[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018180387A1 - 質量流量センサ、その質量流量センサを備えるマスフローメータ及びその質量流量センサを備えるマスフローコントローラ - Google Patents

質量流量センサ、その質量流量センサを備えるマスフローメータ及びその質量流量センサを備えるマスフローコントローラ Download PDF

Info

Publication number
WO2018180387A1
WO2018180387A1 PCT/JP2018/009338 JP2018009338W WO2018180387A1 WO 2018180387 A1 WO2018180387 A1 WO 2018180387A1 JP 2018009338 W JP2018009338 W JP 2018009338W WO 2018180387 A1 WO2018180387 A1 WO 2018180387A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass flow
flow sensor
thermal resistor
flow path
fluid
Prior art date
Application number
PCT/JP2018/009338
Other languages
English (en)
French (fr)
Inventor
恒久 清水
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to US16/497,191 priority Critical patent/US11543275B2/en
Priority to JP2019509167A priority patent/JP6844874B2/ja
Priority to CN201880022314.8A priority patent/CN110462348B/zh
Priority to KR1020197032026A priority patent/KR102269103B1/ko
Publication of WO2018180387A1 publication Critical patent/WO2018180387A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6847Structural arrangements; Mounting of elements, e.g. in relation to fluid flow where sensing or heating elements are not disturbing the fluid flow, e.g. elements mounted outside the flow duct
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Definitions

