WO2018173671A1 - 車両 - Google Patents
車両 Download PDFInfo
- Publication number
- WO2018173671A1 WO2018173671A1 PCT/JP2018/007594 JP2018007594W WO2018173671A1 WO 2018173671 A1 WO2018173671 A1 WO 2018173671A1 JP 2018007594 W JP2018007594 W JP 2018007594W WO 2018173671 A1 WO2018173671 A1 WO 2018173671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clutch
- power
- transmission
- driver
- transmission mechanism
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 156
- 230000007246 mechanism Effects 0.000 claims abstract description 62
- 238000010248 power generation Methods 0.000 description 13
- 230000008859 change Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000007935 neutral effect Effects 0.000 description 6
- 230000004043 responsiveness Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 4
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 210000000078 claw Anatomy 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/06—Control by electric or electronic means, e.g. of fluid pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/40—Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/19—Improvement of gear change, e.g. by synchronisation or smoothing gear shift
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/02—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/04—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
- B60K17/06—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K2006/4825—Electric machine connected or connectable to gearbox input shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2125/00—Components of actuators
- F16D2125/02—Fluid-pressure mechanisms
- F16D2125/023—Pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2300/00—Special features for couplings or clutches
- F16D2300/18—Sensors; Details or arrangements thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/102—Actuator
- F16D2500/1026—Hydraulic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/104—Clutch
- F16D2500/10406—Clutch position
- F16D2500/10412—Transmission line of a vehicle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/108—Gear
- F16D2500/1081—Actuation type
- F16D2500/1082—Manual transmission
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/304—Signal inputs from the clutch
- F16D2500/30406—Clutch slip
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/304—Signal inputs from the clutch
- F16D2500/30408—Relative rotational position of the input and output parts, e.g. for facilitating positive clutch engagement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/304—Signal inputs from the clutch
- F16D2500/3041—Signal inputs from the clutch from the input shaft
- F16D2500/30415—Speed of the input shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/304—Signal inputs from the clutch
- F16D2500/3042—Signal inputs from the clutch from the output shaft
- F16D2500/30426—Speed of the output shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/306—Signal inputs from the engine
- F16D2500/3067—Speed of the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/308—Signal inputs from the transmission
- F16D2500/3081—Signal inputs from the transmission from the input shaft
- F16D2500/30816—Speed of the input shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/31—Signal inputs from the vehicle
- F16D2500/3114—Vehicle wheels
- F16D2500/3115—Vehicle wheel speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/314—Signal inputs from the user
- F16D2500/3146—Signal inputs from the user input from levers
- F16D2500/31466—Gear lever
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/70—Details about the implementation of the control system
- F16D2500/704—Output parameters from the control unit; Target parameters to be controlled
- F16D2500/70402—Actuator parameters
- F16D2500/7041—Position
Definitions
- the present invention relates to a vehicle including a transmission and a clutch.
- Patent Document 1 discloses a transmission structure for the purpose of simplifying a shift operation.
- the speed ratio desired by the driver may be different or the response of the speed change operation may be delayed.
- an object of the present invention is to improve the convenience of switching the power transmission state while maintaining good accuracy and responsiveness of the shifting operation with respect to the driver's request.
- a vehicle includes a transmission having an input shaft to which power from a driving power source is input and an output shaft for outputting power to a drive wheel, and the transmission using the operating force of a driver as speed-changing power.
- the transmission can be shifted by the driver's operating force, it is easy to maintain the shifting operation desired by the driver. Further, the power transmission state can be switched by the clutch operation by the clutch actuator without depending on the operation force of the driver. Therefore, the convenience of switching the power transmission state can be enhanced while maintaining the accuracy and responsiveness of the speed change operation with respect to the driver request.
- a manual clutch power transmission mechanism that applies the driver's operating force as clutch power to the clutch may be further provided.
- the clutch can be operated by the operation force of the driver even in a situation not included in the control logic.
- the clutch actuator may include a hydraulic pump.
- the operation responsiveness of the clutch is increased as compared with the power transmission by the wire.
- the clutch actuator may apply clutch power to the clutch according to a shift operation of the manual transmission power transmission mechanism.
- the clutch operation can be supported by the shift operation.
- the operation timing of the clutch can be set according to the rotational speed difference, and the operation timing of the clutch can be easily maintained.
- FIG. 1 is a block diagram of a vehicle according to a first embodiment.
- FIG. 2 is a circuit diagram of a hydraulic pressure switching unit of the vehicle shown in FIG. 1.
- 2 is a table for explaining states of a transmission, a clutch, an engine, and an electric motor in each mode of the vehicle shown in FIG.
- It is a block diagram of the oil pressure switching unit of a modification.
- It is a block diagram of the vehicle concerning a 2nd embodiment.
- 6 is a table for explaining states of a transmission, a clutch, an engine, and an electric motor in each mode of the vehicle shown in FIG. 5.
- It is a block diagram of the vehicle concerning a 3rd embodiment.
- FIG. 1 is a block diagram of a vehicle 1 according to the embodiment.
- the vehicle 1 is, for example, a motorcycle.
- the vehicle 1 is provided with driven wheels (front wheels) and drive wheels 2 (rear wheels) (not shown).
- a clutch operation element 4 (for example, a clutch lever) is provided on the grip 3 (see FIG. 2) of the handle of the vehicle 1.
- a switch for the driver to select a mode to be described later is provided near the handle or the meter display device.
- the vehicle 1 is provided with an engine E (internal combustion engine) as a travel drive source and a power generation drive source, and an electric motor M as a travel drive source and a generator.
- the engine E and the electric motor M are disposed between a driven wheel that is a front wheel and a drive wheel 3 that is a rear wheel.
- the cylinder of the engine E extends in the vertical direction, and the electric motor M is disposed on the rear side of the cylinder of the engine E.
- the vehicle 1 is provided with a transmission 5 that shifts power from the engine E and / or the electric motor M and transmits the power to the drive wheels 2.
- the transmission 5 is accommodated in a crankcase provided below the cylinder of the engine E, and the electric motor M is disposed above the crankcase.
- the transmission 5 is provided with an input shaft 6 and an output shaft 7. Power is input to the input shaft 6 from the engine E and the electric motor M.
- the output shaft 7 transmits power to the drive wheels 2 via an output transmission mechanism 11 (for example, a chain or a belt).
- the input shaft 6 is coupled to the output shaft 7 through a plurality of sets of gear trains 8 having different reduction ratios so that power can be transmitted.
- the input side gear of the gear train 8 is fixed to the input shaft 6.
- the output side gear of the gear train 8 is provided coaxially with the output shaft 7 and is rotatably fitted to the output shaft 7.
- the input side gear and the output side gear are always meshed with each other.
- the transmission 5 is provided with a manual transmission power transmission mechanism 9 that selects one set from a plurality of sets of gear trains 8 and mechanically interlocks with the manual operation of the driver to change the power transmission path to change gears. ing.
- the manual transmission power transmission mechanism 9 selects one power transmission path selected from a neutral gear and a plurality of gears (for example, 1st to 6th gears).
- the manual transmission power transmission mechanism 9 is slidably provided on the output shaft 7 and selects and engages one set from a plurality of sets of gear trains 8, and engagement / non-engagement of the dog ring 15.
- a shift fork 18 for operating the combination and a shift drum 10 for moving the shift fork 18 along the output shaft 7 are provided.
- the desired shift fork 18 slides the dog ring 15 along the output shaft 7, and the driver in the gear train 8.
- the dog ring 15 is engaged with one set of desired reduction ratios, and a power transmission path of a desired gear stage is selected.
- the shift operator is, for example, a shift pedal operated with the driver's foot or a shift lever operated with the driver's hand.
- the transmission 5 has a neutral stage in which the shift drum 10 is stopped and maintained at a position of the dog ring 15 where power from the input shaft 6 to the output shaft 7 is not transmitted in a natural state where no power is applied by the driver. Is set.
- the driver can realize the power non-transmission state in the natural state with the transmission 5 by rotating the shift drum 10 to the neutral stage in addition to the respective shift stages.
- the crankshaft 12 of the engine E is connected to the input shaft 6 of the transmission 5 through a first power transmission mechanism 13 (for example, a gear) and a clutch 14 (for example, a multi-plate clutch) so that power can be transmitted. That is, the clutch 14 is interposed in the first power transmission path R ⁇ b> 1 between the engine E and the input shaft 6.
- the clutch operator 4 is, for example, a clutch lever or a clutch pedal that is operated by a driver's hand or foot. When the clutch operating element 4 is operated to the operating position, the operating force by the driver is transmitted from the master cylinder 16 to the slave cylinder 17, and the clutch power is applied to the clutch 14 from the slave cylinder 17 through the rod inserted through the input shaft 6. And the clutch 14 is disengaged.
- the handle is provided with a clutch operation sensor 49 that detects whether the clutch operating element 4 is in an operating state or a non-operating state.
- the electric motor M is connected to the input shaft 6 of the transmission 5 via a second power transmission mechanism 19 (for example, a gear). That is, the electric motor M is connected to the input shaft 6 through a second power transmission path R2 different from the first power transmission path 13.
- the second power transmission path R2 always maintains the connection state between the electric motor M and the input shaft 6 in the power transmission state.
- the electric motor M can generate power using electric power supplied from the battery 22 via the inverter 23, and can generate electric power using the power transmitted from the input shaft 6 of the transmission 5 to charge the battery 22.
- the crankshaft 12 of the engine E is provided with an engine rotational speed sensor 24 (for example, a crank angle sensor) capable of detecting the rotational speed.
- the clutch 14 is provided with a clutch sensor 25 (for example, a stroke sensor) that can detect whether the clutch 14 is in a disconnected state or a connected state.
- the transmission 5 detects the shift position of the manual transmission power transmission mechanism 9 (one position selected from neutral and a plurality of shift speeds (for example, 1st to 6th speeds)), so that the transmission 5 by the driver can be detected.
- a transmission sensor 26 capable of detecting the operation instruction is provided.
