimensional accuracy of the film may decrease and misalignment may occur. There has been a problem that an appearance defect called moire occurs.
 本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、導電層形成時の黄変を抑制し、かつ導電層の寸法精度に優れた導電層付きフィルム、タッチパネル、導電層付きフィルムの製造方法およびタッチパネルの製造方法を提供することにある。 This invention is made | formed in view of the said situation, The place made into the objective is suppressing the yellowing at the time of conductive layer formation, and the film with a conductive layer which was excellent in the dimensional accuracy of the conductive layer, a touch panel, conductive It is providing the manufacturing method of a film with a layer, and the manufacturing method of a touch panel.
 本発明者らは、鋭意検討の結果、イミド基濃度が特定の範囲であるポリイミドを含む樹脂膜(ポリイミド樹脂膜)と、導電層との間に、ガスバリア層を有する構成とすることで、導電層の加熱時にポリイミド樹脂膜が酸素と接触することを防ぎ、ポリイミド樹脂膜の色目および寸法精度の低下を抑制できることを見出した。 As a result of intensive studies, the inventors of the present invention have a structure in which a gas barrier layer is provided between a conductive film and a resin film (polyimide resin film) containing polyimide having a specific imide group concentration. It has been found that the polyimide resin film can be prevented from coming into contact with oxygen during heating of the layer, and the deterioration of the color and dimensional accuracy of the polyimide resin film can be suppressed.
 すなわち、上述した課題を解決し、目的を達成するために、本発明に係る導電層付きフィルムは、下記(I)式で定義されるイミド基濃度が20.0%以上36.5%以下であるポリイミドを含む樹脂膜上に、導電性粒子を含有する導電層を有する導電層付きフィルムであって、前記樹脂膜と前記導電層との間にガスバリア層を有する、ことを特徴とする。
 
(イミド基部分の分子量)/(ポリイミドの繰返し単位の分子量)×100[%]
                            ・・・(I)
 
That is, in order to solve the above-described problems and achieve the object, the film with a conductive layer according to the present invention has an imide group concentration defined by the following formula (I) of 20.0% or more and 36.5% or less. A film with a conductive layer having a conductive layer containing conductive particles on a resin film containing a certain polyimide, wherein a gas barrier layer is provided between the resin film and the conductive layer.