  • the present invention relates to a mass flow sensor, a mass flow meter including the mass flow sensor, and a mass flow controller including the mass flow sensor.
  • a mass flow meter and a mass flow controller for flowing a fluid in a horizontal direction are provided such that a U-shaped sensor tube is arranged with a U-shaped bottom portion facing upward, and a pair of sensor elements are horizontally disposed on the U-shaped bottom portion. It is provided side by side.
  • a mass flow meter or mass flow controller is arranged so as to allow fluid to flow in the vertical direction, the zero point fluctuates due to the thermal siphoning phenomenon as described in Patent Document 1 with reference to FIG. There are challenges.
  • Thermal siphoning phenomenon (also referred to as thermal siphon phenomenon) is a state in which a mass flow meter or mass flow controller is arranged to flow a fluid in a vertical direction, that is, in a state where a pair of sensor elements are provided side by side in a vertical direction. This is a phenomenon that occurs when using a gas with a high molecular weight when the fluid pressure on the side is high.
  • the fluid heated by the sensor element rises up the sensor tube and joins the main channel (so-called bypass section).
  • This is a phenomenon in which the fluid cooled in step # 1 falls and flows into the sensor tube again.
  • the zero point refers to a state in which no fluid flows through the mass flow meter or the mass flow controller, and refers to a state where there is no difference in temperature sensed by the two sensor elements.
  • the temperature of the middle part of the two sensor elements is highest, and the temperature decreases with distance from the middle part, indicating a line-symmetric mountain.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a mass flow sensor with reduced zero point fluctuation, a mass flow meter including the mass flow sensor, and a mass flow controller including the mass flow sensor. .
  • the present invention is grasped by the following composition in order to achieve the above-mentioned object.
  • the mass flow sensor of the present invention includes a U-shaped channel pipe having two straight portions connecting a bottom portion and the bottom portion to the end portion, with fluid flowing from the end portion to the other end portion, and A first thermal resistor wound around any one of the linear portions; and the linear portion provided near the end from the first thermal resistor and wound around the first thermal resistor.
  • a wound second thermal resistor, and a heat dissipating portion provided so as to come into contact with the flow path tube on the side opposite to the second thermal resistor across the first thermal resistor.
  • the mass flow sensor includes a weld base having terminals to which end portions of the first thermal resistor and the second thermal resistor are connected, and the heat radiating unit includes: Part of the weld base.
  • the heat radiating portion is formed of a material having a thermal conductivity at 0 degrees of 100 W / m ⁇ K or more.
  • the flow path tube is arranged with the U-shaped opening side facing in the horizontal direction.
  • the mass flow meter of the present invention includes a main flow path through which a fluid flows, a mass flow sensor having any one of the configurations (1) to (5), and a flow rate of the fluid detected by the mass flow sensor.
  • An output unit that outputs a signal relating to the outside to the outside, and each of the end portions of the flow channel pipe of the mass flow sensor is connected to the main flow channel.
  • the mass flow controller of the present invention is provided on the outlet side of the main flow path, the main flow path through which the fluid flows, the mass flow sensor having any one of the structures (1) to (5), and the mass A flow rate adjustment valve that adjusts the flow rate of the fluid flowing in the main flow path to a set flow rate based on the flow rate of the fluid detected by the flow rate sensor, and each of the flow path tubes of the mass flow rate sensor Is connected to the main flow path.
  • FIG. 1 is a cross-sectional view of a mass flow controller 1 including a mass flow sensor 20 of a first embodiment according to the present invention
  • FIG. 2 is a cross-sectional view showing a main part of the mass flow sensor 20 of the first embodiment according to the present invention.
  • FIG. 1 and 2 indicate the upper side and the lower side during normal use.
  • the mass flow controller 1 includes a main body block 10 and a housing 19 attached to the main body block 10.
  • the main body block 10 includes a first main channel 11 extending from the first opening 10a serving as a fluid inlet, a second main channel 12 extending from the first main channel 11, and a second opening serving as a fluid outlet.
  • a connection joint (not shown) for connection with a pipe through which a fluid flows is attached to the first opening 10a and the second opening 10b.
  • the first main channel 11 is a linear channel having an inner diameter D1 extending from the first opening 10a to the second opening 10b.
  • the second main channel 12 is a substantially L-shaped channel, and the second main channel 12 has a second opening from the end 11a of the first main channel 11 opposite to the first opening 10a.
  • the first flow path 12a having an inner diameter D2 smaller than the inner diameter D1 and extending linearly to the part 10b side, and extending from the end of the first flow path 12a on the second opening 10b side to the housing 19 side.
  • a second flow path 12 b communicating with the outside of the main body block 10.
  • the third main channel 13 is a substantially L-shaped channel, and the third main channel 13 extends linearly from the second opening 10b to the first opening 10a side, A third flow path 13a having a different diameter with a large inner diameter D3 on the opening 10b side and a small inner diameter D4 on the first opening 10a side, and a housing 19 from the end of the third flow path 13a on the first opening 10a side. And a fourth flow path 13b that extends to the side and communicates with the outside of the main body block 10.
  • the inner diameter D1 of the first main channel 11 and the inner diameter D3 of the third channel 13a on the second opening 10b side of the third main channel 13 are substantially the same according to a connection joint (not shown) for connection to the pipe. It has an inner diameter. Further, the inner diameter D2 of the first flow path 12a of the second main flow path 12 and the inner diameter D4 of the third main flow path 13 on the first opening 10a side are substantially the same.
  • the mass flow controller 1 is accommodated in the housing 19 and has an opening 12ba that communicates with the outside of the second flow path 12b that is arranged side by side from the first opening 10a to the second opening 10b.
  • a flow control valve 14 provided on the outlet (second opening 10b) side of the main flow path is provided so as to cover the opening 13ba communicating with the outside of the fourth flow path 13b.
  • a solenoid valve that is driven by a solenoid, a piezo valve that is driven by a piezo actuator, or the like is used as the flow control valve 14, and based on the flow rate of the fluid detected by a mass flow sensor 20 to be described later, It functions as a flow control valve that adjusts the flow rate to the set flow rate.
  • the main body block 10 includes a linear first branch flow path 11b having a small inner diameter that extends from the intermediate portion of the first main flow path 11 toward the housing 19 and communicates with the outside of the main body block 10, and a first main flow.
  • a bypass element 15 having a constant flow rate characteristic is provided between the first branch channel 11b and the second branch channel 11c in the first main channel 11.
  • first main flow path 11 a part of the fluid that flows in the main flow path (first main flow path 11) is supplied to the mass flow sensor 20 (to be described later) through the first branch flow path 11b, and the fluid that has passed through the mass flow sensor 20 flows into the second branch flow. It merges again into the main flow path (first main flow path 11) through the path 11c.
  • the mass flow controller 1 includes a control unit 16 accommodated in the housing 19.
  • the control unit 16 includes a bridge circuit that obtains resistance values of a first thermal resistor 24 and a second thermal resistor 25 of the mass flow sensor 20, which will be described later, and the flow rate of the fluid flowing in the main flow path from the change in the resistance value. It functions as a calculation unit of the mass flow sensor 20 that performs a calculation to obtain the above.
  • the control unit 16 includes an amplification circuit, a comparison control circuit that controls the flow rate control valve 14 by comparing the set flow rate and the flow rate that flows in the main flow path, and has a function of performing general control as the mass flow controller 1. Have.
  • the mass flow controller 1 includes an input / output unit 17 (for example, an input / output connector) that is provided on the outer periphery of the housing 19 and is electrically connected to the control unit 16. And a signal related to the flow rate of the fluid in the main channel can be transmitted (output) to an external device.
  • an input / output unit 17 for example, an input / output connector
  • the mass flow sensor 20 will be described in detail with reference to FIG.
  • the fluid flows from the end (also referred to as the first end 21) to the other end (also referred to as the second end 22), and the bottom 23B and the bottom 23B.
  • the U-shaped opening side having two linear portions (the linear portion 22B and the linear portion 22A) connecting the first end portion to the end portion (the first end portion 21 and the second end portion 22) is directed horizontally.
  • a U-shaped channel pipe 23 is provided.
  • the U shape in the present application includes not only a shape having a curvature at the bottom but also a shape having a straight bottom (so-called U-shape).
  • the mass flow sensor 20 includes a first thermal resistor 24 wound around a linear portion 22A on the second end 22 side of the flow path tube 23, and the first thermal resistor 24 closer to the second end 22 side. And a second thermal resistor 25 wound around a linear portion 22A around which the first thermal resistor 24 is wound.