- the transmission sensor 26 is a potentiometer or a gear position sensor that can detect the rotation angle of the shift drum 10.
- the drive wheel 2 is provided with a drive wheel rotational speed sensor 27 for detecting the rotational speed.
- the vehicle 1 is provided with a controller 20.
- the controller 20 receives output signals from the engine speed sensor 24, the clutch sensor 25, the transmission sensor 26, the drive wheel speed sensor 27, and the clutch operation sensor 49.
- the controller 20 controls the engine E, the electric motor M, and the hydraulic pressure switching unit 21.
- the controller 20 includes an engine ECU 46 that controls the engine E, a motor ECU 47 that controls the electric motor M, and a hydraulic ECU 48 that controls the hydraulic pressure switching unit 21.
- the controller 20 may be integrated without being divided into the ECUs 46 to 47.
- the controller 20 includes a processor, a volatile memory, a nonvolatile memory, an I / O interface, and the like.
- the processor receives information from various sensors such as the engine speed sensor 24, the clutch sensor 25, the transmission sensor 26, and the drive wheel speed sensor 27 via the I / O interface, refers to the information, and is nonvolatile.
- the engine E, the electric motor M, and the hydraulic pressure switching unit 21 are controlled by performing arithmetic processing using a volatile memory in accordance with a program stored in the memory.
- the engine ECU 46 controls the output of the engine E.
- the electric throttle valve 42 for adjusting the intake amount to the engine E is controlled.
- the engine ECU 46 commands the electric throttle valve 42 for the target intake air amount, whereby the output of the engine E is adjusted.
- the output of the engine E is also adjusted by the engine ECU 46 controlling the ignition timing of the spark plug 43 and the fuel injection amount of the fuel injection device 44.
- the motor ECU 47 controls the operation of the electric motor M by receiving information such as the remaining amount and voltage of the battery 22 from the battery management unit 45 that manages the battery 22 and issuing a command to the inverter 23.
- FIG. 2 is a circuit diagram of the hydraulic pressure switching unit 21 and the like of the vehicle 1 shown in FIG.
- the vehicle 1 includes a manual clutch power transmission mechanism T1 that applies a driver's operating force to the clutch 14 as clutch power, and a control type that applies the power of the clutch actuator 41 to the clutch 14 as clutch power.
- the manual clutch power transmission mechanism T1 and the control clutch power transmission mechanism T2 are configured to be switchable with each other by a hydraulic pressure switching unit 21 controlled by the controller 20.
- the clutch operating element 4 includes an urging member 28 that urges the clutch operating element 4 from the operating position toward the non-operating position, and a holding mechanism that can hold the clutch operating element 4 while the clutch operating element 4 is in the operating position.
- a mechanism 29 is provided.
- the urging member 28 is, for example, a spring provided at a rotating portion of the clutch operator 4.
- the holding mechanism 29 can be operated between the locking position and the non-locking position.
- the clutch operating element 4 When the clutch operating element 4 reaches the non-locking position, the clutch operating element 4 held at the operating position is returned to the non-operating position by the urging member 28.
- the holding mechanism 29 may be a claw member that is engaged with the groove 4a of the clutch lever 4 in an operated state to be locked to the clutch lever 4. When the claw member is hooked on the clutch operator 4, the state in which the clutch lever 4 is operated is maintained.
- a master cylinder 16 that is mechanically interlocked with the movement of the clutch operator 4 is connected. Pressure is mechanically applied to the master cylinder 16 by an operating force that moves the clutch operating element 4 from the non-operating position to the operating position. The pressure applied to the master cylinder 16 is transmitted to the hydraulic pressure switching unit 21 via the first hydraulic pipe 30. The hydraulic pressure output from the hydraulic pressure switching unit 21 is applied to the slave cylinder 17 via the second hydraulic pipe 31. An accumulator 32 is connected to the hydraulic pressure switching unit 21.
- the hydraulic pressure switching unit 21 includes a first hydraulic path 33 and a second hydraulic path 34 connected in parallel to each other, and each of the first hydraulic path 33 and the second hydraulic path 34 connects the first hydraulic pipe 30 to the second hydraulic pipe. 31 is connected.
- a first on-off valve 35 is interposed in the first hydraulic path 33.
- a hydraulic pump P is interposed in the second hydraulic path 34. The hydraulic pump P is driven by a motor.
- a second on-off valve 36 is interposed in the second hydraulic path 34 on the upstream side of the hydraulic pump P.
- a third hydraulic path 40 is connected to the second hydraulic path 34 on the downstream side of the second on-off valve 36, and the third hydraulic path 40 is connected to the accumulator 32.
- a third on-off valve 37 is interposed between the connection point with the third hydraulic path 40 and the hydraulic pump P, and the second hydraulic path 34 is downstream of the connection point with the third hydraulic path 40.
- a four open / close valve 38 is interposed.
- the on-off valves 36 to 39, the hydraulic pump P and the accumulator 32 constitute a clutch actuator 41.
- a pressure reducing valve 39 is interposed in the third hydraulic path 40.
- the controller 20 determines the driver's starting operation such as an ignition operation
- the controller 20 drives the hydraulic pump P to increase the hydraulic pressure of the hydraulic path including the accumulator 32.
- the hydraulic pressure of the accumulator 32 reaches a predetermined value based on a detection value of a hydraulic sensor (not shown), the drive of the hydraulic pump P is stopped. It is good also as a structure which permits driving
- the controller 20 opens the first on-off valve 35 and closes the second on-off valve 36 and the fourth on-off valve 38 to directly transmit the hydraulic pressure from the master cylinder 16 to the slave cylinder 17. Switch to mechanism T1.
- the controller 20 accumulates pressure in the accumulator 32 by driving the hydraulic pump P with the second on-off valve 36 and the fourth on-off valve 38 closed and the third on-off valve 37 open.
- the controller 20 switches to the controlled clutch power transmission mechanism T2 by closing the first on-off valve 35 and opening the second on-off valve 36.
- the controller 20 transmits the hydraulic pressure accumulated in the accumulator 32 to the slave cylinder 17 by closing the third on-off valve 37 and opening the fourth on-off valve 38 while being switched to the controlled clutch power transmission mechanism T2. To disengage the clutch 14.
- the controller 20 closes the fourth on-off valve 38 when the clutch 14 is kept in the disconnected state while being switched to the control type clutch power transmission mechanism T2.
- the controller 20 opens the fourth on-off valve 38 and the pressure reducing valve 39, and the pressure applied to the slave cylinder 17 is increased. Reduce pressure. Note that when the on-off valves 35, 36, 39 are closed and the on-off valves 37, 38 are opened, pressure can be applied directly to the slave cylinder 17 from the hydraulic pump P.
- the controller 20 determines that the shifting operation is started from the output signal of the transmission sensor 26, the controller 20 controls the clutch-type clutch power transmission mechanism T2 to control the clutch even if the clutch operator 4 is not operated by the driver. 14 is disconnected, and if it is determined from the output signal of the transmission sensor 26 that the shift operation has been completed, it is possible to execute automatic clutch control for controlling the controlled clutch power transmission mechanism T2 to return the clutch 14 to the connected state.
- the controller 20 executes automatic clutch control when the automatic clutch control mode is selected by the user.
- the controller 20 determines that the shift operation is started from the output signal of the transmission sensor 26 and detects that the clutch 14 is in the connected state from the output signal of the clutch sensor 25, the controller 20 performs automatic clutch control. Execute.
- FIG. 3 is a table for explaining the states of the transmission 5, the clutch 14, the engine E, and the electric motor M in each mode of the vehicle 1 shown in FIG.
- the control mode of the vehicle 1 has an engine / motor travel mode, an engine travel mode, a power generation mode, and a motor travel mode. Each mode is selected by a program of the controller 20 or a user.
- the transmission 5 is in an engaged state (non-neutral state: 1st to 6th speed)
- the clutch 14 is in an engaged state (connected)
- the engine E is in a driving state
- the electric motor M is in a driving state. Power is transmitted from both the engine E and the electric motor M to the input shaft 6, and the power is transmitted to the drive wheels 2.
- the controller 20 determines that the engagement state of the transmission 5 is detected by the transmission sensor 26 and the engagement state of the clutch 14 is detected by the clutch sensor 25, and the engine E and the electric motor M is driven and travels with the power of both the engine E and the electric motor M.
- the transmission 5 In the engine running mode, the transmission 5 is in an engaged state, the clutch 14 is in an engaged state, the engine E is in a driving state, and the electric motor M is in a free-running state.
- the free-run state is a state in which the motor circuit is opened so that no resistance is generated due to generation of electromotive force even when power is transmitted to the electric motor M. That is, the controller 20 determines that the engagement state of the transmission 5 is detected by the transmission sensor 26 and the engagement state of the clutch 14 is detected by the clutch sensor 25, and the circuit of the electric motor M is determined. Is opened, the engine E is driven, and the vehicle runs with the power of the engine E alone.
- the transmission 5 is in a disengaged state (neutral state)
- the clutch 14 is in an engaged state
- the engine E is in a driving state
- the electric motor M is in a power generating state.
- the controller 20 causes the electric motor M to generate power with the power transmitted from the engine E via the input shaft 6 to charge the battery 22.
- the first power generation condition is a condition that the power generation mode is selected by the program of the controller 20 or by the user, and the disengagement state of the transmission 5 is detected by the transmission sensor 26.
- the controller 20 switches the hydraulic pressure switching unit 21 to the controlled clutch power transmission mechanism T2 to bring the clutch 14 into the engaged state (connected state) by the clutch actuator 41, and the engine E sends the input shaft 6 from the engine E.
- the electric motor M is caused to generate electric power with the motive power transmitted through the battery 22 to charge the battery 22.
- the power generation mode is selected by the program of the controller 20 or the user, the engagement state of the transmission 5 is detected by the transmission sensor 26, and the hydraulic switching unit 21 is operated by the manual clutch power transmission mechanism by the controller 20. It is a condition that the engagement state (connection state) of the clutch 14 is detected by the clutch sensor 25 when it is detected that it is at T1 and the clutch operator 4 is held at the operation position.