(Molecular weight of the imide group) / (Molecular weight of the repeating unit of polyimide) x 100 [%]
... (I)
 また、本発明に係る導電層付きフィルムは、上記の発明において、前記樹脂膜のガラス転移温度は250℃以上である、ことを特徴とする。 The film with a conductive layer according to the present invention is characterized in that, in the above invention, the glass transition temperature of the resin film is 250 ° C. or higher.
 また、本発明に係る導電層付きフィルムは、上記の発明において、前記ポリイミドは、下記一般式(1)で表される構造単位を含む、ことを特徴とする。 Moreover, the film with a conductive layer according to the present invention is characterized in that, in the above invention, the polyimide includes a structural unit represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000009
(一般式(1)において、Rは、単環式もしくは縮合多環式の脂環構造を有する、炭素数4~40の4価の有機基、または、単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された、炭素数4~40の4価の有機基を示す。Rは、炭素数4~40の2価の有機基を示す。)
Figure JPOXMLDOC01-appb-C000009
(In General Formula (1), R 1 has a monocyclic or condensed polycyclic alicyclic structure, a tetravalent organic group having 4 to 40 carbon atoms, or a monocyclic alicyclic structure. A tetravalent organic group having 4 to 40 carbon atoms in which the organic groups are connected to each other directly or via a crosslinked structure, R 2 represents a divalent organic group having 4 to 40 carbon atoms.
 また、本発明に係る導電層付きフィルムは、上記の発明において、前記ポリイミドは、下記一般式(2)で表される構造単位を含む、ことを特徴とする。 Moreover, the film with a conductive layer according to the present invention is characterized in that, in the above invention, the polyimide includes a structural unit represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000010
(一般式(2)において、Rは、炭素数4~40の4価の有機基を示す。Rは、単環式もしくは縮合多環式の脂環構造を有する、炭素数4~40の2価の有機基、または、単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された、炭素数4~40の2価の有機基、または、下記一般式(3)で表される2価の有機基を示す。)
Figure JPOXMLDOC01-appb-C000010
(In General Formula (2), R 3 represents a tetravalent organic group having 4 to 40 carbon atoms. R 4 has a monocyclic or condensed polycyclic alicyclic structure and has 4 to 40 carbon atoms. Or a divalent organic group having 4 to 40 carbon atoms in which organic groups having a monocyclic alicyclic structure are connected to each other directly or via a crosslinked structure, or the following general group A divalent organic group represented by the formula (3) is shown.)
Figure JPOXMLDOC01-appb-C000011
(一般式(3)において、Xは、ハロゲン原子で置換されていてもよい、炭素数1~3の2価の炭化水素基である。ArおよびArは、各々独立に、炭素数4~40の2価の芳香族基を示す。)
Figure JPOXMLDOC01-appb-C000011
(In General Formula (3), X 1 is a divalent hydrocarbon group having 1 to 3 carbon atoms which may be substituted with a halogen atom. Ar 1 and Ar 2 are each independently a carbon number. Represents a divalent aromatic group of 4 to 40.)
 また、本発明に係る導電層付きフィルムは、上記の発明において、前記ポリイミドは、下記一般式(4)で表される構造単位を主成分とし、かつ、下記一般式(5)で表される構造単位を全構造単位の5mol%以上30mol%以下含む、ことを特徴とする。 Moreover, the film with a conductive layer according to the present invention is the above invention, wherein the polyimide has a structural unit represented by the following general formula (4) as a main component and is represented by the following general formula (5). The structural unit is characterized by containing 5 mol% or more and 30 mol% or less of all structural units.
Figure JPOXMLDOC01-appb-C000012
(一般式(4)、(5)において、Rは、単環式もしくは縮合多環式の脂環構造を有する、炭素数4~40の4価の有機基、または、単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された、炭素数4~40の4価の有機基を示す。R13は、下記一般式(6)で表される2価の有機基を示す。R14は、下記構造式(7)または下記構造式(8)で表される構造である。)
Figure JPOXMLDOC01-appb-C000012
(In the general formulas (4) and (5), R 1 represents a monovalent or condensed polycyclic alicyclic structure, a tetravalent organic group having 4 to 40 carbon atoms, or a monocyclic fatty acid. A tetravalent organic group having 4 to 40 carbon atoms in which organic groups having a ring structure are connected to each other directly or via a crosslinked structure, R 13 is a divalent group represented by the following general formula (6). R 14 is a structure represented by the following structural formula (7) or the following structural formula (8).
Figure JPOXMLDOC01-appb-C000013
(一般式(6)において、R15~R22は、各々独立に、水素原子、ハロゲン原子、または、ハロゲン原子で置換されていてもよい炭素数1~3の1価の有機基を示す。Xは、直接結合、酸素原子、硫黄原子、スルホニル基、ハロゲン原子で置換されていてもよい炭素数1~3の2価の有機基、エステル結合、アミド結合、およびスルフィド結合の中から選ばれる構造である。)
Figure JPOXMLDOC01-appb-C000013
(In the general formula (6), R 15 to R 22 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 3 carbon atoms which may be substituted with a halogen atom. X 2 is selected from a direct bond, an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms which may be substituted with a halogen atom, an ester bond, an amide bond, and a sulfide bond. Structure.)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 また、本発明に係る導電層付きフィルムは、上記の発明において、前記ポリイミドは、前記ポリイミドを構成する酸二無水物残基およびジアミン残基のうち少なくとも一つの中に、下記一般式(9)で表される繰り返し構造を含有する、ことを特徴とする。 Moreover, the film with a conductive layer according to the present invention is the above invention, wherein the polyimide is represented by the following general formula (9) in at least one of the acid dianhydride residue and the diamine residue constituting the polyimide. It contains the repeating structure represented by these, It is characterized by the above-mentioned.
Figure JPOXMLDOC01-appb-C000015
(一般式(9)において、R23およびR24は、各々独立に、炭素数1~20の1価の有機基を示す。mは、3~200の整数である。)
Figure JPOXMLDOC01-appb-C000015
(In the general formula (9), R 23 and R 24 each independently represents a monovalent organic group having 1 to 20 carbon atoms. M is an integer of 3 to 200.)
 また、本発明に係る導電層付きフィルムは、上記の発明において、前記ポリイミドはトリアミン骨格を含む、ことを特徴とする。 Further, the film with a conductive layer according to the present invention is characterized in that, in the above invention, the polyimide contains a triamine skeleton.
 また、本発明に係る導電層付きフィルムは、上記の発明において、前記ガスバリア層は、珪素酸化物、珪素窒化物、珪素酸窒化物および珪素炭窒化物のうち少なくとも一つを含む、ことを特徴とする。 Moreover, the film with a conductive layer according to the present invention is characterized in that, in the above invention, the gas barrier layer includes at least one of silicon oxide, silicon nitride, silicon oxynitride, and silicon carbonitride. And
 また、本発明に係る導電層付きフィルムは、上記の発明において、前記ガスバリア層は、SiOxNy(x、yは、0<x≦1、0.55≦y≦1および0≦x/y≦1を満たす値である。)で表される成分を含む、ことを特徴とする。 In the film with a conductive layer according to the present invention, the gas barrier layer may be SiOxNy (where x and y are 0 <x ≦ 1, 0.55 ≦ y ≦ 1 and 0 ≦ x / y ≦ 1). It is a value which satisfy | fills.) The component represented by this is included.
 また、本発明に係る導電層付きフィルムは、上記の発明において、前記ガスバリア層は、2層以上に積層された無機膜であり、前記無機膜のうち前記導電層と接する層は、SiOz(zは、0.5≦z≦2を満たす値である。)で表される成分で形成される、ことを特徴とする。 Moreover, the film with a conductive layer according to the present invention is the above-described invention, wherein the gas barrier layer is an inorganic film laminated in two or more layers, and the layer in contact with the conductive layer in the inorganic film is SiOz (z Is a value satisfying 0.5 ≦ z ≦ 2)).
 また、本発明に係る導電層付きフィルムは、上記の発明において、前記導電性粒子は銀粒子である、ことを特徴とする。 The conductive layer-attached film according to the present invention is characterized in that, in the above invention, the conductive particles are silver particles.
 また、本発明に係る導電層付きフィルムは、上記の発明において、前記導電層上に、下記構造式(10)で表される構造を2つ以上有するカルド系樹脂を含むアルカリ可溶性樹脂から形成される絶縁層を有する、ことを特徴とする。 Moreover, the film with a conductive layer according to the present invention is formed from an alkali-soluble resin including a cardo resin having two or more structures represented by the following structural formula (10) on the conductive layer in the above invention. And an insulating layer.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 また、本発明に係るタッチパネルは、上記の発明のいずれか一つに記載の導電層付きフィルムを有し、前記導電層は配線層である、ことを特徴とする。 Further, a touch panel according to the present invention includes the film with a conductive layer according to any one of the above inventions, and the conductive layer is a wiring layer.
 また、本発明に係る導電層付きフィルムの製造方法は、支持基板上に、ポリイミドを含む樹脂膜を形成する樹脂膜形成工程と、前記樹脂膜の上にガスバリア層を形成するガスバリア層形成工程と、前記ガスバリア層の上に導電層を形成する導電層形成工程と、前記支持基板から前記樹脂膜を剥離する剥離工程と、を少なくとも含むことを特徴とする。 The method for producing a film with a conductive layer according to the present invention includes a resin film forming step of forming a resin film containing polyimide on a support substrate, and a gas barrier layer forming step of forming a gas barrier layer on the resin film. And a conductive layer forming step of forming a conductive layer on the gas barrier layer, and a peeling step of peeling the resin film from the support substrate.
 また、本発明に係る導電層付きフィルムの製造方法は、上記の発明において、前記導電層形成工程は、表面の少なくとも一部に被覆層を有する導電性粒子を含有する導電性組成物を用いて前記導電層を形成する、ことを特徴とする。 In the method for producing a film with a conductive layer according to the present invention, in the above invention, the conductive layer forming step uses a conductive composition containing conductive particles having a coating layer on at least a part of the surface. The conductive layer is formed.
 また、本発明に係る導電層付きフィルムの製造方法は、上記の発明において、前記樹脂膜形成工程は、前記支持基板上のポリイミド樹脂組成物を、酸素濃度が1000ppm以下である雰囲気下において300℃以上500℃以下の温度で加熱して、前記樹脂膜を形成し、前記導電層形成工程は、前記ガスバリア層上の導電性組成物を、酸素濃度が15%以上である雰囲気下において100℃以上300℃以下の温度で加熱して、前記導電層を形成する、ことを特徴とする。 Further, in the method for producing a film with a conductive layer according to the present invention, in the above invention, the resin film forming step is performed at 300 ° C. in an atmosphere having an oxygen concentration of 1000 ppm or less. The resin film is formed by heating at a temperature of 500 ° C. or lower, and in the conductive layer forming step, the conductive composition on the gas barrier layer is heated to 100 ° C. or higher in an atmosphere having an oxygen concentration of 15% or higher. The conductive layer is formed by heating at a temperature of 300 ° C. or lower.
 また、本発明に係るタッチパネルの製造方法は、上記の発明のいずれか一つに記載の導電層付きフィルムの製造方法を用いたタッチパネルの製造方法であって、前記導電層形成工程は、前記導電層として配線層を形成する工程である、ことを特徴とする。 Moreover, the manufacturing method of the touchscreen which concerns on this invention is a manufacturing method of the touchscreen using the manufacturing method of the film with a conductive layer as described in any one of said invention, Comprising: The said conductive layer formation process is the said electroconductivity. It is a step of forming a wiring layer as a layer.
 本発明によれば、導電層形成時の黄変を抑制し、かつ導電層の寸法精度に優れた導電層付きフィルム、タッチパネル、導電層付きフィルムの製造方法およびタッチパネルの製造方法を提供することができるという効果を奏する。 ADVANTAGE OF THE INVENTION According to this invention, providing the film with a conductive layer which suppressed yellowing at the time of conductive layer formation, and was excellent in the dimensional accuracy of a conductive layer, a touch panel, the manufacturing method of a film with a conductive layer, and the manufacturing method of a touch panel are provided. There is an effect that can be done.
図1は、本発明の実施の形態に係る導電層付きフィルムの一構成例を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a configuration example of a film with a conductive layer according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る本発明の実施の形態に係る導電層付きフィルムを含むタッチパネルの一構成例を示す平面図である。FIG. 2 is a plan view showing a configuration example of a touch panel including a film with a conductive layer according to an embodiment of the present invention according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る導電層付きフィルムを含むタッチパネルの一構成例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing a configuration example of a touch panel including a film with a conductive layer according to an embodiment of the present invention. 図4は、本発明の実施の形態に係る導電層付きフィルムを含むタッチパネルの製造方法の一例を示す工程図である。FIG. 4 is a process diagram showing an example of a method for manufacturing a touch panel including a film with a conductive layer according to an embodiment of the present invention.
 以下、本発明に係る導電層付きフィルム、タッチパネル、導電層付きフィルムの製造方法およびタッチパネルの製造方法について、好適な実施の形態を詳細に説明する。ただし、本発明は、以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。 Hereinafter, preferred embodiments of a film with a conductive layer, a touch panel, a method for producing a film with a conductive layer, and a method for producing a touch panel according to the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be implemented with various modifications according to the purpose and application.
<導電層付きフィルム>
 本発明の実施の形態に係る導電層付きフィルムは、ポリイミドを含む樹脂膜上に、導電性粒子を含有する導電層を有する導電層付きフィルムであって、これらの樹脂膜と導電層との間にガスバリア層を有する。本実施の形態において、この樹脂膜は、下記(I)式で定義されるイミド基濃度が20.0%以上36.5%以下であるポリイミドを含むものとなっている。
(イミド基部分の分子量)/(ポリイミドの繰返し単位の分子量)×100[%]
                            ・・・(I)
<Film with conductive layer>
The film with a conductive layer according to the embodiment of the present invention is a film with a conductive layer having a conductive layer containing conductive particles on a resin film containing polyimide, and between the resin film and the conductive layer. Has a gas barrier layer. In the present embodiment, this resin film contains polyimide having an imide group concentration defined by the following formula (I) of 20.0% or more and 36.5% or less.
(Molecular weight of the imide group) / (Molecular weight of the repeating unit of polyimide) x 100 [%]
... (I)
 図1は、本発明の実施の形態に係る導電層付きフィルムの一構成例を示す模式断面図である。図1に示すように、この導電層付きフィルム11は、樹脂膜1と、ガスバリア層2と、導電層3Aとを備える。樹脂膜1は、上述したように、(I)式で定義されるイミド基濃度が20.0%以上36.5%以下となっているポリイミドを含むポリイミド樹脂膜である。ガスバリア層2は、樹脂膜1の上に形成される。導電層3Aは、導電性粒子を含有する導電性の層であり、ガスバリア層2の上に形成される。 FIG. 1 is a schematic cross-sectional view showing a configuration example of a film with a conductive layer according to an embodiment of the present invention. As shown in FIG. 1, the film 11 with a conductive layer includes a resin film 1, a gas barrier layer 2, and a conductive layer 3A. As described above, the resin film 1 is a polyimide resin film containing polyimide in which the imide group concentration defined by the formula (I) is 20.0% or more and 36.5% or less. The gas barrier layer 2 is formed on the resin film 1. The conductive layer 3 </ b> A is a conductive layer containing conductive particles, and is formed on the gas barrier layer 2.
 このような構成を有する導電層付きフィルム11において、ガスバリア層2は、図1に示すように、樹脂膜1と導電層3Aとの間に介在している。これにより、ガスバリア層2は、導電層3Aを加熱形成する際の酸素が樹脂膜1と接触することを防止することができる。この結果、酸素存在下での加熱による樹脂膜1の色目の低下(例えば黄変による色目の低下)が抑制される。特に図1には図示しないが、導電層付きフィルム11は、導電層3Aの上に、絶縁層をさらに備えていてもよい。 In the film 11 with a conductive layer having such a configuration, the gas barrier layer 2 is interposed between the resin film 1 and the conductive layer 3A as shown in FIG. Thereby, the gas barrier layer 2 can prevent the oxygen at the time of heat-forming the conductive layer 3 </ b> A from coming into contact with the resin film 1. As a result, a decrease in color of the resin film 1 due to heating in the presence of oxygen (for example, a decrease in color due to yellowing) is suppressed. Although not particularly shown in FIG. 1, the film 11 with a conductive layer may further include an insulating layer on the conductive layer 3A.
 図2は、本発明の実施の形態に係る導電層付きフィルムを含むタッチパネルの一構成例を示す平面図である。図3は、本発明の実施の形態に係る導電層付きフィルムを含むタッチパネルの一構成例を示す模式断面図である。図3には、図2における破線I-I’でのタッチパネル10の断面図が図示されている。このタッチパネル10は、本実施の形態に係る導電層付きフィルム11を含むタッチパネルである。図2、3に示すように、タッチパネル10は、樹脂膜1と、ガスバリア層2と、第一の配線層3と、第一の絶縁層4と、第二の配線層5と、第二の絶縁層6とを備える。 FIG. 2 is a plan view showing a configuration example of a touch panel including a film with a conductive layer according to an embodiment of the present invention. FIG. 3 is a schematic cross-sectional view showing a configuration example of a touch panel including a film with a conductive layer according to an embodiment of the present invention. FIG. 3 is a cross-sectional view of the touch panel 10 taken along a broken line I-I ′ in FIG. This touch panel 10 is a touch panel including the film 11 with a conductive layer according to the present embodiment. As shown in FIGS. 2 and 3, the touch panel 10 includes a resin film 1, a gas barrier layer 2, a first wiring layer 3, a first insulating layer 4, a second wiring layer 5, and a second wiring layer. And an insulating layer 6.
 樹脂膜1およびガスバリア層2は、図1に示した導電層付きフィルム11と同様のものである。第一の配線層3は、導電層付きフィルム11の導電層3Aの一適用例である。すなわち、タッチパネル10は、導電層付きフィルム11として、樹脂膜1と、ガスバリア層2と、第一の配線層3とを含んでいる。 The resin film 1 and the gas barrier layer 2 are the same as the film 11 with a conductive layer shown in FIG. The first wiring layer 3 is an application example of the conductive layer 3A of the film 11 with the conductive layer. That is, the touch panel 10 includes the resin film 1, the gas barrier layer 2, and the first wiring layer 3 as the film 11 with a conductive layer.
 図2、3に示すように、第一の配線層3は、樹脂膜1上のガスバリア層2の上に、所望の配線パターンをなすように形成される。第一の絶縁層4は、第一の配線層3のうちの電極部分以外を覆うように、第一の配線層3およびガスバリア層2の上に形成される。第二の配線層5は、第一の配線層3とは異なる配線層であり、第一の絶縁層4およびガスバリア層2の上に、所望の配線パターンをなすように形成される。タッチパネル10において、第一の配線層3と第二の配線層5とは、第一の絶縁層4によって絶縁されている。第二の絶縁層6は、第二の配線層5のうちの電極部分以外を覆うように、第二の配線層5および第一の絶縁層4の上に形成される。 2 and 3, the first wiring layer 3 is formed on the gas barrier layer 2 on the resin film 1 so as to form a desired wiring pattern. The first insulating layer 4 is formed on the first wiring layer 3 and the gas barrier layer 2 so as to cover the first wiring layer 3 other than the electrode portion. The second wiring layer 5 is a wiring layer different from the first wiring layer 3 and is formed on the first insulating layer 4 and the gas barrier layer 2 so as to form a desired wiring pattern. In the touch panel 10, the first wiring layer 3 and the second wiring layer 5 are insulated by the first insulating layer 4. The second insulating layer 6 is formed on the second wiring layer 5 and the first insulating layer 4 so as to cover the second wiring layer 5 other than the electrode portion.
(樹脂膜(ポリイミド樹脂膜))
 本発明の実施の形態に係る導電層付きフィルムに用いられる樹脂膜(例えば図1に示す樹脂膜1)は、上述した(I)式で定義されるイミド基濃度が20.0%以上36.5%以下であるポリイミドを含む。
(Resin film (polyimide resin film))
The resin film (for example, the resin film 1 shown in FIG. 1) used for the film with a conductive layer according to the embodiment of the present invention has an imide group concentration defined by the above formula (I) of 20.0% or more and 36.36. Contains polyimide that is 5% or less.
 ポリイミドは、ジアミンとテトラカルボン酸二無水物とを反応して得られるので、各モノマー(ジアミンおよびテトラカルボン酸二無水物)の分子量が大きくなると、得られるポリイミドのイミド基濃度は小さくなる。イミド基濃度が20.0%よりも低くなると、イミド基によるポリイミド分子間の相互作用が弱くなり、ポリイミドのガラス転移温度(Tg)が低下する。導電層付きフィルムにおいて、基板となる樹脂膜(ポリイミド樹脂膜)のガラス転移温度が低いと、ガスバリア層および導電層の形成時に加えられる熱に、この樹脂膜が耐えられない。この結果、導電層付きフィルムの十分な寸法精度(例えば導電層の寸法精度)が得られない。また、イミド基濃度が36.5%よりも大きくなると、イミド基によるポリイミド分子間の相互作用が強くなりすぎるため、樹脂膜中においてポリイミド分子が結晶化する。この結果、導電層付きフィルムの視認性が悪化する。 Since polyimide is obtained by reacting diamine with tetracarboxylic dianhydride, the imide group concentration of the resulting polyimide decreases as the molecular weight of each monomer (diamine and tetracarboxylic dianhydride) increases. When the imide group concentration is lower than 20.0%, the interaction between polyimide molecules due to the imide group becomes weak, and the glass transition temperature (Tg) of the polyimide decreases. In a film with a conductive layer, if the glass transition temperature of a resin film (polyimide resin film) serving as a substrate is low, the resin film cannot withstand the heat applied during the formation of the gas barrier layer and the conductive layer. As a result, sufficient dimensional accuracy (for example, dimensional accuracy of the conductive layer) of the film with the conductive layer cannot be obtained. On the other hand, when the imide group concentration is higher than 36.5%, the interaction between the polyimide molecules due to the imide group becomes too strong, and the polyimide molecules are crystallized in the resin film. As a result, the visibility of the film with a conductive layer is deteriorated.
 本発明では、イミド基濃度を20.0%以上36.5%以下の範囲内の濃度とすることで、耐熱性と透明性とのバランスの取れたポリイミド樹脂(導電層付きフィルムの樹脂膜を構成するポリイミド)を得ることができる。イミド基濃度は、以下の方法で計算して求まる値である。 In the present invention, by setting the imide group concentration to a concentration within the range of 20.0% or more and 36.5% or less, a polyimide resin (resin film of a film with a conductive layer) having a balance between heat resistance and transparency can be obtained. (Polyimide constituting) can be obtained. The imide group concentration is a value obtained by calculation by the following method.
 イミド基部分の分子量は、ポリイミドの繰り返し単位に含まれる、(-CO-N-CO-)部分の分子量である。イミド基1つあたりの分子量は、70.03である。また、ポリイミドの繰返し単位の分子量は、1つの繰り返し単位を構成するテトラカルボン酸二無水物およびジアミンに由来する部分の分子量である。これらのことから、上述した(I)式に基づいてイミド基濃度を算出することができる。ポリイミド中に繰り返し単位が複数存在する場合は、それぞれの繰り返し単位のイミド基濃度を求めた後、各繰り返し単位の含有割合を掛けたもの同士を足し合わせた値を、ポリイミドのイミド基濃度とする。 The molecular weight of the imide group part is the molecular weight of the (—CO—N—CO—) part contained in the polyimide repeating unit. The molecular weight per imide group is 70.03. Moreover, the molecular weight of the repeating unit of a polyimide is the molecular weight of the part originating in the tetracarboxylic dianhydride and diamine which comprise one repeating unit. From these facts, the imide group concentration can be calculated based on the above-described formula (I). When there are a plurality of repeating units in the polyimide, after obtaining the imide group concentration of each repeating unit, the value obtained by multiplying the contents of each repeating unit multiplied by each other is taken as the polyimide imide group concentration. .
 例えば、下記の構造式(A)で表されるポリイミドの場合、イミド基部分の分子量は、点線で囲んだ箇所の分子量である。この場合、イミド基部分の分子量は、140.06(=70.03×2)となる。また、繰り返し単位の分子量は、372.11となる。したがって、イミド基濃度は、上述した(I)式に基づいて、37.8%(=(140.06/372.11)×100)となる。 For example, in the case of polyimide represented by the following structural formula (A), the molecular weight of the imide group portion is the molecular weight of a portion surrounded by a dotted line. In this case, the molecular weight of the imide group portion is 140.06 (= 70.03 × 2). The molecular weight of the repeating unit is 372.11. Therefore, the imide group concentration is 37.8% (= (140.06 / 372.11) × 100) based on the above-described formula (I).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 また、複数の繰り返し単位が存在する、下記の構造式(B)で表されるポリイミドの場合、繰り返し単位G1のイミド基濃度は、上述した(I)式に基づいて、37.8%(=(140.06)/(372.11)×100)である。繰り返し単位G2のイミド基濃度は、上述した(I)式に基づいて、23.4%(=(140.06)/(598.66)×100)である。また、繰り返し単位G1の含有数mと繰り返し単位G2の含有数nとは、m:n=90:10の関係にある。したがって、ポリイミドのイミド基濃度は、36.4%(=37.8%×0.90+23.4%×0.10)となる。 Further, in the case of a polyimide represented by the following structural formula (B) having a plurality of repeating units, the imide group concentration of the repeating unit G1 is 37.8% (= (140.06) / (372.11) × 100). The imide group concentration of the repeating unit G2 is 23.4% (= (140.06) / (598.66) × 100) based on the formula (I) described above. Further, the content number m of the repeating unit G1 and the content number n of the repeating unit G2 are in a relationship of m: n = 90: 10. Therefore, the imide group concentration of polyimide is 36.4% (= 37.8% × 0.90 + 23.4% × 0.10).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 本発明において、ポリイミドを含む樹脂膜のガラス転移温度(Tg)は、250℃以上であることが好ましい。何故ならば、樹脂膜の上にガスバリア層や導電層を形成する時の加熱工程で、この樹脂膜の変形が抑えられ、この結果、導電層の加工時の寸法精度がより向上するからである。ポリイミドを含む樹脂膜のガラス転移温度は、300℃以上であることがより好ましく、350℃以上であることが特に好ましい。 In the present invention, the glass transition temperature (Tg) of the resin film containing polyimide is preferably 250 ° C. or higher. This is because deformation of the resin film is suppressed in the heating step when forming the gas barrier layer or conductive layer on the resin film, and as a result, the dimensional accuracy during processing of the conductive layer is further improved. . The glass transition temperature of the resin film containing polyimide is more preferably 300 ° C. or higher, and particularly preferably 350 ° C. or higher.
 樹脂膜のガラス転移温度の測定方法としては、熱機械分析装置を用いた測定法(TMA法)が挙げられる。本発明においては、膜厚が10μm~20μmであり、幅が15mmであり、長さが30mmである樹脂膜小片を長さ方向に巻いて、直径が3mmであり、高さが15mmである円筒状のサンプルにし、このサンプルを、窒素気流下、圧縮モードで昇温レート5℃/minで加熱したときのTMA曲線の変曲点を樹脂膜のガラス転移温度とする。 Examples of a method for measuring the glass transition temperature of the resin film include a measurement method using a thermomechanical analyzer (TMA method). In the present invention, a resin film piece having a film thickness of 10 μm to 20 μm, a width of 15 mm, a length of 30 mm is wound in the length direction, and a cylinder having a diameter of 3 mm and a height of 15 mm The inflection point of the TMA curve when this sample is heated in a compressed mode in a nitrogen stream at a temperature rising rate of 5 ° C./min is defined as the glass transition temperature of the resin film.
 本発明において、導電層付きフィルムの樹脂膜に用いられるポリイミドは、下記一般式(1)で表される構造単位を含むことが好ましい。 In this invention, it is preferable that the polyimide used for the resin film of the film with a conductive layer contains the structural unit represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一般式(1)において、Rは、単環式もしくは縮合多環式の脂環構造を有する、炭素数4~40の4価の有機基、または、単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された、炭素数4~40の4価の有機基を示す。Rは、炭素数4~40の2価の有機基を示す。 In the general formula (1), R 1 is a monovalent or condensed polycyclic alicyclic structure, a tetravalent organic group having 4 to 40 carbon atoms, or an organic having a monocyclic alicyclic structure. A tetravalent organic group having 4 to 40 carbon atoms in which groups are linked to each other directly or via a crosslinked structure. R 2 represents a divalent organic group having 4 to 40 carbon atoms.
 ポリイミドが一般式(1)で表される構造単位を含むことにより、ポリイミドの熱膨張係数(CTE)が低くなる。そのため、ポリイミドを、導電層形成等のプロセスのために支持基板上に製膜した際、ポリイミドの反りが小さくなり、導電層の加工において寸法精度を向上させることができる。 When the polyimide contains the structural unit represented by the general formula (1), the thermal expansion coefficient (CTE) of the polyimide is lowered. Therefore, when polyimide is formed on a support substrate for a process such as formation of a conductive layer, the warp of the polyimide is reduced, and the dimensional accuracy can be improved in processing of the conductive layer.
 一般式(1)におけるRは、酸成分の構造を表す。Rにおける脂環構造は、一部の水素原子がハロゲンで置換されていてもよい。脂環構造を有する酸二無水物としては、特に限定されないが、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロペンタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、1,2,3,4-シクロヘプタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸二無水物、ビシクロ[4.3.0]ノナン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4.4.0]デカン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4.4.0]デカン-2,4,8,10-テトラカルボン酸二無水物、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタンテトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-5-カルボキシメチル-2,3,6-トリカルボン酸二無水物、7-オキサビシクロ[2.2.1]ヘプタン-2,4,6,8-テトラカルボン酸二無水物、オクタヒドロナフタレン-1,2,6,7-テトラカルボン酸二無水物、テトラデカヒドロアントラセン-1,2,8,9-テトラカルボン酸二無水物、3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物、3,3’,4,4’-オキシジシクロヘキサンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボンサン無水物、“リカシッド”(登録商標)BT-100(以上、商品名、新日本理化社製)、およびこれらの誘導体等が例示される。 R 1 in the general formula (1) represents the structure of the acid component. In the alicyclic structure in R 1 , some hydrogen atoms may be substituted with halogen. The acid dianhydride having an alicyclic structure is not particularly limited, but 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,4,5-cyclopentanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3 4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid Dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,2,3,4-cycloheptanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic acid Anhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro- 1-naphthalene succinic dianhydride, bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride, bicyclo [4.3.0] nonane-2,4,7, 9-tetracarboxylic dianhydride, bicyclo [4.4.0] decane-2,4,7,9-tetracarboxylic dianhydride, bicyclo [4.4.0] decane-2,4,8, 10-tetracarboxylic dianhydride, tricyclo [6.3.0.0 <2,6>] undecane-3,5,9,11-tetracarboxylic dianhydride, bicyclo [2.2.2] octane -2,3,5,6-tetracarboxylic dianhydride, Cyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.1] heptanetetracarboxylic dianhydride, bicyclo [2.2 .1] heptane-5-carboxymethyl-2,3,6-tricarboxylic dianhydride, 7-oxabicyclo [2.2.1] heptane-2,4,6,8-tetracarboxylic dianhydride, Octahydronaphthalene-1,2,6,7-tetracarboxylic dianhydride, tetradecahydroanthracene-1,2,8,9-tetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclo Hexanetetracarboxylic dianhydride, 3,3 ′, 4,4′-oxydicyclohexanetetracarboxylic dianhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3 -Cyclohexene-1,2- Carboxylic acid anhydrides, "RIKACID" (TM) BT-100 (trade names, manufactured by New Japan Chemical Co., Ltd.), and their derivatives, and the like.
 一般式(1)におけるRは、下記の構造式(11)~(16)で表される6つの構造の中から選ばれた1種類以上であることが好ましい。 R 1 in the general formula (1) is preferably at least one selected from six structures represented by the following structural formulas (11) to (16).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 これら6つの構造のうち、市販されており手に入れやすいという観点およびジアミン化合物との反応性の観点から、Rは、下記の構造式(17)~(19)で表される構造であることがより好ましい。Rにこれらのような構造を与える酸二無水物としては、例えば、1S,2S,4R,5R-シクロへキサンテトラカルボン酸二無水物(例えば、和光純薬工業社製、製品名「PMDA-HH」)、1R,2S,4S,5R-シクロへキサンテトラカルボン酸二無水物(例えば、和光純薬工業社製、製品名「PMDA-HS」)、1,2,3,4-シクロブタンテトラカルボン酸二無水物等が挙げられる。なお、これらの酸二無水物は、単独、または2種類以上を組み合わせて使用することができる。 Of these six structures, R 1 is a structure represented by the following structural formulas (17) to (19) from the viewpoint of being commercially available and easy to obtain and the reactivity with the diamine compound. It is more preferable. Examples of acid dianhydrides that give these structures to R 1 include 1S, 2S, 4R, 5R-cyclohexanetetracarboxylic dianhydride (for example, product name “PMDA” manufactured by Wako Pure Chemical Industries, Ltd.). -HH "), 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride (for example, product name" PMDA-HS "manufactured by Wako Pure Chemical Industries, Ltd.), 1,2,3,4-cyclobutane Tetracarboxylic dianhydride etc. are mentioned. In addition, these acid dianhydrides can be used individually or in combination of 2 or more types.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一般式(1)において、Rは、ジアミン成分の構造を表す。Rに用いられるジアミン化合物としては、特に限定されないが、芳香族ジアミン化合物、脂環式ジアミン化合物、または脂肪族ジアミン化合物が挙げられる。 In general formula (1), R 2 represents the structure of the diamine component. Examples of the diamine compound used in R 2, is not particularly limited, aromatic diamine compounds, alicyclic diamine compounds, or aliphatic diamine compounds.
 芳香族ジアミン化合物としては、特に限定されないが、1,4-ビス(4-アミノフェノキシ)ベンゼン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス{4-(4-アミノフェノキシフェニル)}スルホン、ビス{4-(3-アミノフェノキシフェニル)}スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3-アミノフェニル-4-アミノベンゼンスルホナート、4-アミノフェニル-4-アミノベンゼンスルホナート、あるいはこれらの化合物の芳香族環の一部をアルキル基、アルコキシ基、ハロゲン原子等で置換したジアミン化合物が挙げられる。 The aromatic diamine compound is not particularly limited, but 1,4-bis (4-aminophenoxy) benzene, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis {4- (4-aminophenoxyphenyl)} sulfone, bis {4- (3-aminophenoxyphenyl)} sulfone, bis (4-aminophenoxy) biphenyl, bis {4- (4-aminophenoxy) phenyl} ether, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane 3-aminophenyl-4-aminobenzenesulfonate, 4-aminophenyl-4-a Roh benzenesulfonate or an alkyl group part of an aromatic ring of these compounds, an alkoxy group, and a diamine compound substituted with a halogen atom or the like.
 脂環式ジアミン化合物としては、特に限定されないが、シクロブタンジアミン、イソホロンジアミン、ビシクロ[2.2.1]ヘプタンビスメチルアミン、トリシクロ[3.3.1.13,7]デカン-1,3-ジアミン、1,2-シクロヘキシルジアミン、1,3-シクロヘキシルジアミン、1,4-シクロヘキシルジアミン、4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルメタン、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、2,2-ビス(4-アミノシクロヘキシル)プロパン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3-エチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジメチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジエチル-4-アミノシクロヘキシル)プロパン、2,2-(3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシル)プロパン、2,2’-ビス(4-アミノシクロヘキシル)ヘキサフルオロプロパン、2,2’-ジメチル-4,4’-ジアミノビシクロへキサン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビシクロへキサン、あるいはこれらの化合物の脂肪族環の一部をアルキル基、アルコキシ基、ハロゲン原子等で置換したジアミン化合物が挙げられる。 The alicyclic diamine compound is not particularly limited, but is cyclobutanediamine, isophoronediamine, bicyclo [2.2.1] heptanebismethylamine, tricyclo [3.3.1.13,7] decane-1,3- Diamine, 1,2-cyclohexyldiamine, 1,3-cyclohexyldiamine, 1,4-cyclohexyldiamine, 4,4′-diaminodicyclohexylmethane, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 3, 3′-diethyl-4,4′-diaminodicyclohexylmethane, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodicyclohexylmethane, 3,3 ′, 5,5′-tetraethyl-4, 4'-diaminodicyclohexylmethane, 3,5-diethyl-3 ', 5'-dimethyl-4,4'- Aminodicyclohexylmethane, 4,4′-diaminodicyclohexyl ether, 3,3′-dimethyl-4,4′-diaminodicyclohexyl ether, 3,3′-diethyl-4,4′-diaminodicyclohexyl ether, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodicyclohexyl ether, 3,3 ′, 5,5′-tetraethyl-4,4′-diaminodicyclohexyl ether, 3,5-diethyl-3 ′, 5′- Dimethyl-4,4′-diaminodicyclohexyl ether, 2,2-bis (4-aminocyclohexyl) propane, 2,2-bis (3-methyl-4-aminocyclohexyl) propane, 2,2-bis (3-ethyl) -4-aminocyclohexyl) propane, 2,2-bis (3,5-dimethyl-4-aminocyclo) Xyl) propane, 2,2-bis (3,5-diethyl-4-aminocyclohexyl) propane, 2,2- (3,5-diethyl-3 ′, 5′-dimethyl-4,4′-diaminodicyclohexyl) Propane, 2,2'-bis (4-aminocyclohexyl) hexafluoropropane, 2,2'-dimethyl-4,4'-diaminobicyclohexane, 2,2'-bis (trifluoromethyl) -4,4 Examples include '-diaminobicyclohexane or diamine compounds in which a part of the aliphatic ring of these compounds is substituted with an alkyl group, an alkoxy group, a halogen atom, or the like.
 脂肪族ジアミン化合物としては、特に限定されないが、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン等のアルキレンジアミン類、ビス(アミノメチル)エーテル、ビス(2-アミノエチル)エーテル、ビス(3-アミノプロピル)エーテル等のエチレングリコールジアミン類、および1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン等のシロキサンジアミン類が挙げられる。 The aliphatic diamine compound is not particularly limited, but ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1 Alkylenediamines such as 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, etc. Ethylene glycol diamines, and 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, α, ω-bis (3-aminopropyl) poly Examples include siloxane diamines such as dimethylsiloxane.
 これらの芳香族ジアミン化合物、脂環式ジアミン化合物、および脂肪族ジアミン化合物は、単独、または2種類以上を組み合わせて使用することができる。 These aromatic diamine compounds, alicyclic diamine compounds, and aliphatic diamine compounds can be used alone or in combination of two or more.
 また、本発明において、導電層付きフィルムの樹脂膜に用いられるポリイミドは、下記一般式(2)で表される構造単位を含むことが好ましい。 In the present invention, the polyimide used for the resin film of the film with a conductive layer preferably contains a structural unit represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 一般式(2)において、Rは、炭素数4~40の4価の有機基を示す。Rは、単環式もしくは縮合多環式の脂環構造を有する、炭素数4~40の2価の有機基、または、単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された、炭素数4~40の2価の有機基、または、下記一般式(3)で表される2価の有機基を示す。 In the general formula (2), R 3 represents a tetravalent organic group having 4 to 40 carbon atoms. R 4 has a monocyclic or condensed polycyclic alicyclic structure, a divalent organic group having 4 to 40 carbon atoms, or an organic group having a monocyclic alicyclic structure directly or has a crosslinked structure. A divalent organic group having 4 to 40 carbon atoms or a divalent organic group represented by the following general formula (3), which are connected to each other.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 一般式(3)において、Xは、ハロゲン原子で置換されていてもよい、炭素数1~3の2価の炭化水素基である。ArおよびArは、各々独立に、炭素数4~40の2価の芳香族基を示す。 In the general formula (3), X 1 is a divalent hydrocarbon group having 1 to 3 carbon atoms which may be substituted with a halogen atom. Ar 1 and Ar 2 each independently represents a divalent aromatic group having 4 to 40 carbon atoms.
 ポリイミドが一般式(2)で表される構造単位を含むことにより、ポリイミドの熱膨張係数が低くなる。そのため、ポリイミドを、導電層形成等のプロセスのために支持基板上に製膜した際、ポリイミドの反りが小さくなり、導電層の加工において寸法精度を向上させることができる。 When the polyimide contains the structural unit represented by the general formula (2), the thermal expansion coefficient of the polyimide is lowered. Therefore, when polyimide is formed on a support substrate for a process such as formation of a conductive layer, the warp of the polyimide is reduced, and the dimensional accuracy can be improved in processing of the conductive layer.
 一般式(2)におけるRは、酸成分の構造を表す。Rに用いられる酸二無水物としては、特に限定されないが、前述の脂環構造を有する酸二無水物の他に、芳香族酸二無水物および脂肪族酸二無水物が挙げられる。 R 3 in the general formula (2) represents the structure of the acid component. As the acid dianhydride used for R 3, but are not limited to, in addition to the acid dianhydride having an alicyclic structure described above, the aromatic dianhydride and aliphatic acid dianhydride.
 芳香族酸二無水物としては、特に限定されないが、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ターフェニルテトラカルボン酸二無水物、3,3’,4,4’-オキシフタル酸二無水物、2,3,3’,4’-オキシフタル酸二無水物、2,3,2’,3’-オキシフタル酸二無水物、ジフェニルスルホン-3,3’,4,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンズフラン-5-カルボン酸)1,4-フェニレン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンニ無水物、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)ヘキサフルオロプロパン二無水物、2,2-ビス(4-(3,4-ジカルボキシベンゾイルオキシ)フェニル)ヘキサフルオロプロパン二無水物、1,6-ジフルオロプロメリット酸二無水物、1-トリフルオロメチルピロメリット酸二無水物、1,6-ジトリフルオロメチルピロメリット酸二無水物、2,2’-ビス(トリフルオロメチル)-4,4’-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン二無水物、4,4’-((9H-フルオレニル)ビス(4,1-フェニレンオキシカルボニル))ジフタル酸二無水物、“リカシッド”(登録商標)TMEG-100(商品名、新日本理化社製)等の芳香族テトラカルボン酸二無水物、およびこれらの誘導体等が挙げられる。 The aromatic dianhydride is not particularly limited, but pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyl Tetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-terphenyltetracarboxylic dianhydride, 3,3 ′, 4 , 4′-oxyphthalic dianhydride, 2,3,3 ′, 4′-oxyphthalic dianhydride, 2,3,2 ′, 3′-oxyphthalic dianhydride, diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic dianhydride, benzophenone-3,3 ′, 4,4′-tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propyl Bread dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (3,4-di Carboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (1,3-dioxo-1,3- Dihydroisobenzfuran-5-carboxylic acid) 1,4-phenylene, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2, 2-bi (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, 2,2-bis (4- (3,4-dicarboxyphenoxy) phenyl) hexafluoropropane dianhydride, 2,2-bis (4- (3,4-Dicarboxybenzoyloxy) phenyl) hexafluoropropane dianhydride, 1,6-difluoropromellitic dianhydride, 1-trifluoromethylpyromellitic dianhydride, 1,6-ditrifluoromethyl Pyromellitic dianhydride, 2,2′-bis (trifluoromethyl) -4,4′-bis (3,4-dicarboxyphenoxy) biphenyl dianhydride, 9,9-bis [4- (3 4-Dicarboxyphenoxy) phenyl] fluorene dianhydride, 4,4 ′-((9H-fluorenyl) bis (4,1-phenyleneoxycarbonyl)) di Examples thereof include phthalic dianhydrides, aromatic tetracarboxylic dianhydrides such as “Licacid” (registered trademark) TMEG-100 (trade name, manufactured by Shin Nippon Rika Co., Ltd.), and derivatives thereof.
 脂肪族酸二無水物としては、特に限定されないが、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-ペンタンテトラカルボン酸二無水物、およびこれらの誘導体等が挙げられる。 The aliphatic acid dianhydride is not particularly limited, but 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, and derivatives thereof Etc.
 一般式(2)において、Rは、ジアミン成分の構造を表す。Rに用いられるジアミン化合物、すなわち、脂環構造を有するジアミン化合物としては、特に限定されないが、シクロブタンジアミン、イソホロンジアミン、ビシクロ[2.2.1]ヘプタンビスメチルアミン、トリシクロ[3.3.1.13,7]デカン-1,3-ジアミン、1,2-シクロヘキシルジアミン、1,3-シクロヘキシルジアミン、1,4-シクロヘキシルジアミン、4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルメタン、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、2,2-ビス(4-アミノシクロヘキシル)プロパン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3-エチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジメチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジエチル-4-アミノシクロヘキシル)プロパン、2,2-(3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシル)プロパン、2,2’-ビス(4-アミノシクロヘキシル)ヘキサフルオロプロパン、2,2’-ジメチル-4,4’-ジアミノビシクロへキサン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビシクロへキサン、あるいはこれらの化合物の脂肪族環の一部をアルキル基、アルコキシ基、ハロゲン原子等で置換したジアミン化合物が挙げられる。 In the general formula (2), R 4 represents the structure of the diamine component. The diamine compound used for R 4 , that is, the diamine compound having an alicyclic structure is not particularly limited, but is cyclobutanediamine, isophoronediamine, bicyclo [2.2.1] heptanebismethylamine, tricyclo [3.3. 1.13,7] decane-1,3-diamine, 1,2-cyclohexyldiamine, 1,3-cyclohexyldiamine, 1,4-cyclohexyldiamine, 4,4'-diaminodicyclohexylmethane, 3,3'-dimethyl -4,4'-diaminodicyclohexylmethane, 3,3'-diethyl-4,4'-diaminodicyclohexylmethane, 3,3 ', 5,5'-tetramethyl-4,4'-diaminodicyclohexylmethane, 3, 3 ', 5,5'-tetraethyl-4,4'-diaminodicyclohexylmethane, 3,5-diethi -3 ', 5'-dimethyl-4,4'-diaminodicyclohexylmethane, 4,4'-diaminodicyclohexyl ether, 3,3'-dimethyl-4,4'-diaminodicyclohexyl ether, 3,3'-diethyl- 4,4'-diaminodicyclohexyl ether, 3,3 ', 5,5'-tetramethyl-4,4'-diaminodicyclohexyl ether, 3,3', 5,5'-tetraethyl-4,4'-diaminodicyclohexyl Ether, 3,5-diethyl-3 ′, 5′-dimethyl-4,4′-diaminodicyclohexyl ether, 2,2-bis (4-aminocyclohexyl) propane, 2,2-bis (3-methyl-4- Aminocyclohexyl) propane, 2,2-bis (3-ethyl-4-aminocyclohexyl) propane, 2,2-bis (3,5-dimethyl-4- Aminocyclohexyl) propane, 2,2-bis (3,5-diethyl-4-aminocyclohexyl) propane, 2,2- (3,5-diethyl-3 ′, 5′-dimethyl-4,4′-diaminodicyclohexyl Propane, 2,2'-bis (4-aminocyclohexyl) hexafluoropropane, 2,2'-dimethyl-4,4'-diaminobicyclohexane, 2,2'-bis (trifluoromethyl) -4, Examples thereof include 4′-diaminobicyclohexane, and diamine compounds in which a part of the aliphatic ring of these compounds is substituted with an alkyl group, an alkoxy group, a halogen atom, or the like.
 一般式(3)で表される構造を与えるジアミンとしては、特に限定されないが、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン等が挙げられる。 The diamine that gives the structure represented by the general formula (3) is not particularly limited, but 2,2-bis (3-aminophenyl) propane, 2,2-bis [4- (4-aminophenoxy) phenyl] Propane, 2,2-bis (3-aminophenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis [3- (3-aminobenzamide) -4-hydroxyphenyl] hexafluoropropane and the like.
 本発明において、導電層付きフィルムの樹脂膜に用いられるポリイミドは、下記一般式(4)で表される構造単位を主成分とし、かつ、下記一般式(5)で表される構造単位を当該ポリイミドの全構造単位の5mol%以上30mol%以下含むことが好ましい。 In the present invention, the polyimide used for the resin film of the film with a conductive layer has a structural unit represented by the following general formula (4) as a main component and the structural unit represented by the following general formula (5). It is preferable to contain 5 mol% or more and 30 mol% or less of the total structural unit of polyimide.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 一般式(4)、(5)において、Rは、単環式もしくは縮合多環式の脂環構造を有する、炭素数4~40の4価の有機基、または、単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された、炭素数4~40の4価の有機基を示す。R13は、下記一般式(6)で表される2価の有機基を示す。R14は、下記の構造式(7)または下記の構造式(8)で表される構造である。 In the general formulas (4) and (5), R 1 is a monovalent or condensed polycyclic alicyclic structure, a tetravalent organic group having 4 to 40 carbon atoms, or a monocyclic alicyclic ring. A tetravalent organic group having 4 to 40 carbon atoms in which organic groups having a structure are connected to each other directly or via a crosslinked structure. R 13 represents a divalent organic group represented by the following general formula (6). R 14 is a structure represented by the following structural formula (7) or the following structural formula (8).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 一般式(6)において、R15~R22は、各々独立に、水素原子、ハロゲン原子、または、ハロゲン原子で置換されていてもよい炭素数1~3の1価の有機基を示す。Xは、直接結合、酸素原子、硫黄原子、スルホニル基、ハロゲン原子で置換されていてもよい炭素数1~3の2価の有機基、エステル結合、アミド結合、およびスルフィド結合の中から選ばれる構造である。 In the general formula (6), R 15 to R 22 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 3 carbon atoms that may be substituted with a halogen atom. X 2 is selected from a direct bond, an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms which may be substituted with a halogen atom, an ester bond, an amide bond, and a sulfide bond. It is a structure.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 なお、構造式(8)中のオキサゾール環は、構造式(7)で表される構造から脱水閉環して生成される。 In addition, the oxazole ring in the structural formula (8) is generated by dehydration ring closure from the structure represented by the structural formula (7).
 ここで、「一般式(4)で表される構造単位を主成分とする」とは、一般式(4)で表される構造単位を、ポリイミドの全構造単位の合計量のうち、50mol%以上有することを意味する。ポリイミドが、一般式(4)で表される構造単位を主成分とすることにより、ポリイミドの熱膨張係数が低くなる。そのため、ポリイミドを、導電層形成等のプロセスのために支持基板上に製膜した際、ポリイミドの反りが小さくなり、導電層の加工において寸法精度を向上させることができる。 Here, “having the structural unit represented by the general formula (4) as a main component” means that the structural unit represented by the general formula (4) is 50 mol% in the total amount of all structural units of polyimide. It means having the above. When polyimide has the structural unit represented by the general formula (4) as a main component, the thermal expansion coefficient of polyimide is lowered. Therefore, when polyimide is formed on a support substrate for a process such as formation of a conductive layer, the warp of the polyimide is reduced, and the dimensional accuracy can be improved in processing of the conductive layer.
 なお、ポリイミドの全構造単位の合計量とは、具体的には、一般式(4)および一般式(5)で表される構造単位の合計量(mol基準)である。ポリイミドが一般式(4)および一般式(5)で表される構造単位以外の構造を含む場合は、上記合計量とは、一般式(4)および一般式(5)で表される構造単位と、一般式(4)および一般式(5)で表される構造単位以外の構造との合計量(mol基準)である。 The total amount of all structural units of polyimide is specifically the total amount (mol basis) of the structural units represented by the general formula (4) and the general formula (5). When the polyimide contains a structure other than the structural units represented by the general formula (4) and the general formula (5), the total amount is a structural unit represented by the general formula (4) and the general formula (5). And the total amount (mol basis) of the structure other than the structural unit represented by the general formula (4) and the general formula (5).
 本発明において、一般式(4)で表される構造単位の含有量は、ポリイミドの全構造単位の70mol%以上であることがさらに好ましい。 In the present invention, the content of the structural unit represented by the general formula (4) is more preferably 70 mol% or more of the total structural unit of polyimide.
 また、ポリイミドが、一般式(5)で表される構造単位を、全構造単位の5mol%以上30mol%以下含むことによって、樹脂膜の透明性を向上させつつポリイミドの熱膨張係数を低く保つことができる。これにより、導電層のパターン加工性を保ちつつ、導電層付きフィルム(延いては、これを含むタッチパネル)の色目を改善することができる。ポリイミド中の一般式(5)で表される構造単位(繰り返し構造単位)の含有量は、ポリイミドの全構造単位の10mol%以上25mol%以下であることが、さらに好ましい。 In addition, the polyimide contains the structural unit represented by the general formula (5) in an amount of 5 mol% or more and 30 mol% or less of the entire structural unit, thereby keeping the thermal expansion coefficient of the polyimide low while improving the transparency of the resin film. Can do. Thereby, the color of a film with a conductive layer (and a touch panel including this) can be improved while maintaining the pattern processability of the conductive layer. The content of the structural unit (repeating structural unit) represented by the general formula (5) in the polyimide is more preferably 10 mol% or more and 25 mol% or less of the total structural unit of the polyimide.
 一般式(4)および一般式(5)におけるRは、一般式(1)におけるRと同じであり、脂環構造を有する酸成分の構造を表す。Rの好ましい具体例は、上記の通りである。一般式(4)中のR13および一般式(5)中のR14は、ジアミン成分の構造を表す。 R 1 in the general formula (4) and the general formula (5) is the same as R 1 in the general formula (1) represents a structure of an acid component having an alicyclic structure. Preferred specific examples of R 1 are as described above. R 13 in the general formula (4) and R 14 in the general formula (5) represent the structure of the diamine component.
 R13に一般式(6)で表される構造を与えるジアミンとしては、特に限定されないが、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、ベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメチルベンジジン、2,2’,3,3’-テトラメチルベンジジン、4,4-ジアミノベンズアニリド、4-アミノ安息香酸-4-アミノフェニル、3,4-ジアミノベンズアニリド、4,4-ジアミノベンゾフェノン、3,3-ジアミノベンゾフェノン、あるいはこれらの化合物の芳香族環の一部をアルキル基、アルコキシ基、ハロゲン原子等で置換したジアミン化合物が挙げられる。 The diamine that gives the structure represented by the general formula (6) to R 13 is not particularly limited, but 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4, 4'-diaminodiphenylmethane, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2-bis (3-amino-4 -Methylphenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, benzidine, 2,2 '-Bis (trifluoromethyl) benzidine, 3,3'-bis (trifluoromethyl) ) Benzidine, 2,2'-dimethylbenzidine, 3,3'-dimethylbenzidine, 2,2 ', 3,3'-tetramethylbenzidine, 4,4-diaminobenzanilide, 4-aminobenzoic acid-4-amino Phenyl, 3,4-diaminobenzanilide, 4,4-diaminobenzophenone, 3,3-diaminobenzophenone, or diamine compounds obtained by substituting a part of the aromatic ring of these compounds with alkyl groups, alkoxy groups, halogen atoms, etc. Is mentioned.
 R13は、入手のし易さ、透明性、ポリイミドの熱膨張係数の低減の観点から、例えば、下記の構造式(20)~(23)で表される4つの構造の中から選ばれる1種類以上であることが好ましい。 R 13 is selected from, for example, four structures represented by the following structural formulas (20) to (23) from the viewpoint of availability, transparency, and reduction of the thermal expansion coefficient of polyimide. It is preferable that there are more types.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 本発明において、導電層付きフィルムの樹脂膜に用いられるポリイミドは、本発明の効果を妨げない範囲で、他の構造単位を含んでもよい。他の構造単位としては、ポリアミド酸の脱水閉環体であるポリイミド、ポリヒドロキシアミドの脱水閉環体ポリベンゾオキサゾール等が挙げられる。他の構造単位に用いられる酸二無水物としては、前述の芳香族酸二無水物または脂肪族酸二無水物が挙げられる。 In the present invention, the polyimide used for the resin film of the film with a conductive layer may contain other structural units as long as the effects of the present invention are not hindered. Examples of other structural units include polyimide, which is a polycyclic amide dehydration ring, polybenzoxazole, a polyhydroxyamide dehydration ring closure, and the like. Examples of the acid dianhydride used for the other structural unit include the above-mentioned aromatic acid dianhydride or aliphatic acid dianhydride.
 また、本発明において、導電層付きフィルムの樹脂膜に用いられるポリイミドは、このポリイミドを構成する酸二無水物残基およびジアミン残基のうち少なくとも一つの中に、下記一般式(9)で表される繰り返し構造を含有することが好ましい。 In the present invention, the polyimide used for the resin film of the film with a conductive layer is represented by the following general formula (9) in at least one of the acid dianhydride residue and the diamine residue constituting the polyimide. It is preferable to contain a repeating structure.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 一般式(9)において、R23およびR24は、各々独立に、炭素数1~20の1価の有機基を示す。mは、3~200の整数である。 In the general formula (9), R 23 and R 24 each independently represent a monovalent organic group having 1 to 20 carbon atoms. m is an integer of 3 to 200.
 ポリイミドが、酸二無水物残基およびジアミン残基のうち少なくとも一つの中に、一般式(9)で表される構造を含むことにより、このポリイミドを導電層形成等のプロセスのために支持基板上に製膜した際、ポリイミド樹脂膜の残留応力が低減される。そのため、ポリイミドの反りが小さくなり、導電層の加工において寸法精度を向上させることができる。 By including the structure represented by the general formula (9) in at least one of the acid dianhydride residue and the diamine residue, the polyimide is used as a support substrate for a process such as forming a conductive layer. When the film is formed on the top, the residual stress of the polyimide resin film is reduced. Therefore, the warp of the polyimide is reduced, and the dimensional accuracy can be improved in the processing of the conductive layer.