  • the fluid flowing out from the first branch channel 11b of the main body block 10 shown in FIG. 1 is supplied to the first end 21 of the channel tube 23, and the fluid flowing out from the second end 22 of the channel tube 23 is 1 is supplied to the second branch flow path 11c of the main body block 10 shown in FIG.
  • the mass flow sensor 20 includes a pair of terminals 27a to which a lead wire portion 24a extending from the coil-shaped first thermal resistor 24 wound around the linear portion 22A is connected and a coil wound around the linear portion 22A.
  • a weld base 27 having a pair of terminals 27b to which a lead wire portion 25a extending from the second heat-sensitive resistor 25 is connected. The resistance values of the first thermal resistor 24 and the second thermal resistor 25 are adjusted by adjusting the lengths of the leader line portion 24a and the leader line portion 25a.
  • the pair of terminals 27 a and the pair of terminals 27 b of the weld base 27 are electrically connected to the control unit 16, and the first thermal resistor 24 and the second thermal resistor 24 according to the temperature change when the fluid flows through the flow channel pipe 23. Based on the change in the resistance value of the thermal resistor 25, the flow rate of the fluid flowing through the main flow path of the main body block 10 is obtained.
  • the weld base 27 has a plurality of arm portions 26A to 26E fixed to the U-shaped channel tube 23 with an adhesive. Since the shape stability of the flow path tube 23 is increased by holding the flow path pipe 23 that is a small diameter pipe with the weld base 27, the flow path pipe 23 can be prevented from being damaged by vibration or the like.
  • the weld base 27 extends to a position near the first end portion 21 of the linear portion 22B on the first end portion 21 side of the flow channel tube 23 and is fixed to the flow channel tube 23 with an adhesive.
  • the weld base 27 extends to a position near the second end 22 of the linear portion 22A on the second end 22 side of the flow path tube 23 and is fixed to the flow path pipe 23 with an adhesive. 26E, and is provided so as to be in contact with the flow path tube 23 adjacent to the first thermal resistor 24 on the side opposite to the second thermal resistor 25 with the first thermal resistor 24 interposed therebetween, and bonded.
  • the arm part 26 ⁇ / b> D fixed with the agent is provided, and the arm part 26 ⁇ / b> D which is a part of the weld base 27 functions as the heat radiating part 26.
  • the arm part 26 ⁇ / b> D functioning as the heat radiating part 26 is formed of a material having a high heat radiating property.
  • the arm portion 26D that functions as the heat radiating portion 26 is preferably formed of a material having a thermal conductivity at 0 degrees of 100 W / m ⁇ K or more.
  • the weld base 27 only needs to be insulated from the portions where current flows, such as the pair of terminals 27a and the pair of terminals 27b. Therefore, a material such as a metal having high heat dissipation is used for the base member of the weld base 27 so that the base member and the current flowing portions such as the pair of terminals 27a and the pair of terminals 27b are insulated. By doing so, it is possible to further improve the heat dissipation through the heat dissipation portion 26.
  • the mass flow sensor 20 includes a first end 21 and a second end 22 of the flow channel pipe 23 (see FIG. 2) on the main body block 10 side, Since the second end portion 22 side easily dissipates heat to the main body block 10, the second thermal resistor 25 arranged on the main body block 10 side is easily deprived of heat. On the other hand, since the first thermal resistor 24 located at a position away from the main body block 10 does not radiate heat to the main body block 10 side, heat is not taken away much.
  • the fluid flows from the first end portion 21 to the second end portion 22 side, and the temperature of the region of the first thermal resistor 24 is decreased by the flow of the fluid, and the first When the fluid heated by the thermal resistor 24 passes through the region of the second thermal resistor 25 and the temperature of the region of the second thermal resistor 25 rises, the first thermal resistor 24 and the second thermal resistor. The temperature difference in the region of the body 25 is eliminated.
  • a state in which there is no temperature difference between the regions of the first thermal resistor 24 and the second thermal resistor 25 is usually This means that no fluid is flowing. That is, when the fluid flows to such an extent that the temperature difference between the first thermal resistor 24 and the second thermal resistor 25 is eliminated, the output becomes 0 (that is, the output when no fluid flows), and 0 The output will fluctuate.
  • the heat radiating portion 26 when the heat radiating portion 26 is provided so as to be in contact with the flow channel pipe 23 on the side opposite to the second thermal resistor 25 with the first thermal resistor 24 interposed therebetween, the first thermal resistor 24 side radiates heat. Since heat is radiated to the part 26 side, a state similar to that where the second thermal resistor 25 side is radiated to the main body block 10 side can be realized. That is, the heat radiating portion 26 plays a role of balancing the heat of the first thermal resistor 24 and the second thermal resistor 25.
  • the heat radiating portion 26 does not have to be a part of the weld base 27, and a member having high heat radiating properties can be used alone. You may make it provide in the location similar to the part 26D.
  • the heat radiating part 26 is fixed to the flow path tube 23 with an adhesive.
  • the heat radiating part 26 does not need to be fixed with an adhesive, and at least the flow path pipe 23. It only has to come in contact with.
  • the first thermal resistor 24 and the second thermal resistor 25 are wound around the linear portion 22A on the second end 22 side of the flow path tube 23, and the heat radiating portion 26 is the first thermal resistor.
  • the configuration is linear on the first end 21 side. It may be provided in the part 22B.
  • the mass flow sensor 20 includes the first thermal resistor 24 wound around the linear portion 22B on the first end 21 side of the flow channel tube 23, and the first thermal resistor 24 closer to the first end 21 side. And the second thermal resistor 25 wound around the linear portion 22B around which the first thermal resistor 24 is wound, and opposite to the second thermal resistor 25 across the first thermal resistor 24 And a heat dissipating part 26 provided so as to be in contact with the flow path pipe 23 adjacent to the first heat sensitive resistor 24 on the side.
  • the heat radiating portion 26 radiates heat on the first thermal resistor 24 side away from the main body block 10, and the second heat sensitive heat is radiated to the main body block 10 side in the temperature state on the first thermal resistor 24 side. In order to obtain the same state as the temperature state on the resistor 25 side, the same effect as described above is exhibited.
  • the mass flow controller 1 In the first embodiment, the case of the mass flow controller 1 has been described. However, the mass flow sensor 20 described in the first embodiment is not limited to being used in the mass flow controller 1, but is used in the mass flow meter 2. Also good. Therefore, the mass flow meter 2 provided with the mass flow sensor 20 of the first embodiment will be described as the second embodiment.
  • FIG. 3 is a sectional view of the mass flow meter 2 provided with the mass flow sensor 20 of the first embodiment according to the present invention.
  • the upper side and the lower side described in FIG. 3 indicate the upper side and the lower side during normal use.
  • different points will be mainly described below, and descriptions of points that are the same as those in the first embodiment will be omitted. There is a case.
  • the flow control valve 14 provided in the mass flow controller 1 of FIG. 1 is omitted as shown in FIG. Further, with the omission of the flow control valve 14, the second flow path 12b for supplying the fluid to the flow control valve 14 shown in FIG. 1 and the second flow path for supplying the fluid from the flow control valve 14 to the third flow path 13a.
  • the four flow paths 13b are also unnecessary.
  • the second main flow path 12 and the third main flow path 13 provided in the main body block 10 in the first embodiment are the same as the first flow path 12a and the third main flow path 12 of the second main flow path 12 illustrated in FIG.
  • the outlet channel 18 is directly connected to the third channel 13a of the main channel 13.
  • control unit 16 includes the comparison control circuit that controls the flow rate control valve 14 by comparing the set flow rate and the flow rate that flows in the main flow path, but this comparison control circuit is also unnecessary. , Has been omitted.
  • the input / output part 17 (for example, input / output connector) electrically connected to the control part 16 is provided, the reception (input) of the signal regarding the setting flow volume input from an external apparatus, and although the signal related to the flow rate of the fluid in the main channel can be transmitted (output) to the external device, the mass flow meter 2 only needs to be able to transmit (output) the signal related to the flow rate of the fluid in the main channel to at least the external device. .
  • the output unit 17A only needs to be able to exhibit (function) to transmit (output) a signal related to the flow rate of the fluid in the main flow path to the external device, and therefore can transmit (output) a signal related to the flow rate of the fluid in the main flow path to the external device. It is not necessary to have only a function, and a function that can receive (input) some signal from an external device may be provided.
  • the mass flow sensor 20 is the same as that in the first embodiment. From this, in the mass flow meter 2 that allows fluid to flow in the vertical direction, the fluctuation in the zero output is suppressed as described in the first embodiment. It is possible to realize the mass flow meter 2 made.
  • Mass flow controller 2 Mass flow meter 10
  • Flow control valve 15 Bypass element 16 Control part 17 Input / output part 17A Output part 18 Outlet side flow path 19 Case 20