- the controller 20 causes the electric motor M to generate power with the power transmitted from the engine E via the input shaft 6 and charges the battery 22.
- the transmission 5 In the motor running mode, the transmission 5 is engaged, the clutch 14 is disengaged (disconnected), the engine E is stopped, and the electric motor M is driven.
- the controller 20 selects the motor travel mode by the program of the controller 20 or the user, detects the engaged state of the transmission 5 by the transmission sensor 26, and detects the clutch 14 by the clutch sensor 25.
- the engaged state When the engaged state is detected, the electric motor M is driven to run with the power of the electric motor M alone.
- the disengaged state of the clutch 14 may be realized by the hydraulic pressure of the clutch actuator 41 by switching the hydraulic pressure switching unit 21 to the control type clutch power transmission mechanism T2 by the controller 20, or the hydraulic pressure switching unit 21 may transmit the manual clutch power transmission. This may be realized by holding the clutch operator 4 in the operation position in a state where it is detected that the mechanism T1 is present.
- the inertia force of the drive wheels 2 is input to the electric motor M through the transmission 5 when the vehicle 1 is decelerated.
- the electric motor M is regenerated to charge the battery 22.
- the controller 20 calculates the rotational speed difference between the input side rotating body of the clutch 14 and the output side rotating body of the clutch 14.
- the rotational speed of the input side rotating body of the clutch 14 is obtained by multiplying the rotational speed detected by the engine rotational speed sensor 24 by the reduction ratio of the first power transmission mechanism 13.
- the rotational speed of the output side rotating body of the clutch 14 is obtained by dividing the drive wheel rotational speed sensor 27 by the reduction ratio of the second power transmission mechanism 19 and the transmission 5. That is, the rotational speed difference between the input side rotating body and the output side rotating body in the clutch 14 is calculated from the output signals of the engine speed sensor 24 and the drive wheel speed sensor 27.
- the controller 20 controls the electric motor M so as to suppress the occurrence of a rotational speed difference between the input side rotating body and the output side rotating body in the clutch 14. For example, when the rotation speed difference increases due to the rotation speed of the crankshaft 12 being larger than the rotation speed of the input shaft 6, the electric motor M is driven to increase the rotation speed of the input shaft 6. On the other hand, when the rotational speed difference increases because the rotational speed of the crankshaft 12 is smaller than the rotational speed of the input shaft 6, the electric motor M is regenerated so as to decrease the rotational speed of the input shaft 6.
- the clutch actuator 41 waits for the connection operation of the clutch 14 until the clutch actuator 41 becomes less than the predetermined value (ie, keeps the disconnected state), and when the rotational speed difference becomes less than the predetermined value, the clutch actuator 41 returns the clutch 14 to the connected state.
- the transmission 5 can perform a speed change operation by the driver's operating force, it is easy to maintain the speed change operation desired by the driver. Further, the power transmission state can be switched by the clutch operation by the clutch actuator 41 without depending on the operation force of the driver. Therefore, the convenience of switching the power transmission state can be enhanced while maintaining the accuracy and responsiveness of the speed change operation with respect to the driver request. That is, the controller 20 can determine the timing for giving the output to the input shaft 6 by the engine E. When the output from the electric motor M is insufficient (for example, when the remaining amount of the battery 22 is low), the controller 20 can switch to engine running regardless of the driver's operation.
- the clutch 14 for smoothly performing the speed change operation also serves as a power transmission path switching device, it is possible to prevent the structure from being enlarged as compared with the case where they are provided separately. This is particularly beneficial for motorcycles that require less equipment space.
- controller 20 can switch between motor traveling and engine traveling by controlling the hydraulic pressure switching unit 21 and switching the power transmission path by the clutch 14. Thereby, the controller 20 can switch the running state based on the detected value and the calculated value such as the vehicle state.
- the clutch 14 can be operated by the driver's operation force even in a situation not included in the control logic.
- the clutch actuator 41 includes the hydraulic pump P, the operation responsiveness of the clutch 14 is enhanced as compared with the power transmission by the wire. Further, the clutch actuator 41 can assist the clutch operation by a shift operation by applying the clutch power to the clutch 14 according to the shift operation of the manual shift power transmission mechanism 9.
- the clutch 14 when the clutch 14 is in the disconnected state, the clutch 14 is returned to the connected state by the clutch actuator 41 after the rotational speed difference between the input side rotating body and the output side rotating body in the clutch 14 becomes less than a predetermined value.
- the operation timing of the clutch 14 can be set according to the rotational speed difference, and the operation timing of the clutch 14 can be easily maintained appropriately.
- the shock of clutch connection at the time of shifting can be reduced and smooth. Easy to perform shifting operation.
- the configuration of the hydraulic pressure switching unit 21 is not limited to that described above.
- the first hydraulic path 133 that connects the master cylinder 16 and the slave cylinder 17, the hydraulic pump P and the slave cylinder 17, Are connected in parallel with each other.
- the first hydraulic path 133 is provided with a first on-off valve 135, and the second hydraulic path 134 is provided with a second on-off valve 136, which are controlled by a controller.
- the accumulator 32 is connected to the second hydraulic path 134.
- the hydraulic pump P and the first hydraulic path 133 are connected by a third hydraulic path 137, and a one-way valve 138 that blocks the flow from the master cylinder 16 to the hydraulic pump P is interposed in the third hydraulic path 137. Yes.
- the on-off valves 135 and 136, the hydraulic pump P, and the accumulator 32 constitute a clutch actuator 141.
- the manual clutch power transmission mechanism for permitting the clutch operation by the driver opens the first on-off valve 135 and closes the second on-off valve 136, and the hydraulic pressure from the master cylinder 16 This is realized by applying to the slave cylinder 17.
- the control type clutch power transmission mechanism for performing the clutch operation by the controller 20 closes the first on-off valve 135 and opens the second on-off valve 136, the hydraulic pump P and the accumulator 32. This is realized by applying the hydraulic pressure from the slave cylinder 17 to the slave cylinder 17.
- FIG. 5 is a block diagram of the vehicle 101 according to the second embodiment.
- FIG. 6 is a table for explaining the states of the transmission 5, the clutch 14, the engine E, and the electric motor M in each mode of the vehicle 1 shown in FIG.
- the electric motor M is connected to the first power transmission mechanism 13 between the engine E and the clutch 14. That is, the power of the electric motor M is transmitted to the input side rotating body of the clutch 14 even when the clutch 14 is disconnected.
- the controller 120 control mode of the vehicle 101 has an engine / motor travel mode, an engine travel mode, and a power generation mode.
- the engine / motor travel mode and the engine travel mode are the same as in the first embodiment, and thus detailed description thereof is omitted.
- the electric power is transmitted from the engine E through the first power transmission mechanism 13 to the electric motor M to charge the battery 22.
- at least one of the transmission 5 and the clutch 14 is in a disengaged state. That is, when the transmission 5 is in the engaged state, the clutch 14 may be in either the engaged state or the disengaged state, and when the clutch 14 is in the engaged state, the transmission 5 may be in the engaged state or the disengaged state. Since other configurations are the same as those of the first embodiment described above, description thereof is omitted.
- FIG. 7 is a block diagram of a vehicle 201 according to the third embodiment.
- a vehicle 201 is an engine vehicle that uses an engine E without using an electric motor as a travel drive source.
- a shift actuator 250 (for example, an electric motor) is connected to the shift drum 10 of the transmission 5.
- a clutch actuator 221 capable of disconnecting and connecting the clutch 14 is connected to the clutch 14 disposed between the engine E and the transmission 5.
- the clutch actuator 221 may be a hydraulic actuator or an electromagnetic actuator similarly to the control type clutch power transmission mechanism of the first embodiment.
- a shift ECU 248 is connected to the clutch actuator 221 and the shift actuator 250.
- a clutch operation sensor 49, a shift input device 251, and a shift mode input device 252 are connected to the shift ECU 248.
- the shift input device 251 and the shift mode input device 252 are operated by a driver with a finger (for example, a button or the like).
- the shift input device 251 is used when the driver shifts with his / her finger without operating the shift lever with his / her foot.
- the shift mode input unit 252 is used when the driver switches between the semi-AT mode and the MT mode. There may be a normal AT mode instead of a semi-AT.
- the transmission ECU 248 instructs the clutch actuator 221 to operate the clutch 14 Is disconnected. That is, the driver's operation input to the clutch operator 4 is converted into an electric signal by the clutch operation sensor 49, and the clutch 14 is electronically controlled.
- the clutch actuator 221 is electronically controlled.
- a configuration using the hydraulic pressure switching unit 21 that operates the clutch 14 by the hydraulic pressure generated by the operating force of the clutch operating element 4 is used. Also good.
- the shift ECU 248 instructs the clutch actuator 221 to disengage the clutch 14 as in the first embodiment. That is, the clutch actuator 221 can perform an operation for performing a clutch operation in accordance with a driver's operation instruction and an operation for performing a clutch operation without depending on the driver's clutch operation instruction. Note that there is no need for a mechanism (clutch operating power transmission structure) that allows the driver to perform a clutch operation.
- the shift ECU 248 instructs the clutch actuator 221 to disengage the clutch 14.
- the transmission actuator 250 is commanded to rotationally drive the shift drum 10 to shift the transmission 5.
- the speed change power for rotating the shift drum 10 of the transmission 5 may be given by the driver's force, or may be given by the force of the controlled actuator.
- the clutch actuator 221 may be configured to be controlled based on detection values of various sensors such as an operation amount of an accelerator operation by a driver, a throttle valve position, a vehicle speed, an engine speed, and a shift position sensor.
- the present invention is not limited to the above-described embodiments, and the configuration can be changed, added, or deleted.
- a manual transmission power transmission mechanism 9 that applies the driver's operation force to the transmission 5 as transmission power and a control transmission power transmission mechanism that applies the power of the transmission actuator to the transmission 5 as transmission power may be provided. Good.
