WO2018169361A1 - 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극 - Google Patents
고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극 Download PDFInfo
- Publication number
- WO2018169361A1 WO2018169361A1 PCT/KR2018/003118 KR2018003118W WO2018169361A1 WO 2018169361 A1 WO2018169361 A1 WO 2018169361A1 KR 2018003118 W KR2018003118 W KR 2018003118W WO 2018169361 A1 WO2018169361 A1 WO 2018169361A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- polymer electrolyte
- active material
- polymer
- solid
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/137—Electrodes based on electro-active polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/025—Discharge apparatus, e.g. electrostatic spray guns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/025—Discharge apparatus, e.g. electrostatic spray guns
- B05B5/0255—Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0416—Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0419—Methods of deposition of the material involving spraying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0085—Immobilising or gelification of electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method for producing an electrode comprising a polymer electrolyte and to an electrode produced by the method.
- the present invention relates to a method for producing an electrode having improved surface reaction and mobility of an active material and a solid electrolyte in an electrode, and to an electrode manufactured by the method.
- Lithium ion batteries using a liquid electrolyte have a structure in which a negative electrode and a positive electrode are partitioned by a separator, and thus, when the separator is damaged by deformation or external shock, a short circuit may occur, which may lead to a risk of overheating or explosion. Therefore, the development of a polymer electrolyte capable of securing safety in the field of lithium ion secondary batteries is a very important task.
- a lithium secondary battery using a polymer electrolyte has an advantage of increasing battery safety, preventing leakage of an electrolyte solution, improving battery reliability, and facilitating manufacture of a thin battery.
- lithium metal may be used as a negative electrode, thereby improving energy density. Accordingly, application of a lithium secondary battery to a high capacity secondary battery for an electric vehicle is expected as a next-generation battery.
- the lithium secondary battery using the polymer electrolyte has a lower ionic conductivity than the liquid electrolyte, and the output characteristics of the lithium secondary battery are particularly low at low temperatures.
- the solid electrolyte has a lower surface adhesion with the active material than the liquid electrolyte, the interfacial resistance is increased, and since the solid electrolyte is distributed in the solid electrolyte in a non-contact state with the electrode active material, there is a problem that the output characteristics and the capacity characteristics are lowered compared to the amount of the conductive material introduced.
- FIG. 1A schematically illustrates an electrode for an all-solid-state battery including a conventional solid polymer electrolyte
- FIG. 1A schematically illustrates an electrode for an all-solid-state battery including a conventional solid polymer electrolyte
- FIG. 1B schematically illustrates an enlarged view of a portion thereof.
- the conductive material is included in the solid electrolyte, the solid electrolyte does not have fluidity, and thus some of the injected conductive material does not come into direct contact with the active material and is spaced apart from the active material. These conductive materials do not directly participate in the electrochemical reaction when driving the battery, leading to a decrease in output characteristics or capacity. For this reason, when the solid electrolyte is applied, it is not sufficiently expressed as the capacity of the electrode under the liquid electrolyte, which is lower than the design or theoretical capacity.
- An object of the present invention is to provide an electrode having an improved energy density by increasing the electrode active material and the polymer electrolyte reaction site to improve the above-mentioned problems, and improving the electrode expression capacity and output characteristics by improving the conductivity and electron conductivity of lithium ions. do.
- the present invention has another object of a method for producing an electrode having such technical characteristics.
- the present invention relates to an all-solid-state battery electrode for solving the above technical problem.
- a first aspect of the present invention relates to the electrode, wherein the electrode includes a plurality of electrode active material particles, a binder resin and / or a first polymer electrolyte, a second polymer electrolyte, and a conductive material, and the electrode active material particles include a first At least a portion of the surface of the particle is covered by a first coating layer comprising a mixture of a polymer electrolyte and a conductive material, and the second polymer electrolyte is at least a portion of the surface of the first coating layer, the surface of the particles, or both.
- a plurality of electrode active materials are bound to each other by at least one or more of the first polymer electrolyte and the second polymer electrolyte to have an integrated structure.
- the first polymer electrolyte and the second polymer electrolyte are the same as or different from each other.
- the first polymer electrolyte and the second polymer electrolyte are different from each other.
- a fourth aspect of the present invention is directed to a method of manufacturing an electrode having the features described above.
- the method includes (S10) preparing a slurry for preparing an electrode including a first polymer electrolyte, a conductive material, and a plurality of electrode active material particles; (S20) coating the slurry on the surface of the current collector; And (S30) impregnating the resultant of the (S20) with a second polymer electrolyte.
- the fourth aspect at least a part of the surface of the electrode active material particles is coated with the first polymer electrolyte.
- the sixth aspect of the present invention further includes the step of drying the resultant obtained through (S40) (S30) in the fourth and fifth aspect, wherein the resultant of (S40) is a plurality of electrodes
- Active materials are electrodes having a structure in which the active materials are bonded to each other by at least one of the first polymer electrolyte and the second polymer electrolyte.
- the step (S20) is to be performed by the method of electrospray.
- the conductive material is disposed on the surface of the electrode active material so as not to remain in the unreacted region, so that even when a small amount of the conductive material is used, the charge and discharge performance can be reduced, thereby reducing the amount of conductive material.
- the electrical conductivity may be improved, so that rolling is not necessary under severe pressure conditions in order to lower the electrode porosity and increase the contact area between the electrode and the polymer electrolyte. Therefore, the problem that the electrode active material is broken and damaged by high pressure may be solved.
- the electrode according to the present invention has the effect that the electrical conductivity is improved to improve the output characteristics when the battery is applied.
- the channel of the solid electrolyte is secured to increase the mobility of lithium ions during charging / discharging, thereby improving the capacity expression rate of the electrode, thereby improving the capacity and energy density of the battery.
- FIG. 1A and 1B schematically illustrate the distribution of a conductive material in an electrode including a conventional polymer electrolyte.
- FIG. 2a schematically shows the electrode manufacturing process according to the present invention and the structure of the electrode produced accordingly.
- FIG. 2B is an enlarged view of a part of the electrode active material layer shown in FIG. 2A.
- the present invention relates to a method for producing an electrode for a lithium ion secondary battery and to an electrode produced by the above method.
- the lithium ion secondary battery is an all-solid-state battery using a polymer electrolyte as an electrolyte.
- the all-solid-state battery may be referred to as a lithium polymer secondary battery or a lithium ion polymer secondary battery.
- the present invention relates to a method for producing an electrode for a lithium ion secondary battery and to an electrode produced by the above method.
- the lithium ion secondary battery is an all-solid-state battery using a polymer electrolyte as an electrolyte.
- the all-solid-state battery may be referred to as a lithium polymer secondary battery or a lithium ion polymer secondary battery.
- the electrode includes an electrode active material layer including a plurality of electrode active material particles, a first polymer electrolyte, a second polymer electrolyte, and a conductive material.
- the electrode active material layer may be formed on at least one side of the current collector.
- the electrode may further include a binder resin as necessary.
- the electrode may further include various additives for the purpose of supplementing or improving the physical and chemical properties of the electrode.
- the additive is not particularly limited, but may include one or more additives such as an oxidation stabilizer, a reduction stabilizer, a flame retardant, a heat stabilizer, and an antifogging agent.
- the electrode active material particles are coated with at least a portion of the particle surface by a first coating layer comprising a mixture of a first polymer electrolyte and a conductive material.
- the first coating layer may include one or more of various additives as described above.
- the second polymer electrolyte is included to cover at least a portion of the surface of the first coating layer, the surface of the particles, or both. That is, the second polymer electrolyte forms a second coating layer.
- each active material particles in the electrode is bound to each other by at least one or more of the first polymer electrolyte and the second polymer electrolyte has an integrated electrode structure.
- FIG. 2B is an enlarged view of a part of the electrode according to the present invention, in which a first coating layer is formed on the surface of the electrode active material particles, and a second coating layer is formed on the surface of the electrode active material particles covered with the first coating layer.
- the conductive material is included in the first coating layer, the conductive material is distributed very close to the periphery of the active material, thereby minimizing the separation distance between the conductive material and the electrode active material and increasing the frequency of contact with the electrode active material.
- the electrode may include a current collector.
- the integrated electrode structure electrode active material layer
- the electrode according to the present invention has an electrode layer including a first polymer electrolyte, a second polymer electrolyte, and a conductive material formed on at least one side of the current collector, and the electrode layer exhibits an electrode structure having the above-described characteristics.
- the electrode layer may further include a binder resin and an additive.
- the electrode may be any one of a cathode and an anode.
- any electrode active material may be used as long as it is a substance that can be used as a negative electrode active material of a lithium ion secondary battery.
- the negative electrode active material may be carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1- x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and Bi 2 O 5 Metal oxides such as; Conduct
- the electrode active material may be used without limitation as long as it can be used as a positive electrode active material of a lithium ion secondary battery.
- the current collector exhibits electrical conductivity such as a metal plate, and an appropriate one may be used depending on the polarity of the current collector electrode known in the secondary battery field.
- the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of the mixture including the electrode active material.
- a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; It may include one or a mixture of two or more selected from conductive materials such as polyphenylene derivatives.
- the binder resin is not particularly limited as long as it is a component that assists in bonding the active material and the conductive material and bonding to the current collector, and is not particularly limited.
- the binder resin may typically be included in the range of 1 to 30% by weight, or 1 to 10% by weight relative to 100% by weight of the electrode layer.
- the first coating layer includes a mixture of the first polymer electrolyte and the conductive material and covers at least a part of the surface of the electrode active material particles.
- the particles when the particles are reduced, the particles are integrated to form an integrated electrode by mainly point bonding and / or surface bonding through the second polymer electrolyte.
- the particles are first or all of at least part of the particle surface covered by the first coating layer.
- the first and second polymer electrolytes may be different or the same.
- the first polymer electrolyte primarily covers the surface of the particles and preferably has a wide potential window.
- the positive electrode it is preferable to use a polymer electrolyte having excellent oxidation stability as the first polymer electrolyte.
- the negative electrode it is preferable to use a polymer electrolyte having excellent reduction stability as the first polymer electrolyte.
- the second polymer electrolyte may be the same as or different from the above-mentioned first polymer electrolyte, and a material having high ionic conductivity, for example, because it plays a role of transferring lithium ions in the electrode. Any one of 10 ⁇ 4 s / m or more may be used, and is not limited to specific components.
- the first polymer electrolyte and the second polymer electrolyte may appropriately use different materials for supplementing electrode properties and expressing properties of electrode active material particles.
- each of the first and second polymer electrolytes is a solid polymer electrolyte formed by adding a polymer resin to an independently solvated lithium salt, or contains an organic electrolyte solution containing an organic solvent and a lithium salt in the polymer resin. It may be a polymer gel electrolyte.