 ところで、導電層付きフィルムにおいては、フィルム上に静電気が発生し静電気放電(ESD)による断線が生じるという問題がある。これに対し、一般式(9)で表される構造を含むポリイミドは誘電率が低いため、このようなポリイミドを含む樹脂膜を備えた導電層付きフィルムでは、これを用いたタッチパネル等のデバイス中に電荷が蓄積しづらく、ESD耐性が高くなる。したがって、導電層付きフィルムの樹脂膜に用いられるポリイミドは、上述したように一般式(9)で表される繰り返し構造を含むことが好ましい。 By the way, in a film with a conductive layer, there is a problem that static electricity is generated on the film and disconnection due to electrostatic discharge (ESD) occurs. On the other hand, since the polyimide including the structure represented by the general formula (9) has a low dielectric constant, the film with a conductive layer including the resin film including such a polyimide is used in a device such as a touch panel using the polyimide. Therefore, it is difficult to accumulate charges on the substrate, and ESD resistance is increased. Therefore, it is preferable that the polyimide used for the resin film of the film with a conductive layer includes a repeating structure represented by the general formula (9) as described above.
 一般式(9)中のR23およびR24によって示される炭素数1~20の1価の有機基としては、例えば、炭素数1~20の1価の炭化水素基、炭素数1~20の1価のアミノアルキル基、アルコキシ基、エポキシ基等を挙げることができる。 Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R 23 and R 24 in the general formula (9) include, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms and a group having 1 to 20 carbon atoms. A monovalent aminoalkyl group, an alkoxy group, an epoxy group, and the like can be given.
 炭素数1~20の1価の炭化水素基としては、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基等が挙げられる。炭素数1~20のアルキル基としては、炭素数1~10のアルキル基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。炭素数3~20のシクロアルキル基としては、炭素数3~10のシクロアルキル基であることが好ましく、具体的には、シクロペンチル基、シクロヘキシル基等が挙げられる。炭素数6~20のアリール基としては、炭素数6~12のアリール基であることが好ましく、具体的には、フェニル基、トリル基、ナフチル基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. The alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, t- A butyl group, a pentyl group, a hexyl group, etc. are mentioned. The cycloalkyl group having 3 to 20 carbon atoms is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples include a cyclopentyl group and a cyclohexyl group. The aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, a tolyl group, and a naphthyl group.
 炭素数1~20の1価のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、フェノキシ基、プロペニルオキシ基およびシクロヘキシルオキシ基等が挙げられる。 Examples of the monovalent alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy group, phenoxy group, propenyloxy group, and cyclohexyloxy group.
 R23およびR24は、これらの中でも、炭素数1~3の1価の脂肪族炭化水素基、または炭素数6~10の芳香族基であることが好ましい。何故ならば、得られるポリイミド樹脂膜の耐熱性がより高く、残留応力がより低いからである。ここで、炭素数1~3の1価の脂肪族炭化水素基は、特に好ましくはメチル基である。炭素数6~10の芳香族基は、特に好ましくはフェニル基である。 Among these, R 23 and R 24 are preferably a monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms or an aromatic group having 6 to 10 carbon atoms. This is because the resulting polyimide resin film has higher heat resistance and lower residual stress. Here, the monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms is particularly preferably a methyl group. The aromatic group having 6 to 10 carbon atoms is particularly preferably a phenyl group.
 一般式(9)中のmは、好ましくは10~200の整数であり、より好ましくは20~150の整数であり、さらに好ましくは30~100の整数であり、特に好ましくは35~80の整数である。mが3以上である場合、ポリイミド樹脂膜の残留応力が低減されやすい。mが200以下である場合、ポリイミドを得るための組成物である、ポリイミド前駆体と溶媒とからなるワニスの白濁を抑制できる。 M in the general formula (9) is preferably an integer of 10 to 200, more preferably an integer of 20 to 150, still more preferably an integer of 30 to 100, and particularly preferably an integer of 35 to 80. It is. When m is 3 or more, the residual stress of the polyimide resin film tends to be reduced. When m is 200 or less, the cloudiness of the varnish which consists of a polyimide precursor and a solvent which is a composition for obtaining a polyimide can be suppressed.
 一般式(9)で表される繰り返し構造を含む酸二無水物の具体例としては、特に限定されないが、X22-168AS(信越化学社製、数平均分子量1,000)、X22-168A(信越化学社製、数平均分子量2,000)、X22-168B(信越化学社製、数平均分子量3,200)、X22-168-P5-8(信越化学社製、数平均分子量4,200)、DMS-Z21(ゲレスト社製、数平均分子量600~800)等が挙げられる。 Specific examples of the acid dianhydride having a repeating structure represented by the general formula (9) are not particularly limited, but X22-168AS (manufactured by Shin-Etsu Chemical Co., Ltd., number average molecular weight 1,000), X22-168A (Shin-Etsu) Chemical Company, number average molecular weight 2,000), X22-168B (manufactured by Shin-Etsu Chemical Co., Ltd., number average molecular weight 3,200), X22-168-P5-8 (manufactured by Shin-Etsu Chemical Co., Ltd., number average molecular weight 4,200), DMS-Z21 (manufactured by Gerest, number average molecular weight 600 to 800) and the like can be mentioned.
 一般式(9)で表される繰り返し構造を含むジアミンの具体例としては、特に限定されないが、両末端アミノ変性メチルフェニルシリコーン(信越化学社製;X22-1660B-3(数平均分子量4,400)、X22-9409(数平均分子量1,300))、両末端アミノ変性ジメチルシリコーン(信越化学社製;X22-161A(数平均分子量1,600)、X22-161B(数平均分子量3,000)、KF8012(数平均分子量4,400)、東レダウコーニング社製;BY16-835U(数平均分子量900)、チッソ社製;サイラプレーンFM3311(数平均分子量1000))等が挙げられる。 Specific examples of the diamine having a repeating structure represented by the general formula (9) are not particularly limited, but both terminal amino-modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .; X22-1660B-3 (number average molecular weight 4,400 ), X22-9409 (number average molecular weight 1,300)), both-end amino-modified dimethyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .; X22-161A (number average molecular weight 1,600), X22-161B (number average molecular weight 3,000)) KF8012 (number average molecular weight 4,400), manufactured by Toray Dow Corning; BY16-835U (number average molecular weight 900), manufactured by Chisso; Silaplane FM3311 (number average molecular weight 1000)).
 また、本発明において、導電層付きフィルムの樹脂膜に用いられるポリイミドは、トリアミン骨格を含むことが好ましい。ポリイミドがトリアミン骨格を含むことにより、このポリイミドの強靭性を向上させ、後工程の収率を向上させることができる。 In the present invention, the polyimide used for the resin film of the film with a conductive layer preferably contains a triamine skeleton. When the polyimide contains a triamine skeleton, the toughness of the polyimide can be improved and the yield of the subsequent process can be improved.
 トリアミン化合物の具体例には、脂肪族基を有さないものとして、2,4,4’-トリアミノジフェニルエーテル(TAPE)、1,3,5―トリス(4-アミノフェノキシ)ベンゼン(TAPOB)、トリス(4-アミノフェニル)アミン、1,3,5―トリス(4-アミノフェニル)ベンゼン、3,4,4’―トリアミノジフェニルエーテル等を挙げることができる。また、トリアミン化合物の具体例には、脂肪族を有するものとして、トリス(2-アミノエチル)アミン(TAEA)、トリス(3-アミノプロピル)アミン等を挙げることができる。これらの中でも、特に耐熱性向上の観点から、2,4,4’-トリアミノジフェニルエーテル、1,3,5―トリス(4-アミノフェノキシ)ベンゼンを用いることが好ましい。 Specific examples of the triamine compound include those having no aliphatic group, 2,4,4′-triaminodiphenyl ether (TAPE), 1,3,5-tris (4-aminophenoxy) benzene (TAPOB), Examples thereof include tris (4-aminophenyl) amine, 1,3,5-tris (4-aminophenyl) benzene, 3,4,4′-triaminodiphenyl ether and the like. Specific examples of triamine compounds include tris (2-aminoethyl) amine (TAEA), tris (3-aminopropyl) amine, and the like having aliphatic groups. Of these, 2,4,4'-triaminodiphenyl ether and 1,3,5-tris (4-aminophenoxy) benzene are preferably used from the viewpoint of improving heat resistance.
 本発明の導電層付きフィルムに用いられる樹脂膜の厚みは、導電層付きフィルムの強靭性(延いてはタッチパネルの強靱性)を向上させるという観点から、1μm以上であることが好ましく、2μm以上であることがより好ましく、5μm以上であることがさらに好ましい。一方、導電層付きフィルムの透明性をより向上させるという観点から、樹脂膜の厚みは、50μm以下であることが好ましく、40μm以下であることがより好ましく、30μm以下であることがさらに好ましい。 The thickness of the resin film used for the film with a conductive layer of the present invention is preferably 1 μm or more from the viewpoint of improving the toughness of the film with a conductive layer (and thus the toughness of the touch panel), and is preferably 2 μm or more. More preferably, it is 5 μm or more. On the other hand, from the viewpoint of further improving the transparency of the film with a conductive layer, the thickness of the resin film is preferably 50 μm or less, more preferably 40 μm or less, and even more preferably 30 μm or less.
 本発明の導電層付きフィルムに用いられる樹脂膜の波長450nmにおける透過率は、タッチパネルの画質を向上させるという観点から、85%以上であることが好ましい。また、150~350℃で熱処理した後の樹脂膜の波長450nmにおける透過率は、80%以上であることが好ましい。 The transmittance at a wavelength of 450 nm of the resin film used for the film with a conductive layer of the present invention is preferably 85% or more from the viewpoint of improving the image quality of the touch panel. Further, the transmittance at a wavelength of 450 nm of the resin film after heat treatment at 150 to 350 ° C. is preferably 80% or more.
 本発明の導電層付きフィルムに用いられる樹脂膜は、上記ポリイミドまたはその前駆体に、必要に応じて有機溶剤、界面活性剤、レベリング剤、密着改良剤、粘度調整剤、酸化防止剤、無機顔料、有機顔料、染料等を配合してなる樹脂組成物を用いて形成することができる。 The resin film used for the film with a conductive layer of the present invention is prepared by adding an organic solvent, a surfactant, a leveling agent, an adhesion improver, a viscosity modifier, an antioxidant, an inorganic pigment to the polyimide or a precursor thereof as necessary. It can be formed using a resin composition formed by blending organic pigments, dyes and the like.
 本発明の導電層付きフィルムに用いられる樹脂膜を得る方法の1つは、得ようとするポリイミドに対応する前駆体であるポリアミド酸をイミド閉環させることである。イミド化の方法としては、特に限定されず、熱イミド化や化学イミド化が挙げられる。中でも、ポリイミド樹脂膜の耐熱性、可視光領域での透明性の観点から、熱イミド化が好ましい One of the methods for obtaining a resin film used in the film with a conductive layer of the present invention is to imide ring closure of polyamic acid which is a precursor corresponding to the polyimide to be obtained. It does not specifically limit as a method of imidation, Thermal imidation and chemical imidation are mentioned. Among these, thermal imidization is preferable from the viewpoint of heat resistance of the polyimide resin film and transparency in the visible light region.
 ポリアミド酸、ポリアミド酸エステル、ポリアミド酸シリルエステル等のポリイミド前駆体は、ジアミン化合物と、酸二無水物またはその誘導体との重合反応により合成することができる。酸二無水物の誘導体としては、酸二無水物のテトラカルボン酸、そのテトラカルボン酸のモノエステル、ジエステル、トリエステルまたはテトラエステル、酸塩化物等が挙げられる。具体的には、酸二無水物の誘導体として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等でエステル化された構造のものが挙げられる。上記重合反応の反応方法は、目的のポリイミド前駆体が製造できれば特に制限はなく、公知の反応方法を用いることができる。 Polyimide precursors such as polyamic acid, polyamic acid ester, and polyamic acid silyl ester can be synthesized by a polymerization reaction between a diamine compound and an acid dianhydride or a derivative thereof. Examples of the acid dianhydride derivative include tetracarboxylic acid of acid dianhydride, monoester, diester, triester or tetraester of the tetracarboxylic acid, and acid chloride. Specifically, acid dianhydride derivatives having a structure esterified with methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, etc. Is mentioned. The reaction method of the polymerization reaction is not particularly limited as long as the target polyimide precursor can be produced, and a known reaction method can be used.
 上記重合反応の具体的な反応方法としては、所定量の全てのジアミン成分および溶剤を反応器に仕込み、ジアミンを溶解させた後、所定量の酸二無水物成分を仕込み、室温~80℃で0.5~30時間撹拌する方法等が挙げられる。 As a specific reaction method of the above polymerization reaction, a predetermined amount of all diamine components and a solvent are charged into a reactor, and after dissolving the diamine, a predetermined amount of acid dianhydride component is charged at room temperature to 80 ° C. Examples thereof include a method of stirring for 0.5 to 30 hours.
 本発明において、導電層付きフィルムの樹脂膜に用いられるポリイミドおよびポリイミド前駆体は、分子量を好ましい範囲に調整するために、末端封止剤により両末端を封止してもよい。酸二無水物と反応する末端封止剤としては、モノアミンや1価のアルコール等が挙げられる。また、ジアミン化合物と反応する末端封止剤としては、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物、二炭酸エステル類、ビニルエーテル類等が挙げられる。また、ポリイミドまたはポリイミド前駆体の両末端に末端封止剤を反応させることにより、これらの両末端に末端基として種々の有機基を導入することができる。末端封止剤には、公知の化合物を用いることができる。 In the present invention, the polyimide and polyimide precursor used for the resin film of the film with a conductive layer may be sealed at both ends with a terminal sealing agent in order to adjust the molecular weight to a preferred range. Examples of the terminal blocking agent that reacts with the acid dianhydride include monoamines and monohydric alcohols. Examples of the end-capping agent that reacts with the diamine compound include acid anhydrides, monocarboxylic acids, monoacid chloride compounds, monoactive ester compounds, dicarbonates, and vinyl ethers. Moreover, various organic groups can be introduce | transduced as a terminal group in these both terminal by making terminal blocker react with both terminals of a polyimide or a polyimide precursor. A well-known compound can be used for terminal blocker.
 酸無水物基側の末端封止剤の導入割合は、酸二無水物成分に対して、0.1~60モル%の範囲内であることが好ましく、0.5~50モル%の範囲内であることがより好ましい。また、アミノ基側の末端封止剤の導入割合は、ジアミン成分に対して、0.1~100モル%の範囲内であることが好ましく、0.5~70モル%の範囲内であることがより好ましい。ポリイミドまたはポリイミド前駆体の両末端に複数の末端封止剤を反応させることにより、これらの両末端に複数の異なる末端基を導入してもよい。 The introduction ratio of the terminal blocking agent on the acid anhydride group side is preferably in the range of 0.1 to 60 mol%, preferably in the range of 0.5 to 50 mol%, relative to the acid dianhydride component. It is more preferable that The introduction ratio of the terminal blocking agent on the amino group side is preferably in the range of 0.1 to 100 mol%, and preferably in the range of 0.5 to 70 mol% with respect to the diamine component. Is more preferable. You may introduce | transduce a several different terminal group into these both terminal by making a some terminal blocker react with the both terminal of a polyimide or a polyimide precursor.
 ポリイミド前駆体やポリイミドに導入された末端封止剤は、以下の方法で容易に検出することができる。例えば、末端封止剤が導入されたポリマーを酸性溶液に溶解し、ポリマーの構成単位であるアミン成分と酸無水成分とに分解する。これらをガスクロマトグラフィー(GC)や、NMRを用いて測定することにより、末端封止剤を容易に検出することができる。その他に、末端封止剤が導入されたポリマーを直接、熱分解ガスクロマトグラフィー(PGC)や赤外スペクトル、H NMRスペクトルおよび13C NMRスペクトル等の測定に供しても、末端封止剤を容易に検出可能である。 The end sealant introduced into the polyimide precursor or polyimide can be easily detected by the following method. For example, a polymer into which a terminal blocking agent has been introduced is dissolved in an acidic solution and decomposed into an amine component and an acid anhydride component that are constituent units of the polymer. By measuring these using gas chromatography (GC) or NMR, the end-capping agent can be easily detected. In addition, if the polymer into which the end-capping agent is introduced is directly subjected to measurement of pyrolysis gas chromatography (PGC), infrared spectrum, 1 H NMR spectrum, 13 C NMR spectrum, etc. It can be easily detected.
 ポリイミドを含む樹脂膜を得るための組成物(以下、「ポリイミド樹脂組成物」という)には、ポリイミドまたはポリイミド前駆体の他にも、適当な成分が含まれていてもよい。ポリイミド樹脂組成物に含まれていてもよい成分としては、特に限定されないが、紫外線吸収剤、熱架橋剤、無機フィラー、界面活性剤、内部剥離剤、着色剤等が挙げられる。これらは、それぞれ公知の化合物を用いることができる。 The composition for obtaining a resin film containing polyimide (hereinafter referred to as “polyimide resin composition”) may contain an appropriate component in addition to the polyimide or the polyimide precursor. The component that may be contained in the polyimide resin composition is not particularly limited, and examples thereof include an ultraviolet absorber, a thermal crosslinking agent, an inorganic filler, a surfactant, an internal release agent, and a colorant. Each of these can be a known compound.
 本発明において、例えば、「炭素数4~40の4価の有機基」とは、炭素数が4~40である4価の有機基を意味する。炭素数を規定している他の基についても、これと同様である。 In the present invention, for example, “a tetravalent organic group having 4 to 40 carbon atoms” means a tetravalent organic group having 4 to 40 carbon atoms. The same applies to other groups that define the number of carbon atoms.
(ガスバリア層)
 本発明の実施の形態に係る導電層付きフィルムは、図1に図示したガスバリア層2に例示されるように、ガスバリア層を有する。本発明におけるガスバリア層とは、基板となる樹脂膜上に形成され、樹脂膜と環境中の気体とが直接接触することを防ぐ機能を有する層のことをいう。導電性粒子を含有する導電層を樹脂膜上に形成する際に、酸素の存在下、200℃以上の高温が樹脂膜にかかる。そのため、ガスバリア層がないと、樹脂膜に熱酸化による黄変が発生し、これに起因して、導電層付きフィルムの色目が悪化する。樹脂膜と導電層との間にガスバリア層を形成することで、酸素雰囲気下での加熱時に樹脂膜と酸素とが接触するのを防ぐことができる。そうして、黄変の無い色目が優れた導電層付きフィルムを得ることができる。
(Gas barrier layer)
The film with a conductive layer according to the embodiment of the present invention has a gas barrier layer as exemplified by the gas barrier layer 2 illustrated in FIG. The gas barrier layer in the present invention refers to a layer that is formed on a resin film serving as a substrate and has a function of preventing direct contact between the resin film and environmental gases. When the conductive layer containing conductive particles is formed on the resin film, a high temperature of 200 ° C. or higher is applied to the resin film in the presence of oxygen. Therefore, if there is no gas barrier layer, yellowing due to thermal oxidation occurs in the resin film, resulting in deterioration of the color of the film with a conductive layer. By forming a gas barrier layer between the resin film and the conductive layer, it is possible to prevent the resin film and oxygen from contacting each other during heating in an oxygen atmosphere. Thus, a film with a conductive layer excellent in color without yellowing can be obtained.
 ガスバリア層を構成する材料としては、導電層形成時に酸素の透過を防ぐものであれば、有機材料であっても無機材料であってもよいが、酸素バリア性の観点から無機材料が好ましい。この無機材料としては、金属酸化物、金属窒化物、金属酸窒化物および金属炭窒化物が挙げられる。これらに含まれる金属元素としては、例えば、アルミニウム(Al)、ケイ素(Si)、チタン(Ti)、錫(Sn)、亜鉛(Zn)、ジルコニウム(Zr)、インジウム(In)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、カルシウム(Ca)等が挙げられる。 The material constituting the gas barrier layer may be an organic material or an inorganic material as long as it prevents the permeation of oxygen when forming the conductive layer, but an inorganic material is preferable from the viewpoint of oxygen barrier properties. Examples of the inorganic material include metal oxide, metal nitride, metal oxynitride, and metal carbonitride. Examples of the metal element contained in these include aluminum (Al), silicon (Si), titanium (Ti), tin (Sn), zinc (Zn), zirconium (Zr), indium (In), and niobium (Nb). , Molybdenum (Mo), tantalum (Ta), calcium (Ca), and the like.
 特に、ガスバリア層は、珪素酸化物、珪素窒化物、珪素酸窒化物および珪素炭窒化物のうち少なくとも一つを含むことが好ましい。何故ならば、これらの材料をガスバリア層の形成に用いることで、均一で緻密なガスバリアの膜が得やすくなり、ガスバリア層の酸素バリア性がより向上するからである。 In particular, the gas barrier layer preferably contains at least one of silicon oxide, silicon nitride, silicon oxynitride, and silicon carbonitride. This is because by using these materials for forming the gas barrier layer, a uniform and dense gas barrier film can be easily obtained, and the oxygen barrier property of the gas barrier layer is further improved.
 また、酸素バリア性がより向上するという観点から、ガスバリア層は、SiOxNyで表される成分を含むことが好ましい。x、yは、0<x≦1、0.55≦y≦1、0≦x/y≦1を満たす値である。 Also, from the viewpoint of further improving the oxygen barrier property, the gas barrier layer preferably contains a component represented by SiOxNy. x and y are values satisfying 0 <x ≦ 1, 0.55 ≦ y ≦ 1, and 0 ≦ x / y ≦ 1.
 ガスバリア層は、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法等の、気相中より材料を堆積させて膜を形成する気相堆積法により、作製することができる。中でも、より均一で酸素バリア性の高い膜が得られることから、スパッタリング法もしくはプラズマCVD法を用いるのが好ましい。 The gas barrier layer can be produced by a vapor deposition method in which a film is formed by depositing a material from the vapor phase, such as a sputtering method, a vacuum deposition method, an ion plating method, or a plasma CVD method. Among them, it is preferable to use a sputtering method or a plasma CVD method because a more uniform film having a high oxygen barrier property can be obtained.
 ガスバリア層の層数に制限は無く、1層だけでもよいし、2層以上の多層でもよい。ガスバリア層が多層膜である場合の例としては、1層目がSiNからなり且つ2層目がSiOからなるガスバリア層や、1層目がSiONからなり且つ2層目がSiOからなるガスバリア層等が挙げられる。 The number of gas barrier layers is not limited, and may be only one layer or a multilayer of two or more layers. Examples of when the gas barrier layer is a multilayer film include a gas barrier layer in which the first layer is made of SiN and the second layer is made of SiO, a gas barrier layer in which the first layer is made of SiON and the second layer is made of SiO, etc. Is mentioned.
 本発明においては、ガスバリア層が2層以上に積層された無機膜であり、その無機膜のうち導電層と接する層が、SiOz(zは、0.5≦z≦2を満たす値である。)で表される成分で形成されることが好ましい。何故ならば、導電層加工時(特にフォトリソグラフィーを利用した場合の現像時)におけるガスバリア層の耐薬品性が向上し、また、導電層のパターン加工性および寸法精度の向上、残渣の抑制等の効果が得られるからである。 In the present invention, the gas barrier layer is an inorganic film laminated in two or more layers, and the layer in contact with the conductive layer among the inorganic films is SiOz (z is a value satisfying 0.5 ≦ z ≦ 2. It is preferable to form with the component represented by this. This is because the chemical resistance of the gas barrier layer at the time of processing the conductive layer (particularly during development using photolithography) is improved, and the pattern processability and dimensional accuracy of the conductive layer is improved, and the residue is suppressed. This is because an effect can be obtained.
 ガスバリア層の合計の厚みは、酸素バリア性向上の観点から、10nm以上であることが好ましく、50nm以上であることがさらに好ましい。一方、導電層付きフィルムの曲げ耐性を向上させるという観点から、ガスバリア層の合計の厚みは、1μm以下であることが好ましく、200nm以下であることがさらに好ましい。 The total thickness of the gas barrier layer is preferably 10 nm or more, and more preferably 50 nm or more, from the viewpoint of improving the oxygen barrier property. On the other hand, from the viewpoint of improving the bending resistance of the film with a conductive layer, the total thickness of the gas barrier layer is preferably 1 μm or less, and more preferably 200 nm or less.
(導電層)
 本発明の実施の形態に係る導電層付きフィルムは、図1に図示した導電層3Aに例示されるように、導電性粒子を含有する導電層を有する。導電層は、線幅が0.1~9μmである網目構造を有することが好ましい。線幅が0.1~9μmである網目構造を導電層が有することにより、導電層の導電性および視認性を向上させることができる。導電層の網目構造の線幅は、0.5μm以上であることがより好ましく、1μm以上であることがさらに好ましい。一方、導電層の網目構造の線幅は、7μm以下であることがより好ましく、6μm以下であることがさらに好ましい。
(Conductive layer)
The film with a conductive layer according to the embodiment of the present invention has a conductive layer containing conductive particles as exemplified by the conductive layer 3A illustrated in FIG. The conductive layer preferably has a network structure with a line width of 0.1 to 9 μm. When the conductive layer has a network structure with a line width of 0.1 to 9 μm, the conductivity and visibility of the conductive layer can be improved. The line width of the network structure of the conductive layer is more preferably 0.5 μm or more, and further preferably 1 μm or more. On the other hand, the line width of the network structure of the conductive layer is more preferably 7 μm or less, and further preferably 6 μm or less.
 また、導電層の膜厚は、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.3μm以上であることがさらに好ましい。一方、導電層の膜厚は、5μm以下であることが好ましく、3μm以下であることがより好ましく、1μm以下であることがさらに好ましい。 The film thickness of the conductive layer is preferably 0.1 μm or more, more preferably 0.2 μm or more, and further preferably 0.3 μm or more. On the other hand, the thickness of the conductive layer is preferably 5 μm or less, more preferably 3 μm or less, and even more preferably 1 μm or less.
 導電層に含まれる導電性粒子としては、例えば、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)、錫(Sn)、ビスマス(Bi)、鉛(Pb)、亜鉛(Zn)、パラジウム(Pd)、白金(Pt)、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)等の金属粒子、および炭素を有する金属粒子が挙げられる。炭素を有する金属粒子とは、例えば、カーボンブラックと金属との複合体である。この導電性粒子として、これらを2種類以上用いてもよい。中でも、金、銀、銅、ニッケル、錫、ビスマス、鉛、亜鉛、パラジウム、白金またはアルミニウムの金属粒子、および、炭素を有する金属粒子が好ましく、銀粒子がより好ましい。 Examples of the conductive particles contained in the conductive layer include gold (Au), silver (Ag), copper (Cu), nickel (Ni), tin (Sn), bismuth (Bi), lead (Pb), zinc ( Examples thereof include metal particles such as Zn), palladium (Pd), platinum (Pt), aluminum (Al), tungsten (W), and molybdenum (Mo), and metal particles having carbon. The metal particles having carbon are, for example, a composite of carbon black and metal. Two or more of these may be used as the conductive particles. Among these, gold, silver, copper, nickel, tin, bismuth, lead, zinc, palladium, platinum or aluminum metal particles and carbon-containing metal particles are preferable, and silver particles are more preferable.
 導電性粒子の1次粒子径は、所望の導電性を有する微細な導電パターンを形成するため、10~200nmであることが好ましく、10~60nmであることがより好ましい。ここで、導電性粒子の1次粒子径は、導電層の断面を走査型電子顕微鏡により観察して無作為に100個の粒子を選択し、各粒子の1次粒子径を測定して、それらの算術平均値をとることにより算出する。なお、各粒子の1次粒子の粒子径は、1次粒子において最も径の長い部分と短い部分との算術平均値とする。 The primary particle diameter of the conductive particles is preferably 10 to 200 nm and more preferably 10 to 60 nm in order to form a fine conductive pattern having desired conductivity. Here, the primary particle size of the conductive particles is determined by observing the cross section of the conductive layer with a scanning electron microscope, selecting 100 particles at random, and measuring the primary particle size of each particle. It is calculated by taking the arithmetic average value of In addition, let the particle diameter of the primary particle of each particle | grain be an arithmetic mean value of the longest part and short part in a primary particle.
 導電層中における導電性粒子の含有量は、導電性を向上させるという観点から、20質量%以上であることが好ましく、50質量%以上であることがより好ましく、65質量%以上であることがさらに好ましい。一方、この導電性粒子の含有量は、パターン加工性を向上させるという観点から、95質量%以下であることが好ましく、90質量%以下であることがより好ましい。 From the viewpoint of improving conductivity, the content of the conductive particles in the conductive layer is preferably 20% by mass or more, more preferably 50% by mass or more, and 65% by mass or more. Further preferred. On the other hand, the content of the conductive particles is preferably 95% by mass or less, and more preferably 90% by mass or less from the viewpoint of improving pattern processability.
 また、導電層は、有機化合物を0.1~80質量%含有することが好ましい。導電層が有機化合物を0.1質量%以上含有することにより、導電層に柔軟性を付与し、導電層の曲げ耐性をより向上させることができる。導電層中の有機化合物の含有量は、1質量%以上であることが好ましく、5質量%以上であることがより好ましい。一方、導電層が有機化合物を80質量%以下含有することにより、導電性を向上させることができる。導電層中の有機化合物の含有量は、50質量%以下であることがより好ましく、35質量%以下であることがさらに好ましい。 The conductive layer preferably contains 0.1 to 80% by mass of an organic compound. When the conductive layer contains 0.1% by mass or more of the organic compound, the conductive layer can be given flexibility and the bending resistance of the conductive layer can be further improved. The content of the organic compound in the conductive layer is preferably 1% by mass or more, and more preferably 5% by mass or more. On the other hand, when the conductive layer contains 80% by mass or less of the organic compound, the conductivity can be improved. The content of the organic compound in the conductive layer is more preferably 50% by mass or less, and further preferably 35% by mass or less.
 導電層に含まれる有機化合物としては、アルカリ可溶性樹脂が好ましい。アルカリ可溶性樹脂としては、カルボキシル基を有する(メタ)アクリル系共重合体が好ましい。ここで、(メタ)アクリル系共重合体とは、(メタ)アクリル系モノマーと他のモノマーとの共重合体をいう。 As the organic compound contained in the conductive layer, an alkali-soluble resin is preferable. As the alkali-soluble resin, a (meth) acrylic copolymer having a carboxyl group is preferable. Here, the (meth) acrylic copolymer refers to a copolymer of a (meth) acrylic monomer and another monomer.
 (メタ)アクリル系モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、アリル(メタ)アクリレート、ベンジル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブトキシトリエチレングリコール(メタ)アクリレート、シクロへキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、イソボニル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、イソデキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ステアリル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、(メタ)アクリルアミド、アミノエチル(メタ)アクリレート、フェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、チオフェノール(メタ)アクリレート、ベンジルメルカプタン(メタ)アクリレートが挙げられる。 Examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) ) Acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, allyl (meth) acrylate, benzyl (meth) acrylate, butoxyethyl (meth) acrylate, butoxytriethylene glycol (meth) ) Acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, glycerol (meth) acrylate Relate, glycidyl (meth) acrylate, heptadecafluorodecyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, isobornyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, isodexyl (meth) acrylate, isooctyl (meth) ) Acrylate, lauryl (meth) acrylate, 2-methoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, octafluoropentyl (meth) acrylate, phenoxyethyl (meth) acrylate, stearyl ( (Meth) acrylate, trifluoroethyl (meth) acrylate, (meth) acrylamide, aminoethyl (meth) acrylate, phenyl ( Data) acrylate, 1-naphthyl (meth) acrylate, 2-naphthyl (meth) acrylate, thiophenol (meth) acrylate, benzyl mercaptan (meth) acrylate.
 他のモノマーとしては、炭素-炭素二重結合を有する化合物が挙げられ、例えば、スチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、α-メチルスチレン等の芳香族ビニル化合物、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ビニルピロリドン等のアミド系不飽和化合物、(メタ)アクリロニトリル、アリルアルコール、酢酸ビニル、シクロヘキシルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテルが挙げられる。 Examples of the other monomer include compounds having a carbon-carbon double bond. For example, aromatic vinyl compounds such as styrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, α-methylstyrene, ( Amide unsaturated compounds such as (meth) acrylamide, N-methylol (meth) acrylamide, N-vinylpyrrolidone, (meth) acrylonitrile, allyl alcohol, vinyl acetate, cyclohexyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n- Examples include butyl vinyl ether, i-butyl vinyl ether, 2-hydroxyethyl vinyl ether, and 4-hydroxybutyl vinyl ether.
 アルカリ可溶性樹脂に、アルカリ可溶性を付与するカルボキシル基を導入するためには、例えば、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、これらの酸無水物等を、上記(メタ)アクリル系モノマーと共重合する方法が挙げられる。 In order to introduce a carboxyl group imparting alkali solubility to the alkali-soluble resin, for example, (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, acid anhydrides thereof, etc. ) A method of copolymerizing with an acrylic monomer.
 (メタ)アクリル系共重合体は、硬化反応の速度を大きくするという観点から、側鎖または分子末端に炭素-炭素二重結合を有することが好ましい。炭素-炭素二重結合を有する官能基としては、例えば、ビニル基、アリル基、(メタ)アクリル基等が挙げられる。 The (meth) acrylic copolymer preferably has a carbon-carbon double bond in the side chain or molecular end from the viewpoint of increasing the speed of the curing reaction. Examples of the functional group having a carbon-carbon double bond include a vinyl group, an allyl group, and a (meth) acryl group.
 アルカリ可溶性樹脂のカルボン酸当量は、400~1,000g/molであることが好ましい。アクリル可溶性樹脂のカルボン酸当量は、酸価を測定することにより算出することができる。また、アルカリ可溶性樹脂の二重結合当量は、硬度と耐クラック性とを高いレベルで両立できるため、150~10,000g/molであることが好ましい。アクリル可溶性樹脂の二重結合当量は、ヨウ素価を測定することにより算出することができる。 The carboxylic acid equivalent of the alkali-soluble resin is preferably 400 to 1,000 g / mol. The carboxylic acid equivalent of the acrylic soluble resin can be calculated by measuring the acid value. In addition, the double bond equivalent of the alkali-soluble resin is preferably 150 to 10,000 g / mol because both hardness and crack resistance can be achieved at a high level. The double bond equivalent of the acrylic soluble resin can be calculated by measuring the iodine value.
 アルカリ可溶性樹脂の重量平均分子量(Mw)は、1,000~100,000であることが好ましい。重量平均分子量を上記範囲内のものとすることにより、アルカリ可溶性樹脂の良好な塗布特性が得られ、導電層をパターン形成する際における現像液へのアルカリ可溶性樹脂の溶解性も良好となる。ここで、アルカリ可溶性樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されるポリスチレン換算値を言う。 The weight average molecular weight (Mw) of the alkali-soluble resin is preferably 1,000 to 100,000. By setting the weight average molecular weight within the above range, good coating characteristics of the alkali-soluble resin can be obtained, and the solubility of the alkali-soluble resin in the developer during pattern formation of the conductive layer can be improved. Here, the weight average molecular weight of the alkali-soluble resin refers to a polystyrene equivalent value measured by gel permeation chromatography (GPC).
 また、導電層は、有機スズ化合物および金属キレート化合物のうち少なくとも一つを含有してもよい。導電層が有機スズ化合物および金属キレート化合物のうち少なくとも一つを含有することにより、導電層とガスバリア層との密着をより向上させることができる。特に、金属キレート化合物は、有機スズ化合物と比較して、環境負荷をかけずに密着性向上効果が得られることからより好ましい。有機スズ化合物および金属キレート化合物には、公知の化合物を用いることができる。 The conductive layer may contain at least one of an organic tin compound and a metal chelate compound. When the conductive layer contains at least one of an organotin compound and a metal chelate compound, adhesion between the conductive layer and the gas barrier layer can be further improved. In particular, a metal chelate compound is more preferable because an adhesion improving effect can be obtained without applying an environmental load as compared with an organotin compound. Known compounds can be used as the organotin compound and the metal chelate compound.
 導電層中における有機スズ化合物および金属キレート化合物の合計含有量は、基板密着性をより向上させるという観点から、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。一方、これら有機スズ化合物および金属キレート化合物の合計含有量は、導電層の導電性を向上させ、より微細なパターンを形成するという観点から、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることがさらに好ましい。 The total content of the organotin compound and the metal chelate compound in the conductive layer is preferably 0.01% by mass or more and more preferably 0.05% by mass or more from the viewpoint of further improving the substrate adhesion. More preferably, it is more preferably 0.1% by mass or more. On the other hand, the total content of the organotin compound and the metal chelate compound is preferably 10% by mass or less from the viewpoint of improving the conductivity of the conductive layer and forming a finer pattern. More preferably, it is more preferably 3% by mass or less.
 導電層は、他に、分散剤、光重合開始剤、モノマー、光酸発生剤、熱酸発生剤、溶剤、増感剤、可視光に吸収を有する顔料および染料のうち少なくとも一つ、密着改良剤、界面活性剤、重合禁止剤等を含有することが好ましい。 In addition to the conductive layer, at least one of a dispersant, a photopolymerization initiator, a monomer, a photoacid generator, a thermal acid generator, a solvent, a sensitizer, a pigment and a dye that absorb visible light, and adhesion improvement It is preferable to contain an agent, a surfactant, a polymerization inhibitor and the like.
 また、本発明における導電層は、導電性組成物を用いて、形成することができる。この導電性組成物に含まれる成分としては、例えば、導電性粒子、アルカリ可溶性樹脂、有機スズ化合物、金属キレート化合物、分散剤、光重合開始剤、モノマー、光酸発生剤、熱酸発生剤、溶剤、増感剤、可視光に吸収を有する顔料および染料のうち少なくとも一つ、密着改良剤、界面活性剤または重合禁止剤等が挙げられる。 In addition, the conductive layer in the present invention can be formed using a conductive composition. Examples of the components contained in the conductive composition include conductive particles, alkali-soluble resins, organotin compounds, metal chelate compounds, dispersants, photopolymerization initiators, monomers, photoacid generators, thermal acid generators, Examples thereof include at least one of a solvent, a sensitizer, a pigment and a dye that absorb visible light, an adhesion improver, a surfactant, or a polymerization inhibitor.
 導電性組成物が含有する導電性粒子は、その粒子表面の少なくとも一部に被覆層を有することが好ましい。これにより、導電性粒子の表面活性を低下させて、導電性粒子同士の反応および導電性粒子と有機成分との反応のうち少なくとも一方を抑制し、導電性粒子の分散性を向上させることができる。さらに、導電層の加工にフォトリソグラフィーを用いた場合でも、露光光の散乱を抑制し、導電層を高精度にパターン加工することができる。一方、この導電性粒子表面の被覆層は、酸素の存在下、150~350℃程度の高温で加熱することにより容易に除去され得る。この結果、導電性組成物中の導電性粒子は、導電層の十分な導電性を発現することができる。 The conductive particles contained in the conductive composition preferably have a coating layer on at least a part of the particle surface. Thereby, the surface activity of the conductive particles can be reduced, and at least one of the reaction between the conductive particles and the reaction between the conductive particles and the organic component can be suppressed, and the dispersibility of the conductive particles can be improved. . Furthermore, even when photolithography is used for processing the conductive layer, scattering of exposure light can be suppressed and the conductive layer can be patterned with high accuracy. On the other hand, the coating layer on the surface of the conductive particles can be easily removed by heating at a high temperature of about 150 to 350 ° C. in the presence of oxygen. As a result, the conductive particles in the conductive composition can exhibit sufficient conductivity of the conductive layer.
 導電性粒子表面の被覆層は、炭素および炭素化合物のうち少なくとも一つを含むことが好ましい。この被覆層が炭素および炭素化合物のうち少なくとも一つを含むことにより、導電性組成物中での導電性粒子の分散性をさらに向上させることができる。 The coating layer on the surface of the conductive particles preferably contains at least one of carbon and a carbon compound. When this coating layer contains at least one of carbon and a carbon compound, the dispersibility of the conductive particles in the conductive composition can be further improved.
 導電性粒子表面に、炭素および炭素化合物のうち少なくとも一つを含む被覆層を形成する方法としては、例えば、熱プラズマ法により、メタンガス等の炭素を有する反応性ガスと、導電性粒子とを接触させる方法(特開2007-138287号公報に記載の方法)等が挙げられる。 As a method for forming a coating layer containing at least one of carbon and a carbon compound on the surface of the conductive particles, for example, a reactive gas having carbon such as methane gas is brought into contact with the conductive particles by a thermal plasma method. And the like (the method described in JP 2007-138287 A) and the like.
(絶縁層)
 本発明の実施の形態に係る導電層付きフィルムは、導電層上に、アルカリ可溶性樹脂から形成される絶縁層を有することが好ましい。本発明におけるアルカリ可溶性とは、0.045質量%の水酸化カリウム水溶液(100g)に対して、25℃で0.1g以上溶解することをいう。アルカリ可溶性樹脂から形成される絶縁層は、フォトリソグラフィーによりパターン加工することができ、それにより導電層の導通のための開口部を形成できるため、好ましい。
(Insulating layer)
The film with a conductive layer according to the embodiment of the present invention preferably has an insulating layer formed from an alkali-soluble resin on the conductive layer. The alkali-soluble in the present invention means that 0.1 g or more dissolves at 25 ° C. in a 0.045 mass% potassium hydroxide aqueous solution (100 g). An insulating layer formed of an alkali-soluble resin is preferable because it can be patterned by photolithography, thereby forming an opening for conduction of the conductive layer.
 また、本発明の実施の形態に係る導電層付きフィルムは、導電層上に、前述の(メタ)アクリル系共重合体を含むアルカリ可溶性樹脂から形成される絶縁層を有することが好ましい。何故ならば、アルカリ可溶性樹脂中の(メタ)アクリル系共重合体により、絶縁層の柔軟性が高まるからである。 In addition, the film with a conductive layer according to the embodiment of the present invention preferably has an insulating layer formed on the conductive layer from an alkali-soluble resin containing the above-mentioned (meth) acrylic copolymer. This is because the flexibility of the insulating layer is increased by the (meth) acrylic copolymer in the alkali-soluble resin.
 さらに、本発明の実施の形態に係る導電層付きフィルムは、導電層上に、下記の構造式(10)で表される構造を2つ以上有するカルド系樹脂を含むアルカリ可溶性樹脂から形成される絶縁層を有することが好ましい。何故ならば、カルド系樹脂が絶縁層の疎水性を高め、これにより、絶縁層の絶縁性を向上させることができるからである。 Furthermore, the film with a conductive layer according to the embodiment of the present invention is formed from an alkali-soluble resin containing a cardo resin having two or more structures represented by the following structural formula (10) on the conductive layer. It is preferable to have an insulating layer. This is because the cardo resin increases the hydrophobicity of the insulating layer, thereby improving the insulating property of the insulating layer.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 カルド系樹脂は、例えば、エポキシ化合物と、ラジカル重合性基を含有する有機酸との反応物を、さらに酸二無水物と反応させることにより得ることができる。エポキシ化合物とラジカル重合性基を含有する有機酸との反応、およびエポキシ化合物と酸二無水物との反応に用いる触媒としては、例えば、アンモニウム系触媒、アミン系触媒、リン系触媒、クロム系触媒等が挙げられる。アンモニウム系触媒としては、例えば、テトラブチルアンモニウムアセテート等が挙げられる。アミン系触媒としては、例えば、2,4,6-トリス(ジメチルアミノメチル)フェノールもしくはジメチルベンジルアミン等が挙げられる。リン系触媒としては、例えば、トリフェニルホスフィン等が挙げられる。クロム系触媒としては、例えば、アセチルアセトネートクロム、塩化クロム等が挙げられる。また、エポキシ化合物としては、例えば、以下の化合物が挙げられる。 The cardo resin can be obtained, for example, by further reacting a reaction product of an epoxy compound and an organic acid containing a radical polymerizable group with an acid dianhydride. Examples of the catalyst used for the reaction between an epoxy compound and an organic acid containing a radical polymerizable group and the reaction between the epoxy compound and acid dianhydride include, for example, an ammonium catalyst, an amine catalyst, a phosphorus catalyst, and a chromium catalyst. Etc. Examples of the ammonium-based catalyst include tetrabutylammonium acetate. Examples of the amine catalyst include 2,4,6-tris (dimethylaminomethyl) phenol or dimethylbenzylamine. Examples of the phosphorus catalyst include triphenylphosphine. Examples of the chromium-based catalyst include acetylacetonate chromium and chromium chloride. Moreover, as an epoxy compound, the following compounds are mentioned, for example.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 ラジカル重合性基を含有する有機酸としては、例えば、(メタ)アクリル酸、コハク酸モノ(2-(メタ)アクリロイルオキシエチル)、フタル酸モノ(2-(メタ)アクリロイルオキシエチル)、テトラヒドロフタル酸モノ(2-(メタ)アクリロイルオキシエチル)、p-ヒドロキシスチレン等が挙げられる。 Examples of the organic acid containing a radical polymerizable group include (meth) acrylic acid, mono (2- (meth) acryloyloxyethyl) succinate, mono (2- (meth) acryloyloxyethyl) phthalate, tetrahydrophthal Examples include acid mono (2- (meth) acryloyloxyethyl) and p-hydroxystyrene.
 酸二無水物としては、硬化膜の耐薬品性向上の観点から、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物等が好ましい。また、酸二無水物の分子量を調整するという目的で、酸二無水物の一部を酸無水物に置き換えたものを使用することもできる。 Examples of acid dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, from the viewpoint of improving the chemical resistance of the cured film. 4-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride and the like are preferable. In addition, for the purpose of adjusting the molecular weight of the acid dianhydride, it is possible to use one obtained by replacing a part of the acid dianhydride with an acid anhydride.
 また、構造式(10)で表される構造を2つ以上有するカルド系樹脂としては、市販品を好ましく用いることができる。このカルド系樹脂の市販品としては、例えば、「WR-301(商品名)」(ADEKA社製)、「V-259ME(商品名)」(新日鉄住金化学社製)、「オグゾールCR-TR1(商品名)」、「オグゾールCR-TR2(商品名)」、「オグゾールCR-TR3(商品名)」、「オグゾールCR-TR4(商品名)」、「オグゾールCR-TR5(商品名)」、「オグゾールCR-TR6(商品名)」(以上、大阪ガスケミカル社製)等が挙げられる。 Further, as the cardo resin having two or more structures represented by the structural formula (10), commercially available products can be preferably used. Examples of commercially available cardo resins include “WR-301 (trade name)” (manufactured by ADEKA), “V-259ME (trade name)” (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), “Ogsol CR-TR1 ( “Product Name)”, “Ogsol CR-TR2 (Product Name)”, “Ogsol CR-TR3 (Product Name)”, “Ogsol CR-TR4 (Product Name)”, “Ogsol CR-TR5 (Product Name)”, “ OGSOL CR-TR6 (trade name) "(manufactured by Osaka Gas Chemical Co., Ltd.).
 (メタ)アクリル系共重合体およびカルド系樹脂の重量平均分子量は、それぞれ、塗布特性を向上させるという観点から、2,000以上であることが好ましい。また、これらの重量平均分子量は、それぞれ、絶縁層のパターン形成における現像液への絶縁層の溶解性を向上させるという観点から、200,000以下であることが好ましい。ここで、重量平均分子量は、GPCで測定されるポリスチレン換算値を言う。 The weight average molecular weights of the (meth) acrylic copolymer and the cardo resin are each preferably 2,000 or more from the viewpoint of improving coating properties. Moreover, these weight average molecular weights are each preferably 200,000 or less from the viewpoint of improving the solubility of the insulating layer in the developer in the pattern formation of the insulating layer. Here, a weight average molecular weight says the polystyrene conversion value measured by GPC.
 また、絶縁層が(メタ)アクリル系共重合体およびカルド系樹脂をともに含有する場合、(メタ)アクリル系共重合体の重量平均分子量(Mw(A1))と、カルド系樹脂の重量平均分子量(Mw(A2))との比(Mw(A2)/Mw(A1))は、層分離を抑制して均一な硬化膜を形成するという観点から、0.14以上であることが好ましい。一方、この比(Mw(A2)/Mw(A1))は、層分離を抑制して均一な硬化膜を形成するという観点から、1.5以下であることが好ましく、1.0以下であることがより好ましい。 When the insulating layer contains both the (meth) acrylic copolymer and the cardo resin, the weight average molecular weight (Mw (A1)) of the (meth) acrylic copolymer and the weight average molecular weight of the cardo resin The ratio (Mw (A2) / Mw (A1)) to (Mw (A2)) is preferably 0.14 or more from the viewpoint of suppressing layer separation and forming a uniform cured film. On the other hand, this ratio (Mw (A2) / Mw (A1)) is preferably 1.5 or less, and preferably 1.0 or less from the viewpoint of suppressing layer separation and forming a uniform cured film. It is more preferable.
 本発明における絶縁層は、アルカリ可溶性樹脂を含む絶縁性組成物を用いて、形成することができる。この絶縁性組成物に含まれるアルカリ可溶性樹脂の含有量は、所望の膜厚や用途により任意に選択することができるが、固形分の100質量部に対して、10質量部以上、70質量部以下とすることが一般的である。 The insulating layer in the present invention can be formed using an insulating composition containing an alkali-soluble resin. The content of the alkali-soluble resin contained in this insulating composition can be arbitrarily selected depending on the desired film thickness and application, but it is 10 parts by mass or more and 70 parts by mass with respect to 100 parts by mass of the solid content. Generally, it is as follows.
 上記の絶縁性組成物は、ヒンダードアミン系光安定剤を含有してもよい。上記の絶縁性組成物がヒンダードアミン系光安定剤を含有することで、絶縁層の着色をより低減することができるとともに、絶縁層の耐侯性を向上させることができる。 The above-mentioned insulating composition may contain a hindered amine light stabilizer. When said insulating composition contains a hindered amine light stabilizer, coloring of an insulating layer can be reduced more and the weather resistance of an insulating layer can be improved.
 上記の絶縁性組成物は、さらに必要に応じて、多官能モノマー、硬化剤、紫外線吸収剤、重合禁止剤、密着改良剤、溶剤、界面活性剤、溶解抑止剤、安定剤、消泡剤等の添加剤を含有することもできる。 The above-mentioned insulating composition further includes a polyfunctional monomer, a curing agent, an ultraviolet absorber, a polymerization inhibitor, an adhesion improver, a solvent, a surfactant, a dissolution inhibitor, a stabilizer, an antifoaming agent, etc. It is also possible to contain these additives.
<タッチパネル>
 本発明の実施の形態に係るタッチパネルは、図2、3に図示したタッチパネル10に例示されるように、本発明の導電層付きフィルムを有するものである。本発明において、導電層付きフィルムの導電層は、タッチパネルの配線層(例えば図2、3に示した第一の配線層3)である。本発明のタッチパネルは、図2、3に例示したように、ガスバリア層上の配線層(第一の配線層)の上に絶縁層(第一の絶縁層)を有し、この絶縁層上に第二の配線層を有する。本発明のタッチパネルは、さらに、上記第二の配線層の、第一の絶縁層と接している面と反対側(すなわち上面側)に、第二の絶縁層を有してもよい。本発明のタッチパネルは、このように第二の絶縁層を有することにより、大気中の水分が第二の配線層に到達することを抑制することができる。この結果、タッチパネルの信頼性をより向上させることができる。
<Touch panel>
The touch panel according to the embodiment of the present invention includes the film with a conductive layer of the present invention as exemplified by the touch panel 10 illustrated in FIGS. In the present invention, the conductive layer of the film with a conductive layer is a wiring layer of the touch panel (for example, the first wiring layer 3 shown in FIGS. 2 and 3). As illustrated in FIGS. 2 and 3, the touch panel of the present invention has an insulating layer (first insulating layer) on the wiring layer (first wiring layer) on the gas barrier layer. A second wiring layer; The touch panel of the present invention may further include a second insulating layer on the side opposite to the surface in contact with the first insulating layer (that is, the upper surface side) of the second wiring layer. Since the touch panel of the present invention has the second insulating layer as described above, moisture in the atmosphere can be prevented from reaching the second wiring layer. As a result, the reliability of the touch panel can be further improved.
 本発明のタッチパネルにおいて、第一の絶縁層および第二の絶縁層は、それぞれ同じ材料で構成されていてよいし、異なる材料で構成されていてもよい。また、第一の絶縁層および第二の絶縁層の膜厚は、絶縁性をより向上させるという観点から、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましい。一方、第一の絶縁層および第二の絶縁層の膜厚は、これらの透明性をより向上させるという観点から、10μm以下であることが好ましく、3μm以下であることがより好ましい。 In the touch panel of the present invention, the first insulating layer and the second insulating layer may be made of the same material or different materials. Further, the film thicknesses of the first insulating layer and the second insulating layer are preferably 0.1 μm or more, and more preferably 0.5 μm or more, from the viewpoint of further improving the insulating properties. On the other hand, the film thicknesses of the first insulating layer and the second insulating layer are preferably 10 μm or less, and more preferably 3 μm or less, from the viewpoint of further improving their transparency.
 このようなタッチパネルに適用される導電層付きフィルム(すなわち本発明の実施の形態に係る導電層付きフィルム)の厚みは、1~40μmであることが好ましい。導電層付きフィルムの厚みをこの範囲内の厚みとすることにより、導電層付きフィルムの製造工程における破れや反り等の不具合を抑制し、導電層付きフィルムの歩留まり(延いてはタッチパネルの歩留まり)を向上させることができる。また、本発明のタッチパネルをフレキシブルタッチパネルとして使用した際の折り曲げに対する形状の追随性が格段に向上する。本発明において、タッチパネルの厚みは、3μm以上であることがより好ましく、5μm以上であることがさらに好ましい。一方、タッチパネルの厚みは、30μm以下であることがより好ましく、25μm以下であることがさらに好ましい。 The thickness of the film with a conductive layer applied to such a touch panel (that is, the film with a conductive layer according to the embodiment of the present invention) is preferably 1 to 40 μm. By setting the thickness of the film with a conductive layer to a thickness within this range, defects such as tearing and warping in the production process of the film with a conductive layer are suppressed, and the yield of the film with a conductive layer (and hence the yield of the touch panel) is reduced. Can be improved. Moreover, the followability of the shape with respect to bending at the time of using the touch panel of this invention as a flexible touch panel improves markedly. In the present invention, the thickness of the touch panel is more preferably 3 μm or more, and further preferably 5 μm or more. On the other hand, the thickness of the touch panel is more preferably 30 μm or less, and further preferably 25 μm or less.
 本発明の実施の形態に係る導電層付きフィルムは、国際照明委員会1976に規定される、L*a*b*表色系によるb*の値が、-5~5であることが好ましい。b*の値をこの範囲内の値とすることにより、導電層付きフィルムおよびこれを用いたタッチパネルの過度な色度調整が不要となり、この結果、ディスプレイの視認性をより向上させることができる。本発明において、b*の値は、-4~4であることがより好ましく、-3~3であることがさらに好ましい。 The film with a conductive layer according to the embodiment of the present invention preferably has a b * value of −5 to 5 according to the L * a * b * color system defined by the International Lighting Commission 1976. By setting the value of b * to a value within this range, excessive chromaticity adjustment of a film with a conductive layer and a touch panel using the same becomes unnecessary, and as a result, the visibility of the display can be further improved. In the present invention, the value of b * is more preferably −4 to 4, and further preferably −3 to 3.
<導電層付きフィルムを含むタッチパネルの製造方法>
 本発明の実施の形態に係る導電層付きフィルムを含むタッチパネルの製造方法は、この導電層付きフィルムの製造方法を用いたものである。この導電層付きフィルムの製造方法は、樹脂膜形成工程と、ガスバリア層形成工程と、導電層形成工程と、剥離工程と、を少なくとも含む。樹脂膜形成工程は、支持基板上に、ポリイミドを含む樹脂膜を形成する工程である。ガスバリア層形成工程は、この樹脂膜の上にガスバリア層を形成する工程である。導電層形成工程は、このガスバリア層の上に導電層を形成する工程である。剥離工程は、この支持基板から、上記ガスバリア層および導電層等が形成された後の樹脂膜を剥離する工程である。本発明において、タッチパネルの製造方法は、導電層付きフィルムの製造方法における導電層形成工程として、配線層形成工程を含む。配線層形成工程は、上記ガスバリア層の上に、導電層として配線層を形成する工程である。
<Manufacturing method of touch panel including film with conductive layer>
The manufacturing method of the touchscreen containing the film with a conductive layer which concerns on embodiment of this invention uses this manufacturing method of a film with a conductive layer. This method for producing a film with a conductive layer includes at least a resin film forming step, a gas barrier layer forming step, a conductive layer forming step, and a peeling step. The resin film forming step is a step of forming a resin film containing polyimide on the support substrate. The gas barrier layer forming step is a step of forming a gas barrier layer on the resin film. The conductive layer forming step is a step of forming a conductive layer on the gas barrier layer. The peeling step is a step of peeling the resin film after the gas barrier layer and the conductive layer are formed from the support substrate. In this invention, the manufacturing method of a touch panel includes a wiring layer formation process as a conductive layer formation process in the manufacturing method of a film with a conductive layer. The wiring layer forming step is a step of forming a wiring layer as a conductive layer on the gas barrier layer.