- the transmission 5 is brought into an engaged state by the controlled transmission power transmission mechanism and the controlled clutch power transmission is performed.
- the clutch 14 may be brought into an engaged state by a mechanism, and the battery 22 may be charged by generating electric power with the electric motor M using power transmitted from the engine E or the driving wheel 2 to the electric motor M via the input shaft 6.
- the transmission sensor 26 may be a sensor that detects the movement (shift operation command) of the shift operator.
- the clutch sensor 25 may be a sensor that detects the movement (clutch operation command) of the clutch operator 4.
- the clutch actuator 41 may be configured to apply pressure directly to the slave cylinder 17 with the power of the hydraulic pump P without using the accumulator 32.
- the hydraulic pump P is not limited to electric drive, and may be driven using the power of the engine E or the electric motor M.
- a hydraulic pressure generating source instead of the hydraulic pump P, a hydraulic pressure generating source may be used by reciprocating a piston using a rotating body rotating by engine power as a cam.
- the engine E may be arranged so that the cylinder head of the engine E is directed forward and upward, and the hydraulic pump P may be driven by taking out power from a valve mechanism arranged in the cylinder head.
- the engine E may have an exhaust port disposed on the front side of the vehicle with respect to the intake port, and space efficiency may be improved by extracting power from a cam or cam shaft that drives the exhaust valve.
- the hydraulic pump P may also be used as an ABS hydraulic pump.
- a hydraulic pressure generation source instead of the hydraulic pump P, a source that generates hydraulic pressure by rotating blades provided on a rotating body driven by engine driving may be used.
- a hydraulic pump may be realized by the same structure as the coolant circulation pump or the lubricant circulation pump in the engine E.
- the vehicle may not be a hybrid vehicle, and may use either an engine or a motor as a travel drive source.
- the control type clutch power transmission mechanism T2 may be used as a clutch operation support device that supports operation of a clutch interposed between the travel drive source and the transmission. Specifically, when the operation of the clutch operator by the driver is detected, the pressure from the hydraulic source is transmitted to the hydraulic path according to the clutch operation, which is larger than the force applied to the clutch operation by the driver. The clutch can be operated with force. Further, the clutch operation timing can be set by the controller.
- the clutch may be switched to the engaged state after the controller determines that the shift operation is completed. Further, the clutch may be switched to the disengaged state when the controller determines a shift operation by the driver. As a result, the clutch operation by the driver can be reduced, and the other operations can be easily concentrated.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
車両は、走行動力源からの動力が入力される入力軸及び駆動輪に動力を出力する出力軸を有する変速機と、運転者の操作力を変速動力として前記変速機に付与する手動式変速動力伝達機構と、前記走行動力源と前記入力軸との間に介設するクラッチと、クラッチアクチュエータの動力をクラッチ動力として前記クラッチに付与する制御式クラッチ動力伝達機構と、を備える。
Description
本発明は、変速機及びクラッチを備えた車両に関する。
特許文献1には、変速操作の簡略化を目的とした変速機構造が開示されている。
しかし、状況によっては、運転者の望む変速比とは異なったり、変速動作の応答が遅れたりする場合がある。
そこで本発明は、運転者要求に対する変速動作の正確性や応答性を良好に保ちながら、動力伝達状態の切替の利便性を高めることを目的とする。
本発明の一態様に係る車両は、走行動力源からの動力が入力される入力軸及び駆動輪に動力を出力する出力軸を有する変速機と、運転者の操作力を変速動力として前記変速機に付与する手動式変速動力伝達機構と、前記走行動力源と前記入力軸との間に介設するクラッチと、クラッチアクチュエータの動力をクラッチ動力として前記クラッチに付与する制御式クラッチ動力伝達機構と、を備える。
前記構成によれば、変速機は運転者の操作力により変速動作可能であるので、運転者の望む変速操作を保ちやすい。また、運転者の操作力に依らずに、クラッチアクチュエータによるクラッチ動作により動力伝達状態を切り替えることができる。よって、運転者要求に対する変速動作の正確性や応答性を良好に保ちながら、動力伝達状態の切替の利便性を高めることができる。
運転者の操作力をクラッチ動力として前記クラッチに付与する手動式クラッチ動力伝達機構を更に備えてもよい。
前記構成によれば、制御ロジックに含まれない状況でも運転者の操作力によりクラッチを動作させることができる。
前記クラッチアクチュエータは、油圧ポンプを含んでもよい。
前記構成によれば、ワイヤによる動力伝達に比べて、クラッチの動作応答性が高まる。
前記クラッチアクチュエータは、前記手動式変速動力伝達機構の変速動作に応じて前記クラッチにクラッチ動力を付与してもよい。
前記構成によれば、変速操作によりクラッチ操作の支援を行うことができる。
走行動力源の回転に連動して回転する入力側回転体の回転数と、駆動輪の回転に連動して回転する出力側回転体の回転数との差を検出するセンサと、前記センサの出力に基づいて前記クラッチアクチュエータを制御し、前記制御式クラッチ動力伝達機構を介して前記クラッチを動作させる制御器と、を更に備えてもよい。
前記構成によれば、回転数差に応じてクラッチの動作タイミングを設定でき、クラッチの動作タイミングを適切に保ちやすい。
走行動力源の回転に連動して回転する入力側回転体の回転数と、駆動輪の回転に連動して回転する出力側回転体の回転数との差を検出するセンサと、前記センサの出力に基づいて、前記入力側回転体と前記出力側回転体との間の回転数差の発生を抑制するように前記走行動力源を制御する制御器と、を更に備えてもよい。
前記構成によれば、クラッチ接続のショックが低減され、円滑な変速操作を行いやすい。
本発明によれば、運転者要求に対する変速動作の正確性や応答性を良好に保ちながら、動力伝達状態の切替の利便性を高められる。
以下、図面を参照して実施形態を説明する。
(第1実施形態)
図1は、実施形態に係る車両1のブロック図である。図1に示すように、車両1は、例えば自動二輪車である。車両1には、図示しない従動輪(前輪)と駆動輪2(後輪)とが設けられている。車両1のハンドルのグリップ3(図2参照)には、クラッチ操作子4(例えば、クラッチレバー)が設けられている。ハンドル又はメータ表示装置の付近に、運転者が後述のモードを選択するためのスイッチが設けられている。
図1は、実施形態に係る車両1のブロック図である。図1に示すように、車両1は、例えば自動二輪車である。車両1には、図示しない従動輪(前輪)と駆動輪2(後輪)とが設けられている。車両1のハンドルのグリップ3(図2参照)には、クラッチ操作子4(例えば、クラッチレバー)が設けられている。ハンドル又はメータ表示装置の付近に、運転者が後述のモードを選択するためのスイッチが設けられている。
車両1には、走行用駆動源及び発電用駆動源としてのエンジンE(内燃機関)と、走行用駆動源及び発電機としての電動モータMとが設けられている。エンジンE及び電動モータMは、前輪である従動輪と後輪である駆動輪3との間に配置されている。エンジンEのシリンダは、上下方向に延びており、電動モータMは、エンジンEのシリンダの後側に配置されている。
