[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006001968A - Polyamic acid and polyimide resin having triptycene skeleton and optical part using the same - Google Patents

Polyamic acid and polyimide resin having triptycene skeleton and optical part using the same Download PDF

Info

Publication number
JP2006001968A
JP2006001968A JP2004176727A JP2004176727A JP2006001968A JP 2006001968 A JP2006001968 A JP 2006001968A JP 2004176727 A JP2004176727 A JP 2004176727A JP 2004176727 A JP2004176727 A JP 2004176727A JP 2006001968 A JP2006001968 A JP 2006001968A
Authority
JP
Japan
Prior art keywords
polyamic acid
polyimide
polyimide resin
triptycentriamine
triptycene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004176727A
Other languages
Japanese (ja)
Inventor
Michiaki Hashimoto
通晰 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004176727A priority Critical patent/JP2006001968A/en
Publication of JP2006001968A publication Critical patent/JP2006001968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Optical Integrated Circuits (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyimide material and a polyimide resin reducing the birefringence which is a problem in a conventional polyimide, especially an optical polyimide, affording high processing accuracy in production of an optical part and having excellent process stability. <P>SOLUTION: The polyamic acid is obtained by reacting a tetracarboxylic dianhydride with a diamine compound and triptycenetriamines. The polyamic acid is described in claim 1 and the triptycenetriamines are especially represented by general formula (I) [wherein, R<SB>1</SB>, R<SB>2</SB>and R<SB>3</SB>may each be the same or different and denote each a hydrogen atom, a halogen, a lower alkyl group, a lower alkoxy group or a halogenated alkyl]. The polyimide resin is obtained by heating the polyamic acid. The optical part is prepared by using the polyimide resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、トリプチセントリアミン化合物を必須の構成成分とするポリアミド酸を加熱して得られる、耐熱性、溶剤耐性及び加工プロセス安定性に優れたポリイミド樹脂に関し、さらに光導波路、光フィルタ、レンズ等の光部品のためのポリイミド樹脂に関する。   The present invention relates to a polyimide resin excellent in heat resistance, solvent resistance, and processing process stability obtained by heating a polyamic acid containing a triptycentriamine compound as an essential constituent, and further includes an optical waveguide, an optical filter, and a lens. The present invention relates to a polyimide resin for optical parts such as.

ポリイミド樹脂は、耐熱性、電気的特性、機械的物性に優れたエンジニアリングプラスチックとして知られており、電子機器分野における保護材料、絶縁材料あるいは構造材料として広く用いられている。このような分野では、例えばLSIの層間絶縁膜やプリント板などでは、低誘電率、低熱膨張係数、低吸湿性を有することが求められてきた。また、最近では、光通信システムやコンピュータにおける情報処理の大容量化及び高速化の要求から、光の伝送媒体として光導波路が注目されている。ポリイミド材料はこのような光通信分野にも適用され始めている。光通信分野特に光導波路用材料としては、上記のようなポリイミドの特性に併せて、低光損失(光透過性)、製造容易性、耐熱性、低屈折性、屈折率制御性などの条件が要求される。また、一般に光学材料として有機ポリマを適用しようとした場合、前述のような特性に加えて複屈折率の低いことが期待されている。光が複屈折を有する透明媒体中に進入した場合、媒体の光学的異方性により、方向により光の速度が異なる結果、例えば、複屈折の大きい材料を光学レンズに使用すると、光のコントラストが低下し、鮮明な像が得られないなどの問題が生じるからである。   Polyimide resins are known as engineering plastics having excellent heat resistance, electrical characteristics, and mechanical properties, and are widely used as protective materials, insulating materials, or structural materials in the field of electronic equipment. In such fields, for example, LSI interlayer insulating films and printed boards have been required to have a low dielectric constant, a low thermal expansion coefficient, and a low hygroscopic property. In recent years, optical waveguides have attracted attention as optical transmission media due to demands for large capacity and high speed information processing in optical communication systems and computers. Polyimide materials are beginning to be applied to such optical communication fields. In the field of optical communication, especially as a material for optical waveguides, in addition to the above-mentioned characteristics of polyimide, there are conditions such as low light loss (light transmission), ease of manufacture, heat resistance, low refractive index, and refractive index controllability. Required. In general, when an organic polymer is applied as an optical material, a low birefringence is expected in addition to the above-described characteristics. When light enters a transparent medium having birefringence, the speed of light varies depending on the direction due to the optical anisotropy of the medium.For example, when a material having a large birefringence is used for an optical lens, the light contrast is reduced. This is because there is a problem that the image quality is lowered and a clear image cannot be obtained.

光学部品用ポリイミドとしては、ポリイミド骨格を剛直構造にし、フッ素置換基を導入することにより、熱膨張係数、誘電率、屈折率を低減できるという報告が示されている(例えば、特許文献1及び特許文献2参照)。しかし、光部品用材料として重要な複屈折率については全く触れられていない。そこで、本発明者らは、これらの問題点を解決すべく鋭意検討した結果、テトラカルボン酸二無水物とトリプチセンジアミン類を反応させて得られるポリアミド酸を加熱、硬化して得られるポリイミド樹脂が低複屈折率性を示し、光部品製造に好適であることを見出した。   As polyimide for optical parts, reports have been shown that the thermal expansion coefficient, dielectric constant, and refractive index can be reduced by making the polyimide skeleton a rigid structure and introducing fluorine substituents (for example, Patent Document 1 and Patents). Reference 2). However, the birefringence important as a material for optical parts is not mentioned at all. Therefore, the present inventors have intensively studied to solve these problems, and as a result, polyimide obtained by heating and curing polyamic acid obtained by reacting tetracarboxylic dianhydride and triptycenediamine. It has been found that the resin exhibits a low birefringence and is suitable for optical component production.

近年、ポリイミドのようなポリマ系導波路材料を用いたポリマ光導波路のさまざまな製造プロセス、例えば選択重合法、反応性イオンエッチングとフォトリソグラフィを組み合わせる方法、直接露光法、射出成型利用法、フォトブリーチング法などの開発がなされてきた(例えば、非特許文献1参照)。これらいずれの方法を適用して光導波路を製造するにしても、前述のような光学特性の他に、高い加工精度を得るために、プロセス適合性及びプロセス安定性のある材料が要求される。   In recent years, various manufacturing processes of polymer optical waveguides using polymer-based waveguide materials such as polyimide, such as selective polymerization, a combination of reactive ion etching and photolithography, direct exposure, injection molding, photo bleaching Development has been made (for example, see Non-Patent Document 1). Even if any of these methods is applied to manufacture an optical waveguide, in addition to the optical characteristics as described above, a material having process compatibility and process stability is required in order to obtain high processing accuracy.

特開平2-251564号公報Japanese Patent Laid-Open No. 2-215564 特開平3-72528号公報Japanese Unexamined Patent Publication No. 3-72528

丸山透:信学技報 PS2002-17(2002-5)Toru Maruyama: IEICE Technical Report PS2002-17 (2002-5)

本発明の目的は、従来のポリイミド特に光学用ポリイミドで問題であった複屈折を低減でき、光部品製造において高い加工精度が得られ、プロセス安定性に優れたポリイミド材料、ポリイミド樹脂を提供することにある。 An object of the present invention is to provide a polyimide material and a polyimide resin that can reduce birefringence, which has been a problem with conventional polyimides, in particular optical polyimides, can achieve high processing accuracy in optical component manufacturing, and have excellent process stability. It is in.