 図4は、本発明の実施の形態に係る導電層付きフィルムを含むタッチパネルの製造方法の一例を示す工程図である。本実施の形態におけるタッチパネルの製造方法では、樹脂膜形成工程と、ガスバリア層形成工程と、第一の配線層形成工程と、第一の絶縁層形成工程と、第二の配線層形成工程と、第二の絶縁層形成工程と、剥離工程とが、この順に順次行われる。 FIG. 4 is a process diagram showing an example of a method for manufacturing a touch panel including a film with a conductive layer according to an embodiment of the present invention. In the method for manufacturing a touch panel in the present embodiment, a resin film forming step, a gas barrier layer forming step, a first wiring layer forming step, a first insulating layer forming step, a second wiring layer forming step, The second insulating layer forming step and the peeling step are sequentially performed in this order.
 詳細には、まず、樹脂膜形成工程において、図4の状態S1に示すように、支持基板7上に、前述のポリイミドを含む樹脂膜1が形成される。次に、ガスバリア層形成工程において、図4の状態S2に示すように、この樹脂膜1上にガスバリア層2が形成される。次に、第一の配線層形成工程において、図4の状態S3に示すように、このガスバリア層2の上に第一の配線層3が形成される。次に、第一の絶縁層形成工程において、図4の状態S4に示すように、ガスバリア層2の上に、この第一の配線層3を覆うように第一の絶縁層4が形成される。次に、第二の配線層形成工程において、図4の状態S5に示すように、第一の絶縁層4の上(本実施の形態ではガスバリア層2および第一の絶縁層4の上)に第二の配線層5が形成される。次に、第二の絶縁層形成工程において、図4の状態S6に示すように、ガスバリア層2の上に、この第二の配線層5を覆うように第二の絶縁層6が形成される。その後、剥離工程において、図4の状態S7に示すように、樹脂膜1とガスバリア層2との積層構造体が、そのカット端面8でカットされる。ついで、この積層構造体の樹脂膜1が支持基板7から機械剥離される。このようにして、タッチパネル10が得られる。以下、これらの各工程について詳細に説明する。 Specifically, first, in the resin film forming step, as shown in the state S1 in FIG. 4, the resin film 1 containing polyimide is formed on the support substrate 7. Next, in the gas barrier layer forming step, the gas barrier layer 2 is formed on the resin film 1 as shown in the state S2 of FIG. Next, in the first wiring layer forming step, the first wiring layer 3 is formed on the gas barrier layer 2 as shown in a state S3 in FIG. Next, in the first insulating layer forming step, the first insulating layer 4 is formed on the gas barrier layer 2 so as to cover the first wiring layer 3 as shown in a state S4 in FIG. . Next, in the second wiring layer formation step, on the first insulating layer 4 (on the gas barrier layer 2 and the first insulating layer 4 in the present embodiment) as shown in the state S5 in FIG. A second wiring layer 5 is formed. Next, in the second insulating layer forming step, the second insulating layer 6 is formed on the gas barrier layer 2 so as to cover the second wiring layer 5 as shown in a state S6 in FIG. . Thereafter, in the peeling step, as shown in a state S7 in FIG. 4, the laminated structure of the resin film 1 and the gas barrier layer 2 is cut at the cut end face 8. Next, the resin film 1 of this laminated structure is mechanically peeled from the support substrate 7. In this way, the touch panel 10 is obtained. Hereinafter, each of these steps will be described in detail.
 (樹脂膜形成工程)
 樹脂膜形成工程は、上述したように、支持基板7上に、ポリイミドを含む樹脂膜1を形成する工程である。この樹脂膜形成工程は、前述のポリイミド樹脂組成物を支持基板7上に塗布する塗布工程と、この支持基板7上のポリイミド樹脂組成物を乾燥するプリベーク工程と、この乾燥後のポリイミド樹脂組成物をキュアするキュア工程とを含むことが好ましい。
(Resin film forming process)
The resin film forming step is a step of forming the resin film 1 containing polyimide on the support substrate 7 as described above. The resin film forming step includes a coating step of applying the polyimide resin composition described above on the support substrate 7, a prebaking step of drying the polyimide resin composition on the support substrate 7, and a polyimide resin composition after drying. And a curing step for curing.
 支持基板7としては、例えば、シリコンウェハ、セラミックス基板、有機系基板等が挙げられる。セラミックス基板としては、例えば、ソーダガラス、無アルカリガラス、ホウケイ酸ガラス、石英ガラス等のガラス基板、アルミナ基板、窒化アルミニウム基板、炭化ケイ素基板等が挙げられる。有機系基板としては、例えば、エポキシ基板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板、ポリイミドフィルム、ポリエステルフィルム等が好適に挙げられる。 Examples of the support substrate 7 include a silicon wafer, a ceramic substrate, and an organic substrate. Examples of the ceramic substrate include glass substrates such as soda glass, non-alkali glass, borosilicate glass, and quartz glass, alumina substrates, aluminum nitride substrates, and silicon carbide substrates. Suitable examples of the organic substrate include an epoxy substrate, a polyetherimide resin substrate, a polyether ketone resin substrate, a polysulfone resin substrate, a polyimide film, and a polyester film.
 ポリイミド樹脂組成物を支持基板7上に塗布する方法としては、例えば、スピンコーター、バーコーター、ブレードコーター、ロールコーター、ダイコーター、カレンダーコーター、メニスカスコーターを用いた塗布、スクリーン印刷、スプレー塗布、ディップコート等が挙げられる。 Examples of the method for applying the polyimide resin composition onto the support substrate 7 include application using a spin coater, bar coater, blade coater, roll coater, die coater, calendar coater, meniscus coater, screen printing, spray coating, and dip. A coat etc. are mentioned.
 プリベーク工程およびキュア工程における加熱方法としては、例えば、ホットプレート、熱風乾燥機(オーブン)、減圧乾燥、真空乾燥または赤外線照射による加熱等が挙げられる。 Examples of the heating method in the pre-bake process and the curing process include a hot plate, a hot air dryer (oven), vacuum drying, vacuum drying, or heating by infrared irradiation.
 プリベーク工程におけるポリイミド樹脂組成物のプリベークの温度および時間は、対象とするポリイミド樹脂組成物の組成や、乾燥する塗布膜(ポリイミド樹脂組成物の塗布膜)の膜厚によって適宜決定すればよい。例えば、本発明におけるプリベーク工程では、50~150℃の温度範囲で10秒~30分間、塗布膜を加熱することが好ましい。 The pre-baking temperature and time of the polyimide resin composition in the pre-baking step may be appropriately determined depending on the composition of the target polyimide resin composition and the film thickness of the coating film to be dried (polyimide resin composition coating film). For example, in the prebaking step in the present invention, it is preferable to heat the coating film at a temperature range of 50 to 150 ° C. for 10 seconds to 30 minutes.
 キュア工程におけるポリイミド樹脂組成物のキュアの雰囲気、温度および時間は、対象とするポリイミド樹脂組成物の組成や、キュアする塗布膜(ポリイミド樹脂組成物の塗布膜)の膜厚によって適宜決定すればよい。加熱による膜の黄変を抑制するという観点から、このキュア工程では、支持基板7上のポリイミド樹脂組成物の塗布膜を、酸素濃度が1000ppm以下である雰囲気下において300℃以上500℃以下の温度で、5~180分間、加熱して、樹脂膜1を形成することが好ましい。 The curing atmosphere, temperature and time of the polyimide resin composition in the curing step may be appropriately determined depending on the composition of the target polyimide resin composition and the film thickness of the coating film to be cured (polyimide resin composition coating film). . From the viewpoint of suppressing yellowing of the film due to heating, in this curing step, the polyimide resin composition coating film on the support substrate 7 is heated to a temperature of 300 ° C. or more and 500 ° C. or less in an atmosphere having an oxygen concentration of 1000 ppm or less. It is preferable to form the resin film 1 by heating for 5 to 180 minutes.
(ガスバリア層形成工程)
 ガスバリア層形成工程は、上述したように、樹脂膜1の上にガスバリア層2を形成する工程である。このガスバリア層形成工程におけるガスバリア層2の形成方法としては、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法等の、気相中より材料を堆積させて膜を形成する気相堆積法が挙げられる。中でも、より均一で酸素バリア性の高い膜(ガスバリア層2)が得られることから、スパッタリング法もしくはプラズマCVD法を用いるのが好ましい。
(Gas barrier layer formation process)
The gas barrier layer forming step is a step of forming the gas barrier layer 2 on the resin film 1 as described above. As a method for forming the gas barrier layer 2 in this gas barrier layer forming step, for example, a gas phase in which a film is formed by depositing a material from the gas phase, such as a sputtering method, a vacuum evaporation method, an ion plating method, or a plasma CVD method. Deposition methods are mentioned. Among them, it is preferable to use a sputtering method or a plasma CVD method because a more uniform film (gas barrier layer 2) having a high oxygen barrier property can be obtained.
 本発明で樹脂膜1に好ましく用いられるポリイミド樹脂はガラス転移温度が高いので、ガスバリア層2を形成するときの基板温度(支持基板7の温度)を上げることも可能である。基板温度が高いほど、ガスバリア層2の結晶性が向上するので、ガスバリア性能が向上する。一方、ガスバリア層2の製膜温度が高すぎると、ガスバリア層2の曲げ耐性が低下する。これらの観点から、ガスバリア層2の製膜温度の下限としては、80℃以上が好ましく、100℃以上がより好ましい。また、ガスバリア層2の製膜温度の上限としては、400℃以下が好ましく、350℃以下がより好ましい。 Since the polyimide resin preferably used for the resin film 1 in the present invention has a high glass transition temperature, it is possible to increase the substrate temperature (the temperature of the support substrate 7) when the gas barrier layer 2 is formed. Since the crystallinity of the gas barrier layer 2 is improved as the substrate temperature is higher, the gas barrier performance is improved. On the other hand, if the film forming temperature of the gas barrier layer 2 is too high, the bending resistance of the gas barrier layer 2 is lowered. From these viewpoints, the lower limit of the film forming temperature of the gas barrier layer 2 is preferably 80 ° C. or higher, and more preferably 100 ° C. or higher. Moreover, as an upper limit of the film forming temperature of the gas barrier layer 2, 400 degrees C or less is preferable and 350 degrees C or less is more preferable.
(第一の配線層形成工程)
 第一の配線層形成工程は、上述したように、ガスバリア層2の上に第一の配線層3を形成する工程である。この第一の配線層形成工程は、前述の導電性組成物をガスバリア層2上に塗布する塗布工程と、この導電性組成物の塗布膜を乾燥するプリベーク工程と、この乾燥した塗布膜(プリベーク膜)を露光および現像してメッシュパターンを形成する工程(露光工程および現像工程)と、このパターン形成したプリベーク膜をキュアするキュア工程とを含むことが好ましい。
(First wiring layer formation process)
The first wiring layer forming step is a step of forming the first wiring layer 3 on the gas barrier layer 2 as described above. The first wiring layer forming step includes a coating step of coating the conductive composition on the gas barrier layer 2, a pre-baking step of drying the coating film of the conductive composition, and the dried coating film (pre-baking It is preferable to include a step of exposing and developing the film) to form a mesh pattern (exposure step and developing step) and a curing step of curing the pre-baked film formed with this pattern.
 特に、第一の配線層形成工程においては、表面の少なくとも一部に被覆層を有する導電性粒子を含有する導電性組成物を用いて第一の配線層3を形成することが好ましい。何故ならば、表面の少なくとも一部に被覆層を有する導電性粒子が露光工程において露光光の散乱を抑制し、これにより、第一の配線層3の配線を高精度にパターン加工することができるからである。 In particular, in the first wiring layer forming step, it is preferable to form the first wiring layer 3 using a conductive composition containing conductive particles having a coating layer on at least a part of the surface. This is because the conductive particles having the coating layer on at least a part of the surface suppress the scattering of the exposure light in the exposure process, whereby the wiring of the first wiring layer 3 can be patterned with high accuracy. Because.
 第一の配線層形成工程において、導電性組成物をガスバリア層2上に塗布する方法、および、導電性組成物の塗布膜を対象とするプリベーク工程およびキュア工程における乾燥方法としては、上述した樹脂膜形成工程のポリイミド樹脂組成物において例示した方法が挙げられる。 In the first wiring layer forming step, as a method for applying the conductive composition on the gas barrier layer 2 and a drying method in the pre-bake step and the curing step for the coating film of the conductive composition, the resin described above is used. The method illustrated in the polyimide resin composition of a film formation process is mentioned.
 導電性組成物の塗布膜の露光工程で用いる光源としては、例えば、水銀灯のj線、i線、h線、g線が好ましい。導電性組成物の塗布膜の現像工程で用いる現像液としては、公知の現像液を用いることができる。例えば、この現像液として、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ性物質を水に溶解したアルカリ水溶液が挙げられる。この現像液は、これらに、エタノール、γーブチロラクトン、ジメチルホルムアミド、N-メチル-2-ピロリドン等の水溶性有機溶剤を適宜加えたものであっても構わない。また、この現像工程によって導電性組成物の塗布膜のより良好な導電性パターンを得るためには、これらのアルカリ性現像液に、さらに、非イオン系界面活性剤等の界面活性剤を、現像液中での含有量が0.01~1質量%となるように添加することも好ましい。 As the light source used in the exposure process of the coating film of the conductive composition, for example, j-line, i-line, h-line, and g-line of a mercury lamp are preferable. As the developer used in the developing process of the coating film of the conductive composition, a known developer can be used. For example, as the developer, an alkaline aqueous solution in which an alkaline substance such as sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide (TMAH) is dissolved in water can be used. The developer may be obtained by appropriately adding a water-soluble organic solvent such as ethanol, γ-butyrolactone, dimethylformamide, N-methyl-2-pyrrolidone to the developer. Further, in order to obtain a better conductive pattern of the coating film of the conductive composition by this development step, a surfactant such as a nonionic surfactant is further added to the alkaline developer and the developer. It is also preferable to add such that the content thereof is 0.01 to 1% by mass.
 キュア工程における導電性組成物の塗布膜(パターン形状をなすプリベーク膜)のキュアの雰囲気、温度および時間は、導電性組成物の組成や、キュアする塗布膜(導電性組成物の塗布膜)の膜厚によって適宜決定すればよい。このキュア工程では、例えば、空気中、100~300℃の温度範囲で、5~120分間、導電性組成物の塗布膜を加熱することが好ましい。特に、表面に被覆層を有する導電性粒子を第一の配線層3が含有している場合、この導電性粒子表面の被覆層を確実に除去し、十分な導電性を発現させるために、このキュア工程では、ガスバリア層2上の導電性組成物の塗布膜を、酸素濃度が15%以上である雰囲気下において100℃以上300℃以下の温度で加熱して、第一の配線層3を形成することが好ましい。 The curing atmosphere, temperature and time of the conductive composition coating film (patterned pre-baked film) in the curing process are the same as the composition of the conductive composition and the coating film to be cured (conductive composition coating film). What is necessary is just to determine suitably with a film thickness. In this curing step, for example, it is preferable to heat the coating film of the conductive composition in the temperature range of 100 to 300 ° C. for 5 to 120 minutes. In particular, when the first wiring layer 3 contains conductive particles having a coating layer on the surface, in order to reliably remove the coating layer on the surface of the conductive particles and develop sufficient conductivity, In the curing step, the first wiring layer 3 is formed by heating the coating film of the conductive composition on the gas barrier layer 2 at a temperature of 100 ° C. or higher and 300 ° C. or lower in an atmosphere having an oxygen concentration of 15% or higher. It is preferable to do.
 特に、黄変が少なく導電性に優れたタッチパネル10を得るために、タッチパネル10の製造方法では、酸素濃度が1000ppm以下である雰囲気下において300℃以上500℃以下の温度でポリイミド樹脂組成物を加熱してポリイミドを含む樹脂膜1を形成する樹脂膜形成工程と、酸素濃度が15%以上である雰囲気下において100℃以上300℃以下の温度で導電性組成物を加熱して配線層(例えば第一の配線層3)を形成する配線層形成工程とを含むことが好ましい。 In particular, in order to obtain the touch panel 10 with little yellowing and excellent conductivity, in the manufacturing method of the touch panel 10, the polyimide resin composition is heated at a temperature of 300 ° C. or more and 500 ° C. or less in an atmosphere having an oxygen concentration of 1000 ppm or less. And forming a resin film 1 containing polyimide, and heating the conductive composition at a temperature of 100 ° C. to 300 ° C. in an atmosphere having an oxygen concentration of 15% or more to form a wiring layer (for example, a first layer) A wiring layer forming step of forming one wiring layer 3).
(第一の絶縁層形成工程)
 第一の絶縁層形成工程は、上述したように、ガスバリア層2の上に第一の配線層3を覆うように第一の絶縁層4を形成する工程である。この第一の絶縁層形成工程は、前述の絶縁性組成物を第一の配線層3上に塗布する塗布工程と、この絶縁性組成物の塗布膜を乾燥するプリベーク工程と、この乾燥した塗布膜(プリベーク膜)を露光および現像してパターンを形成する工程(露光工程、現像工程)と、このパターン形成したプリベーク膜(絶縁膜)をキュアするキュア工程とを含むことが好ましい。この第一の絶縁層形成工程に含まれる各工程は、上述した第一の配線層形成工程の場合と同様に行うことができる。
(First insulating layer forming step)
The first insulating layer forming step is a step of forming the first insulating layer 4 on the gas barrier layer 2 so as to cover the first wiring layer 3 as described above. The first insulating layer forming step includes a coating step of applying the above-described insulating composition onto the first wiring layer 3, a pre-baking step of drying the coating film of the insulating composition, and the dry coating. It is preferable to include a step (exposure step and development step) of forming a pattern by exposing and developing the film (pre-baked film) and a curing step of curing the pre-baked film (insulating film) formed with this pattern. Each step included in the first insulating layer forming step can be performed in the same manner as in the first wiring layer forming step described above.
(第二の配線層形成工程、第二の絶縁層形成工程)
 第二の配線層形成工程は、上述したように、第一の絶縁層4の上に第二の配線層5を形成する工程である。この第二の配線層形成工程において、第二の配線層5は、上述した第一の配線層3と同様の方法にて形成できる。第二の絶縁層形成工程は、上述したように、第二の配線層5を覆うように第二の絶縁層6を形成する工程である。この第二の絶縁層形成工程において、第二の絶縁層6は、上述した第一の絶縁層4と同様の方法にて形成できる。
(Second wiring layer forming step, second insulating layer forming step)
The second wiring layer forming step is a step of forming the second wiring layer 5 on the first insulating layer 4 as described above. In the second wiring layer forming step, the second wiring layer 5 can be formed by the same method as the first wiring layer 3 described above. The second insulating layer forming step is a step of forming the second insulating layer 6 so as to cover the second wiring layer 5 as described above. In the second insulating layer forming step, the second insulating layer 6 can be formed by the same method as the first insulating layer 4 described above.
 タッチパネル10の製造方法において、第二の配線層5の上には、第二の絶縁層6を形成していなくてもよいが、上述したように第二の絶縁層6を形成していることが好ましい。何故ならば、第二の絶縁層6を形成することにより、大気中の水分が第二の配線層5に到達することを抑制し、これにより、タッチパネル10の耐湿熱性を向上させることができるからである。 In the manufacturing method of the touch panel 10, the second insulating layer 6 may not be formed on the second wiring layer 5, but the second insulating layer 6 is formed as described above. Is preferred. This is because, by forming the second insulating layer 6, it is possible to suppress moisture in the atmosphere from reaching the second wiring layer 5, thereby improving the moisture and heat resistance of the touch panel 10. It is.
 (剥離工程)
 剥離工程は、上述したように、支持基板7から樹脂膜1を剥離する工程である。この剥離工程において支持基板7からポリイミドを含む樹脂膜1を剥離する方法としては、例えば、支持基板7の裏面から樹脂膜1にレーザーを照射して剥離する方法、タッチパネル10を取り出す前の支持基板7(以下、タッチパネル付き支持基板と適宜いう)を、0~80℃に保った溶剤および精製水のうち少なくとも一つ等に10秒~10時間浸漬して剥離する方法、樹脂膜1を上面よりカットし、カット端面8より機械剥離する方法等が挙げられる。中でも、タッチパネル10の信頼性への影響を考慮すると、カット端面8より機械剥離する方法が好ましい。
(Peeling process)
As described above, the peeling step is a step of peeling the resin film 1 from the support substrate 7. As a method of peeling the resin film 1 containing polyimide from the support substrate 7 in this peeling step, for example, a method of peeling the resin film 1 by irradiating the resin film 1 from the back surface of the support substrate 7, a support substrate before taking out the touch panel 10 7 (hereinafter referred to as “support substrate with touch panel” as appropriate) is immersed in at least one of a solvent kept at 0 to 80 ° C. and purified water for 10 seconds to 10 hours, and the resin film 1 is removed from the upper surface. Examples of the method include cutting and mechanical peeling from the cut end face 8. Among these, considering the influence on the reliability of the touch panel 10, a method of mechanical peeling from the cut end surface 8 is preferable.
 また、上述の剥離工程は、タッチパネル付き支持基板に直接行ってもよいし、タッチパネル付き支持基板に保護フィルムや透明粘着層(OCA:Optical Clear Adhesive)を貼合した後、行ってもよい。さらには、OCAを介して、タッチパネル付き支持基板をディスプレイ基板等の部材に貼合した後に、このタッチパネル付き支持基板からの樹脂膜1の剥離(すなわちタッチパネル10の取り出し)を行うことも、貼合精度の観点から好ましい。 Moreover, the above-mentioned peeling process may be performed directly on the support substrate with a touch panel, or may be performed after a protective film or a transparent adhesive layer (OCA: Optical Clear Adhesive) is bonded to the support substrate with a touch panel. Furthermore, after bonding a support substrate with a touch panel to a member such as a display substrate via OCA, the resin film 1 is peeled off from the support substrate with a touch panel (that is, the touch panel 10 is taken out). It is preferable from the viewpoint of accuracy.
 本発明の実施の形態に係るタッチパネルは、ポリイミドを含む樹脂膜が配線層形成時に黄変することがガスバリア層によって抑制されるため、視認性が良い。また、配線層形成時の樹脂膜の寸法変化がガスバリア層によって抑制されるため、寸法精度に優れたタッチパネルを提供することができる。本発明の実施の形態に係るタッチパネルは、スマートフォンやタブレット型端末等のディスプレイ用部材として好適に用いられる。 The touch panel according to the embodiment of the present invention has good visibility because the gas barrier layer prevents the resin film containing polyimide from being yellowed when the wiring layer is formed. Moreover, since the dimensional change of the resin film at the time of wiring layer formation is suppressed by a gas barrier layer, the touch panel excellent in dimensional accuracy can be provided. The touch panel according to the embodiment of the present invention is suitably used as a display member such as a smartphone or a tablet terminal.
<導電層付きフィルムの製造方法>
 本発明の実施の形態に係る導電層付きフィルムの製造方法は、樹脂膜形成工程と、ガスバリア層形成工程と、導電層形成工程と、剥離工程と、を少なくとも含む。これらの工程のうち、樹脂膜形成工程、ガスバリア層形成工程および剥離工程は、図4の状態S1、S3、S7に例示されるように、上述したタッチパネルの製造方法と同様である。導電層形成工程は、ガスバリア層の上に導電層を形成する工程である。この導電層形成工程は、上述したタッチパネルの製造方法における第一の配線層形成工程の第一の配線層を導電層に置き換えた工程と同様である。本発明において、この導電層形成工程は、表面の少なくとも一部に被覆層を有する導電性粒子を含有する導電性組成物を用いて導電層を形成する工程であることが好ましい。また、この導電層形成工程は、ガスバリア層上の導電性組成物を、酸素濃度が15%以上である雰囲気下において100℃以上300℃以下の温度で加熱して、導電層を形成する工程であることが好ましい。
<Method for producing film with conductive layer>
The method for producing a film with a conductive layer according to an embodiment of the present invention includes at least a resin film forming step, a gas barrier layer forming step, a conductive layer forming step, and a peeling step. Among these steps, the resin film forming step, the gas barrier layer forming step, and the peeling step are the same as the touch panel manufacturing method described above, as exemplified by the states S1, S3, and S7 in FIG. The conductive layer forming step is a step of forming a conductive layer on the gas barrier layer. This conductive layer forming step is the same as the step in which the first wiring layer in the first wiring layer forming step in the touch panel manufacturing method described above is replaced with a conductive layer. In the present invention, the conductive layer forming step is preferably a step of forming a conductive layer using a conductive composition containing conductive particles having a coating layer on at least a part of the surface. The conductive layer forming step is a step of forming the conductive layer by heating the conductive composition on the gas barrier layer at a temperature of 100 ° C. or higher and 300 ° C. or lower in an atmosphere having an oxygen concentration of 15% or higher. Preferably there is.
 また、導電層付きフィルムの製造方法は、ガスバリア層の上に、導電層を覆うように絶縁層を形成する絶縁層形成工程を含んでいてもよい。この絶縁層形成工程は、例えば、上述したタッチパネルの製造方法における第一の絶縁層形成工程と同様の手法によって行うことができる。この絶縁層形成工程によって導電層の上に絶縁層を形成することにより、大気中の水分が導電層に到達することを抑制することができ、これにより、導電層付きフィルムの耐湿熱性を向上させることができる。 Moreover, the manufacturing method of the film with a conductive layer may include an insulating layer forming step of forming an insulating layer on the gas barrier layer so as to cover the conductive layer. This insulating layer forming step can be performed, for example, by the same technique as the first insulating layer forming step in the touch panel manufacturing method described above. By forming the insulating layer on the conductive layer by this insulating layer forming step, it is possible to suppress moisture in the atmosphere from reaching the conductive layer, thereby improving the moisture and heat resistance of the film with the conductive layer. be able to.
 以下、実施例を挙げて本発明を説明するが、本発明は、下記の実施例によって限定されるものではない。まず、下記の実施例および比較例で用いた材料、行った測定および評価について説明する。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the following examples. First, the materials used in the following examples and comparative examples, and the measurements and evaluations performed will be described.
(酸二無水物)
 下記の実施例および比較例では、酸二無水物として、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物(BSAA)、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物(ODPA)、1,2,4,5-ベンゼンテトラカルボン酸二無水物(PMDA)、信越化学社製の両末端酸無水物変性メチルフェニルシリコーンオイル(X22-168-P5-B)が必要に応じて用いられる。
(Acid dianhydride)
In the following examples and comparative examples, 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used as the acid dianhydride. Product (BPDA), 2,2-bis (4- (3,4-dicarboxyphenoxy) phenyl) propane dianhydride (BSAA), 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride ( ODPA), 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA), both ends acid anhydride modified methylphenyl silicone oil (X22-168-P5-B) manufactured by Shin-Etsu Chemical Co. Used.
(ジアミン化合物)
 下記の実施例および比較例では、ジアミン化合物として、trans-1,4-ジアミノシクロへキサン(CHDA)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン(HFHA)、ビス(3-アミノフェニル)スルホン(3,3’-DDS)、ビス[4-(3-アミノフェノキシ)フェニル]スルホン(m-BAPS)、信越化学社製の両末端アミン変性メチルフェニルシリコーンオイル(X22-1660B-3)が必要に応じて用いられる。
(Diamine compound)
In the following Examples and Comparative Examples, as a diamine compound, trans-1,4-diaminocyclohexane (CHDA), 2,2′-bis (trifluoromethyl) benzidine (TFMB), 2,2-bis [3 -(3-aminobenzamido) -4-hydroxyphenyl] hexafluoropropane (HFHA), bis (3-aminophenyl) sulfone (3,3'-DDS), bis [4- (3-aminophenoxy) phenyl] sulfone (M-BAPS), a both-end amine-modified methylphenyl silicone oil (X22-1660B-3) manufactured by Shin-Etsu Chemical Co., Ltd. is used as necessary.
(溶剤)
 下記の実施例および比較例では、溶剤として、N-メチル-2-ピロリドン(NMP)、γブチロラクトン(GBL)、プロピレングリコールモノメチルエーテル(PGMEA)、ジプロピレングリコールモノメチルエーテル(DPM)が必要に応じて用いられる。
(solvent)
In the following examples and comparative examples, N-methyl-2-pyrrolidone (NMP), γ-butyrolactone (GBL), propylene glycol monomethyl ether (PGMEA), and dipropylene glycol monomethyl ether (DPM) are used as necessary. Used.
(アルカリ可溶性樹脂)
 下記の実施例および比較例では、アルカリ可溶性樹脂ARが必要に応じて用いられる。アルカリ可溶性樹脂ARは、メタクリル酸/メタクリル酸メチル/スチレン=54/23/23(モル%)からなる共重合体のカルボキシル基に対して、0.4当量のグリシジルメタクリレートを付加反応させたものである。このアルカリ可溶性樹脂ARの重量平均分子量(Mw)は、29,000である。
(Alkali-soluble resin)
In the following Examples and Comparative Examples, the alkali-soluble resin AR is used as necessary. The alkali-soluble resin AR is obtained by adding 0.4 equivalent of glycidyl methacrylate to a carboxyl group of a copolymer consisting of methacrylic acid / methyl methacrylate / styrene = 54/23/23 (mol%). is there. The alkali-soluble resin AR has a weight average molecular weight (Mw) of 29,000.
(導電性粒子)
 下記の実施例および比較例では、導電性粒子として、導電性粒子A-1、A-2が必要に応じて用いられる。導電性粒子A-1は、表面炭素被覆層の平均厚みが1nmであり、1次粒子径が40nmである銀粒子(日清エンジニアリング社製)とした。導電性粒子A-2は、1次粒子径が0.7μmである銀粒子(三井金属鉱業社製)とした。
(Conductive particles)
In the following Examples and Comparative Examples, conductive particles A-1 and A-2 are used as necessary as conductive particles. The conductive particles A-1 were silver particles (manufactured by Nisshin Engineering Co., Ltd.) having an average thickness of the surface carbon coating layer of 1 nm and a primary particle diameter of 40 nm. The conductive particles A-2 were silver particles (manufactured by Mitsui Metal Mining Co., Ltd.) having a primary particle size of 0.7 μm.
(第1作製例:ポリイミド樹脂膜製膜用ワニスの作製)
 第1作製例では、下記の実施例および比較例において適宜用いられるポリイミド樹脂膜製膜用ワニス(以下、「ワニス」と適宜略記する)の作製例について説明する。
(First Preparation Example: Preparation of a varnish for forming a polyimide resin film)
In the first production example, a production example of a varnish for forming a polyimide resin film (hereinafter abbreviated as “varnish” as appropriate) used as appropriate in the following Examples and Comparative Examples will be described.
(合成例1)
 ワニスの合成例1では、乾燥窒素気流下、200mL4つ口フラスコに、ODPA(9.37g(30.2mmol))と、TFMB(9.67g(30.2mmol))と、NMP(100g)とを入れて、60℃で加熱撹拌した。この加熱攪拌を8時間行い、その後、この加熱攪拌したものを室温まで冷却して、合成例1のワニスとした。この合成例1のワニスを用いて作製できるポリイミドのイミド基濃度は、23.5である。
(Synthesis Example 1)
In Synthesis Example 1 of the varnish, ODPA (9.37 g (30.2 mmol)), TFMB (9.67 g (30.2 mmol)), and NMP (100 g) were placed in a 200 mL four-necked flask under a dry nitrogen stream. The mixture was heated and stirred at 60 ° C. This heating and stirring was performed for 8 hours, and then the heating and stirring was cooled to room temperature to obtain the varnish of Synthesis Example 1. The imide group density | concentration of the polyimide which can be produced using the varnish of this synthesis example 1 is 23.5.
(合成例2)
 ワニスの合成例2では、乾燥窒素気流下、200mL4つ口フラスコに、CBDA(7.23g(36.9mmol))と、TFMB(11.81g(36.9mmol))と、NMP(100g)とを入れて、60℃で加熱撹拌した。この加熱攪拌を8時間行い、その後、この加熱攪拌したものを室温まで冷却して、合成例2のワニスとした。この合成例2のワニスを用いて作製できるポリイミドのイミド基濃度は、29.2である。
(Synthesis Example 2)
In Synthesis Example 2 of the varnish, CBDA (7.23 g (36.9 mmol)), TFMB (11.81 g (36.9 mmol)), and NMP (100 g) were placed in a 200 mL four-necked flask under a dry nitrogen stream. The mixture was heated and stirred at 60 ° C. This heating and stirring was performed for 8 hours, and then the heating and stirring was cooled to room temperature to obtain a varnish of Synthesis Example 2. The imide group density | concentration of the polyimide which can be produced using the varnish of this synthesis example 2 is 29.2.
(合成例3)
 ワニスの合成例3では、乾燥窒素気流下、200mL4つ口フラスコに、ODPA(13.92g(44.8mmol))と、CHDA(5.12g(44.8mmol))と、NMP(100g)とを入れて、60℃で加熱撹拌した。この加熱攪拌を8時間行い、その後、この加熱攪拌したものを室温まで冷却して、合成例3のワニスとした。この合成例3のワニスを用いて作製できるポリイミドのイミド基濃度は、35.8である。
(Synthesis Example 3)
In Synthesis Example 3 of the varnish, ODPA (13.92 g (44.8 mmol)), CHDA (5.12 g (44.8 mmol)), and NMP (100 g) were placed in a 200 mL four-necked flask under a dry nitrogen stream. The mixture was heated and stirred at 60 ° C. This heating and stirring was performed for 8 hours, and then the heating and stirring was cooled to room temperature to obtain a varnish of Synthesis Example 3. The imide group density | concentration of the polyimide which can be produced using the varnish of this synthesis example 3 is 35.8.
(合成例4)
 ワニスの合成例4では、乾燥窒素気流下、200mL4つ口フラスコに、BPDA(11.70g(39.8mmol))と、BSAA(2.30g(4.42mmol))と、CHDA(5.04g(44.1mmol))と、NMP(100g)とを入れて、60℃で加熱撹拌した。この加熱攪拌を8時間行い、その後、この加熱攪拌したものを室温まで冷却して、合成例4のワニスとした。この合成例4のワニスを用いて作製できるポリイミドのイミド基濃度は、36.3である。
(Synthesis Example 4)
In Synthesis Example 4 of the varnish, BPDA (11.70 g (39.8 mmol)), BSAA (2.30 g (4.42 mmol)), CHDA (5.04 g ( 44.1 mmol)) and NMP (100 g) were added and heated and stirred at 60 ° C. This heating and stirring was performed for 8 hours, and then the heating and stirring was cooled to room temperature to obtain a varnish of Synthesis Example 4. The imide group density | concentration of the polyimide which can be produced using the varnish of this synthesis example 4 is 36.3.
(合成例5)
 ワニスの合成例5では、乾燥窒素気流下、200mL4つ口フラスコに、CBDA(6.68g(34.1mmol))と、TFMB(9.27g(28.9mmol))と、HFHA(3.09g(5.11mmol))と、NMP(100g)とを入れて、60℃で加熱撹拌した。この加熱攪拌を8時間行い、その後、この加熱攪拌したものを室温まで冷却して、合成例5のワニスとした。この合成例5のワニスを用いて作製できるポリイミドのイミド基濃度は、27.7である。
(Synthesis Example 5)
In Synthesis Example 5 of the varnish, CBDA (6.68 g (34.1 mmol)), TFMB (9.27 g (28.9 mmol)), and HFHA (3.09 g (3.09 g 5.11 mmol)) and NMP (100 g) were added and heated and stirred at 60 ° C. This heating and stirring was performed for 8 hours, and then the heating and stirring was cooled to room temperature to obtain a varnish of Synthesis Example 5. The imide group density | concentration of the polyimide which can be produced using the varnish of this synthesis example 5 is 27.7.
(合成例6)
 ワニスの合成例6では、乾燥窒素気流下、200mL4つ口フラスコに、ODPA(8.75g(28.2mmol))と、TFMB(8.93g(27.9mmol))と、X22-1660B-3(1.36g(0.309mmol))と、NMP(100g)とを入れて、60℃で加熱撹拌した。この加熱攪拌を8時間行い、その後、この加熱攪拌したものを室温まで冷却して、合成例6のワニスとした。この合成例6のワニスを用いて作製できるポリイミドのイミド基濃度は、23.4である。
(Synthesis Example 6)
In Synthesis Example 6 of the varnish, ODPA (8.75 g (28.2 mmol)), TFMB (8.93 g (27.9 mmol)), X22-1660B-3 (in a 200 mL four-necked flask under a dry nitrogen stream) 1.36 g (0.309 mmol)) and NMP (100 g) were added, and the mixture was heated and stirred at 60 ° C. This heating and stirring was performed for 8 hours, and then the heating and stirring was cooled to room temperature to obtain a varnish of Synthesis Example 6. The imide group density | concentration of the polyimide which can be produced using the varnish of this synthesis example 6 is 23.4.
(合成例7)
 ワニスの合成例7では、乾燥窒素気流下、200mL4つ口フラスコに、ODPA(10.58g(34.1mmol))と、3,3’-DDS(8.46g(34.1mmol))と、NMP(100g)とを入れて、60℃で加熱撹拌した。この加熱攪拌を8時間行い、その後、この加熱攪拌したものを室温まで冷却して、合成例7のワニスとした。この合成例7のワニスを用いて作製できるポリイミドのイミド基濃度は、26.8である。
(Synthesis Example 7)
In Synthesis Example 7 of the varnish, ODPA (10.58 g (34.1 mmol)), 3,3′-DDS (8.46 g (34.1 mmol)), NMP were added to a 200 mL four-necked flask under a dry nitrogen stream. (100 g) was added and stirred with heating at 60 ° C. This heating and stirring was performed for 8 hours, and then this heating and stirring was cooled to room temperature to obtain a varnish of Synthesis Example 7. The imide group density | concentration of the polyimide which can be produced using the varnish of this synthesis example 7 is 26.8.
(合成例8)
 ワニスの合成例8では、乾燥窒素気流下、200mL4つ口フラスコに、BPDA(13.72g(46.6mmol))と、CHDA(5.32g(46.6mmol))と、NMP(100g)とを入れて、60℃で加熱撹拌した。この加熱攪拌を8時間行い、その後、この加熱攪拌したものを室温まで冷却して、合成例8のワニスとした。この合成例8のワニスを用いて作製できるポリイミドのイミド基濃度は、37.7である。
(Synthesis Example 8)
In Synthesis Example 8 of varnish, BPDA (13.72 g (46.6 mmol)), CHDA (5.32 g (46.6 mmol)), and NMP (100 g) were placed in a 200 mL four-necked flask under a dry nitrogen stream. The mixture was heated and stirred at 60 ° C. This heating and stirring was performed for 8 hours, and then the heating and stirring was cooled to room temperature to obtain a varnish of Synthesis Example 8. The imide group density | concentration of the polyimide which can be produced using the varnish of this synthesis example 8 is 37.7.
(合成例9)
 ワニスの合成例9では、乾燥窒素気流下、200mL4つ口フラスコに、ODPA(7.95g(25.6mmol))と、m-BAPS(11.09g(25.6mmol))と、NMP(100g)とを入れて、60℃で加熱撹拌した。この加熱攪拌を8時間行い、その後、この加熱攪拌したものを室温まで冷却して、合成例9のワニスとした。この合成例9のワニスを用いて作製できるポリイミドのイミド基濃度は、19.8である。
(Synthesis Example 9)
In Synthesis Example 9 of the varnish, ODPA (7.95 g (25.6 mmol)), m-BAPS (11.09 g (25.6 mmol)), and NMP (100 g) were placed in a 200 mL four-necked flask under a dry nitrogen stream. And heated and stirred at 60 ° C. This heating and stirring was performed for 8 hours, and then the heating and stirring was cooled to room temperature to obtain a varnish of Synthesis Example 9. The imide group density | concentration of the polyimide which can be produced using the varnish of this synthesis example 9 is 19.8.
(合成例10)
 ワニスの合成例10では、乾燥窒素気流下、200mL4つ口フラスコに、ODPA(3.97g(12.8mmol))と、PMDA(2.79g(12.8mmol))と、TFMB(8.11g(25.3mmol))と、X22-1660B-3(1.18g(0.282mmol))と、NMP(100g)とを入れて、60℃で加熱撹拌した。この加熱攪拌を8時間行い、その後、この加熱攪拌したものを室温まで冷却して、合成例10のワニスとした。この合成例10のワニスを用いて作製できるポリイミドのイミド基濃度は、25.4である。
(Synthesis Example 10)
In Synthesis Example 10 of the varnish, ODPA (3.97 g (12.8 mmol)), PMDA (2.79 g (12.8 mmol)), TFMB (8.11 g (8.11 g 25.3 mmol)), X22-1660B-3 (1.18 g (0.282 mmol)) and NMP (100 g) were added, and the mixture was heated and stirred at 60 ° C. This heating and stirring was performed for 8 hours, and then this heating and stirring was cooled to room temperature to obtain a varnish of Synthesis Example 10. The imide group density | concentration of the polyimide which can be produced using the varnish of this synthesis example 10 is 25.4.
(合成例11)
 ワニスの合成例11では、乾燥窒素気流下、200mL4つ口フラスコに、ODPA(7.85g(25.3mmol))と、X22-168-P5-B(1.18g(0.282mmol))と、TFMB(8.20g(25.6mmol))と、NMP(100g)とを入れて、60℃で加熱撹拌した。この加熱攪拌を8時間行い、その後、この加熱攪拌したものを室温まで冷却して、合成例11のワニスとした。この合成例11のワニスを用いて作製できるポリイミドのイミド基濃度は、23.4である。
(Synthesis Example 11)
In Synthesis Example 11 of the varnish, ODPA (7.85 g (25.3 mmol)) and X22-168-P5-B (1.18 g (0.282 mmol)) were placed in a 200 mL four-necked flask under a dry nitrogen stream. TFMB (8.20 g (25.6 mmol)) and NMP (100 g) were added and heated and stirred at 60 ° C. This heating and stirring was performed for 8 hours, and then this heating and stirring was cooled to room temperature to obtain a varnish of Synthesis Example 11. The imide group density | concentration of the polyimide which can be produced using the varnish of this synthesis example 11 is 23.4.
(合成例12)
 ワニスの合成例12では、乾燥窒素気流下、200mL4つ口フラスコに、ODPA(3.97g(12.8mmol))と、BPDA(3.77g(12.8mmol))と、TFMB(8.11g(25.3mmol))と、X22-1660B-3(1.18g(0.282mmol))と、NMP(100g)を入れて、60℃で加熱撹拌した。この加熱攪拌を8時間行い、その後、この加熱攪拌したものを室温まで冷却して、合成例12のワニスとした。この合成例12のワニスを用いて作製できるポリイミドのイミド基濃度は、23.3である。
(Synthesis Example 12)
In Synthesis Example 12 of the varnish, ODPA (3.97 g (12.8 mmol)), BPDA (3.77 g (12.8 mmol)), and TFMB (8.11 g (8.11 g 25.3 mmol)), X22-1660B-3 (1.18 g (0.282 mmol)) and NMP (100 g) were added, and the mixture was heated and stirred at 60 ° C. This heating and stirring was performed for 8 hours, and then this heating and stirring was cooled to room temperature to obtain a varnish of Synthesis Example 12. The imide group density | concentration of the polyimide which can be produced using the varnish of this synthesis example 12 is 23.3.
(第2作製例:導電性組成物の作製)
 第2作製例では、下記の実施例および比較例において適宜用いられる導電性組成物AE-1、AE-2の調製について説明する。この第2作製例では、導電性粒子A-1(80g)と、DIC社製の界面活性剤“DISPERBYK”(登録商標)21116(4.06g)と、PGMEA(98.07g)と、DPM(98.07g)とを混合し、これらの混合物に対し、ホモジナイザーにて、1200rpm、30分間の処理を施した。さらに、高圧湿式メディアレス微粒化装置ナノマイザー(ナノマイザー社製)を用いて、この処理後の混合物を分散して、銀含有量が40質量%である銀分散液L1を得た。また、導電性粒子A-1に代えて導電性粒子A-2を用いたこと以外は上記と同様の操作を行い、これにより、銀分散液L2を得た。
(Second Preparation Example: Preparation of Conductive Composition)
In the second production example, preparation of conductive compositions AE-1 and AE-2 that are appropriately used in the following Examples and Comparative Examples will be described. In this second production example, conductive particles A-1 (80 g), a surfactant “DISPERBYK” (registered trademark) 21116 (4.06 g) manufactured by DIC, PGMEA (98.07 g), DPM ( 98.07 g) were mixed, and the mixture was treated with a homogenizer at 1200 rpm for 30 minutes. Furthermore, this processed mixture was dispersed using a high-pressure wet medialess atomizer Nanomizer (manufactured by Nanomizer) to obtain a silver dispersion L1 having a silver content of 40% by mass. Further, a silver dispersion L2 was obtained in the same manner as above except that the conductive particles A-2 were used instead of the conductive particles A-1.
 ついで、有機化合物としてアルカリ可溶性樹脂AR(20g)と、金属キレート化合物としてALCH(0.6g)と、光重合開始剤としてNCI-831(2.4g)と、PE-3A(12.0g)とを混合したものに、PGMEA(132.6g)と、DPM(52.6g)とを添加し、撹拌した。これにより、導電性組成物用の有機液L3を得た。なお、ALCHは、川研ファインケミカル社製の金属キレート化合物(エチルアセトアセテートアルミニウムジイソプロピレート)である。NCI-831は、ADEKA社製の光重合開始剤である。その後、上述したように得られた銀分散液L1、L2と有機液L3とをそれぞれ表1に示す割合で混合し、これにより、導電性組成物AE-1、AE-2を得た。 Next, alkali-soluble resin AR (20 g) as an organic compound, ALCH (0.6 g) as a metal chelate compound, NCI-831 (2.4 g) as a photopolymerization initiator, and PE-3A (12.0 g) PGMEA (132.6 g) and DPM (52.6 g) were added to the mixture and stirred. Thereby, the organic liquid L3 for conductive compositions was obtained. ALCH is a metal chelate compound (ethyl acetoacetate aluminum diisopropylate) manufactured by Kawaken Fine Chemicals. NCI-831 is a photopolymerization initiator manufactured by ADEKA. Thereafter, the silver dispersions L1 and L2 and the organic liquid L3 obtained as described above were mixed in the ratios shown in Table 1, respectively, thereby obtaining conductive compositions AE-1 and AE-2.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
(第3作製例:絶縁性組成物の作製)
 第3作製例では、下記の実施例および比較例において適宜用いられる絶縁性組成物OA-1、OA-2の調製について説明する。この第3作製例では、クリーンボトルに、上述した構造式(10)で表される構造を2つ以上有するカルド系樹脂として新日鉄住友化学社製のV-259ME(50.0g)と、架橋性モノマーとして日本化成社製のTAIC(18.0g)と、架橋性モノマーとして東亞合成社製のM-315(10.0g)と、エポキシ化合物として大阪ガスケミカル社製のPG-100(20.0g)と、光重合開始剤としてBASF社製のOXE-01(0.2g)とを混合し、これらの混合物を1時間撹拌した。これにより、絶縁性組成物OA-1を得た。また、上記のカルド系樹脂(V-259ME)に代えてアルカリ可溶性樹脂ARを用いたこと以外は上記と同様の操作を行い、これにより、絶縁性組成物OA-2を得た。
(Third Preparation Example: Preparation of Insulating Composition)
In the third production example, preparation of insulating compositions OA-1 and OA-2 used as appropriate in the following examples and comparative examples will be described. In this third production example, V-259ME (50.0 g) manufactured by Nippon Steel & Sumitomo Chemical Co., Ltd. as a cardo resin having two or more structures represented by the structural formula (10) described above in a clean bottle and crosslinkability were used. TAIC (18.0 g) manufactured by Nippon Kasei Co., Ltd. as a monomer, M-315 (10.0 g) manufactured by Toagosei Co., Ltd. as a crosslinkable monomer, and PG-100 (20.0 g) manufactured by Osaka Gas Chemical Co., Ltd. as an epoxy compound. ) And OXE-01 (0.2 g) manufactured by BASF as a photopolymerization initiator were mixed, and the mixture was stirred for 1 hour. Thereby, an insulating composition OA-1 was obtained. In addition, an insulating composition OA-2 was obtained in the same manner as above except that the alkali-soluble resin AR was used in place of the cardo resin (V-259ME).
(第4作製例:ポリイミド樹脂膜の作製)
 第4作製例では、下記の実施例および比較例において適宜用いられるポリイミド樹脂膜T1の作製について説明する。この第4作製例では、基板としての6インチのミラーシリコンウェハに、東京エレクトロン社製の塗布現像装置(Mark-7)を用いて、140℃の温度で4分のプリベーク後の膜厚が15±0.5μmになるように、第1作製例のワニス(合成例1~12のいずれかのワニス)をスピン塗布した。その後、このワニスの塗布膜に対し、Mark-7のホットプレートを用いて、140℃の温度で4分のプリベーク処理を行った。これによって得られたプリベーク膜を、光洋サーモシステム社製のイナートオーブン(INH-21CD)を用いて、窒素気流下(酸素濃度20ppm以下)、3.5℃/minの昇温レートで350℃まで昇温し、30分間保持した。その後、このプリベーク膜を5℃/minの降温レートで50℃まで冷却し、これにより、ポリイミド樹脂膜T1を作製した。続いて、このポリイミド樹脂膜T1(基板に貼り付いた状態のもの)をフッ酸に1~4分間浸漬して、ポリイミド樹脂膜T1を基板から剥離し、風乾してポリイミド樹脂膜T1(単体)を得た。
(Fourth preparation example: Preparation of polyimide resin film)
In the fourth production example, production of a polyimide resin film T1 used as appropriate in the following examples and comparative examples will be described. In this fourth fabrication example, a film thickness after pre-baking for 4 minutes at a temperature of 140 ° C. is applied to a 6-inch mirror silicon wafer as a substrate using a coating and developing apparatus (Mark-7) manufactured by Tokyo Electron. The varnish of the first production example (any of the varnishes of Synthesis Examples 1 to 12) was spin-coated so as to be ± 0.5 μm. Thereafter, this varnish coating film was pre-baked for 4 minutes at a temperature of 140 ° C. using a Mark-7 hot plate. Using the inert oven (INH-21CD) manufactured by Koyo Thermo Systems Co., Ltd., the prebaked film thus obtained was heated to 350 ° C. at a temperature increase rate of 3.5 ° C./min under a nitrogen stream (oxygen concentration of 20 ppm or less). The temperature was raised and held for 30 minutes. Thereafter, the pre-baked film was cooled to 50 ° C. at a rate of temperature decrease of 5 ° C./min, thereby producing a polyimide resin film T1. Subsequently, the polyimide resin film T1 (attached to the substrate) is immersed in hydrofluoric acid for 1 to 4 minutes, the polyimide resin film T1 is peeled off from the substrate, and air-dried to obtain a polyimide resin film T1 (single unit). Got.
(第5作製例:ガラス基板付きのポリイミド樹脂膜の作製)
 第5作製例では、下記の実施例および比較例において適宜用いられるポリイミド樹脂膜T2の作製について説明する。この第5作製例では、縦50mm×横50mm×厚さ1.1mmのガラス基板(テンパックス)に、ミカサ社製のスピンコーター(MS-A200)を用いて、140℃の温度で4分のプリベーク後の膜厚が15±0.5μmになるように、第1作製例のワニス(合成例1~12のいずれかのワニス)をスピン塗布した。その後、このワニスの塗布膜に対し、大日本スクリーン社製のホットプレート(D-SPIN)を用いて、140℃の温度で4分のプリベーク処理を行った。これによって得られたプリベーク膜を、光洋サーモシステム社製のイナートオーブン(INH-21CD)を用いて、窒素気流下(酸素濃度20ppm以下)、3.5℃/minの昇温レートで350℃まで昇温し、30分間保持した。その後、このプリベーク膜を5℃/minの降温レートで50℃まで冷却し、これにより、矩形のガラス基板上に貼り付いた状態のポリイミド樹脂膜T2を作製した。
(Fifth preparation example: Preparation of polyimide resin film with glass substrate)
In the fifth fabrication example, fabrication of a polyimide resin film T2 used as appropriate in the following examples and comparative examples will be described. In this fifth manufacturing example, a spin coater (MS-A200) manufactured by Mikasa was used for 4 minutes at a temperature of 140 ° C. on a glass substrate (Tempax) having a length of 50 mm × width 50 mm × thickness 1.1 mm. The varnish of the first production example (any of the varnishes of Synthesis Examples 1 to 12) was spin-coated so that the film thickness after pre-baking was 15 ± 0.5 μm. Thereafter, the varnish coating film was pre-baked for 4 minutes at a temperature of 140 ° C. using a hot plate (D-SPIN) manufactured by Dainippon Screen. Using the inert oven (INH-21CD) manufactured by Koyo Thermo Systems Co., Ltd., the prebaked film thus obtained was heated to 350 ° C. at a temperature increase rate of 3.5 ° C./min under a nitrogen stream (oxygen concentration of 20 ppm or less). The temperature was raised and held for 30 minutes. Thereafter, the pre-baked film was cooled to 50 ° C. at a temperature lowering rate of 5 ° C./min, thereby producing a polyimide resin film T2 attached to a rectangular glass substrate.
(第6作製例:ガラス基板付きのポリイミド樹脂膜の作製)
 第6作製例では、下記の実施例および比較例において適宜用いられるポリイミド樹脂膜T3の作製について説明する。この第6作製例では、外径13インチのガラス基板(旭硝子社製のAN-100)上に、ミカサ社製のスピンコーター(1H-360S)を用いて、140℃の温度で4分のプリベーク後の膜厚が15±0.5μmになるように、、第1作製例のワニス(合成例1~12のいずれかのワニス)をスピン塗布した。その後、このワニスの塗布膜に対し、ホットプレートを用いて、140℃の温度で4分のプリベーク処理を行った。これによって得られたプリベーク膜を、光洋サーモシステム社製のイナートオーブン(INH-21CD)を用いて、窒素気流下(酸素濃度20ppm以下)、3.5℃/minの昇温レートで350℃まで昇温し、30分間保持した。その後、このプリベーク膜を5℃/minの降温レートで50℃まで冷却し、これにより、円形のガラス基板上に貼り付いた状態のポリイミド樹脂膜T3を作製した。
(Sixth preparation example: Preparation of polyimide resin film with glass substrate)
In the sixth production example, production of a polyimide resin film T3 that is appropriately used in the following examples and comparative examples will be described. In this sixth production example, pre-baking for 4 minutes at a temperature of 140 ° C. using a spin coater (1H-360S) manufactured by Mikasa on a glass substrate having an outer diameter of 13 inches (AN-100 manufactured by Asahi Glass Co., Ltd.). The varnish of the first fabrication example (any varnish of Synthesis Examples 1 to 12) was spin-coated so that the subsequent film thickness was 15 ± 0.5 μm. Thereafter, the varnish coating film was pre-baked at a temperature of 140 ° C. for 4 minutes using a hot plate. Using the inert oven (INH-21CD) manufactured by Koyo Thermo Systems Co., Ltd., the prebaked film thus obtained was heated to 350 ° C. at a temperature increase rate of 3.5 ° C./min under a nitrogen stream (oxygen concentration of 20 ppm or less). The temperature was raised and held for 30 minutes. Thereafter, the pre-baked film was cooled to 50 ° C. at a temperature lowering rate of 5 ° C./min. Thereby, a polyimide resin film T3 adhered to a circular glass substrate was produced.
(第7作製例:シリコン基板付きのポリイミド樹脂膜の作製)
 第7作製例では、下記の実施例および比較例において適宜用いられるポリイミド樹脂膜T4の作製について説明する。この第6作製例では、1/4に切断した4インチのシリコン基板に、ミカサ社製のスピンコーター(MS-A200)を用いて、140℃の温度で4分のプリベーク後の膜厚が5±0.5μmになるように、第1作製例のワニス(合成例1~12のいずれかのワニス)をスピン塗布した。その後、このワニスの塗布膜に対し、大日本スクリーン社製のホットプレート(D-SPIN)を用いて、140℃の温度で4分のプリベーク処理を行った。これによって得られたプリベーク膜を、光洋サーモシステム社製のイナートオーブン(INH-21CD)を用いて、窒素気流下(酸素濃度20ppm以下)、3.5℃/minの昇温レートで300℃まで昇温し、30分間保持した。その後、このプリベーク膜を5℃/minの降温レートで50℃まで冷却し、これにより、シリコン基板上に貼り付いた状態のポリイミド樹脂膜T4を作製した。
(Seventh preparation example: Preparation of polyimide resin film with silicon substrate)
In the seventh production example, production of a polyimide resin film T4 used as appropriate in the following examples and comparative examples will be described. In this sixth manufacturing example, a film thickness after pre-baking for 4 minutes at a temperature of 140 ° C. using a spin coater (MS-A200) manufactured by Mikasa on a 4-inch silicon substrate cut into ¼ is 5 The varnish of the first production example (any of the varnishes of Synthesis Examples 1 to 12) was spin-coated so as to be ± 0.5 μm. Thereafter, the varnish coating film was pre-baked for 4 minutes at a temperature of 140 ° C. using a hot plate (D-SPIN) manufactured by Dainippon Screen. Using the inert oven (INH-21CD) manufactured by Koyo Thermo Systems Co., Ltd., the prebaked film thus obtained was heated to 300 ° C. at a temperature rising rate of 3.5 ° C./min under a nitrogen stream (oxygen concentration of 20 ppm or less). The temperature was raised and held for 30 minutes. Thereafter, this pre-baked film was cooled to 50 ° C. at a temperature lowering rate of 5 ° C./min, and thereby a polyimide resin film T4 adhered to the silicon substrate was produced.
(第1測定例:光透過率(T)の測定)
 第1測定例では、下記の実施例および比較例において適宜用いられる光透過率の測定について説明する。この第1測定例では、第5作製例のポリイミド樹脂膜T2の、波長450nmにおける光透過率を、島津製作所社製の紫外可視分光光度計(MultiSpec1500)を用いて測定した。
(First measurement example: measurement of light transmittance (T))
In the first measurement example, the measurement of light transmittance used as appropriate in the following examples and comparative examples will be described. In this first measurement example, the light transmittance at a wavelength of 450 nm of the polyimide resin film T2 of the fifth preparation example was measured using an ultraviolet-visible spectrophotometer (MultiSpec 1500) manufactured by Shimadzu Corporation.
(第2測定例:ヘイズ値の測定)
 第2測定例では、下記の実施例および比較例において適宜用いられるヘイズ値の測定について説明する。この第2測定例では、第5作製例のポリイミド樹脂膜T2のヘイズ値(%)を、スガ試験機社製の直読ヘーズコンピュータ(HGM2DP、C光源)を用いて測定した。なお、このヘイズ値としては、3回測定の平均値を用いた。
(Second measurement example: measurement of haze value)
In the second measurement example, measurement of a haze value used as appropriate in the following examples and comparative examples will be described. In this second measurement example, the haze value (%) of the polyimide resin film T2 of the fifth production example was measured using a direct reading haze computer (HGM2DP, C light source) manufactured by Suga Test Instruments Co., Ltd. In addition, as this haze value, the average value of 3 times measurement was used.
(第3測定例:ガラス転移温度(Tg)、線膨張係数(CTE)の測定)
 第3測定例では、下記の実施例および比較例において適宜用いられるガラス転移温度および線膨張係数の測定について説明する。この第3測定例では、第4作製例のポリイミド樹脂膜T1のガラス転移温度および線膨張係数を、エスアイアイ・ナノテクノロジー社製の熱機械分析装置(EXSTAR6000TMA/SS6000)を用いて、窒素気流下、圧縮モードで測定した。この測定のサンプルについては、ポリイミド樹脂膜T1から幅15mm×長さ30mmの小片を切り出し、この小片をその長手方向に巻き、直径3mm、高さ15mmの白金コイルに通して円筒状にしたものを用いた。昇温方法は、以下の条件にて行った。第1段階では、5℃/minの昇温レートで150度までサンプルを昇温して、サンプルの吸着水を除去した。第2段階では、5℃/minの降温レートで室温までサンプルを空冷した。第3段階では、5℃/minの昇温レートでサンプルの本測定を行い、ポリイミド樹脂膜T1のガラス転移温度を求めた。また、第3段階では、50~200℃におけるサンプルの線膨張係数の平均値を求め、これをポリイミド樹脂膜T1の線膨張係数とした。
(Third measurement example: measurement of glass transition temperature (Tg) and linear expansion coefficient (CTE))
In the third measurement example, measurement of the glass transition temperature and the linear expansion coefficient used as appropriate in the following examples and comparative examples will be described. In this third measurement example, the glass transition temperature and the linear expansion coefficient of the polyimide resin film T1 of the fourth production example are measured under a nitrogen stream using a thermomechanical analyzer (EXSTAR6000TMA / SS6000) manufactured by SII Nanotechnology. Measured in compressed mode. About the sample for this measurement, a piece of 15 mm width × 30 mm length was cut out from the polyimide resin film T1, and this piece was wound in the longitudinal direction and passed through a platinum coil having a diameter of 3 mm and a height of 15 mm to form a cylindrical shape. Using. The temperature raising method was performed under the following conditions. In the first stage, the sample was heated to 150 degrees at a temperature increase rate of 5 ° C./min to remove the adsorbed water from the sample. In the second stage, the sample was air-cooled to room temperature at a rate of 5 ° C./min. In the third stage, the sample was measured at a rate of temperature increase of 5 ° C./min to determine the glass transition temperature of the polyimide resin film T1. In the third stage, the average value of the linear expansion coefficients of the samples at 50 to 200 ° C. was obtained and used as the linear expansion coefficient of the polyimide resin film T1.
(第4測定例:残留応力の測定)
 第4測定例では、下記の実施例および比較例において適宜用いられる残留応力の測定について説明する。この第4測定例では、東朋テクノロジー社製の残留応力測定装置(FLX-3300-T)を用いて、厚さが625μm±25μmである6インチのシリコンウェハの曲率半径rを予め測定した。そのシリコンウェハの上に、東京エレクトロン社製の塗布現像装置(Mark-7)を用いて、140℃の温度で4分のプリベーク後の膜厚が15±0.5μmになるように、第1作製例のワニス(合成例1~12のいずれかのワニス)をスピン塗布した。その後、このワニスの塗布膜に対し、Mark-7のホットプレートを用いて、140℃の温度で4分のプリベーク処理を行った。これによって得られたプリベーク膜を、光洋サーモシステム社製のイナートオーブン(INH-21CD)を用いて、窒素気流下(酸素濃度20ppm以下)、3.5℃/minの昇温レートで350℃まで昇温し、30分間保持した。その後、このプリベーク膜を5℃/minの降温レートで50℃まで冷却し、これにより、ポリイミド樹脂膜の付いたシリコンウェハを作製した。このシリコンウェハを150℃で10分間乾燥させた後、前述の残留応力測定装置を用いて、このシリコンウェハの曲率半径rを測定した。そして、下記の(II)式により、このシリコンウェハとポリイミド樹脂膜との間に生じた残留応力σ(Pa)
を求めた。
 