- the solid polymer electrolyte is not particularly limited as long as the electrolyte is an ion conductive material and is a polymer material that is generally used as a solid electrolyte material of an all-solid-state battery.
- the solid polymer electrolyte may be, for example, a polyether polymer, a polycarbonate polymer, an acrylate polymer, a polysiloxane polymer, a phosphazene polymer, a polyethylene derivative, an alkylene oxide derivative, a phosphate ester polymer, a polyedgetion lysine ( agitation lysine), polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, polymers containing ionic dissociating groups, and the like.
- a polyether polymer for example, a polyether polymer, a polycarbonate polymer, an acrylate polymer, a polysiloxane polymer, a phosphazene polymer, a polyethylene derivative, an alkylene oxide derivative, a phosphate ester polymer, a polyedgetion lysine ( agitation lysine), polyester sulfide, polyvinyl alcohol, polyvinylidene flu
- the solid polymer electrolyte is a polymer resin in which a copolymer of an amorphous polymer such as PMMA, polycarbonate, polysiloxane (pdms) and / or phosphazene is copolymerized in a polyethylene oxide (PEO) main chain Branched copolymers, comb-like polymers and crosslinked polymer resins may be included.
- a copolymer of an amorphous polymer such as PMMA, polycarbonate, polysiloxane (pdms) and / or phosphazene is copolymerized in a polyethylene oxide (PEO) main chain Branched copolymers, comb-like polymers and crosslinked polymer resins may be included.
- the polymer gel electrolyte includes an organic electrolyte solution containing a lithium salt and a polymer resin, and the organic electrolyte solution contains 60 to 400 parts by weight based on the weight of the polymer resin.
- the polymer to be applied to the gel electrolyte is not limited to specific components, for example, PVC-based, PMMA-based, polyacrylonitrile (PAN), polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoride Polypropylene (poly (vinylidene fluoride-hexafluoropropylene: PVdF-HFP) may be included.
- the lithium salt described above can be represented by Li + X - as an ionizable lithium salt.
- this lithium salt anion is not particularly limited, F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3 ) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2 ) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C - , (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO
- the second polymer electrolyte may be a polymer gel electrolyte.
- the polymer gel electrolyte has excellent ion conductivity (or 10 -4 s / m or more), and has a binding property, thereby providing not only a function as an electrolyte, but also binding between the electrode active material and the electrode layer and the current collector.
- the function of the electrode binder resin to provide can be provided.
- the first coating layer may include at least one of the binder resin and the first solid polymer electrolyte. That is, the binder resin can be used in place of the first solid electrolyte or together with the first polymer electrolyte as needed.
- the manufacturing method described below is one of various methods that can be employed in manufacturing the electrode according to the present invention.
- the application of the first mixture may be carried out by the method of electrospraying and / or electrospinning.
- Electrospray is a kind of surface coating method characterized in that the coating solution is sprayed into fine droplets and coated in the form of particles by the voltage applied to the spray nozzle. Electrospinning is similar to electrospray but is characterized by being coated in a 1-D structure rather than in the form of particles.
- the electrospray can refer to the contents of the electrospray apparatus and method of the Republic of Korea Patent No. 0027116.
- the first mixture may be applied using a known slurry coating method such as dip coating, gravure coating, slot die coating, and the like.
- a first mixture including the first polymer electrolyte and the conductive material is prepared.
- the first polymer electrolyte may be provided in the form of a molten blend prepared by first melting the polymer resin and the lithium salt at high temperature, or may be provided in the form of a solution in which the polymer resin and the lithium salt are uniformly dispersed in an organic solvent.
- the first mixture may be prepared by adding and mixing a conductive material to the blend or solution. If necessary, the first mixture may be replaced with a binder resin of the first polymer electrolyte, or may further include a binder resin together with the first polymer resin.
- an electrode active material is mixed with the first mixture to prepare a slurry for producing an electrode.
- the content of the polymer electrolyte in the slurry is 1 to 100 parts by weight, or 2 to 50 parts by weight, or 2 to 20 parts by weight or 2 to 10 parts by weight with respect to 100 parts by weight of the electrode active material.
- the above-described slurry preparation method is exemplary and is not limited to the above.
- the order in which the slurry components are added or mixed may be modified in consideration of the physical and chemical properties of the components to be added and the characteristics of the electrode or the battery to be obtained.
- the polymer electrolyte, the conductive material, and the electrode active material may be added directly to a dispersion medium such as a solvent or co-injected in another embodiment.
- the slurry is applied to at least one side of the current collector and dried.
- the electrode active material particles are coated with at least a part of the surface by the first coating layer including the binder resin and / or the first polymer electrolyte, and the first coating layer is formed on the particle surface, so that the entire amount of the conductive material injected into the electrode is applied to the electrode active material. It is placed in sufficient contact with the particles.
- the application may use a conventional electrode coating method such as slot die coating.
- the application may use a method of electrospraying and / or electrospinning.
- Figure 2a schematically shows a method of applying the slurry to the surface of the current collector via electrospray.
- the electrospray is performed while continuously supplying the slurry containing the electrode active material and the polymer electrolyte from the slurry supply tank into the electrospray nozzle subjected to high voltage through a metering pump.
- the slurry is preferably prepared in the form of a suitable spray solution by adding a solvent in the slurry to lower the surface tension and induce volatility.
- Such solvents include, but are not particularly limited to, water and DMF (dimethylformamide), NMP (N-methly-2-pyrrolidone), acetone, DMSO (dimethyl sulfoxide), THF (tetrahydrofuran), acetonitrile, ethanol ( One or more organic solvents such as ethanol and hexene may be selected and used.
- the concentration of solids in the spray solution is 1 to 50%, or 5 to 30%, or 10 to 20%.
- Solid content means a component in the form of a solid, and means any solid phase component except a liquid such as a solvent in the spray solution, for example, an electrode active material, a binder, a conductive material, a solid electrolyte, and the like.
- the spray solution calculates the appropriate capacitance of the active material in consideration of the viscosity, surface tension, applied voltage, etc. of the spray solution and discharges by quantitatively ejecting.
- the voltage used may be appropriately adjusted within 1kV to 50kV.
- the voltage range may be adjusted to 40 kV or less, 30 kV or less, 20 kV or less, 10 kV or less or 5 kV or less within the above range.
- the distance between the spinning nozzle and the current collector is not particularly limited and may be controlled to an appropriate distance according to the process conditions. Electrospray can produce an electrode in which the electrode active material and the solid electrolyte are uniformly dispersed in the electrode. In addition, there is an effect that the conductive material is evenly dispersed on the surface of the electrode active material without biasing to a specific portion in the electrode.
- the electrode active material particles are coated with at least a part of the surface by the first coating layer including the first polymer electrolyte, and the first coating layer is formed on the particle surface so that the entire amount of the conductive material introduced into the electrode is in sufficient contact with the electrode active material particles. Is placed.
- after performing the electrospray process may be carried out a step of drying the resultant.
- the drying may be carried out under vacuum conditions, preferably controlled to a temperature condition of about 80 °C to 150 °C.
- the pressurization process may be further performed as necessary after the drying process.
- the pressing process packs the constituent materials so that the electrode has an appropriate porosity, and is not limited to any particular method.
- a well-known pressurization method such as hot pressing or rolling may be appropriately selected, and may be controlled to appropriate temperature conditions such as heating or cooling as necessary.
- the drying result of the particles coated with the first coating layer is filled with a second polymer electrolyte.
- the second polymer electrolyte may be prepared in the liquid phase as the first polymer electrolyte. That is, the second polymer electrolyte may be provided in the form of a molten blend prepared by first melting the polymer resin and the lithium salt at high temperature or in the form of a liquid polymer electrolyte in which the polymer resin and the lithium salt are dispersed in an organic solvent. .
- the drying product is impregnated with the liquid polymer electrolyte to fill the drying product with the polymer electrolyte.
- the liquid polymer electrolyte penetrates into the pores of the drying result, and empty spaces (pores) of the electrode are filled with the polymer electrolyte.
- the filling step is carried out by the method of dip coating the drying result with the liquid polymer electrolyte, or together with or independently of the drying of the liquid polymer electrolyte using a spray nozzle This can be done by feeding to the result.
- the electrospraying step and the filling step may be performed in a continuous process, wherein after the spraying process is carried out before the filling process proceeds with a suitable drying equipment, the first The filling process is preferably carried out after the slurry has solidified. However, some drying may occur during coating through the electrospray and electrospinning processes, so a complete drying process may not be necessary.
- the electrode active material is filled with the polymer electrolyte, thereby reducing the resistance between the electrode active material and the polymer electrolyte, increasing the electrochemical reaction area, and improving lithium ion mobility, thereby improving battery performance.
- the filled electrode is dried.
- the compression process may be further performed as necessary.
- the compression may be appropriately selected by applying at least one or more of hot compression, cold compression, uniaxial compression, equivalent pressure compression according to the end use purpose of the electrode.
- the porosity of the electrode finally obtained is from 0 to 30%, or from 1 to 20% or from 5 to 10%.
- the active material is coated by the first coating layer, and the coating active materials are surface-bonded and point-bonded to each other by the first polymer electrolyte and / or the second polymer electrolyte to form an integrated electrode structure. That is, the electrode active material is coated twice with the polymer electrolyte and includes the conductive material in the first coating layer at the time of one coating, thereby increasing the utilization efficiency of the conductive material.
- FIG. 1A and 1B schematically illustrate the configuration of an electrode manufactured according to a conventional electrode manufacturing method.
- Conventional electrode manufacturing method was prepared by mixing an active material, a solid electrolyte and a conductive material at once to prepare an electrode slurry and then coating it on a current collector.
- the conductive material is also located in the unreacted region where the electrochemical reaction does not occur, and as a result, a considerable amount of the injected conductive material does not participate in the reaction. Because of this, there is a disadvantage in that the utilization efficiency of the injected conductive material is low. In addition, due to the distribution of the conductive material there is a problem that the input content of the solid electrolyte is lowered, the ion conductivity is lowered. In order to solve this problem, a rolling process is required to increase the contact area between the electrode active material and the solid electrolyte by rolling the electrode surface under high pressure conditions after electrode coating. However, there is a problem that the active material is broken and broken by the high pressure applied during the pressurization process, thereby lowering the battery capacity or lowering the life characteristics.
- FIGS. 2a and 2b schematically show the structure of an electrode according to the present invention.
- the ratio of the conductive material is located close to the surface of the electrode active material and participates in the electrochemical reaction, the amount of the conductive material can be reduced.
- the reaction site can be sufficiently secured to prevent electrode degradation.
- capacity expression of the active material may be increased by increasing lithium ion mobility.
- the present invention also provides a lithium ion secondary battery comprising at least one electrode.