本発明は、テトラカルボン酸二無水物、ジアミン化合物及びトリプチセントリアミン類を反応させて得られるポリアミド酸を提供するものである。
本発明においてトリプチセントリアミン類とは、好ましくは、トリプチセンの3つの芳香核にそれぞれ1つのアミノ基を有するトリプチセントリアミン又はその誘導体を意味する。トリプチセントリアミン誘導体としては、3つの芳香核にそれぞれ1〜3個のハロゲン、低級アルキル基、低級アルコキシ基又はハロゲン化アルキルを有するものが挙げられ、更に好ましくは下記化1に示す一般式(I)で表されるものが挙げられる。

Figure 2006001968
[式中、R、R、Rは同じでもあるいは異なっていてもよく、水素原子、ハロゲン、低級アルキル基、低級アルコキシ基又はハロゲン化アルキルを示す。]
本発明においては、ジアミン化合物がトリプチセンジアミン類またはその一部がトリプチセンジアミン類であることが望ましい。この場合、トリプチセンジアミン類の量は、トリプチセンジアミン類とトリプチセンジアミン類以外のジアミン化合物の合計量に対して50モル%以上であることが好ましい。
本発明は、上記ポリアミド酸を加熱、硬化して得られるポリイミド樹脂を提供するものである。
本発明は、さらに上記ポリイミド樹脂を使用した光部品を提供するものである。 The present invention provides a polyamic acid obtained by reacting a tetracarboxylic dianhydride, a diamine compound and triptycentriamines.
In the present invention, triptycentriamines preferably mean triptycentriamine or a derivative thereof having one amino group in each of the three aromatic nuclei of triptycene. Examples of the triptycentriamine derivative include those having 1 to 3 halogens, a lower alkyl group, a lower alkoxy group or an alkyl halide in each of three aromatic nuclei, and more preferably a general formula (1) shown below. Those represented by I) are mentioned.
Figure 2006001968
[Wherein R 1 , R 2 and R 3 may be the same or different and each represents a hydrogen atom, a halogen, a lower alkyl group, a lower alkoxy group or an alkyl halide. ]
In the present invention, it is desirable that the diamine compound is triptycene diamine or a part thereof is triptycene diamine. In this case, it is preferable that the amount of triptycene diamines is 50 mol% or more with respect to the total amount of diamine compounds other than triptycene diamines and triptycene diamines.
The present invention provides a polyimide resin obtained by heating and curing the polyamic acid.
The present invention further provides an optical component using the polyimide resin.

本発明のポリイミド樹脂は、トリプチセントリアミン構造をポリイミドの基本骨格に導入することにより、トリプチセンに由来する堅固で非平面的構造を持つイミド結合を形成し、このため剛直性、低複屈折性及び優れた光学特性が付与され、かつトリアミン構造により、ポリイミド骨格中に分岐構造が形成され、同等の分子量の従来の直鎖状ポリイミド樹脂と比較すると、より高い耐熱性や優れた寸法安定性、機械的強度及び電気的特性並びに高い溶剤耐性を有する。   The polyimide resin of the present invention forms a imide bond having a rigid and non-planar structure derived from triptycene by introducing a triptycentriamine structure into the basic skeleton of the polyimide, and thus it is rigid and has low birefringence. In addition, a branched structure is formed in the polyimide skeleton due to the triamine structure and excellent optical properties, and higher heat resistance and superior dimensional stability compared to a conventional linear polyimide resin of the same molecular weight, It has mechanical strength and electrical properties and high solvent resistance.

本発明は、上記(I)で表されるトリアミンを使用することを特徴とするものである。式中、R、R、Rは同じでもあるいは異なっていてもよい、水素原子、ハロゲン(例えば、フッ素原子、塩素原子、臭素原子又はヨウ素原子)、低級アルキル基(炭素原子数1〜8)、低級アルコキシ基(炭素原子数1〜8)又はハロゲン化アルキル(例えば、フッ素原子、塩素原子、臭素原子又はヨウ素原子で置換された炭素原子数1〜8のアルキル)を示す。 The present invention is characterized by using the triamine represented by the above (I). In the formula, R 1 , R 2 , and R 3 may be the same or different, and may be a hydrogen atom, a halogen (for example, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), a lower alkyl group (having 1 to 1 carbon atoms). 8), a lower alkoxy group (having 1 to 8 carbon atoms) or an alkyl halide (for example, alkyl having 1 to 8 carbon atoms substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom).

本発明で使用する上記一般式(I)のトリプチセントリアミン類は、例えば対応するトリニトロトリプチセンを還元して合成することができる。この一般式(I)で表されるトリアミン化合物としては、1,5,11-トリプチセントリアミン、1,5,12-トリプチセントリアミン、1,5,13-トリプチセントリアミン、1,6,12-トリプチセントリアミン、1,6,13-トリプチセントリアミン、1,6,14-トリプチセントリアミン、1,7,13-トリプチセントリアミン、1,7,14-トリプチセントリアミン、1,8,14-トリプチセントリアミン、2,6,12-トリプチセントリアミン、2,7,13-トリプチセントリアミン、1-フルオロ-2,6,12-トリプチセントリアミン、1-クロロ-2,6,12-トリプチセントリアミン、1-メチル-2,7,13-トリプチセントリアミン、1-トリフルオロメチル-2,6,12-トリプチセントリアミン、1-メトキシ-2,7,13-トリプチセントリアミン、等が挙げられる。これらのトリプチセントリアミンはその1種類のみを使用してもよく、また2種類以上を併用してもよい。   The triptycentriamines of the above general formula (I) used in the present invention can be synthesized, for example, by reducing the corresponding trinitrotriptycene. Examples of the triamine compound represented by the general formula (I) include 1,5,11-triptycentriamine, 1,5,12-triptycentriamine, 1,5,13-triptycentriamine, 1, 6,12-triptycentriamine, 1,6,13-triptycentriamine, 1,6,14-triptycentriamine, 1,7,13-triptycentriamine, 1,7,14-tripty Centriamine, 1,8,14-triptycentriamine, 2,6,12-triptycentriamine, 2,7,13-triptycentriamine, 1-fluoro-2,6,12-triptycentriamine 1-chloro-2,6,12-triptycentriamine, 1-methyl-2,7,13-triptycentriamine, 1-trifluoromethyl-2,6,12-triptycentriamine, 1- And methoxy-2,7,13-triptycentriamine. These triptycentriamines may be used alone or in combination of two or more.

また、式Iで表されるトリアミンと組み合わせて用いる事の出来るトリプチセンジアミンとしては、1,5-トリプチセンジアミン、1,6-トリプチセンジアミン、1,7-トリプチセンジアミン、1,8-トリプチセンジアミン、2,6-トリプチセンジアミン、2,7-トリプチセンジアミン、1,6-ジアミノ-12-フルオロトリプチセン、2,6-ジアミノ-13-フルオロトリプチセン、2,7-ジアミノ-12-フルオロトリプチセン、1,7-ジアミノ-14-トリフルオロメチルトリプチセン、1,6-ジアミノ-12-クロロトリプチセン、2,6-ジアミノ-12-クロロトリプチセン等が挙げられる。これらのトリプチセンジアミンはその1種類のみを使用してもよく、また2種類以上を併用してもよい。   Examples of the triptycenediamine that can be used in combination with the triamine represented by the formula I include 1,5-triptycenediamine, 1,6-triptycenediamine, 1,7-triptycenediamine, 1,8-triptycenediamine, 2,6-triptycenediamine, 2,7-triptycenediamine, 1,6-diamino-12-fluorotriptycene, 2,6-diamino-13-fluorotri Ptycene, 2,7-diamino-12-fluorotriptycene, 1,7-diamino-14-trifluoromethyltriptycene, 1,6-diamino-12-chlorotriptycene, 2,6-diamino- Examples thereof include 12-chlorotriptycene. These triptycenediamines may be used alone or in combination of two or more.