車両1には、エンジンE及び/又は電動モータMからの動力を変速して駆動輪2に伝達する変速機5が設けられている。変速機5は、エンジンEのシリンダの下側に設けられたクランクケースに収容され、電動モータMは当該クランクケースの上方に配置されている。変速機5は、入力軸6及び出力軸7が設けられている。入力軸6には、エンジンE及び電動モータMから動力が入力される。出力軸7は、出力伝達機構11(例えば、チェーン又はベルト)を介して駆動輪2に動力を伝達する。入力軸6は、減速比の異なる複数組のギヤ列8を介して出力軸7に動力伝達可能に結合されている。ギヤ列8の入力側歯車は、入力軸6に固定されている。ギヤ列8の出力側歯車は、出力軸7と同軸に設けられ、出力軸7に対して回転自在に嵌合する。入力側歯車と出力側歯車とは、常時かみ合いしている。
変速機5には、運転者の手動操作に機械的に連動して複数組のギヤ列8から1組を選択して動力伝達経路を切り換えて変速を行う手動式変速動力伝達機構9が設けられている。手動式変速動力伝達機構9は、ニュートラル段及び複数の変速段(例えば、1~6速)から選ばれる1つの動力伝達経路を選択する。手動式変速動力伝達機構9は、出力軸7にスライド自在に設けられて複数組のギヤ列8から1組を選択して係合するドッグリング15と、当該ドッグリング15の係合/非係合を操作するシフトフォーク18と、シフトフォーク18を出力軸7に沿って移動させるシフトドラム10とを備える。
運転者によるシフト操作子(図示せず)の操作に連動してシフトドラム10が回転すると、所望のシフトフォーク18がドッグリング15を出力軸7に沿ってスライドし、ギヤ列8のうち運転者が望む減速比の1組とドッグリング15が係合し、所望の変速段の動力伝達経路が選択される。シフト操作子は、例えば、運転者の足で操作されるシフトペダル、又は、運転者の手で操作されるシフトレバーである。
変速機5は、運転者による動力が与えられていない自然状態において入力軸6から出力軸7への動力が非伝達となるドッグリング15の位置に、シフトドラム10が停止維持されるニュートラル段が設定される。運転者は、各変速段のほかに、ニュートラル段にシフトドラム10を回動させることで、自然状態での動力非伝達状態を変速機5で実現できる。
エンジンEのクランク軸12は、第1動力伝達機構13(例えば、ギヤ)及びクラッチ14(例えば、多板クラッチ)を介して変速機5の入力軸6に動力伝達可能に接続されている。即ち、クラッチ14は、エンジンEと入力軸6との間の第1動力伝達経路R1に介在している。クラッチ操作子4は、例えば、運転者の手又は足で操作されるクラッチレバー又はクラッチペダルである。クラッチ操作子4が操作位置まで操作されると、運転者による操作力がマスターシリンダ16からスレーブシリンダ17に伝達され、スレーブシリンダ17から入力軸6内を挿通するロッドを介してクラッチ14にクラッチ動力として付与されてクラッチ14が切断状態になる。クラッチ操作子4が非操作位置にあるときは、クラッチ14にクラッチ動力が付与されないか、或いは、後述する油圧切替ユニット21の制御によりクラッチ動力がクラッチ14に付与されてクラッチ14が接続状態になる。ハンドルには、クラッチ操作子4が操作状態か非操作状態かを検知するクラッチ操作センサ49が設けられている。
電動モータMは、第2動力伝達機構19(例えば、ギヤ)を介して変速機5の入力軸6に接続されている。即ち、電動モータMは、第1動力伝達経路13とは異なる第2動力伝達経路R2で入力軸6に接続されている。第2動力伝達経路R2は、電動モータMと入力軸6との間の接続状態を常時動力伝達状態に保つ。電動モータMは、バッテリ22からインバータ23を介して供給される電力で動力を発生し、また、変速機5の入力軸6から伝達される動力で発電してバッテリ22を充電可能である。
エンジンEのクランク軸12には、その回転数を検出可能なエンジン回転数センサ24(例えば、クランク角センサ)が設けられている。クラッチ14には、クラッチ14が切断状態であるか接続状態であるかを検出可能なクラッチセンサ25(例えば、ストロークセンサ)が設けられている。変速機5には、手動式変速動力伝達機構9の変速位置(ニュートラル及び複数の変速段(例えば、1~6速)から選ばれる1つの位置)を検出することで、運転者による変速機5の動作指示を検出可能な変速機センサ26が設けられている。例えば、変速機センサ26は、シフトドラム10の回転角度を検出可能なポテンショメータ又はギヤポジションセンサである。駆動輪2には、その回転数を検出する駆動輪回転数センサ27が設けられている。
車両1には、制御器20が設けられている。制御器20は、エンジン回転数センサ24、クラッチセンサ25、変速機センサ26、駆動輪回転数センサ27及びクラッチ操作センサ49の出力信号を受信する。制御器20は、エンジンE、電動モータM及び油圧切替ユニット21を制御する。制御器20は、エンジンEを制御するエンジンECU46と、電動モータMを制御するモータECU47と、油圧切替ユニット21を制御する油圧ECU48とを備える。なお、制御器20は、ECU46~47に分かれたものとせずに一体としてもよい。
制御器20は、プロセッサ、揮発性メモリ、不揮発性メモリ及びI/Oインターフェース等を有する。プロセッサは、エンジン回転数センサ24、クラッチセンサ25、変速機センサ26及び駆動輪回転数センサ27等の各種センサからの情報をI/Oインターフェースを介して受信して当該情報を参照し、不揮発性メモリに保存されたプログラムに従って揮発性メモリを用いて演算処理することで、エンジンE、電動モータM及び油圧切替ユニット21を制御する。
エンジンECU46は、エンジンEの出力を制御する。例えば、エンジンEへの吸気量を調整するための電動スロットルバルブ42を制御する。エンジンECU46が電動スロットルバルブ42に目標吸気量を指令することで、エンジンEの出力が調整される。そのほか、エンジンECU46が、点火プラグ43の点火時期や燃料噴射装置44の燃料噴射量を制御することでも、エンジンEの出力が調整される。
モータECU47は、バッテリ22を管理するバッテリ管理ユニット45からバッテリ22の残量や電圧等の情報を受信し、インバータ23に指令を出すことで電動モータMの動作を制御する。
図2は、図1に示す車両1の油圧切替ユニット21等の回路図である。図2に示すように、車両1は、運転者の操作力をクラッチ動力としてクラッチ14に付与する手動式クラッチ動力伝達機構T1と、クラッチアクチュエータ41の動力をクラッチ動力としてクラッチ14に付与する制御式クラッチ動力伝達機構T2とを有する。手動式クラッチ動力伝達機構T1と制御式クラッチ動力伝達機構T2とは、制御器20が制御する油圧切替ユニット21により互いに切替可能に構成されている。
クラッチ操作子4には、クラッチ操作子4を操作位置から非操作位置に向けて付勢する付勢部材28と、クラッチ操作子4が操作位置にある状態でクラッチ操作子4を保持可能な保持機構29とが設けられている。付勢部材28は、例えば、クラッチ操作子4の回動部分に設けられたバネである。保持機構29は、係止位置と非係止位置との間で動作可能であり、クラッチ操作子4が操作位置にあるときに係止位置になると、運転者がクラッチ操作子4を操作しなくてもクラッチ操作子4を係止して付勢部材28に抗してクラッチ操作子4を操作位置に保持する。クラッチ操作子4が非係止位置になると、操作位置に保持されていたクラッチ操作子4が付勢部材28により非操作位置に戻される。例えば、クラッチ操作子4がクラッチレバーである場合、保持機構29は、操作状態のクラッチレバー4の溝4aに嵌合することでクラッチレバー4に係止される爪部材であってもよい。当該爪部材がクラッチ操作子4に引っ掛かると、クラッチレバー4が操作された状態が維持される。
クラッチ操作子4の近傍には、クラッチ操作子4の動きに機械的に連動するマスターシリンダ16が接続されている。マスターシリンダ16には、クラッチ操作子4が非操作位置から操作位置に動かす操作力により機械的に圧力が付与される。マスターシリンダ16に付与された圧力は、第1油圧パイプ30を介して油圧切替ユニット21に伝達される。油圧切替ユニット21から出力される油圧は、第2油圧パイプ31を介してスレーブシリンダ17に付与される。油圧切替ユニット21には、アキュムレータ32が接続されている。
油圧切替ユニット21は、互いに並列接続された第1油圧路33及び第2油圧路34を有し、第1油圧路33及び第2油圧路34の各々は第1油圧パイプ30を第2油圧パイプ31に接続している。第1油圧路33には、第1開閉弁35が介設されている。第2油圧路34には油圧ポンプPが介設されている。油圧ポンプPは、モータで駆動される。第2油圧路34には、油圧ポンプPの上流側に第2開閉弁36が介設されている。第2油圧路34には、第2開閉弁36の下流側で第3油圧路40が接続され、第3油圧路40はアキュムレータ32に接続されている。第2油圧路34には、第3油圧路40との接続箇所と油圧ポンプPとの間にて第3開閉弁37が介設され、第3油圧路40との接続箇所の下流側に第4開閉弁38が介設されている。各開閉弁36~39、油圧ポンプP及びアキュムレータ32によりクラッチアクチュエータ41が構成されている。第3油圧路40には、減圧弁39が介設されている。
制御器20は、イグニッション操作などの運転者の始動操作を判断すると油圧ポンプPを駆動させて、アキュムレータ32を含む油圧路の油圧を上昇させる。油圧センサ(図示せず)の検出値に基づいてアキュムレータ32の油圧が所定値に達すると、油圧ポンプPの駆動を停止させる。油圧が所定値に達することで、動作可能状態として走行開始を許可する構成としてもよい。
制御器20は、第1開閉弁35を開き且つ第2開閉弁36及び第4開閉弁38を閉じることで、マスターシリンダ16からの油圧をスレーブシリンダ17に直接的に伝達させる手動式クラッチ動力伝達機構T1に切り替える。制御器20は、第2開閉弁36を及び第4開閉弁38を閉じ且つ第3開閉弁37を開いた状態で油圧ポンプPを駆動することで、アキュムレータ32に蓄圧する。制御器20は、第1開閉弁35を閉じ且つ第2開閉弁36を開くことで、制御式クラッチ動力伝達機構T2に切り替える。
制御器20は、制御式クラッチ動力伝達機構T2に切り替えられた状態で、第3開閉弁37を閉じ且つ第4開閉弁38を開くことで、アキュムレータ32に蓄積された油圧をスレーブシリンダ17に伝達させてクラッチ14を切断する。制御式クラッチ動力伝達機構T2に切り替えられた状態でクラッチ14を切断状態に保つ際には、制御器20は、第4開閉弁38を閉じる。制御式クラッチ動力伝達機構T2に切り替えられた状態でクラッチ14を接続状態にする際には、制御器20は、第4開閉弁38及び減圧弁39を開き、スレーブシリンダ17に付与される圧力を減圧する。なお、開閉弁35,36,39を閉じ且つ開閉弁37,38を開くと、油圧ポンプPから直接的にスレーブシリンダ17に圧力を付与できる。
制御器20は、変速機センサ26の出力信号から変速操作が開始されると判定すると、運転者によりクラッチ操作子4が操作されていなくても、制御式クラッチ動力伝達機構T2を制御してクラッチ14を切断状態にし、変速機センサ26の出力信号から変速操作が完了したと判定すると、制御式クラッチ動力伝達機構T2を制御してクラッチ14を接続状態に戻す自動クラッチ制御を実行可能である。例えば、制御器20は、ユーザにより自動クラッチ制御モードが選択されているとき、自動クラッチ制御を実行する。また、制御器20は、変速機センサ26の出力信号から変速操作が開始されると判定したときにクラッチセンサ25の出力信号からクラッチ14が接続状態であると検出されると、自動クラッチ制御を実行する。
図3は、図1に示す車両1の各モードでの変速機5、クラッチ14、エンジンE及び電動モータMの状態を説明する表である。図3に示すように、車両1の制御モードは、エンジン・モータ走行モード、エンジン走行モード、発電モード及びモータ走行モードを有する。各モードは、制御器20のプログラム又はユーザにより選択される。エンジン・モータ走行モードでは、変速機5はエンゲージ状態(非ニュートラル状態:1~6速)、クラッチ14はエンゲージ状態(接続)、エンジンEは駆動状態、電動モータMは駆動状態である。入力軸6には、エンジンE及び電動モータMの両方から動力が伝達され、その動力が駆動輪2に伝達される。即ち、制御器20は、変速機センサ26により変速機5のエンゲージ状態が検出され、且つ、クラッチセンサ25によりクラッチ14のエンゲージ状態が検出された状態であることを判断し、エンジンE及び電動モータMを駆動し、エンジンE及び電動モータMの両方の動力で走行する。
エンジン走行モードでは、変速機5はエンゲージ状態、クラッチ14はエンゲージ状態、エンジンEは駆動状態、電動モータMはフリーラン状態である。なお、フリーラン状態とは、電動モータMに動力が伝達されても起電力発生による抵抗を生じないようにモータ回路をオープンにした状態のことである。即ち、制御器20は、変速機センサ26により変速機5のエンゲージ状態が検出され、且つ、クラッチセンサ25によりクラッチ14のエンゲージ状態が検出された状態であることを判断し、電動モータMの回路をオープンにし、エンジンEを駆動してエンジンEのみの動力で走行する。
発電モードでは、変速機5はディスエンゲージ状態(ニュートラル状態)、クラッチ14はエンゲージ状態、エンジンEは駆動状態、電動モータMは発電状態である。制御器20は、第1発電条件又は第2発電条件が成立すると、エンジンEから入力軸6を介して伝達される動力で電動モータMに発電させてバッテリ22を充電する。
第1発電条件は、制御器20のプログラム又はユーザにより発電モードが選択され、且つ、変速機センサ26により変速機5のディスエンゲージ状態が検出されたとの条件である。制御器20は、第1発電条件が成立すると、油圧切替ユニット21を制御式クラッチ動力伝達機構T2に切り替えてクラッチアクチュエータ41によりクラッチ14をエンゲージ状態(接続状態)にし、エンジンEから入力軸6を介して伝達される動力で電動モータMに発電させてバッテリ22を充電する。
第2発電条件は、制御器20のプログラム又はユーザにより発電モードが選択され、変速機センサ26により変速機5のエンゲージ状態が検出され、制御器20により油圧切替ユニット21が手動式クラッチ動力伝達機構T1にあることが検出され、且つ、クラッチ操作子4が操作位置に保持されることでクラッチセンサ25によりクラッチ14のエンゲージ状態(接続状態)が検出されたとの条件である。制御器20は、第2発電条件が成立すると、エンジンEから入力軸6を介して伝達される動力で電動モータMに発電させてバッテリ22を充電する。
モータ走行モードでは、変速機5はエンゲージ状態、クラッチ14はディスエンゲージ状態(切断)、エンジンEは停止状態、電動モータMは駆動状態である。具体的には、制御器20は、制御器20のプログラム又はユーザによりモータ走行モードが選択され、変速機センサ26により変速機5のエンゲージ状態が検出され、且つ、クラッチセンサ25によりクラッチ14のディスエンゲージ状態が検出されると、電動モータMを駆動して電動モータMのみの動力で走行する。クラッチ14のディスエンゲージ状態は、制御器20により油圧切替ユニット21を制御式クラッチ動力伝達機構T2に切り替えてクラッチアクチュエータ41の油圧により実現されてもよいし、油圧切替ユニット21が手動式クラッチ動力伝達機構T1にあることが検出された状態でクラッチ操作子4が操作位置に保持されることにより実現されてもよい。
なお、エンジン・モータ走行モード、エンジン走行モード及びモータ走行モードでは、車両1の減速時に、駆動輪2の慣性力が変速機5を介して電動モータMに入力されるため、制御器20は、電動モータMに回生させてバッテリ22を充電する。
エンジン・モータ走行モード及びエンジン走行モードでは、制御器20は、クラッチ14の入力側回転体とクラッチ14の出力側回転体との間の回転数差を算出する。クラッチ14の入力側回転体の回転数は、エンジン回転数センサ24で検出される回転数に第1動力伝達機構13の減速比を乗じて得られる。クラッチ14の出力側回転体の回転数は、駆動輪回転数センサ27に第2動力伝達機構19及び変速機5の減速比を除して得られる。即ち、クラッチ14における入力側回転体及び出力側回転体の回転数差は、エンジン回転数センサ24及び駆動輪回転数センサ27の出力信号から算出される。
制御器20は、クラッチ14における入力側回転体及び出力側回転体の回転数差の発生を抑制するように電動モータMを制御する。例えば、入力軸6の回転数に対してクランク軸12の回転数が大きいことで回転数差が増加する場合には、電動モータMは入力軸6の回転数を増加させるように駆動される。他方、入力軸6の回転数に対してクランク軸12の回転数が小さいことで回転数差が増加する場合には、電動モータMは入力軸6の回転数を減少させるように回生される。
また、制御器20は、油圧切替ユニット21により制御式クラッチ動力伝達機構T2に切り替えられた状態でクラッチ14が切断されると、クラッチ14における入力側回転体及び出力側回転体の回転数差が所定値未満になるまでクラッチアクチュエータ41によるクラッチ14の接続動作を待機させ(即ち、切断状態をキープ)、当該回転数差が所定値未満になるとクラッチアクチュエータ41によりクラッチ14を接続状態に戻す。
以上に説明した構成によれば、変速機5は運転者の操作力により変速動作可能であるので、運転者の望む変速操作を保ちやすい。また、運転者の操作力に依らずに、クラッチアクチュエータ41によるクラッチ動作により動力伝達状態を切り替えることができる。よって、運転者要求に対する変速動作の正確性や応答性を良好に保ちながら、動力伝達状態の切替の利便性を高めることができる。即ち、制御器20によってエンジンEによる入力軸6への出力付与タイミングを決定することができる。電動モータMによる出力が足りない場合(バッテリ22の残量が少ない場合等)、運転者の操作によらず、制御器20によるエンジン走行への切り替えを可能とすることができる。
また、変速操作を円滑に行うためのクラッチ14が動力伝達経路の切替え装置を兼ねるため、それらを別々に設ける場合に比べて、構造の大型化を防ぐことができる。このことは、装備品の搭載スペースが少ない自動二輪車に特に有益である。
また、制御器20が、油圧切替ユニット21を制御してクラッチ14により動力伝達経路を切り替えることで、モータ走行とエンジン走行とを切り替えることができる。これによって、制御器20は、車両状態などの検出値及び演算値に基づいて、走行状態を切り替えることができる。
また、制御式クラッチ動力伝達機構T2だけでなく手動式クラッチ動力伝達機構T1も設けられているため、制御ロジックに含まれない状況でも運転者の操作力によりクラッチ14を動作させることができる。
また、クラッチアクチュエータ41は油圧ポンプPを含むので、ワイヤによる動力伝達に比べてクラッチ14の動作応答性が高まる。また、クラッチアクチュエータ41は、手動式変速動力伝達機構9の変速動作に応じてクラッチ14にクラッチ動力を付与することで、変速操作によりクラッチ操作の支援を行うことができる。
また、クラッチ14が切断状態にあるときに、クラッチ14における入力側回転体と出力側回転体との間の回転数差が所定値未満になってからクラッチアクチュエータ41によりクラッチ14を接続状態に戻すことで、回転数差に応じてクラッチ14の動作タイミングを設定でき、クラッチ14の動作タイミングを適切に保ちやすい。また、クラッチ14における入力側回転体と出力側回転体との間の回転数差の発生を抑制するように電動モータMを制御することで、変速時のクラッチ接続のショックが低減され、円滑な変速操作を行いやすい。
なお、油圧切替ユニット21の構成は前述したものに限られない。例えば、図4(A)(B)に示すように、変形例の油圧切替ユニット121では、マスターシリンダ16とスレーブシリンダ17とを接続する第1油圧路133と、油圧ポンプPとスレーブシリンダ17とを接続する第2油圧路134とが互いに並列接続されている。第1油圧路133には、第1開閉弁135が介設され、第2油圧路134には第2開閉弁136が介設され、それらが制御器により制御される。第2油圧路134にはアキュムレータ32が接続されている。油圧ポンプPと第1油圧路133とは第3油圧路137により接続され、第3油圧路137には、マスターシリンダ16から油圧ポンプPへの流れを阻止する一方向弁138が介設されている。開閉弁135,136、油圧ポンプP及びアキュムレータ32によりクラッチアクチュエータ141が構成されている。
図4(A)に示すように、運転者によるクラッチ操作を許容するための手動式クラッチ動力伝達機構は、第1開閉弁135を開き且つ第2開閉弁136を閉じ、マスターシリンダ16からの油圧をスレーブシリンダ17に付与することで実現される。図4(B)に示すように、制御器20によるクラッチ動作を行うための制御式クラッチ動力伝達機構は、第1開閉弁135を閉じ且つ第2開閉弁136を開き、油圧ポンプP及びアキュムレータ32からの油圧をスレーブシリンダ17に付与することで実現される。
(第2実施形態)
図5は、第2実施形態に係る車両101のブロック図である。図6は、図5に示す車両1の各モードでの変速機5、クラッチ14、エンジンE及び電動モータMの状態を説明する表である。図5に示すように、第2実施形態の車両101では、電動モータMがエンジンEとクラッチ14との間の第1動力伝達機構13に接続されている。即ち、電動モータMの動力は、クラッチ14が切断された状態でもクラッチ14の入力側回転体に伝達される。車両101の制御器120制御モードは、エンジン・モータ走行モード、エンジン走行モード及び発電モードを有する。
図5は、第2実施形態に係る車両101のブロック図である。図6は、図5に示す車両1の各モードでの変速機5、クラッチ14、エンジンE及び電動モータMの状態を説明する表である。図5に示すように、第2実施形態の車両101では、電動モータMがエンジンEとクラッチ14との間の第1動力伝達機構13に接続されている。即ち、電動モータMの動力は、クラッチ14が切断された状態でもクラッチ14の入力側回転体に伝達される。車両101の制御器120制御モードは、エンジン・モータ走行モード、エンジン走行モード及び発電モードを有する。
図6に示すように、エンジン・モータ走行モード及びエンジン走行モードは、第1実施形態と同様であるので、詳細な説明を省略する。発電モードでは、エンジンEから第1動力伝達機構13を介して伝達される動力で電動モータMに発電させてバッテリ22を充電する。その際、変速機5及びクラッチ14の少なくとも一方がディスエンゲージ状態である。即ち、変速機5がエンゲージ状態のときは、クラッチ14はエンゲージ状態又はディスエンゲージ状態の何れでもよく、クラッチ14がエンゲージ状態のときは、変速機5はエンゲージ状態又はディスエンゲージ状態の何れでもよい。なお、他の構成は前述した第1実施形態と同様であるため説明を省略する。
(第3実施形態)
図7は、第3実施形態に係る車両201のブロック図である。図7に示すように、車両201は、走行駆動源として電動モータを用いずにエンジンEを用いたエンジン車両である。車両201では、変速機5のシフトドラム10にシフトアクチュエータ250(例えば、電動モータ)が接続されている。エンジンEと変速機5との間に配置されたクラッチ14には、クラッチ14を切断及び接続させることが可能なクラッチアクチュエータ221が接続されている。クラッチアクチュエータ221は、第1実施形態の制御式クラッチ動力伝達機構と同様に油圧アクチュエータでもよいし、電磁アクチュエータでもよい。
図7は、第3実施形態に係る車両201のブロック図である。図7に示すように、車両201は、走行駆動源として電動モータを用いずにエンジンEを用いたエンジン車両である。車両201では、変速機5のシフトドラム10にシフトアクチュエータ250(例えば、電動モータ)が接続されている。エンジンEと変速機5との間に配置されたクラッチ14には、クラッチ14を切断及び接続させることが可能なクラッチアクチュエータ221が接続されている。クラッチアクチュエータ221は、第1実施形態の制御式クラッチ動力伝達機構と同様に油圧アクチュエータでもよいし、電磁アクチュエータでもよい。
クラッチアクチュエータ221及びシフトアクチュエータ250には、変速ECU248が接続されている。変速ECU248には、クラッチ操作センサ49、変速入力器251及び変速モード入力器252が接続されている。変速入力器251及び変速モード入力器252は、運転者が指で操作するもの(例えば、ボタン等)である。変速入力器251は、運転者が足でシフトレバーを操作せずに指で変速を行うときに使用される。変速モード入力器252は、運転者がセミATモードとMTモードとを切り替えるときに使用される。なお、セミATではなく通常のATモードがあってもよい。
変速モード入力器252においてMTモードが選択された場合、クラッチ操作センサ49によりクラッチ操作子4(図1参照)が操作されたと検出されると、変速ECU248は、クラッチアクチュエータ221に指令してクラッチ14を切断状態にする。即ち、クラッチ操作子4に入力された運転者の操作は、クラッチ操作センサ49により電気信号に変換されてクラッチ14が電子制御される。なお、図7ではクラッチアクチュエータ221が電子的に制御されているが、第1実施形態と同様にクラッチ操作子4の操作力により生じる油圧によりクラッチ14を動作させる油圧切替ユニット21を用いた構成としてもよい。また、運転者が足でシフトレバー(図示せず)を操作すると、第1実施形態と同様に、変速ECU248がクラッチアクチュエータ221に指令してクラッチ14を切断状態にする。即ち、クラッチアクチュエータ221は、運転者の操作指示に応じたクラッチ動作を行う動作と、運転者のクラッチ操作指示によらずにクラッチ動作を行う動作とを実施可能である。なお、運転者によってクラッチ操作させる機構(クラッチ操作動力伝達構造)は無くてもよい。
変速モード入力器252においてセミATモードが選択された場合、変速入力器251にてシフトアップ又はシフトダウンが入力されると、変速ECU248は、クラッチアクチュエータ221に指令してクラッチ14を切断状態にすると共に、変速アクチュエータ250に指令してシフトドラム10を回転駆動して変速機5を変速動作させる。即ち、変速機5のシフトドラム10を回転させる変速動力は、運転者の力により与えられる構成としてもよいし、制御されたアクチュエータによる力により与えられてもよい。なお、クラッチアクチュエータ221は、運転者によるアクセル操作の操作量、スロットル弁位置、車速、エンジン回転数、変速位置センサ等の各種センサの検出値に基づいて制御される構成としてもよい。
本発明は前述した各実施形態に限定されるものではなく、その構成を変更、追加、又は削除することができる。例えば、運転者の操作力を変速動力として変速機5に付与する手動式変速動力伝達機構9と共に、変速アクチュエータの動力を変速動力として変速機5に付与する制御式変速動力伝達機構も設けてもよい。その場合、バッテリ残量検出センサの出力信号からバッテリ22の残量が所定値以下であると判定されると、制御式変速動力伝達機構で変速機5をエンゲージ状態にして且つ制御式クラッチ動力伝達機構によりクラッチ14をエンゲージ状態にし、エンジンE又は駆動輪2から入力軸6を介して電動モータMに伝達される動力により電動モータMで発電してバッテリ22を充電してもよい。
変速機センサ26は、シフト操作子の動き(変速操作指令)を検出するセンサでもよい。クラッチセンサ25は、クラッチ操作子4の動き(クラッチ動作指令)を検出するセンサでもよい。クラッチアクチュエータ41は、アキュムレータ32を用いずに油圧ポンプPの動力で直接的にスレーブシリンダ17に圧力を付与する構成としてもよい。
油圧ポンプPは、電動に限られず、エンジンE又は電動モータMの動力を利用して駆動されてもよい。例えば、油圧ポンプPの代わりの油圧発生源として、エンジン動力によって回転する回転体をカムとして用いてピストンを往復動させることで油圧を発生させるものが用いられてもよい。エンジンEのシリンダヘッドが前方かつ上方に向くようにエンジンEを配置し、シリンダヘッド内に配置される動弁機構から動力を取り出して油圧ポンプPを駆動させてもよい。その際、エンジンEは、排気ポートが吸気ポートよりも車両前側に配置され、排気バルブを駆動するカム又はカム軸から動力を取り出すことで、スペース効率を高めてもよい。また、油圧ポンプPは、ABS用油圧ポンプと兼用されてもよい。また、油圧ポンプPの代わりの油圧発生源として、エンジン駆動によって駆動する回転体に設けた羽根を回転させて油圧を発生させるものを用いてもよい。例えば、エンジンEにおける冷却液の循環用ポンプや、潤滑液の循環用ポンプと同様の構造によって油圧ポンプを実現してもよい。
車両は、ハイブリッド車でなくてもよく、エンジン又はモータの何れかを走行駆動源としてもよい。制御式クラッチ動力伝達機構T2は、走行駆動源と変速機との間に介在するクラッチの操作を支援するクラッチ操作支援装置として用いられてもよい。具体的には、運転者によるクラッチ操作子の操作が検出されると、そのクラッチ操作に応じて油圧源からの圧力を油圧路に伝えることで、運転者によるクラッチ操作にかかる力に比べて大きな力で、クラッチを動作させることができる。また、制御器によって、クラッチ動作タイミングを設定することもできる。
また、制御器が変速動作の完了を判断してから、クラッチをエンゲージ状態に切り替えるようにしてもよい。また、制御器が運転者による変速操作を判断すると、クラッチをディスエンゲージ状態に切り替えるようにしてもよい。これによって運転者によるクラッチ操作を低減することができ、その他の操作に集中しやすくすることができる。
1,101,201 車両
2 駆動輪
5 変速機
6 入力軸
7 出力軸
9 手動式変速動力伝達機構
14 クラッチ
24 エンジン回転数センサ
27 駆動輪回転数センサ
41,221 クラッチアクチュエータ
E エンジン(走行動力源)
M 電動モータ(走行動力源)
P 油圧ポンプ
T1 手動式クラッチ動力伝達機構
T2 制御式クラッチ動力伝達機構
2 駆動輪
5 変速機
6 入力軸
7 出力軸
9 手動式変速動力伝達機構
14 クラッチ
24 エンジン回転数センサ
27 駆動輪回転数センサ
41,221 クラッチアクチュエータ
E エンジン(走行動力源)
M 電動モータ(走行動力源)
P 油圧ポンプ
T1 手動式クラッチ動力伝達機構
T2 制御式クラッチ動力伝達機構
Claims (8)
- 走行動力源からの動力が入力される入力軸及び駆動輪に動力を出力する出力軸を有する変速機と、
運転者の操作力を変速動力として前記変速機に付与する手動式変速動力伝達機構と、
前記走行動力源と前記入力軸との間に介設するクラッチと、
クラッチアクチュエータの動力をクラッチ動力として前記クラッチに付与する制御式クラッチ動力伝達機構と、を備える、車両。 - 運転者の操作力をクラッチ動力として前記クラッチに付与する手動式クラッチ動力伝達機構を更に備える、請求項1に記載の車両。
- 前記クラッチアクチュエータは、油圧ポンプを含む、請求項1又は2に記載の車両。
- 前記クラッチアクチュエータは、前記手動式変速動力伝達機構の変速動作に応じて前記クラッチにクラッチ動力を付与する、請求項1乃至3のいずれか1項に記載の車両。
- 走行動力源の回転に連動して回転する入力側回転体の回転数と、駆動輪の回転に連動して回転する出力側回転体の回転数との差を検出するセンサと、
前記センサの出力に基づいて前記クラッチアクチュエータを制御し、前記制御式クラッチ動力伝達機構を介して前記クラッチを動作させる制御器と、を更に備える、請求項1乃至4のいずれか1項に記載の車両。 - 走行動力源の回転に連動して回転する入力側回転体の回転数と、駆動輪の回転に連動して回転する出力側回転体の回転数との差を検出するセンサと、
前記センサの出力に基づいて、前記入力側回転体と前記出力側回転体との間の回転数差の発生を抑制するように前記走行動力源を制御する制御器と、を更に備える、請求項1乃至4のいずれか1項に記載の車両。 - 前記制御式クラッチ動力伝達機構では、運転者の操作指示に応じて前記クラッチアクチュエータに動作信号が指令され、前記クラッチアクチュエータの動作により前記クラッチが動作する、請求項1乃至5のいずれか1項に記載の車両。
- 走行動力源からの動力が入力される入力軸及び駆動輪に動力を出力する出力軸を有する変速機と、
前記走行動力源と前記入力軸との間に介設するクラッチと、
クラッチアクチュエータの動力をクラッチ動力として前記クラッチに付与する制御式クラッチ動力伝達機構と、
前記クラッチアクチュエータは、運転者のクラッチ操作指示に応じたクラッチ動作を行う動作と、運転者のクラッチ操作指示によらずにクラッチ動作を行う第2動作とを実施可能である、車両。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/496,069 US11215244B2 (en) | 2017-03-22 | 2018-02-28 | Vehicle |
EP18771200.5A EP3604847B1 (en) | 2017-03-22 | 2018-02-28 | Vehicle |
JP2019507483A JP6820404B2 (ja) | 2017-03-22 | 2018-02-28 | 車両 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017055804 | 2017-03-22 | ||
JP2017-055804 | 2017-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018173671A1 true WO2018173671A1 (ja) | 2018-09-27 |
Family
ID=63585242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007594 WO2018173671A1 (ja) | 2017-03-22 | 2018-02-28 | 車両 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11215244B2 (ja) |
EP (1) | EP3604847B1 (ja) |
JP (1) | JP6820404B2 (ja) |
WO (1) | WO2018173671A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11279341B2 (en) * | 2018-12-18 | 2022-03-22 | Kawasaki Jukogyo Kabushiki Kaisha | Control apparatus of hybrid leaning vehicle |
US11415988B2 (en) | 2018-12-18 | 2022-08-16 | Kawasaki Motors, Ltd. | Control apparatus of hybrid leaning vehicle |
WO2022209634A1 (ja) * | 2021-03-31 | 2022-10-06 | 本田技研工業株式会社 | クラッチ制御装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022110531A (ja) * | 2021-01-18 | 2022-07-29 | 本田技研工業株式会社 | 車両 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09269019A (ja) * | 1996-03-31 | 1997-10-14 | Isuzu Motors Ltd | 車両用オートクラッチ装置 |
JP2000324610A (ja) * | 1999-05-10 | 2000-11-24 | Honda Motor Co Ltd | ハイブリッド自動車の制御装置 |
JP2001050379A (ja) * | 1999-08-05 | 2001-02-23 | Hitachi Ltd | 自動車の制御装置 |
JP2004076897A (ja) * | 2002-08-21 | 2004-03-11 | Toyota Motor Corp | 車載クラッチの制御装置 |
JP2004340294A (ja) | 2003-05-16 | 2004-12-02 | Suzuki Motor Corp | 自動二輪車用無段変速装置の制御装置 |
JP2006234150A (ja) * | 2005-02-28 | 2006-09-07 | Honda Motor Co Ltd | 車両のクラッチ制御装置 |
JP2008275084A (ja) * | 2007-04-27 | 2008-11-13 | Honda Motor Co Ltd | クラッチ操作機構 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2104934A1 (de) * | 1971-02-03 | 1972-08-17 | Bosch Gmbh Robert | Steuereinrichtung zum Betätigen einer Fahrzeug-Reibungskupplung |
FR2645805B1 (fr) * | 1989-04-17 | 1995-07-13 | Luk Lamellen & Kupplungsbau | Procede de commande d'un embrayage a friction automatise agissant entre un moteur d'entrainement et une transmission, appareillage pour la mise en oeuvre du procede, et regulation associee d'un embrayage a friction |
FR2664004A1 (fr) * | 1990-06-27 | 1992-01-03 | Luk Lamellen & Kupplungsbau | Dispositif pour l'actionnement d'un embrayage. |
DE4202083C2 (de) * | 1992-01-25 | 1994-01-20 | Daimler Benz Ag | Hybridantrieb für ein Kraftfahrzeug |
US6061619A (en) | 1992-09-09 | 2000-05-09 | Luk Lamellen Und Kupplungsbau Gmbh | Electronic clutch management |
EP0798480B1 (en) | 1996-03-31 | 2000-07-12 | Isuzu Motors Limited | Automatic clutch unit for vehicle use |
JP3896976B2 (ja) * | 2003-03-19 | 2007-03-22 | 日産自動車株式会社 | マニュアルトランスミッションの自動変速制御装置 |
JP4128992B2 (ja) * | 2003-10-15 | 2008-07-30 | 本田技研工業株式会社 | 油圧アクチュエータの油圧制御装置 |
CN2675457Y (zh) * | 2004-02-07 | 2005-02-02 | 黄仰圣 | 手动换挡有级变速器汽车的半自动驾驶装置 |
US7837587B2 (en) * | 2006-12-15 | 2010-11-23 | American Axle & Manufacturing, Inc. | Electrohydraulic torque transfer device with integrated clutch and actuator unit |
JP4661823B2 (ja) * | 2007-04-16 | 2011-03-30 | 日産自動車株式会社 | エンジン制御装置 |
JP5029511B2 (ja) * | 2008-06-25 | 2012-09-19 | 日産自動車株式会社 | マニュアルトランスミッションのクラッチ回転同期制御装置 |
US8843284B2 (en) * | 2009-08-14 | 2014-09-23 | Toyota Motor Engineering & Manufacturing North America, Inc. | Systems and methods for controlling manual transmissions |
JP5521151B2 (ja) * | 2011-02-09 | 2014-06-11 | アイシン・エーアイ株式会社 | 車両の動力伝達制御装置 |
DE102012208949A1 (de) | 2012-05-29 | 2013-12-05 | Robert Bosch Gmbh | Verfahren zum Betreiben einer Kopplungsanordnung |
US9914447B2 (en) * | 2013-03-27 | 2018-03-13 | Aisin Aw Co., Ltd. | Control device for vehicle drive apparatus |
CN105980741B (zh) * | 2014-02-14 | 2021-03-23 | 博格华纳公司 | 用于控制手动离合器的液压动力机组致动器 |
US9719595B2 (en) * | 2015-06-29 | 2017-08-01 | Gm Global Technology Operations, Llc | Active rev-matching for manual transmissions |
US10800247B2 (en) * | 2017-02-21 | 2020-10-13 | Ford Global Technologies, Llc | Hybrid vehicle powertrain with manual transmission |
-
2018
- 2018-02-28 WO PCT/JP2018/007594 patent/WO2018173671A1/ja unknown
- 2018-02-28 EP EP18771200.5A patent/EP3604847B1/en active Active
- 2018-02-28 JP JP2019507483A patent/JP6820404B2/ja active Active
- 2018-02-28 US US16/496,069 patent/US11215244B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09269019A (ja) * | 1996-03-31 | 1997-10-14 | Isuzu Motors Ltd | 車両用オートクラッチ装置 |
JP2000324610A (ja) * | 1999-05-10 | 2000-11-24 | Honda Motor Co Ltd | ハイブリッド自動車の制御装置 |
JP2001050379A (ja) * | 1999-08-05 | 2001-02-23 | Hitachi Ltd | 自動車の制御装置 |
JP2004076897A (ja) * | 2002-08-21 | 2004-03-11 | Toyota Motor Corp | 車載クラッチの制御装置 |
JP2004340294A (ja) | 2003-05-16 | 2004-12-02 | Suzuki Motor Corp | 自動二輪車用無段変速装置の制御装置 |
JP2006234150A (ja) * | 2005-02-28 | 2006-09-07 | Honda Motor Co Ltd | 車両のクラッチ制御装置 |
JP2008275084A (ja) * | 2007-04-27 | 2008-11-13 | Honda Motor Co Ltd | クラッチ操作機構 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3604847A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11279341B2 (en) * | 2018-12-18 | 2022-03-22 | Kawasaki Jukogyo Kabushiki Kaisha | Control apparatus of hybrid leaning vehicle |
US11415988B2 (en) | 2018-12-18 | 2022-08-16 | Kawasaki Motors, Ltd. | Control apparatus of hybrid leaning vehicle |
WO2022209634A1 (ja) * | 2021-03-31 | 2022-10-06 | 本田技研工業株式会社 | クラッチ制御装置 |
JP7462107B2 (ja) | 2021-03-31 | 2024-04-04 | 本田技研工業株式会社 | クラッチ制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018173671A1 (ja) | 2019-11-07 |
JP6820404B2 (ja) | 2021-01-27 |
EP3604847B1 (en) | 2022-10-12 |
EP3604847A1 (en) | 2020-02-05 |
US11215244B2 (en) | 2022-01-04 |
EP3604847A4 (en) | 2020-12-02 |
US20200292015A1 (en) | 2020-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11097609B2 (en) | Hybrid vehicle | |
US9199632B2 (en) | Control device for hybrid vehicle | |
WO2018173670A1 (ja) | ハイブリッド車両 | |
WO2018173671A1 (ja) | 車両 | |
WO2014068720A1 (ja) | 車両の走行制御装置 | |
EP2700526A1 (en) | Vehicle motive power transmission control apparatus | |
US20160221580A1 (en) | Control device for vehicle | |
JP2014091398A (ja) | 車両の走行制御装置 | |
JP2010184535A (ja) | ハイブリッド車両 | |
JP5949936B2 (ja) | 車両の走行制御装置 | |
CN110832217B (zh) | 车辆用变速系统 | |
JP2004026064A (ja) | 変速制御装置 | |
JP2014088825A (ja) | 車両の走行制御装置 | |
JP2004316432A (ja) | 車両用駆動力源の制御装置 | |
JP5472062B2 (ja) | クラッチ制御装置 | |
JP5990023B2 (ja) | 車両の動力伝達制御装置 | |
WO2020189426A1 (ja) | クラッチ制御装置 | |
JP6690490B2 (ja) | 制御装置 | |
JP2015055316A (ja) | 自動二輪車の変速制御装置 | |
JP3888153B2 (ja) | 車両の坂道発進補助装置 | |
JP2024120561A (ja) | 車両の制御装置および車両の制御方法 | |
JP2004144130A (ja) | トランスミッション制御装置 | |
JP2022016809A (ja) | 同期噛合装置の制御装置 | |
JP2009083849A (ja) | 車両の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18771200 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019507483 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018771200 Country of ref document: EP Effective date: 20191022 |