- the battery includes a positive electrode, a negative electrode, and a polymer electrolyte membrane interposed between the positive electrode and the negative electrode.
- the negative electrode and / or the positive electrode may include a polymer electrolyte as an electrode having the aforementioned characteristics.
- the polymer electrolyte membrane is interposed between the negative electrode and the positive electrode, and serves to electrically insulate the negative electrode and the positive electrode and to pass lithium ions.
- the polymer electrolyte membrane may be used as long as it is generally used as a polymer electrolyte membrane used in the field of polymer all-solid-state batteries, and is not particularly limited.
- the polymer electrolyte membrane is prepared in the form of a film, membrane, may include at least one or more of the first polymer electrolyte component, the second polymer electrolyte component described above.
- the present invention also provides a battery module including the secondary battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
- specific examples of the device may include a power tool moving by being driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
- Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
- Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
- Electrode active material is NCM811 (LiN 0 8 C 0 .1 M 0. 1 O 2.), And the first conductive material VGCF polymer solid electrolyte (PEO + LiFSI, 20: 1 mol ratio) to 90: 5: The mixture was mixed at a weight ratio of 5, added to acetonitrile, and stirred to prepare an electrode slurry. An aluminum current collector having a thickness of 20 ⁇ m was prepared. The slurry was applied to the current collector using electrospraying (1.5 kV, 20 cm distance between the spinning nozzle and the current collector) and the resultant was vacuum dried at 120 ° C. for 4 hours.
- electrospraying 1.5 kV, 20 cm distance between the spinning nozzle and the current collector
- the rolling process was performed to prepare an electrode having an electrode loading of 2 mAh / cm 2, an electrode layer thickness of 48 ⁇ m, and a porosity of 22%. Through this process, a structure in which a conductive material and a solid electrolyte are coated on the surface of the active material is formed.
- a second polymer solid electrolyte (PEO + LiFSI, 20: 1 mol ratio) solution it was impregnated to the prepared electrode and then vacuum dried at 120 °C for 4 hours. After impregnation, an electrode having a porosity of 10% of the final electrode was prepared.
- an electrode assembly was prepared by placing a 50 ⁇ m solid electrolyte membrane (PEO + LiFSI, 20: 1 mol ratio) between the lithium metal and the electrode, and fabricating the electrode assembly.
- PEO + LiFSI solid electrolyte membrane
- the electrode active material NCM811 (. LiN 0 8 C 0 .1 M 0. 1 O 2), VGCF and a first polymer solid electrolyte (PPC (Polyproplyene carbonate) + LiFSI , 20: 1 mol ratio) to 90: the weight ratio of 7: 3
- PPC Polyproplyene carbonate
- Electrode active material is NCM811 (LiN 0 8 C 0 .1 M 0. 1 O 2.), Conductive material VGCF and the polymer solid electrolyte of 15.2: (PEO + LiFSI, 20 : 1 mol ratio) of 82: 2.8
- the mixture was mixed at a weight ratio and introduced into acetonitrile and stirred to prepare an electrode slurry.
- a copper current collector having a thickness of 20 ⁇ m was prepared, the electrode slurry was applied to the current collector, and then vacuum dried at 120 ° C. for 4 hours.
- the rolling process was performed to prepare an electrode having an electrode loading of 2 mAh / cm 2, an electrode layer thickness of 48 ⁇ m, and a porosity of 10%.
- an electrode assembly was prepared by placing a 50 ⁇ m solid electrolyte membrane (PEO + LiFSI, 20: 1 mol ratio) between the lithium metal and the electrode, and fabricating the electrode assembly.
- PEO + LiFSI solid electrolyte membrane
- the electrode and the battery were prepared in the same manner as in Comparative Example 1 except that NCM811 was used as the electrode active material, and VGCF and the polymer solid electrolyte (PEO + LiFSI, 20: 1 mol ratio) were mixed at a weight ratio of 82: 5.5: 12.5. Prepared.
- the electrode active material is NCM811, the conductive material is VGCF and polymer solid electrolyte (PEO / PPC (1: 1) + LiFSI, 20: 1 mol ratio) was used in Comparative Example 1 except that a mixture of 82: 5.5: 12.5 Electrodes and batteries were prepared in the same manner.
- Electrode active material is NCM811 (LiN 0 8 C 0 .1 M 0. 1 O 2.), And the first conductive material VGCF polymer solid electrolyte (PEO + LiFSI, 20: 1 mol ratio) of 90: 3: 7 was mixed in a weight ratio of acetonitrile and stirred to prepare an electrode slurry.
- a copper current collector having a thickness of 20 ⁇ m was prepared, the slurry was applied to the current collector, and then vacuum dried at 120 ° C. for 4 hours. The rolling process was performed to prepare an electrode having an electrode loading of 2 mAh / cm 2, an electrode layer thickness of 48 ⁇ m, and a porosity of 25%.
- a structure in which a conductive material and a solid electrolyte are coated on the surface of the active material is formed.
- a second polymer solid electrolyte (PEO + LiFSI, 20: 1 mol ratio) solution was prepared in order to improve ion transfer in the electrode, which was then impregnated into the prepared electrode and vacuum dried at 120 ° C. for 4 hours. After impregnation, an electrode having a porosity of 10% of the final electrode was prepared.
- an electrode assembly was prepared by placing a 50 ⁇ m solid electrolyte membrane (PEO + LiFSI, 20: 1 mol ratio) between the lithium metal and the electrode, and fabricating the electrode assembly.
- PEO + LiFSI solid electrolyte membrane
- the batteries of Examples 1 to 3 and Comparative Examples 1 to 4 were charged and discharged to evaluate initial discharge capacity and capacity retention rate.
- the battery was charged and discharged at 0.05 ° C. at 0.05 ° C., and 30 cycles were finished in the discharge state, and the capacity retention rate was evaluated.
- Capacity retention was derived by calculating the ratio of the discharge capacity after 30 cycles to the first discharge capacity. The results are summarized in Tables 1 and 2 below.
- Example Active material layer electrical resistance (ohm * cm) Discharge Capacity (mAh / g, 4.0V) Discharge Capacity Retention Rate (%, 30 cycles, 4.0V) Discharge Capacity (mAh / g, 4.25 V) Discharge Capacity Retention Rate (%, 30cycle, 4.25V) Output characteristic (%, 0.2C / 0.05C, 4.0V) One 10.8 138 94 76 2 12.1 135 95 170 86 73 3 12.3 136 95 178 94 72
- the present invention as described above, it was possible to effectively reduce the conductive material by improving the all-solid-state battery electrode structure.
- the content of the solid electrolyte it was possible to increase the capacity expression according to the improved ion conductivity, and to improve the output characteristics by improving the electrical conductivity in the electrode.
- the positive electrode upper limit voltage was increased from 4.0V to 4.25V in the case of PEO to increase the capacity of the positive electrode as well as to improve the oxidation stability.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 전고체 전지용 전극 및 이를 제조하는 방법에 대한 것으로서, 상기 전극은 전극 활물질 입자가 제1 고분자 전해질 및 도전재의 혼합물을 포함하는 제1 피복층에 의해 표면의 적어도 일부가 피복되어 있다. 또한, 상기 전극은 상기 제1 피복층이 전기 분무(electrospraying) 및/또는 전기 방사(electrospinning)의 방법으로 형성된다.
Description
본 특허출원은 2017년 3월 16일자로 출원된 한국 특허출원 제10-2017-0033362호에 기초한 우선권을 주장한다. 본 발명은 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극에 대한 것이다. 특히 전극 내 활물질과 고체 전해질의 표면 반응 및 이동도가 개선된 전극의 제조 방법 및 그 방법으로 제조된 전극에 대한 것이다.
액체 전해질을 사용하는 리튬 이온 전지는 분리막에 의해 음극과 양극이 구획되는 구조여서 변형이나 외부 충격으로 분리막이 훼손되면 단락이 발생할 수 있으며 이로 인해 과열 또는 폭발 등의 위험으로 이어질 수 있다. 따라서 리튬 이온 이차 전지 분야에서 안전성을 확보할 수 있는 고분자 전해질의 개발은 매우 중요한 과제라고 할 수 있다.
고분자 전해질을 이용한 리튬 이차 전지는 전지의 안전성이 증대되며, 전해액의 누출을 방지할 수 있어 전지의 신뢰성이 향상되며, 박형의 전지 제작이 용이하다는 장점이 있다. 또한, 음극으로 리튬 금속을 사용할 수 있어 에너지 밀도를 향상시킬 수 있으며 이에 따라 소형 이차 전지와 더불어 전기 자동차용의 고용량 이차 전지 등에 응용이 기대되어 차세대 전지로 각광받고 있다.
그러나 고분자 전해질을 사용하는 리튬 이차 전지는 고체 전해질이 액상 전해질에 비해 이온 전도도가 낮고 특히 저온에서 출력 특성이 저하된다. 또한, 고체 전해질이 액상 전해질에 비해 활물질과의 표면 밀착성이 떨어져 계면 저항이 증가되며, 전극 활물질과 비접촉 상태로 고체 전해질에 분포되어 있어 투입된 도전재양에 비해 출력 특성이나 용량 특성이 저하되는 문제가 있다. 도 1a는 종래 고체 고분자 전해질을 포함하는 전고체 전지용 전극을, 도 1b는 이의 일부 확대도를 개략적으로 도식화하여 나타낸 것이다. 이를 참조하면 도전재가 고체 전해질 내에 포함되어 있으나 고체 전해질은 유동성이 없어 투입된 도전재의 일부는 활물질과 직접 접촉하지 못하고 이와 이격된 상태로 남아있다. 이러한 도전재들은 전지 구동시 전기화학 반응에 직접 참여하지 못하여 출력특성이나 용량의 저하를 초래한다. 이러한 이유로 고체 전해질이 적용된 경우 액체 전해액 하에서 전극의 용량만큼 충분히 발현되지 못하여 설계 혹은 이론 용량 대비 낮은 수준이다.
본 발명은 전술한 문제점을 해소하기 위해 전극 활물질과 고분자 전해질 반응 사이트 증대되고 리튬 이온의 전도도 및 전자 전도성 향상을 통해 전극 발현 용량 및 출력특성을 향상시켜 에너지 밀도가 개선된 전극을 제공하는 것을 목적으로 한다. 또한, 본 발명은 이러한 기술적 특성을 갖는 전극을 제조하는 방법을 또 다른 목적으로 한다.
본 발명은 전술한 기술적 과제를 해결하기 위한 전고체 전지용 전극에 대한 것이다.