また、式Iで表されるトリアミンと組み合わせて用いる事のできるトリプチセンジアミン以外のジアミンとしては、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノ-p-テルフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、 ビス[4-(3-アミノフェノキシ)フェニル]スルホンなどが挙げられる。
トリアミンの量は、ジアミン1モル当り0.001〜0.1モル比であり、好ましくは0.002から0.08モル比、より好ましくは0.005から0.07モル比、最も好ましくは0.008〜0.05モル比の範囲である。0.001モル比未満では、トリアミン導入による分岐構造の効果が発現されず、0.1モル比を超えると合成時にゲル化を起こすことがある。
Examples of diamines other than triptycenediamine that can be used in combination with the triamine represented by the formula I include 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, and 3,3′-dimethyl-4. , 4'-Diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4'-diamino-p-terphenyl, bis [4- (3-aminophenoxy) phenyl Ketone, bis [4- (3-aminophenoxy) phenyl] sulfoxide, bis [4- (3-aminophenoxy) phenyl] sulfone, and the like.
The amount of triamine is in the range of 0.001 to 0.1 mole ratio per mole of diamine, preferably 0.002 to 0.08 mole ratio, more preferably 0.005 to 0.07 mole ratio, and most preferably 0.008 to 0.05 mole ratio. If it is less than 0.001 molar ratio, the effect of the branched structure by the introduction of triamine is not expressed, and if it exceeds 0.1 molar ratio, gelation may occur during synthesis.

ジアミン類を組み合わせて用いる場合は、トリプチセンジアミン類を50モル%以上含有させるようにして使用するのがよく、これによって得られたポリイミド樹脂は優れた耐熱性、低熱膨張性、低複屈折率性を示す。トリプチセンジアミン類の含有量が50モル%未満の場合には複屈折率が十分に小さくならない場合が生じることがある。   When diamines are used in combination, it is better to use tryptenecene diamines in an amount of 50 mol% or more. The resulting polyimide resin has excellent heat resistance, low thermal expansion, and low birefringence. Shows efficiency. When the content of triptycenediamine is less than 50 mol%, the birefringence may not be sufficiently reduced.

本発明に用いるテトラカルボン酸二無水物としては、例えばピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、トリフルオロメチルピロメリット酸二無水物、1,4-ジ(トリフルオロメチル)ピロメリット酸二無水物、1,4-ジ(ペンタフルオロメチル)ピロメリット酸二無水物、ヘプタフルオロプロピルピロメリット酸二無水物などが挙げられる。このテトラカルボン酸二無水物はその1種類のみを使用してもよく、また2種類以上を併用してもよい。   Examples of the tetracarboxylic dianhydride used in the present invention include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl, and the like. Tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, trifluoromethylpyromellitic dianhydride 1,4-di (trifluoromethyl) pyromellitic dianhydride, 1,4-di (pentafluoromethyl) pyromellitic dianhydride, heptafluoropropylpyromellitic dianhydride, and the like. This tetracarboxylic dianhydride may be used alone or in combination of two or more.

本発明のポリイミド樹脂の前駆体であるポリアミド酸の製造方法は、通常のポリアミド酸の製造条件と同じでよく、一般的にはN-メチル-2-ピロリジノン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなどの極性有機溶媒中で反応させる。   The production method of the polyamic acid which is the precursor of the polyimide resin of the present invention may be the same as the production conditions of the usual polyamic acid, and generally N-methyl-2-pyrrolidinone, N, N-dimethylacetamide, N, The reaction is carried out in a polar organic solvent such as N-dimethylformamide.

本発明においては、トリアミン、ジアミンまたはテトラカルボン酸二無水物共に単一化合物ばかりではなく、複数のトリアミン、ジアミン、テトラカルボン酸二無水物を混合して用いることができる。その場合は、単一又は複数のトリアミンとジアミンのモル数と単一又は複数のテトラカルボン酸二無水物のモル数が等しいかほぼ等しくなるようにする。
次に、ポリアミド酸をイミド化してポリイミドを合成するのには、通常の合成法が適用できる。その例としては、加熱脱水によるイミド化、酸無水物、例えば、無水酢酸などを用いる化学的な脱水方法によるイミド化を挙げることが出来る。
In the present invention, not only a single compound but also a plurality of triamines, diamines, and tetracarboxylic dianhydrides can be used in combination. In that case, the number of moles of the single or plural triamines and diamines and the number of moles of the single or plural tetracarboxylic dianhydrides are made equal or approximately equal.
Next, a normal synthesis method can be applied to imidize polyamic acid to synthesize polyimide. Examples thereof include imidization by heat dehydration and imidation by a chemical dehydration method using an acid anhydride such as acetic anhydride.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに制限されない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not restrict | limited to these.

(合成例) 2,6,12−及び2,7,13‐トリプチセントリアミンの合成
まず、以下の方法により、2,6,12-及び2,7,13-トリニトロトリプチセンを合成した。
トリプチセン30.5g(0.12mol)をクロロホルム780mlに溶解し、硝酸アンモニウム32.0g(0.40mol)を加え、氷冷(3℃)、撹拌下にトリフルオロ酢酸無水物120mlを10分で滴加した。発熱が起こり、約25℃まで温度が上昇した。滴下終了後、室温(28℃)で6時間撹拌を継続した。反応溶液に水を加え、酢酸エチルで抽出、水洗、乾燥後、溶剤を溜去して結晶性の固体として、2,6,12-及び2,7,13-トリニトロトリプチセンの混合物がほぼ定量的収率で得られた(46.7g)。
上記のようにして合成したトリニトロトリプチセン16gをテトラヒドロフラン(THF)160mlに溶解し、ここに濃塩酸40mlを加えた。窒素導入下に、亜鉛末を少量ずつ添加(合計20g)し、還元反応を行った。終夜撹拌放置し、THFを減圧下に濃縮、水を加えて、アンモニア水でアルカリ性にすると沈殿が生じた。酢酸エチルで抽出、水洗、乾燥して溶媒を留去すると17gの黄褐色の固体が得られた。シリカゲルを用いて、酢酸エチル、ヘキサンでカラムクロマトして分離、精製し、殆ど白色の結晶として2,6,12-及び2,7,13‐トリプチセントリアミンを得た。
2,6,12-トリプチセントリアミンの1H-核磁気共鳴スペクトル(CDCl3)δ(ppm):3.41(s、6H)、4.97(s、1H)、5.05(s、1H)、6.20、6.21、6.23、6.24(dd、2.25Hz、7.73Hz、3H、)、6.69、6.70(d、2.20Hz、3H)、7.01、7.04(d、7.73Hz、3H)
2,7,13‐トリプチセントリアミンの1H-核磁気共鳴スペクトル(DMSO-d/CDCl3)δ(ppm):4.32(s、6H)、4.90(s、1H)、4.91(s、1H)、6.13、6.14、6.16、6.17(dd、2.42Hz、7.50Hz、3H、)、6.64、6.65(d、2.40Hz、3H)、6.94、6.97(d、7.50Hz、3H)
(Synthesis Example) Synthesis of 2,6,12- and 2,7,13-triptycentriamine First, 2,6,12- and 2,7,13-trinitrotriptycene were synthesized by the following method. did.
30.5 g (0.12 mol) of triptycene was dissolved in 780 ml of chloroform, 32.0 g (0.40 mol) of ammonium nitrate was added, 120 ml of trifluoroacetic anhydride was added dropwise over 10 minutes with ice cooling (3 ° C.). An exotherm occurred and the temperature rose to about 25 ° C. After completion of the dropwise addition, stirring was continued at room temperature (28 ° C.) for 6 hours. Water is added to the reaction solution, extracted with ethyl acetate, washed with water, dried, and then the solvent is distilled off to give a mixture of 2,6,12- and 2,7,13-trinitrotriptycene as a crystalline solid. Obtained in almost quantitative yield (46.7 g).
16 g of trinitrotriptycene synthesized as described above was dissolved in 160 ml of tetrahydrofuran (THF), and 40 ml of concentrated hydrochloric acid was added thereto. Under nitrogen introduction, zinc powder was added little by little (20 g in total) to carry out a reduction reaction. The mixture was allowed to stir overnight, THF was concentrated under reduced pressure, water was added, and the mixture was made alkaline with aqueous ammonia to precipitate. Extraction with ethyl acetate, washing with water, drying and evaporation of the solvent gave 17 g of a tan solid. Separation and purification by silica gel column chromatography with ethyl acetate and hexane gave 2,6,12- and 2,7,13-triptycentriamine as almost white crystals.
1 H-nuclear magnetic resonance spectrum (CDCl 3 ) δ (ppm) of 2,6,12-triptycentriamine: 3.41 (s, 6H), 4.97 (s, 1H), 5.05 (s, 1H), 6.20, 6.21, 6.23, 6.24 (dd, 2.25Hz, 7.73Hz, 3H), 6.69, 6.70 (d, 2.20Hz, 3H), 7.01, 7.04 (d, 7.73Hz, 3H)
1 H-nuclear magnetic resonance spectrum (DMSO-d 6 / CDCl 3 ) δ (ppm) of 2,7,13-triptycentriamine: 4.32 (s, 6H), 4.90 (s, 1H), 4.91 (s, 1H), 6.13, 6.14, 6.16, 6.17 (dd, 2.42Hz, 7.50Hz, 3H), 6.64, 6.65 (d, 2.40Hz, 3H), 6.94, 6.97 (d, 7.50Hz, 3H)