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Volume Flow (AREA)
  • Flow Control (AREA)

Abstract

ゼロ点変動を低減した質量流量センサ、その質量流量センサを備えるマスフローメータ及びその質量流量センサを備えるマスフローコントローラを提供するために、本発明の質量流量センサ20は、流体が端部(第1端部21)から他の端部(第2端部22)に流れ、底部と底部から端部(第1端部21、第2端部22)までを繋ぐ2本の直線状部(直線状部22B、直線状部22A)を有するU字形状の流路管23と、いずれかの直線状部(直線状部22B又は直線状部22A)に巻き付けられた第1感熱抵抗体24と、第1感熱抵抗体24から端部(第2端部22又は第1端部21)寄りに離間して設けられ、第1感熱抵抗体24が巻き付けられた直線状部(直線状部22B又は直線状部22A)に巻き付けられた第2感熱抵抗体25と、第1感熱抵抗体24を挟んで第2感熱抵抗体25と反対側となる側の流路管23上に接触するように設けられた放熱部26と、を備える。

Description

質量流量センサ、その質量流量センサを備えるマスフローメータ及びその質量流量センサを備えるマスフローコントローラ
 本発明は質量流量センサ、その質量流量センサを備えるマスフローメータ及びその質量流量センサを備えるマスフローコントローラに関する。
 水平方向に流体を流すマスフローメータやマスフローコントローラは、U字状のセンサ管がU字状の底部を上向きにして配置されるように設けられ、一対のセンサ素子がU字状の底部に水平方向に並んで設けられている。
 一方で、このようなマスフローメータやマスフローコントローラを垂直方向に流体を流すように配置すると、特許文献1で図7を参照して説明される通り、サーマルサイフォニング現象によって、ゼロ点が変動するという課題がある。
 サーマルサイフォニング現象(サーマルサイフォン現象とも言う。)とは、マスフローメータやマスフローコントローラを垂直方向に流体を流すように配置、すなわち一対のセンサ素子が垂直方向に並んで設けられている状態で、一次側の流体圧力が高い場合に、分子量の大きいガスに使用する際に生じる現象であり、センサ素子で温められた流体がセンサ管を上昇し、主流路(いわゆるバイパス部)に合流し、主流路にて冷却された流体が降下し、再びセンサ管に流入する現象である。
 このサーマルサイフォニング現象が生じた場合、マスフローメータやマスフローコントローラに流体が流れていない(流量ゼロ)であっても、センサ管内の流体は移動するため、センサ素子は流量を感知し、ゼロ点の変動が生じる。
特開平11-64060号公報
 特許文献1の対応を行なうことで、マスフローメータやマスフローコントローラを垂直方向に流体を流すように配置しても、サーマルサイフォニング現象を防止することが可能である。
 しかし、近年特に半導体分野では、マスフローメータやマスフローコントローラが搭載されるシステムの集積化が進み、マスフローメータやマスフローコントローラの小型化が求められる状況においては、センサ管の管長の増加やヒーターの追加は困難である。
 そこで、鉛直方向に流体を流すマスフローメータやマスフローコントローラのために、U字状の開口部が水平方向を向くように配置すると共に、U字状の一対の側部に水平方向に並んでセンサ素子(感熱抵抗体)を配置することでサーマルサイフォニング現象によるゼロ点変動を抑制することが可能であるが、より高い精度が要求される状況においては、流量がゼロの際に、センサ管の端部が接続される本体ブロックによる放熱の影響で、一対のセンサ素子の熱バランスが崩れることで生じるゼロ点変動が問題となる。
 なお、ゼロ点とは、マスフローメータやマスフローコントローラに流体が流れていない場合であり、2つのセンサ素子が感知する温度に差がない状態を言う。
 ゼロ点におけるセンサ管の温度分布は、2つのセンサ素子の中間部の温度が最も高く、中間部から離れるにつれて温度は下がり、線対称な山なりを示す。
 本発明は、上記事情に鑑みてなされたものであり、ゼロ点変動を低減した質量流量センサ、その質量流量センサを備えるマスフローメータ及びその質量流量センサを備えるマスフローコントローラを提供することを目的とする。
 本発明は、上記目的を達成するために、以下の構成によって把握される。
(1)本発明の質量流量センサは、流体が端部から他の端部に流れ、底部と前記底部から端部までを繋ぐ2本の直線状部を有するU字形状の流路管と、前記いずれかの直線状部に巻き付けられた第1感熱抵抗体と、前記第1感熱抵抗体から端部寄りに離間して設けられ、前記第1感熱抵抗体が巻き付けられた前記直線状部に巻き付けられた第2感熱抵抗体と、前記第1感熱抵抗体を挟んで前記第2感熱抵抗体と反対側となる側の前記流路管上に接触するように設けられた放熱部と、を備える。
(2)上記(1)の構成において、前記質量流量センサは、前記第1感熱抵抗体及び前記第2感熱抵抗体の端部が接続される端子を有するウェルドベースを備え、前記放熱部は、前記ウェルドベースの一部である。
(3)上記(2)の構成において、前記放熱部が前記流路管に固定され、前記流路管が前記ウェルドベースに保持されている。
(4)上記(1)から(3)のいずれか1つの構成において、前記放熱部は、0度における熱伝導率が100W/m・K以上の材料で形成されている。
(5)上記(1)から(4)のいずれか1つの構成において、前記流路管がU字形状の開口側を水平方向に向けて配置される。
(6)本発明のマスフローメータは、流体の流れる主流路と、上記(1)から(5)のいずれか1つの構成を有する質量流量センサと、前記質量流量センサによって検出された前記流体の流量に関する信号を外部に出力する出力部と、を備え、前記質量流量センサの前記流路管のそれぞれの前記端部が前記主流路に接続されている。
(7)本発明のマスフローコントローラは、流体の流れる主流路と、上記(1)から(5)のいずれか1つの構成を有する質量流量センサと、前記主流路の出口側に設けられ、前記質量流量センサによって検出された前記流体の流量に基づき、前記主流路内を流れる前記流体の流量を設定された流量に調節する流量調節弁と、を備え、前記質量流量センサの前記流路管のそれぞれの前記端部が前記主流路に接続されている。
 本発明によれば、ゼロ点変動を低減した質量流量センサ、その質量流量センサを備えるマスフローメータ及びその質量流量センサを備えるマスフローコントローラを提供することができる。
本発明に係る第1実施形態の質量流量センサを備えたマスフローコントローラの断面図である。 本発明に係る第1実施形態の質量流量センサの主要部を示す断面図である。 本発明に係る第1実施形態の質量流量センサを備えたマスフローメータの断面図である。
 以下、本発明を実施するための形態(以下、「実施形態」という)を、添付図面に基づいて詳細に説明する。
 なお、実施形態の説明の全体を通して同じ要素には同じ番号を付している。
(第1実施形態)
 図1は本発明に係る第1実施形態の質量流量センサ20を備えたマスフローコントローラ1の断面図であり、図2は本発明に係る第1実施形態の質量流量センサ20の主要部を示す断面図である。
 なお、図1及び図2に記載の上及び下は、通常の使用時における上側及び下側を示している。
 以下では、マスフローコントローラ1の説明を行いながら、本実施形態の質量流量センサ20についての説明も行う。
 図1に示すように、マスフローコントローラ1は、本体ブロック10と、本体ブロック10に取り付けられた筐体19と、を備えている。
 本体ブロック10は、流体の入口となる第1開口部10aから延在する第1主流路11と、第1主流路11から延在する第2主流路12と、流体の出口となる第2開口部10bから延在する第3主流路13と、を有する主流路を備えている。