본 발명의 제1 측면은 상기 전극에 대한 것으로서, 상기 전극은 복수의 전극 활물질 입자, 바인더 수지 및/또는 제1고분자 전해질, 제2 고분자 전해질 및 도전재를 포함하며, 상기 전극 활물질 입자는 제1 고분자 전해질 및 도전재의 혼합물을 포함하는 제1 피복층에 의해 입자 표면의 적어도 일부가 피복되어 있으며, 상기 제2 고분자 전해질은 상기 제1 피복층의 표면, 상기 입자의 표면 또는 이 둘 모두의 표면 중 적어도 일부를 피복하며, 복수의 전극 활물질들이 상기 제1 고분자 전해질 및 제2 고분자 전해질 중 적어도 하나 이상에 의해 서로 결착되어 일체화된 구조를 갖는 것이다.
본 발명의 제2 측면은, 상기 제1 측면에 있어서, 상기 제1 고분자 전해질 및 제2 고분자 전해질은 서로 같거나 다른 것이다.
본 발명의 제3 측면은, 상기 제1 또는 제2 측면에 있어서, 제1 고분자 전해질 및 제2 고분자 전해질은 서로 다른 것이다.
본 발명의 제4 측면은 전술한 특징을 갖는 전극을 제조하는 방법에 대한 것이다. 상기 방법은 (S10) 제1 고분자 전해질, 도전재 및 복수의 전극 활물질 입자를 포함하는 전극 제조용 슬러리를 준비하는 단계; (S20) 상기 슬러리를 집전체의 표면에 코팅하는 단계; 및 (S30) 상기 (S20)의 결과물을 제2 고분자 전해질로 함침하는 단계;를 포함한다.
또한, 본 발명의 제5 측면은 상기 제4 측면에 있어서, 상기 (S20)의 결과물은 전극 활물질 입자의 표면의 적어도 일부가 상기 제1 고분자 전해질로 피복된 것이다.
또한, 본 발명의 제6 측면은 상기 제4 및 제5 측면에 있어서, (S40) 상기 (S30)을 통해 수득된 결과물을 건조하는 단계를 더 포함하며, 상기 (S40)의 결과물은 복수의 전극 활물질들이 상기 제1 고분자 전해질 및 제2 고분자 전해질 중 적어도 하나 이상에 의해 서로 결착되어 일체화된 구조를 갖는 전극인 것이다.
한편, 본 발명의 제7 측면은, 상기 제4 내지 제6 측면 중 어느 하나에 있어서, 상기 (S20) 단계는 전기분무의 방법에 의해 수행되는 것이다.
본 발명에 따른 전극은 도전재가 전극 활물질의 표면부에 배치되어 미반응 영역에 잔존하지 않도록 하여 적은 양의 도전재를 사용하더라도 우수한 충방전 성능을 나타낼 수 있어 도전재의 투입량을 줄일 수 있다. 또한, 도전재의 효과적인 배치로 인해 전기 전도도가 개선될 수 있어 전극 압연시 전극 기공도를 낮추고 전극과 고분자 전해질의 접촉면적을 늘리기 위해 가혹한 압력 조건으로 압연을 수행할 필요가 없다. 따라서 높은 압력에 의해 전극 활물질이 부스러져 손상되는 문제가 해소될 수 있다. 또한 본 발명에 따른 전극은 전기 전도도가 개선되어 전지 적용시 출력특성이 향상되는 효과가 있다. 또한 고체 전해질의 채널을 확보하여 충/방전시 리튬 이온의 이동도를 높여 전극의 용량 발현율을 개선하여 전지의 용량 및 에너지 밀도를 개선하는 효과가 있다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1a 및 도 1b는 종래 고분자 전해질을 포함하는 전극에서 도전재의 분포를 개략적으로 나타낸 것이다.
도 2a는 본 발명에 따른 전극 제작 공정 및 이에 따라 제조된 전극의 구조를 개략적으로 나타낸 것이다.
도 2b는 도 2a에 도시한 전극 활물질층의 일부를 확대하여 나타낸 것이다.
이하 본 발명의 구현예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
이어지는 상세한 설명에서 사용된 특정한 용어는 편의를 위한 것이지 제한적인 것은 아니다. '우', '좌', '상면' 및 '하면'의 단어들은 참조가 이루어진 도면들에서의 방향을 나타낸다. '내측으로' 및 '외측으로' 의 단어들은 각각 지정된 장치, 시스템 및 그 부재들의 기하학적 중심을 향하거나 그로부터 멀어지는 방향을 나타낸다. '전방', '후방', '상방', '하방' 및 그 관련 단어들 및 어구들은 참조가 이루어진 도면에서의 위치들 및 방위들을 나타내며 제한적이어서는 안된다. 이러한 용어들은 위에서 열거된 단어들, 그 파생어 및 유사한 의미의 단어들을 포함한다.
본 발명은 리튬 이온 이차 전지용 전극을 제조하는 방법 및 상기 방법으로 제조된 전극에 대한 것이다. 본 발명에 있어서 상기 리튬 이온 이차 전지는 전해질로 고분자 전해질을 사용하는 전고체 전지인 것이다. 본 발명에 있어서 상기 전고체 전지는 리튬 폴리머 이차전지 또는 리튬이온 폴리머 이차전지 등으로 지칭될 수 있다.
본 발명은 리튬 이온 이차 전지용 전극을 제조하는 방법 및 상기 방법으로 제조된 전극에 대한 것이다. 본 발명에 있어서 상기 리튬 이온 이차 전지는 전해질로 고분자 전해질을 사용하는 전고체 전지인 것이다. 본 발명에 있어서 상기 전고체 전지는 리튬 폴리머 이차전지 또는 리튬이온 폴리머 이차전지 등으로 지칭될 수 있다.
본 발명에 있어서, 상기 전극은 복수의 전극 활물질 입자, 제1 고분자 전해질, 제2 고분자 전해질, 도전재를 포함하는 전극 활물질층을 포함한다. 상기 전극 활물질층은 집전체의 적어도 일측면상에 형성될 수 있다. 또한, 상기 전극은 필요에 따라 바인더 수지를 더 포함할 수 있다. 또한, 상기 전극은 전극의 물리화학적 특성의 보완이나 개선의 목적으로 다양한 첨가제를 더 포함할 수 있다. 상기 첨가제는 특별히 한정되는 것은 아니나 산화 안정 첨가제, 환원 안정 첨가제, 난연제, 열안정제, 무적제(antifogging agent) 등과 같은 첨가제를 1종 이상 포함할 수 있다.
본 발명의 일 실시양태에 있어서, 상기 전극 활물질 입자는 제1 고분자 전해질 및 도전재의 혼합물을 포함하는 제1 피복층에 의해 입자 표면의 적어도 일부가 피복되어 있다. 한편, 본 발명의 일 실시양태에 있어서, 상기 제1 피복층은 전술한 바와 같은 다양한 첨가제를 1종 이상 포함할 수 있다. 또한, 상기 제2 고분자 전해질은 상기 제1 피복층의 표면, 상기 입자의 표면 또는 이 둘 모두의 표면 중 적어도 일부를 피복하도록 포함된다. 즉, 상기 제2 고분자 전해질은 제2 피복층을 형성하는 것이다. 본 발명에 따른 전극은, 전극 내에서 각 활물질 입자들이 상기 제1 고분자 전해질 및 제2 고분자 해질 중 적어도 하나 이상에 의해 서로 결착되어 있어 일체화된 전극 구조를 갖는 것이다. 도 2b는 본 발명에 따른 전극의 일부를 확대하여 나타낸 것으로서 전극 활물질 입자의 표면에 제1 피복층이 형성되어 있으며 제1 피복층으로 피복된 전극 활물질 입자의 표면에 제2 피복층이 형성되어 있다. 또한 도전재는 제1 피복층에 포함되어 있어 도전재가 활물질 주변부에 매우 가깝게 분포되며 이에 따라 도전재와 전극 활물질과의 이격 거리를 최소화되고 전극 활물질과의 접촉 빈도가 높다.
또한, 본 발명에 있어서, 상기 전극은 집전체를 포함할 수 있다. 일예로 상기 일체화된 전극 구조(전극 활물질층)가 집전체의 적어도 일측면에 형성된 것일 수 있다. 환원하여 본 발명에 따른 전극은 집전체의 적어도 일측면에 제1 고분자 전해질, 제2 고분자 전해질 및 도전재를 포함하는 전극층이 형성된 것이며, 상기 전극층은 전술한 특징을 갖는 전극 구조를 나타낸다. 또한, 상기 전극층은 전술한 바와 같이 필요에 따라 바인더 수지 및 첨가제를 더 포함할 수 있다.
본 발명에 있어서, 상기 전극은 음극 및 양극 중 어느 하나일 수 있다. 상기 전극이 음극인 경우에는 전극 활물질은 리튬이온 이차 전지의 음극 활물질로 사용 가능한 물질이면 어느 것이나 사용할 수 있다. 예를 들어 상기 음극 활물질은 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1
-xMe'yOz(Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5
등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등에서 선택된 1종 또는 2종 이상을 사용할 수 있다. 구체적인 일 실시양태에 있어서 상기 음극 활물질은 탄소계 물질 및/또는 Si을 포함할 수 있다.
상기 전극이 양극인 경우, 상기 전극 활물질은 리튬이온 이차 전지의 양극 활물질로 사용 가능한 것이면 제한 없이 사용할 수 있다. 예를 들어, 상기 양극 활물질은, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1
+
xMn2
-
xO4(여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2
등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7
등의 바나듐 산화물; 화학식 LiNi1
-
xMxO2
(여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2
-
xMxO2
(여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8
(여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2
-
xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3
등을 포함할 수 있다. 그러나, 이들만으로 한정되는 것은 아니다.
본 발명에 있어서 상기 집전체는 금속판 등 전기 전도성을 나타내는 것으로서 이차 전지 분야에서 공지된 집전체 전극의 극성에 따라 적절한 것을 사용할 수 있다.
본 발명에 있어서 상기 도전재는 통상적으로 전극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재에서 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명에 있어서, 상기 바인더 수지는 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분이면 특별히 제한되지 않으며, 예를 들어 폴리불화비닐리덴 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다. 상기 바인더 수지는 통상적으로 전극층 100 중량% 대비 1 내지 30 중량%, 또는 1 내지 10중량%의 범위로 포함될 수 있다.
본 발명에 있어서, 상기 제1 피복층은 제1 고분자 전해질과 도전재의 혼합물을 포함하는 것으로서, 전극 활물질 입자의 표면의 적어도 일부를 피복한다.
즉, 환원하면 전극층 내에서 입자들은 주로 제2 고분자 전해질을 매개로 하여 점결착 및/또는 면결착하여 일체화된 전극을 구성하도록 집적되어 있다. 또한, 상기 입자들은 1차적으로 제1 피복층에 의해 입자 표면의 전부 또는 적어도 일부가 피복되어 있다. 이와 같이 제1 피복층으로 입자를 피복함으로써 전극 중 함유되는 도전재가 되도록 전극 활물질의 표면 근처에 집중되어 배치되고, 이에 따라 활물질과 고체 전해질 반응 사이트가 증대되는 효과가 있다. 또한, 사용되는 도전재의 사용량을 저감할 수 있다.