実施例1
温度計、撹拌装置、乾燥管及び窒素導入管を備えた100ml三口フラスコに、N,N-ジメチルアセトアミド62.5g、2,7-トリプチセンジアミン5.62g(19.8mmol)、2,6,12-トリプチセントリアミン0.06g(0.2mmol)を入れ、均一溶液になるまで撹拌した。溶液温度を10℃以下に保ちながら、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物8.92g(20.1mmol)を加え、4時間撹拌、その後室温で24時間攪拌し、ポリアミド酸のN,N-ジメチルアセトアミド溶液を得た。得られたポリマの重量平均分子量は590,000であり、分散度は3.9であった。次ぎに、得られたポリマをシリコン基板上にスピンコートし、100℃で30分、200℃で30分、350℃で1時間加熱、キュアした。赤外線吸収スペクトルから、イミド化が完全に進行していることが確認できた。このもののガラス転移温度は416℃であった。また、屈折率(1300nm)はTEモードで1.5656、TMモードで1.5613であり、複屈折率は0.0043であった。TMA(セイコー電子製)で測定した線膨張係数は45ppm/K、TG-DTA(セイコー電子製)で測定した分解温度(5%質量減少温度)は518℃、粘弾性アナライザー(レオメトリクス社製)で測定した貯蔵弾性率(E’)は200℃で1.20であった。また、溶剤、例えばアセトン中にポリイミド膜を浸漬した場合、後述する比較例1〜3においては、完全に溶解したのに比べ、非溶解部分が存在し、溶剤耐性が高いことが示された。このポリイミド材料を用いて、反応性イオンエッチングとフォトリソグラフィを組合せて、公知の方法で光導波路パタンを形成した。この材料は、後述の比較例に示す材料に比べ、ガラス転移温度、熱分解温度が高く、線膨張係数が低く、貯蔵弾性率も10〜25%小さい。このため、このポリイミド材料を基板上に塗布、ベークし、塗膜を形成した際に膜にかかる応力が従来材料に比較して小さくなる。かくして、光導波路形成において、導波路加工時のはがれ、クラック発生が抑制され、プロセス安定性が高くなった。また、加熱‐冷却のヒートサイクル試験耐性が向上するなどの効果が認められた。さらに、溶剤耐性が向上したことにより、製造時の洗浄プロセスでの溶剤によるクラックが抑制され、プロセス安定性が向上すると共に、高い加工精度の光導波路パタンを形成することが出来た。
Example 1
In a 100 ml three-necked flask equipped with a thermometer, a stirrer, a drying tube and a nitrogen introduction tube, N, N-dimethylacetamide 62.5 g, 2,7-triptycenediamine 5.62 g (19.8 mmol), 2,6,12- 0.06 g (0.2 mmol) of triptycentriamine was added and stirred until a homogeneous solution was obtained. 2.92 g (20.1 mmol) of 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride while keeping the solution temperature below 10 ° C In addition, the mixture was stirred for 4 hours and then stirred at room temperature for 24 hours to obtain an N, N-dimethylacetamide solution of polyamic acid. The weight average molecular weight of the obtained polymer was 590,000, and the degree of dispersion was 3.9. Next, the obtained polymer was spin-coated on a silicon substrate, and heated and cured at 100 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 1 hour. From the infrared absorption spectrum, it was confirmed that imidization had progressed completely. The glass transition temperature of this product was 416 ° C. The refractive index (1300 nm) was 1.5656 in the TE mode, 1.5613 in the TM mode, and the birefringence was 0.0043. Linear expansion coefficient measured with TMA (Seiko Electronics) is 45ppm / K, decomposition temperature (5% mass reduction temperature) measured with TG-DTA (Seiko Electronics) is 518 ° C, viscoelasticity analyzer (Rheometrics) The storage elastic modulus (E ′) measured at 1 was 1.20 at 200 ° C. Moreover, when the polyimide film was immersed in a solvent, for example, acetone, in Comparative Examples 1 to 3 described later, it was shown that there was a non-dissolved part and the solvent resistance was higher than that of completely dissolved. Using this polyimide material, an optical waveguide pattern was formed by a known method by combining reactive ion etching and photolithography. This material has a higher glass transition temperature and thermal decomposition temperature, a lower coefficient of linear expansion, and a lower storage elastic modulus by 10 to 25% than materials shown in comparative examples described later. For this reason, when this polyimide material is apply | coated and baked on a board | substrate and a coating film is formed, the stress concerning a film | membrane becomes small compared with a conventional material. Thus, in the formation of the optical waveguide, peeling at the time of processing the waveguide, generation of cracks was suppressed, and process stability was enhanced. In addition, effects such as improvement of heat-cooling heat cycle test resistance were recognized. Furthermore, since the solvent resistance was improved, cracks due to the solvent in the cleaning process during production were suppressed, the process stability was improved, and an optical waveguide pattern with high processing accuracy could be formed.