 なお、第1開口部10a及び第2開口部10bには、流体が流れる配管との接続のための図示しない接続継手が取り付けられる。
 第1主流路11は、第1開口部10aから第2開口部10b側に延在する内径D1を有する直線状の流路になっている。
 また、第2主流路12は、ほぼL字状の流路になっており、第2主流路12は、第1主流路11の第1開口部10aと反対側の端部11aから第2開口部10b側に直線状に延在する、内径D1より小さい内径D2の第1流路12aと、第1流路12aの第2開口部10b側の端部から筐体19側に延在して本体ブロック10の外部に連通する第2流路12bと、を備えている。
 さらに、第3主流路13は、ほぼL字状の流路になっており、第3主流路13は、第2開口部10bから第1開口部10a側に直線状に延在し、第2開口部10b側の内径D3が大きく第1開口部10a側の内径D4が小さい異径形状の第3流路13aと、第3流路13aの第1開口部10a側の端部から筐体19側に延在して本体ブロック10の外部に連通する第4流路13bと、を備えている。
 なお、第1主流路11の内径D1と第3主流路13の第3流路13aの第2開口部10b側の内径D3は、配管との接続のための図示しない接続継手に応じたほぼ同じ内径になっている。
 また、第2主流路12の第1流路12aの内径D2と第3主流路13の第3流路13aの第1開口部10a側の内径D4は、ほぼ同じ内径になっている。
 そして、マスフローコントローラ1は、筐体19内に収容され、第1開口部10a側から第2開口部10b側に向かって並んで配置された第2流路12bの外部に連通する開口部12baと第4流路13bの外部に連通する開口部13baを覆うように主流路の出口(第2開口部10b)側に設けられた流量制御弁14が設けられている。
 例えば、流量制御弁14には、ソレノイドで駆動するソレノイドバルブやピエゾアクチュエータで駆動するピエゾバルブ等が用いられ、後述する質量流量センサ20によって検出された流体の流量に基づき、主流路内を流れる流体の流量を設定された流量に調節する流量調節弁として機能する。
 一方、本体ブロック10は、第1主流路11の中間部から筐体19側に延在して本体ブロック10の外部に連通する内径の小さい直線状の第1分岐流路11bと、第1主流路11の第1分岐流路11bより端部11a側の位置から筐体19側に延在して本体ブロック10の外部に連通する内径の小さい直線状の第2分岐流路11cと、を備えており、第1主流路11内の第1分岐流路11bから第2分岐流路11cに至る間には、定流量特性を有するバイパス素子15が設けられている。
 そして、第1分岐流路11bを通じて後述する質量流量センサ20に主流路(第1主流路11)内を流れる流体の一部が供給され、質量流量センサ20内を通過した流体が第2分岐流路11cを通じて主流路(第1主流路11)内に再び合流する。
 また、マスフローコントローラ1は、筐体19内に収容された制御部16を備えている。
 制御部16は、後述する質量流量センサ20の第1感熱抵抗体24及び第2感熱抵抗体25の抵抗値を求めるブリッジ回路等を備え、この抵抗値の変化から主流路内を流れる流体の流量を求める演算を行う質量流量センサ20の演算部として機能する。
 また、制御部16は、増幅回路、設定流量と主流路内を流れる流量を比較して流量制御弁14を制御する比較制御回路等を備え、マスフローコントローラ1としての全般的な制御を行う機能を有している。
 さらに、マスフローコントローラ1は、筐体19の外周に設けられ、制御部16に電気的に接続された入出力部17(例えば、入出力コネクタ)を備えており、外部機器から入力される設定流量に関する信号の受信(入力)及び主流路内の流体の流量に関する信号を外部機器に送信(出力)できるようになっている。
 次に、図2を参照しながら、質量流量センサ20について詳細に説明する。
 図2に示すように、質量流量センサ20は、流体が端部(第1端部21とも言う。)から他の端部(第2端部22とも言う。)に流れ、底部23Bと底部23Bから端部(第1端部21及び第2端部22)までを繋ぐ2本の直線状部(直線状部22B及び直線状部22A)を有するU字形状の開口側を水平方向に向けて配置されたU字形状の流路管23を備えている。
 なお、本願におけるU字形状とは、底部に曲率を有する形状のみではなく、底部が直線状である形状(いわゆるコの字)も含む。
 また、質量流量センサ20は、流路管23の第2端部22側の直線状部22Aに巻き付けられた第1感熱抵抗体24と、第1感熱抵抗体24から第2端部22側寄りに離間して設けられ、第1感熱抵抗体24が巻き付けられた直線状部22Aに巻き付けられた第2感熱抵抗体25と、を備えている。
 なお、流路管23の第1端部21には、図1に示す本体ブロック10の第1分岐流路11bから流れ出る流体が供給され、流路管23の第2端部22から流れ出る流体は、図1に示す本体ブロック10の第2分岐流路11cに供給される。
 さらに、質量流量センサ20は、直線状部22Aに巻き付けられたコイル状の第1感熱抵抗体24から出た引出線部24aが接続される一対の端子27a及び直線状部22Aに巻き付けられたコイル状の第2感熱抵抗体25から出た引出線部25aが接続される一対の端子27bを有するウェルドベース27を備えている。
 なお、引出線部24a及び引出線部25aの長さを調節することで第1感熱抵抗体24及び第2感熱抵抗体25の抵抗値の調整が行われている。
 そして、ウェルドベース27の一対の端子27a及び一対の端子27bは、制御部16に電気的に接続され、流体が流路管23を流れるときの温度変化に伴う第1感熱抵抗体24及び第2感熱抵抗体25の抵抗値の変化に基づいて、本体ブロック10の主流路を流れている流体の流量が求められる。
 このウェルドベース27は、U字状の流路管23に接着剤で固定される複数のアーム部26A~26Eを有している。
 そして、細径管である流路管23をウェルドベース27で保持することで、流路管23の形状安定性が高まるため、流路管23が振動等で破損することを回避できる。
 具体的には、ウェルドベース27は、流路管23の第1端部21側の直線状部22Bの第1端部21寄りの位置に延在して接着剤で流路管23に固定されるアーム部26Aと、U字状の低部の直線状部22Cの両端の位置にそれぞれ延在して接着剤で流路管23に固定される一対のアーム部26B及びアーム部26Cと、を備えている。
 また、ウェルドベース27は、流路管23の第2端部22側の直線状部22Aの第2端部22寄りの位置に延在して接着剤で流路管23に固定されるアーム部26Eを備えると共に、第1感熱抵抗体24を挟んで第2感熱抵抗体25と反対側となる側の第1感熱抵抗体24に近接する流路管23上に接触するように設けられ、接着剤で固定されたアーム部26Dを備えており、ウェルドベース27の一部であるアーム部26Dが放熱部26として機能する。
 したがって、放熱部26として機能するアーム部26Dは、放熱性の高い材料で形成されていることが好ましい。
 例えば、放熱部26として機能するアーム部26Dは、0度における熱伝導率が100W/m・K以上の材料で形成されていることが好ましい。
 なお、ウェルドベース27は、一対の端子27a及び一対の端子27b等の電流が流れる部分が絶縁されるようになっていればよい。
 したがって、ウェルドベース27のベースになる部材に放熱性の高い金属等の素材を用い、そのベースになる部材と一対の端子27a及び一対の端子27b等の電流が流れる部分とが絶縁されるようにすれば、放熱部26を介した放熱性を一層高めることができる。
 そして、このような放熱部26を設けることで、質量流量センサ20のゼロ点(0出力)の変動が抑制できることについて、以下、説明する。