σ=Eh/6[(1/r)-(1/r)]t  (II)
 
(Fourth measurement example: measurement of residual stress)
In the fourth measurement example, measurement of residual stress used as appropriate in the following examples and comparative examples will be described. In this fourth measurement example, a radius of curvature r 1 of a 6-inch silicon wafer having a thickness of 625 μm ± 25 μm was measured in advance using a residual stress measuring device (FLX-3300-T) manufactured by Toago Technology Co., Ltd. . On the silicon wafer, using a coating and developing apparatus (Mark-7) manufactured by Tokyo Electron Co., Ltd., the film thickness after pre-baking for 4 minutes at a temperature of 140 ° C. is 15 ± 0.5 μm. The varnish of the manufacturing example (any varnish of Synthesis Examples 1 to 12) was spin-coated. Thereafter, this varnish coating film was pre-baked for 4 minutes at a temperature of 140 ° C. using a Mark-7 hot plate. Using the inert oven (INH-21CD) manufactured by Koyo Thermo Systems Co., Ltd., the prebaked film thus obtained was heated to 350 ° C. at a temperature increase rate of 3.5 ° C./min under a nitrogen stream (oxygen concentration of 20 ppm or less). The temperature was raised and held for 30 minutes. Thereafter, the pre-baked film was cooled to 50 ° C. at a temperature decrease rate of 5 ° C./min, thereby producing a silicon wafer with a polyimide resin film. After the silicon wafer was dried at 150 ° C. for 10 minutes, the curvature radius r 2 of the silicon wafer was measured using the above-described residual stress measuring apparatus. And the residual stress σ (Pa) generated between the silicon wafer and the polyimide resin film according to the following formula (II)
Asked.