본 발명의 일 실시양태에 있어서 제1 및 제2 고분자 전해질은 서로 다른 것이거나 서로 동일한 것을 사용할 수 있다. 상기 제1 고분자 전해질은 입자의 표면을 일차적으로 피복하는 것으로서 전위창이 넓은 것이 바람직하다. 예를 들어 양극의 경우 상기 제1 고분자 전해질은 산화 안정성이 우수한 고분자 전해질을 사용하는 것이 바람직하다. 또한, 음극의 경우에는 제1 고분자 전해질로 환원 안정성이 우수한 고분자 전해질을 사용하는 것이 바람직하다. 본 발명의 구체적인 일 실시양태에 있어서 제2 고분자 전해질은 상기 언급된 제1 고분자 전해질과 같거나 상이할 수 있으며, 전극에서 주로 리튬 이온의 전달 역할을 하기 때문에 이온 전도도가 높은 소재, 예를 들어 또는 10-4 s/m 이상인 것이면 어느 것이나 사용 가능하며, 특정한 성분으로 한정되는 것은 아니다. 본 발명의 구체적인 일 실시양태에 있어서 전극 특성 보완 및 전극 활물질 입자의 특성 발현을 위해 제1 고분자 전해질 및 제2 고분자 전해질은 적절하게 서로 다른 소재를 사용할 수 있다.
일 실시양태에 있어서, 제1 및 제2 상기 고분자 전해질은 각각 독립적으로 용매화된 리튬염에 고분자 수지가 첨가되어 형성된 고체 고분자 전해질이거나, 유기 용매와 리튬염을 함유한 유기 전해액을 고분자 수지에 함유시킨 고분자 겔 전해질일 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 고체 고분자 전해질은 전해질은 이온 전도성 재질로 통상적으로 전고체 전지의 고체 전해질 재료로 사용되는 고분자 재료이면 특별히 한정되는 것은 아니다. 상기 고체 고분자 전해질은 예를 들어, 폴리에테르계 고분자, 폴리카보네이트계 고분자, 아크릴레이트계 고분자, 폴리실록산계 고분자, 포스파젠계 고분자, 폴리에틸렌 유도체, 알킬렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등을 포함할 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 고체 고분자 전해질은 고분자 수지로서 PEO(poly ethylene oxide) 주쇄에 PMMA, 폴리카보네이트, 폴리실록산(pdms) 및/또는 포스파젠과 같은 무정형 고분자를 공단량체로 공중합시킨 가지형 공중합체, 빗형 고분자 수지 (comb-like polymer) 및 가교 고분자 수지 등이 포함될 수 있다.
또한 본 발명의 구체적인 일 실시양태에 있어서 상기 고분자 겔 전해질은 리튬염을 포함하는 유기 전해액과 고분자 수지를 포함하는 것으로서, 상기 유기 전해액은 고분자 수지의 중량 대비 60~400 중량부를 포함하는 것이다. 겔 전해질에 적용되는 고분자는 특정한 성분으로 한정되는 것은 아니나, 예를 들어, PVC계, PMMA계, 폴리아크릴로니트릴(Polyacrylonitrile, PAN), 폴리불화비닐리덴(PVdF), 폴리불화비닐리덴-육불화프로필렌(poly(vinylidene fluoride-hexafluoropropylene: PVdF-HFP 등이 포함될 수 있다.
본 발명의 전해질에 있어서, 전술한 리튬염은 이온화 가능한 리튬염으로서 Li+X-로 표현할 수 있다. 이러한 리튬염의 음이온으로는 특별히 제한되지 않으나, F-, Cl-, Br-, I-, NO3
-, N(CN)2
-, BF4
-, ClO4
-, PF6
-, (CF3)2PF4
-, (CF3)3PF3
-, (CF3)4PF2
-, (CF3)5PF-, (CF3)6P-, CF3SO3
-, CF3CF2SO3
-, (CF3SO2)2N-, (FSO2)2N-
, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3
-, CF3CO2
-, CH3CO2
-, SCN-, (CF3CF2SO2)2N- 등을 예시할 수 있다.
한편, 본 발명의 구체적인 일 실시양태에 있어서, 상기 제2 고분자 전해질은 고분자 겔 전해질일 수 있다. 상기 고분자 겔 전해질은 이온 전도도가 우수하며(또는 10-4 s/m 이상이며), 결착특성이 있어, 전해질로서의 기능을 제공할 뿐만 아니라, 전극 활물질 사이의 결착력 및 전극층과 집전체 사이에 결착력을 제공하는 전극 바인더 수지의 기능을 제공할 수 있다.
본 발명의 일 실시양태에 있어서, 상기 제1 피복층은 바인더 수지 및 제1 고체 고분자 전해질 중 1종 이상을 포함할 수 있다. 즉, 바인더 수지는 필요에 따라 제1 고체 전해질을 대체하여 또는 제1 고분자 전해질과 함께 사용될 수 있다.
다음으로 전술한 특징을 갖는 전극을 제조하는 방법을 설명한다. 다음에 설명되는 제조 방법은 본 발명에 따른 전극을 제조하는데 있어서 채용될 수 있는 다양한 방법 중 하나인 것이다.
본 발명의 구체적인 일 실시양태에 있어서, 제1 혼합물의 도포는 전기 분무(electrospraying) 및/또는 전기 방사(electrospinning)의 방법으로 수행될 수 있다. 전기 분무는 분무 노즐에 인가된 전압에 의해 코팅 용액이 미세한 액적으로 분사되어 입자 형태로 코팅되는 것을 특징으로 하는 표면 코팅 방법의 일종이다. 전기 방사는 전기 분무와 유사하나 입자 형태가 아닌 1-D 구조로 코팅되는 것을 특징으로 한다. 상기 전기 분무에 대해서는 대한민국 등록특허공보 제0271116호의 전기분무 장치 및 방법의 내용을 참조할 수 있다. 또한 본 발명의 일 실시양태에 있어서 상기 제1 혼합물은 딥코팅, 그라비아 코팅, 슬롯 다이 코팅 등 공지의 슬러리 도포 방법을 이용하여 도포될 수도 있다.
우선 제1 고분자 전해질 및 도전재를 포함하는 제1 혼합물을 준비한다. 상기 제1 고분자 전해질은 우선 고분자 수지 및 리튬염을 고온 용융하여 준비된 용융 블렌드물의 형태로 제공되거나 고분자 수지 및 리튬염이 유기 용매에 균일하게 분산된 용액의 형태로 제공될 수 있다. 이후 상기 블렌드물이나 용액에 도전재를 첨가하고 혼합하여 제1 혼합물이 준비될 수 있다. 상기 제1 혼합물은 필요에 따라 상기 제1 고분자 전해질이 바인더 수지로 대체되거나, 제1 고분자 수지와 함께 바인더 수지가 더 포함될 수 있다.
다음으로 전극 활물질을 상기 제1 혼합물과 혼합하여 전극 제조용 슬러리를 준비한다. 이때 상기 슬러리에서 고분자 전해질의 함량은 전극 활물질의 함량 100중량부 대비 1 내지 100 중량부, 또는 2 내지 50 중량부, 또는 2 내지 20 중량부 또는 2 내지 10 중량부인 것이다.
다만 전술한 슬러리 준비 방법은 예시적인 것으로서 전술한 내용에 한정되지 않는다. 특히, 슬러리 구성 성분들의 투입 또는 혼합 순서는 투입되는 성분들의 물리 화학적 성질 및 수득하고자 하는 전극이나 전지의 특성 등을 고려하여 변형될 수 있다. 예를 들어, 고분자 전해질, 도전재 및 전극 활물질이 용매와 같은 분산매에 이시 투입되거나 또 다른 실시양태에 있어서 동시 투입될 수 있다.
다음으로 상기 슬러리를 집전체의 적어도 일측면에 도포하고 건조한다. 이 단계에서 전극 활물질 입자들은 바인더 수지 및/또는 제1 고분자 전해질을 포함하는 제1 피복층에 의해 표면의 적어도 일부가 피복되며 상기 제1 피복층이 입자 표면에 형성됨으로써 전극에 투입된 도전재의 전량이 전극 활물질 입자와 충분히 접촉하도록 배치된다. 전술한 바와 같이, 상기 도포는 슬롯 다이 코팅 등 통상적인 전극 코팅 방법을 사용할 수 있다. 한편, 본 발명의 구체적인 일 실시양태에 있어서, 상기 도포는 전기 분무(electrospraying) 및/또는 전기 방사(electrospinning)의 방법을 이용할 수 있다. 도 2a는 전기 분무를 통해 슬러리를 집전체의 표면에 도포하는 방법을 도식화하여 나타낸 것이다. 이를 참조하면, 슬러리 공급 탱크로부터 전극 활물질 및 고분자 전해질이 포함된 슬러리를 정량 펌프를 통해 고전압이 걸려었는 전기 분사 노즐내로 연속적으로 공급하면서 전기 분사를 수행한다. 이때 슬러리는 표면 장력을 낮추고 휘발성을 유도하기 위해 슬러리 내에 용매를 첨가하여 적절한 분무 용액의 형태로 준비하는 것이 바람직하다. 이러한 용매로는, 특별히 한정되는 것은 아니나, 물과 DMF(dimethylformamide), NMP(N-methly-2-pyrrolidone), 아세톤, DMSO(dimethyl sulfoxide), THF(tetrahydrofuran), 아세토니트릴(acetonitrile), 에탄올(Ethanol), 헥센(hexane) 등의 유기 용매 중 하나 이상 선택하여 사용할 수 있다. 상기 분무 용액 중 고형분의 농도는 1 내지 50% 또는, 5 내지 30%, 또는 10 내지 20%인 것이다. 고형분은 고체 형태의 성분을 의미하는 것으로서, 분무 용액 중 용매와 같은 액상을 제외한 모든 고상의 성분, 예를 들어 전극 활물질, 바인더, 도전재, 고체 전해질 등을 의미하는 것이다.