実施例2
温度計、撹拌装置、乾燥管及び窒素導入管を備えた100ml三口フラスコに、N,N-ジメチルアセトアミド120g、2,7-トリプチセンジアミン5.62g(19.8mmol)、2,6,12-トリプチセントリアミン0.06g(0.2mmol)、4,4’-ジアミノジフェニルエーテル4.0g(20mmol)を入れ、均一溶液になるまで撹拌した。溶液温度を10℃以下に保ちながら、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物17.8g(40.1mmol)を加え4時間撹拌、その後室温で24時間攪拌し、ポリアミド酸のN,N-ジメチルアセトアミド溶液を得た。得られたポリマの重量平均分子量は580,000であり、分散度は5.9であった。次に、得られたポリマをシリコン基板上にスピンコートし、100℃で30分、200℃で30分、350℃で1時間加熱、キュアした。赤外線吸収スペクトルから、イミド化が完全に進行していることが確認できた。このもののガラス転移温度は395℃であった。また、屈折率(1300nm)はTEモードで1.5661、TMモードで1.5598であり、複屈折率は0.0063であった。TMA(セイコー電子製)で測定した線膨張係数は48ppm/K、TG-DTA(セイコー電子製)で測定した分解温度(5%質量減少温度)は517℃、粘弾性アナライザー(レオメトリクス社製)で測定した貯蔵弾性率(E’)は200℃で1.26であった。また、溶剤、例えばアセトン中にポリイミド膜を浸漬した場合、後述する比較例1〜3においては、完全に溶解したのに比べ、非溶解部分が存在し、溶剤耐性が高いことが示された。このポリイミド材料を用いて、反応性イオンエッチングとフォトリソグラフィを組合せて、公知の方法で光導波路パタンを形成した。この材料は、後述の比較例に示す材料に比べ、ガラス転移温度及び熱分解温度が高く、線膨張係数が低く、貯蔵弾性率も10〜25%小さい。このため、このポリイミド材料を基板上に塗布、ベークし、塗膜を形成した際に膜にかかる応力が従来材料に比較して小さくなる。かくして、光導波路形成において、導波路加工時のはがれ、クラック発生が抑制され、プロセス安定性が高くなった。かつ、加熱‐冷却のヒートサイクル試験耐性が向上するなどの効果が認められた。また、溶剤耐性が向上したことにより、製造時の洗浄プロセスでの溶剤によるクラックが抑制され、プロセス安定性が向上すると共に、高い加工精度の光導波路パタンを形成することが出来た。
Example 2
In a 100 ml three-necked flask equipped with a thermometer, stirrer, drying tube and nitrogen inlet tube, 120 g of N, N-dimethylacetamide, 5.62 g (19.8 mmol) of 2,7-triptycenediamine, 2,6,12-tri Put 0.06 g (0.2 mmol) of petitcentriamine and 4.0 g (20 mmol) of 4,4′-diaminodiphenyl ether, and stirred until a homogeneous solution was obtained. While maintaining the solution temperature at 10 ° C. or lower, 17.8 g (40.1 mmol) of 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride was added. The mixture was further stirred for 4 hours and then stirred at room temperature for 24 hours to obtain an N, N-dimethylacetamide solution of polyamic acid. The obtained polymer had a weight average molecular weight of 580,000 and a dispersity of 5.9. Next, the obtained polymer was spin-coated on a silicon substrate and cured by heating at 100 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 1 hour. From the infrared absorption spectrum, it was confirmed that imidization had progressed completely. The glass transition temperature of this product was 395 ° C. The refractive index (1300 nm) was 1.5661 in the TE mode, 1.5598 in the TM mode, and the birefringence was 0.0063. The linear expansion coefficient measured by TMA (manufactured by Seiko Electronics) is 48ppm / K, the decomposition temperature (5% mass reduction temperature) measured by TG-DTA (manufactured by Seiko Electronics) is 517 ° C, and viscoelasticity analyzer (manufactured by Rheometrics) The storage elastic modulus (E ′) measured at 1 was 1.26 at 200 ° C. Moreover, when the polyimide film was immersed in a solvent, for example, acetone, in Comparative Examples 1 to 3 described later, it was shown that there was a non-dissolved part and the solvent resistance was higher than that of completely dissolved. Using this polyimide material, an optical waveguide pattern was formed by a known method by combining reactive ion etching and photolithography. This material has a high glass transition temperature and a thermal decomposition temperature, a low coefficient of linear expansion, and a storage elastic modulus of 10 to 25% lower than those shown in comparative examples described later. For this reason, when this polyimide material is apply | coated and baked on a board | substrate and a coating film is formed, the stress concerning a film | membrane becomes small compared with a conventional material. Thus, in the formation of the optical waveguide, peeling at the time of processing the waveguide, generation of cracks was suppressed, and process stability was enhanced. In addition, effects such as improvement of heat-cooling heat cycle test resistance were recognized. In addition, the improved solvent resistance suppresses cracking due to the solvent in the cleaning process during manufacturing, thereby improving the process stability and forming an optical waveguide pattern with high processing accuracy.

実施例3
2,7,13-トリプチセントリアミンを用いた以外は実施例1と同様に2,7-トリプチセンジアミン及び2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物と反応を行ってポリアミド酸のN,N-ジメチルアセトアミド溶液を得た。このものをシリコン基板上にスピンコートし、100℃で30分、200℃で30分、350℃で1時間加熱、キュアした。赤外線吸収スペクトルから、イミド化が完全に進行していることが確認できた。このものの複屈折率(1300nm)は0.0035であった。また、線膨張係数は48ppm/K、分解温度(5%質量減少温度)は518℃、貯蔵弾性率(E’)は200℃で1.25であった。また、溶剤、例えばアセトンに対しては、後述する比較例1〜3に比べ、溶剤耐性が高いことが示された。実施例1同様に、これを用いて高い加工精度の光導波路パタンを形成することが出来た。
Example 3
2,7-triptycenediamine and 2,2-bis (3,4-dicarboxyphenyl) -1,1,1 in the same manner as in Example 1 except that 2,7,13-triptycentriamine was used. Reaction with 3,3,3-hexafluoropropane dianhydride gave N, N-dimethylacetamide solution of polyamic acid. This was spin-coated on a silicon substrate and heated and cured at 100 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 1 hour. From the infrared absorption spectrum, it was confirmed that imidization had progressed completely. The birefringence (1300 nm) of this product was 0.0035. The linear expansion coefficient was 48 ppm / K, the decomposition temperature (5% mass reduction temperature) was 518 ° C., and the storage elastic modulus (E ′) was 1.25 at 200 ° C. It was also shown that the solvent resistance, for example, acetone, is higher than that of Comparative Examples 1 to 3 described later. As in Example 1, an optical waveguide pattern with high processing accuracy could be formed using this.

実施例4
2,6-トリプチセンジアミンを用いた以外は実施例1と同様に2,6,12-トリプチセントリアミン及び2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物と反応を行ってポリアミド酸のN,N-ジメチルアセトアミド溶液を得た。このものをシリコン基板上にスピンコートし、100℃で30分、200℃で30分、350℃で1時間加熱、キュアした。赤外線吸収スペクトルから、イミド化が完全に進行していることが確認できた。このものの複屈折率(1300nm)は0.0035であった。また、ガラス転移温度は、415℃、線膨張係数は48ppm/K、貯蔵弾性率(E’)は200℃で1.23であった。また、溶剤、例えばアセトンに対しては、後述する比較例1〜3に比べ、溶剤耐性が高いことが示された。
Example 4
2,6,12-triptycentriamine and 2,2-bis (3,4-dicarboxyphenyl) -1,1,1 as in Example 1 except that 2,6-triptycenediamine was used Reaction with 3,3,3-hexafluoropropane dianhydride gave N, N-dimethylacetamide solution of polyamic acid. This was spin-coated on a silicon substrate and heated and cured at 100 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 1 hour. From the infrared absorption spectrum, it was confirmed that imidization had progressed completely. The birefringence (1300 nm) of this product was 0.0035. The glass transition temperature was 415 ° C., the linear expansion coefficient was 48 ppm / K, and the storage elastic modulus (E ′) was 1.23 at 200 ° C. It was also shown that the solvent resistance, for example, acetone, is higher than that of Comparative Examples 1 to 3 described later.