 図1に示すように、質量流量センサ20は、流路管23(図2参照)の第1端部21及び第2端部22が本体ブロック10側となるため、第1端部21側及び第2端部22側は、本体ブロック10に放熱しやすくなるため、本体ブロック10側に配置される第2感熱抵抗体25は熱が奪われやすい。
 一方で、本体ブロック10から離れた位置に位置する第1感熱抵抗体24は、本体ブロック10側への放熱がないため、あまり熱が奪われることがない。
 このため、放熱部26が設けられていない場合、流体が第1端部21から第2端部22側に流れ、流体の流れによって第1感熱抵抗体24の領域の温度が低下し、第1感熱抵抗体24で加熱された流体が第2感熱抵抗体25の領域を通ることで、第2感熱抵抗体25の領域の温度が上昇したときに、第1感熱抵抗体24及び第2感熱抵抗体25の領域の温度差が解消されることになる。
 しかしながら、第1感熱抵抗体24及び第2感熱抵抗体25の領域の温度差がない状態(第1感熱抵抗体24及び第2感熱抵抗体25の抵抗値の差がない状態)は、通常、流体が流れていない状態を意味する。
 つまり、第1感熱抵抗体24及び第2感熱抵抗体25の領域の温度差が解消される程度に流体が流れたときに、0出力(つまり、流体が流れていないときの出力)となり、0出力が変動することになる。
 一方、第1感熱抵抗体24を挟んで第2感熱抵抗体25と反対側となる側の流路管23上に接触するように放熱部26を設けると、第1感熱抵抗体24側は放熱部26側に放熱されるため、第2感熱抵抗体25側が本体ブロック10側へ放熱されるのと同様の状態を実現することができる。
 つまり、放熱部26が第1感熱抵抗体24と第2感熱抵抗体25の熱バランスを取る役割を果たす。
 したがって、流体が流れなくても、第1感熱抵抗体24及び第2感熱抵抗体25の領域の温度差が解消された状態になり、流体が流れていないときに、正しく0出力が出力される。
 逆に、流体が流れることで、第1感熱抵抗体24及び第2感熱抵抗体25の領域の間に温度差が発生するので、流体の流れに応じた出力が出力されるようになる。
 なお、本実施形態では、ウェルドベース27の一部を放熱部26とした場合について説明したが、放熱部26がウェルドベース27の一部である必要はなく、放熱性の高い部材を単独でアーム部26Dと同様の箇所に設けるようにしてもよい。
 また、本実施形態では、放熱部26が接着剤で流路管23に固定されている場合について説明したが、放熱部26は、接着剤で固定されている必要はなく、少なくとも流路管23に接触するようになっていればよい。
 さらに、本実施形態では、第1感熱抵抗体24及び第2感熱抵抗体25が流路管23の第2端部22側の直線状部22Aに巻き付けられ、放熱部26が第1感熱抵抗体24を挟んで第2感熱抵抗体25と反対側となる側の流路管23上に接触するように設けられている場合について示したが、当該構成が、第1端部21側の直線状部22Bに設けられていてもよい。
 つまり、質量流量センサ20は、流路管23の第1端部21側の直線状部22Bに巻き付けられた第1感熱抵抗体24と、第1感熱抵抗体24から第1端部21側寄りに離間して設けられ、第1感熱抵抗体24が巻き付けられた直線状部22Bに巻き付けられた第2感熱抵抗体25と、第1感熱抵抗体24を挟んで第2感熱抵抗体25と反対側となる側の第1感熱抵抗体24に近接する流路管23上に接触するように設けられた放熱部26と、を備えるものであってもよい。
 このようにしても、放熱部26が本体ブロック10から離れている第1感熱抵抗体24側を放熱し、第1感熱抵抗体24側の温度状態を本体ブロック10側へ放熱される第2感熱抵抗体25側の温度状態と同様の状態にするため、上述したのと同様の効果が発揮される。
(第2実施形態)
 第1実施形態では、マスフローコントローラ1の場合について説明したが第1実施形態で説明した質量流量センサ20はマスフローコントローラ1に使用されることに限定されるものではなく、マスフローメータ2に使用されてもよい。
 したがって、第2実施形態として、第1実施形態の質量流量センサ20を備えたマスフローメータ2について説明する。
 図3は本発明に係る第1実施形態の質量流量センサ20を備えたマスフローメータ2の断面図である。
 なお、図3に記載の上及び下は、通常の使用時における上側及び下側を示している。
 第2実施形態でも、基本的な構成の多くは、第1実施形態と同様であるため、以下では、主に異なる点について説明し、第1実施形態と同様である点については説明を省略する場合がある。
 マスフローメータ2では、流量制御が不要であるため、図3に示すように、図1のマスフローコントローラ1に設けられていた流量制御弁14が省略されている。
 また、流量制御弁14の省略に伴って、図1に記載の流量制御弁14に流体を供給するための第2流路12b及び流量制御弁14から第3流路13aに流体を供給する第4流路13bも不要となる。
 このため、第1実施形態で本体ブロック10に設けられていた第2主流路12及び第3主流路13の部分が、図1に記載の第2主流路12の第1流路12aと第3主流路13の第3流路13aを直接接続した出口側流路18に変更されている。
 さらに、第1実施形態では、制御部16が設定流量と主流路内を流れる流量を比較して流量制御弁14を制御する比較制御回路を備えていたが、この比較制御回路も不要であるため、省略されている。
 そして、第1実施形態では、制御部16に電気的に接続された入出力部17(例えば、入出力コネクタ)を備えており、外部機器から入力される設定流量に関する信号の受信(入力)及び主流路内の流体の流量に関する信号を外部機器に送信(出力)できるようになっていたが、マスフローメータ2では、少なくとも主流路内の流体の流量に関する信号を外部機器に送信(出力)できればよい。
 このため、第2実施形態では、第1実施形態の入出力部17に変えて、制御部16に電気的に接続された出力部17Aとして、主流路内の流体の流量に関する信号を外部機器に送信(出力)できるようにしている。
 ただし、出力部17Aは、主流路内の流体の流量に関する信号を外部機器に送信(出力)できる機能が発揮できればよいため、主流路内の流体の流量に関する信号を外部機器に送信(出力)できる機能のみしか有しないものとされる必要はなく、外部機器からの何らかの信号を受信(入力)できる機能を備えていてもよい。
 そして、質量流量センサ20に関しては第1実施形態と同様であり、このことから、鉛直方向に流体を流すマスフローメータ2において、第1実施形態で説明したのと同様に、0出力の変動が抑制されたマスフローメータ2を実現することが可能である。
 以上、本発明を実施形態に基づき説明したが、本発明は実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲での種々の変更が可能であることも言うまでもない。
 したがって、そのような要旨を逸脱しない範囲での種々の変更を行ったものも本発明の技術的範囲に含まれるものであり、そのことは、当業者にとって特許請求の範囲の記載から明らかである。
1 マスフローコントローラ
2 マスフローメータ
10 本体ブロック
10a 第1開口部
10b 第2開口部
11 第1主流路
11a 端部
11b 第1分岐流路
11c 第2分岐流路
12 第2主流路
12a 第1流路
12b 第2流路
12ba 開口部
13 第3主流路
13a 第3流路
13b 第4流路
13ba 開口部
14 流量制御弁
15 バイパス素子
16 制御部
17 入出力部
17A 出力部
18 出口側流路
19 筐体
20 質量流量センサ
21 第1端部
22 第2端部
22A,22B,22C 直線状部
23 流路管
23B 底部
24 第1感熱抵抗体
24a 引出線部
25 第2感熱抵抗体
25a 引出線部
26 放熱部
26A,26B,26C,26D,26E アーム部
27 ウェルドベース
27a,27b 一対の端子

Claims (7)

  1.  流体が端部から他の端部に流れ、底部と前記底部から端部までを繋ぐ2本の直線状部を有するU字形状の流路管と、
     前記いずれかの直線状部に巻き付けられた第1感熱抵抗体と、
     前記第1感熱抵抗体から端部寄りに離間して設けられ、前記第1感熱抵抗体が巻き付けられた前記直線状部に巻き付けられた第2感熱抵抗体と、
     前記第1感熱抵抗体を挟んで前記第2感熱抵抗体と反対側となる側の前記流路管上に接触するように設けられた放熱部と、を備えることを特徴とする質量流量センサ。
  2.  前記質量流量センサは、前記第1感熱抵抗体及び前記第2感熱抵抗体の端部が接続される端子を有するウェルドベースを備え、
     前記放熱部は、前記ウェルドベースの一部であることを特徴とする請求項1に記載の質量流量センサ。
  3.  前記放熱部が前記流路管に固定され、前記流路管が前記ウェルドベースに保持されていることを特徴とする請求項2に記載の質量流量センサ。
  4.  前記放熱部は、0度における熱伝導率が100W/m・K以上の材料で形成されていることを特徴とする請求項1から請求項3のいずれか1項に記載の質量流量センサ。
  5.  前記流路管がU字形状の開口側を水平方向に向けて配置されることを特徴とする請求項1から請求項4のいずれか1項に記載の質量流量センサ。
  6.  流体の流れる主流路と、
     請求項1から請求項5のいずれか1項に記載の質量流量センサと、
     前記質量流量センサによって検出された前記流体の流量に関する信号を外部に出力する出力部と、を備え、
     前記質量流量センサの前記流路管のそれぞれの前記端部が前記主流路に接続されていることを特徴とするマスフローメータ。
  7.  流体の流れる主流路と、
     請求項1から請求項5のいずれか1項に記載の質量流量センサと、
     前記主流路の出口側に設けられ、前記質量流量センサによって検出された前記流体の流量に基づき、前記主流路内を流れる前記流体の流量を設定された流量に調節する流量調節弁と、を備え、
     前記質量流量センサの前記流路管のそれぞれの前記端部が前記主流路に接続されていることを特徴とするマスフローコントローラ。
PCT/JP2018/009338 2017-03-30 2018-03-09 質量流量センサ、その質量流量センサを備えるマスフローメータ及びその質量流量センサを備えるマスフローコントローラ WO2018180387A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/497,191 US11543275B2 (en) 2017-03-30 2018-03-09 Mass flow sensor, mass flow meter including the mass flow sensor, and mass flow controller including the mass flow sensor
JP2019509167A JP6844874B2 (ja) 2017-03-30 2018-03-09 質量流量センサ、その質量流量センサを備えるマスフローメータ及びその質量流量センサを備えるマスフローコントローラ
CN201880022314.8A CN110462348B (zh) 2017-03-30 2018-03-09 质量流量传感器、具备该质量流量传感器的质量流量计以及具备该质量流量传感器的质量流量控制器
KR1020197032026A KR102269103B1 (ko) 2017-03-30 2018-03-09 질량 유량 센서, 그 질량 유량 센서를 구비하는 질량 유량계 및 그 질량 유량 센서를 구비하는 질량 유량 제어기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017067902 2017-03-30
JP2017-067902 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180387A1 true WO2018180387A1 (ja) 2018-10-04

Family

ID=63677205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009338 WO2018180387A1 (ja) 2017-03-30 2018-03-09 質量流量センサ、その質量流量センサを備えるマスフローメータ及びその質量流量センサを備えるマスフローコントローラ

Country Status (6)

Country Link
US (1) US11543275B2 (ja)
JP (1) JP6844874B2 (ja)
KR (1) KR102269103B1 (ja)
CN (1) CN110462348B (ja)
TW (1) TWI664399B (ja)
WO (1) WO2018180387A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264574A1 (ja) * 2021-06-17 2022-12-22 株式会社堀場エステック 熱式流量センサ及び流体制御装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505419B2 (ja) * 2008-10-13 2014-05-28 日立金属株式会社 質量流量コントローラおよび同コントローラを動作させる方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519246A (en) * 1981-12-21 1985-05-28 Advanced Semiconductor Materials International, N.V. Improved flow meter
US5191793A (en) * 1984-03-12 1993-03-09 Tylan Corporation Fluid mass flow meter device with reduced attitude sensitivity
CN85201847U (zh) * 1985-05-13 1986-06-11 张开逊 导电流体流量计
JPH0676897B2 (ja) * 1986-05-27 1994-09-28 株式会社エステツク 熱式流量計
JP2796299B2 (ja) 1987-12-21 1998-09-10 株式会社日立製作所 半導体装置
JP2791828B2 (ja) * 1990-08-11 1998-08-27 株式会社エステック 熱式質量流量計
US6044701A (en) * 1992-10-16 2000-04-04 Unit Instruments, Inc. Thermal mass flow controller having orthogonal thermal mass flow sensor
JP4027470B2 (ja) 1997-08-09 2007-12-26 株式会社堀場エステック 質量流量制御装置
JP2000227354A (ja) * 1998-12-01 2000-08-15 Nippon M K S Kk 流量センサ
JP3378833B2 (ja) * 1999-07-05 2003-02-17 株式会社日立製作所 発熱抵抗体式空気流量測定装置
JP3761769B2 (ja) * 2000-06-20 2006-03-29 三菱電機株式会社 熱式流量センサ
JP4576597B2 (ja) * 2001-06-01 2010-11-10 株式会社フジキン 耐腐食性集積化マスフローコントローラ
US6668642B2 (en) * 2001-12-21 2003-12-30 Mks Instruments, Inc. Apparatus and method for thermal isolation of thermal mass flow sensor
US7473031B2 (en) * 2002-04-01 2009-01-06 Palo Alto Research Center, Incorporated Resistive thermal sensing
JP3754678B2 (ja) * 2003-04-16 2006-03-15 株式会社フジキン 耐食金属製熱式質量流量センサとこれを用いた流体供給機器
DE10345584A1 (de) * 2003-09-29 2005-04-28 Bosch Gmbh Robert Leiterplatte mit Kunststoffteil zur Aufnahme einer Messeinrichtung
JP5080020B2 (ja) * 2006-04-13 2012-11-21 日立オートモティブシステムズ株式会社 熱式流量センサ
NL1032007C2 (nl) * 2006-06-14 2007-12-17 Berkin Bv Stromingssensor van het thermische type.
JP4317556B2 (ja) * 2006-07-21 2009-08-19 株式会社日立製作所 熱式流量センサ
US7469583B2 (en) * 2007-02-21 2008-12-30 Mks Japan, Inc. Flow sensor
JP2009014601A (ja) * 2007-07-06 2009-01-22 Yamatake Corp 流量計
JP2009192220A (ja) * 2008-02-12 2009-08-27 Hitachi Metals Ltd 流量センサおよびこれを用いた質量流量制御装置
JP2010169657A (ja) * 2008-12-25 2010-08-05 Horiba Stec Co Ltd 質量流量計及びマスフローコントローラ
CN201397163Y (zh) * 2009-04-26 2010-02-03 浙江恒光汽车部件有限公司 数字式空气流量计的空气流量检测电路
CN101551262B (zh) * 2009-04-26 2011-04-13 浙江恒光汽车部件有限公司 数字式空气流量计的空气流量检测电路
US8196601B2 (en) * 2009-06-30 2012-06-12 Hitachi Metals, Ltd Thermal flow sensor with zero drift compensation
US8251091B2 (en) * 2009-09-17 2012-08-28 Hitachi Metals, Ltd. Temperature insensitive mass flow controller
JP5534193B2 (ja) * 2010-04-20 2014-06-25 アズビル株式会社 温度拡散率測定システム及び流量測定システム
CN201897577U (zh) * 2010-11-10 2011-07-13 致惠科技股份有限公司 热导管测试装置
WO2013134150A1 (en) * 2012-03-07 2013-09-12 Illinois Tool Works Inc. System and method for improving the accuracy of a rate of decay measurement for real time correction in a mass flow controller or mass flow meter by using a thermal model to minimize thermally induced error in the rod measurement
KR102150579B1 (ko) * 2014-03-31 2020-09-01 히타치 긴조쿠 가부시키가이샤 열식 질량 유량 측정 방법, 당해 방법을 사용하는 열식 질량 유량계 및 당해 열식 질량 유량계를 사용하는 열식 질량 유량 제어 장치
WO2016144717A1 (en) * 2015-03-06 2016-09-15 Alicat Scientific, Inc. Systems and methods for detecting flow of a fluid
JP6775288B2 (ja) * 2015-10-08 2020-10-28 株式会社堀場エステック 流体制御弁及びその制御プログラム
US10295518B2 (en) * 2015-12-14 2019-05-21 Hitachi Metals, Ltd. System and method for detecting concentration of a gas in a gas stream
CN108779997A (zh) * 2016-01-22 2018-11-09 伊利诺斯工具制品有限公司 动态地配置在质量流量控制器上存储的数据值的系统和方法
JP2017173143A (ja) * 2016-03-24 2017-09-28 セイコーエプソン株式会社 流量検出装置
JP6815847B2 (ja) * 2016-11-25 2021-01-20 株式会社堀場エステック 流路形成構造、流量測定装置及び流量制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505419B2 (ja) * 2008-10-13 2014-05-28 日立金属株式会社 質量流量コントローラおよび同コントローラを動作させる方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264574A1 (ja) * 2021-06-17 2022-12-22 株式会社堀場エステック 熱式流量センサ及び流体制御装置

Also Published As

Publication number Publication date
KR102269103B1 (ko) 2021-06-23
TW201903363A (zh) 2019-01-16
TWI664399B (zh) 2019-07-01
CN110462348B (zh) 2021-08-10
KR20190134710A (ko) 2019-12-04
US20200096373A1 (en) 2020-03-26
CN110462348A (zh) 2019-11-15
JP6844874B2 (ja) 2021-03-17
US11543275B2 (en) 2023-01-03
JPWO2018180387A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
JP4945581B2 (ja) 流量計
US7748268B2 (en) Thermal flow meter
CN100362324C (zh) 带有晶片型感应器的质流仪
JP5505419B2 (ja) 質量流量コントローラおよび同コントローラを動作させる方法
JP2007333735A (ja) 熱型流量センサ装置
JP2012093269A (ja) 流量測定装置
KR20160134675A (ko) 열식 질량 유량계 및 이것을 사용한 질량 유량 제어 장치
JP2011085542A (ja) 流量測定装置
JP2009300403A (ja) 質量流量計及びマスフローコントローラ
JP3985801B2 (ja) 空気流量測定装置
WO2018180387A1 (ja) 質量流量センサ、その質量流量センサを備えるマスフローメータ及びその質量流量センサを備えるマスフローコントローラ
KR20140141417A (ko) 가열기화 시스템 및 가열기화 방법
JPH0495820A (ja) 熱式質量流量計
JP5455848B2 (ja) 熱式流量センサ
JP5024272B2 (ja) 空気流量測定装置
JP2005514614A (ja) 熱質量流量センサにおける熱放散のための装置及び方法
JP2017101955A (ja) 測定装置及び測定装置の製造方法
JP2017219434A (ja) 熱式流量センサ
JP6484497B2 (ja) 断熱カバーおよび流体制御装置
JP4368432B2 (ja) 質量流量センサ並びにこれを用いるマスフローメータおよびマスフローコントローラ
JP2018072237A (ja) 測定装置
JP5319744B2 (ja) 熱式流量センサ
WO2022264574A1 (ja) 熱式流量センサ及び流体制御装置
JP3907645B2 (ja) 熱式質量流量計
JP2019052962A (ja) 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509167

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197032026

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18775947

Country of ref document: EP

Kind code of ref document: A1