또한, 상기 분무액은 분무액의 점도, 표면장력, 인가 전압 등을 고려하여 활물질의 적절한 전기용량을 계산하여 정량 토출시켜 전기 분사를 실시한다. 이때 사용되는 전압은 1kV 내지 50kV 내에서 적절하게 조절될 수 있다. 상기 전압 범위는 상기 범위 내에서 40 kV 이하, 30 kV 이하, 20 kV 이하, 10kV이하 또는 5 kV이하로 조절될 수 있다. 한편, 방사 노즐과 집전체 사이의 거리는 특별히 한정되지 않으며, 공정조건에 따라 적절한 거리로 제어될 수 있다. 전기 분무에 의해 전극 활물질과 고체 전해질이 전극 내에서 균일하게 분산된 전극을 제조할 수 있다. 또한, 도전재가 전극 내 특정 부분으로 편중됨이 없이 전극 활물질의 표면에 고르게 분산되는 효과가 있다.
이 단계에서 전극 활물질 입자들은 제1 고분자 전해질을 포함하는 제1 피복층에 의해 표면의 적어도 일부가 피복되며 상기 제1 피복층이 입자 표면에 형성됨으로써 전극에 투입된 도전재의 전량이 전극 활물질 입자와 충분히 접촉하도록 배치된다.
한편, 본 발명의 일 실시양태에 있어서 상기 전기 분사 공정을 수행한 후 그 결과물을 건조하는 공정을 수행할 수 있다. 상기 건조는 진공 조건하에서 수행될 수 있으며, 약 80℃ 내지 150℃의 온도 조건으로 제어되는 것이 바람직하다.
또한, 상기 건조 공정 이후 필요에 따라 가압 공정을 더 수행할 수 있다. 상기 가압 공정은 전극이 적절한 기공도를 갖도록 구성 물질들을 패킹(packing)하는 것으로서, 특별한 방법으로 한정되는 것은 아니다. 예를 들어 핫 프레스나 압연 등 공지의 가압 방법을 적절하게 선택하여 수행될 수 있으며, 필요에 따라서 가열하거나 냉각하는 등 적절한 온도 조건으로 제어될 수 있다.
다음으로 상기 제1 피복층으로 피복된 입자들의 건조 결과물을 제2 고분자 전해질로 충진한다.
상기 단계에서 제2 고분자 전해질은 상기 제1 고분자 전해질과 같이 액상으로 준비될 수 있다. 즉, 제2 고분자 전해질은 우선 고분자 수지 및 리튬염을 고온 용융하여 준비된 용융 블렌드물의 형태로 제공되거나 고분자 수지 및 리튬염이 유기 용매에 균일하게 분산된 분산물인 액상 고분자 전해질의 형태로 제공될 수 있다. 이러한 액상 고분자 전해질에 상기 건조 결과물을 함침시켜 고분자 전해질로 건조 결과물을 충진시킨다. 상기 액상 고분자 전해질은 상기 건조 결과물의 기공으로 침투하여 전극의 빈 공간(공극)들이 고분자 전해질로 충진된다.
한편, 본 발명의 구체적인 일 실시양태에 있어서, 본 충진 단계는 상기 건조 결과물을 상기 액상 고분자 전해질로 딥코팅하는 방식으로 진행하거나 이와 함께 또는 독립적으로 스프레이형 노즐을 이용하여 상기 액상 고분자 전해질을 상기 건조 결과물에 공급하는 방식으로 수행될 수 있다.
또한, 본 발명의 구체적인 일 실시양태에 있어서, 상기 전기 분무 단계와 상기 충진 단계는 연속 공정으로 수행될 수 있으며, 이때 분무 공정이 수행된 후 충진 공정이 진행되기 전에 적절한 건조 장비를 구비하여 제1 슬러리가 고화된 후 충진 공정이 수행되는 것이 바람직하다. 그러나, 상기 전기 분무 및 전기 방사 공정을 통해 코팅시 건조가 일부 진행되므로 완벽한 건조 공정이 꼭 필요하지 않을 수 있다.
본 공정에서 전극 활물질 사이가 고분자 전해질로 충진되어 전극 활물과 고분자 전해질의 저항이 감소하고 전기화학적 반응 면적이 증가하며 리튬 이온 이동도가 개선되는 등 전지 성능이 개선되는 효과가 있다.
다음으로 상기 충진된 전극을 건조한다. 건조 후 필요에 따라 압축 공정을 더 수행할 수 있다. 상기 압축은 전극의 최종 사용 목적에 따라 열간 압축, 냉간 압축, 일축 압축, 등가압 압축 중 적어도 하나 이상을 적절하게 선택하여 적용할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 최종적으로 수득된 전극의 기공도는 0 내지 30%, 또는 1 내지 20% 또는 5 내지 10%인 것이다.
상기 방법을 통해 수득된 전극에서 활물질은 제1 피복층에 의해 피복되어 있으며 피복 활물질들은 제1 고분자 전해질 및/또는 제2 고분자 전해질에 의해 서로 면결착 및 점결착되어 일체화된 전극 구조를 나타낸다. 즉, 전극 활물질이 고분자 전해질로 2회에 걸쳐 피복되며 1회 피복시 제1 피복층에 도전재를 포함시킴으로써 도전재의 이용 효율이 증가하는 효과가 있다.
도 1a 및 도 1b는 종래 전극 제조 방법에 따라 제조된 전극의 구성을 개략적으로 도시한 것이다. 종래 전극 제조 방법은 활물질, 고체 전해질 및 도전재를 한꺼번에 혼합하여 전극 슬러리를 제조한 후 이를 집전체에 코팅하는 방식으로 제조되었다.
이 경우 도전재가 전기화학적 반응이 일어나지 않는 미반응 영역에도 위치하게 되어 결과적으로 투입된 도전재 중 상당량이 반응에 참여하지 못한다. 이로 인해 투입된 도전재의 이용 효율이 낮은 단점이 있었다. 또한 이런 도전재의 분포로 인해 고체 전해질의 투입 함량이 낮아져 이온 전도도가 낮아지는 문제가 있었다. 이러한 문제를 해소하기 위해 전극 코팅 후 높은 압력 조건 하에서 전극 표면을 압연하여 전극 활물질과 고체 전해질의 접촉 면적을 높이는 압연 공정이 필요하게 되었다. 그러나, 가압 공정시 인가된 높은 압력에 의해 활물질이 부스러져 깨어져 전지 용량이 저하되거나, 수명 특성이 저하되는 문제가 있었다.
도 2a 및 도 2b를 참조하면 본 발명에 따른 전극의 구조가 개략적으로 도시되어 있다. 이에 따르면 도전재가 전극 활물질 표면에 가까이 위치하여 전기화학적인 반응에 참여하는 비율이 높으므로 도전재 사용량을 저감할 수 있다. 또한, 압연시 가혹한 압력을 인가하지 않더라도 반응 사이트가 충분히 확보될 수 있어 전극 열화를 방지할 수 있다. 그리고 리튬 이온 이동도를 증가시켜 활물질의 용량 발현을 높일 수 있다.
또한, 본 발명은 상기 전극을 적어도 하나 이상 포함하는 리튬 이온 이차 전지를 제공한다. 상기 전지는 양극, 음극 및 상기 양극과 음극 사이에 개재된 고분자 전해질막을 구비한다. 상기 음극 및/또는 양극은 전술한 특징을 갖는 전극으로 고분자 전해질을 포함하는 것일 수 있다.
본 발명에 있어서, 상기 고분자 전해질막은 음극과 양극 사이에 개재되는 것으로서, 음극과 양극을 전기적으로 절연하는 동시에 리튬 이온을 통과시키는 역할을 하는 것이다. 상기 고분자 전해질막은 통상 폴리머 전고체 전지 분야에서 사용되는 고분자 전해질막으로 사용되는 것이면 어느 것이나 사용될 수 있으며 특별히 한정되는 것은 아니다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 고분자 전해질막은 필름, 막의 형상으로 준비된 것으로서, 전술한 제1 고분자 전해질 성분, 제2 고분자 전해질 성분 중 적어도 하나 이상이 포함될 수 있다.
또한, 본 발명은, 상기 이차전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다.
이 때, 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
실시예: 전극 및 전지의 제조
실시예 1
(1) 전극의 제조
슬러리 제작을 위해 전극 활물질은 NCM811(LiN0
.
8C0
.1M0.
1O2), 도전재는 VGCF 및 제1 고분자 고체전해질(PEO + LiFSI, 20:1 mol비)을 90:5:5의 중량비로 혼합하여 아세토니트릴에 투입하고 교반하여 전극 슬러리를 제조하였다. 두께가 20 ㎛인 알루미늄 집전체를 준비하였다. 상기 슬러리를 전기 스프레이(electrospraying) (1.5kV, 방사 노즐과 집전체 사이 거리 20cm) 를 이용하여 상기 집전체에 도포하고 그 결과물을 120℃에서 4시간 동안 진공 건조시켰다. 압연 공정을 진행하여, 2mAh/cm2의 전극 로딩, 전극층 두께가 48㎛, 기공도가 22%인 전극을 제조하였다. 본 과정을 통해, 활물질 표면에 도전재와 고체전해질이 코팅된 구조가 형성되었다. 한편, 전극내 이온전달을 개선하기 위해 제2 고분자 고체전해질(PEO + LiFSI, 20:1 mol비) 용액을 제조한 후, 상기 준비된 전극에 함침시킨 후 120℃에서 4시간 동안 진공 건조시켰다. 함침 후 최종 전극의 기공도가 10%인 전극을 제조하였다.
(2) 전지의 제조
1.4875cm2의 원형으로 타발한 전극과 1.7671cm2의 원형으로 절단된 리튬 금속 박막을 상대 전극으로 하여, 코인형 하프셀(half-cell)을 제조하였다. 구체적으로, 상기 리튬 금속과 전극 사이에 50㎛의 고체전해질막 (PEO + LiFSI, 20:1 mol비)을 게재하여 전극 조립체를 제조하고 이를 코인셀로 제작하였다.
실시예 2
전극 활물질 NCM811(LiN0
.
8C0
.1M0.
1O2), VGCF 및 제1 고분자 고체전해질(PEO + LiFSI, 20:1 mol비)을 90:3:7의 중량비로 혼합한 것을 제외하고는 실시예 1과 같은 방법으로 전극 및 전지를 제작하였다.
실시예 3
전극 활물질 NCM811(LiN0
.
8C0
.1M0.
1O2), VGCF 및 제1 고분자 고체전해질 (PPC(Polyproplyene carbonate)+ LiFSI, 20:1 mol 비)을 90:3:7의 중량비로 혼합한 것을 제외하고는 실시예 1과 같은 방법으로 전극 및 전지를 제작하였다.
비교예 1
(1) 전극의 제조
슬러리 제작을 위해 전극 활물질은 NCM811(LiN0
.
8C0
.1M0.
1O2), 도전재는 VGCF 및 고분자 고체전해질(PEO + LiFSI, 20:1 mol비)을 82:2.8:15.2의 중량비로 혼합하여 아세토니트릴에 투입하고 교반하여 전극 슬러리를 제조하였다. 두께가 20 ㎛인 구리 집전체를 준비하고 상기 집전체에 상기 전극 슬러리를 도포한 한 후 이를 120℃에서 4시간 동안 진공 건조시켰다. 압연 공정을 진행하여, 2mAh/cm2의 전극 로딩, 전극층 두께가 48㎛, 기공도가 10%인 전극을 제조하였다.