実施例5
2,7,13-トリプチセントリアミンを用いた以外は実施例2と同様に2,7-トリプチセンジアミン、4,4’-ジアミノジフェニルエーテル及び2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物と反応を行ってポリアミド酸のN,N-ジメチルアセトアミド溶液を得た。このものをシリコン基板上にスピンコートし、100℃で30分、200℃で30分、350℃で1時間加熱、キュアした。赤外線吸収スペクトルから、イミド化が完全に進行していることが確認できた。このものの複屈折率(1300nm)は0.0063であった。また、ガラス転移温度は、395℃、線膨張係数は、50ppm/K、貯蔵弾性率(E’)は200℃で1.25であった。また、溶剤、例えばアセトンに対しては、後述する比較例1〜3に比べ、溶剤耐性が高いことが示された。
Example 5
2,7-triptycenediamine, 4,4'-diaminodiphenyl ether and 2,2-bis (3,4-dicarboxyl) as in Example 2 except that 2,7,13-triptycentriamine was used. Reaction with (phenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride gave an N, N-dimethylacetamide solution of polyamic acid. This was spin-coated on a silicon substrate and heated and cured at 100 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 1 hour. From the infrared absorption spectrum, it was confirmed that imidization had progressed completely. The birefringence (1300 nm) of this product was 0.0063. The glass transition temperature was 395 ° C., the linear expansion coefficient was 50 ppm / K, and the storage elastic modulus (E ′) was 1.25 at 200 ° C. It was also shown that the solvent resistance, for example, acetone, is higher than that of Comparative Examples 1 to 3 described later.

実施例6
2,6-トリプチセンジアミン、2,7,13-トリプチセントリアミン及び2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物を用いて実施例1と同様な方法で反応を行ってポリアミド酸のN,N-ジメチルアセトアミド溶液を得た。このものをシリコン基板上にスピンコートし、100℃で30分、200℃で30分、350℃で1時間加熱、キュアした。赤外線吸収スペクトルから、イミド化が完全に進行していることが確認できた。このものの複屈折率(1300nm)は0.0035であった。また、ガラス転移温度は415℃、線膨張係数は44ppm/K、貯蔵弾性率(E’)は200℃で1.20であった。また、溶剤、例えばアセトンに対しては、後述する比較例1〜3に比べ、溶剤耐性が高いことが示された。
Example 6
2,6-triptycenediamine, 2,7,13-triptycentriamine and 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane The reaction was carried out in the same manner as in Example 1 using dianhydride to obtain an N, N-dimethylacetamide solution of polyamic acid. This was spin-coated on a silicon substrate and heated and cured at 100 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 1 hour. From the infrared absorption spectrum, it was confirmed that imidization had progressed completely. The birefringence (1300 nm) of this product was 0.0035. The glass transition temperature was 415 ° C., the linear expansion coefficient was 44 ppm / K, and the storage elastic modulus (E ′) was 1.20 at 200 ° C. It was also shown that the solvent resistance, for example, acetone, is higher than that of Comparative Examples 1 to 3 described later.

実施例7
2,6-トリプチセンジアミン、2,6,12-トリプチセントリアミン、4,4’-ジアミノジフェニルエーテル及び2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物を用いて実施例2と同様な方法で反応を行ってポリアミド酸のN,N-ジメチルアセトアミド溶液を得た。このものをシリコン基板上にスピンコートし、100℃で30分、200℃で30分、350℃で1時間加熱、キュアした。赤外線吸収スペクトルから、イミド化が完全に進行していることが確認できた。このものの複屈折率(1300nm)は0.0055であった。また、ガラス転移温度は398℃、線膨張係数は52ppm/K、貯蔵弾性率(E’)は200℃で1.25であった。また、溶剤、例えばアセトンに対しては、後述する比較例1〜3に比べ、溶剤耐性が高いことが示された。
Example 7
2,6-triptycenediamine, 2,6,12-triptycentriamine, 4,4'-diaminodiphenyl ether and 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3 , 3,3-Hexafluoropropane dianhydride was used in the same manner as in Example 2 to obtain an N, N-dimethylacetamide solution of polyamic acid. This was spin-coated on a silicon substrate and heated and cured at 100 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 1 hour. From the infrared absorption spectrum, it was confirmed that imidization had progressed completely. The birefringence (1300 nm) of this product was 0.0055. The glass transition temperature was 398 ° C., the linear expansion coefficient was 52 ppm / K, and the storage elastic modulus (E ′) was 1.25 at 200 ° C. It was also shown that the solvent resistance, for example, acetone, is higher than that of Comparative Examples 1 to 3 described later.

実施例8
2,6-トリプチセンジアミン、2,7,13-トリプチセントリアミン、4,4’-ジアミノジフェニルエーテル及び2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物を用いて実施例2と同様な方法で反応を行ってポリアミド酸のN,N-ジメチルアセトアミド溶液を得た。このものをシリコン基板上にスピンコートし、100℃で30分、200℃で30分、350℃で1時間加熱、キュアした。赤外線吸収スペクトルから、イミド化が完全に進行していることが確認できた。このものの複屈折率(1300nm)は0.0055であった。また、ガラス転移温度は395℃、線膨張係数は52ppm/Kであった。また、溶剤、例えばアセトンに対しては、後述する比較例1〜3に比べ、溶剤耐性が高いことが示された。
Example 8
2,6-triptycenediamine, 2,7,13-triptycentriamine, 4,4'-diaminodiphenyl ether and 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3 , 3,3-Hexafluoropropane dianhydride was used in the same manner as in Example 2 to obtain an N, N-dimethylacetamide solution of polyamic acid. This was spin-coated on a silicon substrate and heated and cured at 100 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 1 hour. From the infrared absorption spectrum, it was confirmed that imidization had progressed completely. The birefringence (1300 nm) of this product was 0.0055. The glass transition temperature was 395 ° C. and the linear expansion coefficient was 52 ppm / K. It was also shown that the solvent resistance, for example, acetone, is higher than that of Comparative Examples 1 to 3 described later.

比較例1
2,7-トリプチセンジアミン5.62g(20mmol)と2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物8.88g(20mmol)をN,N-ジメチルホルムアミド82.5gに溶解し、この溶液を窒素雰囲気下、室温で24時間攪拌し、ポリアミド酸のN,N-ジメチルアセトアミド溶液を得た。得られたポリマの重量平均分子量は250,000であり、分散度は3.9であった。また、得られたポリマをシリコン基板上にスピンコートし、100℃で30分、200℃で30分、350℃で1時間加熱、キュアした。赤外線吸収スペクトルから、イミド化が完全に進行していることが確認できた。このもののガラス転移温度は354℃、屈折率(632.8nm)はTEモードで1.5898、TMモードで1.5856であり、複屈折率は0.0042であった。線膨張係数は77ppm/K、分解温度(5%質量減少温度)は515℃、貯蔵弾性率(E’)は200℃で1.40であった。また、アセトンに対しては、比較的短時間で溶解した。
Comparative Example 1
2.62 g (20 mmol) 2,7-triptycenediamine and 8.88 g 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride ( 20 mmol) was dissolved in 82.5 g of N, N-dimethylformamide, and this solution was stirred at room temperature for 24 hours under a nitrogen atmosphere to obtain an N, N-dimethylacetamide solution of polyamic acid. The weight average molecular weight of the obtained polymer was 250,000, and the degree of dispersion was 3.9. The obtained polymer was spin-coated on a silicon substrate, and heated and cured at 100 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 1 hour. From the infrared absorption spectrum, it was confirmed that imidization had progressed completely. This had a glass transition temperature of 354 ° C., a refractive index (632.8 nm) of 1.5898 in the TE mode, 1.5856 in the TM mode, and a birefringence of 0.0042. The linear expansion coefficient was 77 ppm / K, the decomposition temperature (5% mass loss temperature) was 515 ° C., and the storage elastic modulus (E ′) was 1.40 at 200 ° C. Further, it was dissolved in acetone in a relatively short time.

比較例2
2,6-トリプチセンジアミン4.25g(15mmol)、4,4’-ジアミノジフェニルエーテル3.0g(15mmol)及び2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物13.3g(30mmol)をN,N-ジメチルアセトアミド12gに溶解し、この溶液を窒素雰囲気下、室温で24時間攪拌し、ポリアミド酸のN,N-ジメチルアセトアミド溶液を得た。得られたポリマの重量平均分子量は220,000であり、分散度は3.4であった。このものをシリコン基板上にスピンコートし、100℃で30分、200℃で30分、350℃で1時間加熱、キュアした。赤外線吸収スペクトルから、イミド化が完全に進行していることが確認できた。このもののガラス転移温度は350℃、屈折率(632.8nm)はTEモードで1.5883、TMモードで1.5828であり、複屈折率は0.0055であった。線膨張係数は、80ppm/K、分解温度(5%質量減少温度)は500℃、貯蔵弾性率(E’)は200℃で1.30であった。また、アセトンに対しては、比較的短時間で溶解した。
Comparative Example 2
2,6-triptycenediamine 4.25 g (15 mmol), 4,4′-diaminodiphenyl ether 3.0 g (15 mmol) and 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3, Dissolve 13.3 g (30 mmol) of 3,3-hexafluoropropane dianhydride in 12 g of N, N-dimethylacetamide and stir this solution at room temperature for 24 hours under a nitrogen atmosphere. A solution was obtained. The weight average molecular weight of the obtained polymer was 220,000, and the degree of dispersion was 3.4. This was spin-coated on a silicon substrate and heated and cured at 100 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 1 hour. From the infrared absorption spectrum, it was confirmed that imidization had progressed completely. This material had a glass transition temperature of 350 ° C., a refractive index (632.8 nm) of 1.5883 in the TE mode, 1.5828 in the TM mode, and a birefringence of 0.0055. The linear expansion coefficient was 80 ppm / K, the decomposition temperature (5% mass reduction temperature) was 500 ° C., and the storage elastic modulus (E ′) was 1.30 at 200 ° C. Further, it was dissolved in acetone in a relatively short time.

比較例3
実施例1と同様の方法を用いて2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルと2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物を等モルずつ用いてポリアミド酸のN,N-ジメチルアセトアミド溶液を得た。これを用いて実施例1と同様にしてポリイミドフィルムを得た。このもののガラス転移温度は326℃、屈折率(632.8nm)はTEモードで1.539、TMモードで1.529であり、複屈折率は0.010であった。このものの線膨張係数は、80ppm/K、分解温度(5%質量減少温度)は507℃、貯蔵弾性率(E’)は200℃で1.8であった。また、アセトンに対しては、比較的短時間で溶解した。
Comparative Example 3
Using a method similar to Example 1, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl and 2,2-bis (3,4-dicarboxyphenyl) -1,1,1 N, N-dimethylacetamide solution of polyamic acid was obtained using 1,3,3,3-hexafluoropropane dianhydride in equimolar amounts. Using this, a polyimide film was obtained in the same manner as in Example 1. This had a glass transition temperature of 326 ° C., a refractive index (632.8 nm) of 1.539 in the TE mode, 1.529 in the TM mode, and a birefringence of 0.010. This product had a linear expansion coefficient of 80 ppm / K, a decomposition temperature (5% mass reduction temperature) of 507 ° C., and a storage elastic modulus (E ′) of 1.8 at 200 ° C. Further, it was dissolved in acetone in a relatively short time.

これらの結果から、本発明のトリプチセントリアミンを含むポリイミド材料は、従来の耐熱性に優れたポリイミド樹脂や耐熱性及び低屈折率特性に優れた含フッ素ポリイミド材料と比較して、耐熱性、低屈折率特性に加えて、光学材料として望ましい低複屈折性を持ち、さらに低熱膨張性、低弾性率性及び高い溶剤耐性を併せ持つことが明らかとなった。   From these results, the polyimide material containing the triptycentriamine of the present invention has a heat resistance, as compared with a conventional polyimide resin excellent in heat resistance and a fluorine-containing polyimide material excellent in heat resistance and low refractive index characteristics. In addition to low refractive index characteristics, it has become clear that it has low birefringence desirable as an optical material, and further has low thermal expansion, low elastic modulus, and high solvent resistance.

以上説明したように、本発明のトリプチセントリアミンを含むポリイミド材料は、耐熱性、透明性、低屈折率性、低複屈折率性、低熱膨張性、低弾性率性及び高い溶剤耐性を併せ持つために、光導波路、光フィルタ、レンズ等の光部品への適用が可能である。
As described above, the polyimide material containing the triptycentriamine of the present invention has both heat resistance, transparency, low refractive index property, low birefringence property, low thermal expansion property, low elastic modulus property and high solvent resistance. Therefore, it can be applied to optical components such as an optical waveguide, an optical filter, and a lens.

Claims (6)

テトラカルボン酸二無水物、ジアミン化合物及びトリプチセントリアミン類を反応させて得られるポリアミド酸。 Polyamic acid obtained by reacting tetracarboxylic dianhydride, diamine compound and triptycentriamine. トリプチセントリアミン類が下記の一般式(I)で表される請求項1記載のポリアミド酸。
Figure 2006001968
[式中、R、R、Rは同じでもあるいは異なっていてもよく、水素原子、ハロゲン、低級アルキル基、低級アルコキシ基又はハロゲン化アルキルを示す。]
The polyamic acid according to claim 1, wherein the triptycentriamines are represented by the following general formula (I).
Figure 2006001968
[Wherein R 1 , R 2 and R 3 may be the same or different and each represents a hydrogen atom, a halogen, a lower alkyl group, a lower alkoxy group or an alkyl halide. ]
ジアミン化合物がトリプチセンジアミン類またはその一部がトリプチセンジアミン類である請求項1又は2記載のポリアミド酸。 The polyamic acid according to claim 1 or 2, wherein the diamine compound is a triptycene diamine or a part thereof is a triptycene diamine. トリプチセンジアミン類の量が、トリプチセンジアミン類とトリプチセンジアミン類以外のジアミンの合計量に対して50モル%以上である請求項1〜3のいずれか1項に記載のポリアミド酸。 The amount of triptycene diamines is 50 mol% or more with respect to the total amount of diamines other than triptycene diamines and triptycene diamines, The polyamic acid of any one of Claims 1-3 . 請求項1〜4に記載のいずれか1項に記載のポリアミド酸を加熱して得られるポリイミド樹脂。 The polyimide resin obtained by heating the polyamic acid of any one of Claims 1-4. 請求項5記載のポリイミド樹脂を使用した光部品。

An optical component using the polyimide resin according to claim 5.

JP2004176727A 2004-06-15 2004-06-15 Polyamic acid and polyimide resin having triptycene skeleton and optical part using the same Pending JP2006001968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176727A JP2006001968A (en) 2004-06-15 2004-06-15 Polyamic acid and polyimide resin having triptycene skeleton and optical part using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176727A JP2006001968A (en) 2004-06-15 2004-06-15 Polyamic acid and polyimide resin having triptycene skeleton and optical part using the same

Publications (1)

Publication Number Publication Date
JP2006001968A true JP2006001968A (en) 2006-01-05

Family

ID=35770638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176727A Pending JP2006001968A (en) 2004-06-15 2004-06-15 Polyamic acid and polyimide resin having triptycene skeleton and optical part using the same

Country Status (1)