σ = Eh 2/6 [( 1 / r 2) - (1 / r 1)] t (II)
 (II)式において、Eは、シリコンウェハの二軸弾性係数(Pa)である。hは、シリコンウェハの厚さ(m)である。tは、ポリイミド樹脂膜の膜厚(m)である。rは、ポリイミド樹脂膜作製前のシリコンウェハの曲率半径(m)である。rは、ポリイミド樹脂膜作製後のシリコンウェハの曲率半径(m)である。なお、シリコンウェハの二軸弾性係数Eは、1.805×10-11(Pa)として求めた。 In the formula (II), E is the biaxial elastic modulus (Pa) of the silicon wafer. h is the thickness (m) of the silicon wafer. t is the film thickness (m) of the polyimide resin film. r 1 is a curvature radius (m) of the silicon wafer before the polyimide resin film is produced. r 2 is the radius of curvature (m) of the silicon wafer after the polyimide resin film is produced. The biaxial elastic modulus E of the silicon wafer was determined as 1.805 × 10 −11 (Pa).
(評価例1~12)
 評価例1~12では、上述した合成例1~12の各ワニスについて、第4作製例~第7作製例の方法でポリイミド樹脂膜T1~T4を作製し、第1測定例~第4測定例の方法で光透過率、ヘイズ値、ガラス転移温度(Tg)、線膨張係数および残留応力の測定を行った。評価例1~12の結果は、表2に示す。
(Evaluation Examples 1 to 12)
In Evaluation Examples 1 to 12, polyimide resin films T1 to T4 were produced for the varnishes of Synthesis Examples 1 to 12 described above by the methods of the fourth production example to the seventh production example, and the first measurement example to the fourth measurement example. The light transmittance, haze value, glass transition temperature (Tg), linear expansion coefficient, and residual stress were measured by the above method. The results of Evaluation Examples 1 to 12 are shown in Table 2.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 次に、下記の実施例および比較例で行ったタッチパネルの評価方法について説明する。 Next, touch panel evaluation methods performed in the following examples and comparative examples will be described.
(導電性評価)
 タッチパネルの導電性評価では、各実施例および各比較例において、タッチパネルの第一の配線層まで作製した基板について、表面抵抗測定機(“ロレスタ”(登録商標)-FP、三菱油化社製)により表面抵抗値ρs(Ω/□)を測定し、表面粗さ形状測定機(“サーフコム”(登録商標)1400D、東京精密社製)により配線部分の膜厚t(cm)を測定し、両値を乗算することにより、体積抵抗率(μΩ・cm)を算出した。得られた体積抵抗率を用い、以下の評価基準に従ってタッチパネルの導電性を評価した。この評価では、評価結果がレベル2以上である場合を合格とした。
(Conductivity evaluation)
In the conductivity evaluation of the touch panel, in each example and each comparative example, a surface resistance measuring machine (“Loresta” (registered trademark) -FP, manufactured by Mitsubishi Yuka Co., Ltd.) was used for the substrate fabricated up to the first wiring layer of the touch panel. Is used to measure the surface resistance value ρs (Ω / □), and the thickness t (cm) of the wiring portion is measured using a surface roughness shape measuring instrument ("Surfcom" (registered trademark) 1400D, manufactured by Tokyo Seimitsu Co., Ltd.). The volume resistivity (μΩ · cm) was calculated by multiplying the values. Using the obtained volume resistivity, the conductivity of the touch panel was evaluated according to the following evaluation criteria. In this evaluation, the case where the evaluation result was level 2 or higher was regarded as acceptable.
 導電性評価の評価基準において、体積抵抗率が60μΩ・cm未満である場合は、レベル5である。体積抵抗率が60μΩ・cm以上80μΩ・cm未満である場合は、レベル4である。体積抵抗率が80μΩ・cm以上100μΩ・cm未満である場合は、レベル3である。体積抵抗率が100μΩ・cm以上150μΩ・cm未満である場合は、レベル2である。体積抵抗率が150μΩ・cm以上である場合は、レベル1である。 When the volume resistivity is less than 60 μΩ · cm in the evaluation criteria of conductivity evaluation, it is level 5. When the volume resistivity is 60 μΩ · cm or more and less than 80 μΩ · cm, it is Level 4. When the volume resistivity is 80 μΩ · cm or more and less than 100 μΩ · cm, it is Level 3. Level 2 when the volume resistivity is 100 μΩ · cm or more and less than 150 μΩ · cm. Level 1 when the volume resistivity is 150 μΩ · cm or more.
(導電性組成物の残渣評価)
 タッチパネルの導電性組成物の残渣評価では、各実施例および各比較例において、タッチパネルの第一の配線層まで作製した基板の未露光部分について、第一の配線層形成前後の波長400nmにおける透過率を、紫外可視分光光度計(島津製作所社製「MultiSpec-1500(商品名)」)を用いて測定した。そして、第一の配線層形成前の透過率をT0とし、第一の配線層形成後の透過率をTとしたときに、式(T0-T)/T0で表される透過率変化を算出した。得られた透過率変化の値を用い、以下の評価基準に従ってタッチパネルの導電性組成物の残渣を評価した。この評価では、評価結果がレベル2以上である場合を合格とした。
(Evaluation of residue of conductive composition)
In the residue evaluation of the conductive composition of the touch panel, in each example and each comparative example, the transmittance at a wavelength of 400 nm before and after the formation of the first wiring layer in the unexposed portion of the substrate manufactured up to the first wiring layer of the touch panel. Was measured using an ultraviolet-visible spectrophotometer (“MultiSpec-1500 (trade name)” manufactured by Shimadzu Corporation). Then, when the transmittance before forming the first wiring layer is T0 and the transmittance after forming the first wiring layer is T, the transmittance change represented by the formula (T0-T) / T0 is calculated. did. Using the obtained value of transmittance change, the residue of the conductive composition of the touch panel was evaluated according to the following evaluation criteria. In this evaluation, the case where the evaluation result was level 2 or higher was regarded as acceptable.
 導電性組成物の残渣評価の評価基準において、透過率変化の値が1%未満である場合は、レベル5である。透過率変化の値が1%以上2%未満である場合は、レベル4である。透過率変化の値が2%以上3%未満である場合は、レベル3である。透過率変化の値が3%以上4%未満である場合は、レベル2である。透過率変化の値が4%以上である場合は、レベル1である。 In the evaluation criteria for evaluating the residue of the conductive composition, when the value of transmittance change is less than 1%, it is level 5. When the value of the transmittance change is 1% or more and less than 2%, it is level 4. When the value of the transmittance change is 2% or more and less than 3%, it is level 3. When the transmittance change value is 3% or more and less than 4%, it is level 2. When the value of the transmittance change is 4% or more, it is level 1.
(色目(b*)評価)
 タッチパネルの色目(b*)評価では、各実施例および各比較例において、タッチパネルの第二の絶縁層まで作製した基板を用い、下記の方法により積層基板の色目を評価した。
(Evaluation of color (b *))
In the color (b *) evaluation of the touch panel, the color of the laminated substrate was evaluated by the following method using the substrate prepared up to the second insulating layer of the touch panel in each example and each comparative example.
 タッチパネルの第二の絶縁層まで作製した基板について、分光光度計(CM-2600d、コニカミノルタ社製)を用いて、ガラス基板側から全反射光の反射率を測定し、CIE(L*,a*,b*)色空間にて色特性b*を測定した。得られた色特性b*を用い、以下の評価基準に従ってタッチパネルの色目を評価した。この評価では、評価結果がレベル2以上である場合を合格とした。なお、光源としてはD65光源を用いた。 Using a spectrophotometer (CM-2600d, manufactured by Konica Minolta Co., Ltd.), the reflectance of the total reflected light is measured from the glass substrate side of the substrate manufactured up to the second insulating layer of the touch panel, and CIE (L *, a *, B *) The color characteristic b * was measured in the color space. Using the obtained color characteristic b *, the color of the touch panel was evaluated according to the following evaluation criteria. In this evaluation, the case where the evaluation result was level 2 or higher was regarded as acceptable. A D65 light source was used as the light source.
 色目評価の評価基準において、色特性b*が-2≦b*≦2である場合は、レベル5である。色特性b*が-3≦b*<-2または2<b*≦3である場合は、レベル4である。色特性b*が-4≦b*<-3または3<b*≦4である場合は、レベル3である。色特性b*が-5≦b*<-4または4<b*≦5である場合は、レベル2である。色特性b*がb*<-5または5<b*である場合は、レベル1である。 If the color characteristic b * is −2 ≦ b * ≦ 2 in the evaluation criteria of the color eye evaluation, it is level 5. Level 4 when the color characteristic b * is −3 ≦ b * <− 2 or 2 <b * ≦ 3. If the color characteristic b * is −4 ≦ b * <− 3 or 3 <b * ≦ 4, it is level 3. If the color characteristic b * is −5 ≦ b * <− 4 or 4 <b * ≦ 5, it is level 2. If the color characteristic b * is b * <− 5 or 5 <b *, it is level 1.
(耐湿熱性評価)
 タッチパネルの耐湿熱性評価では、各実施例および各比較例において作製したタッチパネルについて、以下の方法により耐湿熱性を評価した。
(Moisture and heat resistance evaluation)
In the wet heat resistance evaluation of the touch panel, the wet heat resistance was evaluated by the following method for the touch panels produced in each of the examples and the comparative examples.
 耐湿熱性の測定には、絶縁劣化特性評価システム“ETAC SIR13”(楠本化成社製)を用いた。タッチパネルの第一の配線層および第二の配線層の各端部にそれぞれ電極を取り付け、85℃、85%RH条件に設定された高温高湿槽内にタッチパネルを入れた。槽内環境が安定してから5分間経過後、これら第一の配線層および第二の配線層の電極間に電圧を印加し、絶縁抵抗の経時変化を測定した。第一の配線層を正極とし、第二の配線層を負極として、10Vの電圧を印加し、500時間の抵抗値を5分間隔で測定した。測定した抵抗値が10の5乗以下に達したとき、絶縁不良のため短絡と判断して、印圧を停止し、それまでの試験時間を短絡時間とした。得られた短絡時間を用い、以下の評価基準に従ってタッチパネルの耐湿熱性を評価した。この評価では、評価結果がレベル2以上である場合を合格とした。 For measurement of wet heat resistance, an insulation deterioration characteristic evaluation system “ETAC SIR13” (manufactured by Enomoto Kasei Co., Ltd.) was used. An electrode was attached to each end of the first wiring layer and the second wiring layer of the touch panel, and the touch panel was placed in a high-temperature and high-humidity tank set at 85 ° C. and 85% RH. After 5 minutes from the stabilization of the environment in the tank, a voltage was applied between the electrodes of the first wiring layer and the second wiring layer, and the change in insulation resistance with time was measured. With the first wiring layer as the positive electrode and the second wiring layer as the negative electrode, a voltage of 10 V was applied, and the resistance value for 500 hours was measured at 5-minute intervals. When the measured resistance value reached 10 5 or less, it was judged as a short circuit due to poor insulation, the printing pressure was stopped, and the test time up to that time was defined as the short circuit time. Using the obtained short circuit time, the wet heat resistance of the touch panel was evaluated according to the following evaluation criteria. In this evaluation, the case where the evaluation result was level 2 or higher was regarded as acceptable.
 耐湿熱性評価の評価基準において、短絡時間が1000時間以上である場合は、レベル5である。短絡時間が500時間以上1000時間未満である場合は、レベル4である。短絡時間が300時間以上500時間未満である場合は、レベル3である。短絡時間が100時間以上300時間未満である場合は、レベル2である。短絡時間が100時間未満である場合は、レベル1である。 When the short-circuit time is 1000 hours or more in the evaluation criteria of the wet heat resistance evaluation, it is level 5. When the short circuit time is 500 hours or more and less than 1000 hours, it is level 4. When the short circuit time is 300 hours or more and less than 500 hours, it is level 3. When the short circuit time is 100 hours or more and less than 300 hours, it is level 2. If the short circuit time is less than 100 hours, it is level 1.
(寸法精度評価)
 タッチパネルの寸法精度評価では、各実施例および各比較例において作製したタッチパネルについて、以下の方法により寸法精度を評価した。
(Dimensional accuracy evaluation)
In the dimensional accuracy evaluation of the touch panel, the dimensional accuracy was evaluated by the following method for the touch panels produced in each Example and each Comparative Example.
 積層基板の中心で第一の配線層のメッシュ交差部と第二の配線層のメッシュ交差部が重なる設計部において、水平方向のずれを測定した。得られた「ずれ」の測定値を用い、以下の評価基準に従ってタッチパネルの寸法精度を評価した。この評価では、評価結果がレベル2以上である場合を合格とした。 The horizontal shift was measured at the design portion where the mesh intersection of the first wiring layer and the mesh intersection of the second wiring layer overlapped at the center of the multilayer substrate. Using the obtained measurement value of “deviation”, the dimensional accuracy of the touch panel was evaluated according to the following evaluation criteria. In this evaluation, the case where the evaluation result was level 2 or higher was regarded as acceptable.
 寸法精度評価の評価基準において、ずれが1μm未満である場合は、レベル5である。ずれが1μm以上2μm未満である場合は、レベル4である。ずれが2μm以上3μm未満である場合は、レベル3である。ずれが3μm以上5μm未満である場合は、レベル2である。ずれが5μm以上である場合は、レベル1である。 If the deviation is less than 1 μm in the dimensional accuracy evaluation criteria, it is level 5. When the deviation is 1 μm or more and less than 2 μm, it is level 4. When the deviation is 2 μm or more and less than 3 μm, it is level 3. When the deviation is 3 μm or more and less than 5 μm, it is level 2. When the deviation is 5 μm or more, it is level 1.
(ESD(静電気放電)耐性評価)
 タッチパネルのESD耐性評価では、各実施例および各比較例において、タッチパネルの第一の配線層まで作製した基板について、ESD試験装置(Compact ESD Simulator HCE-5000、阪和電子工業社製)を用いてESD耐性を評価した。具体的には、第一の配線層の端部に電極を取り付け、100Vから開始して、100Vステップで1回ずつ、連続的に電圧を印加した。電圧印加後のリーク電流の抵抗値について、印加前と比較して10%以上の抵抗値の上昇がみられた場合、配線層の断線とみなし、断線した電圧の100V低い電圧をESD耐電圧とした。
(ESD (electrostatic discharge) resistance evaluation)
In the ESD resistance evaluation of the touch panel, the ESD test apparatus (Compact ESD Simulator HCE-5000, manufactured by Hanwa Denshi Kogyo Co., Ltd.) is used for the substrate manufactured up to the first wiring layer of the touch panel in each example and each comparative example. Resistance was evaluated. Specifically, an electrode was attached to the end of the first wiring layer, and the voltage was continuously applied once in 100V steps starting from 100V. When the resistance value of the leakage current after voltage application is increased by 10% or more compared to before the voltage application, it is considered that the wiring layer is disconnected, and a voltage that is 100V lower than the disconnected voltage is defined as the ESD withstand voltage. did.
(実施例1)
<ポリイミド樹脂膜の形成>
 実施例1では、第1作製例で作製した合成例1のワニスを用いて、第6作製例の方法でポリイミド樹脂膜T3を作製した。
Example 1
<Formation of polyimide resin film>
In Example 1, the polyimide resin film T3 was produced by the method of the sixth production example using the varnish of Synthesis Example 1 produced in the first production example.
<ガスバリア層の形成>
 実施例1では、 上記のようにして得られたポリイミド樹脂膜T3の上に、SiOからなるターゲットを用いて、アルゴン雰囲気下でスパッタリングを行い、膜厚100nmのSiOからなるガスバリア層を形成した。このときのスパッタリング条件として、圧力は2×10-1Paとし、基板温度は150℃とし、電源は13.56MHzの交流電源とした。
<Formation of gas barrier layer>
In Example 1, on the polyimide resin film T3 obtained as described above, by using a target made of SiO 2, performs sputtering in an argon atmosphere, forming a gas barrier layer made of SiO 2 having a thickness of 100nm did. As sputtering conditions at this time, the pressure was 2 × 10 −1 Pa, the substrate temperature was 150 ° C., and the power source was an AC power source of 13.56 MHz.
<第一の配線層の形成>
 実施例1では、第2作製例で作製した導電性組成物AE-1を、上記のポリイミド樹脂膜T3およびガスバリア層を形成した基板上に、スピンコーター(ミカサ社製「1H-360S(商品名)」)を用いて、300rpmで10秒、500rpmで2秒の条件でスピンコートした。その後、この導電性組成物AE-1の塗布膜を、ホットプレート(大日本スクリーン製造社製「SCW-636(商品名)」)を用いて100℃で2分間プリベークし、プリベーク膜を作製した。次いで、パラレルライトマスクアライナー(キヤノン社製「PLA-501F(商品名)」)を用いて、超高圧水銀灯を光源とし、所望のマスクを介して、このプリベーク膜を露光した。その後、このプリベーク膜に対し、自動現像装置(滝沢産業社製「AD-2000(商品名)」)を用いて、0.045質量%の水酸化カリウム水溶液で60秒間シャワー現像し、次いで水で30秒間リンスし、パターン加工を行った。このようにパターン加工した基板を、オーブンを用いて、空気中(酸素濃度21%)で、250℃で30分間キュアし、第一の配線層を形成した。
<Formation of first wiring layer>
In Example 1, the conductive composition AE-1 produced in the second production example was placed on a spin coater (“1H-360S (trade name) manufactured by Mikasa Co., Ltd.) on the substrate on which the polyimide resin film T3 and the gas barrier layer were formed. ) "), And spin-coated under the conditions of 300 rpm for 10 seconds and 500 rpm for 2 seconds. Thereafter, the coating film of the conductive composition AE-1 was prebaked at 100 ° C. for 2 minutes using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) to prepare a prebaked film. . Subsequently, this pre-baked film was exposed through a desired mask using a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) using an ultrahigh pressure mercury lamp as a light source. Thereafter, the pre-baked film was subjected to shower development with a 0.045 mass% aqueous potassium hydroxide solution for 60 seconds using an automatic developing device (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), and then with water. The pattern was processed by rinsing for 30 seconds. The substrate thus patterned was cured in the air (oxygen concentration 21%) at 250 ° C. for 30 minutes using an oven to form a first wiring layer.
<第一の絶縁層の形成>
 実施例1では、第3作製例で作製した絶縁性組成物OA-1を、上記の第一の配線層を形成した基板上に、スピンコーターを用いて、650rpmで5秒スピンコートした。その後、この絶縁性組成物OA-1の塗布膜を、ホットプレートを用いて100℃で2分間プリベークし、プリベーク膜を作製した。次いで、パラレルライトマスクアライナーを用いて、超高圧水銀灯を光源とし、所望のマスクを介して、このプリベーク膜を露光した。その後、このプリベーク膜に対し、自動現像装置を用いて、0.045質量%の水酸化カリウム水溶液で60秒間シャワー現像し、次いで水で30秒間リンスし、パターン加工を行った。このようにパターン加工した基板を、オーブンを用いて、空気中(酸素濃度21%)で、250℃で60分間キュアし、第一の絶縁層を形成した。
<Formation of first insulating layer>
In Example 1, the insulating composition OA-1 produced in the third production example was spin-coated at 650 rpm for 5 seconds on the substrate on which the first wiring layer was formed, using a spin coater. Thereafter, the coating film of this insulating composition OA-1 was pre-baked at 100 ° C. for 2 minutes using a hot plate to prepare a pre-baked film. Next, this pre-baked film was exposed through a desired mask using a parallel light mask aligner using an ultrahigh pressure mercury lamp as a light source. Thereafter, the prebaked film was subjected to shower development with a 0.045 mass% potassium hydroxide aqueous solution for 60 seconds using an automatic developing device, and then rinsed with water for 30 seconds to perform pattern processing. The substrate thus patterned was cured in an air (oxygen concentration: 21%) at 250 ° C. for 60 minutes to form a first insulating layer.
<第二の配線層の形成>
 実施例1では、上記のようにして第一の絶縁層を形成した基板上に、この第一の配線層と同様の方法で第二の配線層を形成した。
<Formation of second wiring layer>
In Example 1, the second wiring layer was formed on the substrate on which the first insulating layer was formed as described above by the same method as the first wiring layer.
<第二の絶縁層の形成>
 実施例1では、上記のようにして第二の配線層を形成した基板上に、上記の第一の絶縁層と同様の方法で第二の絶縁層を形成した。
<Formation of second insulating layer>
In Example 1, the second insulating layer was formed on the substrate on which the second wiring layer was formed as described above by the same method as the first insulating layer.
 最後に、第一の配線層および第二の配線層を形成した領域の周囲を上面より片刃でカットし、カット端面より機械剥離することで、実施例1のタッチパネルを得た。得られた実施例1のタッチパネルについて、前述の方法により、導電性、導電性組成物の残渣、色目(b*)、耐湿熱性、寸法精度およびESD耐電圧性を評価した。実施例1の評価結果は、後述の表3に示す。 Finally, the periphery of the area where the first wiring layer and the second wiring layer were formed was cut with a single blade from the upper surface, and mechanically peeled from the cut end surface to obtain the touch panel of Example 1. About the obtained touch panel of Example 1, the conductivity, the residue of the conductive composition, the color (b *), the moist heat resistance, the dimensional accuracy, and the ESD voltage resistance were evaluated by the methods described above. The evaluation results of Example 1 are shown in Table 3 described later.
(実施例2)
 実施例2では、ポリイミド樹脂膜製膜用ワニスとして合成例2のワニスを用いたこと以外は、実施例1と同様の操作を繰り返した。表3に示すように、実施例2のタッチパネルにおいては、ポリイミド樹脂膜に含まれるポリイミド中に一般式(1)の構造単位を有するため、寸法精度が向上して評価結果のレベルが「5」となった。色目は、配線加工時の黄変により僅かに悪化して評価結果のレベルが「3」となったが、問題なく使用できる範囲であった。
(Example 2)
In Example 2, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 2 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 2, since the polyimide contained in the polyimide resin film has the structural unit of the general formula (1), the dimensional accuracy is improved and the level of the evaluation result is “5”. It became. The color was slightly deteriorated due to yellowing during wiring processing, and the evaluation result level was “3”.
(実施例3)
 実施例3では、ポリイミド樹脂膜製膜用ワニスとして合成例3のワニスを用いたこと以外は、実施例1と同様の操作を繰り返した。表3に示すように、実施例3のタッチパネルにおいては、ポリイミド樹脂膜に含まれるポリイミド中に一般式(2)の構造単位を有するため、寸法精度が向上して評価結果のレベルが「4」となった。色目は、配線加工時の黄変により僅かに悪化して評価結果のレベルが「3」となったが、問題なく使用できる範囲であった。
(Example 3)
In Example 3, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 3 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 3, since the polyimide contained in the polyimide resin film has the structural unit of the general formula (2), the dimensional accuracy is improved and the level of the evaluation result is “4”. It became. The color was slightly deteriorated due to yellowing during wiring processing, and the evaluation result level was “3”.
(実施例4)
 実施例4では、ポリイミド樹脂膜製膜用ワニスとして合成例4のワニスを用いたこと以外は、実施例1と同様の操作を繰り返した。表3に示すように、実施例4のタッチパネルにおいては、ポリイミド樹脂膜に含まれるポリイミド中に一般式(2)の構造単位を有するため、寸法精度が向上して評価結果のレベルが「5」となった。色目は、配線加工時の黄変により僅かに悪化して評価結果のレベルが「3」となったが、問題なく使用できる範囲であった。
Example 4
In Example 4, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 4 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 4, since the polyimide contained in the polyimide resin film has the structural unit of the general formula (2), the dimensional accuracy is improved and the evaluation result level is “5”. It became. The color was slightly deteriorated due to yellowing during wiring processing, and the evaluation result level was “3”.
(実施例5)
 実施例5では、ポリイミド樹脂膜製膜用ワニスとして合成例5のワニスを用いたこと以外は、実施例1と同様の操作を繰り返した。表3に示すように、実施例5のタッチパネルにおいては、ポリイミド樹脂膜に含まれるポリイミドが、一般式(4)で表される構造単位を主成分とし、一般式(5)で表される構造単位を全構造単位の5mol%以上30mol%以下含むため、寸法精度が向上して評価結果のレベルが「5」となった。
(Example 5)
In Example 5, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 5 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 5, the polyimide contained in the polyimide resin film has a structural unit represented by the general formula (4) as a main component and a structure represented by the general formula (5). Since the unit contained 5 mol% or more and 30 mol% or less of all the structural units, the dimensional accuracy was improved and the evaluation result level was “5”.
(実施例6)
 実施例6では、ポリイミド樹脂膜製膜用ワニスとして合成例6のワニスを用いたこと以外は、実施例1と同様の操作を繰り返した。表3に示すように、実施例6のタッチパネルにおいては、ポリイミド樹脂膜に含まれるポリイミド中に一般式(9)で表される繰り返し構造を有するため、寸法精度が向上して評価結果のレベルが「5」となった。また、ESD耐電圧が向上し、1200Vとなった。
(Example 6)
In Example 6, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 6 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 6, since the polyimide included in the polyimide resin film has a repeating structure represented by the general formula (9), the dimensional accuracy is improved and the level of the evaluation result is “5”. Moreover, ESD withstand voltage improved and became 1200V.
(実施例7)
 実施例7では、ポリイミド樹脂膜製膜用ワニスとして合成例7のワニスを用いたこと以外は、実施例1と同様の操作を繰り返した。表3に示すように、実施例7のタッチパネルにおいては、ポリイミド樹脂膜のTgがやや低いため(表2の評価例7参照)、寸法精度が悪化して評価結果のレベルが「2」となったが、使用可能な範囲であった。
(Example 7)
In Example 7, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 7 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 7, since the Tg of the polyimide resin film is slightly low (see Evaluation Example 7 in Table 2), the dimensional accuracy deteriorates and the evaluation result level is “2”. However, it was in a usable range.
(実施例8)
 実施例8では、ポリイミド樹脂膜製膜用ワニスとして合成例10のワニスを用いたこと以外は、実施例1と同様の操作を繰り返した。表3に示すように、実施例8のタッチパネルにおいては、ポリイミド樹脂膜に含まれるポリイミド中に一般式(9)で表される繰り返し構造を有するため、寸法精度が向上して評価結果のレベルが「5」となった。また、ESD耐電圧が向上し、1200Vとなった。
(Example 8)
In Example 8, the same operation as Example 1 was repeated except that the varnish of Synthesis Example 10 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 8, since the polyimide contained in the polyimide resin film has a repeating structure represented by the general formula (9), the dimensional accuracy is improved and the level of the evaluation result is “5”. Moreover, ESD withstand voltage improved and became 1200V.
(実施例9)
 実施例9では、ポリイミド樹脂膜製膜用ワニスとして合成例11のワニスを用いたこと以外は、実施例1と同様の操作を繰り返した。表3に示すように、実施例9のタッチパネルにおいては、ポリイミド樹脂膜に含まれるポリイミド中に一般式(9)で表される繰り返し構造を有するため、寸法精度が向上して評価結果のレベルが「5」となった。また、ESD耐電圧が向上し、1200Vとなった。
Example 9
In Example 9, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 11 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 9, since the polyimide contained in the polyimide resin film has a repeating structure represented by the general formula (9), the dimensional accuracy is improved and the level of the evaluation result is “5”. Moreover, ESD withstand voltage improved and became 1200V.
(実施例10)
 実施例10では、ポリイミド樹脂膜製膜用ワニスとして合成例12のワニスを用いたこと以外は、実施例1と同様の操作を繰り返した。表3に示すように、実施例10のタッチパネルにおいては、ポリイミド樹脂膜に含まれるポリイミド中に一般式(9)で表される繰り返し構造を有するため、寸法精度が向上して評価結果のレベルが「5」となった。また、ESD耐電圧が向上し、1100Vとなった。
(Example 10)
In Example 10, the same operation as in Example 1 was repeated except that the varnish of Synthesis Example 12 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 10, since the polyimide contained in the polyimide resin film has a repeating structure represented by the general formula (9), the dimensional accuracy is improved and the level of the evaluation result is “5”. Moreover, ESD withstand voltage improved and became 1100V.
(実施例11)
 実施例11では、ガスバリア層形成の際、ターゲットをSiONからなるターゲットに変更したこと以外は、実施例5と同様の操作を繰り返した。表3に示すように、実施例11のタッチパネルにおいては、ガスバリア層を変更したことで、色目が向上して評価結果のレベルが「5」となった。一方、ガスバリア層を変更したことで、耐薬品性が低下した。それによって、導電組成物残渣および寸法精度は、それぞれ僅かに悪化して評価結果のレベルが「4」となったが、いずれも使用可能な範囲であった。
(Example 11)
In Example 11, the same operation as Example 5 was repeated except that the target was changed to a target made of SiON when forming the gas barrier layer. As shown in Table 3, in the touch panel of Example 11, by changing the gas barrier layer, the color was improved and the evaluation result level was “5”. On the other hand, chemical resistance decreased by changing the gas barrier layer. As a result, the conductive composition residue and the dimensional accuracy slightly deteriorated, and the evaluation result level was “4”, but both were in the usable range.
(実施例12)
 実施例12では、ガスバリア層形成の際、まず、SiONからなるターゲットを用いて、アルゴン雰囲気下でスパッタリングを行い、膜厚80nmのSiONからなるガスバリア層を形成した。次に、SiOからなるターゲットを用いて、アルゴン雰囲気下でスパッタリングを行い、膜厚20nmのSiOからなるガスバリア層を形成した。このこと以外は、実施例5と同様の操作を繰り返した。表3に示すように、実施例12のタッチパネルにおいては、ポリイミド樹脂膜側のガスバリア層をSiONとすることで、配線加工時の黄変が抑制され、この結果、色目が向上して評価結果のレベルが「5」となった。また、ガスバリア層のバリア性が向上したことから、耐湿熱性が向上して評価結果のレベルが「5」となった。さらに、配線層側のガスバリア層をSiOとしたことで、導電組成物残渣および寸法精度は、評価結果のレベルが「5」のまま変わらず、良好であった。
(Example 12)
In Example 12, when forming the gas barrier layer, first, sputtering was performed in an argon atmosphere using a target made of SiON to form a gas barrier layer made of SiON having a thickness of 80 nm. Next, using a target of SiO 2, performs sputtering in an argon atmosphere to form a gas barrier layer made of SiO 2 having a thickness of 20 nm. Except this, the same operation as in Example 5 was repeated. As shown in Table 3, in the touch panel of Example 12, by setting the gas barrier layer on the polyimide resin film side to SiON, yellowing during wiring processing is suppressed, and as a result, the color is improved and the evaluation result The level is now “5”. Further, since the barrier property of the gas barrier layer was improved, the heat and humidity resistance was improved, and the evaluation result level was “5”. Furthermore, since the gas barrier layer on the wiring layer side was made of SiO 2 , the conductive composition residue and dimensional accuracy were good, with the evaluation result level remaining at “5”.
(実施例13)
 実施例13では、導電性組成物を導電性組成物AE-1から導電性組成物AE-2に変更したこと以外は、実施例5と同様の操作を繰り返した。表3に示すように、実施例13のタッチパネルにおいては、導電性組成物AE-2に含まれる導電性粒子(金属微粒子)が被覆されておらず、配線層中で金属微粒子が不均一に凝集した。そのため、導電性が悪化して評価結果のレベルが「3」となったが、使用可能な範囲であった。また、導電組成物残渣および寸法精度は、僅かに悪化して評価結果のレベルがそれぞれ「4」となったが、使用に問題ない範囲であった。
(Example 13)
In Example 13, the same operation as in Example 5 was repeated except that the conductive composition was changed from the conductive composition AE-1 to the conductive composition AE-2. As shown in Table 3, in the touch panel of Example 13, the conductive particles (metal fine particles) contained in the conductive composition AE-2 were not coated, and the metal fine particles aggregated non-uniformly in the wiring layer. did. Therefore, although the conductivity deteriorated and the evaluation result level was “3”, it was in a usable range. Moreover, although the conductive composition residue and the dimensional accuracy were slightly deteriorated and the level of the evaluation result was “4”, it was in a range where there was no problem in use.
(実施例14)
 実施例14では、絶縁性組成物を絶縁性組成物OA-1から絶縁性組成物OA-2に変更したこと以外は、実施例5と同様の操作を繰り返した。表3に示すように、実施例14のタッチパネルにおいては、絶縁層が所定のカルド系樹脂を有さないため、耐湿熱性が大きく悪化して評価結果のレベルが「2」となったが、使用可能な範囲であった。導電性、導電組成物残渣および寸法精度は、僅かに悪化して評価結果のレベルがそれぞれ「4」となったが、使用に問題ない可能な範囲であった。
(Example 14)
In Example 14, the same operation as in Example 5 was repeated except that the insulating composition was changed from the insulating composition OA-1 to the insulating composition OA-2. As shown in Table 3, in the touch panel of Example 14, since the insulating layer does not have a predetermined cardo resin, the heat and humidity resistance is greatly deteriorated and the evaluation result level is “2”. It was possible. The conductivity, the conductive composition residue, and the dimensional accuracy were slightly deteriorated and the evaluation result level was “4”.
(実施例15)
 実施例15では、配線層形成の際、パターン加工した基板を、イナートオーブン(光洋サーモシステム社製 INH-21CD)を用いて、窒素気流下(酸素濃度14%)で加熱したこと以外は、実施例5と同様の操作を繰り返した。表3に示すように、実施例15のタッチパネルにおいては、配線層形成時の酸素濃度の変更により、色目は改善して評価結果のレベルが「5」となった。一方、導電性が大きく悪化して評価結果のレベルが「2」となったが、使用可能な範囲であった。寸法精度は、僅かに悪化して評価結果のレベルが「4」となったが、使用に問題ない範囲であった。
(Example 15)
In Example 15, when the wiring layer was formed, the patterned substrate was heated using an inert oven (INH-21CD manufactured by Koyo Thermo Systems Co., Ltd.) under a nitrogen stream (oxygen concentration 14%). The same operation as in Example 5 was repeated. As shown in Table 3, in the touch panel of Example 15, due to the change in the oxygen concentration during the formation of the wiring layer, the color was improved and the evaluation result level was “5”. On the other hand, the conductivity was greatly deteriorated and the evaluation result level was “2”, but it was in a usable range. The dimensional accuracy slightly deteriorated and the evaluation result level was “4”, but it was in a range where there was no problem in use.
(実施例16)
 実施例16では、ポリイミド樹脂膜製膜用ワニスとして合成例6のワニスを用いたこと以外は、実施例11と同様の操作を繰り返した。表3に示すように、実施例16のタッチパネルにおいては、ポリイミド樹脂膜に含まれるポリイミド中に一般式(9)で表される繰り返し構造を有するため、寸法精度が向上して評価結果のレベルが「5」となった。また、ESD耐電圧が向上し、1300Vとなった。
(Example 16)
In Example 16, the same operation as in Example 11 was repeated except that the varnish of Synthesis Example 6 was used as the polyimide resin film-forming varnish. As shown in Table 3, in the touch panel of Example 16, since the polyimide contained in the polyimide resin film has a repeating structure represented by the general formula (9), the dimensional accuracy is improved and the level of the evaluation result is “5”. Moreover, ESD withstand voltage improved and became 1300V.
(実施例17)
 実施例17では、ポリイミド樹脂膜製膜用ワニスとして合成例6のワニスを用いたこと以外は、実施例12と同様の操作を繰り返した。表3に示すように、実施例17のタッチパネルにおいては、ポリイミド樹脂膜に含まれるポリイミド中に一般式(9)で表される繰り返し構造を有するため、ESD耐電圧が向上し、1300Vとなった。
(Example 17)
In Example 17, the same operation as in Example 12 was repeated except that the varnish of Synthesis Example 6 was used as the varnish for forming a polyimide resin film. As shown in Table 3, in the touch panel of Example 17, since the polyimide contained in the polyimide resin film has a repeating structure represented by the general formula (9), the ESD withstand voltage is improved to 1300 V. .
(比較例1)
 比較例1では、ガスバリア層を形成せず、ポリイミド樹脂膜上に直接、第一の配線層を形成したこと以外は、実施例5と同様の操作を繰り返した。比較例1のタッチパネルにおいては、導電組成物残渣、色目および耐湿熱性が大幅に低下し、使用不可のレベル(レベル1)であった。
(Comparative Example 1)
In Comparative Example 1, the same operation as in Example 5 was repeated except that the first wiring layer was formed directly on the polyimide resin film without forming the gas barrier layer. In the touch panel of Comparative Example 1, the conductive composition residue, color, and heat-and-moisture resistance were significantly lowered, and the level was unusable (level 1).
(比較例2)
 比較例2では、ポリイミド樹脂膜製膜用ワニスとして合成例8のワニスを用いたこと以外は、実施例5と同様の操作を繰り返した。比較例2のタッチパネルにおいては、ポリイミド樹脂膜に含まれるポリイミドのイミド基濃度が高く、樹脂膜形成後にヘイズが発生して視認性が大きく損なわれた。このため、比較例2におけるポリイミド樹脂膜は、タッチパネルの基板として適用不可であった。
(Comparative Example 2)
In Comparative Example 2, the same operation as in Example 5 was repeated except that the varnish of Synthesis Example 8 was used as the varnish for forming a polyimide resin film. In the touch panel of Comparative Example 2, the imide group concentration of the polyimide contained in the polyimide resin film was high, and haze was generated after the resin film was formed, and the visibility was greatly impaired. For this reason, the polyimide resin film in Comparative Example 2 was not applicable as a touch panel substrate.
(比較例3)
 比較例3では、ポリイミド樹脂膜製膜用ワニスとして合成例9のワニスを用いたこと以外は、実施例5と同様の操作を繰り返した。比較例2のタッチパネルにおいては、ポリイミド樹脂膜に含まれるポリイミドのイミド基濃度が低く、ポリイミド樹脂膜のTgが低下したため(表2の評価例9参照)、寸法精度が大幅に低下し、使用不可のレベル(レベル1)であった。これらの比較例1~3の各評価結果は、上述した実施例1~17の各評価結果とともに表3に示す。
(Comparative Example 3)
In Comparative Example 3, the same operation as in Example 5 was repeated except that the varnish of Synthesis Example 9 was used as the polyimide resin film-forming varnish. In the touch panel of Comparative Example 2, since the imide group concentration of the polyimide contained in the polyimide resin film is low and the Tg of the polyimide resin film is reduced (see Evaluation Example 9 in Table 2), the dimensional accuracy is greatly reduced and cannot be used. Level (level 1). The evaluation results of Comparative Examples 1 to 3 are shown in Table 3 together with the evaluation results of Examples 1 to 17 described above.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 以上のように、本発明に係る導電層付きフィルム、タッチパネル、導電層付きフィルムの製造方法およびタッチパネルの製造方法は、導電層形成時の樹脂膜の黄変を抑制し且つ導電層の高い寸法精度を確保することができる導電層付きフィルム、タッチパネル、導電層付きフィルムの製造方法およびタッチパネルの製造方法に適している。 As described above, the method for manufacturing a film with a conductive layer, a touch panel, a film with a conductive layer, and a method for manufacturing a touch panel according to the present invention suppresses yellowing of the resin film during formation of the conductive layer and provides high dimensional accuracy of the conductive layer. Is suitable for a film with a conductive layer, a touch panel, a method for producing a film with a conductive layer, and a method for producing a touch panel.
 1 樹脂膜
 2 ガスバリア層
 3 第一の配線層
 3A 導電層
 4 第一の絶縁層
 5 第二の配線層
 6 第二の絶縁層
 7 支持基板
 8 カット端面
 10 タッチパネル
 11 導電層付きフィルム
DESCRIPTION OF SYMBOLS 1 Resin film 2 Gas barrier layer 3 1st wiring layer 3A Conductive layer 4 1st insulating layer 5 2nd wiring layer 6 2nd insulating layer 7 Support substrate 8 Cut end surface 10 Touch panel 11 Film with a conductive layer