(2) 전지의 제조
1.4875cm2의 원형으로 타발한 전극과 1.7671cm2의 원형으로 절단된 리튬 금속 박막을 상대 전극으로 하여, 코인형 하프셀(half-cell)을 제조하였다. 구체적으로, 상기 리튬 금속과 전극 사이에 50㎛의 고체전해질막 (PEO + LiFSI, 20:1 mol비)을 게재하여 전극 조립체를 제조하고 이를 코인셀로 제작하였다.
비교예 2
전극 활물질은 NCM811, 도전재는 VGCF 및 고분자 고체전해질(PEO + LiFSI, 20:1 mol비)을 82:5.5:12.5의 중량비로 혼합하여 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 전극 및 전지를 제조하였다.
비교예 3
전극 활물질은 NCM811, 도전재는 VGCF 및 고분자 고체전해질(PEO/PPC (1:1)+ LiFSI, 20:1 mol비)을 82:5.5:12.5의 중량비로 혼합하여 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 전극 및 전지를 제조하였다.
비교예 4
(1) 전극의 제조
슬러리 제작을 위해 전극 활물질은 NCM811(LiN0
.
8C0
.1M0.
1O2), 도전재는 VGCF 및 제1 고분자 고체전해질(PEO + LiFSI, 20:1 mol비)을 90:3:7의 중량비로 혼합하여 아세토니트릴에 투입하고 교반하여 전극 슬러리를 제조하였다. 두께가 20 ㎛인 구리 집전체를 준비하고 상기 집전체에 상기 슬러리를 도포한 한 후 이를 120℃에서 4시간 동안 진공 건조시켰다. 압연 공정을 진행하여, 2mAh/cm2의 전극 로딩, 전극층 두께가 48㎛, 기공도가 25%인 전극을 제조하였다. 본 과정을 통해, 활물질 표면에 도전재와 고체전해질이 코팅된 구조가 형성되었다. 한편, 전극내 이온전달을 개선하기 위해 제2 고분자 고체전해질(PEO + LiFSI, 20:1 mol비)용액을 제조한 후, 상기 준비된 전극에 함침시킨 후 120℃에서 4시간 동안 진공 건조시켰다. 함침 후 최종 전극의 기공도가 10%인 전극을 제조하였다.
(2) 전지의 제조
1.4875cm2의 원형으로 타발한 전극과 1.7671cm2의 원형으로 절단된 리튬 금속 박막을 상대 전극으로 하여, 코인형 하프셀(half-cell)을 제조하였다. 구체적으로, 상기 리튬 금속과 전극 사이에 50㎛의 고체전해질막 (PEO + LiFSI, 20:1 mol비)을 게재하여 전극 조립체를 제조하고 이를 코인셀로 제작하였다.
실험 1. 전극 내 활물질 층 전기 저항 평가
상기 실시예 1 내지 3 및 비교예 1 내지 4의 전극의 전기 저항을 MP tester로 측정하여 비교하였으며, 그 결과를 하기 표 1 및 2에 정리하였다.
실험 2. 초기 방전 용량 및 수명 특성 평가
실시예 1 내지 3 및 비교예 1 내지 4의 전지에 대해 충·방전을 수행하여, 초기 방전 용량 및 용량 유지율을 평가하였다. 한편, 수명 특성 평가시 60℃에서 0.05C로 충·방전하였고, 30회 사이클은 방전 상태에서 종료하고, 용량 유지율을 평가하였다.
충전 조건: CC (정전류)/C V(정전압),(4.0 V 혹은 4.25V, 0.005C current cut-off )
방전 조건: CC (정전류)조건 3V
용량 유지율은 첫 번째 방전 용량 대비 30 사이클 후 방전 용량의 비를 계산에 의해 도출하였다. 그 결과를 하기 표 1 및 2에 정리하였다.
실험 3. 출력특성 평가
실시예 1 내지 3 및 비교예 1 내지 4 의 전지에 대해 출력 특성을 평가하였다. 평가는 0.05C, 4.0V 대비 0.2C 에서의 용량으로 비교하였다. 그 결과를 하기 표 1 및 2에 정리하였다.
실시예 | 활물질층 전기 저항(ohm*cm) | 방전 용량(mAh/g, 4.0V) | 방전 용량 유지율(%, 30 cycle, 4.0V) | 방전 용량(mAh/g, 4.25V) | 방전 용량 유지율(%, 30cycle, 4.25V) | 출력특성(%,0.2C/ 0.05C, 4.0V) |
1 | 10.8 | 138 | 94 | 76 | ||
2 | 12.1 | 135 | 95 | 170 | 86 | 73 |
3 | 12.3 | 136 | 95 | 178 | 94 | 72 |
비교예 | 활물질층 전기 저항(ohm*cm) | 방전 용량(mAh/g, 4.0V) | 방전 용량 유지율(%, 30 cycle, 4.0V) | 방전 용량(mAh/g, 4.25V) | 방전 용량 유지율(%, 30cycle, 4.25V) | 출력특성(%,0.2C/ 0.05C, 4.0V) |
1 | 34.4 | 126 | 89 | |||
2 | 20.8 | 129 | 91 | |||
3 | 21.2 | 130 | 91 | 173 | 89 | 65 |
4 | 14.2 | 140 | 94 | 173 | 88 | 73 |
상기와 같이 본 발명을 통해 전고체전지 전극 구조를 개선하여, 도전재를 효과적으로 감량할 수 있었다. 이로 인해, 고체전해질의 함량을 증가시켜 이온전도도 개선에 따른 용량 발현을 증대시키고, 전극 내 전기전도도 개선으로 출력 특성도 개선할 수 있었다. 또한, 고전압에 안정한 PPC 고체전해질을 활물질 표면에 코팅시켜, 양극 상한 전압을 PEO의 경우 4.0V에서 4.25V로 높여 양극의 용량을 높일 뿐만 아니라, 산화안정성도 개선시킬 수 있었다.
[부호의 설명]
100 전극
110 집전체
120 전극 활물질층
121 전극 활물질 입자
122 제1 및 제2 피복층
122a 제1 피복층 122b 제2 피복층
123 도전재
131 전기 스프레이
131 전극 제조용 슬러리
140 스프레이형 노즐
141 액상 고분자 전해질
Claims (7)
- 복수의 전극 활물질 입자, 바인더 수지 및/또는 제1 고분자 전해질, 제2 고분자 전해질 및 도전재를 포함하며, 상기 전극 활물질 입자는 제1 고분자 전해질 및 도전재의 혼합물을 포함하는 제1 피복층에 의해 입자 표면의 적어도 일부가 피복되어 있으며, 상기 제2 고분자 전해질은 상기 제1 피복층의 표면, 상기 입자의 표면 또는 이 둘 모두의 표면 중 적어도 일부를 피복하며, 복수의 전극 활물질들이 상기 제1 고분자 전해질 및 제2 고분자 전해질 중 적어도 하나 이상에 의해 서로 결착되어 일체화된 구조를 갖는 것인 전고체 전지용 전극.
- 제1항에 있어서,상기 제1 고분자 전해질 및 제2 고분자 전해질은 서로 같거나 다른 것인, 전고체 전지용 전극.
- 제1항에 있어서,제1 고분자 전해질 및 제2 고분자 전해질은 서로 다른 것인, 전고체 전지용 전극.
- (S10) 제1 고분자 전해질, 도전재 및 복수의 전극 활물질 입자를 포함하는 전극 제조용 슬러리를 준비하는 단계;(S20) 상기 슬러리를 집전체의 표면에 코팅하는 단계; 및(S30) 상기 (S20)의 결과물을 제2 고분자 전해질로 함침하는 단계;를 포함하는 것인, 전고체 전지용 전극의 제조 방법.
- 제4항에 있어서,상기 (S20)의 결과물은 전극 활물질 입자의 표면의 적어도 일부가 상기 제1 고분자 전해질로 피복된 것인, 전고체 전지용 전극의 제조 방법.
- 제4항에 있어서,(S40) 상기 (S30)을 통해 수득된 결과물을 건조하는 단계를 더 포함하며, 상기 (S40)의 결과물은 복수의 전극 활물질들이 상기 제1 고분자 전해질 및 제2 고분자 전해질 중 적어도 하나 이상에 의해 서로 결착되어 일체화된 구조를 갖는 전극인 것인, 전고체 전지용 전극의 제조 방법.