Country Link
JP (1) JP2006001968A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041636A1 (en) * 2006-10-02 2008-04-10 Toyo Boseki Kabushiki Kaisha Polyimide and optical waveguide using the same
JP2011006506A (en) * 2009-06-23 2011-01-13 Nitto Denko Corp Polyimide compound, manufacturing method therefor, and optical film and light waveguide path obtained from the polyimide compound
JP2012073510A (en) * 2010-09-29 2012-04-12 Fujifilm Corp Optical film, method for producing the same, polarizer, and liquid crystal display device
WO2016153064A1 (en) * 2015-03-25 2016-09-29 日産化学工業株式会社 Diamine and use thereof
JP2018523562A (en) * 2016-07-07 2018-08-23 南京工▲業▼大学 Method for producing triptyl polymer separation membrane
WO2018180926A1 (en) * 2017-03-29 2018-10-04 東レ株式会社 Film with conductive layer, touch panel, method for producing film with conductive layer, and method for producing touch panel
US10305052B2 (en) 2014-07-15 2019-05-28 Japan Science And Technology Agency Triptycene derivative useful as material for forming self-assembled film, method for manufacturing said triptycene derivative, film using same, method for manufacturing said film, and electronic device using said method
CN110548419A (en) * 2017-05-17 2019-12-10 南京工业大学 Application of polyamide VOCs (volatile organic compounds) interception type polymer separation membrane in nitrogen/VOCs separation
US10619009B2 (en) * 2015-10-08 2020-04-14 King Abdullah University Of Science And Technology Ortho-substituted triptycene-based diamines, monomers, and polymers, methods of making and uses thereof
CN111393644A (en) * 2020-04-03 2020-07-10 深圳市华星光电半导体显示技术有限公司 Polyimide, preparation method of polyimide film and flexible display panel
US11319409B2 (en) * 2017-01-31 2022-05-03 Lg Chem, Ltd. Polyimide and polyimide film, prepared therefrom, for flexible display
CN115725063A (en) * 2022-11-18 2023-03-03 拓烯科技(衢州)有限公司 Polycarbonate and preparation method thereof
CN115869788A (en) * 2021-09-27 2023-03-31 中国石油化工股份有限公司 Polyimide random copolymer with triptycene-based structure and preparation method and application thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560526B2 (en) * 2006-10-02 2014-07-30 東洋紡株式会社 Polyimide and optical waveguide using the same
WO2008041636A1 (en) * 2006-10-02 2008-04-10 Toyo Boseki Kabushiki Kaisha Polyimide and optical waveguide using the same
JP2011006506A (en) * 2009-06-23 2011-01-13 Nitto Denko Corp Polyimide compound, manufacturing method therefor, and optical film and light waveguide path obtained from the polyimide compound
US8470959B2 (en) 2009-06-23 2013-06-25 Nitto Denko Corporation Polyimide compound, preparation method therefor, and optical film and optical waveguide produced by employing the compound
JP2012073510A (en) * 2010-09-29 2012-04-12 Fujifilm Corp Optical film, method for producing the same, polarizer, and liquid crystal display device
US10305052B2 (en) 2014-07-15 2019-05-28 Japan Science And Technology Agency Triptycene derivative useful as material for forming self-assembled film, method for manufacturing said triptycene derivative, film using same, method for manufacturing said film, and electronic device using said method
KR20170131514A (en) * 2015-03-25 2017-11-29 닛산 가가쿠 고교 가부시키 가이샤 Diamines and their use
CN107614483A (en) * 2015-03-25 2018-01-19 日产化学工业株式会社 Diamines and its utilization
JPWO2016153064A1 (en) * 2015-03-25 2018-01-25 日産化学工業株式会社 Diamine and its use
KR102557784B1 (en) 2015-03-25 2023-07-20 닛산 가가쿠 가부시키가이샤 Diamines and their uses
WO2016153064A1 (en) * 2015-03-25 2016-09-29 日産化学工業株式会社 Diamine and use thereof
CN107614483B (en) * 2015-03-25 2020-07-31 日产化学工业株式会社 Diamine and use thereof
US10619009B2 (en) * 2015-10-08 2020-04-14 King Abdullah University Of Science And Technology Ortho-substituted triptycene-based diamines, monomers, and polymers, methods of making and uses thereof
JP2018523562A (en) * 2016-07-07 2018-08-23 南京工▲業▼大学 Method for producing triptyl polymer separation membrane
US11319409B2 (en) * 2017-01-31 2022-05-03 Lg Chem, Ltd. Polyimide and polyimide film, prepared therefrom, for flexible display
JPWO2018180926A1 (en) * 2017-03-29 2020-02-06 東レ株式会社 Film with conductive layer, touch panel, method for manufacturing film with conductive layer, and method for manufacturing touch panel
JP7140108B2 (en) 2017-03-29 2022-09-21 東レ株式会社 Film with conductive layer and touch panel
WO2018180926A1 (en) * 2017-03-29 2018-10-04 東レ株式会社 Film with conductive layer, touch panel, method for producing film with conductive layer, and method for producing touch panel
CN110548419B (en) * 2017-05-17 2021-06-01 南京工业大学 Application of a polyamide VOCs intercepting polymer separation membrane in nitrogen/VOCs separation
CN110548419A (en) * 2017-05-17 2019-12-10 南京工业大学 Application of polyamide VOCs (volatile organic compounds) interception type polymer separation membrane in nitrogen/VOCs separation
CN111393644A (en) * 2020-04-03 2020-07-10 深圳市华星光电半导体显示技术有限公司 Polyimide, preparation method of polyimide film and flexible display panel
CN115869788A (en) * 2021-09-27 2023-03-31 中国石油化工股份有限公司 Polyimide random copolymer with triptycene-based structure and preparation method and application thereof
CN115725063A (en) * 2022-11-18 2023-03-03 拓烯科技(衢州)有限公司 Polycarbonate and preparation method thereof
CN115725063B (en) * 2022-11-18 2024-02-23 拓烯科技(衢州)有限公司 Polycarbonate and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI617596B (en) High strength transparent polyamide-imide and process for preparing same, and polyamide-imide film
US6291635B1 (en) Fluorine-containing polybenzoxazole
JP3085666B2 (en) Polyimide optical material
JP6862652B2 (en) High-strength transparent polyamide-imide and its manufacturing method
JP2006001968A (en) Polyamic acid and polyimide resin having triptycene skeleton and optical part using the same
JP3025952B2 (en) Fluorine-containing resin
JP3773445B2 (en) Fluorine-containing alicyclic diamine and polymer using the same
JPH051148A (en) Totally fluorinated polyimide, its intermediate and starting substance, their production and optical material made of the totally fluorinated polyimide
US6077928A (en) Bis(dialkylmaleimide) derivative and polyetherimide for optical communications formed therefrom
JP5229719B2 (en) Novel diamine compound, polyamic acid and imidized polymer produced using the same
JP3490010B2 (en) Bis (trichlorotrimellitic anhydride) derivative and polyesterimide for optical communication formed therefrom
Li et al. Synthesis and properties of novel soluble poly (amide‐imide) s with different pendant substituents
JP2994373B2 (en) Polyamide imide for optical communication and method for producing the same
JP2009067936A (en) Polyamic acid and imidized polymer
WO2007034716A1 (en) Soluble transparent polybenzoxazole precursor, polybenzoxazole and methods for producing those
JP2694008B2 (en) Fluorine-containing polyimide and method for producing the same
JP4679357B2 (en) Fluorine-containing diamine and polymer using the same
WO2021033655A1 (en) Starting-material composition for resin
KR102676871B1 (en) Novel diamine-based compound, manufacturing method thereof, polyamide-based compound, polybenzoxazole film and flexible device
US6384182B2 (en) Fluorine-containing polybenzoxazole
JP2737871B2 (en) Perfluoroaromatic compounds for production of perfluorinated polyimides and methods for their production
CN110272544B (en) Oligomers, compositions, articles, methods for making articles, and display devices
JP4931007B2 (en) Polyamic acid and imidized polymer
TW202348597A (en) Novel diamine, method for producing the same, and polyamic acid and polyimide produced from the diamine
KR101943516B1 (en) Diamine compound, polyamic acid prepared therefrom, polyimide prepared therefrom, and polyimide film including polyimde