Claims (17)

  1.  下記(I)式で定義されるイミド基濃度が20.0%以上36.5%以下であるポリイミドを含む樹脂膜上に、導電性粒子を含有する導電層を有する導電層付きフィルムであって、
     前記樹脂膜と前記導電層との間にガスバリア層を有する、
     ことを特徴とする導電層付きフィルム。
    (イミド基部分の分子量)/(ポリイミドの繰返し単位の分子量)×100[%]・・・(I)
    A film with a conductive layer having a conductive layer containing conductive particles on a resin film containing polyimide having an imide group concentration defined by the following formula (I) of 20.0% or more and 36.5% or less, ,
    Having a gas barrier layer between the resin film and the conductive layer;
    A film with a conductive layer characterized by the above.
    (Molecular weight of imide group part) / (Molecular weight of repeating unit of polyimide) × 100 [%] (I)
  2.  前記樹脂膜のガラス転移温度は250℃以上である、
     ことを特徴とする請求項1に記載の導電層付きフィルム。
    The glass transition temperature of the resin film is 250 ° C. or higher.
    The film with a conductive layer according to claim 1.
  3.  前記ポリイミドは、下記一般式(1)で表される構造単位を含む、
     ことを特徴とする請求項1または2に記載の導電層付きフィルム。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、Rは、単環式もしくは縮合多環式の脂環構造を有する、炭素数4~40の4価の有機基、または、単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された、炭素数4~40の4価の有機基を示す。Rは、炭素数4~40の2価の有機基を示す。)
    The polyimide includes a structural unit represented by the following general formula (1).
    The film with a conductive layer according to claim 1 or 2.
    Figure JPOXMLDOC01-appb-C000001
    (In General Formula (1), R 1 has a monocyclic or condensed polycyclic alicyclic structure, a tetravalent organic group having 4 to 40 carbon atoms, or a monocyclic alicyclic structure. A tetravalent organic group having 4 to 40 carbon atoms in which the organic groups are connected to each other directly or via a crosslinked structure, R 2 represents a divalent organic group having 4 to 40 carbon atoms.
  4.  前記ポリイミドは、下記一般式(2)で表される構造単位を含む、
     ことを特徴とする請求項1~3のいずれか一つに記載の導電層付きフィルム。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)において、Rは、炭素数4~40の4価の有機基を示す。Rは、単環式もしくは縮合多環式の脂環構造を有する、炭素数4~40の2価の有機基、または、単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された、炭素数4~40の2価の有機基、または、下記一般式(3)で表される2価の有機基を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)において、Xは、ハロゲン原子で置換されていてもよい、炭素数1~3の2価の炭化水素基である。ArおよびArは、各々独立に、炭素数4~40の2価の芳香族基を示す。)
    The polyimide includes a structural unit represented by the following general formula (2).
    The film with a conductive layer according to any one of claims 1 to 3, wherein the film has a conductive layer.
    Figure JPOXMLDOC01-appb-C000002
    (In General Formula (2), R 3 represents a tetravalent organic group having 4 to 40 carbon atoms. R 4 has a monocyclic or condensed polycyclic alicyclic structure and has 4 to 40 carbon atoms. Or a divalent organic group having 4 to 40 carbon atoms in which organic groups having a monocyclic alicyclic structure are connected to each other directly or via a crosslinked structure, or the following general group A divalent organic group represented by the formula (3) is shown.)
    Figure JPOXMLDOC01-appb-C000003
    (In General Formula (3), X 1 is a divalent hydrocarbon group having 1 to 3 carbon atoms which may be substituted with a halogen atom. Ar 1 and Ar 2 are each independently a carbon number. Represents a divalent aromatic group of 4 to 40.)
  5.  前記ポリイミドは、下記一般式(4)で表される構造単位を主成分とし、かつ、下記一般式(5)で表される構造単位を全構造単位の5mol%以上30mol%以下含む、
     ことを特徴とする請求項1~4のいずれか一つに記載の導電層付きフィルム。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)、(5)において、Rは、単環式もしくは縮合多環式の脂環構造を有する、炭素数4~40の4価の有機基、または、単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された、炭素数4~40の4価の有機基を示す。R13は、下記一般式(6)で表される2価の有機基を示す。R14は、下記構造式(7)または下記構造式(8)で表される構造である。)
    Figure JPOXMLDOC01-appb-C000005
    (一般式(6)において、R15~R22は、各々独立に、水素原子、ハロゲン原子、または、ハロゲン原子で置換されていてもよい炭素数1~3の1価の有機基を示す。Xは、直接結合、酸素原子、硫黄原子、スルホニル基、ハロゲン原子で置換されていてもよい炭素数1~3の2価の有機基、エステル結合、アミド結合、およびスルフィド結合の中から選ばれる構造である。)
    Figure JPOXMLDOC01-appb-C000006
    The polyimide includes a structural unit represented by the following general formula (4) as a main component, and includes a structural unit represented by the following general formula (5) in a range of 5 mol% to 30 mol% of all structural units.
    The film with a conductive layer according to any one of claims 1 to 4, wherein the film has a conductive layer.
    Figure JPOXMLDOC01-appb-C000004
    (In the general formulas (4) and (5), R 1 represents a monovalent or condensed polycyclic alicyclic structure, a tetravalent organic group having 4 to 40 carbon atoms, or a monocyclic fatty acid. A tetravalent organic group having 4 to 40 carbon atoms in which organic groups having a ring structure are connected to each other directly or via a crosslinked structure, R 13 is a divalent group represented by the following general formula (6). R 14 is a structure represented by the following structural formula (7) or the following structural formula (8).
    Figure JPOXMLDOC01-appb-C000005
    (In the general formula (6), R 15 to R 22 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 3 carbon atoms which may be substituted with a halogen atom. X 2 is selected from a direct bond, an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms which may be substituted with a halogen atom, an ester bond, an amide bond, and a sulfide bond. Structure.)
    Figure JPOXMLDOC01-appb-C000006
  6.  前記ポリイミドは、前記ポリイミドを構成する酸二無水物残基およびジアミン残基のうち少なくとも一つの中に、下記一般式(9)で表される繰り返し構造を含有する、
     ことを特徴とする請求項1~5のいずれか一つに記載の導電層付きフィルム。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(9)において、R23およびR24は、各々独立に、炭素数1~20の1価の有機基を示す。mは、3~200の整数である。)
    The polyimide contains a repeating structure represented by the following general formula (9) in at least one of an acid dianhydride residue and a diamine residue constituting the polyimide.
    The film with a conductive layer according to claim 1, wherein the film has a conductive layer.
    Figure JPOXMLDOC01-appb-C000007
    (In the general formula (9), R 23 and R 24 each independently represents a monovalent organic group having 1 to 20 carbon atoms. M is an integer of 3 to 200.)
  7.  前記ポリイミドはトリアミン骨格を含む、
     ことを特徴とする請求項1~6のいずれか一つに記載の導電層付きフィルム。
    The polyimide includes a triamine skeleton,
    The film with a conductive layer according to any one of claims 1 to 6, wherein the film has a conductive layer.
  8.  前記ガスバリア層は、珪素酸化物、珪素窒化物、珪素酸窒化物および珪素炭窒化物のうち少なくとも一つを含む、
     ことを特徴とする請求項1~7のいずれか一つに記載の導電層付きフィルム。
    The gas barrier layer includes at least one of silicon oxide, silicon nitride, silicon oxynitride, and silicon carbonitride.
    The film with a conductive layer according to any one of claims 1 to 7, wherein the film has a conductive layer.
  9.  前記ガスバリア層は、SiOxNy(x、yは、0<x≦1、0.55≦y≦1および0≦x/y≦1を満たす値である。)で表される成分を含む、
     ことを特徴とする請求項1~8のいずれか一つに記載の導電層付きフィルム。
    The gas barrier layer includes a component represented by SiOxNy (x and y are values satisfying 0 <x ≦ 1, 0.55 ≦ y ≦ 1 and 0 ≦ x / y ≦ 1).
    9. The film with a conductive layer according to claim 1, wherein the film has a conductive layer.
  10.  前記ガスバリア層は、2層以上に積層された無機膜であり、
     前記無機膜のうち前記導電層と接する層は、SiOz(zは、0.5≦z≦2を満たす値である。)で表される成分で形成される、
     ことを特徴とする請求項1~9のいずれか一つに記載の導電層付きフィルム。
    The gas barrier layer is an inorganic film laminated in two or more layers,
    Of the inorganic film, a layer in contact with the conductive layer is formed of a component represented by SiOz (z is a value satisfying 0.5 ≦ z ≦ 2).
    10. The film with a conductive layer according to claim 1, wherein the film has a conductive layer.
  11.  前記導電性粒子は銀粒子である、
     ことを特徴とする請求項1~10のいずれか一つに記載の導電層付きフィルム。
    The conductive particles are silver particles.
    The film with a conductive layer according to any one of claims 1 to 10, wherein the film has a conductive layer.
  12.  前記導電層上に、下記構造式(10)で表される構造を2つ以上有するカルド系樹脂を含むアルカリ可溶性樹脂から形成される絶縁層を有する、
     ことを特徴とする請求項1~11のいずれか一つに記載の導電層付きフィルム。
    Figure JPOXMLDOC01-appb-C000008
    On the conductive layer, an insulating layer formed of an alkali-soluble resin containing a cardo resin having two or more structures represented by the following structural formula (10) is provided.
    The film with a conductive layer according to any one of claims 1 to 11, wherein the film has a conductive layer.
    Figure JPOXMLDOC01-appb-C000008
  13.  請求項1~12のいずれか一つに記載の導電層付きフィルムを有し、
     前記導電層は配線層である、
     ことを特徴とするタッチパネル。
    A film with a conductive layer according to any one of claims 1 to 12,
    The conductive layer is a wiring layer;
    A touch panel characterized by that.
  14.  支持基板上に、ポリイミドを含む樹脂膜を形成する樹脂膜形成工程と、
     前記樹脂膜の上にガスバリア層を形成するガスバリア層形成工程と、
     前記ガスバリア層の上に導電層を形成する導電層形成工程と、
     前記支持基板から前記樹脂膜を剥離する剥離工程と、
     を少なくとも含むことを特徴とする導電層付きフィルムの製造方法。
    A resin film forming step of forming a resin film containing polyimide on the support substrate;
    A gas barrier layer forming step of forming a gas barrier layer on the resin film;
    A conductive layer forming step of forming a conductive layer on the gas barrier layer;
    A peeling step of peeling the resin film from the support substrate;
    A method for producing a film with a conductive layer, comprising:
  15.  前記導電層形成工程は、表面の少なくとも一部に被覆層を有する導電性粒子を含有する導電性組成物を用いて前記導電層を形成する、
     ことを特徴とする請求項14に記載の導電層付きフィルムの製造方法。
    The conductive layer forming step forms the conductive layer using a conductive composition containing conductive particles having a coating layer on at least a part of the surface.
    The manufacturing method of the film with a conductive layer of Claim 14 characterized by the above-mentioned.
  16.  前記樹脂膜形成工程は、前記支持基板上のポリイミド樹脂組成物を、酸素濃度が1000ppm以下である雰囲気下において300℃以上500℃以下の温度で加熱して、前記樹脂膜を形成し、
     前記導電層形成工程は、前記ガスバリア層上の導電性組成物を、酸素濃度が15%以上である雰囲気下において100℃以上300℃以下の温度で加熱して、前記導電層を形成する、
     ことを特徴とする請求項14または15に記載の導電層付きフィルムの製造方法。
    In the resin film forming step, the polyimide resin composition on the support substrate is heated at a temperature of 300 ° C. or more and 500 ° C. or less in an atmosphere having an oxygen concentration of 1000 ppm or less to form the resin film,
    In the conductive layer forming step, the conductive composition on the gas barrier layer is heated at a temperature of 100 ° C. or higher and 300 ° C. or lower in an atmosphere having an oxygen concentration of 15% or higher to form the conductive layer.
    The manufacturing method of the film with a conductive layer of Claim 14 or 15 characterized by the above-mentioned.
  17.  請求項14~16のいずれか一つに記載の導電層付きフィルムの製造方法を用いたタッチパネルの製造方法であって、
     前記導電層形成工程は、前記導電層として配線層を形成する工程である、
     ことを特徴とするタッチパネルの製造方法。
    A method for producing a touch panel using the method for producing a film with a conductive layer according to any one of claims 14 to 16,
    The conductive layer forming step is a step of forming a wiring layer as the conductive layer.
    A manufacturing method of a touch panel characterized by the above.
PCT/JP2018/011518 2017-03-29 2018-03-22 Film with conductive layer, touch panel, method for producing film with conductive layer, and method for producing touch panel WO2018180926A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880021695.8A CN110447005B (en) 2017-03-29 2018-03-22 Film with conductive layer, touch panel, method for manufacturing film with conductive layer, and method for manufacturing touch panel
JP2019509681A JP7140108B2 (en) 2017-03-29 2018-03-22 Film with conductive layer and touch panel
KR1020197025834A KR102524863B1 (en) 2017-03-29 2018-03-22 Film with conductive layer, touch panel, manufacturing method of film with conductive layer, and manufacturing method of touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-065227 2017-03-29
JP2017065227 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018180926A1 true WO2018180926A1 (en) 2018-10-04

Family

ID=63675813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011518 WO2018180926A1 (en) 2017-03-29 2018-03-22 Film with conductive layer, touch panel, method for producing film with conductive layer, and method for producing touch panel

Country Status (5)

Country Link
JP (1) JP7140108B2 (en)
KR (1) KR102524863B1 (en)
CN (1) CN110447005B (en)
TW (1) TWI772393B (en)
WO (1) WO2018180926A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246466A1 (en) * 2019-06-04 2020-12-10 株式会社カネカ Polyimide resin and method for producing same, and polyimide film and method for producing same
WO2022138160A1 (en) * 2020-12-24 2022-06-30 東レ株式会社 Resin composition, sheet-form composition, sheet cured product, laminate, laminate member, wafer holder, and semiconductor manufacturing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4112296A4 (en) * 2020-03-27 2024-03-27 Lintec Corporation Laminate for transparent conductive film, transparent conductive film, and transparent conductive film manufacturing method
US11652052B2 (en) 2021-03-29 2023-05-16 Tpk Advanced Solutions Inc. Contact structure and electronic device having the same
CN113501989B (en) * 2021-06-28 2023-04-07 浙江中科玖源新材料有限公司 Transparent polyimide composite conductive film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330421A (en) * 2004-05-21 2005-12-02 Shin Etsu Chem Co Ltd Partially blocked polyimide-polysiloxane copolymer, method for producing the same and resin composition containing the copolymer
JP2006001968A (en) * 2004-06-15 2006-01-05 Hitachi Chem Co Ltd Polyamic acid and polyimide resin having triptycene skeleton and optical part using the same
JP2013028695A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Wintec Inc Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same
JP2013101759A (en) * 2011-11-07 2013-05-23 Sumitomo Electric Wintec Inc Insulation wire, electric machine coil using the same, and motor
JP2013174643A (en) * 2012-02-23 2013-09-05 Toray Ind Inc Negative photosensitive resin composition, cured film, and member for touch panel
JP2013196997A (en) * 2012-03-22 2013-09-30 Toray Ind Inc Conductive composition
JP2015021022A (en) * 2013-07-16 2015-02-02 ソマール株式会社 Transparent polyimide copolymer, polyimide resin composition, molded body and method for producing the copolymer
JP2016072246A (en) * 2014-09-30 2016-05-09 東レ株式会社 Support substrate for display, color filter using the same and method of manufacturing the same, organic el element and method of manufacturing the same, and flexible organic el display
JP2016110769A (en) * 2014-12-04 2016-06-20 コニカミノルタ株式会社 Production method of transparent electrode, transparent electrode, production apparatus of transparent electrode, electronic equipment
WO2016158825A1 (en) * 2015-03-31 2016-10-06 旭化成株式会社 Polyimide film, polyimide varnish, product using polyimide film, and laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166427A (en) * 2003-12-02 2005-06-23 Sumitomo Bakelite Co Ltd Transparent conductive film and manufacturing method of the same
KR102057070B1 (en) * 2011-11-11 2019-12-18 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Method for manufacturing transparent, heat-resistant gas-barrier film
JP6008790B2 (en) * 2012-05-10 2016-10-19 富士フイルム株式会社 Conductive film laminate, touch panel, wiring board, electronic device, transparent double-sided adhesive sheet
KR102207439B1 (en) 2013-09-27 2021-01-26 도레이 카부시키가이샤 Polyimide precursor, polyimide resin film produced from said polyimide precursor, display element, optical element, light-receiving element, touch panel and circuit board each equipped with said polyimide resin film, organic el display, and methods respectively for producing organic el element and color filter
JP2015114919A (en) * 2013-12-12 2015-06-22 Jsr株式会社 Transparent conductive film, manufacturing method of the same, and display device
JP6503674B2 (en) * 2014-09-30 2019-04-24 東レ株式会社 RESIN LAMINATE, ORGANIC EL ELEMENT SUBSTRATE USING THE SAME, COLOR FILTER SUBSTRATE, METHOD FOR MANUFACTURING THEM, AND FLEXIBLE ORGANIC EL DISPLAY
JP6461860B2 (en) 2016-05-30 2019-01-30 日鉄ケミカル&マテリアル株式会社 Method for producing transparent conductive film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330421A (en) * 2004-05-21 2005-12-02 Shin Etsu Chem Co Ltd Partially blocked polyimide-polysiloxane copolymer, method for producing the same and resin composition containing the copolymer
JP2006001968A (en) * 2004-06-15 2006-01-05 Hitachi Chem Co Ltd Polyamic acid and polyimide resin having triptycene skeleton and optical part using the same
JP2013028695A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Wintec Inc Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same
JP2013101759A (en) * 2011-11-07 2013-05-23 Sumitomo Electric Wintec Inc Insulation wire, electric machine coil using the same, and motor
JP2013174643A (en) * 2012-02-23 2013-09-05 Toray Ind Inc Negative photosensitive resin composition, cured film, and member for touch panel
JP2013196997A (en) * 2012-03-22 2013-09-30 Toray Ind Inc Conductive composition
JP2015021022A (en) * 2013-07-16 2015-02-02 ソマール株式会社 Transparent polyimide copolymer, polyimide resin composition, molded body and method for producing the copolymer
JP2016072246A (en) * 2014-09-30 2016-05-09 東レ株式会社 Support substrate for display, color filter using the same and method of manufacturing the same, organic el element and method of manufacturing the same, and flexible organic el display
JP2016110769A (en) * 2014-12-04 2016-06-20 コニカミノルタ株式会社 Production method of transparent electrode, transparent electrode, production apparatus of transparent electrode, electronic equipment
WO2016158825A1 (en) * 2015-03-31 2016-10-06 旭化成株式会社 Polyimide film, polyimide varnish, product using polyimide film, and laminate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246466A1 (en) * 2019-06-04 2020-12-10 株式会社カネカ Polyimide resin and method for producing same, and polyimide film and method for producing same
CN113906083A (en) * 2019-06-04 2022-01-07 株式会社钟化 Polyimide resin and method for producing same, and polyimide film and method for producing same
CN113906083B (en) * 2019-06-04 2023-08-22 株式会社钟化 Polyimide resin and method for producing same, and polyimide film and method for producing same
JP7510414B2 (en) 2019-06-04 2024-07-03 株式会社カネカ Polyimide resin and its manufacturing method, and polyimide film and its manufacturing method
WO2022138160A1 (en) * 2020-12-24 2022-06-30 東レ株式会社 Resin composition, sheet-form composition, sheet cured product, laminate, laminate member, wafer holder, and semiconductor manufacturing device

Also Published As

Publication number Publication date
JP7140108B2 (en) 2022-09-21
CN110447005A (en) 2019-11-12
KR102524863B1 (en) 2023-04-24
JPWO2018180926A1 (en) 2020-02-06
TW201838820A (en) 2018-11-01
TWI772393B (en) 2022-08-01
KR20190134602A (en) 2019-12-04
CN110447005B (en) 2023-03-31

Similar Documents

Publication Publication Date Title
JP7140108B2 (en) Film with conductive layer and touch panel
JP5773090B1 (en) Polyimide precursor, polyimide resin film obtained therefrom, and display element, optical element, light receiving element, touch panel, circuit board, organic EL display, organic EL element, and color filter manufacturing method including the same
TWI735434B (en) Resin laminated film, laminated body containing it, TFT substrate, organic EL element, color filter and their manufacturing method.
JP6292351B1 (en) POLYIMIDE RESIN, POLYIMIDE RESIN COMPOSITION, TOUCH PANEL USING SAME AND ITS MANUFACTURING METHOD, COLOR FILTER AND ITS MANUFACTURING METHOD, LIQUID CRYSTAL ELEMENT AND ITS MANUFACTURING METHOD, ORGANIC EL ELEMENT AND ITS MANUFACTURING METHOD
US9493614B2 (en) Polyimide precursor, polyimide, flexible substrate prepared therewith, color filter and production method thereof, and flexible display device
CN111133054B (en) Polyimide precursor resin composition, polyimide resin composition, and polyimide resin film
JP2015078254A (en) Resin composition, polyimide resin film using the same, color filter, tft substrate and display device including the same, and their production method
JP7322699B2 (en) Resin composition for display substrate, resin film for display substrate and laminate containing the same, image display device, organic EL display, and manufacturing method thereof
KR102338021B1 (en) Touch panel, manufacturing method of touch panel
WO2018029766A1 (en) Laminated resin film, laminated body including laminated resin film, tft substrate, organic el element color filter, and methods for manufacturing same
TWI797437B (en) Substrate with conductive layer and touch panel
CN115335458A (en) Resin composition, method for manufacturing display device or light receiving device using same, substrate, and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509681

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197025834

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775451

Country of ref document: EP

Kind code of ref document: A1