- 제4항에 있어서,상기 (S20) 단계는 전기분무의 방법에 의해 수행되는 것인, 전고체 전지용 전극의 제조 방법.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18768306.5A EP3467908B1 (en) | 2017-03-16 | 2018-03-16 | Method for manufacturing electrode including polymer electrolyte and electrode obtained thereby |
EP23204204.4A EP4287337A3 (en) | 2017-03-16 | 2018-03-16 | Method for manufacturing electrode including polymer electrolyte |
ES18768306T ES2973808T3 (es) | 2017-03-16 | 2018-03-16 | Método para fabricar un electrodo que incluye un electrolito polimérico y electrodo obtenido de ese modo |
JP2019508231A JP6821011B2 (ja) | 2017-03-16 | 2018-03-16 | 高分子電解質を含む電極の製造方法及びその方法で製造された電極 |
CN201880003075.1A CN109565034B (zh) | 2017-03-16 | 2018-03-16 | 包含聚合物电解质的电极的制造方法以及由此获得的电极 |
US16/309,768 US10868296B2 (en) | 2017-03-16 | 2018-03-16 | Method for manufacturing electrode including polymer electrolyte and electrode obtained thereby |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170033362 | 2017-03-16 | ||
KR10-2017-0033362 | 2017-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018169361A1 true WO2018169361A1 (ko) | 2018-09-20 |
Family
ID=63523696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/003118 WO2018169361A1 (ko) | 2017-03-16 | 2018-03-16 | 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10868296B2 (ko) |
EP (2) | EP4287337A3 (ko) |
JP (1) | JP6821011B2 (ko) |
KR (1) | KR102182687B1 (ko) |
CN (1) | CN109565034B (ko) |
ES (1) | ES2973808T3 (ko) |
HU (1) | HUE066620T2 (ko) |
WO (1) | WO2018169361A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018218616A1 (de) * | 2018-10-31 | 2020-04-30 | Robert Bosch Gmbh | Verfahren zur Herstellung von Elektrodenmaterialien |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110290889A (zh) | 2017-02-14 | 2019-09-27 | 蜻蜓能源公司 | 预涂覆粉末的制备和粉末膜沉积 |
US10714743B2 (en) * | 2017-03-06 | 2020-07-14 | Lg Chem, Ltd. | Method for manufacturing electrode including polymer electrolyte and electrode obtained thereby |
ES2973310T3 (es) * | 2017-09-13 | 2024-06-19 | Lg Energy Solution Ltd | Electrodo para batería de estado sólido que incluye electrolito sólido |
CN111816811A (zh) * | 2020-07-22 | 2020-10-23 | 平潭诚信智创科技有限公司 | 一种固态电池组及其控制方法 |
US11075413B1 (en) * | 2020-12-15 | 2021-07-27 | WATTRII Inc. | Solid-state battery and method of forming same |
US11271247B1 (en) | 2020-12-15 | 2022-03-08 | WATTRII, Inc. | Solid-state battery and method of forming same |
CN115000343B (zh) * | 2022-05-30 | 2023-11-24 | 三峡大学 | 一种柔性双层自支撑电极的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH117942A (ja) * | 1997-06-19 | 1999-01-12 | Matsushita Electric Ind Co Ltd | 全固体リチウム電池 |
JP2003132877A (ja) * | 2001-10-23 | 2003-05-09 | Sony Corp | 正極及び固体電解質電池、並びに正極の製造方法 |
JP2003217594A (ja) * | 2002-01-18 | 2003-07-31 | Nissan Motor Co Ltd | イオン電池用電極及びその製造方法 |
JP2010009773A (ja) * | 2008-06-24 | 2010-01-14 | Nissan Motor Co Ltd | リチウムイオン二次電池用電極 |
US20110143018A1 (en) * | 2009-10-07 | 2011-06-16 | Shufu Peng | Methods and systems for making battery electrodes and devices arising therefrom |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5326598A (en) | 1992-10-02 | 1994-07-05 | Minnesota Mining And Manufacturing Company | Electrospray coating apparatus and process utilizing precise control of filament and mist generation |
JPH10172615A (ja) * | 1996-12-17 | 1998-06-26 | Toshiba Battery Co Ltd | 非水溶媒電池及びポリマー電解質二次電池 |
JP2004164896A (ja) * | 2002-11-11 | 2004-06-10 | Nissan Motor Co Ltd | 全固体高分子電池用電極とその製造方法 |
JP2004234879A (ja) | 2003-01-28 | 2004-08-19 | Nissan Motor Co Ltd | 真性ポリマー電解質を備える二次電池用電極およびその製造方法、ならびに、二次電池 |
US7754382B2 (en) | 2003-07-30 | 2010-07-13 | Tdk Corporation | Electrochemical capacitor having at least one electrode including composite particles |
JP4256741B2 (ja) | 2003-07-30 | 2009-04-22 | Tdk株式会社 | 電極用複合粒子及びその製造方法、電極及びその製造方法、並びに、電気化学素子及びその製造方法 |
US7422826B2 (en) | 2004-04-07 | 2008-09-09 | Greatbatch Ltd. | In situ thermal polymerization method for making gel polymer lithium ion rechargeable electrochemical cells |
KR100791791B1 (ko) * | 2006-03-10 | 2008-01-04 | 주식회사 엘지화학 | 다공성 활성층이 코팅된 전극, 그 제조방법 및 이를 구비한전기화학소자 |
US8999008B2 (en) * | 2008-11-07 | 2015-04-07 | Seeo, Inc. | Method of forming an electrode assembly |
US9017882B2 (en) | 2008-11-07 | 2015-04-28 | Seeo, Inc. | Electrodes with solid polymer electrolytes and reduced porosity |
JP5534012B2 (ja) | 2010-08-02 | 2014-06-25 | 日産自動車株式会社 | リチウムイオン二次電池用負極およびその製造方法 |
CN103493258A (zh) | 2011-02-25 | 2014-01-01 | 应用材料公司 | 锂离子单元设计的设备与方法 |
CN103503202B (zh) | 2011-05-13 | 2015-11-25 | 丰田自动车株式会社 | 电极体、全固体电池及被覆活性物质的制造方法 |
JP2013161529A (ja) | 2012-02-01 | 2013-08-19 | Toyota Motor Corp | 固体電池用電極層の製造方法及び固体電池用電極体の製造装置 |
CN104106164A (zh) | 2012-02-17 | 2014-10-15 | 索尼公司 | 二次电池、二次电池的制造方法、用于二次电池的电极以及电子装置 |
JP2014035888A (ja) * | 2012-08-09 | 2014-02-24 | Toyota Motor Corp | 全固体電池及びその製造方法 |
JP6201327B2 (ja) | 2013-02-05 | 2017-09-27 | セイコーエプソン株式会社 | リチウム電池用電極複合体の製造方法、リチウム電池用電極複合体およびリチウム電池 |
WO2014164005A1 (en) | 2013-03-11 | 2014-10-09 | Applied Materials, Inc. | Electrode surface roughness control for spray coating process for lithium ion battery |
US9685655B2 (en) | 2013-03-15 | 2017-06-20 | Applied Materials, Inc. | Complex showerhead coating apparatus with electrospray for lithium ion battery |
JP2015041543A (ja) * | 2013-08-22 | 2015-03-02 | トヨタ自動車株式会社 | 活物質含有膜の製造方法 |
KR101558775B1 (ko) * | 2014-05-26 | 2015-10-07 | 현대자동차주식회사 | 고체전해질의 농도 구배를 가지는 전고체 전극 제조방법 |
EP3170307B1 (de) | 2014-07-15 | 2020-08-26 | Novomatic Ag | Verfahren zur darstellung einer dreidimensionalen szene auf einem autostereoskopischen monitor |
US10714743B2 (en) * | 2017-03-06 | 2020-07-14 | Lg Chem, Ltd. | Method for manufacturing electrode including polymer electrolyte and electrode obtained thereby |
-
2018
- 2018-03-16 WO PCT/KR2018/003118 patent/WO2018169361A1/ko unknown
- 2018-03-16 KR KR1020180031070A patent/KR102182687B1/ko active IP Right Grant
- 2018-03-16 EP EP23204204.4A patent/EP4287337A3/en active Pending
- 2018-03-16 EP EP18768306.5A patent/EP3467908B1/en active Active
- 2018-03-16 CN CN201880003075.1A patent/CN109565034B/zh active Active
- 2018-03-16 US US16/309,768 patent/US10868296B2/en active Active
- 2018-03-16 ES ES18768306T patent/ES2973808T3/es active Active
- 2018-03-16 JP JP2019508231A patent/JP6821011B2/ja active Active
- 2018-03-16 HU HUE18768306A patent/HUE066620T2/hu unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH117942A (ja) * | 1997-06-19 | 1999-01-12 | Matsushita Electric Ind Co Ltd | 全固体リチウム電池 |
JP2003132877A (ja) * | 2001-10-23 | 2003-05-09 | Sony Corp | 正極及び固体電解質電池、並びに正極の製造方法 |
JP2003217594A (ja) * | 2002-01-18 | 2003-07-31 | Nissan Motor Co Ltd | イオン電池用電極及びその製造方法 |
JP2010009773A (ja) * | 2008-06-24 | 2010-01-14 | Nissan Motor Co Ltd | リチウムイオン二次電池用電極 |
US20110143018A1 (en) * | 2009-10-07 | 2011-06-16 | Shufu Peng | Methods and systems for making battery electrodes and devices arising therefrom |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018218616A1 (de) * | 2018-10-31 | 2020-04-30 | Robert Bosch Gmbh | Verfahren zur Herstellung von Elektrodenmaterialien |
Also Published As
Publication number | Publication date |
---|---|
EP4287337A2 (en) | 2023-12-06 |
KR20180106977A (ko) | 2018-10-01 |
HUE066620T2 (hu) | 2024-08-28 |
EP3467908A4 (en) | 2019-08-14 |
EP3467908A1 (en) | 2019-04-10 |
CN109565034A (zh) | 2019-04-02 |
EP3467908B1 (en) | 2024-03-06 |
JP6821011B2 (ja) | 2021-01-27 |
US20190319258A1 (en) | 2019-10-17 |
KR102182687B1 (ko) | 2020-11-24 |
JP2019527921A (ja) | 2019-10-03 |
EP4287337A3 (en) | 2024-03-06 |
US10868296B2 (en) | 2020-12-15 |
CN109565034B (zh) | 2022-12-06 |
ES2973808T3 (es) | 2024-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018164455A1 (ko) | 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극 | |
WO2018169361A1 (ko) | 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극 | |
WO2020130695A1 (ko) | 고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지 | |
WO2019240547A1 (ko) | 고체 전해질막 및 이를 포함하는 전고체 전지 | |
WO2019212314A1 (ko) | 고분자계 고체 전해질을 포함하는 전고체 전지의 제조 방법 및 그 방법으로 제조된 전고체 전지 | |
WO2019212315A1 (ko) | 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극 | |
WO2019226020A1 (ko) | 음극 활물질용 복합 입자 및 이를 포함하는 전고체 전지용 음극 | |
WO2020067792A1 (ko) | 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극 | |
WO2019198961A1 (ko) | 리튬 이차 전지 및 이의 제조방법 | |
WO2022154309A1 (ko) | 이차전지의 충방전 방법 | |
WO2018169370A1 (ko) | 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 전해질 | |
WO2022092688A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2021125873A1 (ko) | 리튬 이차전지용 양극, 상기 양극을 포함하는 리튬 이차전지 | |
WO2021071125A1 (ko) | 리튬 이차 전지 및 리튬 이차 전지의 제조방법 | |
WO2021101281A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질 | |
WO2020091428A1 (ko) | 리튬 이차전지 | |
WO2019031766A2 (ko) | 리튬금속과 무기물 복합박막 제조방법 및 이를 이용한 리튬 이차전지 음극의 전리튬화 방법 | |
WO2019212313A1 (ko) | 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극 | |
WO2022050712A1 (ko) | 리튬 이차 전지 | |
WO2022065813A1 (ko) | 미세 쇼트 방지를 위한 고분자층을 포함하는 전고체전지용 음극 및 이를 포함하는 전고체전지 | |
WO2021241959A1 (ko) | 프리스탠딩 필름형 리튬 이차전지용 양극재, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2022103101A1 (ko) | 리튬 이차 전지 | |
WO2018190665A1 (ko) | 고분자 고체 전해질 및 이를 포함하는 리튬 이차전지 | |
WO2022010225A1 (ko) | 음극 및 상기 음극을 포함하는 이차 전지 | |
WO2017074116A1 (ko) | 다층 구조의 고분자 전해질 및 이를 포함하는 전고체 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18768306 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018768306 Country of ref document: EP Effective date: 20190107 |
|
ENP | Entry into the national phase |
Ref document number: 2019508231 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |